WO2012008495A1 - 加熱炉の灰付着抑制方法及び灰付着抑制装置 - Google Patents

加熱炉の灰付着抑制方法及び灰付着抑制装置

Info

Publication number
WO2012008495A1
WO2012008495A1 PCT/JP2011/065992 JP2011065992W WO2012008495A1 WO 2012008495 A1 WO2012008495 A1 WO 2012008495A1 JP 2011065992 W JP2011065992 W JP 2011065992W WO 2012008495 A1 WO2012008495 A1 WO 2012008495A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
ash
heating furnace
compound
types
Prior art date
Application number
PCT/JP2011/065992
Other languages
English (en)
French (fr)
Inventor
秋山 勝哉
海洋 朴
陽司 田窪
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020137000852A priority Critical patent/KR101512250B1/ko
Priority to CN201180034357.6A priority patent/CN102985756B/zh
Publication of WO2012008495A1 publication Critical patent/WO2012008495A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J9/00Preventing premature solidification of molten combustion residues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2900/00Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
    • F23J2900/01009Controls related to ash or slag extraction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/50Blending
    • F23K2201/505Blending with additives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific

Definitions

  • the present invention relates to an ash adhesion suppressing method and an ash adhesion suppressing apparatus for a heating furnace using a solid fuel to which a metal compound or a metal-containing compound is added as a fuel.
  • heating furnaces such as boilers that use single or multiple types of solid fuel containing inferior coal (meaning all furnaces that burn solid fuel), solid fuel pulverized by a pulverizer together with carrier air Supplied as fuel.
  • the heating furnace includes a furnace that generates heat by burning supplied fuel with a burner or the like, and a heat transfer tube group that is arranged from the upper side to the downstream side of the furnace and that exchanges heat by flowing the combustion gas inside. The combustion gas emitted from the heating furnace is discharged from the chimney.
  • the heat transfer tube group includes an upper heat transfer unit including a secondary heater, a tertiary heater, a final heater, and a secondary reheater arranged in parallel at predetermined intervals above the furnace, and a rear part of the furnace And a rear heat transfer section provided with a primary heater, a primary reheater, and a economizer.
  • the temperature near the wall of the furnace is high due to the radiant heat of the combustion flame of the fuel, so that ash tends to adhere and melt to the relatively low temperature heat transfer tube group, and a huge clinker can grow easily Problems arise.
  • Non-Patent Document 1 proposes a method for predicting in advance the possibility of ash adhesion based on an ash index and an evaluation standard based on an ash composition in which an ash-containing element is represented by an oxide.
  • the index and evaluation standard shown in Non-Patent Document 1 are intended for bituminous coal, which is a high-quality coal with less problems such as adhesion of ash, and inferior coal (for example, sub-bituminous coal, lignite, Coal types such as high silica charcoal and high calcium charcoal) are not targeted. Therefore, there is a problem that the relationship between the index shown in Non-Patent Document 1 and ash adhesion does not necessarily match.
  • the coal ash obtained by ashing the coal to be used in advance is sintered to measure the degree of sticking of the sintered ash and predict the adhesion of the ash.
  • Technology to evaluate has been developed.
  • sinterability and meltability of ash are greatly influenced not only by temperature but also by atmospheric gas composition. If the atmosphere is a reducing atmosphere having a high concentration of reducing gas such as CO or H 2 , the softening point and melting point of ash are lowered and sintering becomes easy. Moreover, if the atmosphere is an oxidizing atmosphere, the softening point and melting point of ash will rise and it will become difficult to sinter. Therefore, in the technique of Patent Document 1 that does not consider the atmospheric gas composition, there is a problem that it is difficult to accurately predict the adhesion of ash in the heating furnace.
  • Patent Document 2 In order to reduce the unburned content, a technique for adding metal oxides such as calcium, magnesium, iron, copper, etc. to coal has been developed as in Patent Document 2.
  • Patent Document 2 only calculates the unburned content, and does not describe the relationship between the amount of metal oxide added and ash adhesion in the heating furnace.
  • Patent Document 2 since the addition amount of the metal oxide corresponding to the inferior quality coal to be used is not determined, the appropriate amount of the metal oxide to be added is not determined, and ash adhesion in the heating furnace is not determined. There is a problem that it cannot be predicted accurately.
  • the problem to be solved by the present invention is a heating furnace using a mixture of various types of solid fuel including inferior coal, to which a metal compound or a metal-containing compound is added, for the stable operation of the heating furnace. It is to provide an ash adhesion suppressing method and an ash adhesion suppressing device for a heating furnace that can accurately predict ash adhesion in a heating furnace and suppress ash adhesion.
  • the method for suppressing ash adhesion of a heating furnace according to the present invention includes a composition of each ash component of a plurality of types of solid fuel, and a metal compound or a metal-containing compound that is added and mixed as an additive to the plurality of types of solid fuel.
  • prescribed atmospheric temperature and atmospheric gas composition among the fixed amount of ash components calculated beforehand about the said several types of solid fuel which added and mixed the metal-containing compound with the various mixing ratio Determining a predetermined mixing ratio based on the ratio, and obtaining a composition of the ash component in which the slag ratio in the heating furnace is equal to or less than a reference value; and A mixture of the plurality of types of solid fuel and the metal compound or metal-containing compound obtained by adding and mixing several types of solid fuel and the metal compound or metal-containing compound at the predetermined mixing ratio. And supplying to the heating furnace as fuel.
  • the ash adhesion suppressing device for a heating furnace includes a composition of each ash component of a plurality of types of solid fuels, and a metal compound or a metal-containing compound that is added and mixed as an additive to the plurality of types of solid fuels.
  • the composition of the inorganic component of the compound is measured and input in advance, and the composition of the ash component of the plurality of types of solid fuels obtained by adding and mixing the metal compound or the metal-containing compound at a plurality of mixing ratios, and It becomes slag at a predetermined atmospheric temperature and an atmospheric gas composition among a predetermined amount of ash components calculated in advance for the plurality of types of solid fuels added and mixed at a plurality of mixing ratios of the metal-based compound or metal-containing compound.
  • a fuel supply amount adjusting unit that adjusts the supply amounts of the plurality of types of solid fuel and the metal-based compound or metal-containing compound based on the predetermined mixing ratio determined by the arithmetic unit.
  • the present invention focuses on slag, which is a component that melts by combustion in a heating furnace, floats on the airflow of combustion air in the heating furnace, and adheres to the furnace wall and the heat transfer tube group.
  • slag ratio calculated for a plurality of types of solid fuels obtained by adding and mixing metal compounds or metal-containing compounds as additives at a plurality of mixing ratios, and the composition of the ash components of the plurality of types of solid fuels
  • a predetermined mixing ratio is determined from a plurality of mixing ratios so that the composition of the ash component has a slag ratio equal to or lower than the reference value. Yes.
  • the slag ratio which is an evaluation index newly established in the present invention
  • a plurality of types of mixing are performed so that the slag ratio has a composition of an ash component that is equal to or less than a reference value for which ash adhesion characteristics have been previously evaluated.
  • solid fuel includes coal, sludge carbide, biomass fuel and the like.
  • the supply amount of the solid fuel as the fuel is determined so that the amount of heat input to the heating furnace is constant.
  • the metal-based compound or the metal-containing compound is a compound having magnesium or aluminum as a main component of a metal element, and a metal oxide, metal hydroxide, metal carbonate, or the like containing magnesium or aluminum (for example, In addition to MgO, Mg (CO 3 ), Mg (OH) 2 , Al 2 O 3 , Al (OH) 3, etc.), oxo acid salts, organic salts, minerals, and the like containing magnesium or aluminum are included.
  • the “metal oxide” means a metal oxide having an oxidizing power to oxidize carbon in the solid fuel under the environment in the heating furnace, and includes a metal oxide raw material.
  • the “metal oxide raw material” means a compound that generates a metal oxide by thermal decomposition.
  • the method for suppressing ash adhesion of a heating furnace includes a composition of each ash component of a plurality of types of solid fuels, and a metal compound or a metal-containing compound that is added and mixed as an additive to the plurality of types of solid fuels A step of measuring the composition of the inorganic component of the compound in advance, and the ash of the plurality of types of solid fuels obtained by adding and mixing the metal-based compound or metal-containing compound having a plurality of average particle sizes in a plurality of mixing ratios A predetermined amount of the ash component calculated in advance for the plurality of types of solid fuels obtained by adding and mixing the composition of the components and the metal-based compound or metal-containing compound having a plurality of average particle sizes in a plurality of mixing ratios.
  • the composition of the ash component in which the slag ratio in the heating furnace is a reference value or less Determining a predetermined mixing ratio and a predetermined average particle diameter, and adding the plurality of types of solid fuel and the metal compound or metal-containing compound having the predetermined average particle diameter at the predetermined mixing ratio. And supplying the mixture of the plurality of types of solid fuels obtained by mixing together with the metal-based compound or the metal-containing compound as fuel to the heating furnace.
  • the ash adhesion suppressing device for a heating furnace includes a composition of each ash component of a plurality of types of solid fuels, and a metal compound or a metal-containing compound that is added and mixed as an additive to the plurality of types of solid fuels.
  • the composition of the inorganic component of the compound is previously measured and input, and the plurality of types of solid fuels obtained by adding and mixing the metal-based compound or metal-containing compound having a plurality of average particle sizes in a plurality of mixing ratios And a predetermined amount of ash component calculated in advance for the plurality of types of solid fuels, which are mixed by adding the metal compound or metal-containing compound having a plurality of average particle sizes in a plurality of mixing ratios.
  • composition of the ash component in which the slag ratio in the heating furnace is equal to or less than a reference value based on the slag ratio indicating the ratio of slag at a predetermined atmospheric temperature and atmospheric gas composition A calculation unit for determining a predetermined mixing ratio and a predetermined average particle size obtained, and the plurality of types of solid fuel and the metal based on the predetermined mixing ratio and a predetermined average particle size determined by the calculation unit And a fuel supply amount adjusting unit that adjusts the supply amount of the system compound or the metal-containing compound.
  • the present invention focuses on slag, which is a component that melts by combustion in a heating furnace, floats on the airflow of combustion air in the heating furnace, and adheres to the furnace wall and heat transfer tube group.
  • a slag ratio calculated for a plurality of types of solid fuels in which a metal compound or a metal-containing compound having a plurality of average particle sizes is mixed as an additive at a plurality of mixing ratios, and a plurality of types of solid fuels
  • a predetermined mixing ratio is determined from a plurality of mixing ratios
  • a predetermined average particle diameter is determined from the plurality of average particle diameters.
  • the ash adhesion characteristics are evaluated based on the slag ratio, which is a newly established evaluation index in the present invention, and a predetermined ratio is determined from a plurality of mixing ratios so that the composition of the ash component has a slag ratio below the reference value.
  • the mixing ratio the ash adhesion in the heating furnace can be accurately predicted by determining a predetermined average particle diameter from a plurality of average particle diameters, and an appropriate mixing ratio can be obtained. Can be suppressed.
  • the main component of the metal element of the metal compound or metal-containing compound is preferably magnesium or aluminum.
  • the ash magnesium or aluminum content in ash added as additives to multiple types of solid fuels Based on the results of comparison between the slag ratio and the magnesium or aluminum content in ash added as additives to multiple types of solid fuels, the ash magnesium or aluminum content increased , The slag rate decreases. Therefore, it is possible to suppress the adhesion of ash by adding an additive in which the main component of the metal element of the metal-based compound or metal-containing compound is magnesium or aluminum to a plurality of types of solid fuels.
  • the slag ratio is calculated by thermodynamic equilibrium calculation based on the composition of the ash component of the plurality of types of solid fuel obtained by adding and mixing the metal-based compound or the metal-containing compound at a plurality of mixing ratios. It is preferable.
  • the slag ratio is generated by heating at a predetermined atmospheric temperature and an atmospheric gas composition measured in advance for the plurality of types of solid fuels obtained by adding and mixing the metal-based compound or metal-containing compound at a plurality of mixing ratios. It is preferable to calculate from slag.
  • the slag ratio can be determined.
  • the slag ratio is calculated from the slag generated by heating at a predetermined atmospheric temperature and atmospheric gas composition measured in advance for a plurality of types of solid fuels that are mixed by adding metal-based compounds or metal-containing compounds at a plurality of mixing ratios. By doing so, the slag ratio according to the actual heating furnace condition can be obtained.
  • the reference value is determined based on the ash adhesion rate with respect to the slag ratio so that the ash adhesion rate is low.
  • the ash adhesion rate is preferably calculated as a ratio of the actual amount of deposited ash to the amount of ash deposited on the ash adhesion probe inserted in the heating furnace examined in advance.
  • the collision ash amount is preferably calculated as the total amount of ash that collides with the projected area of the ash adhesion probe obtained from the supply amount of the solid fuel, the ash content, and the furnace shape of the heating furnace.
  • ash adhesion can be suppressed by determining the reference value of the slag ratio so that the ash adhesion ratio becomes low based on the comparison result between the ash adhesion ratio and the slag ratio investigated in advance. .
  • the reference value is 50 to 60 so that the ash adhesion rate is 5 to 7 wt% (wt%) or less. It is preferable to be determined to be not more than% by weight.
  • the slag ratio is in the range of 50 to 60% by weight, the ash adhesion rate becomes low (5 to 7% by weight or less). Can be suppressed.
  • the predetermined atmospheric temperature and atmospheric gas composition may be an atmospheric temperature and atmospheric gas composition in the vicinity of a burner.
  • the ash adhesion suppression device for a heating furnace further includes a measuring unit that measures the temperature and the atmospheric gas composition of the combustion chamber of the heating furnace, and the predetermined atmospheric temperature and the atmospheric gas composition are measured by the measuring unit.
  • the measured temperature of the combustion chamber of the heating furnace and the atmospheric gas composition are preferred.
  • the slag ratio in ash in each part inside the heating furnace can be obtained appropriately, and an appropriate mixing ratio of plural kinds of solid fuels can be calculated.
  • the predetermined atmospheric temperature and the atmospheric gas composition are the maximum atmospheric temperature in the design of the heating furnace and the atmospheric gas composition of the part. Or it is preferable that it is the atmosphere gas composition and the temperature of the site
  • the “atmospheric gas composition having the highest reduction degree in the design of the heating furnace” means an atmospheric gas composition having the highest concentration of reducing gas such as CO or H 2 .
  • an average particle size of the metal compound or the metal-containing compound is smaller than an average particle size of ash in the solid fuel. It is preferable.
  • the amount of added metal-based compound or metal-containing compound is the same.
  • the smaller the average particle size of the metal compound or metal-containing compound the smaller the ash adhesion rate. Therefore, in particular, when the average particle size of the metal-based compound or the metal-containing compound is smaller than the average particle size of ash in the solid fuel, ash adhesion to the heating furnace can be effectively suppressed.
  • the average particle diameter of the metal compound or the metal-containing compound is 5 ⁇ m or less.
  • heating is performed in a heating furnace using a mixture of various types of solid fuel including inferior coal and a metal compound or a metal-containing compound as fuel.
  • FIG. 1 is a step diagram illustrating a procedure of a method for suppressing ash adhesion in a heating furnace according to the present embodiment.
  • the coal properties of each solid fuel to be used in the heating furnace are measured and added to and mixed with the solid fuel.
  • Measurement of additive properties of a certain metal compound or metal-containing compound is performed (step S1).
  • the moisture content, calorific value, ash content, ash component composition, etc. of the solid fuel are measured as the coal properties of the solid fuel.
  • the “solid fuel” includes coal, sludge carbide, biomass fuel and the like.
  • the additive properties of the metal compound or metal-containing compound the water content, inorganic content, composition of inorganic components, etc. of the metal compound or metal-containing compound are measured.
  • the metal compound or the metal-containing compound means a compound in which the main component of the metal element is magnesium or aluminum, and a metal oxide, metal hydroxide, metal carbonate or the like containing magnesium or aluminum (for example, In addition to MgO, Mg (CO 3 ), Mg (OH) 2 , Al 2 O 3 , Al (OH) 3, etc.), oxo acid salts, organic salts and minerals containing magnesium or aluminum are also included.
  • the “metal oxide” means a metal oxide having an oxidizing power to oxidize carbon in the solid fuel under the environment in the heating furnace, and includes a metal oxide raw material.
  • the “metal oxide raw material” means a compound that generates a metal oxide by thermal decomposition.
  • a predetermined mixing ratio that determines the composition of the ash component at which the slag ratio in the heating furnace is equal to or less than the reference value is determined (step S2).
  • This predetermined mixing ratio indicates the composition of ash components of a plurality of types of solid fuel and the ratio of slag at a predetermined atmosphere temperature and atmosphere gas composition among a predetermined amount of ash components calculated in advance for a plurality of types of solid fuel. It is determined based on the slag ratio. Further, the composition of the ash component and the slag ratio are measured or calculated in advance for a plurality of types of solid fuels obtained by adding and mixing a plurality of metal-based compounds or metal-containing compounds having an average particle size at a plurality of mixing ratios. Is done.
  • the “slag ratio” is an evaluation index of ash adhesion characteristics used in the present embodiment, and means a ratio of slag in a certain amount of solid ash at a certain temperature and atmospheric condition.
  • “Slag” means a component that melts by combustion, floats on the combustion airflow in the heating furnace, and adheres to the furnace wall and the heat transfer tube group. The reference value for the slag ratio is determined in advance. First, the slag ratio is calculated according to a plurality of types of mixing ratios of a plurality of types of solid fuels and a metal compound or a metal-containing compound that is added to and mixed with a plurality of types of solid fuels.
  • the slag ratio is the state in which the ash of each solid fuel measured in advance is the thermodynamically most stable under a certain condition (temperature, atmosphere gas composition), that is, the free energy ( ⁇ G) of Gibbs. It can be obtained by calculating the composition and phase in a state close to zero by thermodynamic equilibrium calculation.
  • a slag ratio is not restricted to the above-mentioned form, You may calculate by heating the ash of each solid fuel previously, and measuring the slag ratio in each temperature and atmospheric gas composition. Thereby, the slag ratio matched with the condition of the actual heating furnace can be calculated
  • the ash adhesion ratio is calculated.
  • the “ash adhesion rate” is a ratio of the amount of ash adhering to the ash adhesion probe to the amount of ash adhering to the ash adhesion probe inserted in the furnace of the heating furnace, and means the ease of ash adhesion.
  • the ash adhesion rate is expressed by the following formula.
  • the “impact ash amount to the ash adhesion probe” is the total amount of ash that collides with the projected area of the ash adhesion probe, and is determined by the supply amount of solid fuel, the ash content, and the furnace shape of the heating furnace.
  • the slag ratio value that reduces the ash adhesion ratio (the ash adhesion ratio is about 5 to 7% by weight or less) is determined.
  • the evaluation for calculating the ash adhesion rate does not need to be performed in an actual heating furnace, and may be performed in a combustion test furnace or an actual can heating furnace. Then, a plurality of solid fuels (which may be solid fuels that are scheduled to be used or solid fuels that are not scheduled to be used) are burned in advance, the ash adhesion rate is investigated, and the burned solid fuels
  • the slag ratio value reference value
  • the slag ratio which is an evaluation index of ash adhesion characteristics, is evaluated based on the ash adhesion rate, but is not limited thereto.
  • a combustion test furnace or an actual can heating furnace a combustion test is performed while changing the slag ratio in the fuel, and a mass of clinker (molten slag) that cannot be carried out by the conveyor installed in the heating furnace falls on the furnace wall It is good also considering the slag ratio when doing as a reference value.
  • the slag ratio when the main steam temperature and the main steam pressure deviate or fluctuate from the specified range may be used as the reference value.
  • prescribed mixing ratio from which the slag ratio in ash becomes below the reference value of the slag ratio determined beforehand is calculated from multiple types of mixing ratios.
  • the supply amount of the solid fuel as the fuel is determined so that the amount of heat input to the heating furnace is constant.
  • the thermodynamic equilibrium calculation the atmospheric temperature and the atmospheric gas composition in the vicinity of the burner at which ash adhesion to the heating furnace wall occurs remarkably are used.
  • the thermodynamic equilibrium calculation may be performed based on the atmospheric temperature and the atmospheric gas composition of a desired portion such as a heat transfer tube group in which ash is likely to adhere, without being limited to the atmospheric temperature and the atmospheric gas composition near the burner.
  • the predetermined mixing ratio can be appropriately calculated.
  • the thermodynamic equilibrium calculation is not limited to the above-described form, and may be performed using the maximum atmospheric gas temperature in the design of the heating furnace and the atmospheric gas composition at that portion. Further, the atmosphere gas composition having the highest reduction degree in the design of the heating furnace (the highest concentration of the reducing gas such as CO and H 2 ) and the temperature of the part may be used. Then, without depending on the combustion temperature in the furnace of the heating furnace, the predetermined mixing ratio of the plurality of types of solid fuel and the metal compound or metal-containing compound to be added to and mixed with the plurality of types of solid fuel is determined. can do.
  • the solid fuel, the metal A system compound or a metal-containing compound is mixed.
  • the solid fuel and the mixture of the metal-based compound or the metal-containing compound are pulverized and then supplied as fuel to the heating furnace (step S3).
  • FIG. 2 is a schematic diagram showing an ash adhesion suppressing device for a heating furnace according to the present embodiment.
  • the heating furnace 7 includes hoppers 1 and 2, a fuel supply amount adjustment device (fuel supply amount adjustment unit) 3, a mixer 4, a pulverizer 5, a burner 6, and a calculator. (Calculation unit) 9.
  • the ash adhesion suppressing device for a heating furnace according to the present embodiment includes a fuel supply amount adjusting device 3 and a calculator 9.
  • the hoppers 1 and 2 hold a solid fuel, a metal-based compound, or a metal-containing compound, respectively.
  • solid fuel includes coal, sludge carbide, biomass fuel and the like.
  • metal-based compound or metal-containing compound is a compound in which the main component of the metal element is magnesium or aluminum, and an oxide, hydroxide, carbonate, etc. containing magnesium or aluminum (for example, MgO, Mg (CO 3 ), Mg (OH) 2 , Al 2 O 3 , Al (OH) 3, etc.).
  • MgO, Mg (CO 3 ), Mg (OH) 2 , Al 2 O 3 , Al (OH) 3, etc. In FIG. 2, two hoppers are provided. However, the hopper is not limited to this, and a plurality of hoppers may be provided.
  • the fuel supply amount adjusting device 3 includes a plurality of types of solid fuel calculated by a calculator 9 described later, and a predetermined mixing ratio of a metal compound or a metal-containing compound added to and mixed with the plurality of types of solid fuel. Based on this, the amount of solid fuel, metal compound or metal-containing compound cut out from the hoppers 1 and 2 is adjusted.
  • the mixer 4 adds and mixes the metal compound or metal-containing compound cut out by the fuel supply amount adjusting device 3 to the solid fuel cut out by the fuel supply amount adjusting device 3.
  • the pulverizer 5 pulverizes the mixture of the solid fuel and the metal compound or the metal-containing compound mixed in the mixer 4 into pulverized coal.
  • the burner 6 burns pulverized coal blown together with air.
  • the heating furnace 7 recovers heat by burning pulverized coal.
  • the heating furnace 7 is disposed from the top to the downstream of the furnace that generates heat by burning the supplied fuel with the burner 6 and the like, and the combustion gas flows to the inside to heat And a heat transfer tube group for exchange. Combustion gas emitted from the heating furnace is discharged from the chimney.
  • the heat transfer tube group includes an upper heat transfer unit including a secondary heater, a tertiary heater, a final heater, and a secondary reheater arranged in parallel at predetermined intervals above the furnace, and a rear part of the furnace. And a rear heat transfer section including a primary heater, a primary reheater, and a economizer.
  • the arithmetic unit 9 adds and mixes the solid fuel coal properties (the water content of the solid fuel, the calorific value, the ash content, the composition of the ash components, etc.) of each solid fuel that is to be used in the heating furnace, and the solid fuel.
  • the planned additive properties of the metal-based compound or metal-containing compound (the water content of the metal-based compound or metal-containing compound, the inorganic content, the composition of the inorganic component, etc.) are preliminarily accumulated as data 8.
  • the computing unit 9 uses as a parameter a plurality of types of mixing ratios of a plurality of types of solid fuels and a metal compound or a metal-containing compound that is added to and mixed with a plurality of types of solid fuels as a parameter.
  • the calculator 9 calculates
  • the calculator 9 calculates a predetermined mixing ratio at which the slag ratio in the ash is equal to or less than the determined reference value from among a plurality of mixing ratios.
  • the supply amount of the solid fuel as the fuel is determined so that the amount of heat input to the heating furnace is constant.
  • the “slag ratio” is an evaluation index of the ash adhesion characteristics used in the present embodiment, and means a ratio of slag in a certain amount of solid ash at a certain temperature and atmospheric condition.
  • the relationship between the ash adhesion rate and the slag rate is as described above, and a description thereof is omitted.
  • the reference value of the slag ratio is determined as described in the heating furnace ash adhesion suppression method according to the above-described embodiment, and the description thereof is omitted.
  • thermodynamic equilibrium calculation for example, the atmospheric temperature and the atmospheric gas composition in the vicinity of the burner where ash adhesion to the heating furnace wall occurs remarkably are used.
  • the atmospheric temperature and atmospheric gas composition in the vicinity of the burner are measured using a measuring device (measuring unit) (not shown) installed in the vicinity of the burner.
  • the measuring device is not limited to the vicinity of the burner but may be installed in a desired part such as a heat transfer tube group in which ash is likely to adhere, and the thermodynamic equilibrium calculation is performed based on the atmospheric temperature and the atmospheric gas composition of the part. You can go.
  • the slag ratio in the ash in each part inside the heating furnace can be obtained appropriately, and a predetermined amount of the metal-based compound or the metal-containing compound to be added to and mixed with a plurality of types of solid fuel and a plurality of types of solid fuel.
  • the mixing ratio can be calculated appropriately.
  • the thermodynamic equilibrium calculation is not limited to the above-described form, and may be performed using the maximum atmospheric gas temperature in the heating furnace design and the atmospheric gas composition of the part. For example, the reduction degree in the heating furnace design is the highest. high (CO and the highest concentration of reducing gas such as H 2) may be performed using an atmospheric gas composition and the temperature of the site. Then, without depending on the combustion temperature in the furnace of the heating furnace, the predetermined mixing ratio of the plurality of types of solid fuel and the metal compound or metal-containing compound to be added to and mixed with the plurality of types of solid fuel is determined. can do.
  • the mixing ratio of multiple types of solid fuel and a predetermined amount of metal compound or metal-containing compound added to and mixed with multiple types of solid fuel is calculated based on the slag ratio obtained by thermodynamic equilibrium calculation.
  • the form calculated based on the slag ratio in each temperature and atmosphere gas composition which heated and measured ash of each solid fuel beforehand may be used.
  • the slag ratio matched with the condition of the actual heating furnace can be calculated
  • the ash adhesion suppressing method and the ash adhesion suppressing device of the heating furnace of the present embodiment are melted by combustion in the heating furnace, float on the air flow of the combustion air in the heating furnace, and the furnace wall and heat transfer tube
  • slag a component that adheres to the group.
  • the slag calculated for a plurality of types of solid fuels that are mixed by adding a metal compound or a metal-containing compound as an additive at a plurality of mixing ratios.
  • a predetermined mixing ratio is determined from a plurality of mixing ratios. Therefore, ash adhesion characteristics are evaluated based on the slag ratio, which is a newly established evaluation index in the present invention, and an appropriate ash component composition is obtained from a plurality of mixing ratios so that the slag ratio is below the reference value.
  • the ash adhesion suppression method and ash adhesion suppression apparatus of the heating furnace of the present invention are not limited to the above-described embodiments.
  • the average particle diameter based on the particle size distribution of ash may be obtained as the coal properties of the solid fuel.
  • an average particle diameter etc. may be measured as an additive property of a metal type compound or a metal containing compound (step S1, calculator 9).
  • the amount of added metal-based compound or metal-containing compound was the same.
  • the ash adhesion rate is smaller. Therefore, in particular, when the average particle size of the metal-based compound or the metal-containing compound is smaller than the average particle size of ash in the solid fuel, ash adhesion to the heating furnace can be effectively suppressed.
  • FIG. 7 is a step diagram showing the procedure of the method for suppressing ash adhesion in a heating furnace according to this modification.
  • this modification about the same content as the ash adhesion suppression method of the heating furnace which concerns on embodiment mentioned above, the description is abbreviate
  • the coal properties of each solid fuel to be used in the heating furnace are measured and added to the solid fuel and mixed.
  • the additive properties of the metal-based compound or metal-containing compound to be performed are measured (step S11).
  • the average particle diameter based on the particle size distribution of ash is obtained as the coal property of the solid fuel.
  • an average particle diameter and the like are measured in addition to the content of the ash adhesion suppressing method for the heating furnace according to this embodiment described above.
  • the composition of ash components of a plurality of types of solid fuel, and a slag ratio indicating a ratio of slag at a predetermined atmosphere temperature and atmosphere gas composition among a predetermined amount of ash components calculated in advance for a plurality of types of solid fuel Based on the above, a predetermined mixing ratio that determines the composition of the ash component at which the slag ratio in the heating furnace is equal to or less than the reference value is determined (step S12).
  • the composition of the ash component and the slag ratio are measured or calculated in advance for a plurality of types of solid fuels obtained by adding and mixing a plurality of metal compounds or metal-containing compounds having an average particle diameter at a plurality of mixing ratios. .
  • a plurality of types of solid fuel and a plurality of types of mixing ratios of the metal compound or metal-containing compound added to and mixed with the plurality of types of solid fuel, and the metal compound or metal containing Multiple average particle sizes of the compound are used as parameters.
  • the composition of the ash components of the plurality of types of solid fuels obtained by adding and mixing the metal compounds or metal-containing compounds having a plurality of average particle sizes at a plurality of mixing ratios is the ash of the plurality of solid fuels measured in step S11. It is calculated from the composition of the component and the composition of the inorganic component of the metal compound or metal-containing compound. And the slag ratio in ash is calculated
  • a predetermined mixing ratio that is a value (reference value) of a slag ratio in which the slag ratio in ash is determined, and a predetermined average particle diameter, Is calculated.
  • a predetermined mixing ratio of the plurality of types of solid fuel and the metal compound or metal-containing compound added to and mixed with the plurality of types of solid fuel calculated in step S12, and the metal compound or metal containing Based on the predetermined average particle size of the compound, the solid fuel and the metal-based compound or the metal-containing compound are mixed. Then, the mixture of the solid fuel and the metal-based compound or metal-containing compound is pulverized and then supplied to the heating furnace as fuel (step S13).
  • FIG. 2 is a schematic diagram showing an ash adhesion suppressing device for a heating furnace according to this modification.
  • FIG. 2 is the same as the ash adhesion suppression apparatus of the heating furnace which concerns on embodiment mentioned above.
  • the description is abbreviate
  • the calculator 9 is used for the solid fuel coal properties (the water content of the solid fuel, the calorific value, the ash content, the composition of the ash components, etc.)
  • Additive properties of the metal-based compound or metal-containing compound to be added and mixed (the water content of the metal-based compound or metal-containing compound, the inorganic content, the composition of the inorganic component, the average particle size, etc.)
  • Data 8 is accumulated.
  • the computing unit 9 includes a plurality of types of solid fuels and a plurality of mixing ratios of the metallic compound or the metal-containing compound computing unit 9 added to and mixed with the plurality of types of solid fuels, and the metallic compound or the metal-containing compound. Are used as parameters.
  • the computing unit 9 adds a plurality of types of ash components of a plurality of types of solid fuel obtained by adding and mixing metal compounds or metal-containing compounds having a plurality of average particle sizes in a plurality of mixing ratios. It is calculated from the composition of the ash component of the solid fuel and the composition of the inorganic component of the metal-based compound or metal-containing compound. And the calculator 9 calculates
  • the ash adhesion suppressing method and the ash adhesion suppressing device of the heating furnace in the present modification are melted by combustion in the heating furnace, float on the air flow of combustion air in the heating furnace, and float on the furnace wall and heat transfer tube.
  • the slag ratio calculated for a plurality of types of solid fuels mixed with a metal compound or a metal-containing compound having a plurality of average particle sizes at a plurality of mixing ratios as additives, and a plurality of types of solid fuels A predetermined mixing ratio is determined from a plurality of mixing ratios based on the composition of the ash component and the composition of the inorganic component of the metal-based compound or metal-containing compound, and a predetermined average is determined from the plurality of average particle diameters. The particle size is determined.
  • ash adhesion characteristics are evaluated based on the slag ratio, which is a newly established evaluation index in the present invention, and an appropriate ash component composition is obtained from a plurality of mixing ratios so that the slag ratio is below the reference value.
  • the total amount of heat input of the city gas for heating and the pulverized coal is constant at 149 kW, and the ash component
  • the supply amount was adjusted by mixing single or plural types of pulverized coal so that the input heat amount of the five types of pulverized coal was constant at 60 kW.
  • the pulverized coal whose supply amount is adjusted is burned with a burner provided at the top of the furnace together with combustion air, and the ash adhering to the surface of the ash adhering probe is inserted by holding the ash adhering probe below and holding for 100 minutes.
  • the adhesion rate of is investigated.
  • the atmospheric temperature in the furnace of the ash adhesion probe insertion part is about 1300 ° C., which is the same as the temperature at which the ash adhesion phenomenon occurs in the actual can heating furnace. Further, the temperature is adjusted by water-cooling the inside so that the surface temperature of the ash adhesion probe becomes about 500 ° C.
  • Table 1 shows the properties of five types of pulverized coal used in experiments of specific examples of the relationship between the slag ratio and the ash adhesion rate.
  • a certain amount of ash is thermodynamically most stable under certain conditions (temperature, atmospheric gas composition), that is, Gibbs free energy ( ⁇ G) is
  • ⁇ G Gibbs free energy
  • the slag ratio of pulverized coal used as fuel in the experiment is calculated by obtaining the composition and phase in a state close to zero by thermodynamic equilibrium calculation.
  • the temperature is 1300 ° C., atmospheric gas composition, O 2: 1vol%, CO 2: 19vol%, N 2: as 80 vol%, was subjected to thermal equilibrium calculation.
  • FIG. 3 shows the relationship between the slag ratio and the ash adhesion rate according to a specific example.
  • the ash adhesion ratio is about 5 to 7% by weight or less, and the slag ratio is 50 to 60% by weight or more. It is clear that the ash adhesion rate rises rapidly. Accordingly, if the reference value of the slag ratio is determined to be 50 to 60% by weight or less, the adhesion of ash can be suppressed. As described above, in this embodiment, the reference value of the slag ratio is determined to be 50 to 60% by weight or less.
  • a mixture of two types of pulverized coal out of the five types of pulverized coal with different mixing ratios was used. It may not be restricted to.
  • the slag ratio may be evaluated using a mixture obtained by changing the mixing ratio of a plurality of types of pulverized coal and a plurality of types of metal-based compounds or metal-containing compounds.
  • evaluation using pulverized coal different from pulverized coal described below is performed, the present invention is not limited thereto, and evaluation may be performed using pulverized coal described below.
  • Example 1 and 2 the coal properties of each solid fuel scheduled to be used in the heating furnace are measured, and the additive for the metal compound or metal-containing compound that is to be added to and mixed with the solid fuel The property is measured (step S1).
  • Table 2 shows the properties of the five types of pulverized coals A, B, C, D, and E used in Examples 1 and 2.
  • the metal-based compound or metal-containing compound magnesium oxide (MgO) powder having a purity of 99% or more, or aluminum oxide (Al 2 O 3 ) powder having a purity of 99% or more is used.
  • the composition of ash components of a plurality of types of solid fuel, and a slag ratio indicating a ratio of slag at a predetermined atmosphere temperature and atmosphere gas composition among a predetermined amount of ash components calculated in advance for a plurality of types of solid fuel Based on the above, a predetermined mixing ratio that determines the composition of the ash component at which the slag ratio in the heating furnace is equal to or less than the reference value is determined (step S2).
  • the composition of the ash component and the slag ratio are measured or calculated for a plurality of types of solid fuels that are mixed by adding a metal compound or a metal-containing compound at a plurality of mixing ratios.
  • the slag ratio of coal B, C, D, and E which has a low ash softening point of 1300 ° C. or lower, is calculated. That is, in this example, based on the properties of pulverized coal shown in Table 2, a certain amount of ash is thermodynamically most stable under certain conditions (temperature, atmospheric gas composition), that is, Gibbs free energy ( The composition or phase in which ⁇ G) is close to zero is calculated by thermodynamic equilibrium calculation. In this embodiment, the temperature is 1300 ° C., atmospheric gas composition, O 2: 1vol%, CO 2: 19vol%, N 2: as 80 vol%, the thermodynamic equilibrium calculation is performed.
  • Example 1 as a metal compound or metal-containing compound added to each pulverized coal, magnesium oxide (MgO) powder having a purity of 99% or more is mixed in a plurality of mixing ratios (in Example 1, each (0.5, 10, 25, and 50% by weight with respect to the coal ash weight) and the transition of the slag ratio is calculated by thermodynamic equilibrium calculation.
  • Example 2 as the metal-based compound or metal-containing compound added to each pulverized coal, a plurality of aluminum oxide (Al 2 O 3 ) powders having a purity of 99% or more are included in the ash weight of each coal. It is added at the same mixing ratio (0, 5, 10, 25, and 50% by weight in Example 2), and the transition of the slag ratio is calculated by thermodynamic equilibrium calculation.
  • Al 2 O 3 aluminum oxide
  • FIG. 4 shows the relationship between the MgO component content ratio and the slag ratio in the ash according to Example 1
  • FIG. 5 shows the relationship between the Al 2 O 3 component content ratio and the slag ratio in the ash according to Example 2.
  • the horizontal axis in FIG. 4 indicates the MgO component content ratio in the ash
  • the horizontal axis in FIG. 5 indicates the Al 2 O 3 component content ratio in the ash.
  • Each has ash weight% of magnesium oxide or aluminum oxide in the ash composition of pulverized coal shown in Table 2, and ash weight% of mixed metal compound or metal-containing compound (magnesium oxide or aluminum oxide). Shown as an added value. 4 and 5, for any coal ash, it can be seen that the slag ratio decreases as the MgO content ratio or the Al 2 O 3 component content ratio in the ash increases.
  • a predetermined mixing ratio is determined such that the slag ratio in the heating furnace is not more than the reference value, that is, not more than 50 to 60% by weight as shown in the above specific example.
  • coal B ash + MgO 25% by weight, coal B ash + MgO 50% by weight, coal C + MgO 25% by weight, coal C ash + MgO 50% by weight, coal D + MgO 25% by weight, coal D ash + MgO 50% by weight, Coal E ash + MgO 50% by weight is determined as a predetermined mixing ratio at which the slag ratio is 50 to 60% by weight or less.
  • coal B ash + Al 2 O 3 50% by weight, coal C ash + Al 2 O 3 50% by weight, coal D ash + Al 2 O 3 50% by weight, coal E ash + Al 2 O 3 25 wt%, ash + Al 2 O 3 50 wt% of coal E is, slag ratio is determined as a predetermined mixing ratio to be less than 50-60 wt%.
  • the solid fuel, the metal A system compound or a metal-containing compound is mixed.
  • the mixture of the solid fuel and the metal-based compound or metal-containing compound is pulverized and then supplied as a fuel to the heating furnace (step S3).
  • the ash adhesion rate is obtained for the pulverized coal in which the magnesium oxide (MgO) powder is mixed in a plurality of mixing ratios used in the first embodiment.
  • the experiment was conducted. In the experiment, two types of pulverized coal (coal A, B) having different ash component compositions among the five types of pulverized coal are used, and the pulverized coal is supplied so that the input heat amount of pulverized coal is constant at 60 kW. The amount is adjusted.
  • pulverized coal obtained by adding and mixing a metal compound or a metal-containing compound in a plurality of mixing ratios is burned together with combustion air with a burner provided at the top of the furnace, and an ash adhesion probe is inserted below for 100 minutes.
  • the adhesion rate of the ash adhering to the surface of the ash adhesion probe is investigated.
  • the atmospheric temperature in the furnace of the ash adhesion probe insertion part is about 1300 ° C., which is the same as the temperature at which the ash adhesion phenomenon occurs in the actual can heating furnace. Further, the temperature is adjusted by water-cooling the inside so that the surface temperature of the ash adhesion probe becomes about 500 ° C.
  • magnesium oxide (MgO) powder having a purity of 99% or more as a metal compound or metal-containing compound is added to coal B at a mixing ratio of 25% by weight or 50% by weight with respect to the ash weight of coal B. The experiment was conducted.
  • FIG. 6 shows the relationship between the slag ratio and the ash adhesion rate, which is the result of the experiment according to the first embodiment.
  • Example 1 when MgO powder of 25 to 50% by weight of ash was added to coal B so that the slag ratio was 50 to 60% by weight or less, ash It can be seen that the adhesion rate is about 5 to 7% by weight or less.
  • the slag ratio is about 95% by weight and the ash adhesion rate is 10% by weight or more. From this, it is clear that the ash adhesion rate increases as the slag ratio increases.
  • Coal A has a slag ratio of about 40% by weight and an ash adhesion rate of 5 to 7% by weight or less even when no MgO powder is added. Since it is clear that when the slag ratio is low, the ash adhesion rate is also low, it can be seen that Coal A can suppress the adhesion of ash without adding a metal compound or metal-containing compound such as MgO powder. .
  • the reference value of the slag ratio is set to 50 to 60% by weight or less, and with reference to FIGS. 4 and 5, the MgO content ratio or Al in the ash with which the slag ratio is the reference value of 50 to 60% by weight or less. It can be seen that the adhesion of ash can be suppressed by adjusting the mixing ratio of the MgO powder or Al 2 O 3 powder added to the pulverized coal so that the 2 O 3 component content ratio is obtained.
  • Example 3 using the ash adhesion suppressing method and the ash adhesion suppressing device for a heating furnace according to the above-described modification will be described with reference to FIGS.
  • the reference value of the slag ratio is determined to be 50 to 60% by weight or less.
  • the reference value of the slag ratio is determined to be 50 to 60% by weight or less.
  • the pulverized coal combustion test furnace in the same manner as in the first and second embodiments, in the pulverized coal combustion test furnace (furnace inner diameter 400 mm, effective height 3650 mm in the furnace) Experiments are performed using five types of pulverized coal (solid fuel) having different ash component compositions under conditions where the total is constant at 149 kW.
  • Example 3 coal B shown in Table 2 is used.
  • FIG. 8 shows the particle size distribution of coal B ash. Based on FIG. 8, the average particle diameter of ash of coal B (particle diameter when the cumulative weight is 50% by weight) is 6.8 ⁇ m.
  • magnesium oxide (MgO) is used as the metal compound or the metal-containing compound. A plurality of average particle diameters of magnesium oxide (MgO) particles of 10 ⁇ m (displayed by squares), 5 ⁇ m (displayed by triangles), and 0.2 ⁇ m (displayed by circles) are prepared.
  • the composition of ash components of a plurality of types of solid fuel, and a slag ratio indicating a ratio of slag at a predetermined atmosphere temperature and atmosphere gas composition among a predetermined amount of ash components calculated in advance for a plurality of types of solid fuel Based on the above, a predetermined mixing ratio and a predetermined average particle diameter are determined, which are compositions of the ash component in which the slag ratio in the heating furnace is equal to or less than the reference value (step S12).
  • the composition of the ash component and the slag ratio are measured or calculated in advance for a plurality of types of solid fuels obtained by adding and mixing a plurality of metal compounds or metal-containing compounds having an average particle diameter at a plurality of mixing ratios. .
  • Example 3 the addition weight (a plurality of mixing ratios) of magnesium oxide (MgO) is 0% by weight (no addition), 25% by weight, and 50% by weight with respect to the ash weight of coal B. .
  • FIG. 9 shows the result of the experiment according to the third embodiment as the relationship between the slag ratio and the ash adhesion rate.
  • the ash adhesion rate is plotted at three mixing ratios for each particle diameter of the added MgO.
  • the mixing ratio of MgO is 50% by weight, 25% by weight, and 0% by weight (no addition) in order from the lowest slag ratio. From the results shown in FIG.
  • Example 3 the average particle diameter of the magnesium oxide (MgO) particles is 5 ⁇ m or less, the mixing ratio is 50% by weight, and 25% by weight so that the slag ratio is 50 to 60% by weight or less which is a reference value. % Is determined.
  • the mixture of the solid fuel and the metal-based compound or metal-containing compound is pulverized and then supplied to the heating furnace as fuel (step S13).
  • magnesium oxide (MgO) particles having an average particle size of 5 ⁇ m or less are mixed at a mixing ratio of 50 wt% or 25 wt%. In this way, coal B and magnesium oxide (MgO) are mixed and supplied to the heating furnace as fuel.
  • Fuel supply adjustment device (fuel supply adjustment unit) 7 Heating furnace 9 Calculator (Calculation unit)

Abstract

 本発明の目的は、金属系化合物または金属含有化合物が、劣質炭を含む様々な種類の固体燃料に添加された混合物を燃料とする加熱炉内の灰付着を精度良く予測し、適正な混合比率を求めて、灰が付着するのを抑制することである。本発明に係る加熱炉の灰付着抑制方法は、加熱炉で使用する予定である複数種類の固体燃料の灰成分の組成及び金属系化合物または金属含有化合物の無機組成を測定するステップ(S1)と、金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した固体燃料の灰成分の組成と、複数通りの混合比率で混合した固体燃料について予め算出した一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、スラグ割合が基準値以下になる灰成分の組成が得られる所定の混合比率を決定する(S2)と、を備える。また、本発明は、金属系化合物または金属含有化合物が所定の混合比率で添加されて混合された混合物を燃料として加熱炉に供給するステップ(S3)を備える。

Description

加熱炉の灰付着抑制方法及び灰付着抑制装置
 本発明は、金属系化合物または金属含有化合物が添加された固体燃料を燃料とする加熱炉の灰付着抑制方法及び灰付着抑制装置に関する。
 劣質炭を含む単種類あるいは複数種類の固体燃料を燃料とするボイラ等の加熱炉(固体燃料を燃焼させる炉全般を意味する)には、粉砕機で粉砕された固体燃料が、搬送用空気とともに燃料として供給される。加熱炉は、供給された燃料をバーナなどで燃焼させて熱を発生させる火炉と、火炉の上方から下流にわたって配置され、内部に燃焼ガスを流動させて熱交換を行う伝熱管群とを備えており、加熱炉からでた燃焼ガスは煙突から排出されるようになっている。ここで、伝熱管群は、火炉の上方に所定の間隔で並列配置された二次加熱器、三次加熱器、最終加熱器、及び二次再熱器を備える上部伝熱部と、火炉の後部に配置された一次加熱器、一次再熱器、及び節炭器を備える後部伝熱部と、からなっている。
 このような加熱炉では、燃焼した石炭から灰が発生するため、灰が加熱炉の燃焼ガスによって流動し、排出の途中で火炉の壁面や、火炉上方から下流にわたって配置された伝熱管群などに付着して堆積するスラッギングやファウリングが生じる。灰が火炉の壁面や伝熱管群に付着して堆積するスラッギングやファウリングが生じると、伝熱管の伝熱面が塞がれて熱吸収効率が大幅に低下する。更に、スラッギングやファウリングにより壁面などに巨大なクリンカが生成されると、クリンカが落下して、炉内圧が大幅に変動したり、炉底の伝熱管が損傷したり、炉底の閉塞が生じたりするという問題が生じる。また、火炉の上方に設けられる上部伝熱部は狭い間隔で配置されているため、灰が付着すると、炉内圧が大きく変動し、また、伝熱管間に付着した灰が成長してガス流路が閉塞され、燃焼ガスが通過できなくなり、運転障害を起こしたりする恐れがある。更に、バーナ近傍では、燃料の燃焼火炎の放射熱により火炉の壁面近傍の温度が高くなっているため、比較的低温な伝熱管群に灰が付着溶融しやすく、巨大なクリンカが成長しやすいという問題が生じる。
 従って、加熱炉を安定運転するためには、固体燃料の燃焼によって灰が付着する可能性を事前に予測し、灰付着による問題の発生を回避することが必要である。そこで、灰の付着が生じる可能性を指標として表すことが試みられている。
 例えば、非特許文献1では、灰含有元素を酸化物で表した灰組成に基づいた灰に関する指標および評価基準により、灰が付着する可能性を事前に予測する方法が提案されている。しかしながら、非特許文献1に示された指標および評価基準は、灰の付着などの問題が少ない良質炭である瀝青炭を対象としており、近年需要が高まっている劣質炭(例えば、亜瀝青炭、褐炭、高シリカ炭、高カルシウム炭などの炭種)を対象としていない。そのため、非特許文献1に示される指標と灰付着との関係は必ずしも一致した傾向にないという問題がある。
 そこで、劣質炭を対象として、特許文献1のように、使用する石炭を予め灰化して得られた石炭灰を焼結させることにより、焼結灰の膠着度を測定して灰の付着を予測評価する技術が開発されている。しかしながら、灰の焼結性や溶融性は、温度だけでなく、雰囲気ガス組成の影響を大きく受ける。雰囲気がCOやHなどの還元性ガス濃度が高い還元雰囲気であれば、灰の軟化点や融点は下がり、焼結しやすくなる。また、雰囲気が酸化雰囲気であれば、灰の軟化点や融点は上がり、焼結しにくくなる。従って、雰囲気ガス組成を考慮していない特許文献1の技術では、加熱炉内の灰付着を精度良く予測することは困難であるという問題点がある。
 また、未燃分を低下させるために、特許文献2のように、カルシウム、マグネシウム、鉄、銅等の金属酸化物を石炭に添加する技術が開発されている。しかしながら、特許文献2においては、未燃分の含有率が算出されているだけであって、金属酸化物を添加する量と加熱炉内の灰付着との関係は記載されていない。また、特許文献2においては、使用する劣質炭に対応した金属酸化物の添加量が決定されていないため、添加される金属酸化物の適正量が定まっておらず、加熱炉内の灰付着を精度よく予測することはできないという問題点がある。
日本国特開2004-361368号公報 日本国特開2008-169338号公報
Gordon Couch, Understanding slagging and fouling during pf combustion (IEACR/72), 1994
 本発明が解決しようとする課題は、金属系化合物または金属含有化合物が添加された、劣質炭を含む様々な種類の固体燃料の混合物を燃料とする加熱炉において、加熱炉の安定運用のため、加熱炉内の灰付着を精度良く予測して、灰が付着するのを抑制することが可能な加熱炉の灰付着抑制方法及び灰付着抑制装置を提供することである。
 本発明に係る加熱炉の灰付着抑制方法は、複数種類の固体燃料のそれぞれの灰成分の組成と、前記複数種類の固体燃料に添加剤として添加して混合する金属系化合物または金属含有化合物の無機成分の組成と、を予め測定するステップと、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料の灰成分の組成と、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料について予め算出された一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、加熱炉における前記スラグ割合が基準値以下になる灰成分の組成が得られる所定の混合比率を決定するステップと、前記複数種類の固体燃料と前記金属系化合物または金属含有化合物とを、前記所定の混合比率で添加して混合することにより得られる前記複数種類の固体燃料と前記金属系化合物または金属含有化合物との混合物を燃料として前記加熱炉に供給するステップと、を備えることを特徴とする。
 また、本発明に係る加熱炉の灰付着抑制装置は、複数種類の固体燃料のそれぞれの灰成分の組成と、前記複数種類の固体燃料に添加剤として添加して混合する金属系化合物または金属含有化合物の無機成分の組成と、が予め測定されて入力されて、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料の灰成分の組成と、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料について予め算出された一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、加熱炉における前記スラグ割合が基準値以下になる灰成分の組成が得られる所定の混合比率を決定する演算部と、前記演算部で決定された前記所定の混合比率に基づいて、前記複数種類の固体燃料と前記金属系化合物または金属含有化合物との供給量を調整する燃料供給量調整部と、を備えることを特徴とする。
 本発明は、加熱炉内で燃焼により溶融し、加熱炉内の燃焼空気の気流に乗って浮遊し、炉壁や伝熱管群に付着する成分であるスラグに着目している。そして、本発明では、金属系化合物または金属含有化合物を複数通りの混合比率で添加剤として添加して混合した複数種類の固体燃料について算出したスラグ割合と、複数種類の固体燃料の灰成分の組成及び金属系化合物または金属含有化合物の無機成分の組成と、に基づいて、スラグ割合が基準値以下になる灰成分の組成となるように、複数通りの混合比率から所定の混合比率が決定されている。従って、本発明で新たに構築された評価指数であるスラグ割合に基づいて、スラグ割合が、予め灰付着特性が評価された基準値以下になる灰成分の組成となるように、複数通りの混合比率から適正な混合比率を決定することにより、加熱炉内の灰付着を精度良く予測して、灰の付着を抑制することができる。
 ここで、「固体燃料」は、石炭、汚泥炭化物、バイオマス燃料等を含む。また、加熱炉では熱量が重視されるため、燃料となる固体燃料は、加熱炉に投入される熱量が一定になるように供給量が決定されるものとする。ここで、金属系化合物または金属含有化合物は、マグネシウムまたはアルミニウムを金属元素の主成分とする化合物であって、マグネシウムまたはアルミニウムを含有した金属酸化物、金属水酸化物、金属炭酸化物等(例えば、MgO、Mg(CO)、Mg(OH)、Al、Al(OH)等)を含む他、マグネシウムまたはアルミニウムを含有したオキソ酸塩や有機塩や鉱物などを含む。金属系化合物または金属含有化合物として、具体的には、無機塩である酸化マグネシウム MgO(苦土),過酸化マグネシウム MgO,水酸化マグネシウム Mg(OH)と、オキソ酸塩である炭酸マグネシウム MgCO(菱苦土石),炭酸カルシウムマグネシウム CaMg(CO(苦灰石、ドロマイト),硝酸マグネシウム Mg(NO,硫酸マグネシウム MgSO,亜硫酸マグネシウム MgSO,リン酸三マグネシウム Mg(PO・8HO,過マンガン酸マグネシウム Mg(MnOと、鉱物である三ケイ酸マグネシウム 2MgO・3SiO・nHO,スピネル(尖晶石) MgO・Al,滑石 MgSi10(OH),蛇紋石 MgSi(OH)と,有機塩である酢酸マグネシウムMg(CHCOO),クエン酸マグネシウム,L‐グルタミン酸マグネシウム,安息香酸マグネシウムC1410MgO,ステアリン酸マグネシウム Mg(CH(CH16COO)が挙げられる。尚、「金属酸化物」は、加熱炉内の環境下において、固体燃料中の炭素を酸化する酸化力を有する金属酸化物を意味し、金属酸化物の原料を含む。また、「金属酸化物の原料」は、熱分解により金属酸化物を生成する化合物を意味する。
 また、本発明に係る加熱炉の灰付着抑制方法は、複数種類の固体燃料のそれぞれの灰成分の組成と、前記複数種類の固体燃料に添加剤として添加して混合する金属系化合物または金属含有化合物の無機成分の組成と、を予め測定するステップと、複数通りの平均粒子径の前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料の灰成分の組成と、複数通りの平均粒子径の前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料について予め算出した一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、加熱炉における前記スラグ割合が基準値以下になる灰成分の組成が得られる所定の混合比率及び所定の平均粒子径を決定するステップと、前記複数種類の固体燃料と前記所定の平均粒子径の前記金属系化合物または金属含有化合物とを、前記所定の混合比率で添加して混合することにより得られる前記複数種類の固体燃料と前記金属系化合物または金属含有化合物との混合物を燃料として前記加熱炉に供給するステップと、を備えることを特徴とする。
 また、本発明に係る加熱炉の灰付着抑制装置は、複数種類の固体燃料のそれぞれの灰成分の組成と、前記複数種類の固体燃料に添加剤として添加して混合する金属系化合物または金属含有化合物の無機成分の組成と、が予め測定されて入力されて、複数通りの平均粒子径の前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料の灰成分の組成と、複数通りの平均粒子径の前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料について予め算出した一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、加熱炉における前記スラグ割合が基準値以下になる灰成分の組成が得られる所定の混合比率及び所定の平均粒子径を決定する演算部と、前記演算部で決定された前記所定の混合比率及び所定の平均粒子径に基づいて、前記複数種類の固体燃料と前記金属系化合物または金属含有化合物との供給量を調整する燃料供給量調整部と、を備えることを特徴とする。
 本発明は、加熱炉内で燃焼により溶融し、加熱炉内の燃焼空気の気流に乗って浮遊し、炉壁や伝熱管群に付着する成分であるスラグに着目している。そして、本発明では、複数通りの平均粒子径の金属系化合物または金属含有化合物を複数通りの混合比率で添加剤として混合した複数種類の固体燃料について算出されたスラグ割合と、複数種類の固体燃料の灰成分の組成及び金属系化合物または金属含有化合物の無機成分の組成と、に基づいて、複数通りの混合比率から所定の混合比率が決定され、複数通りの平均粒子径から所定の平均粒子径が決定される。従って、本発明で新たに構築された評価指数であるスラグ割合に基づいて灰付着特性を評価し、スラグ割合が基準値以下になる灰成分の組成となるように、複数通りの混合比率から所定の混合比率を決定すると共に、複数通りの平均粒子径から所定の平均粒子径を決定することにより、加熱炉内の灰付着を精度良く予測して、適正な混合比率を求めて、灰の付着を抑制することができる。
 ここで、本発明に係る加熱炉の灰付着抑制方法及び加熱炉の灰付着抑制装置において、前記金属系化合物または金属含有化合物の金属元素の主成分は、マグネシウムまたはアルミニウムであると好ましい。
 予め調査された、複数種類の固体燃料に添加剤として添加された灰中のマグネシウムまたはアルミニウムの含有割合とスラグ割合との比較結果に基づくと、灰中のマグネシウムまたはアルミニウムの含有割合が増加するに従って、スラグ割合が減少する。そのため、金属系化合物または金属含有化合物の金属元素の主成分がマグネシウムまたはアルミニウムである添加剤を複数種類の固体燃料に添加することにより、灰の付着の抑制を実現することができる。
 ここで、前記スラグ割合は、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料の前記灰成分の組成に基づいて熱力学平衡計算により算出されることが好ましい。または、前記スラグ割合は、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料について予め測定した所定の雰囲気温度及び雰囲気ガス組成で加熱して生じるスラグから算出されることが好ましい。
 金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した複数種類の固体燃料の灰成分の組成に基づいて熱力学平衡計算によりスラグ割合を算出することにより、実験を行うことなくスラグ割合を求めることができる。また、金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した複数種類の固体燃料について予め測定した所定の雰囲気温度及び雰囲気ガス組成で加熱して生じるスラグから、スラグ割合を算出することにより、実際の加熱炉の状況に合わせたスラグ割合を求めることができる。
 また、本発明に係る加熱炉の灰付着抑制方法及び加熱炉の灰付着抑制装置において、前記基準値は、前記スラグ割合に対する灰付着率に基づいて、灰付着率が低くなるように決定されると好ましい。前記灰付着率は、予め調査された加熱炉内に挿入した灰付着プローブへの衝突灰量に対する実際の付着灰量の比として算出されると好ましい。前記衝突灰量は、前記固体燃料の供給量、灰分含有率及び加熱炉の炉形状から求められる前記灰付着プローブの投影面積に衝突する灰の総量として算出されると好ましい。
 これによると、予め調査した灰付着率とスラグ割合との比較結果に基づいて、灰付着率が低くなるように、スラグ割合の基準値を決定することにより、灰の付着を抑制することができる。
 また、本発明に係る加熱炉の灰付着抑制方法及び加熱炉の灰付着抑制装置において、前記灰付着率が5~7重量%(wt%)以下となるように、前記基準値が50~60重量%以下に決定されることが好ましい。
 予め調査された灰付着率とスラグ割合との比較結果に基づくと、スラグ割合が50~60重量%以下の範囲であると、灰付着率が低くなる(5~7重量%以下)ため、灰の付着を抑制することができる。
 ここで、本発明に係る加熱炉の灰付着抑制方法において、前記所定の雰囲気温度及び雰囲気ガス組成は、バーナ近傍の雰囲気温度及び雰囲気ガス組成であってよい。
 また、本発明に係る加熱炉の灰付着抑制装置が、加熱炉の燃焼室の温度及び雰囲気ガス組成を測定する計測部を更に備え、前記所定の雰囲気温度及び雰囲気ガス組成が、前記計測部で測定された前記加熱炉の燃焼室の温度及び雰囲気ガス組成であると好ましい。
 これによると、加熱炉内部の各部分における灰中のスラグ割合を適正に求めることができ、複数種類の固体燃料の適切な混合比率を計算することができる。
 また、本発明に係る加熱炉の灰付着抑制方法及び加熱炉の灰付着抑制装置において、前記所定の雰囲気温度及び雰囲気ガス組成は、加熱炉の設計上の最高雰囲気温度及びその部位の雰囲気ガス組成、または、加熱炉の設計上の還元度が最も高い雰囲気ガス組成とその部位の温度であることが好ましい。
 これによると、加熱炉の状態に依存することなく、複数種類の固体燃料の適切な混合比率を計算することができる。尚、「加熱炉の設計上の還元度が最も高い雰囲気ガス組成」は、COやHなどの還元性ガスの濃度が最も高い雰囲気ガス組成を意味する。
 また、本発明に係る加熱炉の灰付着抑制方法及び加熱炉の灰付着抑制装置において、前記金属系化合物または金属含有化合物の平均粒子径が、前記固体燃料中の灰の平均粒子径よりも小さいことが好ましい。
 予め調査された、金属系化合物または金属含有化合物の平均粒子量を変化させた場合の灰付着率とスラグ割合との比較結果に基づくと、添加される金属系化合物または金属含有化合物の量が同じでも、金属系化合物または金属含有化合物の平均粒子径が小さいほど、灰付着率が小さくなる。そのため、特に、金属系化合物または金属含有化合物の平均粒子径が、固体燃料中の灰の平均粒子径よりも小さい場合には、加熱炉への灰付着を効果的に抑制することができる。
 また、本発明に係る加熱炉の灰付着抑制方法及び加熱炉の灰付着抑制装置において、前記金属系化合物または金属含有化合物の平均粒子径が、5μm以下であると好ましい。
 予め調査した金属系化合物または金属含有化合物の平均粒子量を変化させた場合の灰付着率とスラグ割合との比較結果に基づくと、添加される金属系化合物または金属含有化合物の量が同じでも、金属系化合物または金属含有化合物の平均粒子径が小さい場合には、灰付着率が小さくなる。そのため、平均粒子径が小さく5μm以下である場合には、灰付着抑制効果が大きくなる。
 本発明の加熱炉の灰付着抑制方法及び灰付着抑制装置によれば、劣質炭を含む様々な種類の固体燃料に金属系化合物または金属含有化合物を添加した混合物を燃料とする加熱炉において、加熱炉内の灰付着を精度良く予測することにより灰が付着するのを抑制でき、加熱炉を安定運用させることが可能である。
本実施形態に係る加熱炉の灰付着抑制方法の手順を示すステップ図である。 本実施形態に係る加熱炉の灰付着抑制装置を示す概略図である。 予め測定されるスラグ割合と灰付着率との関係の具体例を示す図である。 本実施例1に係る灰中のMgO成分含有割合とスラグ割合との関係を示す図である。 本実施例2に係る灰中のAl成分含有割合とスラグ割合との関係を示す図である。 本実施例1に係るスラグ割合と灰付着率との関係を示す図である。 本実施形態の変形例に係る加熱炉の灰付着抑制方法の手順を示すステップ図である。 本実施例3に係る固体燃料の灰の粒径分布を示す図である。 本実施例3に係るスラグ割合と灰付着率との関係を示す図である。
 以下、図面を参照しつつ、本発明に係る加熱炉の灰付着抑制方法及び灰付着抑制装置を実施するための形態について、具体的な一例に即して説明する。尚、以下の説明は、例示にすぎず、本発明に係る加熱炉の灰付着抑制方法及び灰付着抑制装置の適用限界を示すものではない。すなわち、本発明に係る加熱炉の灰付着抑制方法及び灰付着抑制装置は、下記の実施形態に限定されるものではなく、特許請求の範囲に記載した限りにおいてさまざまな変更が可能である。
 まず、本実施形態に係る加熱炉の灰付着抑制方法の一例について、図1に基づいて説明する。図1は、本実施形態に係る加熱炉の灰付着抑制方法の手順を示すステップ図である。
 本実施形態に係る加熱炉の灰付着抑制方法では、図1に示されるように、加熱炉で使用する予定である各固体燃料の石炭性状の測定と、固体燃料に添加して混合する予定である金属系化合物または金属含有化合物の添加剤性状の測定と、が行なわれる(ステップS1)。
 ここで、固体燃料の石炭性状として、固体燃料の水分含有量、発熱量、灰分含有量、灰成分の組成等が測定される。尚、「固体燃料」は、石炭、汚泥炭化物、バイオマス燃料等を含む。
 また、金属系化合物または金属含有化合物の添加剤性状として、金属系化合物または金属含有化合物の水分含有量、無機分含有量、無機成分の組成等が測定される。ここで、金属系化合物または金属含有化合物は、金属元素の主成分がマグネシウムまたはアルミニウムである化合物を意味し、マグネシウムまたはアルミニウムを含有する金属酸化物、金属水酸化物、金属炭酸化物等(例えば、MgO、Mg(CO)、Mg(OH)、Al、Al(OH)等)を含む他、マグネシウムまたはアルミニウムを含有するオキソ酸塩や有機塩や鉱物なども含まれる。金属系化合物または金属含有化合物として、具体的には、無機塩である酸化マグネシウム MgO(苦土),過酸化マグネシウム MgO,水酸化マグネシウム Mg(OH)と、オキソ酸塩である炭酸マグネシウム MgCO (菱苦土石),炭酸カルシウムマグネシウム CaMg(CO (苦灰石、ドロマイト),硝酸マグネシウム Mg(NO,硫酸マグネシウム MgSO,亜硫酸マグネシウム MgSO,リン酸三マグネシウム Mg(PO・8HO,過マンガン酸マグネシウム Mg(MnOと、鉱物である三ケイ酸マグネシウム 2MgO・3SiO・nHO,スピネル(尖晶石) MgO・Al,滑石 MgSi10(OH),蛇紋石 MgSi(OH)と,有機塩である酢酸マグネシウムMg(CHCOO),クエン酸マグネシウム,L‐グルタミン酸マグネシウム,安息香酸マグネシウム C1410MgO,ステアリン酸マグネシウム Mg(CH(CH16COO)が挙げられる。尚、「金属酸化物」は、加熱炉内の環境下において、固体燃料中の炭素を酸化する酸化力を有する金属酸化物を意味し、金属酸化物の原料を含む。また、「金属酸化物の原料」は、熱分解により金属酸化物を生成する化合物を意味する。
 次に、加熱炉におけるスラグ割合が基準値以下になる灰成分の組成となる所定の混合比率が決定される(ステップS2)。この所定の混合比率は、複数種類の固体燃料の灰成分の組成と、複数種類の固体燃料について予め算出した一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて決定される。また、上記灰成分の組成および上記スラグ割合は、複数通りの平均粒子径の金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した複数種類の固体燃料について、予め測定または算出される。
 ここで、「スラグ割合」は、本実施形態で用いられる灰付着特性の評価指標であり、一定量の固体状の灰のうち、ある温度、雰囲気条件において、スラグになった割合を意味する。また、「スラグ」は、燃焼により溶融し、加熱炉内の燃焼気流に乗って浮遊し、炉壁や伝熱管群に付着する成分を意味する。スラグ割合の基準値は、予め決定される。まず、スラグ割合が、複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物と、の複数通りの混合比率に応じて算出される。すなわち、各固体燃料と各固体燃料について添加される金属系化合物または金属含有化合物との組合せを変え、且つ、各固体燃料について添加される金属系化合物または金属含有化合物の混合比率を変化させながら、スラグ割合が複数通り算出される。また、複数種類の固体燃料について混合させる固体燃料の組合せを変え、且つ、混合させる各固体燃料の混合比率を変化させながら、複数通りのスラグ割合を算出しても良い。ここで、スラグ割合は、予め測定した各固体燃料の灰が、ある条件(温度、雰囲気ガス組成)において熱力学的に最も安定する状態、つまり、ギブス(Gibbs)の自由エネルギー(△G)がゼロに近くなる状態の組成や相を、熱力学平衡計算により算出することにより求められる。尚、スラグ割合は、上述の形態に限られず、予め各固体燃料の灰を加熱し、各温度及び雰囲気ガス組成におけるスラグ割合を測定しておくことにより算出されてもよい。これにより、実際の加熱炉の状況に合わせたスラグ割合を求めることができる。
 そして、本実施形態で用いられる灰付着特性の評価指標であるスラグ割合を評価するために、灰付着率が算出される。ここで、「灰付着率」は、加熱炉の炉内に挿入された灰付着プローブへの衝突灰量に対する灰付着プローブへの付着灰量の比であり、灰の付着しやすさを意味する。灰付着率は、次式で表される。尚、「灰付着プローブへの衝突灰量」は、灰付着プローブの投影面積に衝突する灰の総量であり、固体燃料の供給量、灰分含有率、及び加熱炉の炉形状によって求められる。そして、算出された灰付着率とスラグ割合との関係に基づいて、灰付着率が低くなる(灰付着率が5~7重量%程度以下)スラグ割合の値(基準値)を決定する。
Figure JPOXMLDOC01-appb-M000001
 尚、灰付着率の算出のための評価は実加熱炉で行われる必要は無く、燃焼試験炉や実缶加熱炉で行われても良い。そして、予め複数の固体燃料(使用する予定の固体燃料であっても良いし、使用する予定ではない固体燃料であっても良い)を燃焼させて灰付着率を調査し、燃焼させた固体燃料のスラグ割合を算出することにより、予め測定された灰付着率とスラグ割合との関係に基づいて、灰付着率が5~7重量%程度以下と低くなるスラグ割合の値(基準値)が決定される。
 尚、本実施形態では、灰付着率に基づいて、灰付着特性の評価指標であるスラグ割合を評価しているが、それに限られない。燃焼試験炉や実缶加熱炉を用いて、燃料に含まれるスラグ割合を変えながら燃焼テストを行い、加熱炉に設置されたコンベアでは搬出できないサイズのクリンカ(溶融スラグ)の塊が炉壁に落下するときのスラグ割合を、基準値としても良い。または、同様のテストにおいて、主蒸気温度・主蒸気圧力が規定領域から外れたり変動したりするときのスラグ割合を基準値としても良い。
 そして、複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物と、の複数通りの混合比率をパラメータとして用い、ステップS1で測定された複数の固体燃料の灰成分の組成と、金属系化合物または金属含有化合物の無機成分の組成と、から、金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した複数種類の固体燃料の灰成分の組成が算出される。そして、熱力学平衡計算により、灰中のスラグ割合が求められる。そして、複数通りの混合比率の中から、灰中のスラグ割合が予め決定されたスラグ割合の基準値以下となる所定の混合比率が算出される。ここで、燃料となる固体燃料は、加熱炉に投入される熱量が一定になるように供給量が決定されている。
 尚、熱力学平衡計算においては、加熱炉壁への灰付着が顕著に発生するバーナ近傍の雰囲気温度と雰囲気ガス組成とが用いられる。また、バーナ近傍の雰囲気温度及び雰囲気ガス組成に限られず、灰の付着が生じやすい伝熱管群などの所望の部分の雰囲気温度及び雰囲気ガス組成に基づいて熱力学平衡計算が行われて良い。これにより、加熱炉内部の各部分における灰中のスラグ割合を適正に求めることができ、複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物と、の所定の混合比率を適切に計算することができる。
 尚、熱力学平衡計算は、上述の形態に限られず、加熱炉設計上の最高雰囲気ガス温度及びその部位の雰囲気ガス組成を用いて行われても良い。また、加熱炉設計上の還元度が最も高い(COやHなどの還元性ガスの濃度が最も高い)雰囲気ガス組成と、その部位の温度と、が用いられても良い。そうすると、加熱炉の炉内の燃焼温度に依存することなく、複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物と、の所定の混合比率を決定することができる。
 最後に、ステップS2で算出された複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物と、の所定の混合比率に基づいて、固体燃料と、金属系化合物または金属含有化合物と、が混合される。固体燃料と、金属系化合物または金属含有化合物の混合物と、は粉砕された後に、燃料として加熱炉に供給される(ステップS3)。
 次に、本実施形態に係る加熱炉の灰付着抑制装置の一例について、図2に基づいて説明する。図2は、本実施形態に係る加熱炉の灰付着抑制装置を示す概略図である。
 図2に示されるように、加熱炉7は、ホッパ1,2と、燃料供給量調整装置(燃料供給量調整部)3と、混合機4と、粉砕機5と、バーナ6と、演算機(演算部)9と、を有している。本実施形態に係る加熱炉の灰付着抑制装置は、燃料供給量調整装置3と、演算機9と、から構成される。
 ホッパ1,2は、それぞれ、固体燃料、金属系化合物または金属含有化合物を保持する。ここで、「固体燃料」は、石炭、汚泥炭化物、バイオマス燃料等を含む。また、「金属系化合物または金属含有化合物」は、金属元素の主成分がマグネシウムまたはアルミニウムである化合物であって、マグネシウムまたはアルミニウムを含有した酸化物、水酸化物、炭酸化物等(例えば、MgO、Mg(CO)、Mg(OH)、Al、Al(OH)等)を含む。尚、図2ではホッパは2つ設けられているが、それに限られず、複数設けられていてもよい。燃料供給量調整装置3は、後述する演算機9で算出された複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物の所定の混合比率と、に基づいて、ホッパ1,2からの固体燃料、金属系化合物または金属含有化合物の切り出し量を調整する。混合機4は、燃料供給量調整装置3で切り出された固体燃料に、燃料供給量調整装置3で切り出された金属系化合物または金属含有化合物を添加し、混合する。粉砕機5は、混合機4で混合された固体燃料と金属系化合物または金属含有化合物との混合物を粉砕して微粉炭とする。バーナ6は、空気と共に吹き込まれた微粉炭を燃焼する。加熱炉7は、微粉炭を燃焼させて熱を回収する。尚、図示されていないが、加熱炉7は、供給された燃料をバーナ6などで燃焼させて熱を発生させる火炉と、火炉の上方から下流にわたって配置され、内部に燃焼ガスを流動して熱交換を行う伝熱管群と、を備える。加熱炉からでた燃焼ガスは、煙突から排出されるようになっている。また、伝熱管群は、火炉の上方に所定の間隔で並列配置された二次加熱器、三次加熱器、最終加熱器、および二次再熱器を備える上部伝熱部と、火炉の後部に配置された一次加熱器、一次再熱器、および節炭器を備える後部伝熱部と、からなっている。
 演算機9は、加熱炉で使用する予定である各固体燃料の石炭性状(固体燃料の水分含有量、発熱量、灰分含有量、灰成分の組成等)と、固体燃料に添加して混合する予定である金属系化合物または金属含有化合物の添加剤性状(金属系化合物または金属含有化合物の水分含有量、無機分含有量、無機成分の組成等)と、をデータ8として予め集積している。演算機9は、複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物と、の複数通りの混合比率をパラメータとして用い、金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した複数種類の固体燃料の灰成分の組成を、予め測定された複数の固体燃料の灰成分の組成と、金属系化合物または金属含有化合物の無機成分の組成と、から算出する。そして、演算機9は、熱力学平衡計算により、灰中のスラグ割合を求める。次に、演算機9は、複数通りの混合比率の中から、灰中のスラグ割合が、決定された基準値以下となる所定の混合比率を算出する。ここで、燃料となる固体燃料の供給量は、加熱炉に投入される熱量が一定になるように決定されている。尚、「スラグ割合」は、本実施形態で用いられる灰付着特性の評価指標であり、一定量の固体状の灰のうち、ある温度、雰囲気条件において、スラグになった割合を意味する。灰付着率とスラグ割合との関係は上述したとおりであり、その説明を省略する。また、スラグ割合の基準値は、上述の本実施形態に係る加熱炉の灰付着抑制方法で記載したとおりに決定されるものであり、その説明を省略する。
 また、熱力学平衡計算においては、例えば、加熱炉壁への灰付着が顕著に発生するバーナ近傍の雰囲気温度と雰囲気ガス組成が用いられる。バーナ近傍の雰囲気温度と雰囲気ガス組成は、バーナ近傍に設置された図示されない計測装置(計測部)を用いて測定される。尚、計測装置は、バーナ近傍に限らず、灰の付着が生じやすい伝熱管群などの所望の部分に設置されてもよく、かかる部分の雰囲気温度及び雰囲気ガス組成に基づいて熱力学平衡計算を行って良い。これにより、加熱炉内部の各部分における灰中のスラグ割合を適正に求めることができ、複数種類の固体燃料及び複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物の所定の混合比率を適切に計算することができる。更に、熱力学平衡計算は、上述の形態に限られず、加熱炉設計上の最高雰囲気ガス温度及びその部位の雰囲気ガス組成を用いて行っても良く、例えば、加熱炉設計上の還元度が最も高い(COやHなどの還元性ガスの濃度が最も高い)雰囲気ガス組成とその部位の温度を用いて行っても良い。そうすると、加熱炉の炉内の燃焼温度に依存することなく、複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物と、の所定の混合比率を決定することができる。
 また、複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物の所定と、の混合比率は、熱力学平衡計算で求められたスラグ割合に基づいて算出される形態に限られず、予め各固体燃料の灰を加熱して測定した各温度及び雰囲気ガス組成におけるスラグ割合に基づいて算出される形態が用いられても良い。これにより、実際の加熱炉の状況に合わせたスラグ割合を求めることができる。
 このように、本実施形態の加熱炉の灰付着抑制方法及び灰付着抑制装置は、加熱炉内で燃焼により溶融し、加熱炉内の燃焼空気の気流に乗って浮遊し、炉壁や伝熱管群に付着する成分であるスラグに着目している。本実施形態の加熱炉の灰付着抑制方法及び灰付着抑制装置では、金属系化合物または金属含有化合物を複数通りの混合比率で添加剤として添加して混合した複数種類の固体燃料について算出されたスラグ割合と、複数種類の固体燃料の灰成分の組成及び金属系化合物または金属含有化合物の無機成分の組成に基づいて、複数通りの混合比率から所定の混合比率が決定される。従って、本発明で新たに構築された評価指数であるスラグ割合に基づいて灰付着特性を評価し、スラグ割合が基準値以下になる灰成分の組成となるように、複数通りの混合比率から適正な混合比率を決定することにより、加熱炉内の灰付着を精度良く予測して、灰の付着を抑制することができ、加熱炉を安定運用させることが可能である。
 尚、本発明の加熱炉の灰付着抑制方法及び灰付着抑制装置は、上述の実施形態に限られない。例えば、固体燃料の石炭性状として、灰の粒径分布に基づいた平均粒子径が求められてもよい。また、金属系化合物または金属含有化合物の添加剤性状として、平均粒子径等が測定されてもよい(ステップS1、演算機9)。さらに、固体燃料の灰の平均粒子径よりも金属系化合物または金属含有化合物の平均粒子径が小さくなるように、予め、加熱炉で使用する予定である固体燃料及び金属系化合物または金属含有化合物が選択されてもよい。
 予め調査した、金属系化合物または金属含有化合物の平均粒子量を変化させた場合の灰付着率とスラグ割合との比較結果に基づくと、添加される金属系化合物または金属含有化合物の量が同じでも、金属系化合物または金属含有化合物の平均粒子径が小さいほど、灰付着率が小さくなる。したがって、特に、金属系化合物または金属含有化合物の平均粒子径が固体燃料中の灰の平均粒子径よりも小さい場合には、加熱炉への灰付着を効果的に抑制することができる。
 次に、本実施形態の変形例に係る加熱炉の灰付着抑制方法について、図7に基づいて説明する。図7は、本変形例に係る加熱炉の灰付着抑制方法の手順を示すステップ図である。尚、本変形例に関する以下の説明では、上述した実施形態に係る加熱炉の灰付着抑制方法と同じ内容については、その説明を省略し、異なる部分のみ説明する。
 本変形例に係る加熱炉の灰付着抑制方法においては、図7に示されるように、加熱炉で使用する予定である各固体燃料の石炭性状が測定されるとともに、固体燃料に添加して混合する予定である金属系化合物または金属含有化合物の添加剤性状が測定される(ステップS11)。
 ここで、本変形例では、固体燃料の石炭性状として、灰の粒径分布に基づいた平均粒子径が求められる。また、金属系化合物または金属含有化合物の添加剤性状として、上述した本実施形態に係る加熱炉の灰付着抑制方法の内容の他、平均粒子径等が測定される。
 次に、複数種類の固体燃料の灰成分の組成と、複数種類の固体燃料について予め算出した一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、加熱炉におけるスラグ割合が基準値以下になる灰成分の組成となる所定の混合比率を決定する(ステップS12)。上記灰成分の組成および上記スラグ割合は、複数通りの平均粒子径の金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した複数種類の固体燃料について、予め測定または算出される。
 ここで、本変形例では、複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物と、の複数通りの混合比率、および、金属系化合物または金属含有化合物の複数通りの平均粒子径が、パラメータとして用いられる。複数通りの平均粒子径の金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した複数種類の固体燃料の灰成分の組成は、ステップS11で測定された複数の固体燃料の灰成分の組成と、金属系化合物または金属含有化合物の無機成分の組成と、から算出される。そして、熱力学平衡計算により、灰中のスラグ割合が求められる。そして、複数通りの混合比率と複数種類の平均粒子径の中から、灰中のスラグ割合が決定されたスラグ割合の値(基準値)となる所定の混合比率と、所定の平均粒子径と、が算出される。
 最後に、ステップS12で算出された、複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物と、の所定の混合比率と、金属系化合物または金属含有化合物の所定の平均粒子径と、に基づいて、固体燃料と金属系化合物または金属含有化合物とが混合される。そして、固体燃料と金属系化合物または金属含有化合物との混合物は、粉砕された後、燃料として加熱炉に供給される(ステップS13)。
 次に、本変形例に係る加熱炉の灰付着抑制装置について、図2に基づいて説明する。図2は、本変形例に係る加熱炉の灰付着抑制装置を示す概略図である。尚、図2は、上述した実施形態に係る加熱炉の灰付着抑制装置と同じである。また、以下の説明では、上述した実施形態に係る加熱炉の灰付着抑制装置と同じ内容については、その説明を省略し、異なる部分のみ説明する。
 本変形例では、演算機9は、加熱炉で使用する予定である各固体燃料の石炭性状(固体燃料の水分含有量、発熱量、灰分含有量、灰成分の組成等)と、固体燃料に添加して混合する予定である金属系化合物または金属含有化合物の添加剤性状(金属系化合物または金属含有化合物の水分含有量、無機分含有量、無機成分の組成、平均粒子径等)を、予めデータ8として集積している。演算機9は、複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物演算機9と、の複数通りの混合比率と、金属系化合物または金属含有化合物の複数通りの平均粒子径をパラメータとして用いる。そして、演算機9は、複数通りの平均粒子径の金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した複数種類の固体燃料の灰成分の組成を、予め測定された複数の固体燃料の灰成分の組成と、金属系化合物または金属含有化合物の無機成分の組成と、から算出する。そして、演算機9は、熱力学平衡計算により、灰中のスラグ割合を求める。そして、複数通りの混合比率と複数種類の平均粒子径の中から、灰中のスラグ割合が決定された基準値以下となる所定の混合比率と所定の平均粒子径とが算出される。
 このように、本変形例における加熱炉の灰付着抑制方法及び灰付着抑制装置は、加熱炉内で燃焼により溶融し、加熱炉内の燃焼空気の気流に乗って浮遊して炉壁や伝熱管群に付着する成分であるスラグに着目している。本変形例においては、複数通りの平均粒子径の金属系化合物または金属含有化合物を添加剤として複数通りの混合比率で混合した複数種類の固体燃料について算出されたスラグ割合と、複数種類の固体燃料の灰成分の組成及び金属系化合物または金属含有化合物の無機成分の組成と、に基づいて、複数通りの混合比率から所定の混合比率が決定されると共に、複数通りの平均粒子径から所定の平均粒子径が決定される。従って、本発明で新たに構築された評価指数であるスラグ割合に基づいて灰付着特性を評価し、スラグ割合が基準値以下になる灰成分の組成となるように、複数通りの混合比率から適正な混合比率を決定すると共に、複数通りの平均粒子径から所定の平均粒子径を決定することにより、加熱炉内の灰付着を精度良く予測することができる。これにより、灰の付着を抑制することができ、加熱炉を安定運用させることが可能である。
 次に、上述した本実施形態に係る加熱炉の灰付着抑制方法及び灰付着抑制装置を用いた実施例について、図3~6及び表1、2に基づいて、説明する。
 本実施例において、まず、予め測定した灰付着率とスラグ割合との関係に基づいて、灰付着率が5~7重量%程度以下と低くなるスラグ割合の値(基準値)を決定する具体例について、図3及び表1に基づいて、説明する。
 この具体例では、微粉炭燃焼試験炉(炉内径400mm、炉内有効高さ3650mm)において、加熱用の都市ガスと微粉炭の投入熱量の合計が149kWと一定になる条件下で、灰成分の組成が異なる5種類の微粉炭を用いて実験を行った。実験においては、5種類の微粉炭の投入熱量が60kWと一定になるように、単独または複数種類の微粉炭を混合して供給量を調整した。そして、供給量が調整された微粉炭を、燃焼空気と共に炉頂に設けたバーナで燃焼させ、下方に灰付着プローブを挿入して100分間保持することにより、灰付着プローブの表面に付着する灰の付着率が調査される。ここで、灰付着プローブ挿入部の炉内雰囲気温度は、実缶加熱炉において灰付着現象が発生している温度と同様の約1300℃である。また、灰付着プローブの表面温度が約500℃になるように、内部を水冷することにより温度が調整される。表1は、スラグ割合と灰付着率の関係の具体例の実験に用いられた5種類の微粉炭の性状を示す。
Figure JPOXMLDOC01-appb-T000002
 そして、表1に示される微粉炭の性状に基づいて、ある条件(温度、雰囲気ガス組成)において一定量の灰が熱力学的に最も安定する状態、つまり、ギブスの自由エネルギー(△G)がゼロに近くなる状態の組成や相を熱力学平衡計算により求めることにより、実験で燃料として用いた微粉炭のスラグ割合が算出される。本実施例では、温度は1300℃、雰囲気ガス組成は、O:1vol%、CO:19vol%、N:80vol%として、熱力学平衡計算を行った。図3は、具体例に係るスラグ割合と灰付着率との関係を示す。
 図3に示されるように、この具体例においては、スラグ割合が50~60重量%までは、灰付着率が5~7重量%程度以下となっており、スラグ割合が50~60重量%以上になると、灰付着率が急激に上昇することが明らかである。したがって、スラグ割合の基準値を50~60重量%以下と決定すれば、灰の付着が抑制することができる。以上により、本実施例では、スラグ割合の基準値を50~60重量%以下と決定する。尚、本具体例では、灰付着率に基づいてスラグ割合を評価するのに際して、5種類の微粉炭のうちの2種類の微粉炭について、混合比率を変えて混合した混合物を用いたが、これに限られなくてもよい。複数種類の微粉炭と複数種類の金属系化合物または金属含有化合物との混合比率を変えて混合した混合物を用いて、スラグ割合が評価されても良い。また、本具体例では、下記で説明する微粉炭と異なる微粉炭を用いた評価が行われているが、それに限られず、下記で説明される微粉炭を用いて評価が行われてよい。
 次に、上述した図1に従って、本実施例に係る加熱炉の灰付着抑制方法の手順を説明する。本実施例では、微粉炭燃焼試験炉(炉内径400mm、炉内有効高さ3650mm)において、加熱用の都市ガスと微粉炭の投入熱量の合計が149kWと一定である条件下で、灰成分の組成が異なる5種類の微粉炭(固体燃料)を用いて実験を行った。
 まず、実施例1、2において、加熱炉で使用する予定である各固体燃料の石炭性状が測定されるとともに、固体燃料に添加して混合する予定である金属系化合物または金属含有化合物の添加剤性状が測定される(ステップS1)。表2は、本実施例1、2で用いる石炭A,B,C,D,Eの5種類の微粉炭の性状を示す。金属系化合物または金属含有化合物としては、純度が99%以上の酸化マグネシウム(MgO)粉末、または、純度が99%以上の酸化アルミニウム(Al)粉末が用いられる。
Figure JPOXMLDOC01-appb-T000003
 次に、複数種類の固体燃料の灰成分の組成と、複数種類の固体燃料について予め算出した一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、加熱炉におけるスラグ割合が基準値以下になる灰成分の組成となる所定の混合比率が決定される(ステップS2)。上記灰成分の組成および上記スラグ割合は、複数通りの混合比率で金属系化合物または金属含有化合物を添加して混合した複数種類の固体燃料について測定または算出される。
 本実施例では、表2に示される石炭のうち、灰の軟化点が1300℃以下と低い石炭B,C,D,Eの微粉炭のスラグ割合が算出される。すなわち、本実施例では、表2に示す微粉炭の性状に基づいて、ある条件(温度、雰囲気ガス組成)において一定量の灰が熱力学的に最も安定する状態、つまり、ギブスの自由エネルギー(△G)がゼロに近くなる状態の組成や相が、熱力学平衡計算により算出される。本実施例では、温度は1300℃、雰囲気ガス組成は、O:1vol%、CO:19vol%、N:80vol%として、熱力学平衡計算が行われる。そして、実施例1では、各微粉炭に添加する金属系化合物または金属含有化合物として、純度が99%以上の酸化マグネシウム(MgO)粉末が、複数通りの混合比率で(本実施例1では、各石炭の灰重量に対して0,5,10,25,50重量%ずつ)添加されていき、熱力学平衡計算によりスラグ割合の推移が算出される。同様に、実施例2では、各微粉炭に添加される金属系化合物または金属含有化合物として、純度が99%以上の酸化アルミニウム(Al)粉末が、各石炭の灰重量に対して複数通りの混合比率で(本実施例2では、0,5,10,25,50重量%ずつ)添加されていき、熱力学平衡計算によりスラグ割合の推移が算出される。
 図4は、実施例1に係る灰中のMgO成分含有割合とスラグ割合との関係、図5は実施例2に係る灰中のAl成分含有割合とスラグ割合との関係を示す。尚、図4の横軸は、灰中のMgO成分含有割合を示すと共に、図5の横軸は灰中のAl成分含有割合を示している。それぞれは、表2に示された微粉炭の灰組成の酸化マグネシウムまたは酸化アルミニウムの灰重量%と、混合された金属系化合物または金属含有化合物(酸化マグネシウムまたは酸化アルミニウム)の灰重量%と、が加算された値として示されている。
 図4、5から、いずれの石炭灰についても、灰中のMgO含有割合またはAl成分含有割合が増加するに従って、スラグ割合が減少することが分かる。
 そして、図4、5に基づいて、加熱炉におけるスラグ割合が、基準値以下、すなわち上述の具体例で示された通り50~60重量%以下になる、所定の混合比率が決定される。本実施例1の場合は、石炭Bの灰+MgO25重量%、石炭Bの灰+MgO50重量%、石炭C+MgO25重量%、石炭Cの灰+MgO50重量%、石炭D+MgO25重量%、石炭Dの灰+MgO50重量%、石炭Eの灰+MgO50重量%が、スラグ割合が50~60重量%以下になる所定の混合比率として決定される。また、実施例2の場合は、石炭Bの灰+Al50重量%、石炭Cの灰+Al50重量%、石炭Dの灰+Al50重量%、石炭Eの灰+Al25重量%、石炭Eの灰+Al50重量%が、スラグ割合が50~60重量%以下になる所定の混合比率として決定される。
 最後に、ステップS2で算出された複数種類の固体燃料と、複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物の所定と、の混合比率に基づいて、固体燃料と、金属系化合物または金属含有化合物と、が混合される。固体燃料と、金属系化合物または金属含有化合物と、の混合物は、粉砕された後に、燃料として加熱炉に供給される(ステップS3)。
 そして、上記で説明した本実施例の有効性を検討するべく、実施例1で用いられた、酸化マグネシウム(MgO)粉末が複数通りの混合比率で混合された微粉炭について、灰付着率を求める実験を行った。実験においては、5種類の微粉炭のうちの灰成分の組成が異なる二種類の微粉炭(石炭A,B)が用いられ、微粉炭の投入熱量が60kWと一定になるように微粉炭の供給量が調整される。そして、金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した微粉炭を、炉頂に設けられたバーナで燃焼空気と共に燃焼させ、下方に灰付着プローブを挿入して100分間保持することにより、灰付着プローブの表面に付着する灰の付着率が調査される。ここで、灰付着プローブ挿入部の炉内雰囲気温度は、実缶加熱炉において灰付着現象が発生している温度と同様の約1300℃である。また、灰付着プローブの表面温度が約500℃になるように、内部を水冷することにより温度が調整される。比較のために、金属系化合物または金属含有化合物が添加されない石炭Aについても、実験が行われる。また、金属系化合物または金属含有化合物として、純度が99%以上の酸化マグネシウム(MgO)粉末を、石炭Bの灰重量に対して25重量%または50重量%の混合比率で石炭Bに添加することにより、実験が行われた。
 図6は、本実施例1に係る実験の結果である、スラグ割合と灰付着率の関係を示す。図6に示されるように、本実施例1において、スラグ割合が50~60重量%以下になるように、石炭Bに灰重量の25、50重量%のMgO粉末が添加された場合は、灰付着率が5~7重量%程度以下となっていることが分かる。一方、石炭BにMgO粉末が添加されなかった場合は、スラグ割合が約95重量%で、灰付着率が10重量%以上となる。このことから、スラグ割合が高いと灰付着率も高くなることが明らかである。尚、石炭Aは、MgO粉末が添加されない場合であっても、スラグ割合が約40重量%、灰付着率が5~7重量%以下となる。スラグ割合が低いと灰付着率も低くなることが明らかであるため、石炭Aは、MgO粉末などの金属系化合物または金属含有化合物を添加されなくとも、灰の付着を抑制することができることがわかる。
 このことから、スラグ割合の基準値を50~60重量%以下とし、図4、5を参照して、スラグ割合が基準値である50~60重量%以下となる灰中のMgO含有割合またはAl成分含有割合になるように、微粉炭に添加するMgO粉末またはAl粉末の混合比率を調整すれば、灰の付着が抑制することができることがわかる。
 次に、上述した変形例に係る加熱炉の灰付着抑制方法及び灰付着抑制装置を用いた実施例3について、図8、9に基づいて説明する。
 まず、図1に従って、本実施例3に係る加熱炉の灰付着抑制方法の手順を説明する。本実施例3では、上述の実施例1,2と同様に、スラグ割合の基準値が、50~60重量%以下に決定される。また、本実施例3では、上述の実施例1,2と同様に、微粉炭燃焼試験炉(炉内径400mm、炉内有効高さ3650mm)において、加熱用の都市ガスと微粉炭の投入熱量の合計が149kWと一定になる条件下で、灰成分の組成が異なる5種類の微粉炭(固体燃料)を用いて実験が行われる。
 まず、本実施例3の実験において、加熱炉で使用する予定である各固体燃料の石炭性状が測定されるとともに、固体燃料に添加して混合する予定である金属系化合物または金属含有化合物の添加剤性状が測定される(ステップS11)。
 本実施例3では、表2で示された石炭Bが用いられるものとする。図8は、石炭Bの灰の粒径分布を示す。図8に基づくと、石炭Bの灰の平均粒子径(積算重量が50重量%時の粒子径)は、6.8μmである。また、本実施例3では、金属系化合物または金属含有化合物として、マグネシウム酸化物(MgO)が用いられるものとする。マグネシウム酸化物(MgO)粒子の複数通りの平均粒子径は、10μm(四角で表示),5μm(三角で表示),0.2μm(丸で表示)のものが用意される。
 次に、複数種類の固体燃料の灰成分の組成と、複数種類の固体燃料について予め算出した一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、加熱炉におけるスラグ割合が基準値以下になる灰成分の組成となる所定の混合比率と所定の平均粒子径とが決定される(ステップS12)。上記灰成分の組成および上記スラグ割合は、複数通りの平均粒子径の金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した複数種類の固体燃料について、予め測定または算出される。
 本実施例3において、マグネシウム酸化物(MgO)の添加重量(複数通りの混合比率)は、石炭Bの灰重量に対して、0重量%(添加なし)、25重量%、50重量%である。図9は、本実施例3に係る実験の結果を、スラグ割合と灰付着率の関係として示す。図9では、添加したMgOの粒子径ごとに3通りの混合比率で、灰付着率がプロットされている。MgOの混合比率は、スラグ割合が低いものから順に、50重量%、25重量%、0重量%(添加なし)である。図9に示される結果から、MgOの添加重量が同じでも、MgOの粒子径が小さいほど(5μm以下)灰付着率が小さくなり、灰付着抑制効果が大きくなることが分かる。特に、MgOの平均粒子径が、石炭Bの灰の平均粒子径よりも小さい場合には、効果的に加熱炉への灰付着を好適に抑制できることが分かる。
 そして、本実施例3では、スラグ割合が基準値である50~60重量%以下となるように、マグネシウム酸化物(MgO)粒子の平均粒子径が5μm以下、混合比率が50重量%、25重量%に決定される。
 最後に、ステップS12で算出された複数種類の固体燃料及び複数種類の固体燃料に添加して混合する金属系化合物または金属含有化合物の所定の混合比率と、金属系化合物または金属含有化合物の所定の平均粒子径と、に基づいて、固体燃料と、金属系化合物または金属含有化合物と、が混合される。固体燃料と、金属系化合物または金属含有化合物と、の混合物を粉砕された後に、燃料として加熱炉に供給される(ステップS13)。
 本実施例3では、平均粒子径が5μm以下のマグネシウム酸化物(MgO)粒子が、50重量%または25重量%の混合比率で混合される。このように、石炭Bとマグネシウム酸化物(MgO)とが混合されて、燃料として加熱炉に供給される。
 以上、本発明の実施形態および実施例について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することが可能なものである。本出願は2010年7月14日出願の日本特許出願(特願2010-159348)及び2011年6月22日出願の日本特許出願(特願2011-138106)に基づくものであり、その内容はここに参照として取り込まれる。
3 燃料供給量調整装置(燃料供給量調整部)
7 加熱炉
9 演算機(演算部)

Claims (21)

  1.  複数種類の固体燃料のそれぞれの灰成分の組成と、前記複数種類の固体燃料に添加剤として添加して混合する金属系化合物または金属含有化合物の無機成分の組成と、を予め測定するステップと、
     前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料の灰成分の組成と、複数通りの混合比率で前記金属系化合物または金属含有化合物を添加して混合した前記複数種類の固体燃料について予め算出された一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、加熱炉における前記スラグ割合が基準値以下になる灰成分の組成が得られる所定の混合比率を決定するステップと、
     前記複数種類の固体燃料と前記金属系化合物または金属含有化合物とを、前記所定の混合比率で添加して混合することにより得られる前記複数種類の固体燃料と前記金属系化合物または金属含有化合物との混合物を燃料として前記加熱炉に供給するステップと、を備えることを特徴とする加熱炉の灰付着抑制方法。
  2.  複数種類の固体燃料のそれぞれの灰成分の組成と、前記複数種類の固体燃料に添加剤として添加して混合する金属系化合物または金属含有化合物の無機成分の組成と、を予め測定するステップと、
     複数通りの平均粒子径の前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料の灰成分の組成と、複数通りの平均粒子径の前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料について予め算出された一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、加熱炉における前記スラグ割合が基準値以下になる灰成分の組成が得られる所定の混合比率及び所定の平均粒子径を決定するステップと、
     前記複数種類の固体燃料と前記所定の平均粒子径の前記金属系化合物または金属含有化合物とを、前記所定の混合比率で添加して混合することにより得られた前記複数種類の固体燃料と前記金属系化合物または金属含有化合物との混合物を燃料として前記加熱炉に供給するステップと、を備えることを特徴とする加熱炉の灰付着抑制方法。
  3.  前記金属系化合物または金属含有化合物の金属元素の主成分は、マグネシウムまたはアルミニウムであることを特徴とする請求項1または2に記載の加熱炉の灰付着抑制方法。
  4.  前記スラグ割合は、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料の前記灰成分の組成に基づいて熱力学平衡計算により算出されるか、または、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料について予め測定された所定の雰囲気温度及び雰囲気ガス組成で加熱して生じるスラグから算出されることを特徴とする請求項1または2に記載の加熱炉の灰付着抑制方法。
  5.  前記基準値は、前記スラグ割合に対する灰付着率が低くなるように、前記灰付着率に基づいて決定され、
     前記灰付着率は、予め調査された前記加熱炉内に挿入された灰付着プローブへの衝突灰量に対する実際の付着灰量の比として算出され、
     前記衝突灰量は、前記固体燃料の供給量、灰分含有率、及び前記加熱炉の炉形状から求められる前記灰付着プローブの投影面積に衝突する灰の総量として算出されることを特徴とする請求項1または2に記載の加熱炉の灰付着抑制方法。
  6.  前記灰付着率が5~7重量%以下となるように、前記基準値が50~60重量%以下に決定されることを特徴とする請求項5に記載の加熱炉の灰付着抑制方法。
  7.  前記所定の雰囲気温度及び雰囲気ガス組成は、バーナ近傍の雰囲気温度及び雰囲気ガス組成であることを特徴とする請求項1または2に記載の加熱炉の灰付着抑制方法。
  8.  前記所定の雰囲気温度及び雰囲気ガス組成は、前記加熱炉の設計上の最高雰囲気温度及びその部位の雰囲気ガス組成、または、前記加熱炉の設計上の還元度が最も高い雰囲気ガス組成とその部位の温度であることを特徴とする請求項1または2に記載の加熱炉の灰付着抑制方法。
  9.  前記金属系化合物または金属含有化合物の平均粒子径が、前記固体燃料中の灰の平均粒子径よりも小さいことを特徴とする請求項1または2に記載の加熱炉の灰付着抑制方法。
  10.  前記金属系化合物または金属含有化合物の平均粒子径が、5μm以下であることを特徴とする請求項2に記載の加熱炉の灰付着抑制方法。
  11.  複数種類の固体燃料のそれぞれの灰成分の組成と、前記複数種類の固体燃料に添加剤として添加して混合する金属系化合物または金属含有化合物の無機成分の組成と、が予め測定されて入力されて、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料の灰成分の組成と、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料について予め算出された一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、加熱炉における前記スラグ割合が基準値以下になる灰成分の組成が得られる所定の混合比率を決定する演算部と、
     前記演算部で決定された前記所定の混合比率に基づいて、前記複数種類の固体燃料と前記金属系化合物または金属含有化合物との供給量を調整する燃料供給量調整部と、を備えることを特徴とする加熱炉の灰付着抑制装置。
  12.  複数種類の固体燃料のそれぞれの灰成分の組成と、前記複数種類の固体燃料に添加剤として添加して混合する金属系化合物または金属含有化合物の無機成分の組成と、が予め測定されて入力されて、複数通りの平均粒子径の前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料の灰成分の組成と、複数通りの平均粒子径の前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料について予め算出された一定量の灰成分のうち所定の雰囲気温度及び雰囲気ガス組成においてスラグになる割合を示すスラグ割合と、に基づいて、加熱炉における前記スラグ割合が基準値以下になる灰成分の組成が得られる所定の混合比率及び所定の平均粒子径を決定する演算部と、
     前記演算部で決定された前記所定の混合比率及び所定の平均粒子径に基づいて、前記複数種類の固体燃料と前記金属系化合物または金属含有化合物との供給量を調整する燃料供給量調整部と、を備えることを特徴とする加熱炉の灰付着抑制装置。
  13.  前記金属系化合物または金属含有化合物の金属元素の主成分が、マグネシウムまたはアルミニウムであることを特徴とする請求項11または12に記載の加熱炉の灰付着抑制装置。
  14.  前記スラグ割合は、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料の前記灰成分の組成に基づいて熱力学平衡計算により算出されるか、または、前記金属系化合物または金属含有化合物を複数通りの混合比率で添加して混合した前記複数種類の固体燃料について予め測定された所定の雰囲気温度及び雰囲気ガス組成で加熱して生じるスラグから算出されることを特徴とする請求項11または12に記載の加熱炉の灰付着抑制装置。
  15.  前記基準値は、前記スラグ割合に対する灰付着率に基づいて、前記灰付着率が低くなるように決定され、
     前記灰付着率は、予め調査された前記加熱炉内に挿入された灰付着プローブへの衝突灰量に対する実際の付着灰量の比として算出され、
     前記衝突灰量は、前記固体燃料の供給量、灰分含有率及び前記加熱炉の炉形状から求められる前記灰付着プローブの投影面積に衝突する灰の総量として算出されることを特徴とする請求項11または12に記載の加熱炉の灰付着抑制装置。
  16.  前記灰付着率が5~7重量%以下となるように、前記基準値が50~60重量%以下に決定されることを特徴とする請求項15に記載の加熱炉の灰付着抑制装置。
  17.  前記所定の雰囲気温度及び雰囲気ガス組成は、バーナ近傍の雰囲気温度及び雰囲気ガス組成であることを特徴とする請求項11または12に記載の加熱炉の灰付着抑制装置。
  18.  前記加熱炉の燃焼室の温度及び雰囲気ガス組成を測定する計測部を更に備え、
     前記所定の雰囲気温度及び雰囲気ガス組成が、前記計測部で測定された前記加熱炉の燃焼室の温度及び雰囲気ガス組成であることを特徴とする請求項11または12に記載の加熱炉の灰付着抑制装置。
  19.  前記所定の雰囲気温度及び雰囲気ガス組成は、前記加熱炉の設計上の最高雰囲気温度及びその部位の雰囲気ガス組成、または、前記加熱炉の設計上の還元度が最も高い雰囲気ガス組成とその部位の温度であることを特徴とする請求項11または12に記載の加熱炉の灰付着抑制装置。
  20.  前記金属系化合物または金属含有化合物の平均粒子径が、前記固体燃料中の灰の平均粒子径よりも小さいことを特徴とする請求項11または12に記載の加熱炉の灰付着抑制装置。
  21.  前記金属系化合物または金属含有化合物の平均粒子径が、5μm以下であることを特徴とする請求項12に記載の加熱炉の灰付着抑制方法。
PCT/JP2011/065992 2010-07-14 2011-07-13 加熱炉の灰付着抑制方法及び灰付着抑制装置 WO2012008495A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020137000852A KR101512250B1 (ko) 2010-07-14 2011-07-13 가열로의 회 부착 억제 방법 및 회 부착 억제 장치
CN201180034357.6A CN102985756B (zh) 2010-07-14 2011-07-13 加热炉的灰附着抑制方法及灰附着抑制装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-159348 2010-07-14
JP2010159348 2010-07-14
JP2011-138106 2011-06-22
JP2011138106A JP5713813B2 (ja) 2010-07-14 2011-06-22 加熱炉の灰付着抑制方法及び灰付着抑制装置

Publications (1)

Publication Number Publication Date
WO2012008495A1 true WO2012008495A1 (ja) 2012-01-19

Family

ID=45469492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065992 WO2012008495A1 (ja) 2010-07-14 2011-07-13 加熱炉の灰付着抑制方法及び灰付着抑制装置

Country Status (4)

Country Link
JP (1) JP5713813B2 (ja)
KR (1) KR101512250B1 (ja)
CN (1) CN102985756B (ja)
WO (1) WO2012008495A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6175028B2 (ja) * 2014-06-20 2017-08-02 株式会社神戸製鋼所 ボイラの灰付着抑制方法、およびボイラの灰付着抑制装置
CN104178222B (zh) * 2014-08-12 2016-05-25 新奥科技发展有限公司 一种催化气化工艺的配煤方法
JP6568420B2 (ja) * 2015-07-13 2019-08-28 株式会社神戸製鋼所 ボイラの運転方法及びボイラ設備
KR101885759B1 (ko) * 2016-11-01 2018-08-06 한국생산기술연구원 보일러 튜브의 회분점착저감 및 부식저감 방법
JP6330077B1 (ja) * 2017-03-31 2018-05-23 中電環境テクノス株式会社 クリンカの発生量予測プログラム、及びクリンカの発生量予測装置
KR102067484B1 (ko) * 2018-06-29 2020-01-17 한국생산기술연구원 고체 연료 사용시 발생하는 회 점착을 저감하기 위한 첨가제 선정 방법
JP7227042B2 (ja) * 2019-03-18 2023-02-21 株式会社Ihi検査計測 評価方法及び評価装置
TW202104799A (zh) * 2019-04-17 2021-02-01 日商Ihi股份有限公司 鍋爐及結垢抑制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348392A (ja) * 1986-08-15 1988-03-01 Toa Netsuken Kk 石炭の排ガスダストのクリンカ−アツシユ抑制方法
JPH0972503A (ja) * 1995-09-06 1997-03-18 Ishikawajima Harima Heavy Ind Co Ltd 微粉炭燃焼方法及び装置
JPH09250708A (ja) * 1996-03-14 1997-09-22 Babcock Hitachi Kk 微粉炭焚ボイラの運転方法
JPH1182990A (ja) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd 石炭焚きボイラの灰付着抑制方法
JP2003261890A (ja) * 2002-03-12 2003-09-19 Taiho Ind Co Ltd スラッギング防止用燃料添加剤及び燃料の燃焼方法
JP2004018704A (ja) * 2002-06-18 2004-01-22 Taiho Ind Co Ltd スラッギング防止用燃料添加剤及び燃料の燃焼方法
JP2004361368A (ja) * 2003-06-09 2004-12-24 Ishikawajima Harima Heavy Ind Co Ltd 石炭灰の付着予測評価方法及び石炭灰の付着防止方法
JP2009523998A (ja) * 2006-01-18 2009-06-25 シー. コンリー,ダグラス 燃焼中の炉への吸着剤送出装置
JP2009275999A (ja) * 2008-05-15 2009-11-26 Chugoku Electric Power Co Inc:The 有害微量元素溶出抑制剤及び有害微量元素溶出抑制方法
WO2010067689A1 (ja) * 2008-12-09 2010-06-17 株式会社タイホーコーザイ 石炭の粉砕助剤及びその使用方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348392A (ja) * 1986-08-15 1988-03-01 Toa Netsuken Kk 石炭の排ガスダストのクリンカ−アツシユ抑制方法
JPH0972503A (ja) * 1995-09-06 1997-03-18 Ishikawajima Harima Heavy Ind Co Ltd 微粉炭燃焼方法及び装置
JPH09250708A (ja) * 1996-03-14 1997-09-22 Babcock Hitachi Kk 微粉炭焚ボイラの運転方法
JPH1182990A (ja) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd 石炭焚きボイラの灰付着抑制方法
JP2003261890A (ja) * 2002-03-12 2003-09-19 Taiho Ind Co Ltd スラッギング防止用燃料添加剤及び燃料の燃焼方法
JP2004018704A (ja) * 2002-06-18 2004-01-22 Taiho Ind Co Ltd スラッギング防止用燃料添加剤及び燃料の燃焼方法
JP2004361368A (ja) * 2003-06-09 2004-12-24 Ishikawajima Harima Heavy Ind Co Ltd 石炭灰の付着予測評価方法及び石炭灰の付着防止方法
JP2009523998A (ja) * 2006-01-18 2009-06-25 シー. コンリー,ダグラス 燃焼中の炉への吸着剤送出装置
JP2009275999A (ja) * 2008-05-15 2009-11-26 Chugoku Electric Power Co Inc:The 有害微量元素溶出抑制剤及び有害微量元素溶出抑制方法
WO2010067689A1 (ja) * 2008-12-09 2010-06-17 株式会社タイホーコーザイ 石炭の粉砕助剤及びその使用方法

Also Published As

Publication number Publication date
KR20130044294A (ko) 2013-05-02
KR101512250B1 (ko) 2015-04-14
JP2012037221A (ja) 2012-02-23
CN102985756A (zh) 2013-03-20
JP5713813B2 (ja) 2015-05-07
CN102985756B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
WO2012008495A1 (ja) 加熱炉の灰付着抑制方法及び灰付着抑制装置
JP5342355B2 (ja) ボイラの灰付着抑制方法及び灰付着抑制装置
WO2011043351A1 (ja) ボイラの灰付着抑制方法及び灰付着抑制装置
JP5374453B2 (ja) ボイラの灰付着抑制方法及び灰付着抑制装置
Díaz-Ramírez et al. Influencing factors on NOX emission level during grate conversion of three pelletized energy crops
TWI516604B (zh) 高爐操作方法
Seepana et al. Evaluation of feasibility of pelletized wood co-firing with high ash Indian coals
CN101311625A (zh) 具有成渣燃烧器、用于工业熔化的固体燃料燃烧
US6484651B1 (en) Method for operating a slag tap combustion apparatus
JP6175028B2 (ja) ボイラの灰付着抑制方法、およびボイラの灰付着抑制装置
JP5619674B2 (ja) 加熱炉の灰付着抑制方法及び灰付着抑制装置
US20070295250A1 (en) Oxygen-enhanced combustion of unburned carbon in ash
JP2006084062A (ja) 石炭焚き火炉の運用方法と装置
JP6568420B2 (ja) ボイラの運転方法及びボイラ設備
JPS6131761B2 (ja)
WO2020213587A1 (ja) ボイラ及びファウリング抑制方法
Takehara et al. Investigation of oxygen-enriched biomass flames in a lab-scale entrained flow reactor
Barkley The forced-draft spreader stoker
Kazagic et al. Laboratory research on co-firing wooden biomass with Bosnian brown coal and lignite for large utility
Boström et al. Abatement of corrosion and deposits formation in combustion of oat
Kumar et al. EFFECT OF COAL WASHING ON FIRESIDE DEPOSITION AND HEAT TRANSFER PERFORMANCE IN PF FIRED FURNACES
JPS6391414A (ja) 石炭燃焼装置およびその使用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180034357.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137000852

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11806825

Country of ref document: EP

Kind code of ref document: A1