WO2010067689A1 - 石炭の粉砕助剤及びその使用方法 - Google Patents

石炭の粉砕助剤及びその使用方法 Download PDF

Info

Publication number
WO2010067689A1
WO2010067689A1 PCT/JP2009/069333 JP2009069333W WO2010067689A1 WO 2010067689 A1 WO2010067689 A1 WO 2010067689A1 JP 2009069333 W JP2009069333 W JP 2009069333W WO 2010067689 A1 WO2010067689 A1 WO 2010067689A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
pulverization
silica
pulverized
particle size
Prior art date
Application number
PCT/JP2009/069333
Other languages
English (en)
French (fr)
Inventor
信夫 田中
琢矢 宮崎
Original Assignee
株式会社タイホーコーザイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タイホーコーザイ filed Critical 株式会社タイホーコーザイ
Priority to CN2009800004584A priority Critical patent/CN101918142A/zh
Publication of WO2010067689A1 publication Critical patent/WO2010067689A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/06Selection or use of additives to aid disintegrating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/366Powders
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/10Treating solid fuels to improve their combustion by using additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1291Silicon and boron containing compounds

Definitions

  • the present invention relates to a technology for pulverizing coal supplied to a pulverized coal combustion boiler, and improves coal pulverization, improves the fineness of coal powder supplied to the boiler, and improves the combustion efficiency of the boiler.
  • the present invention relates to coal pulverization aids that can be used and methods of using such pulverization aids.
  • Coal is now the main fuel for thermal power generation because of its large reserves and stable supply.
  • pulverized coal fired boilers In this pulverized coal combustion boiler, lump coal is pulverized into fine powder and burned by injecting it into a high-temperature boiler, which has good load compatibility, high combustion efficiency, and a wide range of coal types. It has become mainstream.
  • the above-mentioned pulverized coal combustion boiler is usually provided with a pulverized coal machine for pulverizing coal having a diameter of several centimeters into fine powder, and the coal pulverized by this pulverized coal machine has 200 mesh (aperture 75 ⁇ m).
  • the content rate of the fine powder to pass will be about 80%.
  • pulverized coal combustion boilers it is known that the particle size of pulverized coal has a large effect on the combustion state, and generally, the smaller the particle size, the faster the burning out, and the lower the amount of NOx generated and the unburned content.
  • none of the conventional pulverization aids described above necessarily have sufficient pulverization efficiency, and the coal is further pulverized to further increase the combustion efficiency of the pulverized coal combustion boiler. In order to further reduce the amount, it has been desired to develop an auxiliary agent that can further improve the grinding efficiency.
  • the present invention has been made in view of the above-mentioned problems in conventional coal pulverization technology, and the object of the present invention is to greatly improve the coal pulverization efficiency as compared with the prior art, and pulverized coal combustion.
  • An object of the present invention is to provide a coal grinding aid that can contribute to further improvement in the combustion efficiency of a boiler, and a method of using such a grinding aid.
  • silica having an average particle diameter of 4 nm to 20 ⁇ m has an effect of improving coal pulverization efficiency, and further, finely divided silica is uniformly applied to coal.
  • a water dispersion is excellent.
  • the present inventors have found an excellent effect of improving coal pulverization efficiency over colloidal silica containing silica (SiO 2 ) particles having an average particle diameter of 4 to 200 nm, and completed the present invention. .
  • the present invention is based on the above knowledge, and the coal pulverization aid of the present invention is a pulverization aid used for pulverization of coal having a particle size of 100 mm or less, and is a powder having an average particle size of 4 nm to 20 ⁇ m. It is characterized by being silica. Further, it is a grinding aid used for the same coal, and is characterized by being an aqueous dispersion containing silica having an average particle diameter of 4 to 200 nm, preferably colloidal silica containing 1 to 50% of the silica. Furthermore, in the method of using the grinding aid of the present invention, when the grinding aid is added to coal, the weight ratio of the assistant to coal is 0.1 to 2.0% in terms of SiO 2. It is characterized by adding so that.
  • the coal grinding aid of the present invention contains very fine silica, such as colloidal silica, the coal grinding efficiency can be improved by adding and mixing this to the coal, The combustion efficiency of a pulverized coal combustion boiler using such finely pulverized coal can be improved.
  • 6 is a graph showing the particle size distribution of coal pulverized by a vibration mill using the pulverization aids 1 to 5 according to the present invention when no auxiliaries are used and when coarse silica sand is used.
  • 6 is a graph showing the particle size distribution of coal pulverized by a pulverizer using pulverization aids 1 to 5 according to the present invention when no auxiliaries are used and when coarse silica sand is used.
  • 4 is a graph showing the particle size distribution of coal pulverized by a pulverizer using the pulverization aids 4 and 6 to 8 according to the present invention when no auxiliaries are used and when coarse silica sand is used.
  • pulverized coal combustion boilers pulverize lump coal into fine powders and inject them into a high-temperature boiler for combustion. It has become. Bunkers are transported and stored as small pebbles from silos or yards. The coal is sent from the bunker to a coal feeder and weighed, and a certain amount of pulverized coal (mill) is attached to the boiler. ).
  • coal is supplied onto a rotating table and is pulverized by being caught between pulverizing rollers.
  • the pulverized coal is pumped by primary air to a pulverized coal burner.
  • Combustion is pulverized coal combustion, in which fine powder is injected into a high-temperature field, and particles are combusted by ambient radiant heat.
  • the reaction with air (O 2 ) becomes active and combustion efficiency is improved.
  • the boiler outlet O 2 by improving the combustion efficiency is reduced and the combustion promoting effect is also reduced unburned fly ash is obtained.
  • the improvement of the fineness speeds up char burning out, which reduces the reducing atmosphere of the furnace and suppresses the apparent decrease in the clinker (coal ash) melting point that occurs in the reducing atmosphere.
  • Such a change in the atmosphere of the combustion field has an effect similar to load fluctuation and change of coal type (cleaning coal) on the clinker adhering to the furnace wall, and brings about a physical clinker peeling action.
  • the amount of SiO 2 in the coal is increased by using the grinding aid of the present invention.
  • the silica percent of the coal increases and the B / A ratio (basicity), which is an index of slagging, decreases, so that the coal ash is reformed to a low clinker property.
  • B Base alkaline component (Fe 2 O 3 + CaO + MgO + Na 2 O + K 2 O)
  • silica having an average particle diameter of 4 nm to 20 ⁇ m is used as a grinding aid when grinding massive coal into fine powder.
  • Coal pulverized using such a pulverization aid has improved fineness, and in a boiler that burns such pulverized coal, the effects of improving combustion efficiency and reducing unburned content as described above can be obtained. In addition, an effect of clinker peeling action can be obtained.
  • the silica fine particles adhere to the surface of the massive coal, thereby forming slight irregularities and exhibiting an anti-slip effect. Since coal contains oil, the resistance at the time of pulverization becomes small and it is difficult to pulverize, but the resistance is generated by silica and is easily pulverized. As the coal is further pulverized into fine powder, the resistance value and vibration of the pulverized coal machine are reduced.
  • the method for adding the silica particles is not particularly limited.
  • the coal before being pulverized in the particle state alone or mixed with other particles for example, coal powder or a conventionally known auxiliary agent.
  • other particles for example, coal powder or a conventionally known auxiliary agent.
  • it can spray on coal beforehand in the state disperse
  • the size of the silica particles used in the grinding aid of the present invention is in the range of 4 nm to 20 ⁇ m. That is, particles having an average particle size of less than 4 nm are difficult to obtain, while if it exceeds 20 ⁇ m, the particles are too coarse and resistance to crushing may increase.
  • the size (particle size) of the silica particles means an effective diameter measured by a laser diffraction scattering method.
  • finely colloidal silica can be used as silica (SiO 2 ) particles, and colloidal silica containing 1 to 50% by mass of silica having an average particle diameter of 4 to 200 nm as it is is used as it is. It can be used as a grinding aid. Since colloidal silica is fine particles, it tends to settle on coal after drying. Moreover, if the concentration is high, the number of particles increases and the anti-slip effect is excellent.
  • the silica particle contained in colloidal silica is very fine, although the upper limit of the average particle diameter was 200 nm, since the number of particles increases, the finer one is desirable.
  • the silica particle concentration of the colloidal silica is low, it is necessary to increase the amount of colloidal silica added to give the target amount of silica, and the amount of water transferred into the coal increases, and the time required for drying. Since energy is wasted, it should be 1% or more.
  • 50% of the upper limit value is close to the limit value for producing colloidal silica.
  • one or both of Na and K is contained in a total amount of Na 2 O and K 2 O in a mass ratio of 0.01 to 1%.
  • These alkali metals contribute to stable dispersion of the silica particles in the high-concentration colloidal silica, and are also expected to have an effect of improving the clinker suppressing action of the silica particles by being burned in the furnace together with the silica particles.
  • the content in the auxiliary agent is less than 0.01%, the effect of addition is not sufficiently observed. Conversely, when the content exceeds 1%, it may cause the clinker adhesion amount to increase. .
  • colloidal silica contains about 0.3% of Na as an impurity in production, which contributes to the improvement of the dispersibility of silica particles. In order to further secure this effect.
  • Na and K can be added within a range not exceeding the upper limit.
  • alkali metals there is almost no influence of alkali metals on the anti-slip action by the colloidal silica, that is, the action of improving the grindability of coal, and even if colloidal silica containing no Na is used, it has the same performance as a grinding aid. It is thought that it shows.
  • Li can be added in a range of 0.01 to 1%. It should be noted that Li can obtain a stabilizing effect in a slightly smaller amount than Na.
  • These alkali metals, Li, Na, and Ka can be added in the form of carbonate, hydroxide, or silicate.
  • the aid of the present invention When using the grinding aid of the present invention, it is desirable to add the aid so that it is 0.1 to 2.0% of the coal in terms of SiO 2 contained therein. That is, when the addition rate of SiO 2 to coal is less than 0.1%, the effect of improving the pulverization efficiency by adding the pulverization aid is hardly exhibited, and conversely even if added exceeding 2.0%, This is because the effect is saturated and no further efficiency improvement effect can be obtained.
  • Fig. 1 shows the results of an investigation of the characteristics of the coal used and the clinker adhesion in the boiler by visual observation by an experienced worker in a pulverized coal combustion boiler with an evaporation amount of 600 tons / h and a coal consumption of 60 tons / h. It is illustrated.
  • silica percent of abscissa is the percentage of the content of SiO 2 with respect to SiO 2, Fe 2 O 3, CaO and the total content of MgO in the coal ash.
  • the addition amount of the grinding aid of the present invention is increased, and the SiO 2 equivalent is 0.00. It is effective to add 4 to 2.0%. This improves pulverization efficiency, and can prevent or reduce clinker adhesion even in poor coal with strong slagging properties. It was found.
  • Example 1 grinding aid 1
  • silica powder having an average particle size of 10 ⁇ m was mixed with Australian charcoal sieved to a size of 1 to 4 mm, and then pulverized by a vibration mill and a crusher. After pulverization, a sample that became pulverized coal was taken out, and the particle size distribution was measured by sieving. The results are shown in Table 1 and FIG. 2 for the vibration mill and in Table 2 and FIG. 3 for the crusher, respectively. The time required for grinding by the vibration mill and the grinder was 1 minute and 10 minutes, respectively.
  • Example 2 grinding aid 2
  • Example 2 After mixing the aqueous dispersion containing silica having an average particle diameter of 10 ⁇ m to the Australian coal screened as described above so as to be 2.0% in terms of SiO 2 , similarly using a vibration mill and a crusher.
  • the particle size distribution of the pulverized coal obtained after pulverization was measured by the same method. The results are shown in Tables 1 and 2 and FIGS.
  • Example 3 grinding aid 3
  • the Australian coal screened as described above contains 40% silica with an average particle diameter of 18 nm, and colloidal silica containing 0.3% sodium as Na 2 O is 0.4% in terms of SiO 2. Sprayed and dried at 105 ° C. This was similarly pulverized using a vibration mill and a crusher, and the particle size distribution of the obtained pulverized coal was measured by the same method. The results are shown in Tables 1 and 2 and FIGS.
  • Example 4 grinding aid 4
  • Li containing colloidal silica adjusted in this way was sprayed evenly on the above Australian coal so that it might become 0.4% in terms of SiO 2 and dried at 105 ° C. This was ground in the same manner using a vibration mill and a crusher, and the particle size distribution of the obtained pulverized coal was measured in the same manner. The results are shown in Tables 1 and 2 and FIGS.
  • Example 5 grinding aid 5
  • the colloidal silica containing 40% of silica having an average particle diameter of 18 nm and 0.3% of sodium as Na 2 O is added so that potassium becomes 0.5% as K 2 O, and pulverized for use in the examples.
  • An auxiliary was used.
  • the Ka containing colloidal silica adjusted in this way was sprayed evenly to the above-mentioned Australian coal so that it might become 0.4% in terms of SiO 2 , and similarly dried at 105 ° C. This was similarly pulverized by a vibration mill and a crusher, and the particle size distribution of the obtained pulverized coal was measured by the same method. The results are shown in Tables 1 and 2 and FIGS.
  • the Example of this invention using silica powder, the aqueous dispersion of silica, and colloidal silica In 1 to 5 fine powder of 75 ⁇ m or less exceeded 70%, and fine powder of 150 ⁇ m or less accounted for about 90%.
  • silica was better in the aqueous dispersion and colloidal silica than the powder.
  • the occupancy ratios were about 50% and 60%, respectively.
  • Example 6 Grinding aid 6
  • Example 6 Grinding aid 6
  • Example 6 Grinding aid 6
  • Example 6 Grinding aid 6
  • Example 6 Grinding aid 6
  • Example 6 Grinding aid 6
  • Example 6 Grinding aid 6
  • the Li-containing colloidal silica was sprayed evenly onto Australian coal that had been screened to a size of 1 to 4 mm so as to obtain 0.4% in terms of SiO 2 and dried at 105 ° C.
  • This was similarly pulverized using a crusher, and the particle size distribution of the obtained pulverized coal was measured in the same manner.
  • Table 3 Table 3
  • FIG. the data of Example 3 (grinding aid 3: silica particle size 18 nm) and Comparative Examples 1 and 2 are also shown for comparison.
  • Example 7 grinding aid 7
  • the particle size distribution of pulverized coal obtained by repeating the same operation as in Example 6 was measured in the same manner except that colloidal silica containing 40% of silica having an average particle size of 50 nm was used. The results are also shown in Table 3 and FIG.
  • Example 8 Grinding aid 8
  • the particle size distribution of pulverized coal obtained by repeating the same operation as in Example 6 was measured in the same manner except that colloidal silica containing 40% of silica having an average particle size of 100 nm was used. The results are also shown in Table 3 and FIG.
  • Example 9 The pulverizing coal of the present invention is added to the pulverized coal machine of the pulverized coal combustion boiler that is operating without using the pulverizing aid together with the coal. From the measured data of the current value and vibration width of the pulverized coal machine during the charging time, The effect of grinding aid on the charcoal machine was investigated. That is, to the pulverized coal machine of the pulverized coal combustion boiler with the evaporation amount of 70 ton / h and the coal use amount of 6.5 ton / h, the same colloidal silica as in Example 3 (grinding aid 3: silica average particle size 18 nm, silica 40% content and 0.3% Na 2 O equivalent content) were added together with the coal. The input amount of colloidal silica at this time was set to 0.4% in terms of the SiO 2 conversion mass ratio with respect to coal.
  • the current value of the pulverized coal machine is reduced from 21A before being charged to 20.5A, and the vibration width of the pulverized coal machine is also reduced from 29 ⁇ m to 25 ⁇ m. It was confirmed that the load during the operation of the pulverized coal machine was reduced by the addition of the grinding aid. Regarding the fineness of the coal powder after being pulverized by the pulverized coal machine, the proportion of fine powder passing through the opening of 45 ⁇ m is increased from 42% before introduction to 60% during the introduction time of the grinding aid. Was confirmed.
  • Example 10 The pulverizing coal of the present invention is charged together with the coal into the pulverized coal machine of the operating pulverized coal combustion boiler without using the pulverizing aid, the outlet oxygen concentration of the boiler before and after the charging is measured, and the pulverization given to the combustion status of the boiler
  • auxiliaries were investigated. That is, the same pulverized coal machine of a pulverized coal combustion boiler with an evaporation amount of 600 ton / h and a coal use amount of 60 ton / h is used as a pulverization aid with the same colloidal silica (pulverization aid 3) as in Example 3 together with coal.
  • the SiO 2 ratio was added.
  • the oxygen concentration at the boiler outlet decreased from 3.0% to 1.2% with the introduction of the grinding aid.
  • the system was controlled so that the outlet oxygen concentration was 3.0%, and thus increased to 3.0% over time.
  • the outlet oxygen concentration was increased.
  • the concentration rose to around 4.0%.
  • the proportion of fine powder passing through the opening of 45 ⁇ m increased from 55% before the addition to 68% by the addition of the pulverization aid, and the fineness was increased by the pulverization aid of the present invention. As a result, it is considered that pulverized coal combustion was promoted and oxygen was consumed much.
  • Example 11 The total content of CaO and Fe 2 O 3 using the above-mentioned grinding aids 3 and 4 by a pulverized coal machine attached to a pulverized coal combustion boiler with an evaporation amount of 600 ton / h and a coal consumption of 60 ton / h, respectively.
  • Table 4 shows the results of the fineness of the pulverized coal powder as the ratio of fine powder that passed through a 45 ⁇ m opening.
  • the addition amount of colloidal silica at this time is 1% with respect to coal, respectively, and becomes 0.4% in SiO 2 conversion mass ratio.
  • the grinding aid obtained by adding Li to colloidal silica has a clinker-inhibiting action similar to that of colloidal silica alone, and further, an action that promotes the clinker peeling effect was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

 石炭の粉砕効率を大幅に向上させ、微粉炭燃焼ボイラーの燃焼効率を改善するため、平均粒径が4nm~20μmの微細なシリカ(SiO)を含有する粉砕助剤、望ましくは、平均粒径が4~200nmのシリカを質量比で1~50%含有するコロイダルシリカ、さらにはこれにLi化合物などを添加したコロイダルシリカを粉砕助剤として使用し、石炭の粉砕に際して、SiO換算で0.1~2.0%の質量比となるように添加して粉砕する。

Description

石炭の粉砕助剤及びその使用方法
 本発明は、微粉炭燃焼ボイラーに供給される石炭の微粉砕技術に係り、石炭の粉砕性を高め、ボイラーに供給される石炭粉の微粉度を向上させ、もってボイラーの燃焼効率を改善することができる石炭の粉砕助剤と、このような粉砕助剤の使用方法に関するものである。
 石炭は、埋蔵量が多く安定した供給が見込めることから、今や火力発電の主軸燃料となっている。
 現在、石炭火力発電設備のほとんどは微粉炭燃焼ボイラーとなっている。この微粉炭燃焼ボイラーでは、塊状の石炭を微粉に粉砕して高温のボイラー内に噴射することによって燃焼させており、負荷対応性がよく燃焼効率が高く、幅広い石炭種に対応できることから石炭ボイラーの主流となっている。
 しかし、石炭は、灰分が多く、硫黄分などを含んでいるため、NOx抑制対策や排煙処理などの環境対策が必要となってくる。このような環境対策は、石炭の取扱性や粉砕性の面から改善していかなければならない。
 上記した微粉炭燃焼ボイラーは、通常、直径数センチの石炭を微粉末に粉砕するための微粉炭機を備えており、この微粉炭機により粉砕された石炭は、200メッシュ(目開き75μm)を通過する微粉末の含有率が80%程度のものとなる。
 微粉炭燃焼ボイラーでは、微粉炭の粒子径が燃焼状態に大きな影響を与え、一般に、粒子径が小さいほど燃えきりが速くなり、NOx発生量や未燃分が減少することが知られている。
 そこで従来、石炭の粉砕効率を向上させ、微粉末の割合を増すための粉砕助剤として、カーボンブラック、あるいはパルミチン酸やステアリン酸などの高級脂肪酸やこれらの金属塩を粉砕に際して石炭に添加・混合することが提案されている(特許文献1、2参照)。
特開平1-127057号公報 特開平1-127058号公報
 しかしながら、上記した従来の粉砕助剤では、いずれもその粉砕効率が必ずしも十分なものとは言えず、石炭をさらに微粉化し、微粉炭燃焼ボイラーの燃焼効率をさらに高め、NOx発生量や未燃分をさらに減少させるためには、粉砕効率をより一層向上させることのできる助剤の開発が望まれていた。
 本発明は、従来の石炭微粉砕技術における上記課題に鑑みてなされたものであって、その目的とするところは、石炭の粉砕効率を従来に増して大幅に向上させることができ、微粉炭燃焼ボイラーの燃焼効率のさらなる改善に寄与することができる石炭の粉砕助剤と、このような粉砕助剤の使用方法を提供することにある。
 本発明者らは、上記目的の達成に向けて鋭意検討を重ねた結果、平均粒径が4nm~20μmのシリカに石炭の粉砕効率向上効果があることを見出し、さらに石炭に均一に微粒子シリカを添加し有効な効果を得るためには、水の分散液が優れていることを見出した。そしてこのシリカの水分散液の中でも、特に平均粒径が4~200nmのシリカ(SiO)粒子を含むコロイダルシリカに優れた石炭の粉砕効率向上効果を見出し、本発明を完成するに到った。
 すなわち、本発明は上記知見に基づくものであって、本発明の石炭粉砕助剤は、粒径が100mm以下の石炭の粉砕に用いる粉砕助剤であり、平均粒径が4nm~20μmの粉体のシリカであることを特徴とする。また、同様の石炭に用いる粉砕助剤であって、平均粒径が4~200nmのシリカを含有する水分散液、好ましくは当該シリカを1~50%含むコロイダルシリカであることを特徴とする。
 さらに、本発明の粉砕助剤の使用方法においては、上記粉砕助剤を石炭に添加するに際して、当該助剤を石炭に対して、SiO換算で0.1~2.0%の質量比となるように添加することを特徴としている。
 本発明の石炭の粉砕助剤は、例えばコロイダルシリカのように、極めて微粉のシリカを含有するものであるから、これを石炭に添加・混合することによって石炭の粉砕効率を向上させることができ、このような微粉砕石炭を用いた微粉炭燃焼ボイラーの燃焼効率を改善することができる。
ボイラー内のクリンカ付着量に及ぼすFe+CaO含有量の影響を示すグラフである。 本発明による粉砕助剤1~5を用いて振動ミルにより粉砕した石炭の粒度分布を助剤を使用しない場合、粗粒珪砂を使用した場合と比較して示すグラフである。 本発明による粉砕助剤1~5を用いて擂潰機により粉砕した石炭の粒度分布を助剤を使用しない場合、粗粒珪砂を使用した場合と比較して示すグラフである。 本発明による粉砕助剤4、6~8を用いて擂潰機により粉砕した石炭の粒度分布を助剤を使用しない場合、粗粒珪砂を使用した場合と比較して示すグラフである。
 以下に、本発明の石炭の粉砕助剤と、当該粉砕助剤の使用方法について、さらに詳細、かつ具体的に説明する。
 なお、本明細書において「%」は、特記しない限り、質量百分率を意味するものとする。
 上記したように、微粉炭燃焼ボイラーは、塊状の石炭を微粉に粉砕して、高温のボイラー内に噴射し燃焼しており、負荷対応性がよく燃焼効率が高いことから現在の石炭ボイラーの主流となっている。
 バンカにはサイロ又はヤードから小石程度の大きさの石炭が運ばれて貯蓄されており、この石炭は、バンカから給炭機に送られて計量され、一定量をボイラー付属の微粉炭機(ミル)に送っている。
 微粉炭機として一般的な竪型ミルでは、回転するテーブル上に石炭が供給され、粉砕ローラとの間に噛みこまれて粉砕される。粉砕された石炭は、微粉炭バーナへ1次空気によって圧送される。燃焼は微粉炭燃焼であり、高温場に微粉末が噴射され、周囲の輻射熱で粒子が燃焼する。
 微粉度が向上した石炭、すなわち微粉末の含有量が増加した石炭の微粉炭燃焼では、空気(O)との反応が活発になり、燃焼効率が向上する。そして、燃焼効率の向上によりボイラー出口Oは減少し、フライアッシュ中の未燃分も減少するという燃焼促進効果が得られる。
 また、微粉度の向上により、チャーの燃え切りが速くなり、これによって火炉の還元性雰囲気が緩和され、還元雰囲気に起こる見かけ上のクリンカ(石炭灰)融点低下が抑制される。
 このような燃焼場の雰囲気の変化は、火炉壁に付着しているクリンカに対し、負荷変動や炭種変更(クリーニングコール)に類似した影響を与え、物理的なクリンカ剥離作用をもたらす。
 これに加えて、本発明の粉砕助剤を使用することによって、石炭中のSiO量が増加する。これによって、石炭のシリカパーセントが上昇し、スラッギングの指標であるB/A比(塩基度)が低下するため、クリンカ性の低い石炭灰に改質される。
 B:Base アルカリ性成分(Fe+CaO+MgO+NaO+KO)
 A:Acid 酸性成分(SiO+Al+TiO
 本発明においては、塊状の石炭を微粉に粉砕するに際して、4nm~20μmの平均粒径を有するシリカを粉砕助剤として使用するようにしている。このような粉砕助剤を用いて粉砕された石炭は微粉度が向上し、このような微粉炭を燃焼するボイラーにおいては、上記したように燃焼効率の向上、未燃分の減少といった効果がもたらされ、さらにはクリンカ剥離作用という効果をも得ることができる。
 本発明において、シリカ微粒子は、塊状石炭の表面に付着することにより、わずかな凹凸となって、防滑作用を発揮する。石炭は、油分を含んでいるため、粉砕時の抵抗が小さくなり、粉砕しにくいが、シリカによって抵抗が生まれて粉砕され易いようになる。
 石炭がより微粉末に粉砕されることによって、微粉炭機の抵抗値や振動が低下する。
 上記シリカ粒子の添加方法としては、特に限定はなく、例えば、粒子状態のまま、単独であるいは他の粒子(例えば石炭粉や、従来公知の助剤など)と混合した状態で、粉砕前の石炭に混合したり、粉砕中に添加したりすることができる。また、水やその他の溶媒中に分散させた状態で、予め石炭に噴霧しておいたり、微粉炭機への搬送路の途中で噴霧したりすることができる。
 本発明の粉砕助剤に用いるシリカ粒子のサイズとしては、4nm~20μmの範囲とする。すなわち、平均粒径が4nmに満たない粒子は、得ることが困難である一方、20μmを超えると、粒子が粗過ぎて、粉砕に対する抵抗が増すことがある。
 なお、本発明において、シリカ粒子のサイズ(粒径)とは、レーザー回折散乱法によって測定した有効径を意味するものとする。
 本発明の粉砕助剤においては、シリカ(SiO)粒子としてさらに微粉のコロイダルシリカを利用することができ、平均粒径が4~200nmのシリカを質量比で1~50%含むコロイダルシリカをそのまま粉砕助剤として使用することが可能である。
 コロイダルシリカは、微粒子であるため、乾燥した後の石炭に定着しやすい。また、濃度が高くなれば、粒子数も多くなり、防滑作用に優れる。
 なお、コロイダルシリカに含まれるシリカ粒子は極めて微細であることから、平均粒径の上限を200nmとしたが、粒子数が多くなるので、細かい方が望ましいことになる。
 また、コロイダルシリカのシリカ粒子濃度については、低いと目的のシリカ量を付与するためのコロイダルシリカとしての添加量を多くする必要が生じ、石炭中に移行する水分が多くなって、乾燥に要する時間やエネルギーが無駄になるため、1%以上とする。一方、上限値の50%は、コロイダルシリカ製造上の限界値に近い。
 本発明の粉砕助剤においては、Na及びKの一方又は両方をNaOとKOの合計量として質量比で0.01~1%含有していることが望ましい。
 これらアルカリ金属は、高濃度のコロイダルシリカにおけるシリカ粒子の安定分散に寄与すると共に、シリカ微粒子とともに炉内に燃焼されることで、シリカ微粒子のクリンカ抑制作用を向上させる効果も期待することができる。しかし、助剤中の含有量が0.01%に満たない場合は、添加の効果が十分に認められず、逆に1%を超えると、却ってクリンカ付着量を増加させる原因となることがある。
 一般に、コロイダルシリカには、0.3%程度のNaが製造上の不純物として含まれており、これがシリカ粒子の分散性の向上に寄与しているが、この効果をさらに確実なものとするために、あるいはクリンカ抑制作用を向上させるために、NaやKを上記上限値を超えない範囲で添加することができる。
 なお、コロイダルシリカによる防滑作用、すなわち石炭の粉砕性向上作用に対するアルカリ金属の影響はほとんどないことが確認されており、仮にNaを含有しないコロイダルシリカを用いたとしても、粉砕助剤として同等の性能を示すものと考えられる。
 また、Liを添加することによっても、上記NaやKと同様の効果を得ることができ、同様に、LiOとして0.01~1%の範囲で添加することができる。なお、LiはNaに較べて、若干少量で安定化効果を得ることができる。
 なお、これらアルカリ金属、Li,Na,Kaは、炭酸塩や水酸化物、ケイ酸塩の形態で添加することができる。
 本発明の粉砕助剤を使用するに際しては、当該助剤をこれに含まれるSiO換算で、石炭に対して0.1~2.0%となるように添加することが望ましい。
 すなわち、石炭に対するSiOの添加率が0.1%に満たない場合には、粉砕助剤添加による粉砕効率向上効果がほとんど発揮されず、逆に2.0%を超えて添加したとしても、効果が飽和し、それ以上の効率向上効果が得られなくなることによる。
 本発明の粉砕助剤を使用することによって、石炭の微粉化が促進されることに加えて、石炭灰中のSiOの増加による付随的効果として、クリンカ剥離作用が得られることについては、先に述べたとおりである。
 図1は、蒸発量600トン/h、石炭使用量60トン/hの微粉炭燃焼ボイラーにおいて、使用された石炭の性状とボイラー内のクリンカ付着状況をベテラン作業員の目視観察によって調査した結果を図示したものである。
 すなわち、横軸に石炭中のSiOパーセント、縦軸にFe及びCaOの合計含有量(ppm)を取って、クリンカ付着量の多い場合を「▲」、少ない場合を「●」としてプロットしたところ、石炭中の(Fe+CaO)が8000から12000ppmの間を境にしてクリンカ付着の大小が分かれ、8000ppm以上の石炭はスラッギング性の強い粗悪な石炭であると評価できることが分かった。
 なお、石炭中のCaO及びFe含有量は、次の式によって求めたものである。
 CaO(ppm)=石炭灰分(%)×灰分中のCaO(%)×100
 Fe(ppm)=石炭灰分(%)×灰分中のFe(%)×100
 また、横軸のシリカパーセントは、石炭灰分中のSiO、Fe、CaO及びMgOの合計含有量に対するSiO含有量の百分率である。
 シリカパーセント:SiO×100÷(SiO+Fe+CaO+MgO)
 このようなクリンカ付着が顕著な石炭、すなわちCaOとFeの合計含有量が8000ppm以上である石炭に対しては、本発明の粉砕助剤の添加量を増し、SiO換算で0.4~2.0%となるように添加することが効果的であって、これにより粉砕効率が向上に加えて、スラッギング性の強い粗悪な石炭においても、クリンカ付着の防止、低減が可能になることが見出された。
 以下、本発明を実施例に基づいて具体的に説明する。なお、本発明がこれらの実施例のみに限定されないことは言うまでもない。
(実施例1:粉砕助剤1)
 1~4mmのサイズにふるい分けした豪州炭に、平均粒径10μmのシリカ粉を2%混合したのち、振動ミル及び擂潰機によってそれぞれ粉砕した。粉砕後、微粉炭となった試料を取り出し、ふるいによって粒度分布を測定した。その結果を振動ミルについては表1及び図2に、擂潰機については表2及び図3にそれぞれ示す。
 なお、振動ミル及び擂潰機による粉砕所要時間はそれぞれ1分間及び10分間とした。
(実施例2:粉砕助剤2)
 上記のようにふるい分けした豪州炭に、平均粒径10μmのシリカを含む水分散液を、SiO換算で2.0%となるように混合したのち、振動ミル及び擂潰機を用いて同様に粉砕し、得られた微粉炭の粒度分布を同様の方法により測定した。その結果を表1及び表2、図2及び図3に併せて示す。
(実施例3:粉砕助剤3)
 上記のようにふるい分けした豪州炭に、平均粒径18nmのシリカを40%含有すると共に、ナトリウムをNaOとして0.3%含むコロイダルシリカをSiO換算で0.4%となるようにまんべんなく噴霧し、105℃で乾燥させた。これを、振動ミル及び擂潰機を用いて同様に粉砕し、得られた微粉炭の粒度分布を同様の方法により測定した。その結果を表1及び表2、図2及び図3に併せて示す。
(実施例4:粉砕助剤4)
 平均粒径18nmのシリカを40%含有し、ナトリウムをNaOとして0.3%含むコロイダルシリカに、リチウムをLiOとして0.3%となるように添加することによって当該実施例に用いる粉砕助剤を得た。
 そして、このように調整したLi含有コロイダルシリカをSiO換算で0.4%となるように上記豪州炭にまんべんなく噴霧し、105℃で乾燥させた。これを、振動ミル及び擂潰機を用いて同様に粉砕し、得られた微粉炭の粒度分布を同様に測定した。その結果を表1及び表2、図2及び図3に併せて示す。
(実施例5:粉砕助剤5)
 平均粒径18nmのシリカを40%含有し、ナトリウムをNaOとして0.3%含むコロイダルシリカに、カリウムをKOとして0.5%となるように添加し、当該実施例に用いる粉砕助剤とした。
 そして、このように調整したKa含有コロイダルシリカをSiO換算で0.4%となるように上記豪州炭にまんべんなく噴霧し、同様に105℃で乾燥させた。これを、振動ミル及び擂潰機により同様に粉砕し、得られた微粉炭の粒度分布を同様の方法によって測定した。その結果を表1及び表2、図2及び図3に併せて示す。
(比較例1)
 1~4mmにふるい分けした上記豪州炭に何も処理することなく、そのまま振動ミル及び擂潰機を用いて同様の方法で粉砕し、粉砕後の微粉炭の粒度分布を同様に測定した。その結果を表1及び表2、図2及び図3に併せて示す。
(比較例2)
 ふるい分けした上記豪州炭に、平均粒径0.1mm程度の7号珪砂を1%混合したのち、振動ミル及び擂潰機によってそれぞれ同様に粉砕し、粉砕後の微粉炭の粒度分布を同様に測定した。その結果を表1及び表2、図2及び図3に併せて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び図2から明らかなように、振動ミルによる粉砕では、いずれも75μm以下の微粉末が90%近くを占めている。しかし、微粉シリカ、シリカの水分散液、コロイダルシリカ、さらにこれにLiやKを添加したものを助剤として用いた本発明の実施例1~5においては、何らの処理を施すことなく粉砕した比較例1や、粗粒の珪砂を用いた比較例2と比較して45μm以下の微粉末が大幅に多くなっていることが確認された。そして、この中でも、シリカは粉末で使用するよりも、水分散液やコロイダルシリカの形態の方が、粉砕助剤として優れた結果が得られることが確認された。
 また、表2及び図3に示した擂潰機による粉砕結果では、振動ミルに較べて粉砕能力が劣っているが、シリカ粉やシリカの水分散液、コロイダルシリカを用いた本発明の実施例1~5においては、75μm以下の微粉末が70%を超え、150μm以下の微粉末が約90%を占めていた。そして、この中でもシリカは粉末のものよりも、水分散液やコロイダルシリカが良好な結果が得られていた。これに対し上記比較例1,2においては、それぞれ約50%、60%程度の占有率に留まった。
(実施例6:粉砕助剤6)
 平均粒径10nmのシリカを20%含有し、ナトリウムをNaOとして0.3%含むコロイダルシリカに、リチウムをLiOとして0.3%となるように添加することによって当該実施例に用いる粉砕助剤を得た。
 そして、このLi含有コロイダルシリカを1~4mmのサイズにふるい分けした豪州炭に、SiO換算で0.4%となるようにまんべんなく噴霧し、105℃で乾燥させた。これを、擂潰機を用いて同様に粉砕し、得られた微粉炭の粒度分布を同様に測定した。その結果を表3及び図4に示す。なお、これらの表及び図には、比較のため上記実施例3(粉砕助剤3:シリカ粒径18nm)及び比較例1,2のデータも合わせて示した。
(実施例7:粉砕助剤7)
 平均粒径が50nmのシリカを40%含有するコロイダルシリカを使用したことを除いて、上記実施例6と同様の操作を繰り返すことによって得られた微粉炭の粒度分布を同様に測定した。その結果を表3及び図4に併せて示す。
(実施例8:粉砕助剤8)
 平均粒径が100nmのシリカを40%含有するコロイダルシリカを使用したことを除いて、上記実施例6と同様の操作を繰り返すことによって得られた微粉炭の粒度分布を同様に測定した。その結果を表3及び図4に併せて示す。
Figure JPOXMLDOC01-appb-T000003
 その結果、シリカの平均粒径が粗くなると、微粉の占有率が僅かに低くなる傾向がなくはないものの、助剤を用いない比較例1や粗粒の珪砂を用いた比較例2と較べて、大幅に微粉度が向上していることが確認された。
(実施例9)
 粉砕助剤を用いることなく稼働中の微粉炭燃焼ボイラーの微粉炭機に本発明の粉砕助剤を石炭と共に投入し、投入時間帯における微粉炭機の電流値及び振動幅の測定データから、微粉炭機に与える粉砕助剤の影響について調査した。
 すなわち、蒸発量70トン/h、石炭使用量6.5トン/hの微粉炭燃焼ボイラーの微粉炭機に、実施例3と同様のコロイダルシリカ(粉砕助剤3:シリカ平均粒径18nm、シリカ含有量40%、NaO換算含有量0.3%)を石炭と一緒に投入した。この時のコロイダルシリカの投入量は石炭に対するSiO換算質量比で0.4%となるようにした。
 その結果、上記粉砕助剤の投入時間帯においては、微粉炭機の電流値が投入前の21Aから20.5Aに低下すると共に、微粉炭機の振動幅も29μmから25μmに低減し、本発明の粉砕助剤の添加によって微粉炭機運転時の負荷が軽減されることが確認された。
 なお、微粉炭機による粉砕後の石炭粉の微粉度については、粉砕助剤の投入時間帯には、45μmの目開き通過微粉の割合が投入前の42%から60%に増加していることが確認された。
(実施例10)
 粉砕助剤を用いることなく稼働中の微粉炭燃焼ボイラーの微粉炭機に本発明の粉砕助剤を石炭と共に投入し、投入前後におけるボイラーの出口酸素濃度を測定し、ボイラーの燃焼状況に与える粉砕助剤の影響を調査した。
 すなわち、蒸発量600トン/h、石炭使用量60トン/hの微粉炭燃焼ボイラーの微粉炭機に、石炭と共に、実施例3と同様のコロイダルシリカ(粉砕助剤3)を粉砕助剤として同様のSiO比となるように添加した。
 その結果、上記粉砕助剤の投入と共に、ボイラー出口の酸素濃度が3.0%から1.2%に減少した。そして、当該ボイラーにおいては、出口酸素濃度が3.0%となるようにシステム制御されている関係上、時間の経過と共に3.0%に上昇したが、粉砕助剤の投入を停止すると出口酸素濃度は4.0%付近まで上昇した。
 このとき、粉砕後の石粉炭については、45μmの目開き通過微粉の割合が投入前の55%から、粉砕助剤の投入によって68%に増加しており、本発明の粉砕助剤によって微粉度が向上し、これによって微粉炭燃焼が促進され、酸素が多く消費されたものと考えられる。
 なお、比較のため、上記コロイダルシリカと同量の水を石炭と共に投入して同様の調査を実施したが、粉砕後の石粉炭の粒度構成や、ボイラー出口の酸素濃度には何らの変化も認められなかった。
(実施例11)
 蒸発量600トン/h、石炭使用量60トン/hの微粉炭燃焼ボイラーに付属する微粉炭機によって、上記した粉砕助剤3及び4をそれぞれ使用し、CaO及びFeの合計含有量がそれぞれ6000ppm、8000ppm、12000ppm、16000ppmである4種類の石炭を粉砕し、これらと同量の水のみを添加して粉砕した場合の微粉度と比較調査した。粉砕後の石炭粉の微粉度を45μmの目開きを通過した微粉の割合として、その結果を表4に示す。
 なお、この時のコロイダルシリカの添加量は、石炭に対してそれぞれ1%であって、SiO換算質量比では0.4%となる。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、いずれの石炭粉においても、粉砕助剤を用いない場合(水のみ)に較べて、本発明の粉砕助剤3,4を使用することにより、微粉度が向上していることが確認された。
 次に、上記した各石炭を粉砕助剤を用いることなく稼働中の上記微粉炭燃焼ボイラーに、各粉砕助剤により粉砕した各石炭粉を投入して燃焼させ、粉砕助剤によるボイラー火炉内のクリンカ付着状況の変化をベテラン作業員の目視検査によって調査した。この結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、本発明の粉砕助剤を使用することによって、粉砕助剤を用いない場合に較べて、クリンカの付着量が減少すること、とりわけクリンカの付着が顕著なCaO及びFe含有量の多い石炭において、粉砕助剤による低減効果が得られることが確認された。
 すなわち、CaOとFeの合計含有量が6000ppmの石炭では、先に示したように(図1参照)、スラッギング性が低いことから、本発明の粉砕助剤を使用したとしても、使用前と較べてクリンカの付着状況は、さほど変化が認められなかった。
 これに対して、8000ppmのCaO+Fe含有量の石炭においては、クリンカの付着が認められ、特に12000ppm以上のCaO+Feを含む石炭では、炉内にクリンカが多く付着し、16000ppm以上になると、肥大化したクリンカが付着していた。
 このような石炭に対し、粉砕助剤を使用したところ、粉砕性向上の効果により、CaO+Feが8000ppmの石炭では、クリンカの付着量が減少し、スラッギングが抑制されていた。また、炉内のクリンカ付着量が多かったCaO+Feが12000ppmの石炭燃焼時では、炉内全体のクリンカ付着量の減少が確認された。肥大化したクリンカの付着が認められたCaO+Feが16000ppmの石炭では、粉砕助剤の使用によって、肥大化したクリンカの表面からこぶし大の塊が徐々に剥離してクリンカが小さくなっていく様子が確認された。
 また、コロイダルシリカにLiを加えた粉砕助剤においては、コロイダルシリカのみの粉砕助剤と同様にクリンカ抑制作用を有しており、さらに、クリンカ剥離効果を助長する作用が観察された。

Claims (7)

  1.  粒径が100mm以下の石炭の粉砕に用いる粉体の粉砕助剤であって、平均粒径が4nm~20μmの粉体のシリカであることを特徴とする石炭の粉砕助剤。
  2.  粒径が100mm以下の石炭の粉砕に用いる粉砕助剤であって、平均粒径が4nm~20μmのシリカを含有する水分散液であることを特徴とする石炭の粉砕助剤。
  3.  粒径が100mm以下の石炭の粉砕に用いる粉砕助剤であって、平均粒径が4~200nmのシリカを質量比で1~50%含むコロイダルシリカであることを特徴とする石炭の粉砕助剤。
  4.  Na及び/又はKをNaO及びKOの合計質量比で0.01~1%含有することを特徴とする請求項2又は3に記載の粉砕助剤。
  5.  LiをLiOとして質量比で0.01~1%含有することを特徴とする請求項2~4のいずれか1つの項に記載の粉砕助剤。
  6.  請求項1~5のいずれか1つの項に記載の粉砕助剤を石炭に添加するに際し、当該助剤を石炭に対して、SiO換算で0.1~2.0%の質量比となるように添加することを特徴とする粉砕助剤の使用方法。
  7.  石炭中のCaO及びFeの合計含有量が8000ppm以上である場合に、上記粉砕助剤を石炭に対して、SiO換算で0.4~2.0%の質量比となるように添加することを特徴とする請求項6に記載の粉砕助剤の使用方法。
PCT/JP2009/069333 2008-12-09 2009-11-13 石炭の粉砕助剤及びその使用方法 WO2010067689A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009800004584A CN101918142A (zh) 2008-12-09 2009-11-13 煤的粉碎助剂及其使用方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008312902A JP2010137118A (ja) 2008-12-09 2008-12-09 石炭の粉砕助剤及びその使用方法
JP2008-312902 2008-12-09

Publications (1)

Publication Number Publication Date
WO2010067689A1 true WO2010067689A1 (ja) 2010-06-17

Family

ID=42242681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069333 WO2010067689A1 (ja) 2008-12-09 2009-11-13 石炭の粉砕助剤及びその使用方法

Country Status (3)

Country Link
JP (1) JP2010137118A (ja)
CN (1) CN101918142A (ja)
WO (1) WO2010067689A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008495A1 (ja) * 2010-07-14 2012-01-19 株式会社神戸製鋼所 加熱炉の灰付着抑制方法及び灰付着抑制装置
CN104990074A (zh) * 2015-07-01 2015-10-21 中国神华能源股份有限公司 一种燃烧煤的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103056013B (zh) * 2011-10-21 2015-03-25 余柯 一种提高磨煤机制粉效率的物理反润滑技术方法
JP2016073919A (ja) * 2014-10-06 2016-05-12 株式会社アドマテックス 粉粒体の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111153A (ja) * 1984-11-02 1986-05-29 タイホ−工業株式会社 燃料用石油コ−クスの製造方法と燃料石油コ−クス製造用粉砕助剤
JP2004018704A (ja) * 2002-06-18 2004-01-22 Taiho Ind Co Ltd スラッギング防止用燃料添加剤及び燃料の燃焼方法
JP2006082056A (ja) * 2004-09-17 2006-03-30 Kurita Water Ind Ltd 石炭の乾式粉砕助剤及び乾式粉砕方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6634576B2 (en) * 2000-08-31 2003-10-21 Rtp Pharma Inc. Milled particles
US7407121B2 (en) * 2004-12-28 2008-08-05 Kerns Kevin C Method and process for providing a controlled batch of micrometer-sized or nanometer-sized coal material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61111153A (ja) * 1984-11-02 1986-05-29 タイホ−工業株式会社 燃料用石油コ−クスの製造方法と燃料石油コ−クス製造用粉砕助剤
JP2004018704A (ja) * 2002-06-18 2004-01-22 Taiho Ind Co Ltd スラッギング防止用燃料添加剤及び燃料の燃焼方法
JP2006082056A (ja) * 2004-09-17 2006-03-30 Kurita Water Ind Ltd 石炭の乾式粉砕助剤及び乾式粉砕方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008495A1 (ja) * 2010-07-14 2012-01-19 株式会社神戸製鋼所 加熱炉の灰付着抑制方法及び灰付着抑制装置
JP2012037221A (ja) * 2010-07-14 2012-02-23 Kobe Steel Ltd 加熱炉の灰付着抑制方法及び灰付着抑制装置
CN102985756A (zh) * 2010-07-14 2013-03-20 株式会社神户制钢所 加热炉的灰附着抑制方法及灰附着抑制装置
KR101512250B1 (ko) 2010-07-14 2015-04-14 가부시키가이샤 고베 세이코쇼 가열로의 회 부착 억제 방법 및 회 부착 억제 장치
CN102985756B (zh) * 2010-07-14 2015-04-22 株式会社神户制钢所 加热炉的灰附着抑制方法及灰附着抑制装置
CN104990074A (zh) * 2015-07-01 2015-10-21 中国神华能源股份有限公司 一种燃烧煤的方法

Also Published As

Publication number Publication date
CN101918142A (zh) 2010-12-15
JP2010137118A (ja) 2010-06-24

Similar Documents

Publication Publication Date Title
JP3745973B2 (ja) スラッギング防止用石炭添加剤及び石炭の燃焼方法
KR101697716B1 (ko) 고체 연료용 첨가제 조성물
WO2010067689A1 (ja) 石炭の粉砕助剤及びその使用方法
JP2010030885A (ja) 石炭灰の未燃炭素分の低減方法
KR102067720B1 (ko) 고체 연료용 첨가제 조성물
CN112361371A (zh) 一种燃用高碱煤的方法及锅炉系统
EP3368223A1 (en) Grinding additive for carbonaceous solid
JP2010235822A (ja) 石炭用スラッギング防止剤及び石炭の燃焼方法
JP2005272297A (ja) セメントクリンカの製造方法
JP2011052916A (ja) 微粉炭焚きボイラの燃焼効率改善方法およびシステム
JP3746020B2 (ja) スラッギング防止用燃料添加剤及び燃料の燃焼方法
CN111701441B (zh) 一种协同实现烟气超低排放的干式脱硫超微粉及其制造方法和应用
JP3746026B2 (ja) スラッギング防止用燃料添加剤及び燃料の燃焼方法
JPH101339A (ja) 石炭灰の利用システム
CN103214199B (zh) 一种利用褐煤煅烧干法水泥熟料的方法
JP2017165929A (ja) クリンカ付着抑制用添加剤及びクリンカ付着抑制方法
CN101328440A (zh) 一种催化助燃剂
JPH0329275B2 (ja)
JP2017219398A (ja) フライアッシュの製造方法
CN217653882U (zh) 燃煤和生物质混合煤粉锅炉燃烧系统
CN110950367B (zh) 一种利用电站锅炉协同生产铝酸钙粉的工艺
JPH0617070A (ja) 固体燃料
CN104371790B (zh) 抑制准东高钠煤燃烧中碱金属释放的添加剂及其实现方法
JP2787692B2 (ja) 固体燃料の燃焼方法
JPH02169911A (ja) 固体燃料の燃焼方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980000458.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831795

Country of ref document: EP

Kind code of ref document: A1