WO2012005204A1 - ポリアミド樹脂組成物 - Google Patents

ポリアミド樹脂組成物 Download PDF

Info

Publication number
WO2012005204A1
WO2012005204A1 PCT/JP2011/065260 JP2011065260W WO2012005204A1 WO 2012005204 A1 WO2012005204 A1 WO 2012005204A1 JP 2011065260 W JP2011065260 W JP 2011065260W WO 2012005204 A1 WO2012005204 A1 WO 2012005204A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
polyamide resin
resin composition
mass
acid
Prior art date
Application number
PCT/JP2011/065260
Other languages
English (en)
French (fr)
Inventor
三田寺 淳
優志 黒河
隆大 高野
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201180029900.3A priority Critical patent/CN102959014B/zh
Priority to RU2012154325/05A priority patent/RU2570453C2/ru
Priority to US13/702,865 priority patent/US8603600B2/en
Priority to BR112012032085A priority patent/BR112012032085A2/pt
Priority to MX2012014320A priority patent/MX338658B/es
Priority to EP11803538.5A priority patent/EP2570459B1/en
Priority to CA 2799554 priority patent/CA2799554A1/en
Priority to KR1020127032913A priority patent/KR101796967B1/ko
Priority to AU2011275035A priority patent/AU2011275035B2/en
Publication of WO2012005204A1 publication Critical patent/WO2012005204A1/ja
Priority to ZA2012/09144A priority patent/ZA201209144B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/008Additives improving gas barrier properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1397Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/31739Nylon type

Definitions

  • the present invention relates to a polyamide resin composition, and particularly relates to a polyamide resin composition having a high elastic modulus, good gas barrier properties, low water absorption, and excellent flexibility.
  • Polyamide resins are generally widely used as engineering plastics having excellent mechanical properties, chemical resistance, oil resistance, gas barrier properties, and the like.
  • Polyamide resin obtained by polymerizing metaxylylenediamine and adipic acid (hereinafter sometimes referred to as “MXD6 polyamide”) has higher strength, higher elastic modulus and lower water absorption than polyamide 6 and polyamide 66, etc.
  • MXD6 polyamide metaxylylenediamine and adipic acid
  • it since it has excellent gas barrier properties, it is widely used because it can be co-extruded or co-injected with a thermoplastic resin such as polyethylene terephthalate, polyamide 6, polyethylene and polypropylene.
  • MXD6 polyamide has a high elastic modulus, its elongation is poor, and a film or sheet made of this is too hard and can be used for applications that require rigidity, but for applications that require elongation. Can not be used.
  • the transparency is likely to decrease due to whitening and crystallization during storage in a high humidity atmosphere or contact with water or boiling water. So far, no polyamide resin having a high elastic modulus and flexibility has been found.
  • the present applicant has proposed a composition in which MXD6 polyamide is mixed with another specific aliphatic polyamide resin (for example, polyamide 6) having a high crystallization speed in Patent Document 1.
  • Films and sheets obtained from this polyamide resin composition have excellent characteristics of maintaining excellent transparency even in a high humidity atmosphere, but have the disadvantage of increasing the water absorption rate, and are mixed with other polyamide resins.
  • the gas barrier property is lowered as compared with the case of MXD6 polyamide alone.
  • the flexibility required for applications requiring softness is insufficient.
  • MXD10 polyamide a polyamide resin obtained by polycondensation of metaxylylenediamine and sebacic acid
  • MXD10 polyamide a polyamide resin obtained by polycondensation of metaxylylenediamine and sebacic acid
  • An object of the present invention is to provide a polyamide resin composition having a high elastic modulus, a good gas barrier property, a low water absorption rate and excellent flexibility in view of the above situation.
  • a polyamide resin composed of xylylenediamine and sebacic acid (hereinafter sometimes referred to as “XD10 polyamide”) is copolymerized polyamide 6/66. / 12, copolyamide 6/66/11 and a specific amount of copolymerized polyamide (B) selected from a specific polyether copolymerized polyamide, a polyamide resin composition suitable for the above purpose can be obtained.
  • XD10 polyamide a polyamide resin composed of xylylenediamine and sebacic acid
  • a polyamide resin composition comprising 1 to 40 parts by mass of at least one copolymer polyamide (B) selected from the group consisting of the following (B-1) to (B-3) with respect to parts by mass: Things are provided.
  • xylylenediamine is metaxylylenediamine, paraxylylenediamine or a mixture thereof. Is done.
  • the polyamide resin (A) is obtained by polycondensation of metaxylylenediamine, paraxylylenediamine or a mixture thereof and sebacic acid.
  • a polyamide resin composition is provided which is a polyamide resin.
  • the carbodiimide compound (C) is further contained in an amount of 0.1 to 2 parts by mass with respect to 100 parts by mass of the polyamide resin (A).
  • a featured polyamide resin composition is provided.
  • the fifth invention of the present invention there is provided a polyamide resin composition characterized in that, in the fourth invention, the carbodiimide compound (C) is an aliphatic or alicyclic polycarbodiimide compound. .
  • the stabilizer (D) is further contained in an amount of 0.01 to 1 part by mass with respect to 100 parts by mass of the polyamide resin (A).
  • a featured polyamide resin composition is provided.
  • the stabilizer (D) is selected from inorganic, aromatic secondary amine or organic sulfur stabilizers.
  • a polyamide resin composition is provided.
  • the tensile elastic modulus (E) when formed into a film is the tensile elastic modulus (E A ) when the polyamide resin (A) is formed into a film.
  • a polyamide resin composition characterized by exhibiting an elastic modulus of 70 to 97% is provided.
  • a molded product formed by molding the polyamide resin composition of any one of the first to eighth inventions.
  • the molded product according to the ninth aspect wherein the molded product is a film, a sheet or a tube.
  • the present invention relates to an XD10 polyamide resin (A), (B-1) copolymerized polyamide 6/66/12, (B-2) copolymerized polyamide 6/66/11, and (B-3) polyamide 12 units.
  • a polyether copolymer polyamide composed of a polyamide 11 unit and a polyether unit is particularly very familiar, and these copolymer polyamides (B) are converted into XD10 polyamide resin (A) 100.
  • a specific amount of 1 to 40 parts by mass is blended with respect to part by mass, surprisingly, while exhibiting excellent elastic modulus, extremely high tensile elongation is exhibited, it is soft, excellent in gas barrier properties, and excellent in transparency.
  • a polyamide resin material can be achieved.
  • a polyamide resin composition having a high elastic modulus, good gas barrier properties, low water absorption, and excellent flexibility can be obtained.
  • (B-1) copolymer polyamide 6/66/12 and (B-2) copolymer polyamide 6/66/11 are excellent in transparency when mixed with XD10 polyamide resin (A).
  • a molded article obtained using the polyamide resin composition of the present invention has a level of softness that could not be achieved by conventional techniques, and can be used as a film, sheet or tube for various purposes. Is expected to be used.
  • the polyamide resin composition of the present invention provides a polyamide resin material that is excellent in elastic modulus and gas barrier properties and hardly absorbs water and is excellent in flexibility, various films, sheets, laminated films, laminated sheets, tubes, hoses, It can be suitably used for various molded products such as various containers such as pipes, hollow containers and bottles, and various parts.
  • the polyamide resin (A) in the polyamide resin composition of the present invention is a polyamide resin comprising a diamine structural unit (structural unit derived from diamine) and a dicarboxylic acid structural unit (structural unit derived from dicarboxylic acid), A polyamide resin (A) in which 70 mol% or more of the structural units are derived from xylylenediamine and 50 mol% or more of the dicarboxylic acid structural units is derived from sebacic acid is used.
  • the polyamide resin (A) contains a diamine component containing xylylenediamine at 70 mol% or more, preferably 80 mol% or more, and sebacic acid at 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more. It can be obtained by polycondensation of a dicarboxylic acid component. If the xylylenediamine is less than 70 mol%, the polyamide resin composition finally obtained has insufficient barrier properties. If the sebacic acid is less than 50 mol%, the polyamide resin composition becomes hard and the workability is low. Deteriorate.
  • the xylylenediamine it is preferable to use metaxylylenediamine, paraxylylenediamine or a mixture thereof. When mixed and used, it can be used in any proportion, but when heat resistance is important, metaxylylenediamine 0 to 50 mol% and paraxylenediamine 50 to 100 mol% are preferable. When emphasizing the molding processability, metaxylylenediamine 50 to 100 mol% and paraxylenediamine 0 to 50 mol% are preferable.
  • diamines other than xylylenediamine used as a raw material diamine component of the polyamide resin (A) include tetramethylenediamine, pentamethylenediamine, 2-methylpentanediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, Aliphatic diamines such as decamethylenediamine, dodecamethylenediamine, 2,2,4-trimethyl-hexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4 -Bis (aminomethyl) cyclohexane, 1,3-diaminocyclohexane, 1,4-diaminocyclohexane, bis (4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis Cycloaliphatic diamine
  • the sebacic acid used as the raw material dicarboxylic acid component of the polyamide resin (A) is 50 mol% or more, preferably 70 mol% or more, more preferably 80 mol% or more.
  • As the raw material dicarboxylic acid component other than sebacic acid ⁇ , ⁇ -linear aliphatic dicarboxylic acid having 4 to 20 carbon atoms other than sebacic acid can be preferably used.
  • succinic acid glutaric acid, pimelic acid, suberic acid
  • examples include aliphatic dicarboxylic acids such as azelaic acid, adipic acid, undecanedioic acid, and dodecanedioic acid, and one or a mixture of two or more types can be used.
  • Adipic acid is particularly preferred because it is in an appropriate range.
  • aromatic dicarboxylic acids can also be used.
  • Phthalic acid compounds such as isophthalic acid, terephthalic acid, orthophthalic acid, 1,2-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, 1, 4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6- Examples thereof include naphthalene dicarboxylic acid such as naphthalene dicarboxylic acid and isomers such as 2,7-naphthalene dicarboxylic acid and the like, and one kind or a mixture of two or more kinds can be used.
  • monocarboxylic acids such as benzoic acid, propionic acid and butyric acid
  • polycarboxylic acids such as trimellitic acid and pyromellitic acid
  • carboxylic acid anhydrides such as trimellitic anhydride and pyromellitic anhydride
  • isophthalic acid should be used from the viewpoint of moldability and barrier properties. Is preferred.
  • the proportion of isophthalic acid is less than 30 mol% of the dicarboxylic acid structural unit, preferably 1 to 25 mol%, particularly preferably 5 to 20 mol%.
  • the polyamide resin (A) is obtained by polycondensation of a diamine component containing 70 mol% or more of xylylenediamine and a dicarboxylic acid component containing 50 mol% or more of sebacic acid. It is not limited, It manufactures by conventionally well-known methods and polymerization conditions, such as a normal pressure melt polymerization method and a pressure melt polymerization method. For example, it is produced by a method in which a polyamide salt composed of xylylenediamine and sebacic acid is polymerized in a molten state while raising the temperature under pressure in the presence of water and removing the added water and condensed water.
  • xylylenediamine is continuously added, and the reaction system is heated up so that the reaction temperature is higher than the melting point of the generated oligoamide and polyamide, while the reaction system is heated. Condensation proceeds.
  • the polycondensation reaction system includes lactams such as ⁇ -caprolactam, ⁇ -laurolactam, ⁇ -enantolactam, 6-aminocaproic acid, 7-aminoheptanoic acid, 11 -Aminoundecanoic acid, 12-aminododecanoic acid, 9-aminononanoic acid, paraaminomethylbenzoic acid and other amino acids may be added within a range not impairing the performance.
  • lactams such as ⁇ -caprolactam, ⁇ -laurolactam, ⁇ -enantolactam, 6-aminocaproic acid, 7-aminoheptanoic acid, 11 -Aminoundecanoic acid, 12-aminododecanoic acid, 9-aminononanoic acid, paraaminomethylbenzoic acid and other amino acids may be added within a range not impairing the performance.
  • the polyamide resin (A) may be further heat-treated to increase the melt viscosity.
  • a heat treatment method for example, using a batch-type heating device such as a rotating drum, in an inert gas atmosphere or under reduced pressure, it is heated gently in the presence of water, and crystallized while avoiding fusion.
  • a method of further heat treatment using a hopper-shaped heating device, the heat treatment is performed in an inert gas atmosphere.
  • a method of performing a heat treatment using a batch heating device such as a rotating drum after crystallization using a groove type stirring and heating device.
  • a method of performing crystallization and heat treatment using a batch heating apparatus is preferable.
  • the conditions for the crystallization treatment are that the temperature is raised to 70 to 120 ° C. in the presence of 1 to 30% by mass of water and 0.5 to 4 hours with respect to the polyamide resin obtained by melt polymerization. Crystallization is then carried out in an inert gas atmosphere or under reduced pressure at a temperature of [melting point of polyamide resin obtained by melt polymerization—50 ° C.] to [melting point of polyamide resin obtained by melt polymerization—10 ° C.]. Conditions for heat treatment for ⁇ 12 hours are preferred.
  • the melting point of the polyamide resin (A) is preferably controlled in the range of 150 ° C. to 310 ° C., more preferably 160 to 300 ° C., still more preferably 170 to 290 ° C. By making the melting point in the above range, the processability tends to be improved, which is preferable.
  • the glass transition point of the polyamide resin (A) is preferably in the range of 50 to 130 ° C. It is preferable that the glass transition point be in the above range because the barrier property tends to be good.
  • the melting point and glass transition point of the polyamide resin (A) and copolymer polyamides (B-1) to (B-3) described later can be measured by a differential scanning calorimetry (DSC) method.
  • DSC differential scanning calorimetry
  • the polyamide resin (A) preferably has a terminal amino group concentration of less than 100 ⁇ eq / g, more preferably 5 to 75 ⁇ eq / g, even more preferably 10 to 50 ⁇ eq / g, and a terminal carboxyl group concentration of preferably less than 100 ⁇ eq / g, more Preferably 10 to 90 ⁇ eq / g, more preferably 10 to 50 ⁇ eq / g is preferably used.
  • the polyamide resin (A) preferably has a relative viscosity of 1.7 to 4 measured in 96% sulfuric acid at a resin concentration of 1 g / 100 cc and a temperature of 25 ° C., more preferably 1.9 to 3.8. preferable.
  • the number average molecular weight of the polyamide resin (A) is preferably 6,000 to 50,000, and more preferably 10,000 to 43,000. Within the above range, mechanical strength and moldability tend to be good.
  • the polyamide resin (A) may contain a phosphorus compound in order to increase the processing stability during melt molding or to prevent the polyamide resin from being colored.
  • a phosphorus compound containing an alkali metal or an alkaline earth metal is preferably used, and examples thereof include phosphates such as sodium, magnesium, and calcium, hypophosphites, and phosphites.
  • phosphates such as sodium, magnesium, and calcium
  • hypophosphites such as sodium, magnesium, and calcium
  • hypophosphites such as sodium, magnesium, and calcium
  • phosphites such as sodium, magnesium, and calcium
  • the polyamide resin (A) When using a phosphorus compound, it is contained in the polyamide resin (A) so that the phosphorus atom concentration in the polyamide resin composition (A) is 200 ppm or less, preferably 160 ppm or less, more preferably 100 ppm or less. desirable.
  • the polyamide resin (A) includes a lubricant, a matting agent, a heat stabilizer, a weather stabilizer, an ultraviolet absorber, a nucleating agent, a plasticizer, and the like within a range not impairing the effects of the present invention. Additives such as additives, flame retardants, antistatic agents, anti-coloring agents, anti-gelling agents, etc. can be added, but not limited to those shown above, various materials can be mixed and added Also good.
  • the polyamide resin (A) includes (B-1) copolymerized polyamide 6/66/12, (B-2) copolymerized polyamide 6/66/11 or (B-3) polyamide 12 units or polyamide.
  • a polyether copolymerized polyamide composed of 11 units and polyether units is blended.
  • Copolymer polyamide 6/66/12 (B-1) is a ternary system comprising polyamide 6 units (capramide units) and polyamide 66 units (hexamethylene adipamide units) and polyamide 12 units (dodecanamide units). It is a copolymerized polyamide of the original system or higher.
  • Copolyamide 6/66/12 (B-1) is composed of a polyamide 6-forming component such as caprolactam, a polyamide 66-forming component such as hexamethylenediamine and adipic acid, and 12-aminododecanoic acid or dodecane lactam. From the polyamide 12-forming component, if necessary, it can be obtained by copolymerization using other polycondensation raw materials.
  • the copolymerization ratio of the copolymerized polyamide 6/66/12 (B-1) is preferably 60 to 95% by mass of polyamide 6 units, more preferably 70 to 90% by mass, and further preferably 75 to 85% by mass.
  • the polyamide 66 unit is 0.5 to 25% by mass, more preferably 1 to 20% by mass, still more preferably 5 to 15% by mass
  • the polyamide 12 unit is 0.5 to 25% by mass, more preferably The amount is 1 to 15% by mass, more preferably 3 to 10% by mass.
  • the copolymerized polyamide 6/66/12 (B-1) is not necessarily limited to the ternary copolymer, and is a quaternary or more copolymer containing another copolymer unit. Also good.
  • a polyamide component an aliphatic amide component is preferable, and polyamide 11 (polyundecanamide), polyamide 9 (poly- ⁇ -aminononanoic acid), polyamide 46 (polytetramethylene adipamide), polyamide 610 (polyhexahexamide) Preferred examples include aliphatic amide components such as methylene sebacamide).
  • the copolymer which added aromatic dicarboxylic acid components, such as a terephthalic acid and isophthalic acid, and aromatic diamine components, such as a xylylenediamine, may be sufficient.
  • copolyamide 6/66/12 there is no restriction
  • a polymerization method a known method such as melt polymerization, solution polymerization, solid phase polymerization or the like can be used, and polymerization can be performed by repeating normal pressure, reduced pressure, and pressure operations.
  • the lactam component, the diamine component, the dicarboxylic acid component, or these may be in the form of a salt.
  • water is heated to 180 to 220 ° C. in an autoclave and maintained under pressure for a predetermined period of time.
  • Copolymer polyamide 6/66/12 is commercially available, and may be appropriately selected from these.
  • the copolymerized polyamide 6/66/11 (B-2) used in the present invention is composed of polyamide 6 units (capramide units), polyamide 66 units (hexamethylene adipamide units) and polyamide 11 units (undecanamide units). Is a ternary or quaternary or higher copolymer polyamide.
  • Copolyamide 6/66/11 (B-2) is composed of a polyamide 6-forming component such as caprolactam, a polyamide 66-forming component such as hexamethylenediamine and adipic acid, and 11-aminoundecanoic acid or undecane lactam. From the polyamide 11-forming component, it can be obtained by copolymerization using other polycondensation raw materials if necessary.
  • the copolymerization ratio of the copolymerized polyamide 6/66/11 (B-2) is preferably 60 to 95% by mass of the polyamide 6 unit, more preferably 70 to 90% by mass, and further preferably 75 to 85% by mass.
  • the polyamide 66 units are 0.5 to 25% by mass, more preferably 1 to 20% by mass, still more preferably 5 to 15% by mass, and the polyamide 11 units are 0.5 to 25% by mass, and more preferably 1 to 20% by mass. -15% by mass, more preferably 3-10% by mass.
  • the copolymerization ratio of the copolymerized polyamide 6/66/11 (B-2) is in the above range, the mixing property with the polyamide resin (A) becomes good, and the resin composition is excellent in transparency, flexibility and the like. It tends to be easy to get.
  • the copolymerized polyamide 6/66/11 (B-2) is not necessarily limited to the ternary copolymer, and is a quaternary or more copolymer containing another copolymer unit. Also good.
  • a polyamide component an aliphatic amide component is preferable.
  • Polyamide 12 polydodecanamide
  • polyamide 9 poly- ⁇ -aminononanoic acid
  • polyamide 46 polytetramethylene adipamide
  • polyamide 610 polyhexahexamide
  • Preferred examples include aliphatic amide components such as methylene sebacamide).
  • the copolymer which added aromatic dicarboxylic acid components, such as a terephthalic acid and isophthalic acid, and aromatic diamine components, such as a xylylenediamine may be sufficient.
  • a conventionally well-known method is applicable.
  • a polymerization method a known method such as melt polymerization, solution polymerization, solid phase polymerization or the like can be used, and polymerization can be performed by repeating normal pressure, reduced pressure, and pressure operations.
  • the lactam component, the diamine component, the dicarboxylic acid component, or these may be in the form of a salt.
  • water is heated to 180 to 220 ° C. in an autoclave and maintained under pressure for a predetermined period of time. Thereafter, the pressure is returned to normal pressure, the temperature is again raised to 210 to 260 ° C., and the mixture is maintained for a predetermined time, whereby a copolymerized polyamide can be obtained.
  • the polyether copolymer polyamide (B-3) composed of polyamide 12 units or polyamide 11 units and polyether units used in the present invention is a polyamide 12 unit (dodecanamide unit) or a polyamide 11 unit (undecanamide). Unit) and a polyether unit such as polyoxyalkylene glycol. Usually, it is mainly composed of 15 to 90% by mass of polyamide units containing 12 units of polyamide or 11 units of polyamide and 85 to 10% by mass of polyether units.
  • the polyether copolymerized polyamide (B-3) used in the present invention is preferably a segmented copolymer.
  • the polyether unit constituting the polyether copolymerized polyamide (B-3) is preferably a polyoxyalkylene oxide unit.
  • the polyoxyalkylene oxide unit is composed of an oxyalkylene unit having 2 to 4 carbon atoms and preferably has a molecular weight of 200 to 8,000. Specifically, polyethylene oxide, polypropylene oxide, polybutylene oxide (or glycols thereof) ) And the like.
  • the polyether copolymerized polyamide (B-3) has a melting point or softening point of preferably 175 ° C. or lower, more preferably 170 ° C. or lower.
  • the polyether copolymerized polyamide (B-3) can be produced by a known method, for example, a polyamide 11-forming component such as undecane lactam or 11-aminoundecanoic acid, or a polyamide 12 such as dodecane lactam or 12-aminododecanoic acid.
  • a polyamide segment is formed from a forming component and another polyamide-forming component, and a polyether segment is added thereto, followed by polymerization at a high temperature and under reduced pressure.
  • the polyether copolymerized polyamide (B-3) is commercially available and may be appropriately selected from these.
  • Copolyamides (B-1) to (B-3) described above may be collectively referred to as “polyamide (B)”)
  • the terminal amino group concentration is preferably 1 to 100 ⁇ eq / g, more preferably 2 to 50 ⁇ eq / g
  • the terminal carboxyl group concentration is preferably 1 to 100 ⁇ eq / g, more preferably 2 to 50 ⁇ eq / g.
  • Those having g are preferably used.
  • the number average molecular weight of the copolymerized polyamide (B) is preferably 15,000 to 35,000. By setting the number average molecular weight within the above range, the dispersibility in the polyamide resin (A) becomes good, and the hydrolysis resistance and flexibility tend to be improved.
  • the relative viscosity measured in 96% sulfuric acid at a resin concentration of 1 g / 100 cc and a temperature of 25 ° C. is preferably 1.5 to 4.5, more preferably 1.6 to 4.2. More preferably, 8 to 4 are used.
  • the polyamide resin composition of the present invention comprises a copolymerized polyamide (B) (that is, the sum of (B-1), (B-2) and (B-3)) with respect to 100 parts by mass of the polyamide resin (A). If the amount is less than 1 part by weight, the improvement in elongation is insufficient and flexibility cannot be obtained, and if it exceeds 40 parts by weight, the strength and the elastic modulus decrease, and the water absorption rate Rises.
  • the preferred content is 5 to 35 parts by mass, more preferably 10 to 30 parts by mass.
  • the polyamide resin composition of the present invention preferably contains a carbodiimide compound (C).
  • a carbodiimide compound (C) include aromatic, aliphatic or alicyclic polycarbodiimide compounds produced by various methods. Among these, an aliphatic or alicyclic polycarbodiimide compound is preferable, and an alicyclic polycarbodiimide compound is more preferably used from the viewpoint of melt kneading properties during extrusion and the like.
  • These carbodiimide compounds (C) can be produced by decarboxylation condensation reaction of organic polyisocyanate.
  • a method of synthesizing various organic polyisocyanates by decarboxylation condensation reaction at a temperature of about 70 ° C. or higher in an inert solvent or without using a solvent in the presence of a carbodiimidization catalyst can be exemplified.
  • the isocyanate group content is preferably 0.1 to 5% by mass, more preferably 1 to 3% by mass.
  • organic polyisocyanate which is a synthesis raw material of the carbodiimide compound (C)
  • various organic diisocyanates such as aromatic diisocyanate, aliphatic diisocyanate, and alicyclic diisocyanate, and mixtures thereof can be used.
  • organic diisocyanate examples include 1,5-naphthalene diisocyanate, 4,4′-diphenylmethane diisocyanate, 4,4′-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4-diisocyanate, methylcyclohexane diisocyanate, tetramethylxylylene Range isocyanate, 2,6-diisopropylphenyl isocyanate, 1,3,5-triisopropylbenzene-2,4-dii Cyanate, methylenebis
  • an end-capping agent such as monoisocyanate in order to seal the end of the carbodiimide compound (C) and control the degree of polymerization.
  • monoisocyanate examples include phenyl isocyanate, tolyl isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate, and naphthyl isocyanate, and two or more kinds may be used in combination.
  • terminal blocker it is not limited to said monoisocyanate, What is necessary is just an active hydrogen compound which can react with isocyanate.
  • active hydrogen compounds include aliphatic, aromatic, and alicyclic compounds such as methanol, ethanol, phenol, cyclohexanol, N-methylethanolamine, polyethylene glycol monomethyl ether, and polypropylene glycol monomethyl ether.
  • carbodiimidization catalyst examples include 1-phenyl-2-phospholene-1-oxide, 3-methyl-1-phenyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 3- Metal catalysts such as phospholene oxides such as methyl-2-phospholene-1-oxide and their 3-phospholene isomers, tetrabutyl titanate and the like can be used, and among these, from the viewpoint of reactivity, 3 -Methyl-1-phenyl-2-phospholene-1-oxide is preferred. Two or more carbodiimidization catalysts may be used in combination.
  • the content of the carbodiimide compound (C) is 0.1 to 2 parts by mass, preferably 0.2 to 1.5 parts by mass, and more preferably 0.3 to 100 parts by mass of the polyamide resin (A). -1.5 parts by mass. If the amount is less than 0.1 parts by mass, the resin composition does not have sufficient hydrolysis resistance, uneven discharge during melt kneading such as extrusion tends to occur, and melt kneading tends to be insufficient. On the other hand, when it exceeds 2 parts by mass, the viscosity of the resin composition during melt kneading is remarkably increased, and melt kneadability and moldability are liable to deteriorate.
  • a stabilizer (D) to the polyamide resin composition of the present invention.
  • the stabilizer include, for example, phosphorus-based, hindered phenol-based, hindered amine-based, organic sulfur-based, oxalic acid anilide-based, aromatic secondary amine-based organic stabilizers, copper-based compounds, halide-based inorganic systems, and the like. Stabilizers are preferred.
  • a phosphorus stabilizer a phosphite compound and a phosphonite compound are preferable.
  • phosphite compound examples include distearyl pentaerythritol diphosphite, dinonylphenyl pentaerythritol diphosphite, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis (2,6- Di-t-butyl-4-methylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-ethylphenyl) pentaerythritol diphosphite, bis (2,6-di-t- Butyl-4-isopropylphenyl) pentaerythritol diphosphite, bis (2,4,6-tri-t-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-4-sec-) Butylphenyl) penta
  • Examples of the phosphonite compound include tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylenediphosphonite, tetrakis (2,5-di-t-butylphenyl) -4,4′-.
  • hindered phenol stabilizer examples include n-octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 1,6-hexanediol-bis [3- (3,5 -Di-t-butyl-4-hydroxyphenyl) propionate], pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 3,9-bis [1,1- Dimethyl-2- ⁇ - (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ ethyl] -2,4,8,10-tetraoxaspiro [5,5] undecane, triethylene glycol -Bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,5-di-tert-butyl-4-hydride Xylbenzylphosphonate-
  • hindered amine stabilizer examples include known hindered amine compounds having a 2,2,6,6-tetramethylpiperidine skeleton.
  • Specific examples of hindered amine compounds include 4-acetoxy-2,2,6,6-tetramethylpiperidine, 4-stearoyloxy-2,2,6,6-tetramethylpiperidine, 4-acryloyloxy-2,2 , 6,6-tetramethylpiperidine, 4-phenylacetoxy-2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6,6-tetramethylpiperidine, 4-methoxy-2,2 , 6,6-tetramethylpiperidine, 4-stearyloxy-2,2,6,6-tetramethylpiperidine, 4-cyclohexyloxy-2,2,6,6-tetramethylpiperidine, 4-benzyloxy-2, 2,6,6-tetramethylpiperidine, 4-phenoxy-2,2,6,6-tetramethylpiperidine, 4-ethylcarba Yl
  • ADEKA CORPORATION As a product of a hindered amine compound, a product manufactured by ADEKA (ADEKA CORPORATION) “ADK STAB” LA-52, LA-57, LA-62, LA-67, LA-63P, LA-68LD, LA-77 , LA-82, LA-87 ", products manufactured by Ciba Specialty Chemicals Inc.”
  • organic sulfur stabilizer examples include didodecyl thiodipropionate, ditetradecyl thiodipropionate, dioctadecyl thiodipropionate, pentaerythritol tetrakis (3-dodecyl thiopropionate), thiobis (N-phenyl).
  • 2-mercaptobenzothiazole 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, and mercaptobenzimidazole compounds
  • metal salts of 2-mercaptobenzimidazole diethyldithiocarbamine
  • Dithiocarbamic acid compounds such as metal salts of acids and metal salts of dibutyldithiocarbamic acid
  • thioureas such as 1,3-bis (dimethylaminopropyl) -2-thiourea and tributylthiourea
  • tetramethylthiuram monosulfide, tetramethylthiuram disulfide, nickel dibutyldithiocarbamate, nickel isopropyl xanthate include trilauryl trithiophosphite and the like.
  • mercaptobenzimidazole compounds dithiocarbamic acid compounds, thiourea compounds, and organic thioacid compounds are preferable, and mercaptobenzimidazole compounds and organic thioacid compounds are more preferable.
  • a thioether-based compound having a thioether structure can be suitably used because it receives oxygen from an oxidized substance and reduces it.
  • 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, ditetradecylthiodipropionate, dioctadecylthiodipropionate, pentaerythritol tetrakis (3-dodecylthiopropionate) are more preferable.
  • Tetradecylthiodipropionate, pentaerythritol tetrakis (3-dodecylthiopropionate) and 2-mercaptomethylbenzimidazole are more preferred, and pentaerythritol tetrakis (3-dodecylthiopropionate) is particularly preferred.
  • the molecular weight of the organic sulfur compound is usually 200 or more, preferably 500 or more, and the upper limit is usually 3,000.
  • oxalic acid anilide-based stabilizer 4,4′-dioctyloxyoxanilide, 2,2′-diethoxyoxanilide, 2,2′-dioctyloxy-5,5′-di-tert Tributoxanilide, 2,2′-didodecyloxy-5,5′-di-tert-butoxanilide, 2-ethoxy-2′-ethyloxanilide, N, N′-bis (3-dimethylaminopropyl) oxanilide, 2-ethoxy-5-tert-butyl-2'-ethoxanilide and its mixture with 2-ethoxy-2'-ethyl-5,4'-di-tert-butoxanilide, o- and p-methoxy-disubstituted oxanilides Mixtures, o- and p-ethoxy-disubstituted oxanilide mixtures,
  • a compound having a diphenylamine skeleton, a compound having a phenylnaphthylamine skeleton, and a compound having a dinaphthylamine skeleton are preferable, and a compound having a diphenylamine skeleton and a compound having a phenylnaphthylamine skeleton are more preferable.
  • p, p′-dialkyldiphenylamine (the alkyl group has 8 to 14 carbon atoms), octylated diphenylamine, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, p- (p-toluene) Sulfonylamido) diphenylamine, N, N'-diphenyl-p-phenylenediamine, N-phenyl-N'-isopropyl-p-phenylenediamine, N-phenyl-N '-(1,3-dimethylbutyl) -p-phenylene
  • a diphenylamine skeleton such as diamine and N-phenyl-N ′-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylenediamine, N-phenyl-1-naphthylamine and N, N′-di-2- Compounds having a dipheny
  • 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine, N, N′-di-2-naphthyl-p-phenylenediamine and N, N′-diphenyl-p-phenylenediamine are more preferable, N, N′-di-2-naphthyl-p-phenylenediamine and 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine are particularly preferred.
  • the organic sulfur stabilizer or aromatic secondary amine stabilizer When the organic sulfur stabilizer or aromatic secondary amine stabilizer is blended, it is preferable to use these in combination. By using these in combination, the heat aging resistance of the polyamide resin composition tends to be better than when used alone.
  • an organic sulfur stabilizer and an aromatic secondary amine stabilizer As a more preferred combination of an organic sulfur stabilizer and an aromatic secondary amine stabilizer, ditetradecylthiodipropionate, 2-mercaptomethylbenzimidazole and pentaerythritol are used as the organic sulfur stabilizer.
  • At least one selected from tetrakis (3-dodecylthiopropionate) and an aromatic secondary amine stabilizer are 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine and N, N′— Examples thereof include a combination with at least one selected from di-2-naphthyl-p-phenylenediamine.
  • the organic sulfur stabilizer is pentaerythritol tetrakis (3-dodecylthiopropionate), and the aromatic secondary amine stabilizer is N, N′-di-2-naphthyl-p-phenylenediamine. Is more preferable.
  • the content ratio (mass ratio) in the polyamide resin composition is such that the aromatic secondary amine stabilizer /
  • the organic sulfur stabilizer is preferably 0.05 to 15, more preferably 0.1 to 5, and further preferably 0.2 to 2. By setting it as such content ratio, heat aging resistance can be improved efficiently, maintaining barrier property.
  • the inorganic stabilizer a copper compound and a halide are preferable.
  • the copper compound is a copper salt of various inorganic acids or organic acids, and excludes halides described later.
  • the copper may be either cuprous or cupric.
  • Specific examples of the copper salt include copper chloride, copper bromide, copper iodide, copper phosphate, copper stearate, hydrotalcite, and styhite. And natural minerals such as pyrolite.
  • halide used as the inorganic stabilizer examples include, for example, alkali metal or alkaline earth metal halides; ammonium halides and quaternary ammonium halides of organic compounds; alkyl halides, allyl halides. Specific examples thereof include ammonium iodide, stearyltriethylammonium bromide, benzyltriethylammonium iodide, and the like. Among these, alkali metal halide salts such as potassium chloride, sodium chloride, potassium bromide, potassium iodide, sodium iodide and the like are preferable.
  • a combined use of a copper compound and a halide is preferable because it exhibits excellent effects in terms of heat discoloration and weather resistance (light resistance).
  • a copper compound when used alone, the molded product may be colored reddish brown by copper, and this coloring is not preferable depending on the application. In this case, discoloration to reddish brown can be prevented by using a copper compound and a halide together.
  • the stabilizers in particular, from the viewpoint of processing stability at the time of melt molding, heat aging resistance, appearance of molded products, and prevention of coloring, organic sulfur, aromatic secondary amine, and inorganic
  • the stabilizers are particularly preferred.
  • the content of the stabilizer (D) is usually 0.01 to 1 part by mass, preferably 0.01 to 0.8 part by mass with respect to 100 parts by mass of the polyamide resin (A).
  • the content of the stabilizer (D) is usually 0.01 to 1 part by mass, preferably 0.01 to 0.8 part by mass with respect to 100 parts by mass of the polyamide resin (A).
  • the polyamide resin composition of the present invention may be blended with other resins other than the polyamide resin (A) and the copolymerized polyamide (B) as long as the effects of the present invention are not impaired.
  • Other resins are preferably resins having a functional group that reacts with a carbodiimide group.
  • polymers, fluorine resins, vinyl alcohol copolymers such as ethylene-vinyl alcohol, biodegradable resins, and the like and these can be used alone or in combination.
  • the polyamide resin composition of the present invention includes an inorganic filler, a crystal nucleating agent, a conductive agent, a lubricant, a plasticizer, a releasability improver, a pigment, and a dye as long as the purpose of the present invention is not impaired.
  • Dispersants, antistatic agents, ultraviolet absorbers, impact modifiers and other well-known additives can be blended.
  • an inorganic filler glass-based filler (glass fiber, crushed glass fiber (milled fiber), glass flake, glass beads, etc.), calcium silicate-based filler (wollastonite, etc.), Examples include mica, talc, kaolin, potassium titanate whisker, boron nitride, carbon fiber, etc., and two or more of these may be used in combination.
  • nucleating agent it is also preferable to add a nucleating agent in order to increase the crystallization speed and improve the moldability.
  • the nucleating agent include inorganic nucleating agents such as talc and boron nitride, but an organic nucleating agent may be added.
  • a preferable blending amount of the nucleating agent is 0.01 to 6 parts by mass, more preferably 0.03 to 1 part by mass in the case of the organic nucleating agent or boron nitride with respect to 100 parts by mass of the polyamide resin (A). When other nucleating agents are used, the amount is 0.5 to 8 parts by mass, more preferably 1 to 4 parts by mass.
  • the method for producing the polyamide resin composition of the present invention is not particularly limited, and the polyamide resin (A), the copolymerized polyamide (B), and if necessary, the carbodiimide compound (C) and other components may be added in any order.
  • a melt kneading method using various commonly used extruders such as a single screw or twin screw extruder is preferable, and a method using a twin screw extruder is particularly preferable from the viewpoint of productivity and versatility.
  • the melt-kneading temperature is preferably adjusted to 200 to 300 ° C.
  • the residence time is preferably adjusted to 10 minutes or less.
  • the screw has at least one reverse screw element and / or kneading disk, It is preferable to melt and knead while partly staying. By setting the melt-kneading temperature within the above range, it tends to be difficult for extrusion-kneading failure and resin decomposition to occur.
  • a master resin can be produced by melt-kneading a polyamide resin additive at a high concentration in advance, and then diluted with a polyamide resin to produce a composition having a predetermined blending ratio.
  • the polyamide resin composition of the present invention can be molded into various films, sheets, laminated films, laminated sheets, tubes, hoses, pipes, hollow containers, various containers such as bottles, various parts and the like by a conventionally known molding method. Can be molded into a body.
  • the film obtained from the polyamide resin composition of the present invention exhibits a high level of practical physical properties, tensile elastic modulus of 1000 to 2500 MPa, tensile elongation of 200 to 500%, oxygen barrier property of 0.5 to 3.5 cc ⁇ mm / m. 2 ⁇ day ⁇ atm, water absorption of 0.1 to 1.0%.
  • Typical film-forming methods for producing a film or sheet include a T-die method in which a film or sheet extruded from a T-die is cooled and solidified by casting with a chilled roll, and a die to a tube having an annular slit.
  • Examples include an inflation method in which a shaped product is extruded and air is blown into a tube to be expanded and air-cooled or water-cooled to be molded.
  • the film / sheet formed in this manner is used as a stretched film / sheet as it is unstretched or through a stretching process such as uniaxial stretching or biaxial stretching.
  • a single layer may be sufficient and lamination
  • the thickness of the film / sheet is not particularly specified, but the thickness of the polyamide resin monolayer is preferably 2 to 100 ⁇ m for the unstretched film and 2 to 50 ⁇ m for the stretched film / sheet. / The thickness of the entire sheet is about 10 to 300 ⁇ m, and the thickness of the polyamide resin layer is preferably in the same range as the thickness of the single layer.
  • the method for producing the polyamide tube is not particularly limited, and can be produced by employing a known technique.
  • the dry blend or melt-kneaded pellets may be supplied to a tube extruder and molded according to a conventional method.
  • the wall thickness of the tube is preferably 0.1 mm to 2 mm. If the wall thickness is less than 0.1 mm, the shape of the tube cannot be maintained. On the other hand, if the wall thickness exceeds 2 mm, the tube becomes hard and the flexibility of the tube is lost, which makes it difficult to assemble the product.
  • the polyamide resin composition of the present invention can also provide a layer excellent in hydrolysis resistance, barrier properties, flexibility, strength and impact resistance by a single layer or laminated.
  • a multilayer particularly from the viewpoint of the strength of the molded article, it comprises at least one layer comprising the polyamide resin composition of the present invention, and is a polyolefin resin, polystyrene resin, polyester resin, polycarbonate resin or the polyamide resin composition of the present invention.
  • a multilayer molded body in which at least one reinforcing layer made of a polyamide resin, a fluorine-based resin or the like is laminated is preferable.
  • the polyolefin resin used for the reinforcing layer is two types selected from linear low density polyethylene, low density polyethylene, medium density polyethylene, high density polyethylene, ultra high molecular weight high density polyethylene, polypropylene, ethylene, propylene, butene, etc.
  • the copolymer of the above olefin and those mixtures can be illustrated.
  • the polyolefin resin, polystyrene resin, polyester resin, polycarbonate resin, and polyamide resin other than the polyamide resin composition of the present invention exemplified in the reinforcing layer may be used in combination with each other, such as an elastomer. It can also be used by mixing with other resins and additives such as carbon black and flame retardant.
  • the contents were taken out in a strand shape and pelletized with a pelletizer.
  • the obtained pellets were charged into a tumbler and subjected to solid phase polymerization under reduced pressure to obtain a polyamide resin having an adjusted molecular weight.
  • the melting point of the polyamide resin (MXD10) measured by the following method is 191 ° C.
  • the glass transition point is 60 ° C.
  • the number average molecular weight is 30,000
  • the oxygen transmission coefficient is 0.8 cc ⁇ mm / m 2 ⁇ day ⁇ atm. there were.
  • this polyamide resin is abbreviated as “MXD10”.
  • the pressure was increased to 0.3 MPa with nitrogen, and the temperature was raised to 160 ° C. while stirring to uniformly melt sebacic acid.
  • 6026 g (44 mol) of paraxylylenediamine (PXDA) was added dropwise over 170 minutes with stirring. During this time, the internal temperature was continuously raised to 281 ° C.
  • the pressure was controlled to 0.5 MPa, and the generated water was removed from the system through a partial condenser and a cooler. The temperature of the condenser was controlled in the range of 145 to 147 ° C.
  • the pressure was reduced at a rate of 0.4 MPa / hr, and the pressure was reduced to normal pressure in 60 minutes. During this time, the internal temperature rose to 299 ° C. Thereafter, the pressure was reduced at a rate of 0.002 MPa / min, and the pressure was reduced to 0.08 MPa in 20 minutes. Thereafter, the reaction was continued at 0.08 MPa until the torque of the stirring device reached a predetermined value. The reaction time at 0.08 MPa was 10 minutes. Thereafter, the inside of the system was pressurized with nitrogen, and the polymer was taken out from the strand die and pelletized to obtain a polyamide resin.
  • the obtained polyamide resin PXD10 had a melting point of 290 ° C. and a glass transition point of 75 ° C.
  • the number average molecular weight was 25000, and the oxygen permeability coefficient was 2.5 cc ⁇ mm / m 2 ⁇ day ⁇ atm.
  • this polyamide resin is abbreviated as “PXD10”.
  • the melting point of the polyamide resin (MPXD10-1) measured by the method described below is 258 ° C., the glass transition point is 70 ° C., the number average molecular weight is 20,000, and the oxygen transmission coefficient is 2 cc ⁇ mm / m 2 ⁇ day ⁇ atm. Met.
  • this polyamide resin is abbreviated as “MPXD10-1.”
  • (B-1) Copolymer polyamide 6/66/12
  • Product name “UBE Nylon 6434B” manufactured by UBE Industries Inc. Melting point 190 ° C., glass transition point 44 ° C., relative viscosity 4.05 (in 96% sulfuric acid, resin concentration 1 g / 100cc, measured at a temperature of 25 ° C)
  • this polyamide resin is abbreviated as “6/66/12”.
  • Polyamide 6/66 Product name "Ube Nylon 5033B", manufactured by Ube Industries, Ltd. Melting point 196 ° C, glass transition point 46 ° C Relative viscosity 4.08 (measured in 96% sulfuric acid, resin concentration 1 g / 100 cc, temperature 25 ° C.)
  • this polyamide resin is abbreviated as “N6 / 66”.
  • Polyamide 11 Product name “Rilsan BESN OTL”, manufactured by Arkema Melting point 188 ° C., glass transition point 40 ° C., number average molecular weight 27,000
  • this polyamide resin is abbreviated as “N11”.
  • Carbodiimide compound (C) component Alicyclic polycarbodiimide compound, manufactured by Nisshinbo Co., Ltd., trade name “Carbojilite LA-1”
  • this carbodiimide compound is abbreviated as “carbodiimide”.
  • Modified elastomer component Maleic acid-modified ethylene-propylene copolymer, trade name “TAFMER MP0610” manufactured by Mitsui Chemicals, Inc. Hereinafter, it is abbreviated as “modified EPR”.
  • Examples 1 to 5 and Comparative Examples 1 to 8 Each of the above components was dry blended in the proportions shown in Tables 1 and 2 below (all expressed in parts by mass), and the resulting dry blend was measured at a rate of 15 kg / hr using a weighing feeder at a cylinder diameter of 37 mm. Then, it was fed to a twin screw extruder equipped with a kneading type screw having a kneading disk. Melt kneading was performed under the conditions of a cylinder temperature of 230 ° C. and a screw rotation speed of 100 rpm, and the molten strand was cooled and solidified with cooling air, and then pelletized to produce polyamide resin composition pellets.
  • the pellets obtained above were fed into a twin-screw extruder with a T-die having a cylinder diameter of 30 mm (PTM-30, manufactured by Research Laboratory of Plastics Technology Co) at a rate of 1.2 kg / hr using a weighing feeder. Supplied. After extruding at a cylinder temperature of 230 ° C. and a screw rotation speed of 50 rpm, the film-like material is extruded through a T-die and solidified on a 60 ° C. cooling roll while being drawn at a speed of 2.7 m / min. Obtained. Various evaluations described below were performed using the obtained film. The evaluation results are shown in Tables 1 and 2.
  • Example 6 In Example 1, pellets of polyamide resin composition were manufactured by setting the cylinder temperature at the time of pellet manufacturing to the melting point of each polyamide resin + 25 ° C., and films were manufactured by setting the cylinder temperature at the time of film manufacturing to the melting point of each polyamide resin + 25 ° C. Evaluation was performed in the same manner as in Example 1 except that. The evaluation results are shown in Table 1.
  • the number average molecular weight was determined as a PMMA equivalent value by GPC measurement using HLC-8320GPC manufactured by Tosoh Corporation. Note that TSKgel SuperHM-H was used for the measurement column, hexafluoroisopropanol (HFIP) in which 10 mmol / l sodium trifluoroacetate was dissolved was used as the solvent, and the measurement temperature was 40 ° C. A calibration curve was prepared by dissolving 6 levels of PMMA in HFIP. In addition, the number average molecular weight of N6, N11, and N12 is a manufacturer's nominal value.
  • Tensile modulus (unit: MPa) The tensile properties of the film were tested according to JIS K7127 and K7161, and the tensile modulus (MPa) was determined. In addition, the apparatus used the Toyo Seiki Co. (Toyo Seiki Co.) strograph (Strograph), the test piece width
  • Toyo Seiki Co. Toyo Seiki Co. strograph
  • Tensile elongation (unit:%) The tensile properties of the film were tested according to JIS K7127 and K7161, and the tensile fracture strain at the time of film breakage, the nominal strain at the time of tensile fracture, and the nominal strain at the time of tensile strength were obtained, and the value was taken as the tensile elongation.
  • the apparatus used the Toyo Seiki Co., Ltd. strograph, the test piece width
  • the ratio of stress at break before and after heat treatment was defined as the tensile strength retention rate, and the tensile strength retention rate (%) was calculated from the following formula (1). The higher the tensile strength retention rate, the better the hydrolysis resistance and heat aging resistance.
  • Tensile strength retention rate (%) [stress at break of film after heat treatment (MPa) / stress at break of film before heat treatment (MPa)] ⁇ 100 (1)
  • the films of Examples 1 to 8 in which a predetermined amount of copolymerized polyamide 6/66/12 or 6/66/11 was blended with xylylene sebacamide were blended with this.
  • the tensile elongation is 2 to 3 times or more while maintaining the elastic modulus at a high level as compared with Comparative Example 1 that is not, and it can be seen that the film is extremely soft, that is, has both hardness and softness.
  • the film of Comparative Example 2 in which the copolymerized polyamide 6/66/12 is blended in excess of 40 parts by mass has a large decrease in elastic modulus compared to the unblended film and is less than half, and the degree of decrease in gas barrier properties.
  • the haze of the film blended with a predetermined amount of copolymerized polyamide 6/66/12 or 6/66/11 is the same as that of polyether. It can be seen that the film is larger and lower than a film containing a predetermined amount of polymerized polyamide, and is excellent in transparency.
  • Example 9 to 10 and Comparative Examples 9 to 12 Each of the above components was dry blended in the proportions shown in Table 3 below (all expressed in parts by mass) and supplied to a single-screw extruder with a T-die with a cylinder diameter of 30 mm (PTM-30, manufactured by Plastic Engineering Laboratories). . After melt kneading under conditions of a cylinder temperature of 260 ° C. and a screw rotation speed of 30 rpm, the film-like product was extruded through a T die and solidified on a cooling roll to obtain a film having a thickness of 100 ⁇ m.
  • Example 11 to 13 Each of the above components was dry blended in the proportions shown in Table 3 below (all expressed in parts by mass) and supplied to a single-screw extruder with a T-die with a cylinder diameter of 30 mm (PTM-30, manufactured by Plastic Engineering Laboratories). . Melting and kneading were performed under the conditions of a cylinder temperature of the melting point of each polyamide resin + 25 ° C. and a screw rotating speed of 30 rpm, the film-like product was extruded through a T die and solidified on a cooling roll to obtain a film having a thickness of 100 ⁇ m.
  • the tensile elongation is 2 to 3 times or more, and it can be seen that the film is extremely soft, that is, has both hardness and softness.
  • the polyamide resin composition of the present invention is a polyamide resin material having a high elastic modulus, good gas barrier properties, low water absorption, flexible and excellent transparency, various films, sheets, laminated films, laminated sheets , Tubes, hoses, pipes, hollow containers, various containers such as bottles, various parts, etc.

Abstract

【課題】弾性率が高く、ガスバリア性がよく、吸水率が低く、しかも柔軟で透明性に優れたポリアミド樹脂材料を提供する。 【解決手段】ジアミン構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸構成単位の50モル%以上がセバシン酸に由来するポリアミド樹脂(A)100質量部に対し、下記の(B-1)~(B-3)からなる群から選ばれる少なくとも1種の共重合ポリアミド(B)を1~40質量部含有することを特徴とするポリアミド樹脂組成物による。 (B-1):共重合ポリアミド6/66/12 (B-2):共重合ポリアミド6/66/11 (B-3):ポリアミド12単位又はポリアミド11単位とポリエーテル単位から構成されるポリエーテル共重合ポリアミド

Description

ポリアミド樹脂組成物
 本発明は、ポリアミド樹脂組成物に関し、詳しくは、弾性率が高く、ガスバリア性がよく、吸水率が低く、かつ、柔軟性に優れたポリアミド樹脂組成物に関する。
 ポリアミド樹脂は、一般に、機械的性質、耐薬品性、耐油性、ガスバリア性等に優れたエンジニアリングプラスチックスとして、広く使用されている。
 メタキシリレンジアミンとアジピン酸とを重合して得られるポリアミド樹脂(以下「MXD6ポリアミド」ということもある。)は、ポリアミド6やポリアミド66等に比べて高強度、高弾性率、低吸水性であり、なおかつガスバリア性にも優れるため、更にポリエチレンテレフタレート、ポリアミド6、ポリエチレン及びポリプロピレン等の熱可塑性樹脂との共押出や共射出成形が可能であることから、広く利用されている。
 しかしながら、MXD6ポリアミドは、弾性率は高いものの伸びが悪く、これをフィルムやシート等にしたものは、硬過ぎ、剛性が要求される用途には使用できるものの、伸びが要求されるような用途向けには使用できない。また、高湿度雰囲気下での保存中、あるいは水や沸騰水に接触した際に白化・結晶化し、透明性が低下しやすいという問題もあった。これまで、弾性率が高くかつ柔軟性を有するポリアミド樹脂は見出されていなかった。
 本出願人は、特許文献1にて、MXD6ポリアミドに結晶化速度の速い特定の他の脂肪族ポリアミド樹脂(例えばポリアミド6)を混合した組成物を提案した。このポリアミド樹脂組成物より得られるフィルム、シートは、高湿度雰囲気下においても優れた透明性を保つという優れた特徴を有するが、吸水率を増加させる欠点があり、また、他のポリアミド樹脂を混合することによりMXD6ポリアミド単独の場合と比較し、ガスバリア性が低下するという問題点があった。また、柔らかさを求められる用途には柔軟性が不足していた。
 一方、メタキシリレンジアミンとセバシン酸とを重縮合して得られるポリアミド樹脂(以下、「MXD10ポリアミド」ということがある。)が提案され、MXD6ポリアミドに比べて伸び特性が良いことから、フィルム等の用途分野での使用が期待される。しかしながら、得られるフィルム等はそれなりの伸びを示すものの十分なものではなく、フィルム、シート、チューブ等には、更なる改善が求められていた。
特開平4-198329号公報
 本発明の目的は、以上のような状況から、弾性率が高く、ガスバリア性がよく、吸水率が低く、しかも、柔軟性に優れたポリアミド樹脂組成物を提供することにある。
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、キシリレンジアミンとセバシン酸からなるポリアミド樹脂(以下、「XD10ポリアミド」ということがある。)に、共重合ポリアミド6/66/12、共重合ポリアミド6/66/11及び特定のポリエーテル共重合ポリアミドから選ばれる共重合ポリアミド(B)を、特定量配合することにより、上記目的に適うポリアミド樹脂組成物が得られることを見出し、本発明を完成するに到った。
 すなわち、本発明の第1の発明によれば、ジアミン構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸構成単位の50モル%以上がセバシン酸に由来するポリアミド樹脂(A)100質量部に対し、下記の(B-1)~(B-3)からなる群から選ばれる少なくとも1種の共重合ポリアミド(B)を1~40質量部含有することを特徴とするポリアミド樹脂組成物が提供される。
(B-1):共重合ポリアミド6/66/12
(B-2):共重合ポリアミド6/66/11
(B-3):ポリアミド12単位又はポリアミド11単位とポリエーテル単位から構成されるポリエーテル共重合ポリアミド
 また、本発明の第2の発明によれば、第1の発明において、キシリレンジアミンが、メタキシリレンジアミン、パラキシリレンジアミン又はこれらの混合物であることを特徴とするポリアミド樹脂組成物が提供される。
 また、本発明の第3の発明によれば、第1の発明において、ポリアミド樹脂(A)が、メタキシリレンジアミン、パラキシリレンジアミン又はこれらの混合物とセバシン酸とを重縮合して得られるポリアミド樹脂であることを特徴とするポリアミド樹脂組成物が提供される。
 また、本発明の第4の発明によれば、第1の発明において、さらに、カルボジイミド化合物(C)を、ポリアミド樹脂(A)100質量部に対し、0.1~2質量部含有することを特徴とするポリアミド樹脂組成物が提供される。
 また、本発明の第5の発明によれば、第4の発明において、カルボジイミド化合物(C)が、脂肪族又は脂環式ポリカルボジイミド化合物であることを特徴とするポリアミド樹脂組成物が提供される。
 また、本発明の第6の発明によれば、第1の発明において、さらに、安定剤(D)を、ポリアミド樹脂(A)100質量部に対し、0.01~1質量部含有することを特徴とするポリアミド樹脂組成物が提供される。
 また、本発明の第7の発明によれば、第6の発明において、安定剤(D)が、無機系、芳香族第2級アミン系又は有機硫黄系の安定剤から選ばれることを特徴とするポリアミド樹脂組成物が提供される。
 また、本発明の第8の発明によれば、第1の発明において、フィルムにした際の引張弾性率(E)が、ポリアミド樹脂(A)をフィルムにした際の引張弾性率(E)に対し、70~97%の弾性率を示すことを特徴とするポリアミド樹脂組成物が提供される。
 また、本発明の第9の発明によれば、第1~8のいずれかの発明のポリアミド樹脂組成物を成形してなる成形品が提供される。
 さらに、本発明の第10の発明によれば、第9の発明において、成形品がフィルム、シート又はチューブであることを特徴とする成形品が提供される。
 本発明は、XD10系ポリアミド樹脂(A)と、(B-1)共重合ポリアミド6/66/12、(B-2)共重合ポリアミド6/66/11、及び(B-3)ポリアミド12単位又はポリアミド11単位とポリエーテル単位から構成されるポリエーテル共重合ポリアミドとが特異的に極めて馴染みがよいことが見出され、そしてこれら共重合ポリアミド(B)を、XD10系ポリアミド樹脂(A)100質量部に対し、1~40質量部という特定量を配合すると、驚くべきことに、弾性率に優れていながら、極めて高い引張伸びが発現し、柔らかく、ガスバリア性も優れ、しかも透明性に優れたポリアミド樹脂材料が達成できることを見出したものである。本発明によれば、弾性率が高く、ガスバリア性がよく、吸水率が低く、しかも、柔軟性に優れたポリアミド樹脂組成物が得られる。特に、(B-1)共重合ポリアミド6/66/12、(B-2)共重合ポリアミド6/66/11は、XD10系ポリアミド樹脂(A)と混合した際に透明性に優れる。
 特に、本発明のポリアミド樹脂組成物を使用して得られる成形品は、従来の技術では達成不可能であったレベルの柔らかさを有するものであり、フィルム、シートあるいはチューブ等として、各種用途での使用が期待される。
 本発明のポリアミド樹脂組成物は、弾性率とガスバリア性に優れ吸水しにくく、しかも柔軟性に優れたポリアミド樹脂材料を提供するので、各種のフィルム、シート、積層フィルム、積層シート、チューブ、ホース、パイプ、中空容器、ボトル等の各種容器、各種部品等、種々の成形体に好適に使用することができる。
 本発明のポリアミド樹脂組成物におけるポリアミド樹脂(A)としては、ジアミン構成単位(ジアミンに由来する構成単位)とジカルボン酸構成単位(ジカルボン酸に由来する構成単位)からなるポリアミド樹脂であって、ジアミン構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸構成単位の50モル%以上がセバシン酸に由来するポリアミド樹脂(A)を使用する。
 ポリアミド樹脂(A)は、キシリレンジアミンを70モル%以上、好ましくは80モル%以上含むジアミン成分と、セバシン酸を50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上含むジカルボン酸成分を重縮合させることにより得られる。
 ここでキシリレンジアミンが70モル%未満では、最終的に得られるポリアミド樹脂組成物のバリア性が十分でなく、セバシン酸が50モル%に満たないと、ポリアミド樹脂組成物が硬くなり加工性が悪くなる。
 キシリレンジアミンは、メタキシリレンジアミン、パラキシリレンジアミン又はこれらの混合物を使用することが好ましい。混合して使用する場合は、任意の割合にて使用できるが、耐熱性を重視する場合は、メタキシリレンジアミン0~50モル%及びパラキシレンジアミン50~100モル%が好ましく、フィルムにする際の成形加工性を重視する場合は、メタキシリレンジアミン50~100モル%及びパラキシレンジアミン0~50モル%が好ましい。
 ポリアミド樹脂(A)の原料ジアミン成分として用いるキシリレンジアミン以外のジアミンとしては、テトラメチレンジアミン、ペンタメチレンジアミン、2-メチルペンタンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチル-ヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン等の脂肪族ジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ビス(4-アミノシクロヘキシル)メタン、2,2-ビス(4-アミノシクロヘキシル)プロパン、ビス(アミノメチル)デカリン(構造異性体を含む。)、ビス(アミノメチル)トリシクロデカン(構造異性体を含む。)等の脂環式ジアミン、ビス(4-アミノフェニル)エーテル、パラフェニレンジアミン、ビス(アミノメチル)ナフタレン(構造異性体を含む。)等の芳香環を有するジアミン等を例示することができ、1種又は2種以上を混合して使用できる。
 ジアミン成分として、キシリレンジアミン以外のジアミンを用いる場合は、ジアミン構成単位の30モル%未満であり、好ましくは1~25モル%、特に好ましくは5~20モル%の割合で用いる。
 ポリアミド樹脂(A)の原料ジカルボン酸成分として用いるセバシン酸は、50モル%以上、好ましくは70モル%以上、より好ましくは80モル%以上を使用する。
 セバシン酸以外の原料ジカルボン酸成分としては、セバシン酸以外の炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸が好ましく使用でき、例えばコハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、アジピン酸、ウンデカン二酸、ドデカン二酸等の脂肪族ジカルボン酸が例示でき、1種又は2種以上を混合して使用できるが、これらの中でもポリアミド樹脂の融点が成形加工するのに適切な範囲となることから、アジピン酸が特に好ましい。
 セバシン酸以外のジカルボン酸成分としては、芳香族ジカルボン酸も使用でき、イソフタル酸、テレフタル酸、オルソフタル酸等のフタル酸化合物、1,2-ナフタレンジカルボン酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、1,6-ナフタレンジカルボン酸、1,7-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、2,3-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸といった異性体等のナフタレンジカルボン酸等が例示され、1種又は2種以上を混合して使用できる。
 また、安息香酸、プロピオン酸、酪酸等のモノカルボン酸、トリメリット酸、ピロメリット酸等の多価カルボン酸、無水トリメリット酸、無水ピロメリット酸等のカルボン酸無水物等も併用することもできる。
 セバシン酸以外のジカルボン酸成分として、炭素原子数4~20のα,ω-直鎖脂肪族ジカルボン酸以外のジカルボン酸を用いる場合は、成形加工性、バリア性の点から、イソフタル酸を用いることが好ましい。イソフタル酸の割合は、ジカルボン酸構成単位の30モル%未満であり、好ましくは1~25モル%、特に好ましくは5~20モル%の範囲である。
 ポリアミド樹脂(A)は、キシリレンジアミンを70モル%以上含むジアミン成分と、セバシン酸を50モル%以上含むジカルボン酸成分とを重縮合して得られたものであるが、その製造方法は特に限定されるものではなく、常圧溶融重合法、加圧溶融重合法等の従来公知の方法、重合条件により製造される。
 例えば、キシリレンジアミンとセバシン酸からなるポリアミド塩を水の存在下に、加圧下で昇温し、加えた水および縮合水を取り除きながら溶融状態で重合させる方法により製造される。また、キシリレンジアミンを溶融状態のセバシン酸に直接加えて、常圧下で重縮合する方法によっても製造される。この場合、反応系を固化させることの無いように、キシリレンジアミンを連続的に加えて、その間の反応温度が生成するオリゴアミド及びポリアミドの融点以上となるように反応系を昇温しつつ、重縮合が進められる。
 重縮合によりポリアミド樹脂(A)を得る際には、重縮合反応系に、ε-カプロラクタム、ω-ラウロラクタム、ω-エナントラクタム等のラクタム類、6-アミノカプロン酸、7-アミノヘプタン酸、11-アミノウンデカン酸、12-アミノドデカン酸、9-アミノノナン酸、パラアミノメチル安息香酸等のアミノ酸等を、性能を損なわない範囲で加えても良い。
 ポリアミド樹脂(A)は、さらに加熱処理し、溶融粘度を増大させたものを用いることもできる。
 加熱処理する方法として、例えば、回転ドラム等の回分式加熱装置を用いて、不活性ガス雰囲気中もしくは減圧下において、水の存在下で緩やかに加熱し、融着を回避しつつ結晶化させた後、更に加熱処理を行う方法、溝型攪拌加熱装置を用いて、不活性ガス雰囲気中で加熱し、結晶化させた後、ホッパー形状の加熱装置を用いて、不活性ガス雰囲気中で加熱処理する方法、溝型攪拌加熱装置を用いて結晶化させた後、回転ドラム等の回分式加熱装置を用いて加熱処理を行う方法等が挙げられる。
 なかでも、回分式加熱装置を用いて、結晶化ならびに加熱処理を行う方法が好ましい。結晶化処理の条件としては、溶融重合で得られたポリアミド樹脂に対して1~30質量%の水の存在下、かつ、0.5~4時間かけて70~120℃まで昇温することにより結晶化し、次いで、不活性ガス雰囲気中又は減圧下で、〔溶融重合で得られたポリアミド樹脂の融点-50℃〕~〔溶融重合で得られたポリアミド樹脂の融点-10℃〕の温度で1~12時間加熱処理する条件が好ましい。
 ポリアミド樹脂(A)の融点は150℃~310℃の範囲に制御することが好ましく、より好ましくは160~300℃、さらに好ましくは170~290℃である。融点を上記範囲とすることにより、加工性がよくなる傾向にあり好ましい。
 また、ポリアミド樹脂(A)のガラス転移点は50~130℃の範囲であることが好ましい。ガラス転移点を上記範囲とすることによりバリア性が良好となる傾向にあり好ましい。
 なお、本発明において、ポリアミド樹脂(A)及び後述の共重合ポリアミド(B-1)~(B-3)の融点及びガラス転移点は、示差走査熱量測定(DSC)法によって測定することができ、試料を一度加熱溶融させ熱履歴による結晶性への影響をなくした後、再度昇温して測定される融点、ガラス転移点をいう。具体的には、例えば、30℃から予想される融点以上の温度まで10℃/minの速度で昇温し、2分間保持した後、30℃まで20℃/minの速度で降温する。次いで、10℃/minの速度で融点以上の温度まで昇温し、融点、ガラス転移点を求めることができる。
 ポリアミド樹脂(A)は、末端アミノ基濃度が好ましくは100μeq/g未満、より好ましくは5~75μeq/g、さらに好ましくは10~50μeq/g、末端カルボキシル基濃度が好ましくは100μeq/g未満、より好ましくは10~90μeq/g、さらに好ましくは10~50μeq/gのものが好適に用いられる。末端アミノ基濃度及び末端カルボキシル基濃度を上記範囲とすることにより、カルボジイミド化合物との反応が容易になり、耐加水分解性が良好となる傾向にある。
 ポリアミド樹脂(A)は、96%硫酸中、樹脂濃度1g/100cc、温度25℃で測定した相対粘度が1.7~4であるものが好ましく、1.9~3.8であるものがより好ましい。
 ポリアミド樹脂(A)の数平均分子量は、好ましくは6,000~50,000であり、より好ましくは10,000~43,000である。上記の範囲であると機械的強度および成形性が良好な傾向となる。
 ポリアミド樹脂(A)には、溶融成形時の加工安定性を高めるため、或いはポリアミド樹脂の着色を防止するためにリン化合物が含まれていても良い。リン化合物としては、アルカリ金属又はアルカリ土類金属を含むリン化合物が好適に使用され、例えば、ナトリウム、マグネシウム、カルシウム等のリン酸塩、次亜リン酸塩、亜リン酸塩が挙げられる。なかでも、アルカリ金属又はアルカリ土類金属の次亜リン酸塩を含有させると、ポリアミド樹脂の着色防止効果に特に優れるため好ましい。リン化合物を使用する場合は、ポリアミド樹脂組成物(A)中のリン原子濃度として200ppm以下、好ましくは160ppm以下、さらに好ましくは100ppm以下となるように、ポリアミド樹脂(A)中に含有させることが望ましい。
 なお、ポリアミド樹脂(A)には、上記のリン化合物の他に、本発明の効果を損なわない範囲で、滑剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、核剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、ゲル化防止剤等の添加剤等を加えることもできるが、以上に示したものに限定されることなく、種々の材料を混合して加えても良い。
 本発明において、ポリアミド樹脂(A)には、(B-1)共重合ポリアミド6/66/12、(B-2)共重合ポリアミド6/66/11または(B-3)ポリアミド12単位又はポリアミド11単位とポリエーテル単位から構成されるポリエーテル共重合ポリアミドを配合する。
 共重合ポリアミド6/66/12(B-1)は、ポリアミド6単位(カプラミド単位)およびポリアミド66単位(ヘキサメチレンアジパミド単位)とポリアミド12単位(ドデカンアミド単位)を含む3元系もしくは4元系以上の共重合ポリアミドである。
 共重合ポリアミド6/66/12(B-1)は、カプロラクタム等のポリアミド6形成性成分と、ヘキサメチレンジアミンとアジピン酸等のポリアミド66形成性成分と、12-アミノドデカン酸またはドデカンラクタム等のポリアミド12形成性成分とから、必要によりその他の重縮合原料を用い、共重合して得ることができる。
 共重合ポリアミド6/66/12(B-1)の共重合割合は、好ましくは、ポリアミド6単位が60~95質量%、より好ましくは、70~90質量%、さらに好ましくは75~85質量%であり、ポリアミド66単位が0.5~25質量%、より好ましくは、1~20質量%、さらに好ましくは5~15質量%、ポリアミド12単位が0.5~25質量%、より好ましくは、1~15質量%、さらに好ましくは3~10質量%である。共重合ポリアミド6/66/12(B-1)の共重合割合が上記の範囲であると、ポリアミド樹脂(A)との混合性が良好となり、透明性、柔軟性等に優れた樹脂組成物を得やすい傾向となる。
 また、共重合ポリアミド6/66/12(B-1)は、3元系共重合体に限定される必要はなく、さらに他の共重合単位を含む4元系以上の共重合体であってもよい。
 このようなポリアミド成分としては、脂肪族アミド成分が好ましく、ポリアミド11(ポリウンデカンアミド)、ポリアミド9(ポリ-ω-アミノノナン酸)、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド610(ポリヘキサメチレンセバカミド)、等の脂肪族アミド成分が好ましく挙げられる。
 また、テレフタル酸やイソフタル酸等の芳香族ジカルボン酸成分や、キシリレンジアミン等の芳香族ジアミン成分を加えた共重合体であってもよい。
 共重合ポリアミド6/66/12を製造する方法に制限はなく、従来公知の方法を適用することができる。重合方法としては、溶融重合、溶液重合、固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。
 例えば、上記ラクタム成分、ジアミン成分、ジカルボン酸成分を、あるいはこれらは塩の形でもよく、さらに水とを、オートクレーブ中にて180~220℃まで昇温し、加圧下に所定時間保持してアミド化し、その後常圧まで戻し、再度210~260℃まで昇温し、所定時間保持した後、共重合ポリアミドを得ることができる。
 また、共重合ポリアミド6/66/12は、市販されており、これらの中から適宜選択してもよい。
 また、本発明に使用する共重合ポリアミド6/66/11(B-2)は、ポリアミド6単位(カプラミド単位)およびポリアミド66単位(ヘキサメチレンアジパミド単位)とポリアミド11単位(ウンデカンアミド単位)を含む3元系もしくは4元系以上の共重合ポリアミドである。
 共重合ポリアミド6/66/11(B-2)は、カプロラクタム等のポリアミド6形成性成分と、ヘキサメチレンジアミンとアジピン酸等のポリアミド66形成性成分と、11-アミノウンデカン酸またはウンデカンラクタム等のポリアミド11形成性成分とから、必要によりその他の重縮合原料を用い、共重合して得ることができる。
 共重合ポリアミド6/66/11(B-2)の共重合割合は、好ましくは、ポリアミド6単位が60~95質量%、より好ましくは、70~90質量%、さらに好ましくは75~85質量%であり、ポリアミド66単位が0.5~25質量%、より好ましくは、1~20質量%、さらに好ましくは5~15質量%ポリアミド11単位が0.5~25質量%、より好ましくは、1~15質量%、さらに好ましくは3~10質量%である。共重合ポリアミド6/66/11(B-2)の共重合割合が上記の範囲であると、ポリアミド樹脂(A)との混合性が良好となり、透明性、柔軟性等に優れた樹脂組成物を得やすい傾向にある。
 また、共重合ポリアミド6/66/11(B-2)は、3元系共重合体に限定される必要はなく、さらに他の共重合単位を含む4元系以上の共重合体であってもよい。
 このようなポリアミド成分としては、脂肪族アミド成分が好ましく、ポリアミド12(ポリドデカンアミド)、ポリアミド9(ポリ-ω-アミノノナン酸)、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド610(ポリヘキサメチレンセバカミド)、等の脂肪族アミド成分が好ましく挙げられる。
 また、テレフタル酸やイソフタル酸等の芳香族ジカルボン酸成分や、キシリレンジアミン等の芳香族ジアミン成分を加えた共重合体であってもよい。
 共重合ポリアミド6/66/11を製造する方法に制限はなく、従来公知の方法を適用することができる。重合方法としては、溶融重合、溶液重合、固相重合等の公知の方法を用い、常圧、減圧、加圧操作を繰り返して重合することができる。
 例えば、上記ラクタム成分、ジアミン成分、ジカルボン酸成分を、あるいはこれらは塩の形でもよく、さらに水とを、オートクレーブ中にて180~220℃まで昇温し、加圧下に所定時間保持してアミド化し、その後常圧まで戻し、再度210~260℃まで昇温し、所定時間保持した後、共重合ポリアミドを得ることができる。
 また、本発明に使用する、ポリアミド12単位又はポリアミド11単位とポリエーテル単位から構成されるポリエーテル共重合ポリアミド(B-3)は、ポリアミド12単位(ドデカンアミド単位)又はポリアミド11単位(ウンデカンアミド単位)とポリオキシアルキレングリコールなどのポリエーテル単位とから主として構成される。通常は、ポリアミド12単位又はポリアミド11単位を含むポリアミド単位が15~90質量%とポリエーテル単位が85~10質量%とから主として構成される。本発明で用いるポリエーテル共重合ポリアミド(B-3)は、セグメント化共重合体であることが好ましい。
 ポリエーテル共重合ポリアミド(B-3)を構成するポリエーテル単位としては、ポリオキシアルキレンオキサイド単位が好ましい。ポリオキシアルキレンオキサイド単位は、炭素数2~4のオキシアルキレン単位からなり、200~8,000の分子量を有するものが好ましく、具体的にはポリエチレンオキサイド、ポリプロピレンオキサイド、ポリブチレンオキサイド(またはこれらのグリコール)等が挙げられる。
 ポリエーテル共重合ポリアミド(B-3)は、融点又は軟化点が、好ましくは175℃以下であり、より好ましくは170℃以下である。このようなポリエーテル共重合ポリアミド(B-3)を用いることにより、ポリアミド樹脂(A)中での分散性がより向上するという利点がある。
 なお、軟化点とは、JIS K2207規格に準拠して測定される温度である。
 ポリエーテル共重合ポリアミド(B-3)は、公知の方法で製造でき、例えば、ウンデカンラクタム又は11-アミノウンデカン酸等のポリアミド11形成性成分、あるいはドデカンラクタム又は12-アミノドデカン酸等のポリアミド12形成性成分と、さらにその他のポリアミド形成性成分からポリアミドセグメントを形成し、これにポリエーテルセグメントを加えて、高温、減圧下で重合を行う等の方法により製造できる。
 また、ポリエーテル共重合ポリアミド(B-3)は、市販されており、これらの中から適宜選択してもよい。
 上記した共重合ポリアミド(B-1)~(B-3)(以下、(B-1)~(B-3)のこれら共重合ポリアミドを併せて「ポリアミド(B)」ということがある。)は、その末端アミノ基濃度が1~100μeq/gであることが好ましく、より好ましくは2~50μeq/gであり、末端カルボキシル基濃度が好ましくは1~100μeq/g、より好ましくは2~50μeq/gのものが好適に用いられる。末端アミノ基濃度及び末端カルボキシル基濃度を上記範囲とすることにより、後記するカルボジイミド化合物との反応が容易になり、耐加水分解性が良好となる傾向にある。
 共重合ポリアミド(B)の数平均分子量は、15,000~35,000であることが好ましい。数平均分子量を上記範囲とすることにより、ポリアミド樹脂(A)中での分散性が良好となり、耐加水分解性及び柔軟性が向上する傾向にある。また、96%硫酸中、樹脂濃度1g/100cc、温度25℃で測定された相対粘度は1.5~4.5のものが好ましく、1.6~4.2のものがより好ましく、1.8~4のものを使用するのがさらに好ましい。
 本発明のポリアミド樹脂組成物は、ポリアミド樹脂(A)100質量部に対して、共重合ポリアミド(B)(すなわち、(B-1)、(B-2)及び(B-3)の合計)を、1~40質量部含有するものであり、1質量部未満では、伸びの改良が不十分で柔軟性が得られず、40質量部を超えると、強度、弾性率が低下し、吸水率が上昇する。好ましい含有量は、5~35質量部、より好ましくは10~30質量部である。
 本発明のポリアミド樹脂組成物には、カルボジイミド化合物(C)を配合することが好ましい。カルボジイミド化合物(C)としては、種々の方法で製造した芳香族、脂肪族又は脂環式のポリカルボジイミド化合物が好ましく挙げられる。これらの中で、押出時等の溶融混練性の面から、脂肪族又は脂環式ポリカルボジイミド化合物が好ましく、脂環式ポリカルボジイミド化合物がより好ましく用いられる。
 これらのカルボジイミド化合物(C)は、有機ポリイソシアネートを脱炭酸縮合反応することで製造することができる。例えば、カルボジイミド化触媒の存在下、各種有機ポリイソシアネートを約70℃以上の温度で不活性溶媒中、もしくは溶媒を使用することなく、脱炭酸縮合反応させることによって合成する方法等を挙げることができる。イソシアネート基含有率は好ましくは0.1~5質量%、より好ましくは1~3質量%である。上記のような範囲とすることにより、ポリアミド樹脂(A)及び共重合ポリアミド(B)との反応が容易となり、耐加水分解性が良好となる傾向にある。
 カルボジイミド化合物(C)の合成原料である有機ポリイソシアネートとしては、例えば芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環式ジイソシアネート等の各種有機ジイソシアネートやこれらの混合物を使用することができる。
 有機ジイソシアネートとしては、具体的には、1,5-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4-ジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6-ジイソプロピルフェニルイソシアネート、1,3,5-トリイソプロピルベンゼン-2,4-ジイソシアネート、メチレンビス(4,1-シクロへキシレン)=ジイソシアネート等を例示することができ、2種以上を併用してもよい。これらの中でも、ジシクロヘキシルメタン-4,4-ジイソシアネート、メチレンビス(4,1-シクロヘキシレン)=ジイソシアネートが好ましい。
 カルボジイミド化合物(C)の末端を封止してその重合度を制御するためにモノイソシアネート等の末端封止剤を使用することも好ましい。モノイソシアネートとしては、例えば、フェニルイソシアネート、トリルイソシアネート、ジメチルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等が挙げられ、2種以上を併用してもよい。
 なお、末端封止剤としては、上記のモノイソシアネートに限定されることはなく、イソシアネートと反応し得る活性水素化合物であればよい。このような活性水素化合物としては、脂肪族、芳香族、脂環式の化合物の中で、メタノール、エタノール、フェノール、シクロヘキサノール、N-メチルエタノールアミン、ポリエチレングリコールモノメチルエーテル、ポリプロピレングリコールモノメチルエーテル等の-OH基を持つ化合物、ジエチルアミン、ジシクロヘキシルアミン等の2級アミン、ブチルアミン、シクロヘキシルアミン等の1級アミン、コハク酸、安息香酸、シクロヘキサンカルボン酸等のカルボン酸、エチルメルカプタン、アリルメルカプタン、チオフェノール等のチオール類やエポキシ基を有する化合物等を例示することができ、2種以上を併用してもよい。
 カルボジイミド化触媒としては、例えば、1-フェニル-2-ホスホレン-1-オキシド、3-メチル-1-フェニル-2-ホスホレン-1-オキシド、1-エチル-2-ホスホレン-1-オキシド、3-メチル-2-ホスホレン-1-オキシド及びこれらの3-ホスホレン異性体等のホスホレンオキシド等、チタン酸テトラブチル等の金属触媒等を使用することができ、これらのなかでは、反応性の面から3-メチル-1-フェニル-2-ホスホレン-1-オキシドが好適である。カルボジイミド化触媒は、2種以上併用してもよい。
 カルボジイミド化合物(C)の含有量は、ポリアミド樹脂(A)100質量部に対し0.1~2質量部であり、好ましくは、0.2~1.5質量部、さらに好ましくは、0.3~1.5質量部である。0.1質量部未満では樹脂組成物の耐加水分解性が十分ではなく、押出等の溶融混練時の吐出ムラが発生しやすく、溶融混練が不十分となりやすい。一方、2質量部を超えると、溶融混練時の樹脂組成物の粘度が著しく増加し、溶融混練性、成形加工性が悪くなりやすい。
 また、本発明のポリアミド樹脂組成物には、安定剤(D)を配合することが好ましい。安定剤としては、例えば、リン系、ヒンダードフェノール系、ヒンダードアミン系、有機硫黄系、シュウ酸アニリド系、芳香族第2級アミン系などの有機系安定剤、銅化合物やハロゲン化物などの無機系安定剤が好ましい。リン系安定剤としては、ホスファイト化合物およびホスホナイト化合物が好ましい。
 ホスファイト化合物としては、例えば、ジステアリルペンタエリスリトールジホスファイト、ジノニルフェニルペンタエリスリトールジホスファイト、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-イソプロピルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-sec-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-t-ブチル-4-t-オクチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト等が挙げられ、特に、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイトが好ましい。
 ホスホナイト化合物としては、例えば、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,5-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,3,4-トリメチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,3-ジメチル-5-エチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-t-ブチル-5-エチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,3,4-トリブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4,6-トリ-t-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト等が挙げられ、特に、テトラキス(2,4-ジ-t-ブチルフェニル)-4,4’-ビフェニレンジホスホナイトが好ましい。
 ヒンダードフェノール系安定剤としては、例えば、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマイド)等が挙げられる。これらの中では、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,6-ヘキサンジオール-ビス[3-(3,5-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマイド)が好ましい。
 ヒンダードアミン系安定剤としては、例えば、2,2,6,6-テトラメチルピペリジン骨格を有する周知のヒンダ-ドアミン化合物が挙げられる。ヒンダードアミン系化合物の具体例としては、4-アセトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-アクリロイルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェニルアセトキシ-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、4-メトキシ-2,2,6,6-テトラメチルピペリジン、4-ステアリルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン、4-ベンジルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェノキシ-2,2,6,6-テトラメチルピペリジン、4-エチルカルバモイルオキシ-2,2,6,6-テトラメチルピペリジン、4-シクロヘキシルカルバモイルオキシ-2,2,6,6-テトラメチルピペリジン、4-フェニルカルバモイルオキシ-2,2,6,6-テトラメチルピペリジン、ビス(2,2,6,6-テトラメチル-4-ピペリジル)カーボネイト、ビス(2,2,6,6-テトラメチル-4-ピペリジル)オキサレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)マロネート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)アジペート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)テレフタレート、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)エタン、α,α’-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)-p-キシレン、ビス(2,2,6,6-テトラメチル-4-ピペリジルトリレン)-2,4-ジカルバメート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)ヘキサメチレン-1,6-ジカルバメート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,5-トリカルボキシレート、トリス(2,2,6,6-テトラメチル-4-ピペリジル)-ベンゼン-1,3,4-トリカルボキシレート、1-[2-{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ}ブチル]-4-[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]2,2,6,6-テトラメチルピペリジン、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールとβ,β,β’,β’,-テトラメチル-3,9-[2,4,8,10-テトラオキサスピロ(5,5)ウンデカン]ジエタノールとの縮合物、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6,-テトラメチルピペリジンの重縮合物、1,3-ベンゼンジカルボキサミド-N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)等が挙げられる。
 ヒンダードアミン系化合物の商品としては、ADEKA社(ADEKA CORPORATION)製の商品「アデカスタブ(ADK STAB)LA-52、LA-57、LA-62、LA-67、LA-63P、LA-68LD、LA-77、LA-82、LA-87」、チバ・スペシャルティ・ケミカルズ社(Ciba Specialty Chemicals Inc.)製の商品「チヌビン(TINUVIN)622、944、119、770、144」、住友化学社(Sumitomo Chemical Company)製の商品「スミソーブ(SUMISORB)577」、サイアミド社(American Cyanamid Company)製の商品「サイアソープ(CYASORB)UV-3346、3529、3853」、クラリアント・ジャパン社(Clariant Japan)製の商品「ナイロスタブ(Nylostab)S-EED」等が挙げられる。
 有機硫黄系安定剤としては、例えば、ジドデシルチオジプロピオネート、ジテトラデシルチオジプロピオネート、ジオクタデシルチオジプロピオネート、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)、チオビス(N-フェニル-β-ナフチルアミン)等の有機チオ酸系化合物、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、2-メルカプトメチルベンゾイミダゾール及び2-メルカプトベンゾイミダゾールの金属塩等のメルカプトベンゾイミダゾール系化合物、ジエチルジチオカルバミン酸の金属塩、及びジブチルジチオカルバミン酸の金属塩等のジチオカルバミン酸系化合物、並びに1,3-ビス(ジメチルアミノプロピル)-2-チオ尿素、及びトリブチルチオ尿素等のチオウレア系化合物、テトラメチルチウラムモノサルファイド、テトラメチルチウラムジサルファイド、ニッケルジブチルジチオカルバメート、ニッケルイソプロピルキサンテート、トリラウリルトリチオホスファイト等が挙げられる。
 これらの中でも、メルカプトベンゾイミダゾール系化合物、ジチオカルバミン酸系化合物、チオウレア系化合物、及び有機チオ酸系化合物が好ましく、メルカプトベンゾイミダゾール系化合物、及び有機チオ酸系化合物がさらに好ましい。特に、チオエーテル構造を有するチオエーテル系化合物は、酸化された物質から酸素を受け取って還元するため、好適に使用することができる。具体的には、2-メルカプトベンゾイミダゾール、2-メルカプトメチルベンゾイミダゾール、ジテトラデシルチオジプロピオネート、ジオクタデシルチオジプロピオネート、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)がより好ましく、ジテトラデシルチオジプロピオネート、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)、2-メルカプトメチルベンゾイミダゾールがさらに好ましく、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)が特に好ましい。
 有機硫黄系化合物の分子量は、通常200以上、好ましくは500以上であり、その上限は通常3,000である。
 シュウ酸アニリド系安定剤としては、好ましくは、4,4’-ジオクチルオキシオキサニリド、2,2’-ジエトキシオキサニリド、2,2’-ジオクチルオキシ-5,5’-ジ-第三ブトキサニリド、2,2’-ジドデシルオキシ-5,5’-ジ-第三ブトキサニリド、2-エトキシ-2’-エチルオキサニリド、N,N’-ビス(3-ジメチルアミノプロピル)オキサニリド、2-エトキシ-5-第三ブチル-2’-エトキサニリド及びその2-エトキシ-2’-エチル-5,4’-ジ-第三ブトキサニリドとの混合物、o-及びp-メトキシ-二置換オキサニリドの混合物、o-及びp-エトキシ-二置換オキサニリドの混合物などが挙げられる。
 芳香族第2級アミン系安定剤としては、ジフェニルアミン骨格を有する化合物、フェニルナフチルアミン骨格を有する化合物及びジナフチルアミン骨格を有する化合物が好ましく、ジフェニルアミン骨格を有する化合物、およびフェニルナフチルアミン骨格を有する化合物がさらに好ましい。具体的には、p,p’-ジアルキルジフェニルアミン(アルキル基の炭素数は8~14)、オクチル化ジフェニルアミン、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、p-(p-トルエンスルホニルアミド)ジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、N-フェニル-N’-イソプロピル-p-フェニレンジアミン、N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン及びN-フェニル-N’-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-p-フェニレンジアミン等のジフェニルアミン骨格を有する化合物、N-フェニル-1-ナフチルアミン及びN,N’-ジ-2-ナフチル-p-フェニレンジアミン等のフェニルナフチルアミン骨格を有する化合物、及び2,2’-ジナフチルアミン、1,2’-ジナフチルアミン、及び1,1’-ジナフチルアミン等のジナフチルアミン骨格を有する化合物が挙げられる。これらの中でも4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン及びN,N’-ジフェニル-p-フェニレンジアミンがより好ましく、N,N’-ジ-2-ナフチル-p-フェニレンジアミン及び4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミンが特に好ましい。
 上記の有機硫黄系安定剤または芳香族第2級アミン系安定剤を配合する場合は、これらを併用することが好ましい。これらを併用することによって、それぞれ単独で使用した場合よりも、ポリアミド樹脂組成物の耐熱老化性が良好となる傾向にある。
 より具体的な有機硫黄系安定剤及び芳香族第2級アミン系安定剤の好適な組み合わせとしては、有機硫黄系安定剤として、ジテトラデシルチオジプロピオネート、2-メルカプトメチルベンゾイミダゾール及びペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)から選ばれる少なくとも1種と、芳香族第2級アミン系安定剤が、4,4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン及びN,N’-ジ-2-ナフチル-p-フェニレンジアミンから選ばれる少なくとも1種との組み合わせが挙げられる。さらに、有機硫黄系安定剤が、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)、芳香族第2級アミン系安定剤が、N,N’-ジ-2-ナフチル-p-フェニレンジアミンの組み合わせがより好ましい。
 また、上記有機硫黄系安定剤と芳香族第2級アミン系安定剤とを併用する場合は、ポリアミド樹脂組成物中の含有量比(質量比)で、芳香族第2級アミン系安定剤/有機硫黄系安定剤=0.05~15であることが好ましく、0.1~5であることがより好ましく、0.2~2がさらに好ましい。このような含有量比とすることにより、バリア性を維持しつつ、耐熱老化性を効率的に向上させることができる。
 無機系安定剤としては、銅化合物及びハロゲン化物が好ましい。
 銅化合物は、種々の無機酸または有機酸の銅塩であって、後述のハロゲン化物を除くものである。銅としては、第1銅、第2銅の何れでもよく、銅塩の具体例としては、塩化銅、臭化銅、ヨウ化銅、リン酸銅、ステアリン酸銅の他、ハイドロタルサイト、スチヒタイト、パイロライト等の天然鉱物が挙げられる。
 また、無機系安定剤として使用されるハロゲン化物としては、例えば、アルカリ金属またはアルカリ土類金属のハロゲン化物;ハロゲン化アンモニウム及び有機化合物の第4級アンモニウムのハロゲン化物;ハロゲン化アルキル、ハロゲン化アリル等の有機ハロゲン化物が挙げられ、その具体例としては、ヨウ化アンモニウム、ステアリルトリエチルアンモニウムブロマイド、ベンジルトリエチルアンモニウムアイオダイド等が挙げられる。これらの中では、塩化カリウム、塩化ナトリウム、臭化カリウム、ヨウ化カリウム、ヨウ化ナトリウム等のハロゲン化アルカリ金属塩が好適である。
 銅化合物とハロゲン化物との併用、特に、銅化合物とハロゲン化アルカリ金属塩との併用は、耐熱変色性、耐候性(耐光性)の面で優れた効果を発揮するので好ましい。例えば、銅化合物を単独で使用する場合は、成形品が銅により赤褐色に着色することがあり、この着色は用途によっては好ましくない。この場合、銅化合物とハロゲン化物と併用することにより赤褐色への変色を防止することが出来る。
 本発明においては、上記の安定剤のうち、溶融成形時の加工安定性、耐熱老化性、成形品外観、着色防止の点から、特に、有機硫黄系、芳香族第2級アミン系、無機系の安定剤が特に好ましい。
 前記の安定剤(D)の含有量は、ポリアミド樹脂(A)100質量部に対し、通常0.01~1質量部、好ましくは0.01~0.8質量部である。含有量を0.01質量部以上とすることにより、熱変色改善、耐候性/耐光性改善効果を十分に発揮することが出来、含有量を1質量部以下とすることにより、機械的物性低下を抑制することが出来る。
 本発明のポリアミド樹脂組成物には、本発明の効果を損なわない範囲で、ポリアミド樹脂(A)、共重合ポリアミド(B)以外のその他の樹脂を配合してもよい。その他の樹脂としては、カルボジイミド基と反応する官能基を有する樹脂が好ましい。具体的には、例えば、ポリアミド樹脂(A)、共重合ポリアミド(B)以外のポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリイミド樹脂、ポリウレタン樹脂、アクリル系樹脂、ポリアクリロニトリル、アイオノマー、エチレン-酢酸ビニル共重合体、フッ素系樹脂、エチレン-ビニルアルコール等のビニルアルコール系共重合体、生分解性樹脂等が挙げられ、これらは1種又は2種以上を混合して使用できる。
 また、本発明のポリアミド樹脂組成物には、本発明の目的を損なわない限り、必要に応じて無機充填材、結晶核剤、導電剤、滑剤、可塑剤、離型性改良剤、顔料、染料、分散剤、帯電防止剤、紫外線吸収剤、耐衝撃性改良剤及びその他の周知の添加剤を配合することができる。
 なかでも、無機充填材を配合することも好ましく、ガラス系充填材(ガラス繊維、粉砕ガラス繊維(ミルドファイバー)、ガラスフレーク、ガラスビーズ等)、ケイ酸カルシウム系充填材(ワラストナイト等)、マイカ、タルク、カオリン、チタン酸カリウムウィスカー、窒化ホウ素、炭素繊維等が挙げられ、これらの2種以上を併用してもよい。
 また、結晶化速度を上げて成形性を向上させるため、核剤を配合することも好ましい。核剤としては、通常、タルク、窒化硼素等の無機核剤が挙げられるが、有機核剤を添加しても良い。核剤の好ましい配合量は、ポリアミド樹脂(A)100質量部に対し、有機核剤や窒化ホウ素の場合、0.01~6質量部、より好ましくは0.03~1質量部であり、タルクその他の核剤を用いる場合は、0.5~8質量部、より好ましくは1~4質量部である。
 本発明のポリアミド樹脂組成物の製造方法は、特に限定されるものではなく、ポリアミド樹脂(A)と共重合ポリアミド(B)と、必要によりカルボジイミド化合物(C)及び他の成分を、任意の順序で混合、混練することによって製造することができる。なかでも、単軸もしくは二軸押出機等の通常用いられる種々の押出機を用いて溶融混練する方法が好ましく、生産性、汎用性等の点から二軸押出機を用いる方法が特に好ましい。その際、溶融混練温度は200~300℃、滞留時間は10分以下に調整することが好ましく、スクリューには少なくとも一カ所以上の逆目スクリューエレメント及び/又はニーディングディスクを有し、該部分において一部滞留させながら溶融混練することが好ましい。溶融混練温度を上記範囲とすることにより、押出混練不良や樹脂の分解が生じ難い傾向となる。
 また、予め、ポリアミド樹脂添加剤を高濃度で溶融混練してマスターバッチを製造し、その後ポリアミド樹脂で希釈して、所定の配合比の組成物を製造することも出来る。
 本発明のポリアミド樹脂組成物は、従来公知の成形方法により、各種のフィルム、シート、積層フィルム、積層シート、チューブ、ホース、パイプ、中空容器、ボトル等の各種容器、各種部品等、種々の成形体に成形することが出来る。
 本発明のポリアミド樹脂組成物から得られるフィルムは、高いレベルの実用的物性を示し、引張弾性率1000~2500MPa、引張り伸び200~500%、酸素バリア性0.5~3.5cc・mm/m・day・atm、吸水率0.1~1.0%である。
 フィルムまたはシートを製造する代表的な製膜法としては、T型ダイから押し出されたフィルムまたはシート状物の冷却固化をチルドロールによりキャストして冷却するTダイ法、環状スリットを有するダイからチューブ状物を押し出し、チューブ内に空気を吹き込み膨張させて空冷または水冷し成形するインフレーション法などが挙げられる。この様にして成形されたフィルム/シートは、未延伸のまま、または、一軸延伸、二軸延伸などの延伸工程を経て延伸フィルム/シートとして使用される。
 また、単層であってもよいし、共押出やラミネート等による他の樹脂との積層であってもよい。
 フィルム/シートの厚みは、特に規定されるものではないが、ポリアミド樹脂単層としての厚みは、未延伸のものでは2~100μm、延伸フィルム/シートでは2~50μmであることが好ましく、積層フィルム/シート全体としての厚みは10~300μm程度であり、そのうちのポリアミド樹脂層としての厚みは、前記単層としての厚みと同様の範囲が良い。
 ポリアミドチューブを製造する方法は特に限定されるものではなく、公知の技術を採用して製造することが出来る。例えば、前記ドライブレンド物や溶融混練して得られたペレットをチューブ押出成形機に供給して、常法に従って成形すればよい。成形条件についても特に制約はなく通常のポリアミド樹脂の成形温度を採用することが出来る。チューブの肉厚は、0.1mm~2mmとすることが好ましい。肉厚が0.1mm未満ではチューブとしての形状を保持できなくなり、一方肉厚が2mmを越えると硬くなりチューブとしてのフレキシビリティー(Flexibility)がなくなり、製品の組み付けが困難となり好ましくない
 また、本発明のポリアミド樹脂組成物は、単層で又は積層して、耐加水分解性、バリア性、柔軟性、強度及び耐衝撃性に優れた層を提供することもできる。多層の場合は、特に成形体の強度の観点からは、本発明のポリアミド樹脂組成物からなる層を少なくとも1層含み、ポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂あるいは本発明のポリアミド樹脂組成物以外のポリアミド樹脂、フッ素系樹脂等からなる補強層を少なくとも一層積層した多層成形体であることが好ましい。
 補強層に使用するポリオレフィン樹脂としては、直鎖状低密度ポリエチレン、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量高密度ポリエチレン、ポリプロピレン、あるいはエチレン、プロピレン、ブテン等から選ばれる2種類以上のオレフィンの共重合体、及びそれらの混合物が例示できる。また、上記補強層において例示したポリオレフィン樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、本発明のポリアミド樹脂組成物以外のポリアミド樹脂及びフッ素系樹脂は、互いに混合して用いてもよいし、エラストマー等の他の樹脂や、例えばカーボンブラックや難燃剤等の添加剤と混合して使用することも可能である。
 以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例/比較例に限定して解釈されるものではない。
 [使用材料]
 本発明におけるポリアミド樹脂(A)として、以下の製造例で製造したものを使用した。
<製造例1(ポリメタキシリレンセバカミド(MXD10)の合成)>
 反応缶内でセバシン酸(伊藤製油(Ito Oil Chemicals,Co)製、TAグレード)を170℃にて加熱し溶融した後、内容物を攪拌しながら、メタキシリレンジアミン(三菱ガス化学(株)製、MXDA)をセバシン酸とのモル比が1:1になるように徐々に滴下しながら、温度を240℃まで上昇させた。滴下終了後、260℃まで昇温した。反応終了後、内容物をストランド状に取り出し、ペレタイザーにてペレット化した。得られたペレットをタンブラーに仕込み、減圧下で固相重合し、分子量を調整したポリアミド樹脂を得た。
 下記の方法で測定されたポリアミド樹脂(MXD10)の融点は191℃、ガラス転移点は60℃、数平均分子量は30,000、酸素透過係数は0.8cc・mm/m・day・atmであった。
 以下、このポリアミド樹脂を、「MXD10」と略記する。
<製造例2(ポリパラキシリレンセバカミド(PXD10)の合成)>
 攪拌機、分縮器、冷却器、温度計、滴下装置及び窒素導入管、ストランドダイを備えた反応容器に、精秤したセバシン酸(伊藤製油製、TAグレード)8950g(44mol)、次亜リン酸ナトリウム一水和物13.7401g(ポリアミド樹脂中のリン原子濃度として300ppm)、酢酸ナトリウム10.6340gを秤量して仕込んだ。なお、次亜リン酸ナトリウムと酢酸ナトリウムのモル比は1.0である。反応容器内を十分に窒素置換した後、窒素で0.3MPaに加圧し、攪拌しながら160℃に昇温してセバシン酸を均一に溶融した。
 次いでパラキシリレンジアミン(PXDA)6026g(44mol)を攪拌下で170分を要して滴下した。この間、内温は281℃まで連続的に上昇させた。滴下工程では圧力を0.5MPaに制御し、生成水は分縮器及び冷却器を通して系外に除いた。分縮器の温度は145~147℃の範囲に制御した。パラキシリレンジアミン滴下終了後、0.4MPa/hrの速度で降圧し、60分間で常圧まで降圧した。この間に内温は299℃まで昇温した。その後0.002MPa/minの速度で降圧し、20分間で0.08MPaまで降圧した。その後攪拌装置のトルクが所定の値となるまで0.08MPaで反応を継続した。0.08MPaでの反応時間は10分であった。その後、系内を窒素で加圧し、ストランドダイからポリマーを取り出してこれをペレット化しポリアミド樹脂を得た。得られたポリアミド樹脂PXD10の融点は290℃、ガラス転移点は75℃であった。数平均分子量は25000、酸素透過係数は2.5cc・mm/m・day・atmであった。
 以下、このポリアミド樹脂を、「PXD10」と略記する。
<製造例3(ポリメタ/パラキシリレンセバカミド(MPXD10-1)の合成)>
 製造例1において、メタキシリレンジアミンをメタキシリレンジアミンとパラキシリレンジアミンの3:7混合物(モル比)とし、混合キシリレンジアミンをセバシン酸とのモル比が1:1になるように徐々に滴下しながら、温度を260℃まで上昇させた。滴下終了後、280℃まで昇温した以外は製造例1と同様にして、ポリアミド樹脂を得た。
 下記記載の方法で測定されたポリアミド樹脂(MPXD10-1)の融点は258℃、ガラス転移点は70℃、数平均分子量は20,000、酸素透過係数は2cc・mm/m・day・atmであった。
 以下、このポリアミド樹脂を、「MPXD10-1」と略記する。
<製造例4(ポリメタ/パラキシリレンセバカミド(MPXD10-2)の合成)>
 製造例1において、メタキシリレンジアミンをメタキシリレンジアミンとパラキシリレンジアミンの7:3混合物(モル比)とした以外は製造例1と同様にして、ポリアミド樹脂を得た。
 下記記載の方法で測定されたポリアミド樹脂(MPXD10-2)の融点は215℃、ガラス転移点は63℃、数平均分子量は28,000、酸素透過係数は1.4cc・mm/m・day・atmであった。
 以下、このポリアミド樹脂を、「MPXD10-2」と略記する。
 本発明における共重合ポリアミド(B)として、以下のポリアミド(B-1)、(B-2)及び(B-3)を使用した。
(B-1)共重合ポリアミド6/66/12
 宇部興産社(UBE Industries Inc.)製、商品名「宇部ナイロン(UBE Nylon)6434B」
 融点190℃、ガラス転移点44℃、相対粘度4.05(96%硫酸中、樹脂濃度1
g/100cc、温度25℃で測定)
 以下、このポリアミド樹脂を、「6/66/12」と略記する。
(B-2)共重合ポリアミド6/66/11
 70Lのオ-トクレ-ブにε-カプロラクタム17kg、アジピン酸ヘキサメチレンアンモニウム塩の50%水溶液を6kg、アミノウンデカン酸1kgを仕込み、重合槽内を窒素置換したのち、密閉して180℃まで昇温し、次いで攪拌しながら重合槽内を17.5kgf/cmGに調圧しながら、重合槽内温度を240℃まで昇温した。重合温度が240℃に達して2時間後に重合槽内の圧力を約2時間かけて常圧に放圧した。放圧後、窒素気流下で1時間重合した後、2時間減圧重合を行った。窒素を導入して常圧に復圧後、攪拌機を止めて、ストランドとして抜き出しペレット化し、沸水を用いて未反応モノマ-を抽出除去して乾燥した。得られた共重合ポリアミドの相対粘度(96%硫酸中、樹脂濃度1g/100cc、温度25℃で測定)は3.8であった。
 以下、このポリアミド樹脂を、「6/66/11」と略記する。
(B-3)ポリエーテル共重合ポリアミド12
 宇部興産社製、商品名「UBESTA XPA 9055X1」
 ショアD硬度55、融点164℃
 以下、このポリアミド樹脂を、「PE/N12」と略記する。
その他のポリアミド樹脂成分:
・ポリアミド6/66
 宇部興産社製、商品名「宇部ナイロン5033B」
 融点196℃、ガラス転移点46℃
 相対粘度4.08(96%硫酸中、樹脂濃度1g/100cc、温度25℃で測定)
 以下、このポリアミド樹脂を、「N6/66」と略記する。
・ポリアミド6
 宇部興産社製、商品名「宇部ナイロン1022B」
 融点220℃、ガラス転移点45℃、数平均分子量22,000
 相対粘度3.37(96%硫酸中、樹脂濃度1g/100cc、温度25℃で測定)
 以下、このポリアミド樹脂を、「N6」と略記する。
・ポリアミド11
 アルケマ社(Arkema)製、商品名「Rilsan BESN OTL」
 融点188℃、ガラス転移点40℃、数平均分子量27,000
 以下、このポリアミド樹脂を、「N11」と略記する。
・ポリアミド12
 宇部興産社製、商品名「UBESTA3030U」
 融点178℃、ガラス転移点50℃、数平均分子量30,000
 以下、このポリアミド樹脂を、「N12」と略記する。
カルボジイミド化合物(C)成分:
 脂環式ポリカルボジイミド化合物、日清紡績社(Nisshinbo)製、商品名「カルボジライト(Carbojilite)LA-1」
 以下、このカルボジイミド化合物を、「カルボジイミド」と略記する。
変性エラストマー成分:
 マレイン酸変性エチレン-プロピレン共重合体
 三井化学社(Mitsui Chemicals,Inc)製
 商品名「タフマー(TAFMER) MP0610」
 以下、「変性EPR」と略記する。
安定剤:
 塩化銅/ヨウ化カリウム混合物
  塩化銅:ヨウ化カリウム=1:10(質量比)の混合物
 以下、「CuCl/KI」と略記する。
(実施例1~5及び比較例1~8)
 上記の各成分を、後記表1及び表2に記した割合(全て質量部で表記)でドライブレンドした後、得られたドライブレンド物を秤量フィーダーにて15kg/hrの速度で、シリンダー径37mm、ニーディングディスクを有する強練りタイプのスクリューをセットした二軸押出機に供給した。シリンダー温度を230℃、スクリュー回転数100rpmの条件で溶融混練を行い、溶融ストランドを冷却エアーにて冷却、固化した後、ペレタイズ化してポリアミド樹脂組成物のペレットを製造した。
 上記で得られたペレットを秤量フィーダーにて1.2kg/hrの速度でシリンダー径30mmのTダイ付き二軸押出機(プラスチック工学研社(Research Laboratory of Plastics Technology Co)製、PTM-30)に供給した。シリンダー温度230℃、スクリュー回転数50rpmの条件で押出し後、Tダイを通じてフィルム状物を押出し、2.7m/minの速度で引き取りながら60℃の冷却ロール上で固化し、厚さ100μmのフィルムを得た。
 得られたフィルムを用いて、下記記載の各種評価を行った。
 評価結果を表1~2に示す。
(実施例6~8)
 実施例1において、ペレット製造の際のシリンダー温度を各ポリアミド樹脂の融点+25℃として、ポリアミド樹脂組成物のペレットを製造し、フィルム製造時のシリンダー温度を各ポリアミド樹脂の融点+25℃としてフィルムを製造した以外は、実施例1と同様にして、評価を行った。
 評価結果を表1に示す。
 [評価方法]
 なお、実施例及び比較例において、測定・評価方法は、下記のとおりである。
(1)ガスバリア性(単位:cc・mm/m・day・atm)
 23℃、75%RHの雰囲気下にて、JIS K7126に準じてフィルムの酸素透過係数(cc・mm/m・day・atm)を測定した。測定は、モダンコントロールズ社(Modern Controls Inc.)製、OX-TRAN2/21を使用した。値が低いほどガスバリア性が良好であることを示す。
(2)ポリアミドの融点、ガラス転移点(単位:℃)
 島津製作所(SHIMADZU Corporation)製DSC-60を用いて、示差走査熱量測定(DSC)法により求めた。測定条件は、約5mgのサンプルを30~300℃まで10℃/minの条件で昇温し、300℃で2分間保持した後、30℃まで20℃/minの速度で降温する。次いで、10℃/minの条件で昇温し、融点、ガラス転移点を測定した。
(3)数平均分子量
 数平均分子量は、東ソー(Tosoh Corporation)製HLC-8320GPCを用いて、GPC測定によりPMMA換算値として求めた。なお、測定用カラムはTSKgel SuperHM-Hを用い、溶媒にはトリフルオロ酢酸ナトリウムを10mmol/l溶解したヘキサフルオロイソプロパノール(HFIP)を用い、測定温度は40℃とした。また、検量線は6水準のPMMAをHFIPに溶解させて測定し作成した。なお、N6、N11、N12の数平均分子量は、メーカー公称値である。
(4)Haze(単位:%)
 フィルムについて、日本電色工業(Nippon Denshoku Ind.)製、色差・濁度測定器(Color&Hase Measuring Instruments)COH-300Aを使用し、ASTM D1003に準じてフィルムのhazeを測定した。
(5)吸水率(単位:%)
 フィルムを23℃の条件で蒸留水に浸漬し24時間経過後、表面の水分をふき取った後、カールフィシャー水分計(Karl Fischer Moisture Meter)にて主要成分の樹脂の融点より10℃低い温度で加熱し、吸水率の測定を行った。
(6)引張弾性率(単位:MPa)
 フィルムの引張特性をJIS K7127およびK7161に準じて試験し、引張弾性率(MPa)を求めた。なお、装置は東洋精機株式会社(Toyo Seiki Co.)製ストログラフ(Strograph)を使用し、試験片幅を10mm、チャック間距離を50mm、引張速度を50mm/minとし、測定温度を23℃、測定湿度を50%RHとして測定した。
(7)引張り伸び(単位:%)
 フィルムの引張特性をJIS K7127およびK7161に準じて試験し、フィルム破壊時の引張破壊ひずみ、または引張破壊時呼びひずみ、引張強さ時呼びひずみを求め、その値を引張り伸びとした。なお、装置は東洋精機株式会社製ストログラフを使用し、試験片幅を10mm、チャック間距離を50mm、引張速度を50mm/minとし、測定温度を23℃、測定湿度を50%RHとして測定した。
(8)耐加水分解性・耐熱老化性(単位:%)
 まずフィルムに対して熱風乾燥機にて110℃、48時間の熱処理を行った。次に、沸騰水(100℃)中で24時間の処理を行った。処理前後のフィルムの引張特性をJIS
 K7127およびK7161に準じて試験し、破断時の応力(MPa)を求めた。なお、装置は東洋精機株式会社製ストログラフを使用し、試験片幅を10mm、チャック間距離を50mm、引張速度を50mm/minとし、測定温度を23℃、測定湿度を50%RHとして測定した。
 熱処理前後の破断時の応力の比を引張強度維持率とし、下記式(1)より引張強度維持率(%)を算出した。この引張強度維持率が高いほど耐加水分解性・耐熱老化性に優れることを意味する。
 引張強度維持率(%)=〔熱処理後のフィルムの破断時応力(MPa)/熱処理前のフィルムの破断時応力(MPa)〕×100・・・(1)
Figure JPOXMLDOC01-appb-T000002
 上記表1及び表2から明らかなように、キシリレンセバカミドに共重合ポリアミド6/66/12または6/66/11を所定量配合した実施例1~8のフィルムは、これを配合していない比較例1に比べ弾性率を高いレベルで保持しながら、引張り伸びは2~3倍以上を示し、極めて柔らかいフィルム、すなわち硬さと柔らかさとを兼ね備えたものであることが分かる。また、共重合ポリアミド6/66/12を40質量部を超えて配合した比較例2のフィルムは、未配合のフィルムと比べて弾性率の低下が大きく半分以下になり、しかもガスバリア性は低下度合いが大きく、吸水率が大きくなっていることが分かる。
 共重合ポリアミドとしてポリアミド6/66を使用した比較例3、4では、引張り伸びが実施例のものほど出ないことが分かる。また、同様にその他のポリアミドを配合した場合も、引張り伸びが悪かったり(比較例6)、透明性(ヘーズ)が悪く(比較例5、7及び8)、変性EPRではヘーズも悪く弾性率が半減(比較例5)する等のことが分かる。
 また、実施例1~8と実施例9及び10(後記表3)との比較から、共重合ポリアミド6/66/12または6/66/11を所定量配合したフィルムのHazeは、ポリエーテル共重合ポリアミドを所定量配合したフィルムより大きく低く、透明性に優れることが分かる。
(実施例9~10及び比較例9~12)
 上記の各成分を、下記表3に記した割合(全て質量部で表記)でドライブレンドし、シリンダー径30mmのTダイ付き単軸押出機(プラスチック工学研社製、PTM-30)に供給した。シリンダー温度260℃、スクリュー回転数30rpmの条件で溶融混練を行った後、Tダイを通じてフィルム状物を押出し冷却ロール上で固化し、厚さ100μmのフィルムを得た。
(実施例11~13)
 上記の各成分を、下記表3に記した割合(全て質量部で表記)でドライブレンドし、シリンダー径30mmのTダイ付き単軸押出機(プラスチック工学研社製、PTM-30)に供給した。シリンダー温度を各ポリアミド樹脂の融点+25℃として、スクリュー回転数30rpmの条件で溶融混練を行った後、Tダイを通じてフィルム状物を押出し冷却ロール上で固化し、厚さ100μmのフィルムを得た。
Figure JPOXMLDOC01-appb-T000003
 上記表3から明らかなように、キシリレンセバカミドにポリエーテル共重合ポリアミドを所定量配合した実施例のフィルムは、これを配合していない比較例9に比べ弾性率を高いレベルで保持ながら、引張り伸びは2~3倍以上を示し、極めて柔らかいフィルム、すなわち硬さと柔らかさとを兼ね備えたものであることが分かる。
 本発明のポリアミド樹脂組成物は、弾性率が高く、ガスバリア性がよく、吸水率が低く、しかも柔軟で透明性に優れたポリアミド樹脂材料であるので、各種のフィルム、シート、積層フィルム、積層シート、チューブ、ホース、パイプ、中空容器、ボトル等の各種容器、各種部品等、種々の成形体に好適に使用することができる

Claims (10)

  1.  ジアミン構成単位の70モル%以上がキシリレンジアミンに由来し、ジカルボン酸構成単位の50モル%以上がセバシン酸に由来するポリアミド樹脂(A)100質量部に対し、下記の(B-1)~(B-3)からなる群から選ばれる少なくとも1種の共重合ポリアミド(B)を1~40質量部含有することを特徴とするポリアミド樹脂組成物。
    (B-1):共重合ポリアミド6/66/12
    (B-2):共重合ポリアミド6/66/11
    (B-3):ポリアミド12単位又はポリアミド11単位とポリエーテル単位から構成されるポリエーテル共重合ポリアミド
  2.  キシリレンジアミンが、メタキシリレンジアミン、パラキシリレンジアミン又はこれらの混合物であることを特徴とする請求項1に記載のポリアミド樹脂組成物。
  3.  ポリアミド樹脂(A)が、メタキシリレンジアミン、パラキシリレンジアミン又はこれらの混合物とセバシン酸とを重縮合して得られるポリアミド樹脂であることを特徴とする請求項1に記載のポリアミド樹脂組成物。
  4.  さらに、カルボジイミド化合物(C)を、ポリアミド樹脂(A)100質量部に対し、0.1~2質量部含有することを特徴とする請求項1に記載のポリアミド樹脂組成物。
  5.  カルボジイミド化合物(C)が、脂肪族又は脂環式ポリカルボジイミド化合物であることを特徴とする請求項4に記載のポリアミド樹脂組成物。
  6.  さらに、安定剤(D)を、ポリアミド樹脂(A)100質量部に対し、0.01~1質量部含有することを特徴とする請求項1に記載のポリアミド樹脂組成物。
  7.  安定剤(D)が、無機系、芳香族第2級アミン系又は有機硫黄系の安定剤から選ばれることを特徴とする請求項6に記載のポリアミド樹脂組成物。
  8.  フィルムにした際の引張弾性率(E)が、ポリアミド樹脂(A)をフィルムにした際の引張弾性率(E)に対し、70~97%の弾性率を示すことを特徴とする請求項1に記載のポリアミド樹脂組成物。
  9.  請求項1~8のいずれかに記載のポリアミド樹脂組成物を成形してなる成形品。
  10.  成形品が、フィルム、シート又はチューブである請求項9に記載の成形品。
PCT/JP2011/065260 2010-07-08 2011-07-04 ポリアミド樹脂組成物 WO2012005204A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201180029900.3A CN102959014B (zh) 2010-07-08 2011-07-04 聚酰胺树脂组合物
RU2012154325/05A RU2570453C2 (ru) 2010-07-08 2011-07-04 Полиамидные полимерные композиции
US13/702,865 US8603600B2 (en) 2010-07-08 2011-07-04 Polyamide resin compositions
BR112012032085A BR112012032085A2 (pt) 2010-07-08 2011-07-04 composição de resina de poliamida, e, artigo moldado
MX2012014320A MX338658B (es) 2010-07-08 2011-07-04 Composicion de resina de poliamida.
EP11803538.5A EP2570459B1 (en) 2010-07-08 2011-07-04 Polyamide resin composition
CA 2799554 CA2799554A1 (en) 2010-07-08 2011-07-04 Polyamide resin compositions
KR1020127032913A KR101796967B1 (ko) 2010-07-08 2011-07-04 폴리아미드 수지 조성물
AU2011275035A AU2011275035B2 (en) 2010-07-08 2011-07-04 Polyamide resin compositions
ZA2012/09144A ZA201209144B (en) 2010-07-08 2012-12-04 Polyamide resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010155405 2010-07-08
JP2010-155405 2010-07-08
JP2010-165718 2010-07-23
JP2010165718 2010-07-23

Publications (1)

Publication Number Publication Date
WO2012005204A1 true WO2012005204A1 (ja) 2012-01-12

Family

ID=45441183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065260 WO2012005204A1 (ja) 2010-07-08 2011-07-04 ポリアミド樹脂組成物

Country Status (12)

Country Link
US (1) US8603600B2 (ja)
EP (1) EP2570459B1 (ja)
KR (1) KR101796967B1 (ja)
CN (1) CN102959014B (ja)
AU (1) AU2011275035B2 (ja)
BR (1) BR112012032085A2 (ja)
CA (1) CA2799554A1 (ja)
MX (1) MX338658B (ja)
RU (1) RU2570453C2 (ja)
TW (1) TWI501994B (ja)
WO (1) WO2012005204A1 (ja)
ZA (1) ZA201209144B (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130123439A1 (en) * 2011-06-10 2013-05-16 Mitsubishi Gas Chemical Company, Inc. Reactive polyamide resins and polyamide resin compositions
WO2014027648A1 (ja) * 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 ポリエーテルポリアミド繊維
JP2014037470A (ja) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc ポリエーテルポリアミド繊維
JP2014037642A (ja) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc ポリエーテルポリアミド繊維
JP2014506944A (ja) * 2011-02-17 2014-03-20 ディーエスエム アイピー アセッツ ビー.ブイ. ポリアミド組成物
JP2014080545A (ja) * 2012-10-18 2014-05-08 Toyobo Co Ltd ポリアミド樹脂組成物
KR20160043949A (ko) * 2013-08-16 2016-04-22 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 다층구조체
JP5954518B1 (ja) * 2014-11-19 2016-07-20 三菱瓦斯化学株式会社 ポリアミド樹脂組成物、成形品、成形品の製造方法
US9512314B2 (en) 2012-08-14 2016-12-06 Mitsubishi Gas Chemical Company, Inc. Polyether polyamide composition
JP2018502206A (ja) * 2014-11-05 2018-01-25 アルケマ フランス 粘性ポリアミドを含む変形安定性組成物、この製造方法およびこの使用
RU2645353C1 (ru) * 2014-06-26 2018-02-21 ДСМ АйПи АССЕТС Б.В. Способ получения полукристаллического полуароматического полиамида
WO2018070194A1 (ja) * 2016-10-14 2018-04-19 三菱瓦斯化学株式会社 ポリオレフィン系構造体
JP2020122148A (ja) * 2013-06-14 2020-08-13 アルケマ フランス ポリアミドmxd.10から製造される組成物

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ584637A (en) * 2009-04-16 2011-09-30 Flexopack Sa Polyamide 6/66/12 based high abuse heat shrinkable film
CA2813713C (en) 2010-10-08 2018-04-24 Mitsubishi Gas Chemical Company, Inc. Polyamide resin moldings
KR101877859B1 (ko) 2010-12-07 2018-07-12 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리아미드 수지 필름 및 그 제조 방법
CN102858879B (zh) 2011-04-12 2013-12-04 三菱瓦斯化学株式会社 聚酰胺树脂系复合材料及其制造方法
CN103154088B (zh) 2011-09-12 2014-06-25 三菱瓦斯化学株式会社 薄壁成型品
JP6190811B2 (ja) * 2012-09-14 2017-08-30 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物、樹脂成形品、及びメッキ層付樹脂成形品の製造方法
JP2015078138A (ja) * 2013-10-15 2015-04-23 株式会社ニックス 小動物防除性樹脂組成物
CN106459404B (zh) * 2014-06-02 2019-03-08 宇部兴产株式会社 聚酰胺树脂及包含其的成形品
US11155686B2 (en) 2016-03-30 2021-10-26 Toray Industries, Inc. Fiber-reinforced polyamide resin base, method for producing same, molded article containing same, and composite molded article
EP3448449B1 (en) * 2016-04-28 2023-02-22 Medtronic, Inc. Hydrolytically stable polymer compositions, articles, and methods
JP2018154710A (ja) * 2017-03-16 2018-10-04 株式会社ジェイテクト 樹脂ペレットおよびその製造方法、ならびに成形品の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927948A (ja) * 1982-08-06 1984-02-14 Toray Ind Inc 樹脂組成物
JPS63137955A (ja) * 1986-12-01 1988-06-09 Mitsubishi Gas Chem Co Inc 成形用ポリアミド樹脂組成物
JPH03106646A (ja) * 1989-09-21 1991-05-07 Toray Ind Inc 耐レトルト性包装材料
JPH04198329A (ja) 1990-11-28 1992-07-17 Mitsubishi Gas Chem Co Inc 混合ポリアミドフィルムの製造法
JPH1171455A (ja) * 1997-07-04 1999-03-16 Ube Ind Ltd 三元コポリアミド
JP2006297894A (ja) * 2005-03-24 2006-11-02 Ube Ind Ltd ポリアミド積層二軸延伸フィルム
JP2008133455A (ja) * 2006-10-26 2008-06-12 Mitsubishi Gas Chem Co Inc バリア性に優れた熱可塑性樹脂組成物
JP2011105822A (ja) * 2009-11-16 2011-06-02 Mitsubishi Gas Chemical Co Inc 耐加水分解性に優れる熱可塑性樹脂組成物

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3771047D1 (de) 1986-12-01 1991-08-01 Mitsubishi Gas Chemical Co Formbare polyamidharz-zusammensetzung.
RU2271277C2 (ru) * 2001-02-01 2006-03-10 Натурин Гмбх Энд Ко. Соэкструдированная многослойная, биаксиально вытянутая, свариваемая плоская пленка для изготовления сварных рукавных пленок и их применения
WO2007072917A1 (ja) * 2005-12-22 2007-06-28 Mitsubishi Gas Chemical Company, Inc. 多層ボトル
EP2078735B1 (en) * 2006-10-26 2015-01-14 Mitsubishi Gas Chemical Company, Inc. Thermoplastic resin composition excellent in barrier property
EP1992659B1 (de) * 2007-05-16 2016-07-20 EMS-Patent AG Polyamidformmassen-Schmelze zur Herstellung von transparenten Formteilen

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927948A (ja) * 1982-08-06 1984-02-14 Toray Ind Inc 樹脂組成物
JPS63137955A (ja) * 1986-12-01 1988-06-09 Mitsubishi Gas Chem Co Inc 成形用ポリアミド樹脂組成物
JPH03106646A (ja) * 1989-09-21 1991-05-07 Toray Ind Inc 耐レトルト性包装材料
JPH04198329A (ja) 1990-11-28 1992-07-17 Mitsubishi Gas Chem Co Inc 混合ポリアミドフィルムの製造法
JPH1171455A (ja) * 1997-07-04 1999-03-16 Ube Ind Ltd 三元コポリアミド
JP2006297894A (ja) * 2005-03-24 2006-11-02 Ube Ind Ltd ポリアミド積層二軸延伸フィルム
JP2008133455A (ja) * 2006-10-26 2008-06-12 Mitsubishi Gas Chem Co Inc バリア性に優れた熱可塑性樹脂組成物
JP2011105822A (ja) * 2009-11-16 2011-06-02 Mitsubishi Gas Chemical Co Inc 耐加水分解性に優れる熱可塑性樹脂組成物

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014506944A (ja) * 2011-02-17 2014-03-20 ディーエスエム アイピー アセッツ ビー.ブイ. ポリアミド組成物
US20130123439A1 (en) * 2011-06-10 2013-05-16 Mitsubishi Gas Chemical Company, Inc. Reactive polyamide resins and polyamide resin compositions
US8993677B2 (en) * 2011-06-10 2015-03-31 Mitsubishi Gas Chemical Company, Inc. Reactive polyamide resins and polyamide resin compositions
US9512314B2 (en) 2012-08-14 2016-12-06 Mitsubishi Gas Chemical Company, Inc. Polyether polyamide composition
WO2014027648A1 (ja) * 2012-08-14 2014-02-20 三菱瓦斯化学株式会社 ポリエーテルポリアミド繊維
JP2014037470A (ja) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc ポリエーテルポリアミド繊維
JP2014037642A (ja) * 2012-08-14 2014-02-27 Mitsubishi Gas Chemical Co Inc ポリエーテルポリアミド繊維
JP2014080545A (ja) * 2012-10-18 2014-05-08 Toyobo Co Ltd ポリアミド樹脂組成物
JP2020122148A (ja) * 2013-06-14 2020-08-13 アルケマ フランス ポリアミドmxd.10から製造される組成物
US10016962B2 (en) * 2013-08-16 2018-07-10 Mitsubishi Gas Chemical Company, Inc. Multilayer structure
KR20160043949A (ko) * 2013-08-16 2016-04-22 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 다층구조체
US20160193813A1 (en) * 2013-08-16 2016-07-07 Mitsubishi Gas Chemical Company, Inc. Multilayer structure
KR102245023B1 (ko) 2013-08-16 2021-04-27 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 다층구조체
RU2645353C1 (ru) * 2014-06-26 2018-02-21 ДСМ АйПи АССЕТС Б.В. Способ получения полукристаллического полуароматического полиамида
JP2018502206A (ja) * 2014-11-05 2018-01-25 アルケマ フランス 粘性ポリアミドを含む変形安定性組成物、この製造方法およびこの使用
JP5954518B1 (ja) * 2014-11-19 2016-07-20 三菱瓦斯化学株式会社 ポリアミド樹脂組成物、成形品、成形品の製造方法
WO2018070194A1 (ja) * 2016-10-14 2018-04-19 三菱瓦斯化学株式会社 ポリオレフィン系構造体
KR20190069393A (ko) * 2016-10-14 2019-06-19 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리올레핀계 구조체
JPWO2018070194A1 (ja) * 2016-10-14 2019-07-25 三菱瓦斯化学株式会社 ポリオレフィン系構造体
US11111365B2 (en) 2016-10-14 2021-09-07 Mitsubishi Gas Chemical Company, Inc. Polyolefin structure
JP7031597B2 (ja) 2016-10-14 2022-03-08 三菱瓦斯化学株式会社 ポリオレフィン系構造体
KR102382305B1 (ko) 2016-10-14 2022-04-04 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 폴리올레핀계 구조체

Also Published As

Publication number Publication date
MX2012014320A (es) 2013-02-01
EP2570459A4 (en) 2014-08-06
MX338658B (es) 2016-04-27
ZA201209144B (en) 2014-02-26
CN102959014B (zh) 2014-08-27
RU2012154325A (ru) 2014-08-20
US8603600B2 (en) 2013-12-10
AU2011275035B2 (en) 2013-07-25
AU2011275035A1 (en) 2012-12-06
US20130078402A1 (en) 2013-03-28
TWI501994B (zh) 2015-10-01
RU2570453C2 (ru) 2015-12-10
EP2570459B1 (en) 2018-02-21
BR112012032085A2 (pt) 2016-11-16
TW201217334A (en) 2012-05-01
CN102959014A (zh) 2013-03-06
KR20130140541A (ko) 2013-12-24
CA2799554A1 (en) 2012-01-12
KR101796967B1 (ko) 2017-11-13
EP2570459A1 (en) 2013-03-20

Similar Documents

Publication Publication Date Title
US8603600B2 (en) Polyamide resin compositions
JP6156150B2 (ja) 成形品
JP5168432B2 (ja) 反応性ポリアミド樹脂およびポリアミド樹脂組成物
JP5581567B2 (ja) バリア性に優れた熱可塑性樹脂組成物
EP2441801B1 (en) Polyamide resin composition and molded product
JP5729189B2 (ja) ポリアミド樹脂組成物
JP5853446B2 (ja) ポリアミド樹脂組成物
WO2008050793A1 (en) Thermoplastic resin composition excellent in barrier property
JP5673130B2 (ja) ポリアミド樹脂およびその製造方法
JP5218705B2 (ja) ポリアミド樹脂およびその成形方法
JP5652025B2 (ja) 複合材の製造方法および成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180029900.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2799554

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 3581/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2011275035

Country of ref document: AU

Date of ref document: 20110704

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13702865

Country of ref document: US

Ref document number: MX/A/2012/014320

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2011803538

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127032913

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201006425

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2012154325

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012032085

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012032085

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121214