WO2012002574A1 - 薄膜トランジスタ - Google Patents

薄膜トランジスタ Download PDF

Info

Publication number
WO2012002574A1
WO2012002574A1 PCT/JP2011/065526 JP2011065526W WO2012002574A1 WO 2012002574 A1 WO2012002574 A1 WO 2012002574A1 JP 2011065526 W JP2011065526 W JP 2011065526W WO 2012002574 A1 WO2012002574 A1 WO 2012002574A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
thin film
film transistor
semiconductor layer
electrode
Prior art date
Application number
PCT/JP2011/065526
Other languages
English (en)
French (fr)
Inventor
小池 淳一
ピルサン ユン
英昭 川上
Original Assignee
合同会社先端配線材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合同会社先端配線材料研究所 filed Critical 合同会社先端配線材料研究所
Priority to CN2011800328256A priority Critical patent/CN102971857A/zh
Priority to JP2012522729A priority patent/JP5453663B2/ja
Publication of WO2012002574A1 publication Critical patent/WO2012002574A1/ja
Priority to US13/732,719 priority patent/US8866140B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous

Definitions

  • the present invention relates to a thin film transistor including an oxide semiconductor in a semiconductor layer.
  • oxide semiconductors In recent years, application of oxide semiconductors to thin film transistors or transparent electrodes has attracted attention. Thin film transistors using oxide semiconductors are actively applied to liquid crystal display devices or organic EL display devices which are flat display devices. In addition, transparent electrodes using an oxide semiconductor are actively applied to flat display devices or touch panels. In these application fields, materials having low resistance and high conductivity are used for wirings and electrodes of oxide semiconductors. In these application fields, aluminum (Al) or Al alloy and molybdenum are used. For example, a wiring material made of Ti / Al—Si / Ti has been proposed and has a structure in which Al—Si is sandwiched between Ti. On the other hand, copper has attracted attention as a material having a lower electrical resistance than these electrode materials.
  • Patent Document 1 in order to use a copper wiring in a TFT-LCD, a Mo alloy film is formed between Cu and the substrate, thereby ensuring adhesion and barrier properties with the substrate.
  • this technique has a problem that the number of steps for forming the Mo alloy increases and the effective resistance of the wiring increases.
  • Patent Document 2 proposes a technique for forming high melting point nitrides such as TaN, TiN, and WN around Cu in order to solve these problems related to Cu wiring.
  • Patent Document 3 discloses that adhesion and oxidation resistance are improved by adding one or more elements of Mg, Ti, and Cr to Cu of the wiring of the TFT-LCD.
  • the additive element remains in the wiring and the wiring resistance increases.
  • the additive element reduces the oxide of the substrate, and the reduced element diffuses into the wiring to increase the wiring resistance.
  • Patent Document 4 discloses that 0.3 to 10% by weight of Ag is added to Cu to improve oxidation resistance.
  • Patent Document 5 proposes a copper alloy in which at least one element selected from 0.5 to 5% by weight of Ti, Mo, Ni, Al, and Ag is added to Cu in order to improve adhesion. .
  • Patent Document 6 proposes that 0.1 to 3.0% by weight of Mo is added to Cu and segregates Mo to grain boundaries to suppress oxidation due to grain boundary diffusion.
  • this technique can improve the oxidation resistance of Cu, there is a problem that the wiring resistance increases.
  • Patent Document 7 a copper alloy in which an appropriate additive element is added to Cu.sub.2, the additive element forms an oxide film to form a protective film, which inhibits Cu oxidation and places the protective film on the interface with the adjacent insulating layer. Form and deter interdiffusion.
  • This provides a copper wiring that is highly conductive and has excellent adhesion to the substrate.
  • a liquid crystal display device using this copper wiring is provided.
  • one of the additional elements is preferably Mn.
  • this technique is not sufficient to realize the characteristics of the wiring structure used in the liquid crystal display device and the electrode structure of the TFT.
  • Patent Document 8 proposes a TFT structure used in a TFT-LCD, and specifically presents a TFT structure in which the gate electrode is covered with an oxide film when a Cu alloy is applied to the gate electrode. If Cu is the first metal, Ti, Zr, Hf, Ta, Nb, Si, B, La, Nd, Sm, Eu, Gd, Dy, Y, Yb, Ce are used as the second metal. , Mg, Th, and Cr. However, these oxide films have a problem that interdiffusion with the insulating layer cannot be sufficiently suppressed. In Non-Patent Document 1, a copper electrode is applied to a TFT using an oxide semiconductor.
  • A-InGaZnO x is used for the oxide semiconductor, and pure copper (Cu) and copper alloy (CuMn) are used as the copper electrode. Is used.
  • a TFT having a mobility of about 10 times the mobility of the current a-Si TFT was realized, and high-speed operation was enabled.
  • the resistance of the wiring is reduced by using the copper electrode having the above-described laminated structure, and the possibility that high definition of the flat display can be realized is increased. However, further simplification of the electrode structure is required.
  • JP 2004-163901 A JP 2004-139057 A JP 2005-166757 A JP 2002-69550 A JP 2005-158887 A JP 2004-91907 A WO 2006-025347 Japanese Patent No. 3302894
  • Non-Patent Document 1 suggests a thin film transistor using an oxide film semiconductor having copper wiring, but still needs improvement as a thin film transistor for realizing high definition of a flat display.
  • the electrically stable junction of the source and drain electrodes and the semiconductor layer has not been fully elucidated. That is, it reduces the effective resistance of the electrode, improves the adhesion between the semiconductor layer and the source and drain electrodes, and at the same time forms an electrically stable junction, prevents oxidation of the electrode surface, and further uses a Cu alloy. It is necessary to solve all of these problems, such as realizing the film forming process with a small number of processes. However, the above-mentioned conventional technology cannot solve these problems, and manufactures an actual product. Is still inadequate.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and can improve the adhesion between the semiconductor layer and the electrode and improve the ohmic contact therebetween.
  • An object of the present invention is to provide a thin film transistor that can realize high-speed operation of the thin film transistor, can more reliably prevent the oxidation of the electrode surface, and can realize the manufacturing process of the electrode with fewer processes.
  • the means (1) to (10) for achieving the object of the present invention will be exemplified below.
  • the thin film transistor having a high conductance layer between the oxide reaction layer and the semiconductor layer in (1) or (2).
  • the semiconductor layer has a low resistance ohmic junction with each of the source electrode and the drain electrode through the oxide reaction layer and the high conductance layer.
  • the semiconductor layer is amorphous InGaZnOx.
  • the high conductance layer is an In concentrated layer.
  • the source electrode and the drain electrode are thin film transistors made of a CuMn alloy.
  • the oxide reaction layer is a layer mainly composed of MnOx.
  • the oxide reaction layer is a thin film transistor containing Cu, In, Ga, Zn.
  • the oxide reaction layer is a thin film transistor provided in contact with CuMn forming a surface layer of a source electrode and a drain electrode.
  • the oxide reaction layer is provided between the semiconductor layer made of an oxide semiconductor and each of the source electrode and the drain electrode, adhesion between the semiconductor layer and each of the source electrode and the drain electrode is achieved. Can be improved.
  • the semiconductor layer has low resistance ohmic junction with each of the source electrode and the drain electrode through the oxide reaction layer, thereby enabling high-speed operation of the thin film transistor.
  • an oxide reaction layer is formed on the electrode surface, it is possible to prevent oxidation of the electrode mainly composed of copper.
  • the manufacturing process of the electrode can be shortened, contributing to simplification of the TFT manufacturing process, and the manufacturing cost can be reduced.
  • the high conductance layer is further provided between the oxide reaction layer and the semiconductor layer, the ohmic junction can be further improved, and the operation of the thin film transistor can be further speeded up.
  • FIG. 1 is a diagram showing a cross-sectional structure of a thin film transistor according to the present invention.
  • FIG. 2 shows an interface between the semiconductor layer and the source electrode, and is a cross-sectional view taken along the line AA of FIG. 3A and 3B are diagrams showing the results of SIMS analysis at the oxide semiconductor and the source electrode before and after thermal annealing, and their interfaces.
  • FIG. 3A shows before thermal annealing
  • FIG. 3B shows after thermal annealing. Yes.
  • FIG. 4 is an electron micrograph showing a cross section between the oxide reaction layer and the semiconductor layer after the thermal annealing.
  • FIG. 5 is a diagram illustrating voltage-current characteristics between the semiconductor layer and each of the source electrode and the drain electrode.
  • FIG. 6A and 6B are graphs showing characteristics of the thin film transistor of the present invention.
  • FIG. 6A is a graph showing I DS vs. V GS (transfer characteristics)
  • FIG. 6B is I D s vs. V D s (output characteristics) in various VGs. It is a graph which shows.
  • FIG. 1 is a diagram showing a cross-sectional structure of a thin film transistor according to the present invention.
  • a thin film transistor (TFT) 10 functions as a driving element that performs display driving, such as a liquid crystal display or an organic EL (Electro Luminescence) display, and has, for example, a bottom gate structure.
  • the thin film transistor 10 has a gate electrode 2 in a selective region on a substrate 1 made of glass or plastic, and a gate insulating film 3 is formed so as to cover the gate electrode 2 and the substrate 1. .
  • a semiconductor layer 4 is provided on the gate insulating film 3, and a source electrode 5 and a drain electrode 6 are disposed in a predetermined pattern in partial contact with the semiconductor layer 4.
  • a protective film (passivation film) 7 is stacked on the source electrode 5, the drain electrode 6, and the semiconductor layer 4.
  • the gate electrode 2, the source electrode 5, and the drain electrode 6 are made of CuMn, which is a copper alloy. This CuMn film was formed by sputtering, and then annealed at 250 ° C. in an appropriate amount of oxygen atmosphere.
  • the gate electrode 2, the source electrode 5, and the drain electrode 6 suffice if at least the surface layer portion is made of CuMn. As a whole, the inside is made of Cu, for example, CuMn / Cu / CuMn. But you can.
  • the gate insulating film 3 and the protective film 7 are made of silicon oxide (SiO x ).
  • the semiconductor layer 4 is an oxide semiconductor and is formed of amorphous InGaZnO x (a-IGZO).
  • a-IGZO amorphous InGaZnO x
  • the semiconductor layer 4 and each of the source electrode 5 and the drain electrode 6 have a region that is partially in contact with each other, and an interface in the region is a configuration unique to the present invention. It has.
  • This interface structure will be described with reference to FIGS. 2, 3, and 4, the interface structure between the semiconductor layer 4 and the source electrode 5 will be described.
  • the interface structure between the semiconductor layer 4 and the drain electrode 6 (BB in FIG. 1). Cross section) has the same structure, and the description of the BB cross section is omitted here.
  • FIG. 1 silicon oxide
  • a-IGZO amorphous InGaZnO x
  • FIG. 2 shows an interface between the semiconductor layer and the source electrode, and is a cross-sectional view taken along the line AA of FIG.
  • an In-concentrated layer 21 is formed in contact with the semiconductor layer 4 at the interface 20 between the semiconductor layer 4 and the source electrode 5, and is oxidized in contact with the In-concentrated layer 21.
  • a material reaction layer 22 is formed.
  • FIG. 3 is a diagram showing the results of SIMS analysis at the oxide semiconductor and the source electrode before and after thermal annealing, and the interface between them.
  • FIG. 3A on the left side is as-deposited and shows the SIMS analysis result before thermal annealing
  • FIG. 3B on the right side shows the SIMS analysis result after thermal annealing. In the stage before the thermal annealing shown in FIG.
  • FIG. 3A it can be seen that the oxide reaction layer 22 and the like are not formed at the interface.
  • FIG. 3B is after thermal annealing at 250 ° C. for 1 hour.
  • an oxide reaction layer 22 and an In concentrated layer 21 are formed by thermal diffusion.
  • the oxide reaction layer 22 is a layer mainly composed of MnO x that is an oxide of Mn that is a constituent element of the source electrode 5, and I that is a constituent element of the semiconductor layer 4. It contains n, Ga and Zn, and also contains Cu which is a constituent element of the source electrode 5.
  • the In concentrated layer 21 is formed between the oxide reaction layer 22 and the semiconductor layer 4, and In which is a constituent element of the semiconductor layer 4 is concentrated.
  • the composition distribution at the interface 20 composed of the oxide reaction layer 22 and the In concentrated layer 21 is seen, the diffusion of Cu of the source electrode 5 into the semiconductor layer 4 is suppressed by the interface 20, and the semiconductor layer 4 It can be seen that the diffusion of In, Ga, Zn into the source electrode 5 is suppressed, and the interface 20 functions as a barrier layer. Further, the interface 20 significantly improves the adhesion between the semiconductor layer 4 and the source electrode 5.
  • FIG. 4 is an electron micrograph showing a cross section between the oxide reaction layer and the semiconductor layer after the thermal annealing. In FIG.
  • FIG. 5 is a diagram illustrating voltage-current characteristics between the semiconductor layer and each of the source electrode and the drain electrode.
  • the case where Al is used for the electrode is indicated by a broken line, and the case where a CuMn alloy is used is indicated by a solid line.
  • Al is used for the electrode, non-linearity is observed in the voltage-current characteristic, but when the CuMn alloy is used for the electrode, the voltage-current characteristic is linear.
  • the semiconductor layer 4 has low resistance ohmic junction with each of the source electrode 5 and the drain electrode 6 via the oxide reaction layer 22 and the In concentrated layer 21, and the thin film transistor 10 Enables high-speed operation.
  • This reduction in resistance is achieved by the In-concentrated layer 21 formed in contact with the a-IGZO layer forming the semiconductor layer 4 acting as a low-resistance n + a-IGZO layer, resulting in a high conductance layer. Is presumed to be a major factor.
  • FIG. 6A and 6B are graphs showing characteristics of the thin film transistor of the present invention, in which FIG. 6A is a graph showing I DS vs. V GS (transfer characteristics), and FIG. 6B is I D s vs. V D s (output characteristics) in various VGs. ). From FIG. 6, a mobility of 7.62 cm 2 / Vs, a threshold value of 8.2 V, and an on / off ratio of 10 7 were obtained. From these values, it was proved that the mobility of the thin film transistor 10 of the present invention was about 10 times that of the current a-Si TFT. Furthermore, it shows that it has sufficient performance to drive a high definition flat display.
  • the oxide reaction layer 22 and the In concentrated layer 21 are provided between the semiconductor layer 4 made of an oxide semiconductor and each of the source electrode 5 and the drain electrode 6.
  • the adhesion between the semiconductor layer 4 and each of the source electrode 5 and the drain electrode 6 can be improved.
  • the semiconductor layer 4 has low resistance ohmic junction with each of the source electrode 5 and the drain electrode 6 through the oxide reaction layer 22 and the In concentrated layer 21, and the high-speed operation of the thin film transistor 10 is achieved. Enable.
  • the oxide reaction layer 22 and the In concentrated layer 21 are formed on the electrode surface, it is possible to prevent oxidation of the electrode mainly composed of copper.
  • the manufacturing process of the electrode can be shortened, contributing to simplification of the TFT manufacturing process, and the manufacturing cost can be reduced. Further, since the In concentrated layer 21 between the oxide reaction layer 22 and the semiconductor layer 4 becomes a high conductance layer, the ohmic junction can be further improved, and the operation of the thin film transistor 10 is further speeded up. be able to.
  • the semiconductor layer 4 is an oxide semiconductor and is a-IGZO
  • the In concentrated layer 21 between the oxide reaction layer 22 and the semiconductor layer 4 is considered to act as n + a-IGZO.
  • n + a-IGZO a semiconductor film having a high carrier concentration is formed, or the carrier concentration is increased by doping.
  • n + a-IGZO can be self-formed by thermal annealing, and the n + a-IGZO formation process can be simplified.
  • the case where the In concentrated layer 21 is formed between the semiconductor layer 4 and the oxide reaction layer 22 has been described.
  • the oxide reaction layer 22 is formed at the interface 20.
  • various effects such as improved adhesion, good ohmic contact, prevention of electrode oxidation, and shortening of the manufacturing process can be exhibited in the same manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

 半導体層と電極との間の密着性を向上させることができるとともに、その間のオーミック接合性をより良好なものして薄膜トランジスタの高速動作を実現させ、また電極表面の酸化をより確実に防止することができ、さらに電極の製造工程を少ないプロセスで実現することができるようにする。 本発明の薄膜トランジスタ10は、酸化物半導体からなる半導体層4と、銅を主体とする層であるソース電極5およびドレイン電極6と、その半導体層4と上記ソース電極5および上記ドレイン電極6の各々との間に設けられた酸化物反応層22と、この酸化物反応層22と半導体層4との間に設けられた高コンダクタンス層21とを有することを特徴とする。

Description

薄膜トランジスタ
 本発明は、半導体層に酸化物半導体を備えた薄膜トランジスタに関するものである。
 近年、酸化物半導体は薄膜トランジスタあるいは透明電極への応用が注目されている。酸化物半導体を用いた薄膜トランジスタは平面表示装置である液晶表示装置あるいは有機EL表示装置への応用が盛んである。また、酸化物半導体を用いた透明電極は平面表示装置あるいはタッチパネルへの応用が盛んである。
 これらの応用分野では、酸化物半導体の配線及び電極には、低抵抗で導電性の高い材料が用いられる。
 これらの応用分野では、アルミニウム(Al)あるいはAl合金およびモリブデン等が用いられている。
 例えば、Ti/Al−Si/Tiからなる配線材料が提案され、Al−SiをTiでサンドイッチした構造になっている。
 一方で、これらの電極材料よりも低い電気抵抗を有する材料として、銅が注目されるようになった。しかしながら、銅は、LCDのTFT基板であるガラスとの密着性が悪いことに加え、絶縁層を形成する際に、酸化され易いとの問題がある。
 そこで、このような問題を解決するために、近年、TFT−LCDでは合金化した銅配線を用いる技術が試みられている。この技術は、合金元素が、基板と反応生成物を形成することによって、基板との密着性を確保し、同時に、添加元素がCu表面で酸化物を形成することによって、Cuの耐酸化性として作用することを狙ったものである。
 しかし、提案された技術では、狙った特性が十分に発現されていない。すなわち、Cu中に合金元素が残留することによってCuの電気抵抗が高くなり、Al又はAl合金を用いた配線材料に対する優位性を示すことができなかった。
 さらに、特許文献1に示すように、TFT−LCDに銅配線を用いるためには、Cuと基板との間にMo合金膜を形成し、これによって基板との密着性及びバリア性を、確保する技術が考えられている。
 しかしながら、この技術では、Mo合金を成膜する工程が増加すると共に、配線の実効抵抗が増加するという問題がある。さらに、ソース電極及びドレイン電極にはCu単層を用いているが、その安定性には問題が残る。
 また、特許文献2には、Cu配線に関するこれらの問題点を解決するために、Cuの周りにTaN、TiN、WNなどの高融点窒化物を形成する技術が提案されている。しかしながら、この技術では、従来の配線材料に比べるとバリア層を形成するための材料と、さらに付加的なプロセスが必要であること、及び高抵抗のバリア層を厚く成膜するため、配線の実効抵抗が上昇するという問題がある。
 また、特許文献3には、TFT−LCDの配線のCuにMg、Ti、Crのうち一種以上の元素を添加することによって密着性と耐酸化性を向上させることが開示されている。しかしながら、添加元素が配線中に残存して配線抵抗が増加するという問題がある。また、添加元素が基板の酸化物を還元し、還元された元素が配線中に拡散して配線抵抗が増大するという問題もある。
 特許文献4には、Cuに0.3~10重量%のAgを添加して、耐酸化性の向上を図ることが開示されている。しかしながら、ガラス基板との密着性が改善されておらず、液晶プロセスに耐え得る、十分な耐酸化性が得られないという問題がある。
 特許文献5には、密着性を向上させるために、Cuに0.5~5重量%のTi、Mo、Ni、Al、Agのうち少なくとも1種の元素を添加した銅合金が提案されている。しかしながら、添加元素によって配線の電気抵抗が上昇するという問題がある。
 特許文献6には、Cuに0.1~3.0重量%のMoを添加し、Moを粒界に偏析させることで、粒界拡散による酸化を抑制することが提案されている。しかしながら、この技術はCuの耐酸化性を向上させることは出来るものの、配線抵抗が増加するという問題がある。
 特許文献7では、Cu に適切な添加元素を添加した銅合金によって、この添加元素が酸化膜を形成して保護被膜となり、Cuの酸化を抑止し、保護被膜を隣接する絶縁層との界面に形成して、相互拡散を抑止する。これによって、高導電性で、かつ、基板との密着性に優れた銅配線を提供している。さらに、この銅配線を用いた液晶表示装置を提供する。この外添加元素の一つがMnであることが好ましいとの示唆がある。しかし、この技術では、液晶表示装置に用いる配線構造、TFTの電極構造の特徴を具現化するのに十分ではない。
 特許文献8では、TFT−LCDに用いるTFT構造を提案し、Cu合金をゲート電極に適用した場合、ゲート電極が酸化膜で被覆されるTFT構造を具体的に提示している。その中で、Cuを第1の金属とすると、第2の金属にはTi,Zr,Hf,Ta,Nb,Si,B,La,Nd,Sm,Eu,Gd,Dy,Y,Yb,Ce,Mg,Th,Crの中から選ばれた少なくとも1種であると提示している。しかしながら、これらの酸化膜は、絶縁層との間での相互拡散を十分に抑止することができないという問題がある。
 非特許文献1では、酸化物半導体を用いたTFTに銅電極を適用している。酸化物半導体にはa−InGaZnOを用い、銅電極としては純銅(Cu)と銅合金(CuMn)
との積層構造を用いている。これにより、現状のa−Si TFTの移動度よりも約10倍の移動度を有するTFTを実現し、高速動作を可能にした。さらに、前記の積層構造からなる銅電極を用いて配線を低抵抗化し、平面ディスプレイの高精細化を実現できる可能性を高くした。しかしながら、電極構造のさらなる簡略化が求められる。
特開2004−163901号公報 特開2004−139057号公報 特開2005−166757号公報 特開2002−69550号公報 特開2005−158887号公報 特開2004−91907号公報 WO 2006−025347 特許3302894号公報
 上述したように、これらの従来技術では、Cuに合金添加元素を添加して半導体層あるいは画素電極との密着性及び耐酸化性を確保する試みがなされた。さらに、半導体層に酸化物半導体を用いて、TFTの高速動作を実現した。しかし、いずれの場合も未だ十分な結果が得られていない。また、TFT電極におけるソース電極あるいはドレイン電極構造に求められる、半導体層あるいは画素電極との高い密着性、使用される環境への耐性、ソース電極あるいはドレイン電極の電気的接合としての安定性について、十分な結果が得られていない。
 特に、非特許文献1では、銅配線を有する酸化膜半導体を用いた薄膜トランジスタが示唆されているが、平面ディスプレイの高精細化を実現する薄膜トランジスタとしては未だ改良を要している。特に、電極及び配線の単層化に応える必要がある。さらに、ソース電極およびドレイン電極と半導体層との電気的に安定な接合については十分には解明されていない。
 すなわち、電極の実効抵抗を低下させる、また半導体層とソース電極およびドレイン電極との密着性を改善すると同時に電気的に安定な接合を形成する、電極表面の酸化を防止する、さらにはCu合金を成膜する工程を少ないプロセスで実現するといった、これらの諸課題の全てを解決することが必要であるが、上述の従来技術では、これらを解決することができず、実際の製品を製造するのは未だ不十分である。
 本発明は、上記の従来技術の問題点を解決すべくなされたもので、半導体層と電極との間の密着性を向上させることができるとともに、その間のオーミック接合性をより良好なものして薄膜トランジスタの高速動作を実現させ、また電極表面の酸化をより確実に防止することができ、さらに電極の製造工程を少ないプロセスで実現することができる薄膜トランジスタを提供することを目的とする。
 以下に、本発明の目的を達成するための手段(1)~(10)を例示する。
(1)酸化物半導体からなる半導体層と、銅を主体とする層であるソース電極およびドレイン電極と、上記半導体層と、上記ソース電極および上記ドレイン電極の各々との間に設けられた酸化物反応層と、を有することを特徴とする薄膜トランジスタ。
(2)(1)において、上記半導体層は、酸化物反応層を介して、ソース電極およびドレイン電極の各々と低抵抗のオーミック接合性を有する、請求項1に記載の薄膜トランジスタ。
(3)(1)または(2)において、上記酸化物反応層と上記半導体層との間に高コンダクタンス層を有する薄膜トランジスタ。
(4)(3)において、上記半導体層は、酸化物反応層および高コンダクタンス層を介して、ソース電極およびドレイン電極の各々と低抵抗のオーミック接合性を有する薄膜トランジスタ。
(5)(1)から(4)において、上記半導体層は、非晶質のInGaZnOxである薄膜トランジスタ。
(6)(5)において、上記高コンダクタンス層はIn濃化層である薄膜トランジスタ。
(7)(1)から(6)の何れかにおいて、上記ソース電極および上記ドレイン電極は、CuMn合金からなる薄膜トランジスタ。
(8)(1)から(7)の何れかにおいて、上記酸化物反応層は、MnOxを主体とする層である薄膜トランジスタ。
(9)(8)において、上記酸化物反応層は、Cu,In,Ga,Znを含む薄膜トランジスタ。
(10)(1)から(9)の何れかにおいて、上記酸化物反応層は、ソース電極およびドレイン電極の表層を形成するCuMnに接して設けられている薄膜トランジスタ。
 本発明によれば、酸化物半導体からなる半導体層と、ソース電極およびドレイン電極の各々との間に酸化物反応層を設けたので、半導体層とソース電極およびドレイン電極の各々との間の密着性を向上させることができる。また、半導体層は、その酸化物反応層を介して、ソース電極およびドレイン電極の各々と低抵抗のオーミック接合性を有するようになり、薄膜トランジスタの高速動作を可能にする。また、電極表面に酸化物反応層が形成されるので、銅を主体とする電極の酸化を防止することができる。さらに、電極の製造工程を短縮し、TFT製造工程の簡略化に寄与し、製造コストを低減することができる。
 また、酸化物反応層と半導体層との間にさらに高コンダクタンス層を設けたので、上記のオーミック接合性を一層向上させることができ、薄膜トランジスタの動作をより一層高速化することができる。
 図1は本発明に係る薄膜トランジスタの断面構造を示す図である。
 図2は半導体層とソース電極との界面を示し、図1のA−A断面図である。
 図3は熱アニール前後の酸化物半導体とソース電極、およびその界面でのSIMS分析の結果を示す図で、図3(a)は熱アニール前、図3(b)は熱アニール後を示している。
 図4は熱アニール後の酸化物反応層と半導体層との間の断面を示す電子顕微鏡写真である。
 図5は半導体層と、ソース電極およびドレイン電極の各々との間での電圧−電流特性を示す図である。
 図6は本発明の薄膜トランジスタの特性を示す図で、(a)はIDS対VGS(伝達特性)を示すグラフ、(b)はさまざまなVGにおけるIs対Vs(出力特性)を示すグラフである。
  1 基板
  2 ゲート電極
  3 ゲート絶縁膜
  4 半導体層
  5 ソース電極
  6 ドレイン電極
  7 保護膜
 10 薄膜トランジスタ
 20 界面
 21 In濃化層
 22 酸化物反応層
 以下にこの発明の実施の形態を詳細に説明する。
 図1は本発明に係る薄膜トランジスタの断面構造を示す図である。図1において、薄膜トランジスタ(TFT)10は、例えば液晶ディスプレイや有機EL(Electro Luminescence)ディスプレイなどの表示駆動を行う駆動素子として機能し、例えばボトムゲート型の構造を有している。
 薄膜トランジスタ10は、ガラスやプラスチックなどよりなる基板1上の選択的な領域にゲート電極2を有しており、このゲート電極2と基板1とを覆うように、ゲート絶縁膜3が形成されている。ゲート絶縁膜3上には半導体層4が設けられ、この半導体層4に部分的に接して所定のパターンでソース電極5およびドレイン電極6が配設されている。そして、ソース電極5、ドレイン電極6および半導体層4上に保護膜(パッシベーション膜)7が積層されている。
 ゲート電極2、ソース電極5およびドレイン電極6は、銅合金であるCuMnで形成されている。このCuMn膜はスパッタリングで製膜した後に、250℃に適量の酸素雰囲気中で熱アニールを行った。なお、ゲート電極2、ソース電極5およびドレイン電極6は、少なくとも表層部がCuMnから成っておればよく、全体としては、例えばCuMn/Cu/CuMnのように、内部がCuから形成されているものでもよい。
 ゲート絶縁膜3および保護膜7は、酸化シリコン(SiO)で形成されている。
 半導体層4は、酸化物半導体であり、非晶質のInGaZnO(a−IGZO)で形成されている。
 この半導体層4と、ソース電極5およびドレイン電極6の各々とは、上記のように、部分的に互いに接している領域を有しており、その領域での界面は、本発明に特有の構成を備えている。この界面構造について、図2、図3および図4を用いて説明する。
 なお、図2、図3および図4では、半導体層4とソース電極5との間の界面構造について説明するが、半導体層4とドレイン電極6との間の界面構造(図1のB−B断面)についても、同様の構造を有しており、ここではB−B断面の説明は省略する。
 図2は半導体層とソース電極との界面を示し、図1のA−A断面図である。この図2に示すように、半導体層4とソース電極5との間の界面20においては、半導体層4に接してIn濃化層21が形成され、またこのIn濃化層21に接して酸化物反応層22が形成されている。
 図3は熱アニール前後の酸化物半導体とソース電極、およびその界面でのSIMS分析の結果を示す図である。左側の図3(a)はアズデポ時であり、熱アニール前のSIMS分析結果を示し、右側の図3(b)は熱アニール後のSIMS分析結果を示している。
 図3(a)に示す熱アニール前の段階では、界面に酸化物反応層22等は形成されていないことが判る。
 図3(b)は、250℃1時間の熱アニール後である。a−IGZOからなる半導体層4と、CuMnからなるソース電極5との界面20には、熱拡散により酸化物反応層22とIn濃化層21とが形成されている。酸化物反応層22は、ソース電極5の構成元素であるMnの酸化物であるMnOを主体とした層であり、半導体層4の構成元素であるI
n,Ga,Znを含み、またソース電極5の構成元素であるCuをも含んでいる。
 In濃化層21は、酸化物反応層22と半導体層4との間に形成され、半導体層4の構成元素であるInが濃化している。
 この酸化物反応層22とIn濃化層21とからなる界面20における組成分布を見ると、この界面20によってソース電極5のCuが半導体層4へ拡散するのが抑制され、また半導体層4のIn,Ga,Znがソース電極5へ拡散するのが抑制され、界面20がバリア層として機能していることが分かる。また、この界面20によって、半導体層4とソース電極5との間の密着性が大幅に向上する。
 図4は熱アニール後の酸化物反応層と半導体層との間の断面を示す電子顕微鏡写真である。この図4において、半導体層4と酸化物反応層22との間の界面20は、数nmの厚みを有し、酸化物反応層22とIn濃化層21とが形成されている。In濃化層21には、Inの微結晶粒が多数観測された。
 次に、図5、図6を用いて本発明に係る薄膜トランジスタ10の電気的特性について説明する。
 図5は、半導体層と、ソース電極およびドレイン電極の各々との間での電圧−電流特性を示す図である。電極にAlを用いた場合を破線で示し、CuMn合金を用いた場合を実線で示している。電極にAlを用いた場合は、電圧—電流特性に非線形性が見られるが、電極にCuMn合金を用いた場合、その電圧—電流特性は線形である。これは、電気的にオーミック接合性を有することを実証している。CuMn合金の場合、Cu−4at.%Mnでは、抵抗率が1.2~2.9×10−4Ω・cmであった。
 このように、半導体層4は、その酸化物反応層22およびIn濃化層21を介して、ソース電極5およびドレイン電極6の各々と低抵抗のオーミック接合性を有するようになり、薄膜トランジスタ10の高速動作を可能にする。
 この低抵抗化は、半導体層4を形成するa−IGZO層側に接して形成されたIn濃化層21が、低抵抗のna−IGZO層として作用し、高コンダクタンス層となっているのが大きな要因であると推測される。
 図6は、本発明の薄膜トランジスタの特性を示す図で、(a)はIDS対VGS(伝達特性)を示すグラフ、(b)はさまざまなVGにおけるIs対Vs(出力特性)を示すグラフである。この図6から、移動度7.62cm/Vs、しきい値8.2V、オン/オフ比10が得られた。これらの値から、本発明の薄膜トランジスタ10の移動度は、現状のa−SiTFTに比べて、約10倍であることを実証できた。さらに、高精細化平面ディスプレイを駆動するに十分な性能を有することを示している。
 以上述べたように、本発明によれば、酸化物半導体からなる半導体層4と、ソース電極5およびドレイン電極6の各々との間に酸化物反応層22およびIn濃化層21を設けたので、半導体層4とソース電極5およびドレイン電極6の各々との間の密着性を向上させることができる。また、半導体層4は、その酸化物反応層22およびIn濃化層21を介して、ソース電極5およびドレイン電極6の各々と低抵抗のオーミック接合性を有するようになり、薄膜トランジスタ10の高速動作を可能にする。また、電極表面に酸化物反応層22およびIn濃化層21が形成されるので、銅を主体とする電極の酸化を防止することができる。さらに、電極の製造工程を短縮し、TFT製造工程の簡略化に寄与し、製造コストを低減することができる。
 また、酸化物反応層22と半導体層4との間のIn濃化層21が、高コンダクタンス層となるので、オーミック接合性を一層向上させることができ、薄膜トランジスタ10の動作をより一層高速化することができる。
 また、半導体層4が酸化物半導体でありa−IGZOの場合、酸化物反応層22と半導体層4との間のIn濃化層21は、na−IGZOとして作用すると考えられる。一般に、na−IGZOの形成にはキャリア濃度の高い半導体膜を成膜したり、ドーピングによってキャリア濃度を高くしている。本発明では、熱アニールによってna−IGZOを自己形成することが可能であり、na−IGZO形成プロセスを簡略化することができる。
 なお、上記の説明では、In濃化層21が半導体層4と酸化物反応層22との間に形成される場合について説明したが、界面20に酸化物反応層22のみが形成されるようにしてもよく、この場合も、密着性向上、良好なオーミック接合性、電極の酸化防止、製造工程の短縮化といった諸効果を同様に発揮することができる。

Claims (10)

  1. 酸化物半導体からなる半導体層と、
    銅を主体とする層であるソース電極およびドレイン電極と、
    上記半導体層と、上記ソース電極および上記ドレイン電極の各々との間に設けられた酸化物反応層と、
    を有することを特徴とする薄膜トランジスタ。
  2. 上記半導体層は、酸化物反応層を介して、ソース電極およびドレイン電極の各々と低抵抗のオーミック接合性を有する、請求項1に記載の薄膜トランジスタ。
  3. 上記酸化物反応層と上記半導体層との間に高コンダクタンス層を有する、請求項1または2に記載の薄膜トランジスタ。
  4. 上記半導体層は、酸化物反応層および高コンダクタンス層を介して、ソース電極およびドレイン電極の各々と低抵抗のオーミック接合性を有する、請求項3に記載の薄膜トランジスタ。
  5. 上記半導体層は、非晶質のInGaZnOxである、請求項1から4の何れか1項に記載の薄膜トランジスタ。
  6. 上記高コンダクタンス層はIn濃化層である、請求項5に記載の薄膜トランジスタ。
  7. 上記ソース電極および上記ドレイン電極は、CuMn合金からなる、請求項1から6の何れか1項に記載の薄膜トランジスタ。
  8.  上記酸化物反応層は、MnOxを主体とする層である、請求項1から7の何れか1項に記載の薄膜トランジスタ。
  9.  上記酸化物反応層は、Cu,In,Ga,Znを含む、請求項8に記載の薄膜トランジスタ。
  10. 上記酸化物反応層は、ソース電極およびドレイン電極の表層を形成するCuMnに接して設けられている、請求項1から9の何れか1項に記載の薄膜トランジスタ。
PCT/JP2011/065526 2010-07-02 2011-06-30 薄膜トランジスタ WO2012002574A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011800328256A CN102971857A (zh) 2010-07-02 2011-06-30 薄膜晶体管
JP2012522729A JP5453663B2 (ja) 2010-07-02 2011-06-30 薄膜トランジスタ
US13/732,719 US8866140B2 (en) 2010-07-02 2013-01-02 Thin-film transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010152112 2010-07-02
JP2010-152112 2010-07-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/732,719 Continuation-In-Part US8866140B2 (en) 2010-07-02 2013-01-02 Thin-film transistor

Publications (1)

Publication Number Publication Date
WO2012002574A1 true WO2012002574A1 (ja) 2012-01-05

Family

ID=45402268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065526 WO2012002574A1 (ja) 2010-07-02 2011-06-30 薄膜トランジスタ

Country Status (4)

Country Link
US (1) US8866140B2 (ja)
JP (1) JP5453663B2 (ja)
CN (1) CN102971857A (ja)
WO (1) WO2012002574A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153093A (ja) * 2012-01-26 2013-08-08 Hitachi Cable Ltd 薄膜トランジスタ、その製造方法および該薄膜トランジスタを用いた表示装置
JP2013210732A (ja) * 2012-03-30 2013-10-10 Dainippon Printing Co Ltd タッチパネルセンサ、タッチパネルモジュールおよびタッチパネルセンサの製造方法
WO2013187046A1 (ja) * 2012-06-14 2013-12-19 パナソニック株式会社 薄膜トランジスタ
WO2015049818A1 (ja) * 2013-10-03 2015-04-09 パナソニック株式会社 薄膜トランジスタ基板の製造方法
WO2015083037A1 (en) * 2013-12-03 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2016178309A (ja) * 2012-02-09 2016-10-06 株式会社半導体エネルギー研究所 半導体装置
JP2017126795A (ja) * 2012-06-29 2017-07-20 株式会社半導体エネルギー研究所 半導体装置
JP2017201725A (ja) * 2013-04-12 2017-11-09 株式会社半導体エネルギー研究所 半導体装置
US9882014B2 (en) 2013-11-29 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2018019098A (ja) * 2012-05-31 2018-02-01 株式会社半導体エネルギー研究所 半導体装置
WO2020031491A1 (ja) * 2018-08-08 2020-02-13 株式会社ジャパンディスプレイ 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法
US11430817B2 (en) 2013-11-29 2022-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9595469B2 (en) 2013-11-04 2017-03-14 Infineon Technologies Ag Semiconductor device and method for producing the same
JP6527416B2 (ja) * 2014-07-29 2019-06-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102281846B1 (ko) * 2015-01-02 2021-07-26 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
CN106935659B (zh) * 2017-05-11 2021-01-22 京东方科技集团股份有限公司 薄膜晶体管及其制造方法、阵列基板以及显示装置
CN107170832A (zh) * 2017-06-14 2017-09-15 华南理工大学 一种氧化物薄膜晶体管及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003822A (ja) * 2008-06-19 2010-01-07 Idemitsu Kosan Co Ltd 薄膜トランジスタおよびその製造方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3302894B2 (ja) 1996-11-25 2002-07-15 株式会社東芝 液晶表示装置
JP4494610B2 (ja) 2000-09-04 2010-06-30 株式会社フルヤ金属 薄膜形成用スパッタリングターゲット材
WO2006025347A1 (ja) 2004-08-31 2006-03-09 National University Corporation Tohoku University 銅合金及び液晶表示装置
JP3754011B2 (ja) 2002-09-04 2006-03-08 デプト株式会社 電子部品用金属材料、電子部品、電子機器、金属材料の加工方法、電子部品の製造方法及び電子光学部品
JP4439861B2 (ja) 2002-09-20 2010-03-24 株式会社半導体エネルギー研究所 表示装置の作製方法
KR100883769B1 (ko) 2002-11-08 2009-02-18 엘지디스플레이 주식회사 액정표시장치용 어레이기판 제조방법
JP2005158887A (ja) 2003-11-21 2005-06-16 Dept Corp 回路基板及びその製造方法
JP2005166757A (ja) 2003-11-28 2005-06-23 Advanced Lcd Technologies Development Center Co Ltd 配線構造体、配線構造体の形成方法、薄膜トランジスタ、薄膜トランジスタの形成方法、及び表示装置
JP5068925B2 (ja) * 2004-09-03 2012-11-07 Jx日鉱日石金属株式会社 スパッタリングターゲット
JP5138163B2 (ja) * 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
JP2007157916A (ja) * 2005-12-02 2007-06-21 Idemitsu Kosan Co Ltd Tft基板及びtft基板の製造方法
JP5244295B2 (ja) * 2005-12-21 2013-07-24 出光興産株式会社 Tft基板及びtft基板の製造方法
US7782413B2 (en) * 2007-05-09 2010-08-24 Tohoku University Liquid crystal display device and manufacturing method therefor
JP5121299B2 (ja) * 2007-05-09 2013-01-16 アルティアム サービシズ リミテッド エルエルシー 液晶表示装置
KR101496148B1 (ko) * 2008-05-15 2015-02-27 삼성전자주식회사 반도체소자 및 그 제조방법
JP5250322B2 (ja) * 2008-07-10 2013-07-31 富士フイルム株式会社 金属酸化物膜とその製造方法、及び半導体装置
JP5345456B2 (ja) * 2008-08-14 2013-11-20 富士フイルム株式会社 薄膜電界効果型トランジスタ
JP2010087223A (ja) * 2008-09-30 2010-04-15 Toppan Printing Co Ltd 薄膜トランジスタおよびアクティブマトリクスディスプレイ
JP5328414B2 (ja) * 2009-02-25 2013-10-30 富士フイルム株式会社 トップゲート型の電界効果型トランジスタ及びその製造方法並びにそれを備えた表示装置
KR101628254B1 (ko) * 2009-09-21 2016-06-09 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그의 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003822A (ja) * 2008-06-19 2010-01-07 Idemitsu Kosan Co Ltd 薄膜トランジスタおよびその製造方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153093A (ja) * 2012-01-26 2013-08-08 Hitachi Cable Ltd 薄膜トランジスタ、その製造方法および該薄膜トランジスタを用いた表示装置
JP2016178309A (ja) * 2012-02-09 2016-10-06 株式会社半導体エネルギー研究所 半導体装置
US10249764B2 (en) 2012-02-09 2019-04-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including semiconductor device, electronic device including semiconductor device, and method for manufacturing semiconductor device
JP2013210732A (ja) * 2012-03-30 2013-10-10 Dainippon Printing Co Ltd タッチパネルセンサ、タッチパネルモジュールおよびタッチパネルセンサの製造方法
JP2018019098A (ja) * 2012-05-31 2018-02-01 株式会社半導体エネルギー研究所 半導体装置
WO2013187046A1 (ja) * 2012-06-14 2013-12-19 パナソニック株式会社 薄膜トランジスタ
JP2017126795A (ja) * 2012-06-29 2017-07-20 株式会社半導体エネルギー研究所 半導体装置
JP2019195102A (ja) * 2012-06-29 2019-11-07 株式会社半導体エネルギー研究所 半導体装置
US10424673B2 (en) 2012-06-29 2019-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including a stack of oxide semiconductor layers
US10304859B2 (en) 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
US11063066B2 (en) 2013-04-12 2021-07-13 Semiconductor Energy Laboratory Co., Ltd. C-axis alignment of an oxide film over an oxide semiconductor film
JP2017201725A (ja) * 2013-04-12 2017-11-09 株式会社半導体エネルギー研究所 半導体装置
US11843004B2 (en) 2013-04-12 2023-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having specified relative material concentration between In—Ga—Zn—O films
WO2015049818A1 (ja) * 2013-10-03 2015-04-09 パナソニック株式会社 薄膜トランジスタ基板の製造方法
US9627515B2 (en) 2013-10-03 2017-04-18 Joled Inc. Method of manufacturing thin-film transistor substrate
JP6082912B2 (ja) * 2013-10-03 2017-02-22 株式会社Joled 薄膜トランジスタ基板の製造方法
US9882014B2 (en) 2013-11-29 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US11430817B2 (en) 2013-11-29 2022-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9991392B2 (en) 2013-12-03 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2021153189A (ja) * 2013-12-03 2021-09-30 株式会社半導体エネルギー研究所 半導体装置
WO2015083037A1 (en) * 2013-12-03 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP2015130488A (ja) * 2013-12-03 2015-07-16 株式会社半導体エネルギー研究所 半導体装置及びその製造方法
JP2020025031A (ja) * 2018-08-08 2020-02-13 株式会社ジャパンディスプレイ 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法
WO2020031491A1 (ja) * 2018-08-08 2020-02-13 株式会社ジャパンディスプレイ 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法
JP7398860B2 (ja) 2018-08-08 2023-12-15 株式会社ジャパンディスプレイ 薄膜トランジスタの製造方法

Also Published As

Publication number Publication date
CN102971857A (zh) 2013-03-13
JP5453663B2 (ja) 2014-03-26
JPWO2012002574A1 (ja) 2013-08-29
US20130112972A1 (en) 2013-05-09
US8866140B2 (en) 2014-10-21

Similar Documents

Publication Publication Date Title
JP5453663B2 (ja) 薄膜トランジスタ
US11824062B2 (en) Thin film transistor, method for manufacturing the same, and semiconductor device
JP5403527B2 (ja) 半導体装置
TWI478308B (zh) Wiring construction and display device
US9024322B2 (en) Wiring structure and display device
US9768322B2 (en) Metal oxide TFT with improved source/drain contacts and reliability
US8847228B2 (en) Thin film transistor array panel
CN101740636A (zh) 薄膜晶体管和显示装置
JP2011091364A (ja) 配線構造およびその製造方法、並びに配線構造を備えた表示装置
KR20170080320A (ko) 박막트랜지스터, 그를 갖는 표시장치, 및 박막트랜지스터의 제조방법
JP6654770B2 (ja) 薄膜トランジスタ基板及び表示装置
WO2012121415A1 (ja) 酸化物半導体用電極、その形成方法、及びその電極を備えた酸化物半導体装置
JP5774005B2 (ja) 銅電極を有する薄膜トランジスタ(tft)
TW201214623A (en) Wiring structure, display device, and semiconductor device
JP6327548B2 (ja) 薄膜トランジスタ及びその製造方法
JP2011086955A (ja) 薄膜トランジスタおよび表示装置
CN118231408A (zh) 薄膜晶体管、其制造方法以及包括其的显示设备
KR20170080322A (ko) 박막트랜지스터, 그를 갖는 표시장치, 및 박막트랜지스터의 제조방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032825.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11801031

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012522729

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11801031

Country of ref document: EP

Kind code of ref document: A1