WO2011160483A1 - 控制超低碳镇静钢中ti含量的方法 - Google Patents

控制超低碳镇静钢中ti含量的方法 Download PDF

Info

Publication number
WO2011160483A1
WO2011160483A1 PCT/CN2011/072654 CN2011072654W WO2011160483A1 WO 2011160483 A1 WO2011160483 A1 WO 2011160483A1 CN 2011072654 W CN2011072654 W CN 2011072654W WO 2011160483 A1 WO2011160483 A1 WO 2011160483A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
content
ultra
ladle
slag
Prior art date
Application number
PCT/CN2011/072654
Other languages
English (en)
French (fr)
Inventor
张峰
陈晓
朱简如
Original Assignee
宝山钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宝山钢铁股份有限公司 filed Critical 宝山钢铁股份有限公司
Priority to KR1020127027615A priority Critical patent/KR101484106B1/ko
Priority to RU2012149436/02A priority patent/RU2527569C2/ru
Priority to US13/697,777 priority patent/US8882880B2/en
Priority to JP2013506465A priority patent/JP5529341B2/ja
Priority to EP11797514.4A priority patent/EP2586878B1/en
Priority to MX2012013486A priority patent/MX2012013486A/es
Publication of WO2011160483A1 publication Critical patent/WO2011160483A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/54Processes yielding slags of special composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for producing refined RH desulfurized steel, in particular to an extremely low Ti control method for ultra-low carbon aluminum silicon killed steel which is subjected to deep desulfurization in a refining RH process.
  • the above method requires quality raw materials is extremely high and a large increase in the manufacturing cost of the steel smelting cycle, and in order to prevent 102 is reduced Ladle slag, the need for an aluminum content in the steel is restricted , the general requirement is not more than 0.1%;
  • the slag slag is reformed in the smelting and refining process, and the alkalinity of the slag and the oxidation property of the molten steel are adjusted to increase the distribution ratio of Ti between the slag steels, for example: Japanese Patent Laid-Open No. 5-86413 and Special Open 2003 -73726 and so on.
  • the shortcoming of this method is that there is no desulfurization of the molten steel, and the A1 content in the steel is relatively low, and the general requirement is not more than 0.1%.
  • the object of the present invention is to provide an extremely low control method for ultra-low carbon aluminum silicon killed steel, which has the characteristics of higher Si, A1 content and lower S content, through ladle top slag upgrading, RH refining Deep desulfurization and other measures can relax the quality requirements of raw and auxiliary materials in the smelting process, simplify the steelmaking production process, and have the advantages of simple operation control, low production cost, wide application range and high control precision.
  • the technical solution of the present invention is:
  • the alloys such as aluminum, ferrosilicon, ferromanganese and the like are deoxidized and alloyed.
  • the finished steel contains extremely low carbon and sulfur content and high aluminum content.
  • the ultra-low carbon aluminum silicon killed steel of the present invention has a very low control method, and the chemical composition weight percentage of the ultra low carbon aluminum silicon killed steel is: C ⁇ 0.005%, Si: 0.1 to 3.4%, Mn: 0.1 - 0.5 %, P ⁇ 0.2%, S ⁇ 0.002%, Ah 0-1.2%, N ⁇ 0.005%, Ti ⁇ 0.0015, the balance is Fe and unavoidable inclusions;
  • the molten steel having the above chemical composition is pretreated by molten iron, smelting After refining RH smelting and casting into a billet, the steel slag top slag is modified, and a calcium-aluminum-based modifier is added, 0.6 ⁇ 1.7kg/t steel to ensure the top of the ladle at the end of refining RH decarburization.
  • Control requirements for T.Fe content ⁇ 5% and A1 2 0 3 content ⁇ 23%; at the end of refining RH decarburization, deoxidation and alloying are carried out using ferrosilicon, aluminum iron or ferromanganese, followed by deep desulfurization, desulfurization rate 50 % ⁇ 75%.
  • the weight percentage of the desulfurizing agent is: CaO: 65% to 75% ; A1 2 0 3 : 15% to 30%; CaF 2 : 0 to: 10%.
  • the method for adding the desulfurizing agent according to the present invention is as follows:
  • the initial percentage of sulfur in the ladle is: 0.0021 ⁇ 0.0025%, the amount of desulfurizing agent added: 3.3 ⁇ 4.0kg/t steel;
  • the initial percentage of sulfur in the ladle is: 0.0026 ⁇ 0.0030%, the amount of desulfurizing agent added: 4.0 ⁇ 6.0kg/t steel;
  • the initial percentage of sulfur in the ladle is: 0.0031 ⁇ 0.0045%, the amount of desulfurizer added: 6.7 ⁇
  • the initial percentage of sulfur in the ladle is: 0.0036 ⁇ 0.0040%, and the amount of desulfurizing agent added: 9.7 ⁇ 12.3kg/t steel.
  • the invention relates to ultra-low carbon aluminum silicon killed steel for refining RH deep desulfurization, and the chemical composition design principles are as follows:
  • C 0.005% or less. C strongly hinders the growth of the finished grain, which is likely to cause an increase in iron loss and magnetic aging of the steel, and it is difficult for subsequent decarburization, so it must be strictly controlled below 0.005%.
  • Si 0.1% to 3.4%. Si can increase the resistivity of the matrix and effectively reduce the iron loss of the steel. When the Si content is higher than 3.4%, the magnetic induction of steel is remarkably lowered, and it is easy to cause rolling difficulty, and less than 0.1%. At the same time, it does not reduce the iron loss.
  • Mn 0.1% to 0.5%.
  • the combination of Mn and S to form MnS can effectively reduce the magnetic hazard, improve the surface state of electrical steel, and reduce hot brittleness. Therefore, it is necessary to add a Mn content of 0.1% or more, and a Mn content of more than 0.5% or more easily breaks the recrystallization texture and greatly increases the manufacturing cost of the steel.
  • P 0.2% or less. Phosphorus can improve the workability of the steel sheet, but when it exceeds 0.2%, the cold rolling workability of the steel sheet is deteriorated.
  • S 0.002% or less.
  • S content exceeds 0.002%, precipitates such as MnS are greatly increased, and grain growth is strongly inhibited, and the magnetic properties of the steel are deteriorated.
  • A1 is an element that increases resistance and is used for deep deoxidation of electrical steel. When the A1 content is higher than 1.2%, continuous casting is difficult and the magnetic induction is significantly reduced.
  • N 0.005% or less.
  • the N content exceeds 0.005%, precipitates such as A1N are greatly increased, and grain growth is strongly inhibited, and the magnetic properties of the steel are deteriorated.
  • the present invention refines the extremely low 1 content production process of RH deep desulfurized ultra low carbon aluminum silicon killed steel, as follows:
  • the steelmaking raw materials use all-iron water.
  • the smelting process ensures that the converter slag is in good condition, and the decarburization, desulfurization and temperature rising effects of the molten steel are stable.
  • the smelting end point is measured by temperature and sampling by the sub-gun of the converter, and the carbon and oxygen contents of the molten steel are controlled to 0.03% ⁇ 0.05% and 0.04% ⁇ 0.08%, respectively.
  • the direct flow down process is performed for decarburization and desulfurization, and for a small amount of molten steel that does not satisfy the above control requirements, supplemental correction is performed by means of secondary blow-up.
  • the ladle top slag is modified, and a calcium-aluminum-based modifier, 0.6 ⁇ 1.7 kg/t steel is added, and the calcium-aluminum-based modifier is an existing product, which will not be described herein.
  • the deep decarburization is first carried out in the refining RH, and the decarburization effect is monitored by the exhaust gas flow rate in the smelting process until the carbon content of the molten steel at the end of decarburization is ⁇ 0.005%. Then, the molten steel is deoxidized and alloyed by ferrosilicon, aluminum iron or ferromanganese, and the molten steel is deeply desulfurized by using a desulfurizing agent.
  • the addition of the desulfurizing agent is once input from the vacuum silo, and the amount added is determined by the initial sulfur content of the ladle.
  • the sulfur content in the molten steel was sampled and analyzed to calculate the desulfurization efficiency.
  • the initial sulfur content of the ladle is generally controlled at 20 ⁇ 40ppm when the refining RH starts to be processed, according to the actual production control result, the desulfurization effect of the desulfurization effect between 50% and 75% can be determined.
  • the initial sulfur content of the ladle is generally controlled at 20 ⁇ 40ppm when the refining RH starts to be processed
  • the innovation of the invention is:
  • the ladle top slag is upgraded to maximize the Ti capacity in the ladle top slag, which facilitates the subsequent refining of the RH process.
  • the Ti in the slag is not reduced into the molten steel, and finally Low content of slab.
  • the key to this operation is the amount of calcium-aluminum-based modifier added to the ladle top slag.
  • the alkalinity of the ladle top slag is higher, generally greater than 3.0, and sometimes even above 4.0. Therefore, for the CaO-Si0 2 -Al 2 0 3 slag system, when the amount of the calcium-aluminum-based modifier is less than 0.6 kg/t steel, the change of the slag composition of the ladle is not large, and the basic modification is not possible. The quality effect, that is, the purpose of greatly improving or improving the slag capacity of the ladle. When the amount of calcium-aluminum-based modifier is higher than 1.7kg/t steel, the content of CaO and A1 2 3 in the top slag of the ladle will increase greatly.
  • the result is analyzed. It will directly affect the T. Fe content and FeO x activity in the top slag of the ladle, and further promote the reaction of the formula (1) to the left, which is unfavorable for controlling the Ti content in the steel.
  • the purpose of strictly limiting the desulfurization efficiency is that the desulfurization of the molten steel has a significant influence on the distribution ratio between the slag and the steel, because as described above, the main component of the desulfurizing agent added is CaO, which can be consumed as a reaction product, thereby promoting the formula (4). ), (5) proceed to the right. CaF 2 increase in desulfurizer The slag fluidity also provides favorable conditions for the above reaction.
  • the A1 2 0 3 content in the slag cannot be effectively reduced; and when the desulfurization efficiency is higher than 75%, according to the formula (3), the oxidizing property of the slag is remarkably lowered, which is also disadvantageous to the improvement of the distribution ratio between the slag and the steel. .
  • the ladle top slag and the molten steel are in the same reaction vessel, so Ti coexists in the slag and the steel.
  • the starting point of the invention is that by controlling the reforming effect and the desulfurization effect, the purpose of controlling the distribution ratio of the slag-steel Ti is achieved, thereby avoiding the increase of the molten steel.
  • the above two points the effect of upgrading and desulfurization are different from the traditional control requirements.
  • converter tapping is not upgraded, and there is no slag component requirement, and the desulfurization effect is desirably as low as possible.
  • Figure 1 is a schematic diagram showing changes in the content of Ti and Ti in the refining process of RH;
  • Figure 2 is a schematic diagram showing the relationship between the T.Fe content and the Ti distribution ratio in the slag
  • FIG. 3 is a schematic diagram showing the relationship between the A1 2 0 3 content and the Ti distribution ratio in the slag;
  • FIG. 4 is a schematic diagram showing the relationship between the desulfurization efficiency and the Ti rate of refining RH. Detailed description of the invention
  • the hot metal and scrap steel are matched according to the ratio. After 300 tons of converter smelting, the refined RH is decarburized, deoxidized and alloyed for deep desulfurization. After degassing and continuous casting, 170mn is obtained! ⁇ 250mm thick, 800mn! ⁇ 1400mm wide slab, the control of Ti content in steel is shown in Table 1.
  • the desulfurizing agent is selected from: 70% lime and 30% fluorite mixed, the lime in the desulfurizing agent is high-activity low-carbon high-quality lime, the CaO content is above 90%, and the activity is 350 N * Above L, using high quality fluorite, the CaF 2 content is above 95%.
  • the Ti content of the slab was more than 15 ppm; in the embodiment of the present invention, the Ti content of the slab was less than 15 ppm.
  • the Ti content control effect of the slab is basically independent of the content of Si, Mn, A1, P and other elements, and is mainly affected by the ladle top slag, Al2O3 A3 2 3 , all-iron T.Fe, and desulfurization efficiency of 11 8 influences.
  • the T.Fe content of the ladle top slag component is 5%
  • the A1 2 0 3 content is 23%
  • the desulfurization effect is between 50% and 75%. Effectively control the Ti content in the slab.
  • the T.Fe content is 12%, the higher the T.Fe content, the better the Ti control effect, while the T.Fe content is higher, the Ti control effect does not change significantly; Secondly, the A1 2 0 3 content 23 Before %, the lower the A1 2 0 3 content, the better the Ti control effect, and after the A1 2 0 3 content is higher than 23%, the Ti control effect drops sharply; in addition, the optimal desulfurization efficiency is between 50% and 75%. The too low and too high desulfurization effect is not conducive to control, especially after the desulfurization efficiency is higher than 75%, the control effect drops sharply.
  • the three In the actual production process, the three must have the conditions at the same time, in order to effectively control the content of the slab 1 , which is indispensable. In addition, between the optimal desulfurization efficiency of 50% ⁇ 75%, with the increase of T.Fe content and the decrease of A1 2 0 3 content, the control effect is best.
  • the invention can effectively reduce the content of ultra-low carbon aluminum silicon killed steel without increasing the manufacturing cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

控制超低碳镇静钢中 Ti含量的方法 发明领域
本发明涉及精炼 RH脱硫钢生产方法, 尤其涉及一种在精炼 RH过程 进行深脱硫的超低碳铝硅镇静钢的极低 Ti控制方法。 背景技术
1 与0、 N元素具有较强的亲和力。 炼钢过程中, 三者很容易结合, 形成微细夹杂物 1 0 和 TiN等。 这些微细夹杂物会降低钢的纯净度, 导 致连铸水口结瘤或结晶器结鱼, 进而影响钢的各类性能。 因此, 部分专用 钢种, 例如电工钢、 轴承钢、 弹簧钢等, 都对 含量提出了严格要求, 希望小于或等于 30ppm, 甚至 15ppm。
传统的降低钢中 含量的方法主要有:
通过严格控制铁水、铁合金、 中间包覆盖剂等原辅材料和钢包顶渣中 的 Ti含量, 以及通过转炉双联、 二次造渣等, 以有效减少钢中外界 Ti含 量的带入, 从而避免钢液脱氧、合金化之后大幅增 Ί 。例如日本专利特开 平 7-173519、 特开 2002-322508、 特开 2002-105578和特开 2004-307942 等所公开的方法。但该法对上述原辅材料的品质要求极高, 会大幅增加钢 的制造成本和冶炼周期, 并且为防止钢包顶渣中的 1 02被还原, 还需对 钢中的铝含量进行严格限制, 一般要求不大于 0.1%;
再有, 通过冶炼、 精炼过程中的钢包顶渣改质, 调整渣的碱度和钢水 氧化性等, 以提高渣钢间 Ti 的分配比, 例如: 日本专利特开平 5-86413 和特开 2003-73726等。 该法的不足之处在于, 没有对钢液进行脱硫, 同 时钢中 A1含量也相对较低, 一般要求不大于 0.1%。
发明概述
本发明的目的在于提供一种超低碳铝硅镇静钢的极低 控制方法, 该方法具有在较高的 Si、 A1含量和较低的 S含量条件下, 通过钢包顶渣 改质, RH精炼深脱硫等措施, 可以放宽冶炼过程的原辅材料品质要求, 简化炼钢生产工艺, 具有操作控制简便, 生产成本低廉, 适用范围广, 控 制精度高等优点。 为达到上述目的, 本发明的技术方案是:
精炼 RH脱碳结束后采用铝铁、硅铁、锰铁等合金进行脱氧、合金化, 成品钢中含有极低的碳、 硫含量以及较高的铝含量。
具体地, 本发明的超低碳铝硅镇静钢的极低 控制方法, 超低碳铝 硅镇静钢的化学成分重量百分比为: C≤0.005%、 Si: 0.1〜3.4%、 Mn: 0.1— 0.5%, P≤0.2%、 S≤0.002%、 Ah 0— 1.2%, N≤0.005%, Ti≤0.0015, 余量为 Fe及不可避免的夹杂; 具有上述化学成分的钢液经铁水预处理、 冶炼、精炼 RH冶炼和浇注成坯后获得; 其中,对钢包顶渣进行改质处理, 添加钙铝基改质剂, 0.6〜1.7kg/t钢, 确保精炼 RH脱碳结束时, 钢包顶 渣成分 T.Fe含量≥5%、A1203含量≤23%的控制要求;精炼 RH脱碳结束时, 采用硅铁、铝铁或锰铁进行脱氧、合金化,然后进行深脱硫,脱硫率 50%〜 75%。
进一歩, 所述的脱硫剂的重量百分比为: CaO: 65%〜75%; A1203: 15%〜30%; CaF2: 0〜: 10%。
另外, 本发明所述的脱硫剂添加方法如下:
钢包中硫的初始百分含量为: 0.0021〜0.0025%,脱硫剂添加量: 3.3〜 4.0kg/t钢;
钢包中硫的初始百分含量为: 0.0026〜0.0030%,脱硫剂添加量: 4.0〜 6.0kg/t钢;
钢包中硫的初始百分含量为: 0.0031〜0.0045%,脱硫剂添加量: 6.7〜
9.0kg/t钢;
钢包中硫的初始百分含量为: 0.0036〜0.0040%,脱硫剂添加量: 9.7〜 12.3kg/t钢。 本发明涉及精炼 RH深脱硫的超低碳铝硅镇静钢,其化学成分的设计 原则如下:
C: 0.005%以下。 C 强烈阻碍成品晶粒长大, 容易引起钢的铁损增加 和产生磁时效, 并给后续脱碳带来困难, 因此必须严格控制在 0.005%以 下。
Si: 0.1%〜3.4%。 Si能提高基体电阻率, 有效降低钢的铁损。 Si 含 量高于 3.4% 时,会显著降低钢的磁感,且容易造成轧制困难,而低于 0.1% 时又起不到降低铁损的作用。
Mn: 0.1%〜0.5%。 Mn与 S结合生成 MnS, 可以有效减少对磁性的 危害, 同时改善电工钢表面状态, 减少热脆。 因此, 有必要添加 0.1%以 上的 Mn含量, 而高于 0.5%以上的 Mn含量, 容易破坏再结晶织构, 又会 大幅增加钢的制造成本。
P: 0.2%以下。 磷可以改善钢板的加工性, 但超过 0.2%时, 反而使钢 板的冷轧加工性劣化。
S: 0.002%以下。 S含量超过 0.002%时, 将使 MnS等析出物大大增 力口, 强烈阻碍晶粒长大, 恶化钢的磁性。
Ah 0〜1.2%。 A1 是增加电阻元素, 同时用于电工钢的深脱氧, A1 含量高于 1.2% 时会造成连铸浇注困难, 磁感显著降低。
N: 0.005%以下。 N含量超过 0.005%时, 将使 A1N等析出物大大增 力口, 强烈阻碍晶粒长大, 恶化钢的磁性。
本发明精炼 RH深脱硫的超低碳铝硅镇静钢的极低 1 含量生产工艺, 按如下歩骤进行:
炼钢原料采用全铁水。冶炼过程通过枪位控制和辅料投入, 确保转炉 化渣情况良好, 钢液脱碳、 脱硫和升温效果稳定。 冶炼终点通过转炉副枪 测温、取样,将钢液碳、氧含量分别控制在 0.03%〜0.05%和 0.04%〜0.08%。 对于符合上述控制要求的钢液, 直接流向下工序进行脱碳、 脱硫, 对于少 量不满足上述控制要求的钢液,通过二次补吹的方式进行补充修正。随后, 在出钢过程中, 对钢包顶渣进行改质处理, 添加钙铝基改质剂, 0.6〜1.7 kg/t钢, 钙铝基改质剂为现有产品, 在此不再赘述。
在经过上述冶炼歩骤的钢水, 首先在精炼 RH进行深脱碳, 脱碳效果 通过冶炼过程的废气流量进行监控, 直至脱碳结束钢液碳含量≤0.005%。 然后, 采用硅铁、 铝铁或锰铁对钢液进行脱氧、 合金化, 采用脱硫剂对钢 液进行深脱硫。
脱硫处理时, 脱硫剂的添加从真空料仓一次性投入, 添加数量视钢包 初始硫含量确定。 脱硫剂添加 3〜5mm后, 取样分析钢液中的硫含量, 以 计算脱硫效率。 考虑到精炼 RH开始处理时, 钢包初始硫含量一般控制在 20〜40ppm, 根据大生产实际控制结果, 可以确定出脱硫效果介于 50%〜 75%的脱硫剂添加数量要求。 精炼 RH冶炼过程, 钢液中的硫、 钛含量变 化如图 1所示。
本发明的创新之处在于:
1、 在转炉出钢过程中进行钢包顶渣改质, 以最大限度的提高钢包顶 渣中的 Ti容量, 便于后续精炼 RH过程脱硫处理时, 渣中 Ti不被还原进 入钢液, 最终获得较低 含量的铸坯。 此操作的关键是, 钢包顶渣改质 时的钙铝基改质剂加入数量。
原因是, 正常的转炉冶炼结束后, 钢包顶渣碱度较高, 一般均大于 3.0, 有时甚至在 4.0 以上。 因此, 对于 CaO-Si02-Al203渣系而言, 钙铝 基改质剂的加入数量低于 0.6kg/t钢时, 钢包顶渣成分的变化不大, 起不 到基本的改质作用, 即达不到大幅提高或改善钢包顶渣 容量的目的。 而钙铝基改质剂的加入数量高于 1.7kg/t钢时, 钢包顶渣中的 CaO、 A1203 含量将大幅升高, 根据式 (2 ) 、 ( 3 ) 分析, 这种结果将直接影响钢包顶 渣中的 T. Fe含量及 FeOx活度, 进而促进式 (1 ) 反应向左进行, 对钢中 Ti含量的控制不利。
X [Ti] + 2 (FeOx ) = x (Ti02) + 2 [Fe] ( 1 ) 式 (1 ) 中 FeOx活度及其活度系数可以表示为
Figure imgf000005_0001
0.676x v(MgO) + 0.267 x (Al2O3)— 19.07
g rF, eO.
w(Si02 ) ( 3 )
+ 0.0214x v(CaO) - 0.047
此外, 由于转炉冶炼过程中, 吹炼制度、 耐火材料等基本不变, 渣碱 度、 MgO含量相对固定, 因此, 在钢包顶渣中含有较高 CaO、 A1203含量 时, 渣的熔点和黏度也将大幅上升, 进而降低渣 -钢间 Ti的分配比。 渣成 分对渣 -钢间 Ti的分配比的影响如图 2、 3所示。
2、 在脱硫剂添加 3〜5min后, 进行取样分析钢液中的硫含量, 目的 是, 在初始硫含量已知的前提下, 通过取样分析钢液脱硫后的硫含量, 可 以计算钢液脱硫效率, 是否满足脱硫率介于 50-75%的控制要求, 以及提 前预测铸坯中的 Ti含量。
严格限制脱硫效率的目的是, 钢液脱硫对渣 -钢间 的分配比产生显 著影响, 因为如上所述, 加入脱硫剂的主要成分是 CaO, 它可以作为反应 产物被消耗, 从而促进式 (4 ) 、 ( 5 ) 向右进行。 脱硫剂中的 CaF2提高 了熔渣流动性, 也为上述反应的进行提供了有利条件。
X (CaO) + y (A1203) = (x CaO · y A1203) ( 4 ) x (CaO) + y (A1203) + z (Si02) = (x CaO - y A1203 z Si02) ( 5 ) 通常情况下, 在脱硫效率低于 50% 以下时, 由于脱硫剂加入数量相 对较少, 最终不能有效促进反应 (4 ) 、 ( 5 ) 向右进行, 也即不能有效降 低渣中 A1203含量; 而在脱硫效率高于 75%以上时, 根据式 (3 ) 可知, 会显著降低渣的氧化性, 同样不利于渣 -钢间 的分配比提高。
由于冶炼过程, 钢包顶渣和钢液同在一个反应容器, 因此 Ti在渣、 钢间共存。 渣 -钢间 Ti的分配比越高, 钢包顶渣中的 Ti 容量就越高, 钢 液中的 Ti含量就越低; 反之, 渣 -钢间 Ti的分配比越低, 钢包顶渣中的
Ti 容量就越低, 钢液中的 Ti含量就越高。 脱硫效果对渣 -钢间 Ti的分配 比的影响如图 4所示。
本发明的出发点就是, 通过控制改质效果、 脱硫效果, 达到控制渣- 钢间 Ti的分配比的目的, 进而避免钢液增 Τι。 以上两点, 改质效果、 脱 硫效果均与以往传统的控制要求不同。通常转炉出钢不进行改质, 也没有 渣成分要求, 且脱硫效果希望越低越好。 附图说明
图 1为精炼 RH冶炼过程8、 Ti含量变化示意图;
图 2为渣中 T.Fe含量与 Ti分配比的关系示意图;
图 3为渣中 A1203含量与 Ti分配比的关系示意图;
图 4为精炼 RH脱硫效率和增 Ti率的关系示意图。 发明的详细说明
下面结合实施例对本发明做进一歩说明。
铁水、 废钢按照比例进行搭配, 经 300吨转炉冶炼, 精炼 RH脱碳、 脱氧、 合金化后进行深脱硫, 之后经脱气、连铸后, 得到 170mn!〜 250mm 厚、 800mn!〜 1400mm宽的铸坯, 钢中 Ti含量的控制情况见表 1。
在本实施例中, 脱硫剂选用: 由 70%石灰和 30%萤石混合组成, 脱 硫剂中的石灰采用高活性低碳含量的优质石灰, CaO含量在 90%以上,活 性度在 350 N * L以上, 采用优质萤石, CaF2含量在 95%以上。 从表 1可以看出, 比较例中, 铸坯的 Ti含量均大于 15ppm; 本发明 实施例中, 铸坯的 Ti含量均小于 15ppm。 铸坯的 Ti含量控制效果与 Si、 Mn、 A1、P等元素含量基本无关,而主要受钢包顶渣中,三氧化二铝 A1203、 全铁 T.Fe、 以及脱硫效率 11 8的影响。 在三者同时具备精炼 RH脱碳结束 时, 钢包顶渣成分 T.Fe含量 5%、 A1203含量 23% 的控制要求, 以及 脱硫效果介于 50%〜75%的控制要求时, 可以有效控制铸坯中的 Ti含量。 并且,在 T.Fe含量 12%之前, T.Fe含量越高, Ti控效果越好, 而在 T.Fe 含量更高时, Ti控效果没有明显变化; 其次, 在 A1203含量 23%之前, A1203含量越低, Ti控效果越好, 而在 A1203含量高于 23%之后, Ti控效 果急剧下降; 此外, 最佳的脱硫效率介于 50%〜75%, 过低、 过高的脱硫 效果均不利于 控, 尤其是脱硫效率高于 75%之后, 控效果急剧下降。
实际生产过程中, 三者必须同时具备条件, 方能有效控制铸坯 1 含 量, 缺一不可。 另外, 在最佳的脱硫效率 50%〜75%之间, 随 T.Fe含量 升高、 A1203含量降低, Ή控效果最佳。
本发明通过控制顶渣化学成分, 优化精炼 RH脱硫工艺后, 可以在不 增加制造成本的前提下, 有效降低超低碳铝硅镇静钢的 含量。
表 1 单位:
Figure imgf000007_0001
Figure imgf000008_0001

Claims

权 利 要 求 书
1. 超低碳铝硅镇静钢的极低 Ti控制方法, 超低碳铝硅镇静钢的化学成分重量 百分比为: C≤0.005%、 Si: 0.1— 3.4% , Mn: 0.卜 0.5%、 P≤0.2%、 S≤0.002%、 Al: 0〜1.2%、 N≤0.005%, Ti≤0.0015, 余量为 Fe及不可避免的夹杂; 具有 上述化学成分的钢液经铁水预处理、冶炼、精炼 RH冶炼和浇注成坯后获得; 其中, 对钢包顶渣进行改质处理, 添加钙铝基改质剂, 0.6〜1.7kg/t钢, 确 保精炼 RH脱碳结束时, 钢包顶渣成分 T.Fe含量≥5%、 Α12Ο3含量≤23%的 控制要求; 精炼 RH脱碳结束时, 采用硅铁、铝铁或锰铁进行脱氧、合金化, 然后进行深脱硫, 脱硫率 50%〜75%。
2. 如权利要求 1所述的超低碳铝硅镇静钢的极低 Ti控制方法, 其特征是, 所 述的脱硫剂的重量百分比为: CaO: 65%〜75%; Al2O3 : 15%〜30%; CaF2 : 0〜10%。
3. 如权利要求 1或 2所述的超低碳铝硅镇静钢的极低 Ti控制方法,其特征是, 所述的脱硫剂添加方法如下:
钢包中硫的初始百分含量为: 0.0021〜0.0025%, 脱硫剂添加量: 3.3〜 4.0kg/t钢;
钢包中硫的初始百分含量为: 0.0026〜0.0030%, 脱硫剂添加量: 4.0〜 6.0kg/t钢;
钢包中硫的初始百分含量为: 0.0031〜0.0045%, 脱硫剂添加量: 6.7〜
9.0kg/t钢;
钢包中硫的初始百分含量为: 0.0036〜0.0040%, 脱硫剂添加量: 9.7〜 12.3kg/t钢。
PCT/CN2011/072654 2010-06-23 2011-04-12 控制超低碳镇静钢中ti含量的方法 WO2011160483A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020127027615A KR101484106B1 (ko) 2010-06-23 2011-04-12 초저 탄소 AlSi-킬드 강에서 Ti를 극히 낮게 제어하는 방법
RU2012149436/02A RU2527569C2 (ru) 2010-06-23 2011-04-12 СПОСОБ РЕГУЛИРОВАНИЯ СВЕРХНИЗКОГО СОДЕРЖАНИЯ ТИТАНА В СВЕРХНИЗКОУГЛЕРОДИСТОЙ Al-Si РАСКИСЛЕННОЙ СТАЛИ
US13/697,777 US8882880B2 (en) 2010-06-23 2011-04-12 Method for controlling extremely low Ti in extra low carbon AlSi-killed steel
JP2013506465A JP5529341B2 (ja) 2010-06-23 2011-04-12 超低炭素,極低Tiのアルミニウムシリコンキルド鋼の制御方法
EP11797514.4A EP2586878B1 (en) 2010-06-23 2011-04-12 Method for controlling titanium content in ultra-low carbon killed steel
MX2012013486A MX2012013486A (es) 2010-06-23 2011-04-12 Metodo para controlar ti extremadamente bajo en acero con alsi reposado extra bajo en carbono.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010102082864A CN102296157B (zh) 2010-06-23 2010-06-23 超低碳铝硅镇静钢的极低Ti控制方法
CN201010208286.4 2010-06-23

Publications (1)

Publication Number Publication Date
WO2011160483A1 true WO2011160483A1 (zh) 2011-12-29

Family

ID=45356832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/072654 WO2011160483A1 (zh) 2010-06-23 2011-04-12 控制超低碳镇静钢中ti含量的方法

Country Status (8)

Country Link
US (1) US8882880B2 (zh)
EP (1) EP2586878B1 (zh)
JP (1) JP5529341B2 (zh)
KR (1) KR101484106B1 (zh)
CN (1) CN102296157B (zh)
MX (1) MX2012013486A (zh)
RU (1) RU2527569C2 (zh)
WO (1) WO2011160483A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515541A (ja) * 2012-03-08 2015-05-28 バオシャン アイアン アンド スティール カンパニー リミテッド 磁気特性に優れた無方向性電磁鋼板及びそのカルシウム処理方法
CN112410509A (zh) * 2020-11-12 2021-02-26 冷水江钢铁有限责任公司 一种60si2mn弹簧钢的冶炼轧制工艺
CN113817952A (zh) * 2021-08-30 2021-12-21 石钢京诚装备技术有限公司 一种低钛热作模具钢的冶炼方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540709B (zh) * 2013-11-06 2015-12-30 北京首钢股份有限公司 一种纯净钢控钛方法
JP6214493B2 (ja) * 2014-08-21 2017-10-18 株式会社神戸製鋼所 鋼中Ti濃度の制御方法
CN104789862A (zh) 2015-03-20 2015-07-22 宝山钢铁股份有限公司 表面状态良好的高磁感低铁损无取向电工钢板及其制造方法
CN110055449A (zh) * 2019-03-28 2019-07-26 舞阳钢铁有限责任公司 一种低碳型铬钼钢的冶炼方法
CN111944940A (zh) * 2019-05-14 2020-11-17 江苏集萃冶金技术研究院有限公司 一种控制if钢中夹杂物的方法
CN110331258B (zh) * 2019-08-07 2021-04-06 苏州东大汉森冶金实业有限公司 超低碳硅镇静钢在RH真空处理时控制Cr含量的生产工艺
CN110396637B (zh) * 2019-08-30 2020-12-15 武安市裕华钢铁有限公司 低成本、短流程、高效率生产sphc的工艺
CN111088457B (zh) * 2019-12-05 2021-01-22 华北理工大学 一种无取向电工钢及其制备方法
CN111349758B (zh) * 2020-04-22 2022-08-09 马鞍山钢铁股份有限公司 一种提高csp产线无取向硅钢钢水可浇性的方法
CN111560557A (zh) * 2020-05-29 2020-08-21 鞍钢股份有限公司 一种无取向硅钢控钛、降钛的工艺
CN111793772B (zh) * 2020-06-19 2021-04-30 中天钢铁集团有限公司 一种高标准轴承钢高效化生产工艺
CN111549291A (zh) * 2020-06-22 2020-08-18 马拉兹(江苏)电梯导轨有限公司 一种电梯导轨用镇静钢及其制备方法
CN111961951B (zh) * 2020-08-17 2021-10-22 武汉钢铁有限公司 一种含磷超低碳钢的冶炼方法
CN112899552B (zh) * 2021-01-21 2022-03-29 江苏省沙钢钢铁研究院有限公司 一种超低铝无取向硅钢夹杂物控制方法
CN113106321A (zh) * 2021-03-16 2021-07-13 首钢集团有限公司 一种新型含硅超低碳钢的生产制造方法
CN113088800B (zh) * 2021-04-15 2022-08-16 天津市新天钢钢铁集团有限公司 低碳铝镇静钢lf炉精炼渣和钢水浇余循环利用的方法
CN113832381B (zh) * 2021-09-27 2022-07-22 北京科技大学 一种高纯净度GCr15SiMn轴承钢的精炼工艺
CN114959416A (zh) * 2022-05-24 2022-08-30 阳春新钢铁有限责任公司 一种控制低碳拉丝材结疤方法
CN115058637A (zh) * 2022-06-28 2022-09-16 日照钢铁控股集团有限公司 一种基于薄板坯连铸连轧超低钛钢水的生产方法
CN115323115B (zh) * 2022-09-15 2024-01-30 湖南华菱涟源钢铁有限公司 一种提升滤清器钢洁净度的方法
CN115652195A (zh) * 2022-09-30 2023-01-31 山东钢铁集团日照有限公司 一种冷轧电工钢的冶炼方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586413A (ja) 1991-09-27 1993-04-06 Kawasaki Steel Corp 極低Ti鋼の溶製方法
JPH07173519A (ja) 1993-12-20 1995-07-11 Nippon Steel Corp 低Ti含有溶鋼の精錬方法
JP2002105578A (ja) 2000-09-27 2002-04-10 Kobe Steel Ltd 機械構造用鋼におけるTi含有量の低減方法
JP2002322508A (ja) 2001-04-25 2002-11-08 Daido Steel Co Ltd 極低Ti鋼の製造方法
JP2003073726A (ja) 2001-08-29 2003-03-12 Daido Steel Co Ltd 低Ti鋼の製造方法
JP2004307942A (ja) 2003-04-08 2004-11-04 Nippon Steel Corp 極低Ti溶鋼の溶製方法
CN101481772A (zh) * 2009-02-20 2009-07-15 武汉钢铁(集团)公司 超细钢丝用高碳钢线材及其制造方法
CN101736124A (zh) * 2010-01-19 2010-06-16 南京钢铁股份有限公司 一种降低帘线钢中钛夹杂的方法
CN101748236A (zh) * 2008-12-15 2010-06-23 鞍钢股份有限公司 一种控制钢水中钛成分含量的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU806770A1 (ru) * 1979-02-09 1981-02-23 Институт металлургии им. А.А.Байкова Способ производства особонизко- углЕРОдиСТОй СТАли B ВАКууМЕ
JPS57200513A (en) * 1981-06-02 1982-12-08 Metal Res Corp:Kk Preparation of iron base alloy with reduced oxygen, sulfur and nitrogen contents
JP3105525B2 (ja) * 1990-08-27 2000-11-06 川崎製鉄株式会社 けい素鋼素材の溶製方法
JPH05171253A (ja) * 1991-12-24 1993-07-09 Kawasaki Steel Corp 溶鋼の脱硫方法
JPH06145883A (ja) * 1992-11-02 1994-05-27 Daido Steel Co Ltd 高清浄度軸受鋼およびその製造方法
JP3627755B2 (ja) * 1993-01-07 2005-03-09 Jfeスチール株式会社 S含有量の極めて少ない高清浄度極低炭素鋼の製造方法
JP3390478B2 (ja) * 1993-03-03 2003-03-24 川崎製鉄株式会社 高清浄度鋼の溶製方法
RU2109074C1 (ru) * 1997-05-20 1998-04-20 Открытое акционерное общество "Нижнетагильский металлургический комбинат" Способ производства низкоуглеродистой спокойной стали
JP3424163B2 (ja) * 1998-10-20 2003-07-07 Jfeエンジニアリング株式会社 V含有量の少ない極低炭素鋼の製造方法
EP1342798B9 (en) * 2000-12-13 2008-02-27 JFE Steel Corporation Process for producing high-nitrogen ultralow-carbon steel
JP2009242912A (ja) * 2008-03-31 2009-10-22 Jfe Steel Corp 含Ti極低炭素鋼の溶製方法および含Ti極低炭素鋼鋳片の製造方法
JP5251360B2 (ja) * 2008-08-25 2013-07-31 新日鐵住金株式会社 取鍋精錬法による清浄鋼の製造方法
CN101550513A (zh) * 2009-04-22 2009-10-07 首钢总公司 一种用于低碳钢铝脱氧钢快速深脱硫的方法
CN101705412A (zh) * 2009-07-01 2010-05-12 武汉科技大学 一种大线能量焊接的管线钢的冶炼方法
JP5509913B2 (ja) * 2010-02-23 2014-06-04 Jfeスチール株式会社 S及びTi含有量の少ない高Si鋼の溶製方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0586413A (ja) 1991-09-27 1993-04-06 Kawasaki Steel Corp 極低Ti鋼の溶製方法
JPH07173519A (ja) 1993-12-20 1995-07-11 Nippon Steel Corp 低Ti含有溶鋼の精錬方法
JP2002105578A (ja) 2000-09-27 2002-04-10 Kobe Steel Ltd 機械構造用鋼におけるTi含有量の低減方法
JP2002322508A (ja) 2001-04-25 2002-11-08 Daido Steel Co Ltd 極低Ti鋼の製造方法
JP2003073726A (ja) 2001-08-29 2003-03-12 Daido Steel Co Ltd 低Ti鋼の製造方法
JP2004307942A (ja) 2003-04-08 2004-11-04 Nippon Steel Corp 極低Ti溶鋼の溶製方法
CN101748236A (zh) * 2008-12-15 2010-06-23 鞍钢股份有限公司 一种控制钢水中钛成分含量的方法
CN101481772A (zh) * 2009-02-20 2009-07-15 武汉钢铁(集团)公司 超细钢丝用高碳钢线材及其制造方法
CN101736124A (zh) * 2010-01-19 2010-06-16 南京钢铁股份有限公司 一种降低帘线钢中钛夹杂的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515541A (ja) * 2012-03-08 2015-05-28 バオシャン アイアン アンド スティール カンパニー リミテッド 磁気特性に優れた無方向性電磁鋼板及びそのカルシウム処理方法
CN112410509A (zh) * 2020-11-12 2021-02-26 冷水江钢铁有限责任公司 一种60si2mn弹簧钢的冶炼轧制工艺
CN113817952A (zh) * 2021-08-30 2021-12-21 石钢京诚装备技术有限公司 一种低钛热作模具钢的冶炼方法

Also Published As

Publication number Publication date
EP2586878B1 (en) 2019-06-19
KR101484106B1 (ko) 2015-01-19
RU2527569C2 (ru) 2014-09-10
EP2586878A4 (en) 2017-02-08
RU2012149436A (ru) 2014-05-27
US20130056167A1 (en) 2013-03-07
CN102296157A (zh) 2011-12-28
MX2012013486A (es) 2012-12-17
CN102296157B (zh) 2013-03-13
JP5529341B2 (ja) 2014-06-25
US8882880B2 (en) 2014-11-11
KR20130025383A (ko) 2013-03-11
EP2586878A1 (en) 2013-05-01
JP2013527318A (ja) 2013-06-27

Similar Documents

Publication Publication Date Title
WO2011160483A1 (zh) 控制超低碳镇静钢中ti含量的方法
CN106834607B (zh) 一种提高铁素体不锈钢连铸坯等轴晶比例的精炼工艺方法
CN110541114B (zh) 一种高氮高硫低铝钢的冶炼方法
CN113215477B (zh) 一种低碳排放冷轧基料钢带的制备方法
CN102796948A (zh) 极低Ti含量的无取向电工钢板及其冶炼方法
CN111910045A (zh) 一种高纯奥氏体不锈钢的冶炼方法
CN108893682B (zh) 模具钢钢坯及其制备方法
CN111020099B (zh) 一种低碳冷轧基料用钢转炉直上中薄板坯连铸的工艺
CN114182156A (zh) 一种低铝碳素结构钢水的生产方法
CN108330240A (zh) 连铸q235钢种成分降铝无钙化处理的方法
CN102787206A (zh) 控制中碳含铬模具钢钢锭中氮含量的冶炼方法及其钢锭
CN111593251A (zh) 螺纹钢及其制备方法
JP3742619B2 (ja) 低炭素鋼鋳片の製造方法
CN106048394B (zh) 低成本高质量冶炼q345b钢的配方及其制备方法
JP4107801B2 (ja) 磁気特性に優れたFe−Ni系パーマロイ合金の製造方法
CN109385505B (zh) 一种vd炉中真空控制得到还原性高碱度白渣的方法
TWI444480B (zh) So that the molten steel casting performance of aluminum silicon deoxidized steel steelmaking process
CN115261702B (zh) 一种热轧弹簧钢的冶炼方法及其制备的热轧弹簧钢
CN115572890B (zh) 一种低硫包晶钢连铸板坯的生产方法
CN115161434A (zh) 一种低合金钢的生产方法和低合金钢
CN112391571A (zh) 一种高强高铝高锰钢洁净度的控制方法
CN117737336A (zh) 一种高铝工业纯铁的制备方法
JP2001032014A (ja) 薄板用鋼板の溶製方法
JP5680451B2 (ja) バイメタル用高熱膨張性Fe−Ni−Cr合金およびその溶製方法
CN118127401A (zh) 硅脱氧不锈钢以及避免夹杂物析晶镁铝尖晶石的冶炼方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797514

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8338/CHENP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127027615

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013506465

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13697777

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012149436

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2012/013486

Country of ref document: MX

Ref document number: 2011797514

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE