WO2011152363A2 - 熱放射部材用セラミックスの製造方法、熱放射部材用セラミックス、該セラミックスを用いてなる太陽電池モジュールおよびled発光モジュール - Google Patents

熱放射部材用セラミックスの製造方法、熱放射部材用セラミックス、該セラミックスを用いてなる太陽電池モジュールおよびled発光モジュール Download PDF

Info

Publication number
WO2011152363A2
WO2011152363A2 PCT/JP2011/062410 JP2011062410W WO2011152363A2 WO 2011152363 A2 WO2011152363 A2 WO 2011152363A2 JP 2011062410 W JP2011062410 W JP 2011062410W WO 2011152363 A2 WO2011152363 A2 WO 2011152363A2
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
alumina
heat
ceramic
alumina sintered
Prior art date
Application number
PCT/JP2011/062410
Other languages
English (en)
French (fr)
Other versions
WO2011152363A3 (ja
Inventor
西村威夫
石田信行
Original Assignee
西村陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西村陶業株式会社 filed Critical 西村陶業株式会社
Priority to US13/393,802 priority Critical patent/US9108887B2/en
Priority to JP2012503826A priority patent/JP5081332B2/ja
Publication of WO2011152363A2 publication Critical patent/WO2011152363A2/ja
Publication of WO2011152363A3 publication Critical patent/WO2011152363A3/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention is for a heat radiating member made of an alumina-based sintered body having a specific crystalline state that can be put into practical use as an efficient heat radiating member having high thermal conductivity and excellent thermal shock and mechanical strength.
  • the present invention relates to a technology for providing ceramics, and further relates to a product using the high heat dissipation function of the ceramics.
  • alumina Al 2 O 3
  • steatite zircon
  • cordierite cordierite
  • the thermal emissivity is excellent, and it has been proposed to use this for cooling the heat generating portion (see Patent Document 1).
  • the ceramics are excellent in electrical insulation and are non-combustible materials made of inorganic materials, so they can be cooled by direct contact with the heat generating part, so that they are expected to be used in fields where cooling effects including electronic equipment and devices are desired. Is done.
  • Patent Document 1 proposes an alumina sintered body having excellent thermal conductivity and thermal emissivity, it is possible to reduce the size, increase the precision, and increase the accuracy in recent electronic devices and the like.
  • the progress of functionalization is remarkable, and it cannot be said that it is sufficient as a functional material that can stably enhance the functions of these devices, and there is room for improvement.
  • a ceramic material that can realize a more efficient cooling effect has excellent strength and the like, has no problem in durability, and can exhibit the cooling effect stably and reliably. Development and further development of technology capable of manufacturing such materials with high yield are desired.
  • Patent Document 1 can reliably and stably obtain a high effect on cooling in a heat generation part of an electronic device or the like with advanced functionality, and also has high mechanical strength and thermal shock resistance. It has not yet been possible to stably provide an alumina sintered body that can be put into practical use as an excellent cooling member.
  • the primary particle diameter of the raw material powder used is as large as 5 to 10 ⁇ m, the molding pressure is set relatively low, and the sintering is 1,600.
  • the bonding between the powder particles was promoted and a strong sintered body was obtained.
  • the present inventors for example, when sintered in such a high temperature environment, such as an alumina sintered body fired at 1,610 ° C. shown in FIG. Grain grows abnormally and crystal coarsening occurs, resulting in a decrease in mechanical strength and thermal shock resistance.
  • the crystal grain size of the alumina sintered body is increased to 20 to 70 ⁇ m, and at the same time, the strength is improved by randomizing the plate-like crystals without being oriented. ing.
  • the coarsening of the crystal grain size causes another problem such as chipping or breakage during surface polishing.
  • Patent Document 3 provides an alumina sintered body that can reduce material costs while maintaining the high strength, high heat conduction characteristics, and low dielectric loss inherent to alumina, and that has good workability during manufacturing. The following proposals have been made for this purpose. That is, in Patent Document 3, an alumina raw material having an average particle size of 0.1 to 1.0 ⁇ m and a specific amount of sintering aid are used, and the sintering temperature is lowered to 1,150 to 1,350 ° C.
  • Patent Document 4 discloses that not only the amount of impurities but also the crystal grain size affects the dielectric loss in the alumina sintered body. However, thermal characteristics such as thermal conductivity and thermal emissivity are examined. It has not been.
  • Patent Document 5 a high-density alumina sintered body that is applicable to a member that is placed at a high temperature for a long period of time and has a reduced impurity content and a high purity and is highly densified and excellent in homogeneity as a whole is obtained. Proposed method. However, it does not provide an alumina sintered body that can be used as a cooling member, nor does it suggest controlling the crystal grain size. According to Patent Document 6 mentioned above, the alumina sintered body does not sufficiently progress in densification when the firing temperature is less than 1,550 ° C., and abnormal grain growth occurs at temperatures exceeding 1,650 ° C. It is said that the density of the sintered body is reduced.
  • the technique described in this document relates to a technique for obtaining an alumina sintered body by using two kinds of raw materials having different particle diameters and a slurry casting method as a forming method, and preparing a slurry with high purity and low viscosity.
  • the grain growth is controlled by making it possible, and the problem and the method for producing the alumina sintered body are different from those of the present invention aiming at making the alumina sintered body usable as a cooling member.
  • Patent Document 7 discloses an alumina sintered body using a high-purity alumina raw material, which relates to a ceramic setter used at the time of firing parts and the like, It is not intended to provide an alumina sintered body that can be put to practical use as a cooling member.
  • the applicant of the present application has previously disclosed a far-infrared radiation coating composition capable of obtaining a coating film that emits far-infrared radiation by heating with gas, electricity, etc. by applying and baking it on the surface of a substrate. It has been proposed (see Japanese Examined Patent Publication No. 63-54031). However, this technology is a technology for changing the heat of gas, electricity, etc. to far infrared rays in a desired wavelength region by providing a specific coating film. Of course, efficient heat dissipation (ie, cooling) is performed. It is not intended.
  • LED light emitting module using a light emitting diode (LED) element As one having the same problems as the solar cell.
  • LED light emitting diode
  • LED elements are rapidly spreading as illumination with high luminous efficiency and low power consumption.
  • LED elements are weak against heat, and the elements deteriorate at a temperature of 80 ° C. or more and have a long life. There is a problem that it decreases. For this reason, in the LED element, the necessity of heat dissipation is higher than that of conventional incandescent bulbs and fluorescent lamps.
  • the heat is not appropriately dissipated, there is a concern that the light emission efficiency may be reduced, the life may be shortened, and further an ignition accident may be caused by heat generation.
  • the technology for radiating the heat from the LED element is indispensable for promoting the spread thereof. That is, the realization of the development of a simple structure cooling mechanism or heat radiation member for cooling these modules is an important thing that can contribute to environmental conservation on a global scale.
  • Patent Document 9 a light emitting device that employs a laminated structure of a metal plate, an insulator, and a metal substrate as a substrate on which the LED element is mounted and has excellent heat dissipation from the LED element by forming a through groove.
  • the through groove for heat dissipation has a complicated structure formed by removing a part of the insulator, and it is difficult to improve productivity.
  • Patent Document 10 discloses a light-emitting device in which LED elements are arranged on a high-purity alumina substrate, and the high-purity alumina substrate has a high thermal conductivity and is excellent in heat dissipation.
  • the technique of Patent Document 10 is a technique for increasing the light reflectance of the substrate for light of a specific wavelength, thereby increasing the light emission efficiency of the LED element disposed thereon, and the crystal structure of the alumina sintered body It does not suggest the relationship between heat dissipation and heat dissipation.
  • the object of the present invention is to solve the above-described conventional problems, achieve high heat conductivity, achieve efficient heat dissipation, can be used for cooling in heat generating parts such as electronic devices, and has mechanical strength and
  • a further object of the present invention is to provide a ceramic for a heat radiating member having a further improved heat dissipation by modifying the surface of the ceramic for the heat radiating member.
  • an object of the present invention is to promote the use of the above-mentioned useful ceramics for heat radiation members that are excellent in heat dissipation.
  • An object of the present invention is to provide ceramics for a heat radiating member applicable to various uses as a heat radiating member capable of solving the problem of heat generation in a solar cell module or an LED light emitting module for which an effective heat radiating means is required.
  • the present invention uses an alumina powder having an alumina (Al 2 O 3 ) content of 99.5% by mass or more and an average particle size of 0.2 to 1 ⁇ m as a raw material, A granulating step for forming 100 ⁇ m granules, a molding step for press-molding a raw material containing granular alumina obtained in the granulating step, and heating the molded body obtained in the molding step in an air atmosphere And a firing process for obtaining a sintered body by firing at a firing temperature of 1,480 to 1,600 ° C.
  • the following are mentioned as a preferable form of the manufacturing method of the ceramic for heat radiation members of the said invention.
  • (1) The method for producing a ceramic for a heat radiation member, wherein the firing temperature is 1,500 to 1,592 ° C.
  • (2) The method for producing a ceramic for a heat radiation member as described above, wherein in the molding step, a molded body having a density of at least 2.40 g / cm 3 is obtained.
  • (3) Further, after the firing step, a cooling step of quenching the fired product at a rate of 1.3 to 2.0 times the rate of temperature increase up to the firing temperature in the firing step to obtain a sintered body.
  • the far-infrared radiation coating composition is obtained by mixing a heat-resistant inorganic adhesive with at least two transition element oxides and calcining at 700 to 1300 ° C. in a fine powdery mixed calcined product. 97.
  • an alumina sintered body having an alumina content of 99.5% by mass or more and a silica (SiO 2 ) content of 0.1% by mass or less has a crystal grain size of A heat radiating member comprising 1 to 10 ⁇ m and 30 to 55 crystal grains in an area of 30 ⁇ 20 ⁇ m, and having a thermal conductivity of 33 W / m ⁇ K or more. Ceramics for use.
  • the ceramic for a heat radiation member wherein the sintered body density is 3.8 g / cm 3 or more.
  • the ceramic for a heat radiation member wherein the alumina content is 99.8% by mass or more and the silica content is 0.05% by mass or less.
  • the ceramic for heat radiation member described above further comprising a far-infrared radiation film on at least a part of the surface.
  • the far-infrared radiation film comprises a mixed pre-fired product in the form of a fine powder obtained by mixing a heat-resistant inorganic adhesive and at least two transition element oxides and calcining at 700 to 1300 ° C.
  • the ceramic for thermal radiation member described above which is obtained by baking a coating film of a far-infrared radiation coating composition contained in a mass ratio of 3 to 20:80.
  • the following solar cell module or LED light emitting module using the ceramics for heat radiation member of the present invention is provided.
  • a solar cell module is provided in which the above-described ceramic for heat radiation member of the present invention is disposed on the back surface of a power generation cell.
  • the LED is characterized in that the substrate in the LED light emitting module in which a circuit is formed on the substrate surface and the LED element is provided on the circuit is one of the ceramics for a heat radiation member of the present invention described above.
  • a light emitting module is provided.
  • the present invention in particular, by precisely controlling the raw materials used and the firing temperature, high thermal conductivity, efficient and effective heat dissipation is achieved, and for cooling applications in heat generating parts such as electronic devices.
  • a method for producing an alumina sintered body that can be stably used to obtain a novel alumina sintered body that can be used and that is excellent in mechanical strength and thermal shock resistance and that is useful for a heat radiation member.
  • the alumina sintered body that can be obtained by such a method does not cause crystal growth, the crystal grain size is small, and the crystal grain size is controlled relatively uniformly.
  • it since it is a high-purity and dense alumina sintered body with almost no precipitation of impurities at the interface between crystal grains, as described above, it becomes an excellent functional material that has never existed before.
  • a far-infrared radiation film made of a far-infrared radiation coating composition on at least a part of the surface of the alumina sintered body, for example, a surface that dissipates heat, a heat generation site
  • the heat can be converted into far infrared rays and radiated to the outside, so that it is possible to provide ceramics for a heat radiation member with better heat dissipation.
  • an alumina sintered body having high thermal conductivity, capable of achieving efficient and effective heat dissipation, and excellent in mechanical strength and thermal shock resistance is applied to a solar cell module and an LED light emitting module.
  • the following effects can be obtained. That is, when the alumina sintered body provided in the present invention is applied, the output decrease of the power generation cell caused by the temperature increase of the solar cell module can be suppressed with only a member made of an extremely simple alumina sintered body. The efficiency is improved, and in the case of an LED element that is weak against heat, the deterioration of the element is effectively suppressed, and it is possible to extend the life of the LED element and prevent the occurrence of a fire accident due to heat generation. For this reason, according to this invention, it can contribute greatly to the practical use of the various products using the solar cell module and LED light emitting module useful for natural environment protection.
  • indicates the heater surface temperature in the case of a heater alone
  • indicates a thickness of 4.5 mm
  • indicates a thickness of 5.5 mm
  • indicates a thickness of 6.5 mm
  • indicates a thickness of 7.5 mm
  • indicates a thickness
  • the heater surface temperature when the alumina sintered bodies having a thickness of 8.5 mm are brought into contact with each other is shown.
  • It is a conceptual diagram showing the measuring method of the surface temperature of the alumina sintered compact of Example 1 and a heater in evaluation (B-II).
  • indicates the heater surface temperature in the case of the heater alone
  • indicates alumina sintered body A (length and width are 31.0 mm, 18.0 mm, and 5.0 mm, respectively)
  • ⁇ plot indicates alumina sintered body B (The vertical and horizontal thicknesses are 19.4 mm, 18.0 mm, and 8.0 mm, respectively)
  • is when the alumina sintered body C (the vertical and horizontal thicknesses are 14.1 mm, 18.0 mm, and 11.0 mm, respectively) is contacted
  • the heater surface temperature is shown.
  • FIG. 1 It is a conceptual diagram showing the measuring method of the heater surface temperature of Example 1 in evaluation (B-III). It is a graph showing the change of the heater surface temperature at the time of input electric power 3W.
  • the straight line indicates the case of the heater alone
  • the broken line indicates the case where the alumina sintered body is overlapped on the heater
  • the dotted line indicates the case where the copper plate is overlapped on the heater.
  • indicates an alumina sintered body
  • indicates a copper plate.
  • the method for producing an alumina sintered body according to the present invention includes a granulation step of preparing a specific alumina raw material powder, a molding step of pressure-molding a raw material containing granular alumina obtained in the granulation step, It consists of a firing step in which the compact obtained in the compacting step is heated in an air atmosphere and fired at a firing temperature of 1,480 to 1,600 ° C. to obtain a sintered body (ceramics).
  • the feature of the present invention is that a high-purity alumina fine powder is used as a raw material, the fine powder is granulated, the granulated raw material is pressure-molded, and the compact is controlled in an air atmosphere. It is the point which baked in the specific temperature range. Each will be described below.
  • the alumina powder as a raw material can be used as it is if it has an average particle size of 0.2 to 1 ⁇ m, and it is not necessary to pulverize it. However, as described later, it is preferable that the particle size distribution is narrow. For this reason, it is preferable to pulverize with a ball mill or the like and use it with a uniform particle size distribution.
  • a high-purity alumina raw material having an alumina content of 99.5% by mass or more, preferably 99.9% by mass or more is used.
  • any publicly available known alumina raw material powder can be used.
  • ⁇ -alumina powder obtained by a method called a Bayer method in which kibsite, which is an intermediate product in a metal aluminum refining process, is calcined at 1,000 ° C. or higher can be used.
  • an alumina powder obtained by heating a gel obtained by hydrolysis and polycondensation reaction of a metal alkoxide and obtained by a sol-gel method may be used.
  • the alumina powder obtained by the sol-gel method is higher in purity than the alumina powder obtained by the Bayer method or the like, has a small and uniform particle diameter, and is a spherical particle close to a true sphere.
  • alumina powder having a purity of 99.9% by mass or more obtained by a sol-gel method when used as a raw material, a sintered body having a higher alumina purity is obtained, and a glass boundary is formed at a grain boundary in the sintered body. Since the formation of the phase can be suppressed, the sintered body is more excellent in thermal conductivity.
  • the spherical alumina powder obtained by the sol-gel method when used, a denser molded body can be obtained in the molding process described later, compared with the case where the alumina powder obtained by the Bayer method is used. As described, alumina is sintered at a lower firing temperature, and a good alumina sintered body having a fine and uniform crystal state can be obtained.
  • the alumina powder obtained by the Bayer method when alumina powder obtained by the Bayer method is used, sintering becomes difficult when the firing temperature is lower than 1,550 ° C., but it is obtained by the sol-gel method.
  • the alumina powder to be used when used, it is sufficiently sintered even at 1,480 ° C., and good firing is possible at a lower temperature range.
  • the alumina powder obtained by the sol-gel method has an advantage that the raw material cost is high, but the firing temperature can be lowered.
  • the firing temperature exceeds 1,600 ° C., crystal grain growth is observed, and it is difficult to obtain an alumina sintered body that can sufficiently obtain the effects of the present invention.
  • an alumina sintered body having higher strength and thermal conductivity can be obtained as described later.
  • alumina powder raw material having an average particle diameter of 0.2 to 1 ⁇ m and an alumina content of 99.5% by mass or more is prepared according to the procedure and conditions specified in the present invention, the present invention is not limited to the above.
  • alumina powder obtained by any manufacturing method as a raw material it is excellent in strength and thermal conductivity, and exhibits a useful function as a heat radiation member that cannot be achieved with conventional alumina sintered bodies. Become a body.
  • the alumina powder raw material used in the present invention is as high as possible, has smaller and more uniform particles, and more preferably has a spherical particle shape.
  • fine alumina with an alumina (Al 2 O 3 ) content of 99.5% by mass or more and an average particle size of 1.0 ⁇ m or less is used as a raw material. Even those having an average particle size of about 0.3 ⁇ m are available from the market.
  • an alumina powder obtained by a sol-gel method or the like a finer and sharper particle size distribution with an average particle size of about 0.2 to 0.4 ⁇ m and a shape close to a true sphere can be obtained from the market.
  • the raw material used in the present invention is not limited to the alumina powder of the above-described manufacturing method, and may be of any manufacturing method as long as it is a high-purity fine-grained alumina specified in the present invention, and obtained from the market.
  • Alumina powder may be pulverized or purified to have a particle size and purity specified in the present invention.
  • a raw material powder used in the present invention can be obtained without adding a sintering aid.
  • Magnesia and silica may be added as a sintering aid.
  • a denser alumina sintered body can be stably produced.
  • these sintering aids precipitate at the grain boundaries and affect the thermal characteristics, it is preferable that the amount is as small as possible.
  • content of the alumina in raw material powder was 99.5 mass% or more, and content of additives, such as a sintering auxiliary agent, was less than 0.5 mass% in total. If the total is less than 0.5% by mass, for example, sodium oxide (Na 2 O) or iron oxide (Fe 2 O 3 ) may be added as a sintering aid.
  • a denser compact can be obtained by granulating an alumina powder raw material having a very small particle diameter as described above into an appropriate particle diameter, and further, a higher density.
  • High-alumina sintered body can be produced.
  • the granulating method is not particularly limited.
  • an organic binder as described later is added to an alumina raw material powder to form a slurry, which is then sprayed and dried to form granules having a particle size of 50 to 100 ⁇ m. Can be easily obtained.
  • the granules thus obtained are spherical.
  • fine-particles can be improved by granulating, it is advantageous also on manufacture.
  • a shaping process Next, starting from spherical granules having a particle diameter of 50 to 100 ⁇ m obtained as described above, an organic binder or the like is added to appropriately impart shape retention, and the raw material containing this granular alumina To form a molded body.
  • molding method is not specifically limited, What is necessary is just to use the method by which the density of the obtained molded object becomes 2.40 g / cm ⁇ 3 > or more dense by applying a pressure to a molded object, for example.
  • a molded body is prepared by applying a molding pressure of 1,000 to 2,500 kg / cm 2 using a mold.
  • the molding pressure is less than 1,000 kg / cm 2 , there are many gaps between particles in the molded body, and the thermal conductivity during the subsequent firing is poor, so that a denser sintered body is obtained.
  • the firing temperature must be increased. As will be described later, in the present invention, the firing temperature is extremely important for imparting the desired functionality to the sintered body, and when the firing temperature becomes higher than specified in the present invention, the obtained sintered body In the molding process, it is preferable to form a denser molded body because the desired characteristics cannot be obtained due to the growth of crystal grains.
  • the molding pressure is greater than 2,500 kg / cm 2 , cracks and breakage occur in the molded product, which is not preferable because the yield decreases.
  • the molding pressure is 1,200 to 2,500 kg / cm 2
  • a molded body having a density of 2.40 g / cm 3 or more can be obtained, and then fired later.
  • a dense alumina sintered body desired by the present invention is obtained.
  • the molding pressure is more preferably 1,500 to 2,000 kg / cm 2 .
  • alumina powder is used as a raw material
  • a denser compact with a higher density and a density of 2.45 g / cm 3 or more can be easily obtained.
  • the density of the molded body was calculated from the volume obtained from the weight of the molded body and the measured dimensions of the molded body.
  • the method for producing the molded body is not limited to the dry mold molding method described above, but other molding methods such as cold isostatic pressing (CIP), hot press (HP), hot isostatic pressing (HIP), Extrusion molding, injection molding, or the like may be used. Regardless of which molding method is used, if the molded body has a density of 2.40 g / cm 3 or more, alumina that has a specific crystal state and has a desired specific performance is obtained through a subsequent firing step. A sintered body can be obtained stably.
  • Any organic binder conventionally used in the production of ceramics can be used as the organic binder used in the granulation step and the molding step.
  • an organic compound is used that melts during heating and exhibits an appropriate viscosity and does not remain after being heated and fired to obtain a fired product.
  • polyvinyl alcohol having many oxygen atoms in the molecule a derivative of polyester or cellulose, and an arbitrary amount of acrylic resin, polyethylene oxide, polypropylene oxide, propylene oxide having an appropriate degree of polymerization
  • polyethers obtained by copolymerizing ethylene oxide Further, a water-soluble cellulose ether which is a derivative of cellulose, among them, methyl cellulose can be used.
  • Acrylic resin and polyvinyl alcohol are conventionally used as binders during extrusion molding of fine ceramic products.
  • granulating the raw material powder used in the present invention, or imparting shape retention to the granulated raw material it can be suitably used as an organic binder for the purpose.
  • the molded body obtained in the above-described molding step is heated in the air atmosphere, and a firing temperature of 1,480 to 1,600 ° C., more preferably 1,500 to 1,592.
  • a firing temperature of 1,550 to 1,592 ° C. By firing at a firing temperature of 1,550 to 1,592 ° C., an alumina sintered body excellent in thermal radiation desired by the present invention is obtained.
  • the preferred firing temperature is slightly different depending on the particle diameter and particle shape of the alumina raw material powder to be used.
  • Firing is performed at a firing temperature of 1,550 ° C. or higher, more preferably 1,555 ° C. or higher.
  • the firing temperature is preferably set to 1,592 ° C. or lower.
  • alumina powder having a smaller average particle diameter and a nearly uniform spherical shape is used as a raw material, such as sol-gel method alumina powder
  • the molding obtained in the molding process as described above since the body can be made denser, a desired dense alumina sintered body can be stably obtained even at a low temperature of 1,500 ° C. or lower. Further, if the firing temperature is 1,600 ° C. or less, a desired dense alumina sintered body can be obtained, but the lower the firing temperature, the smaller the crystal grain size, and the better the thermal characteristics and strength. A sintered body tends to be obtained, and the firing temperature is preferably as low as possible from the viewpoint of energy efficiency.
  • alumina powder raw material when used, it is preferably set to 1,500 ° C. or higher, more preferably 1,550 ° C. or higher. From the above, regardless of the properties of the alumina powder raw material, a suitable firing temperature range in which a desired dense alumina sintered body can be obtained more stably is 1,500 to 1,592 ° C., 1,550 to 1,592 ° C.
  • the firing time at the firing temperature is preferably within 2 hours. If the length is longer than this, crystal grains may grow, which is not preferable. Moreover, in this invention, it is preferable to perform baking in a baking process in the batch type furnace which distribute
  • the specific heating rate, cooling rate and time for holding at the firing temperature differ depending on the size and thickness of the molded body and cannot be determined uniquely, but compared with the heating rate up to the firing temperature described above, the firing temperature It is preferable to increase the cooling rate (cooling rate) from about 1.5 times.
  • FIG. 1 schematically shows an example of conditions for temperature rise, firing and cooling in the firing step and the subsequent cooling step.
  • the temperature rising rate is 100 to 200 ° C./hour, more preferably 140 to 160 ° C./hour
  • the temperature decreasing rate is 200 to 200 ° C.
  • Firing is performed at 300 ° C./hour, more preferably 240 to 270 ° C./hour.
  • the holding time at the firing temperature was 2 hours or less, specifically 1 to 2 hours. If the holding time is shorter than 1 hour, sintering may be insufficient, and if it exceeds 2 hours, crystal grain growth may occur. A more preferable holding time is 2 hours.
  • the time during which the sintered body is exposed to a high temperature can be shortened by appropriately controlling the firing temperature in a specific narrow range, more preferably the heating rate and the cooling rate. Growth of crystal grains inside can be suppressed. As a result, it is possible to produce a high-purity and dense alumina sintered body in which the crystal grain size is appropriately controlled. In addition to the extremely high purity of the raw material, the resulting alumina sintered body has almost no precipitation of impurities at the crystal grain interface due to the temperature control specified in the present invention. It is considered that the material was able to achieve a high heat dissipation property (thermal radiation property) due to this.
  • the degreasing and drying of the molded body is performed as described above. Prior to the process, it may be performed separately. However, the present invention is not limited to this, and a degreasing and drying step and a subsequent firing step may be performed in the same furnace. In that case, the temperature of the obtained molded body was slowly raised to 500 ° C. over about 100 hours while air was circulated in a batch type furnace, and then the above-described heating rate and firing temperature were increased from 500 ° C. Bake at a cooling temperature. Thus, a process can be simplified by heating up continuously in the same furnace.
  • the molded body after degreasing, can be once taken out and fired again in the same furnace or in a different furnace.
  • firing in the firing step was performed in a batch type furnace in which air was circulated. Since the furnace used in the examples of the present invention directly controls the temperature in the furnace by the flow rate of air heated by a gas such as propane, temperature control is easy, and the temperature increase rate, firing temperature, and temperature decrease rate are the same. Can be controlled within an appropriate range.
  • the furnace used for firing in the present invention is not limited to the furnace described above, and any furnace can be used as long as firing is possible by controlling the firing temperature in the air atmosphere. .
  • the ceramic for a heat radiation member of the present invention comprising a high-purity and dense sintered body that can be obtained by the manufacturing method as described above (hereinafter also simply referred to as “alumina sintered body of the present invention”).
  • the ceramic for a heat radiation member of the present invention has an alumina content of 99.5% by mass or more, preferably 99.8% by mass or more, more preferably 99.9% by mass or more, and contains silica (SiO 2 ).
  • a sintered body of alumina having an amount of 0.1% by mass or less, preferably 0.05% by mass or less, and the crystal grains thereof have a grain size of 1 to 10 ⁇ m and in an area of 30 ⁇ 20 ⁇ m.
  • the alumina sintered body of the present invention has a high thermal conductivity because the amount of silica is extremely high purity and the amount of silica is appropriately controlled, In addition to achieving efficient heat dissipation, it is excellent in mechanical strength and resistant to thermal shock.
  • the alumina sintered body of the present invention is a high-purity and dense sintered body, and the density of the alumina sintered body is preferably 3.8 g / cm 3 or more. More preferably 3.93 g / cm 3 or more, still more preferably 3.96 g / cm 3 or more, close to the theoretical density of 3.987g / cm 3 alumina, which is very dense sintered body.
  • the alumina sintered body is a high-purity sintered body containing 99.5% by mass or more of alumina.
  • alumina powder with higher purity is used as a raw material, a sintered body with higher purity having an alumina purity of 99.9% by mass or more can be obtained.
  • the balance is derived from the sintering aid, magnesia (0.07 to 0.15 mass%), silica (0.03 to 0.35 mass%), Na 2 O (0.03 to 0.05 mass%) Fe 2 O 3 (0.01 to 0.02% by mass), but all are less than 0.5% by mass, and more preferably less than 0.1% by mass.
  • the crystal grain size of the alumina sintered body of the present invention is in the range of 1 to 10 ⁇ m, more preferably in the range of 1 to 5 ⁇ m.
  • the average value of the crystal grain size is 2 to 7 ⁇ m, more preferably 2 to 4 ⁇ m.
  • a sintered body in which grain growth with a crystal grain size larger than 10 ⁇ m is observed has a low strength and a low thermal conductivity, and is inferior in effect for a heat radiation member. That is, as the crystal state of the alumina sintered body that can achieve the object of the present invention, it is required that the crystal grain size is small and that the alumina sintered body is densely sintered with a uniform size as described below.
  • the particle diameter of the crystal grain in a sintered compact is based on the measuring method mentioned later.
  • the crystal grains are not only small in size of 1 to 10 ⁇ m, but also need to be contained in 30 to 55 particles in an area of 30 ⁇ 20 ⁇ m on the surface of the alumina sintered body. It is required that the crystal grains are densely sintered (see FIGS. 2 to 8).
  • the raw material is an alumina powder obtained by a sol-gel method and having a small particle diameter, a more uniform shape, and a spherical shape that is almost a perfect sphere
  • the variation in diameter is small and close packing is performed, but the particle diameter of crystal grains is smaller as 1 to 5 ⁇ m, and the average particle diameter is also as uniform as 2 to 4 ⁇ m (FIGS. 7 and 8). reference)
  • the alumina sintered body of the present invention is extremely dense, and the preferred density is 3.93 g / cm 3 or more, which is close to the theoretical density of alumina of 3.987 g / cm 3 . Furthermore, for example, when alumina powder having a smaller particle diameter, a more uniform shape, and a shape close to a true sphere is used as the raw material, it is 3.96 g / cm 3 or more, for example, 3.98 g / cm 3. A denser alumina sintered body having a density of The alumina sintered body of the present invention tends to increase in density as the alumina content increases.
  • the density of the sintered body having an alumina content of 99.9% by mass is 3.98 g / cm 3, which is very close to the theoretical density.
  • the size of the crystal grains in the alumina sintered body is calculated from the density, it is 1 to 10 ⁇ m, and not only the surface or cross section of the crystal grain size observed but also the inside of the sintered body has the same size. It turns out that it is a sintered compact consisting of.
  • the thermal conductivity of the alumina sintered body of the present invention varies depending on the alumina powder raw material to be used, the sintering aid to be added, and the firing temperature, but is 33 (W / m ⁇ k) or more, and further 36 (W / m ⁇ k) It can be more than that.
  • the alumina sintered body manufactured using the alumina powder raw material having a smaller particle size, a more uniform shape, and a shape close to a true sphere has a thermal conductivity of 41 (W / m ⁇ k). With the above, it is possible to have higher thermal conductivity.
  • the thermal emissivity of such an alumina sintered body of the present invention is 0.97 or more, which is higher than that of a conventional alumina sintered body, and is remarkable when it is installed in a heat generating part such as an electronic device. It was confirmed that heat dissipation was recognized and it could function effectively as a heat dissipation component for electronic devices.
  • the alumina sintered body of the present invention has conventionally required electronic devices by an extremely simple configuration in which a simple shape such as a flat plate is simply placed in contact with the heat generating portion. This means that it can be replaced by a cooling fan or a cooling part (heat sink) having a complicated structure or shape, and the effect is extremely great.
  • the alumina sintered body of the present invention absorbs heat quickly from an object in contact with its high thermal conductivity, and radiates heat with its high thermal emissivity. It is considered that the device can function effectively as a heat sink in equipment.
  • the ceramic for heat radiation member of the present invention has a small crystal grain, uniform and dense as described above, so that the surface of the sintered body has high smoothness and a large contact area when brought into contact with the heat generating part. it can. Therefore, it can be used as a ceramic for heat radiation members without polishing the surface, and is excellent in productivity. In addition, by polishing the surface, it becomes possible to achieve a higher heat dissipation effect by smoothing the surface and further improving the adhesion to the heat generation site.
  • the alumina sintered body of the present invention is crystallized as described above. Since the grains are small, uniform and dense, damage and cracks are unlikely to occur during surface polishing, and a mirror finish with high smoothness is possible. In this respect, it can be said that the practicality is high. As a matter of course, since this leads to a decrease in heat conduction, when the ceramic for heat radiation member of the present invention is brought into contact with the heat generating portion, it is preferable to directly contact without providing another layer such as an adhesive layer in between. .
  • the ceramic for a heat radiating member of the present invention having high heat conductivity and high heat emissivity, it matches the shape of the heat generating part of the object that needs to radiate heat as much as possible. It is preferable to have a shape with high adhesion to the heat generating part. For example, if it is a simple shape such as a flat plate shape, a prismatic shape, a disk shape, or a cylindrical shape, the molding is easy. Further, since the surface polishing can be easily performed, it is possible to further improve the adhesion with the heat generating part by smoothing the contact surface with the heat generating part.
  • the alumina sintered body of the present invention can be obtained by firing the molded body, it has excellent workability and has an optimum shape that matches the shape of the electronic device that requires heat dissipation and the shape of the heat generating portion. This is also advantageous because it can be facilitated.
  • the bending strength of the alumina sintered body of the present invention is in the range of 380 to 500 (MPa) and is excellent in mechanical strength. Further, the alumina sintered body obtained by using the alumina powder raw material having a smaller particle diameter, a more uniform shape, and a shape close to a true sphere as described above has a bending strength of about 400 to 520 (MPa). And higher mechanical strength.
  • the thermal shock resistance of the alumina sintered body of the present invention is 300 to 320 (° C.), and it is strong against thermal shock caused by rapid cooling. As described above, the alumina sintered body of the present invention has sufficient mechanical strength, is excellent in durability, and can sufficiently withstand practical use. Further, the insulation resistance is larger than 10 16 ( ⁇ ⁇ cm), and the electrical characteristics are excellent.
  • the alumina sintered body of the present invention has a high thermal conductivity and thermal emissivity of itself, so that when it is brought into contact with a heat generating portion or a heat generating body of an electronic device as it is, It can function effectively as a heat radiation member (heat sink).
  • the alumina sintered body of the present invention has a large saturation energy of 80 ° C., which is an index of heat dissipation, as described later, and a large amount of heat given from the heating element.
  • the heat generating element itself can be kept at a constant temperature of 80 ° C.
  • the alumina sintered body of the present invention exhibits excellent heat dissipation as described above, and is an insulator. Therefore, as its use, for example, a power generation cell of a solar battery module that is required to have a temperature not exceeding 80 ° C. It is also extremely useful as a heat radiation member that can directly contact the LED element of the LED light emitting module.
  • heat sinks are made of metal with high thermal conductivity such as copper or aluminum, and in order to improve the heat sink performance, they are made into a bellows shape or many irregularities. In many cases, it is formed in a complicated shape in order to increase the surface area, such as by providing it, and if it is still insufficient, the structure and mechanism are complicated such that a fan is attached and air is forced to flow.
  • the alumina sintered body of the present invention is excellent in heat dissipation, so the sintered body itself does not require a complicated structure or mechanism as in the past, a simple shape such as a flat plate shape or a disk shape, Alternatively, the cooling effect can be sufficiently exerted even in a shape (a prismatic shape or a cylindrical shape) in which the thickness is increased.
  • the 80 ° C. saturation energy depends on the surface area and thickness of the plate-like alumina sintered body, as will be described later. It is effective to increase the contact area or to increase the thickness to dissipate more heat.
  • the heat radiation member provided by the present invention is brought into contact with the heat generating portion to radiate heat, as described above, the surface of the alumina sintered body is polished to improve the adhesion with the heat generating portion, thereby increasing the contact area. It is more preferable to enlarge it.
  • the present inventors have conducted a detailed study on the applicability of the alumina sintered body of the present invention that can be a useful functional material as described above.
  • the alumina sintered body of the present invention is effective as a heat radiating member of a solar cell module, thereby improving power generation efficiency.
  • the alumina sintered body of the present invention is installed on the back surface side of the power generation cell of the solar cell module and is in contact with the power generation cell, the power generation of the solar cell module is not installed as described later. It has been found that the maximum can be increased by 26% compared to (when using a conventional glass plate). As the area of the alumina sintered body is larger, the saturation energy of 80 ° C. is larger.
  • the area of the alumina sintered body should be made as large as possible so that the area of the alumina sintered body is as large as possible.
  • the surface is polished to reduce irregularities, the contact area between the surface of the alumina sintered body and the power generation cell can be increased, and therefore polishing and mirror finishing are also preferable.
  • an adhesive is used when an alumina sintered body is provided on the back side of the power generation cell, the adhesive acts as a resistance when transferring heat from the power generation cell to the alumina sintered body. It is preferable to have a structure that directly contacts the power generation cell.
  • the alumina sintered body of the present invention is applied to an LED light emitting module and used as a substrate for an LED element, heat generated from the LED element can be dissipated from the alumina sintered body, resulting in the temperature of the LED element. It is possible to prevent a rise, suppress a decrease in light emission efficiency and a shortening of the lifetime, and further prevent occurrence of a fire accident due to heat generation that is a concern.
  • the present inventors examined the applicability of the LED light emitting module to the LED element substrate in the alumina sintered body of the present invention as follows. First, the alumina sintered body of the present invention is formed into the shape shown in FIG.
  • the wiring 25 is formed by forming a thin film of conductive metal such as silver, nickel, or copper, or printing ink containing the metal as particles.
  • An LED element is placed on the formed wiring, connected to the wiring with a conductive adhesive, and the LED element is sealed with a resin.
  • the surface of the alumina sintered body was polished and smoothed before forming the wiring.
  • Titanium oxide has a high thermal conductivity and does not greatly hinder the thermal radiation from the alumina sintered body. However, in order to minimize the influence, it is preferable to form a particle layer as dense as possible.
  • the 80 ° C. saturation energy of the alumina sintered body having the same surface area increases as the thickness increases. That is, the larger the thickness of the alumina sintered body is, the better the heat dissipation is. Therefore, when applied to the substrate of the LED element, it is effective to increase the thickness of the alumina sintered body. However, if the thickness is too large, problems such as large and heavy LED light emitting modules occur, and therefore, for example, about 1.8 to 10 mm, more preferably about 4.5 to 5 mm is preferable.
  • the alumina sintered body of the present invention has a structure in which alumina crystal particles having a specific crystal grain size are densely sintered, so that the surface is smooth. Thin film formation and printing can be performed easily. Since the wiring pattern can be easily formed as described above, the pattern is not limited to that shown in FIG. 28, and more complicated patterns can be formed. In this case, if the surface smoothness is improved by polishing the surface of the alumina sintered body of the present invention, a finer and more complicated wiring pattern can be formed. As described above, since the alumina sintered body of the present invention can be easily obtained by the production method of the present invention having excellent processability for firing a molded body, the shape thereof can be set as desired. .
  • an alumina sintered body having an arbitrary shape according to the application such as one having a concave portion as well as a disk shape as shown in FIG. 28, may be appropriately applied. Since the alumina sintered body of the present invention is densely sintered, it is difficult for crystal grains to be detached or broken during cutting, and it is easy to form recesses and through holes in the sintered body. Practical application to a wide range of applications as a heat radiation member can be expected. For example, not only the substrate of the LED element but also a substrate such as an IC package or a power transistor in which wiring is formed in a complicated pattern on substrates of various shapes. These IC packages, power transistors, and the like are also subject to deterioration due to heat generation. By using an alumina sintered body having excellent heat dissipation as a substrate, it is possible to prevent deterioration of the product and extend its life.
  • the alumina sintered body of the present invention has high thermal conductivity and thermal emissivity as described above, and is excellent in thermal radiation. However, according to the study by the present inventors, at least one surface of the alumina sintered body is further observed. It was found that when a far-infrared radiation film is formed on the surface and the far-infrared radiation characteristics are imparted to the surface, the thermal radiation performance is further improved.
  • the far-infrared radiation film is formed on at least a part of the heat radiation surface of the alumina sintered body, so that the heat from the heat source (heat generating part) is converted into far-infrared rays on the far-infrared radiation film surface.
  • heat is more efficiently radiated to the outside.
  • a surface (five surfaces) other than the surface in contact with the heat generating portion is a heat radiation surface, and a far infrared radiation coating composition is used on at least a part of the surface.
  • a far-infrared radiation film may be formed on a part or all of the five surfaces other than the surface that contacts the heat generating part, and the five surfaces other than the surface that contacts the heat source partially include the far-infrared radiation film. It may include a surface on which is formed.
  • the shape of the alumina sintered body of the present invention is, for example, a hexahedral shape
  • the area of the surface that comes into contact with a heat generating portion of an electronic device or the like that requires heat dissipation is maximized from the viewpoint of heat conduction and heat radiation.
  • Such a shape is preferable.
  • the far infrared radiation film for example, in the case of a rectangular column shape having a low height, the far infrared radiation film may be formed on at least a part of the surface facing the contact surface with the heat generating portion. Higher thermal radiation is obtained as the film area is larger. Therefore, in order to obtain an alumina sintered body having high thermal radiation, it is preferable to increase the range in which the far infrared radiation film is formed as much as possible.
  • the far-infrared radiation film is formed by applying a far-infrared radiation coating composition, followed by drying and baking.
  • Examples of the far-infrared radiation coating composition suitable for the present invention include the following. That is, a heat-treated inorganic adhesive (A) and at least two kinds of transition element oxides are mixed and calcined at 700 to 1,300 ° C. to form a finely powdered mixed calcined product (B), A: B In a mass ratio of 97: 3 to 20:80 can be used.
  • a silica / alumina-based adhesive is preferable, and as the transition element oxide, MnO 2 and Fe 2 O 3 are the main components, and further, CoO, CuO and Cr It is preferable to contain at least one compound selected from 2 O 3 .
  • the far-infrared radiation coating composition preferably contains A: B in a mass ratio of 97: 3 to 20:80. If the amount of the transition element oxide calcined product (B) is less than 3% by mass, the formed film does not exhibit sufficient far-infrared radiation characteristics. On the other hand, when the amount of (B) is more than 80% by mass, the coating properties are lacking and it is difficult to form a coating film. Of these, from the viewpoint of far-infrared radiation characteristics and coating characteristics, those containing (B) in the range of 20 to 50 mass%, particularly 30 to 40 mass% are preferred.
  • the following blending ratios can be given.
  • MnO 2 10 to 80% by mass Fe 2 O 3 : 5 to 80% by mass CoO: 5 to 50% by mass CuO: 10-80% by mass Cr 2 O 3 : 2 to 30% by mass
  • Changing the type and amount of the transition element oxide within the above range can change the wavelength range of infrared rays emitted from the formed far-infrared emitting film, so that the heat radiation efficiency can be improved by designing appropriately. Can be increased.
  • the amount of the transition element oxide is large, since the near infrared wavelength is recognized in the formed far infrared radiation film, the thermal radiation can be further enhanced.
  • the particle size of the calcined product (B) is preferably 1 to 50 ⁇ m. If the particle size is large, the coating surface is uneven when the coating film is formed, and the coating film is likely to peel off. Therefore, it is desirable that the particle size is as small as possible. It is.
  • the far-infrared radiation film is not particularly limited as long as the far-infrared radiation film is formed by, for example, forming a coating film composed of the far-infrared radiation coating composition having the above-described composition and baking it.
  • the far-infrared radiation coating composition is applied to the surface of the alumina sintered body with a brush or spray, and then dried and baked at a temperature of 50 to 250 ° C.
  • a far-infrared radiation film can be formed at a desired position.
  • the thickness of the coating film at this time can be 0.1 to 0.5 mm, but if the thickness is smaller than the lower limit value, a sufficient far infrared radiation effect cannot be obtained.
  • the far-infrared radiation coating composition hardly shrinks due to the drying and baking, the far-infrared radiation coating composition may be applied to a desired thickness of the far-infrared radiation film.
  • the far-infrared radiation film formed as described above radiates far-infrared rays even when the surface temperature of the substrate is about room temperature (20 ° C.), but the far-infrared radiation effect becomes higher as it is heated to a higher temperature. .
  • a far infrared ray is radiated more at a high temperature higher than 100 ° C. and is heated to a range of approximately 500 to 650 ° C.
  • a far infrared radiation effect can be sufficiently obtained.
  • the far-infrared radiation film described above generally has a higher effect of converting heat into far-infrared radiation as the surface temperature of the substrate is higher.
  • the ceramic for a heat radiating member of the present invention is used for cooling purposes in a heat generating part, and in the state of use, the surface of the alumina sintered body is considered to be higher than room temperature (20 ° C.), for example, 50 to 200 ° C. However, even when the far-infrared radiation film is formed on the surface of such an alumina sintered body, a sufficient heat dissipation effect can be obtained.
  • the alumina sintered body of the present invention functions as a heat radiating member having a high thermal conductivity and a high heat emissivity as described above and having an excellent cooling effect.
  • the far-infrared radiation film efficiently radiates heat as far-infrared rays, as shown in the experiment described later, and therefore, the heat dissipation effect is further enhanced and the film becomes more suitable.
  • a heated heater is brought into contact with an alumina sintered body having a far infrared radiation film formed on the surface thereof, compared to a case where an alumina sintered body that does not form a far infrared radiation film is contacted.
  • the heater surface temperature can be greatly reduced. Also, for the thermal resistance value, which is a heat dissipation index described later, the alumina sintered body having the far infrared radiation film formed on the surface thereof is smaller than the alumina sintered body not forming the far infrared radiation film, It is verified that it has excellent heat dissipation and is advantageous for lowering the temperature of an object brought into contact with the alumina sintered body. This point will be described later.
  • Example 1 Alumina powder obtained by the Bayer method was used as the raw material powder.
  • the alumina powder used had an average particle size of 0.7 ⁇ m. This raw material contains 99.5% by mass of alumina, 0.16% by mass of magnesia, and 0.34% by mass of silica.
  • the alumina powder was placed in a ball mill (ball material: alumina) together with water and pulverized and mixed for 10 hours.
  • the average particle size of the obtained powder was 3 ⁇ m as measured by a laser diffraction / scattering particle size distribution analyzer.
  • An organic binder (acrylic resin and polyvinyl alcohol) was added to this powder to form a slurry, which was then spray-dried to prepare granules of 50 to 100 ⁇ m.
  • the obtained granule was molded by a dry molding method using a mold at a molding pressure of 2,000 kg / cm 2 , and a plate-shaped molded body having a length, width, and thickness of 20 mm, 30 mm, and 5 mm, respectively. Obtained.
  • the density of this molded body was 2.40 g / cm 3 .
  • the obtained molded body was put in a degreasing furnace and degreased by raising the temperature from room temperature to 500 ° C. over 100 hours. After cooling, the molded body was taken out, put in a gas furnace, heated to 1,580 ° C. at a heating rate of 150 ° C./hour, and held in the air atmosphere for 2 hours. Thereafter, room temperature air was introduced into the furnace and cooled at 258 ° C./hour.
  • FIG. 1 shows the firing profile.
  • the gas furnace is a batch type furnace in which air is circulated, and combustion by propane gas is used as a heat source. The temperature was controlled by adjusting the flow rate of propane gas and the flow rate of air mixed with propane gas.
  • the obtained ceramic for heat radiation member was sintered densely and was slightly smaller than the compact before firing.
  • Example 2 A ceramic for a heat radiating member was obtained in the same manner as in Example 1 except that the firing temperature was 1,583 ° C.
  • Example 3 A ceramic for heat radiation member was obtained in the same manner as in Example 1 except that the firing temperature was 1,555 ° C.
  • Example 4 A ceramic for heat radiation member was obtained in the same manner as in Example 1 except that the firing temperature was 1,592 ° C.
  • Example 5 A ceramic for heat radiation member was obtained in the same manner as in Example 1 except that the firing temperature was 1,570 ° C.
  • Example 6 A ceramic for a heat radiating member was obtained in the same manner as in Example 1 except that the alumina powder obtained by the sol-gel method was used as the raw material powder.
  • the raw material alumina powder used has almost no impurities, has a high alumina content of 99.95%, and has an average particle diameter of 0.5 ⁇ m. The particle shape was close to a true sphere.
  • Example 7 Ceramics for heat radiation member as in Example 1, except that alumina powder with an average particle size of 0.3 ⁇ m obtained by sol-gel method was used as the raw material powder and the firing temperature was 1,550 ° C. Got.
  • the alumina content of the alumina powder raw material was 99.95% as in Example 6.
  • the shape of the particles was almost spherical.
  • Example 8 A ceramic for heat radiation member was obtained in the same manner as in Example 1 except that the same alumina powder as used in Example 7 was used as the raw material powder and the firing temperature was set to 1,500 ° C. In this case, the firing was not sufficient in 2 hours, and the firing took a long time.
  • Example 9 A ceramic for a heat radiation member was obtained in the same manner as in Example 1 except that the same alumina powder as used in Example 7 was used as the raw material powder and the firing temperature was 1,600 ° C. In this case, the crystal growth was partially observed in the baking for 2 hours, and it was necessary to shorten the baking time.
  • Example 1 A ceramic for heat radiation member was obtained in the same manner as in Example 1 except that the firing temperature was 1,611 ° C.
  • Example 2 A ceramic for heat radiation member was obtained in the same manner as in Example 1 except that the firing temperature was 1,630 ° C.
  • Example 3 A ceramic for a heat radiating member was obtained in the same manner as in Example 1 except that the firing temperature was 1,650 ° C.
  • Example 4 A ceramic for a heat radiating member was produced in the same manner as in Example 7 except that the firing temperature was 1,470 ° C. In this case, it was found that even if firing was performed for a long time, firing was not sufficient.
  • the thermal emissivity indicates the maximum value of the spectral emissivity. According to the study by the present inventors, when this value is compared in an alumina sintered body, the larger this value, the better the heat dissipation. Therefore, it can be an index for judging heat dissipation.
  • Crystal grain size and number of crystals By scanning electron microscope observation (SEM). Specifically, the surface of a sample having a diameter of 10 mm and a thickness of 5 mm was subjected to thermal etching at 1,550 ° C., and gold was further deposited. The state of the crystal grains on the surface was observed with a scanning electron microscope (manufactured by JEOL Ltd.). From the obtained 3,000-fold micrograph, the number of crystals existing in an area of 30 ⁇ 20 ⁇ m (all the particles included in the area) was counted. Further, for each crystal grain, the maximum dimensions in the horizontal and vertical directions of the crystal were measured, and the average of these dimensions was defined as the crystal grain size. The number of crystals and the crystal grain size were measured at three different locations each having an area of 30 ⁇ 20 ⁇ m.
  • Heat shock According to the water drop method. Specifically, a sample (diameter 30 mm, thickness 5 mm) is held in a thermostat set to 120, 170, 220, 320, and 370 ° C. for 30 minutes, and then dropped into 20 ° C. water. After dropping, the presence or absence of cracks or breakage was measured visually or microscopically using a flaw detection liquid. The temperature difference between the highest temperature at which no crack or fracture was observed and 20 ° C. was defined as the thermal shock temperature.
  • Thermal conductivity (density) x (specific heat) x (thermal diffusivity)
  • Thermal emissivity was measured by measuring the temperature rise on the surface of the heating element using a heating plate method (measuring instrument; thermometer HFT-40-Anritsu Keiki Co., Ltd.). That is, using a mica heater as a heating element, adjusting the applied voltage to maintain the surface (upper surface) temperature constant, the ceramic for the heat radiating member is in close contact with the surface of the heating element, and the ceramic for the heat radiating member is in close contact. The measurement was performed by measuring the surface temperature of the heating element in the unexposed portion.
  • Total emissivity The total emissivity was measured according to JIS R1801 (spectral emissivity measurement method by FTIR of ceramics used as a radiation member for a far infrared heater). Using a Fourier transform infrared spectrophotometer (FT-IR: System 2000 type manufactured by Perkin Elmer), the sample shape is 50 mm long, 50 mm wide, 5 mm thick, and the measurement wavelength region is 370-7,800 cm ⁇ 1 (effective range: The reflection spectrum was measured at room temperature for 400 to 6,000 cm ⁇ 1 ). From the obtained spectral emissivity spectrum, the spectral emissivity at each wavelength was measured, and averaged over the entire wavelength region to obtain the total emissivity.
  • JIS R1801 spectral emissivity measurement method by FTIR of ceramics used as a radiation member for a far infrared heater.
  • FT-IR Fourier transform infrared spectrophotometer
  • Examples 6 to 9 using alumina powder obtained by the sol-gel method were also dense sintered bodies, but the crystal grain size was further reduced to 1 to 3 ⁇ m, and the number of crystals in 30 ⁇ 20 ⁇ m was also small. More dense examples and sintered bodies having higher thermal conductivity and bending strength were obtained than in Examples 1 to 5 using alumina powder obtained by the Bayer method as a raw material. This is considered to be due to the high purity of the raw material powder and the fact that the particle size is more uniform and nearly spherical. Note that Example 5 using alumina powder obtained by the Bayer method as a raw material also has a crystal grain size of 1 to 3 ⁇ m. This is considered to be because the firing temperature was lower than Example 6 and the crystal grain growth was suppressed. .
  • the crystal grain size of Example 1 is shown as 2 to 4 ⁇ m in Table 1. This is the minimum particle size measured by the above method is 2 ⁇ m, the maximum value is 4 ⁇ m, and the observation area is 30 ⁇ 20 ⁇ m. It is shown that all the crystal grains observed inside are in the range of 2 to 4 ⁇ m. The same applies to the other Examples 2 to 7 and Comparative Examples 1 to 3.
  • the average value of the grain size of the crystal grains observed in Example 1 was 3 ⁇ m.
  • the average values of the crystal grain sizes of the other examples are 3 ⁇ m in Examples 2 and 3, 4 ⁇ m in Example 4, 2 ⁇ m in Example 5, 2 ⁇ m in Example 6, and 2 ⁇ m in Example 7.
  • the average value of the crystal grains in each example was approximately equal to the median value of the range of each crystal grain.
  • Table 1 does not show the ceramics for heat radiating members of Examples 8 and 9, but the properties such as the sintered body density and the crystal grain size were almost the same as those of Example 7.
  • the ceramics for heat radiation members of Examples 1 to 9 were all sintered bodies having excellent thermal shock resistance, high thermal conductivity, and excellent thermal characteristics. Moreover, the value of bending strength was high, and it was a dense sintered body excellent in mechanical properties. Although not shown in Table 1, the thermal emissivities of the ceramics for heat radiating members of Examples 1 to 9 were all 0.97 and had a high thermal emissivity. For Comparative Examples 1 to 3, the thermal emissivity was calculated from the thermal conductivity values shown in Table 1. Comparative Example 1 was 0.91, Comparative Example 2 was 0.88, and Comparative Example 3 was 0.85. Yes, the value was lower than that of the example.
  • the total emissivity of the ceramic for heat radiation member of Example 1 was measured using FT-IR to be 70.6%.
  • the total emissivity value is obtained by averaging the spectral emissivities in the wavelength region 370-7,800 cm ⁇ 1 (effective range 400-6,000 cm ⁇ 1 ) where the spectral emissivity was measured, and converting it to a value at 100 ° C. It was.
  • FIG. 13 shows a spectral emissivity spectrum measured using FT-IR. As shown in FIG. 13, the ceramic for a heat radiating member of Example 1 has a maximum emissivity in the vicinity of 1,100 cm ⁇ 1. The spectral emissivity was 0.97.
  • alumina sintered body excellent in heat dissipation targeted by the present invention can be expected to have sufficient heat dissipation without performing an application test, using its thermal conductivity and crystal grain size as indices. It was confirmed.
  • the spectral emissivity spectrum It is considered useful to use the spectral emissivity obtained from the spectrum.
  • the ceramics for heat radiation members of Comparative Examples 1 to 3 had crystal grains with a grain size smaller than 10 ⁇ m, but crystals larger than 10 ⁇ m were observed and crystal growth was progressing. The number of crystals contained in was small. In addition, coarsening due to crystal grain growth was observed (FIGS. 9 to 11). The average value of the crystal grain size was 8 to 15 ⁇ m. In addition, it was observed that glassy silica was deposited on the interface of the crystal grains.
  • the far-infrared radiation intensity of the plate obtained above is in accordance with JIS R1801 (spectral emissivity measurement method by FTIR of ceramics used as a radiation member for a far-infrared heater), similar to the total emissivity of the previous alumina sintered body. Measurement was performed at a measurement temperature of 141.6 ° C. using a Fourier transform infrared spectrophotometer (FT-IR: System 2000, manufactured by Perkin Elmer).
  • FIG. 14 shows the obtained spectral emissivity spectrum.
  • FIG. 14 shows that this far-infrared radiation film-coated plate exhibits a far-infrared radiation intensity of 90 to 95% in the wavelength band of 10 to 20 ⁇ m.
  • the far-infrared radiation intensity of the stainless steel plate itself not coated with the coating composition was measured.
  • the emissivity spectrum is shown in FIG.
  • the stainless steel plate has a radiation intensity of 15 to 20% in a wavelength band of 4 to 20 ⁇ m.
  • Example 10 A plate-like alumina sintered body having a length and width of 50 mm and a thickness of 5 mm was prepared in the same manner as in Example 1.
  • the far-infrared radiation coating composition of Reference Example 1 was applied to one surface (50 mm ⁇ 50 mm) of the obtained alumina sintered body using a spray gun having a diameter of 2 mm and baked at a temperature of 250 ° C. to emit far-infrared radiation.
  • a film was formed, and this was used as an alumina sintered body having the far-infrared radiation film of this example.
  • ⁇ Evaluation B Heater surface temperature, heat radiation temperature and thermal resistance value
  • the heater surface temperature, heat dissipation temperature, and thermal resistance during heating are as follows. The value was measured and each heat radiation characteristic (heat dissipation) was evaluated.
  • alumina sintered body of Example 7 having a length and width of 50 mm and a thickness of 5 mm, which is different from the alumina sintered body of Example 7 only in size. went. Note that each alumina sintered body used in the test is still fired and is not subjected to polishing treatment.
  • the heat radiation effect improved by forming a far-infrared radiation film on the surface of the alumina sintered body, as a comparative example, as a heat sink material The metal copper plate used and the substrate made of the metal copper plate and the far-infrared radiation film formed on the copper plate were prepared, the same measurement was performed, and the difference in heat dissipation effect was compared.
  • Example 5 a flat metal copper plate (Comparative Example 5) having a length and width of 50 mm and a thickness of 5 mm and a flat upper surface (50 mm ⁇ 50 mm) of the copper plate were used.
  • a metal copper plate (Comparative Example 6) on which a far infrared radiation film was formed was used. Specific measurement methods and calculation methods are as follows. The results are summarized in Tables 2 to 4.
  • the heater heat source
  • a flat plate having a length and width of 50 mm and a thickness of 4 mm, a surface made of SUS, and a built-in mica heater was used.
  • the alumina sintered body 1 having the far-infrared radiation film 2 of Example 10 is placed on the heater 10 with the 50 mm ⁇ 50 mm surface on the side where the alumina sintered body film 2 is not provided facing down. Both were put on the top surface of the top panel.
  • a temperature sensor 5 K type thermocouple, model HFT-40 manufactured by Anritsu Keiki Co., Ltd.
  • Table 2 shows the heater surface temperatures when the input power is 1, 3, 5, and 7 W, respectively.
  • the temperature measurement is performed in a glass box for measurement (longitudinal 260 mm, lateral 220 mm, height 360 mm) by using a support tool to separate the lower surface of the heater from the bottom surface of the box by 50 mm. It was set on the wall and sealed with the same glass lid. The temperature was measured every 1 minute after the heater was energized. Although there were some differences depending on the input power, in each case, no change in temperature was observed after about 20 minutes and the temperature became constant, so the temperature after 30 minutes was taken as the measurement temperature.
  • the changes in the heater surface temperature after 30 minutes of energization were measured in the same manner as above for the alumina sintered bodies 1 of Example 1 and Example 7 in which no far-infrared radiation film was provided. .
  • the measurement results are shown in Table 2.
  • the change in the heater surface temperature after 30 minutes of energization was measured in the same manner as described above. .
  • the results are shown in Table 2.
  • the heater surface temperature after 30 minutes of energization was measured in the same manner as above for the case of the heater 10 alone on which nothing was placed. The measurement results are shown in Table 2 as “heater only”.
  • alumina sintered bodies of the examples of the present invention clearly show a significant difference in the temperature decrease rate, and are useful as a heat sink material. It was confirmed that there was. Furthermore, when the alumina powder raw material used in the case of an alumina sintered body is made finer, more uniform, more spherical, and a far infrared radiation film is formed on one surface, the temperature reduction rate It was confirmed that can be further increased.
  • the effect of forming a far-infrared radiation film is great, and the use of alumina powder with a finer particle size, a nearly spherical shape, and a uniform particle size as a raw material has a problem in terms of cost.
  • the method of forming a film is effective for practical use.
  • the thermal resistance value was computed with the following method about each sintered compact, and each was evaluated. Specifically, the thermal resistance value was calculated by the following method using the value of each heater surface temperature when the input power shown in Table 2 was 1 W and 7 W. That is, the difference between the heater surface temperature when the input power is 1 W and the heater surface temperature when the power is 7 W shown in Table 2 is calculated, and then a value obtained by dividing this value by the difference in input power (6 W) is calculated. This was defined as the thermal resistance value (° C./W). The values of the thermal resistance values calculated in this way are shown in Table 4.
  • the results in Table 4 indicate that the application of the method of forming the far infrared radiation film on the surface of the alumina sintered body can make it possible to further enhance the heat dissipation effect.
  • the thermal resistance value shown in Table 4 in the case of the comparative example performed on the metal copper plate, there was no significant difference due to the formation of the far infrared radiation film on the surface. was found to be particularly large in the case of the alumina sintered body of the present invention.
  • the alumina sintered body of the example is superior in heat radiation (heat dissipation) compared to the metal copper plate of the conventional heat sink material, is a material useful as a heat radiation member, and further on the surface of the alumina sintered body. It was confirmed that by forming the far-infrared radiation film, the heat radiation (heat radiation) can be further improved, and a higher effect can be expected as a heat radiation member.
  • the thermal resistance value is the difference between the heater surface temperature (T1) and the surface temperature (T2) of the measured object with respect to the electric power W (W) applied to the heater in a state where the heater and the measured object are in contact with each other ( 1)
  • W electric power
  • the surface temperature of the alumina sintered body on the side not in contact with the heater was also measured.
  • the measurement was performed in a box made of a transparent acrylic resin plate having a thickness of 3 mm (length: 440 mm, width: 170 mm, height: 170 mm).
  • the length and width are each 23 mm (surface area 530 mm 2 ), the surfaces on the side in contact with the heater have the same area, and the thicknesses are 4.5 mm and 5.5 mm, respectively. , 6.5 mm, 7.5 mm, and 8.5 mm were prepared.
  • a resistance heater 10 having a length of 20 mm, a width of 10 mm, and a thickness of 2 mm is brought into close contact with the center of a surface having a length of 23 mm and a width of 23 mm (contact area 200 mm 2 ), and the temperature sensor 5 is placed on the heater surface and the alumina sintered body surface. Attached.
  • the alumina sintered body 1 was set up on a wooden table 13 in the vertical direction, the heater was energized, and the temperatures of the heater surface and the alumina sintered body surface after the passage of time after each energization were measured.
  • Table 5 and FIG. 20 show the respective temperatures after elapse of a predetermined time. Also in the case of the heater alone, the surface temperature after the elapse of a predetermined time after energization was measured and shown together in Table 5 and FIG.
  • FIG. 20 shows changes in the heater surface temperature when alumina sintered bodies having different thicknesses are brought into close contact with each other.
  • the surface temperature of the heater alone is 95 ° C.
  • the surface temperature of the heater is about 70 ° C. in any case. It turned out to be stable.
  • the surface temperature of the alumina sintered body opposite to the heater is the same. This indicates that the thermal energy continuously applied by the heater is continuously released from the alumina sintered body by installing the alumina sintered body of Example 1 of the present invention in the heat generating portion.
  • the heater surface temperature is 73 ° C. or lower, even 20 ° C. or lower than the heater temperature, even with a thickness of 4.5 mm.
  • the heater surface temperature can be maintained at 70 ° C. or less, but the heater surface temperature hardly changes even if the thickness is increased further. In the case of using any thickness of the alumina sintered body, the heater surface temperature became constant about 60 minutes after the heater was energized.
  • Table 6 shows the respective thicknesses of the alumina sintered bodies together with the thermal radiation effect (difference between the heater surface temperature and the equilibrium temperature in the case of the heater alone), with this constant temperature as the equilibrium temperature. As shown in Table 6, the equilibrium temperature did not change much even when the thickness was thick. This means that when the area of the alumina sintered body that is in contact with the heater surface occupies the same area of the surface of the alumina sintered body that is in contact with the heater, the heat radiation is increased even if the thickness is increased. This means that the effect of improving radioactivity is small. Under the test conditions described above, the alumina sintered body exhibiting a sufficient function as a heat radiation member (heat radiating material) can have a thickness of about 4 to 6 mm.
  • the thermal radiation is set using a flat alumina sintered body having a constant volume and different thickness, that is, an alumina sintered body having a different surface area on the heater side. evaluated.
  • the difference in thermal radiation was evaluated by measuring the temperature of the heater surface and the alumina sintered body surface when heated by the heater.
  • the apparatus shown in FIG. 21 has the same basic structure as that of the test apparatus shown in FIG. 19, but in this test, measurement was performed with an alumina sintered body and a heater supported in the horizontal direction. The measurement was performed in the same acrylic resin plate box (440 mm long, 170 mm wide, 170 mm high) as in FIG.
  • the alumina sintered body 1 to be evaluated has a length of 31.0 mm, a width of 18.0 mm, a thickness of 5.0 mm (A), a length of 19.4 mm, a width of 18.0 mm, and a thickness of 8.0 mm (B ), Those having a length of 14.1 mm, a width of 18.0 mm, and a thickness of 11.0 mm (C).
  • a resistance heater 10 having a length of 20 mm, a width of 10 mm, and a thickness of 2 mm is brought into close contact with the center of the alumina sintered bodies A to C (contact area 200 mm 2 ), and the temperature sensor 5 is attached to the heater surface and the alumina sintered body surface. Attached.
  • the alumina sintered body 1 is supported on the wooden table 13 so that the heater 10 is on the lower side, the heater 10 is energized, and the temperatures of the surface of the heater 10 and the surface of the alumina sintered body 1 after the passage of time after energization are determined. Each was measured. Table 7 shows the respective temperatures after a predetermined time.
  • FIG. 22 shows changes in the heater surface temperature in the case of the heater alone and the alumina sintered bodies A to C.
  • the heater surface temperature is maintained at 80 ° C. or less, and the alumina sintered body of these shapes also exhibits high thermal radiation. confirmed. Further, from the results of Table 7 and Table 8, the thermal radiation of the alumina sintered body is smaller when the area in contact with the heater surface in the area of the surface of the alumina sintered body in contact with the heater is smaller. It was found that there is a tendency to show high thermal radiation. This indicates that, for the same volume, it is effective to improve the thermal radiation property so that the area on the side in contact with the heater surface becomes wider.
  • Example 1 80 ° C. Saturation Energy
  • 80 ° C. saturation energy was determined according to the method shown below. By measuring, the thermal radiation (heat dissipation) of the ceramics for heat radiation members of the present invention was evaluated.
  • 80 ° C. saturation energy is the amount of energy (input power (W)) given to keep the temperature of the heating element in contact with the alumina sintered body at 80 ° C.
  • the test apparatus shown in FIG. 23 has the same basic structure as the test apparatus used for the evaluation of thermal radiation characteristics in (BI) shown in FIG. 16 and (B-II) shown in FIGS. 19 and 21.
  • bamboo needles 14 (outer diameter: 3 mm, length: 50 mm, thermal conductivity: 0.15 W / m ⁇ k) are set up one by one at the four corners of the object to be measured such as an alumina sintered body.
  • One weight 15 is attached so that the load on the alumina sintered body is 40 kgf / m 2, and the alumina sintered body 1 is firmly attached to the resistance heater 10, and the four corners on the lower side of the heater 10 are the same needles as above.
  • the measurement was carried out in the state supported by 14.
  • the weight 15 was a ceramic cuboid (length 25 mm, width 45 mm, thickness 130 mm) containing 90% by mass of alumina.
  • the temperature was measured by a thermometer 16 and an anemometer 17 (Model AM-B11 / 11-2111) installed in the box 11 in a sealed state in the glass box 11.
  • the measurement start conditions were a temperature range of 20 to 25 ° C. and a wind speed of 0.05 m / sec or less, and the temperature and wind speed were recorded during the measurement. During the measurement, the wind speed in the box was almost 0 m / sec.
  • the alumina sintered body 1 of Example 1 having the same size as the heater 10 on the upper surface (20 mm ⁇ 40 mm) of the resistance heater 10 having a size of 20 mm in length, 40 mm in width, and 2 mm in thickness.
  • the temperature sensor 5 K type thermocouple, model HFT-40, manufactured by Anritsu Keiki Co., Ltd.
  • the heater 10 was energized with an input power of 3 W, and the change in the heater surface temperature after energizing the heater is shown in FIG. The broken line in FIG.
  • the dotted line is a copper plate of the same size as the alumina sintered body 1 instead of the alumina sintered body 1 ( The temperature change is shown when the thermal emissivity is smaller than 0.1).
  • the solid line is the change in the heater surface temperature measured with the heater alone.
  • the heater surface temperature approaches 100 ° C. when energized with an input power of 3 W, but the heater surface temperature decreases by about 10 ° C. when the copper plates are stacked.
  • the heater surface temperature further decreased by 20 ° C. or more and reached equilibrium at about 68 ° C. It was also found that when the alumina sintered body was stacked on the heater surface, the time to reach equilibrium was as short as about 13 minutes.
  • the alumina sintered body of the present invention is more excellent in heat dissipation than the copper plate, and further, heat dissipation is performed immediately following the increase in the surface temperature of the heater in contact with the heater surface temperature of 70 ° C. It was confirmed that it could be lowered quickly.
  • the input power (4.5 W) when the temperature reached constant at 80 ° C. was defined as 80 ° C. saturation energy.
  • this input power (3.0 W) was set to 80 ° C. saturation energy.
  • alumina sintered body of Example 1 Using an alumina sintered body (alumina sintered body of Example 1) manufactured with the same raw materials and firing conditions as in Example 1 and having a different area to be brought into contact with the heater, this was contacted with each alumina sintered body. Overlaid on the heater 10 having the same size as the surface, 80 ° C. saturation energy was measured in the same manner as described above. The 80 ° C. saturation energy was also measured for the copper plate in the same manner as described above. The measured 80 ° C. saturation energy is shown in FIG. 25 with the area of the alumina sintered body and the copper plate (vertical ⁇ horizontal) as the horizontal axis. From FIG. 25, it is understood that the 80 ° C.
  • the saturation energy increases in proportion to the area in contact with the heater in both cases of the alumina sintered body indicated by ⁇ and the copper plate indicated by ⁇ .
  • the 80 ° C. saturation energy of the alumina sintered body is about 9 times as large as that of the copper plate when the area is about 10,000 mm 2 , for example.
  • alumina sintered bodies having different shapes as shown below were manufactured using the same raw materials and firing conditions as those of Example 1, respectively.
  • the saturation energy at 80 ° C. was measured by the method described above using the test apparatus shown in FIG. Specifically, an alumina sintered body having a size of 70 mm in length and 90 mm in width and having a thickness shown in Table 9 and a thickness of 50 mm in length and 50 mm in width and having a thickness shown in Table 9 Alumina sintered bodies were respectively produced.
  • Table 9 shows the measured values of 80 ° C. saturation energy for these alumina sintered bodies. From the results in Table 9, it can be seen that the alumina sintered body having the same area in contact with the heater has a higher 80 ° C.
  • the 80 ° C. saturation energy has a correlation with the area brought into contact with the heater, and in the case of the above test, the larger area is slightly less than twice. It showed 80 ° C. saturation energy.
  • alumina sintered bodies obtained under the same manufacturing conditions as in Example 1 and having different shapes. It was. Moreover, each alumina sintered body used for the test was used without polishing the surface, and the respective tests were performed by closely contacting the heater without any adhesive. Further, from the results of (BI) described above, the alumina sintered body having the far-infrared radiation film on the surface also exhibits thermal radiation characteristics similar to or higher than that of the alumina sintered body. Even if a far-infrared radiation film is formed on the surface of the bonded body, it is considered that a similar heat dissipation effect or a further excellent heat dissipation effect is obtained.
  • a power generation cell made of polycrystal silicon and capable of generating an electromotive force of (Isc) 0.72 A and (Voc) 0.6 V was tested as follows.
  • the power generation cell 18 arranged on the alumina sintered body 1 was inclined so as to have an angle of 30 ° with respect to the horizontal plane, and the four corners of the alumina sintered body were supported by the same needles 14 as the support shown in FIG. It was set in the same glass box 11 as the apparatus shown in FIG.
  • the inside of the glass box before and during the measurement was in a windless state with a wind speed of 0.05 m / sec or less.
  • the temperature before the start of measurement was 35 to 40 ° C.
  • the power generation of the power generation cell was measured in a state where a glass plate was disposed instead of the alumina sintered body, and the results are shown in FIG. In FIG. 27, ⁇ indicates a case where an alumina sintered body is disposed, and ⁇ indicates a case where an alumina sintered body is not disposed (when a glass plate is disposed).
  • the glass plate and the alumina sintered body were both 50 mm in length and width and 5 mm in thickness.
  • the power generation of the solar cells was up to 26% higher when the alumina sintered body was placed on the back side ( ⁇ ) and when it was not placed ( ⁇ ). From this, it was shown that the ceramic for heat radiation members of the present invention can be used as a cooling mechanism for solar cells. Furthermore, the ceramic for heat radiation member of the present invention is excellent in heat radiation characteristics, and since the improvement in power generation efficiency as described above can be seen only by installing it in contact with the solar battery cell, it is used as a cooling mechanism for the solar battery cell. It was suggested to be effective.
  • Example 2 a test was performed using an alumina sintered body obtained under the same manufacturing conditions as in Example 1. As shown in (BI), a far infrared radiation film was formed on the surface. Since the alumina sintered body having a heat radiation characteristic similar to or higher than that of the alumina sintered body, the alumina sintered body having a far-infrared radiation film formed on the surface has the same heat dissipation effect or even better. It is considered to have a heat dissipation effect.
  • the present invention has high thermal conductivity not achieved by conventional ceramics, can realize efficient heat dissipation, and is excellent in mechanical strength and thermal shock resistance.
  • the problem of heat generation during operation which is a problem in, etc., is that the alumina sintered body, more preferably, the alumina sintered body having a far-infrared radiation film is directly installed in a state where it is in close contact with the heat generating portion. Since it can function, its utility value is tremendous.
  • electronic devices in recent years have a tendency to be miniaturized, refined, and highly functional, and the problem of global warming in recent years is serious, and there is a strong demand for energy saving for devices and electronic devices.
  • the ceramics for heat radiating members of the present invention that does not require the installation of a cooling device and can function as a radiator is extremely high in each direction.
  • the ceramic for the heat radiation member of the present invention having high heat dissipation is a heat sink material in devices expected to have high heat dissipation such as various electronic devices. The use as is expected.
  • Alumina sintered body 2 Far-infrared radiation film 5: Temperature sensor 10: Heater 11: Measurement box 12: Support 13: Wooden stand 14: Needle 15: Weight 16: Thermometer 17: Anemometer 18: Power generation cell 25: Wiring

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、アルミナ(Al23)の含有量が99.5質量%以上で、かつ、平均粒子径が0.2~1μmであるアルミナ粉末を原料として用い、該粉末を50~100μmの顆粒状にする顆粒化工程と、該顆粒化工程で得られた顆粒状のアルミナを含む原料を加圧成形する成形工程と、該成形工程で得られた成形体を大気雰囲気中で加熱して、1,480~1,600℃の焼成温度で焼成して焼結体を得る焼成工程とを有する熱放射部材用セラミックスの製造方法を提供する。 本発明によれば、熱伝導率が高く、効率のよい放熱性を達成でき、電子機器等の発熱部位における冷却用途に利用でき、しかも機械的強度や耐熱衝撃性にも優れる、アルミナ焼結体である熱放射部材用セラミックスの製造方法、および上記の機能が発揮できる結晶粒の成長を抑えたアルミナ焼結体である熱放射部材用セラミックスを提供する。

Description

熱放射部材用セラミックスの製造方法、熱放射部材用セラミックス、該セラミックスを用いてなる太陽電池モジュールおよびLED発光モジュール
 本発明は、熱伝導率が高く、しかも熱衝撃および機械的強度にも優れた効率のよい放熱部材として実用化が可能な、特有の結晶状態をもつアルミナ系焼結体からなる熱放射部材用セラミックスを提供する技術に関し、さらには、該セラミックスの高い放熱機能を利用した製品に関する。
 近年、有機系材料に比べて安定な無機系材料が見直されてきており、アルミナ(Al23)をはじめとして、ステアタイト、ジルコン、コーディエライト等からなるセラミックスは、それぞれに特有の性質を生かした機能性材料として多方面に利用され、電子部品や半導体製造装置などへ応用される例も増えている。例えば、アルミナは、機械的強度、電気絶縁性、高周波損失等に優れた機能性材料として利用されている。その中で、本願出願人は、既に、大気雰囲気中で1,400~1,700℃で焼成して得られる、アルミナの含有率が95質量%と高い陶磁器(セラミックス)が、熱伝導率と熱放射率に優れることを見い出し、これを発熱部の冷却に用いることについて提案している(特許文献1参照)。該陶磁器は、電気絶縁性に優れ、無機材料製の不燃物であることから、発熱部位に直接接触させて冷却できるので、電子機器や装置を含めた冷却効果が所望される分野における使用が期待される。
 機能性材料としてのアルミナ系焼結体(セラミックス)に関しては、そのほかにも、機械的特性や電気的特性等に着目して、それぞれの用途に有用な様々な提案がなされている(特許文献2~7等参照)。
 ここで、近年、地球規模での環境保護の観点からも注目されているものとして、太陽光を利用する発電セルを用いた太陽光発電装置や、LED素子を搭載した発光装置がある。そして、これらの装置では、エネルギーの変換効率或いはその発光効率の向上および製品の長寿命化の観点から、発電や発光の際に発生する熱を効果的に冷却することが望まれており、(特許文献8~10)、先述した出願人が提案する特許文献1に記載の技術が適用できれば、非常に有用である。
特開2006-298703号公報 特開2010-83729号公報 特開2005-53758号公報 特開2003-112963号公報 特開平8-40765号公報 特開2000-128625号公報 特開2003-306386号公報 特開2004-259797号公報 特開2009-147258号公報 特開2010-225607号公報
 しかしながら、本願出願人が提案した上記特許文献1の技術は、熱伝導率および熱放射率に優れたアルミナ焼結体を開示しているものの、近年の電子機器等における小型化、精密化や高機能化の進展は著しく、これらの機器の機能を安定してより高めることのできる機能性材料としては十分とはいえず、改善の余地があった。すなわち、実用化のためには、より効率のよい冷却効果を実現することができ、しかも強度等に優れ、耐久性における問題もなく、安定して確実に冷却効果の発現が可能なセラミックス材料の開発、さらには、このような材料を歩留まりよく製造できる技術の開発が望まれる。これに対し、アルミナ焼結体の製造にあたっては、下記に述べるように、種々の条件が、焼結体の機能性に影響を及ぼすことが知られている。このため、特許文献1の技術では、高機能化が進んだ電子機器等の発熱部位における冷却に対して高い効果を確実にかつ安定して得ることができ、機械的強度や耐熱衝撃性にも優れる冷却部材として実用化が可能なアルミナ焼結体を安定して提供するまでには至っていない。
 各種電気部品に用いられる従来の一般的なアルミナ焼結体は、用いる原料粉末の一次粒子の粒子径は5~10μmと大きく、成形圧力は比較的低く設定されており、焼結を1,600~1,700℃という高温で行うことによって粉末粒子間の結合を促進し、強固な焼結体としていた。しかしながら、本発明者らの検討によれば、例えば、図12に示す1,610℃で焼成したアルミナ焼結体のように、このような高温環境下で焼成した場合は、焼結体内の結晶粒が異常成長して結晶の粗大化が起こり、機械的強度や耐熱衝撃性が低下したものとなってしまう。先に挙げた特許文献2では、この問題に対して、アルミナ焼結体の結晶粒径を20~70μmと大きくすると同時に、板状の結晶を配向させずにランダムにすることで強度を向上させている。しかし、結晶粒径の粗大化は、表面研磨時に、欠けや破損の原因となるといった別の問題を生じる。
 このような課題に対して、或いはその他の目的から、従来より、アルミナ焼結体の結晶の粒成長を抑えることについての検討は行われており、下記に述べるような種々の提案がされている。例えば、特許文献3では、アルミナが本来有する、高強度、高熱伝導特性、低誘電損失を維持しつつ、材料コストを削減でき、かつ製造時の作業性の良好なアルミナ焼結体を提供することを目的として、下記の提案がされている。すなわち、特許文献3では、平均粒径が0.1~1.0μmのアルミナ原料と、さらに特定量の焼結助剤とを用い、焼結温度を1,150~1,350℃と低くすることで、アルミナ焼結体中のアルミナ粒子の平均粒径が、0.5~2.0μm、熱伝導率が10W/m・K以上の、結晶の粒成長が抑制されたアルミナ焼結体を得ている。しかし、この材料は、熱放射機能に劣り、本発明が目的とする冷却部材として使用できるものではなかった。また、特許文献4では、アルミナ焼結体において、不純物量だけでなく結晶粒径も誘電損失に影響を与えることを開示しているが、熱伝導率や熱放射率などの熱特性については検討されていない。
 また、特許文献5では、長時間高温に置かれる部材に適用可能な、不純物含有量を低減し、高純度化すると共に、全体として緻密化され均質性に優れる高密度なアルミナ焼結体を得る方法を提案している。しかし、冷却部材として使用できるアルミナ焼結体を提供するものではなく、結晶粒径を制御することを示唆するものでもない。先に挙げた特許文献6によれば、アルミナ焼結体は焼成温度が1,550℃未満では焼結体の緻密化が十分には進行せず、1,650℃超では異常な粒成長が発生し、焼結体密度の低下を来たすとされている。しかし、この文献に記載の技術は、粒子径の異なる2種類の原料と、成形方法に泥漿鋳込み法などを用いてアルミナ焼結体を得る際の技術に関し、高純度で低粘度のスラリー調製を可能とすることで粒成長を制御しているものであり、アルミナ焼結体を冷却部材として使用可能にすることを目的とする本発明とは、課題もアルミナ焼結体の製造方法も異なる。また、先に挙げた特許文献7には、高純度アルミナ原料を用いたアルミナ焼結体が開示されているが、これは部品などの焼成時に用いられるセラミックスセッターに関するものであり、上記と同様、冷却部材として実用化が可能なアルミナ焼結体の提供を目的としたものではない。
 また、本願出願人は、これまでに、基体表面に塗布して焼き付けすることで、ガス、電気などで加熱することにより遠赤外線を放射する塗膜を得ることができる遠赤外線放射コーティング組成物を提案している(特公昭63-54031号公報参照)。しかし、この技術は、ガス、電気などの熱を、特定の塗膜を設けることで、所望する波長領域の遠赤外線に変化させるための技術であり、勿論、効率のよい放熱(すなわち冷却)を目的としたものではない。
 先に述べたとおり、近年の電子機器等における小型化、精密化や高機能化の進展は著しく、これらの電子機器の機能をより高めることのできる冷却部材を形成し得る機能性材料の開発が待望されているが、電子機器に限らず、その高効率化や長寿命化のため冷却が必要とされる装置は多い。また、この場合も装置の小型化が求められることが多いため、空冷、水冷などの冷却機構よりも構造の簡単な熱伝導性の高い材料などを用いた熱放射部材(ヒートシンク)が望まれており、より小型で簡単な構造を実現し得る、より放熱性に優れた部材や機構の開発が求められている。
 例えば、結晶系シリコン発電素子などの発電セルを用いた光エネルギーを直接電力に変換する太陽電池は、二酸化炭素を発生しない電力源として近年注目を浴びており、より高い電力への変換効率の実現が求められている。しかし、受光中の太陽電池モジュールの温度は80℃以上に達することもあり、このことに起因する太陽電池の出力の低下が問題となっている。これに対し、太陽電池モジュールを水冷するなど、様々な冷却機構が提案されている(上記特許文献8)。しかし、水冷などは機構が複雑となり付帯装置が大型化し、さらに設置後のメンテナンスが必要となるといった問題もあり、その実用化は難しく、電力への変換効率を高めて太陽電池の普及をより促進するためにも、できるだけシンプルな構造の冷却機構あるいは熱放射部材の開発が急務となっている。
 また、太陽電池と同様の課題を有するものとして、発光ダイオード(LED)素子を用いたLED発光モジュールがある。近年、発光効率がよく消費電力の少ない照明として発光ダイオード(LED)素子を用いた発光装置が急速に普及しているが、LED素子は熱に弱く、80℃以上で素子が劣化して寿命が低下してしまうという課題がある。このため、LED素子では、放熱の必要性は従来の白熱球や蛍光灯よりも高く、適切に放熱しないと、発光効率の低下や寿命の短縮、さらには発熱による発火事故に繋がる懸念もある。このため、LED発光モジュールの場合も、太陽電池モジュールの場合と同様に、LED素子からの熱を放熱する技術は、その普及を促進させるために不可欠なものと言える。すなわち、これらのモジュールを冷却するための、シンプルな構造の冷却機構あるいは熱放射部材の開発の実現は、地球規模での環境保全に寄与し得る重要なものである。
 LED素子の冷却に関しては、下記に挙げるような提案があるが、いずれも実用化する技術としては十分とは言えない。先に挙げた特許文献9では、LED素子を搭載する基体として金属板、絶縁体および金属基体の積層構造を採用し、貫通溝を形成することで、LED素子からの放熱性に優れた発光装置としているが、放熱のための貫通溝は、絶縁体の一部を除去して形成した複雑な構造を有し、生産性の向上は難しい。
 また、先に挙げた特許文献10では、高純度アルミナ基板にLED素子を配設した発光装置を開示しており、該高純度アルミナ基板は高い熱伝導率を有し放熱性に優れることが記載されている。しかし、特許文献10の技術は、特定の波長の光についての基板の光線反射率を高めることで、これに配設したLED素子の発光効率を高める技術であり、アルミナ焼結体の有する結晶構造と放熱性との関係を示唆したものではない。
 従って、本発明の目的は、上記した従来の課題を解決し、熱伝導率が高く、効率のよい放熱性を達成でき、電子機器等の発熱部位における冷却用途に利用でき、しかも機械的強度や耐熱衝撃性にも優れる、アルミナ焼結体である熱放射部材用セラミックスの製造方法、および、上記の機能が発揮できる結晶粒の成長が抑制されたアルミナ焼結体である熱放射部材用セラミックスを提供することにある。さらに本発明は、上記熱放射部材用セラミックス表面を改質することにより、放熱性をさらに向上させた熱放射部材用セラミックスを提供することを目的とする。
 さらに、本発明の目的は、上記した放熱性に優れる有用な熱放射部材用セラミックスの利用を促進することにあり、具体的には、各種電子機器の放熱機構における代替品として、さらに、シンプルかつ効果的な放熱手段が求められている太陽電池モジュールやLED発光モジュールにおける発熱の問題を解決し得る放熱部材として、種々の用途に適用可能な熱放射部材用セラミックスを提供することにある。
 上記の目的は、下記の本発明によって達成される。すなわち、本発明は、アルミナ(Al23)の含有量が99.5質量%以上で、かつ、平均粒子径が0.2~1μmであるアルミナ粉末を原料として用い、該粉末を50~100μmの顆粒状にする顆粒化工程と、該顆粒化工程で得られた顆粒状のアルミナを含む原料を加圧成形する成形工程と、該成形工程で得られた成形体を大気雰囲気中で加熱して、1,480~1,600℃の焼成温度で焼成して焼結体を得る焼成工程とを有することを特徴とする熱放射部材用セラミックスの製造方法を提供する。
 上記本発明の熱放射部材用セラミックスの製造方法の好ましい形態としては、下記のものが挙げられる。
(1)前記焼成温度が、1,500~1,592℃である上記の熱放射部材用セラミックスの製造方法。
(2)前記成形工程において、密度が少なくとも2.40g/cm3の成形体を得る上記の熱放射部材用セラミックスの製造方法。
(3)さらに、前記焼成工程後に、該焼成工程における焼成温度までの昇温速度に対して、1.3~2.0倍の速度で焼成物を急冷して焼結体を得る冷却工程を有する上記の熱放射部材用セラミックスの製造方法。
(4)前記焼成工程における焼成を、空気を流通させたバッチ式の炉内で行う上記の熱放射部材用セラミックスの製造方法。
(5)さらに、前記焼成工程で得られた焼結体の表面の少なくとも一部に、遠赤外線放射コーティング組成物からなるコーティング膜を形成し、焼き付けして遠赤外線放射膜を形成する工程を有する上記の熱放射部材用セラミックスの製造方法。
(6)前記遠赤外線放射コーティング組成物は、耐熱性無機接着剤と、少なくとも2種の遷移元素酸化物を混合し、700~1,300℃で仮焼した微粉末状の混合仮焼成物を97:3~20:80の質量比率で含有する上記の熱放射部材用セラミックスの製造方法。
 本発明の別の実施形態では、アルミナの含有量が99.5質量%以上、シリカ(SiO2)の含有量が0.1質量%以下のアルミナの焼結体であり、その結晶粒径が1~10μmで、かつ、30×20μmの面積中に結晶粒を30~55個の範囲で含有してなり、その熱伝導率が33W/m・K以上であることを特徴とする熱放射部材用セラミックスを提供する。
 上記本発明の好ましい形態としては、下記のものが挙げられる。
(1)前記焼結体密度が、3.8g/cm3以上である上記の熱放射部材用セラミックス。
(2)前記アルミナの含有量が99.8質量%以上、シリカの含有量が0.05質量%以下である上記の熱放射部材用セラミックス。
(3)表面の少なくとも一部に、遠赤外線放射膜をさらに有する上記の熱放射部材用セラミックス。
(4)前記遠赤外線放射膜は、耐熱性無機接着剤と、少なくとも2種の遷移元素酸化物を混合し、700~1,300℃で仮焼した微粉末状の混合仮焼成物を、97:3~20:80の質量比率で含有する遠赤外線放射コーティング組成物のコーティング膜を焼き付けてなる上記の熱放射部材用セラミックス。
 本発明の別の実施形態では、本発明の熱放射部材用セラミックスをそれぞれに利用した下記の太陽電池モジュール、又は、LED発光モジュールを提供する。具体的には、発電セルの裏面に、上記した本発明の熱放射部材用セラミックスを配置してなることを特徴とする太陽電池モジュールを提供する。また、基板表面に回路が形成され、該回路上にLED素子が設けられているLED発光モジュールにおける上記基板が、上記した本発明の熱放射部材用セラミックスのいずれかであることを特徴とするLED発光モジュールを提供する。
 本発明によれば、特に、その使用原料とその焼成温度を精密に制御することによって、熱伝導率が高く、効率のよい効果的な放熱が達成され、電子機器等の発熱部位における冷却用途に利用でき、しかも機械的強度や耐熱衝撃性にも優れる、熱放射部材用として有用な新規なアルミナ焼結体を安定して得ることができるアルミナ焼結体の製造方法が提供される。かかる方法によって得ることのできるアルミナ焼結体は、従来のアルミナ焼結体とは異なり、結晶成長を生じておらず、結晶粒径が小さく、比較的均一に結晶粒径が適切に制御されており、しかも結晶粒の界面への不純物の析出がほとんどない、高純度で緻密なアルミナ焼結体であるため、上記したように従来にない優れた機能性材料となる。
 さらに、本発明の好ましい形態によれば、アルミナ焼結体の表面の少なくとも一部、例えば、熱を放熱させる面に、遠赤外線放射コーティング組成物からなる遠赤外線放射膜を設けることで、発熱部位からの熱を放熱するだけでなく、熱を遠赤外線に変換して外部に放射することができるため、より放熱性に優れた熱放射部材用セラミックスの提供が可能となる。
 本発明によれば、熱伝導率が高く、効率のよい効果的な放熱を達成でき、また機械的強度や耐熱衝撃性にも優れているアルミナ焼結体を太陽電池モジュールやLED発光モジュールに適用することで、下記の効果が得られる。すなわち、本発明で提供するアルミナ焼結体を適用した場合、極めてシンプルなアルミナ焼結体からなる部材のみで、太陽電池モジュールの温度上昇に起因して生じる発電セルの出力低下が抑制でき、発電効率の向上がみられ、また、熱に弱いLED素子にあっては素子の劣化を有効に抑制し、LED素子の長寿命化や発熱による発火事故の発生の防止を可能にする。このため、本発明によれば、自然環境保護に有用な太陽電池モジュールやLED発光モジュールを用いた各種製品の実用化に大きく寄与できる。
本発明における昇温・焼成・冷却の条件の概略を説明するための図である。 本発明の熱放射部材用セラミックス(アルミナ焼結体)の一例の結晶状態を示す電顕写真の図である(実施例1)。 本発明の熱放射部材用セラミックス(アルミナ焼結体)の一例の結晶状態を示す電顕写真の図である(実施例2)。 本発明の熱放射部材用セラミックス(アルミナ焼結体)の一例の結晶状態を示す電顕写真の図である(実施例3)。 図4に示す電顕写真の一部を拡大して示す図である。 本発明の熱放射部材用セラミックス(アルミナ焼結体)の一例の結晶状態を示す電顕写真の図である(実施例4)。 本発明の熱放射部材用セラミックス(アルミナ焼結体)の一例の結晶状態を示す電顕写真の図である(実施例7)。 本発明の熱放射部材用セラミックス(アルミナ焼結体)の一例の結晶状態を示す電顕写真の図である(実施例8)。 比較例1の熱放射部材用セラミックス(アルミナ焼結体)の一例の結晶状態を示す電顕写真の図である。 比較例2の熱放射部材用セラミックス(アルミナ焼結体)の一例の結晶状態を示す電顕写真の図である。 比較例3の熱放射部材用セラミックス(アルミナ焼結体)の一例の結晶状態を示す電顕写真の図である。 従来のアルミナ焼結体の一例の結晶状態を示す電顕写真の図である。 本発明の熱放射部材用セラミックス(アルミナ焼結体)のFT-IRによる分光放射率スペクトルである。 参考例1の遠赤外熱放射膜の放射強度を示すFT-IRによる分光放射率スペクトルである。 遠赤外熱放射膜を形成していないステンレス板の放射強度を示すFT-IRによる分光放射率スペクトルである。 評価(B-I)における実施例10のヒータ表面温度の測定方法を表す概念図である。 実施例10の遠赤外線放射膜を有するアルミナ焼結体について、ヒータ表面温度測定時のヒータと温度センサの配置を示す図である。 実施例1のアルミナ焼結体について、ヒータ表面温度測定時のヒータと温度センサの配置を示す図である。 評価(B-II)における実施例1のアルミナ焼結体およびヒータの表面温度の測定方法を表す概念図である。 本発明のアルミナ焼結体の、面積を一定としたときの厚みによる熱放射特性の違いを示すグラフである。グラフ中、◆はヒータ単独の場合のヒータ表面温度を示し、□は厚さ4.5mm、▲は厚さ5.5mm、△は厚さ6.5mm、■は厚さ7.5mm、○は厚さ8.5mmのアルミナ焼結体をそれぞれ接触させた場合のヒータ表面温度を示す。 評価(B-II)における実施例1のアルミナ焼結体およびヒータの表面温度の測定方法を表す概念図である。 本発明のアルミナ焼結体の、体積を一定としたときの厚みによる熱放射特性の違いを示すグラフである。グラフ中、◆はヒータ単独の場合のヒータ表面温度を示し、■はアルミナ焼結体A(縦横厚さがそれぞれ31.0mm、18.0mm、5.0mm)、▲プロットはアルミナ焼結体B(縦横厚さがそれぞれ19.4mm、18.0mm、8.0mm)、□はアルミナ焼結体C(縦横厚さがそれぞれ14.1mm、18.0mm、11.0mm)をそれぞれ接触させた場合のヒータ表面温度を示す。 評価(B-III)における実施例1のヒータ表面温度の測定方法を表す概念図である。 投入電力3Wのときのヒータ表面温度の変化を表すグラフである。グラフ中、直線はヒータ単独の場合、破線はアルミナ焼結体をヒータに重ねた場合、点線は銅板をヒータに重ねた場合、を示す。 本発明のアルミナ焼結体および銅板について、それぞれの面積に対する80℃飽和エネルギーを表すグラフである。グラフ中、◆はアルミナ焼結体、▲は銅板を示す。 本発明の熱放射部材用セラミックスの応用例の一例として、太陽電池モジュールの放射冷却効果を測定する実験装置の一例を示す図である。 図26において測定した発電力を示す図である。グラフ中、■は本発明のアルミナ焼結体を配置した場合、◆はアルミナ焼結体の代わりにガラス板を配置した場合を示す。 本発明の熱放射部材用セラミックスの応用例の一例として、表面に回路を形成したLED発光モジュールの基板の一例を示す図である。
 次に、好ましい実施の形態を挙げて本発明をさらに詳細に説明する。
 本発明のアルミナ焼結体の製造方法は、特定のアルミナ原料粉末を調整する顆粒化工程と、該顆粒化工程で得られた顆粒状のアルミナを含む原料を加圧成形する成形工程と、該成形工程で得られた成形体を大気雰囲気中で加熱して、1,480~1,600℃の焼成温度で焼成して焼結体(セラミックス)を得る焼成工程とからなる。本発明の特徴は、原料に、高純度のアルミナの微粒粉末を用い、該微粒粉末を顆粒状にした点、該顆粒化した原料を加圧成形した点、成形体を大気雰囲気中で制御された特定の温度範囲で焼成した点にある。以下、それぞれについて説明する。
(原料及びその顆粒化工程)
<原料>
 原料となるアルミナ粉末は、平均粒子径が0.2~1μmであればそのまま使用することができ、特に粉砕する必要はないが、後述するように、粒子径の分布は狭い方が好ましい。このため、ボールミルなどで粉砕して、粒度分布を揃えて用いることが好ましい。本発明では、焼結体中のアルミナ含量を99.5質量%以上とするため、アルミナ含有量が99.5質量%以上、好ましくは99.9質量%以上の高純度のアルミナ原料を用いる。
 アルミナ原料としては、一般に入手可能な公知のアルミナ原料粉末をいずれも用いることができる。例えば、金属アルミニウム精錬プロセスにおける中間生成物であるキブサイトを1,000℃以上で仮焼する、バイヤー法と呼ばれる方法によって得られるα-アルミナ粉末を用いることができる。また、金属アルコキシドを加水分解および重縮合反応して得られるゲルを加熱して得られるゾル-ゲル法によるアルミナ粉末を用いてもよい。ゾル-ゲル法によって得られるアルミナ粉末は、バイヤー法などで得られるアルミナ粉末よりも純度が高く、また、粒子径が小さく、かつ均一であり、さらに真球に近い球形の粒子である。このため、例えば、ゾル-ゲル法によって得られる99.9質量%以上の純度のアルミナ粉末を原料として用いると、よりアルミナ純度が高い焼結体が得られ、焼結体中の粒界にガラス相が形成されるのを抑えることができるので、より熱伝導性に優れた焼結体になる。また、ゾル-ゲル法によって得られる球形粒子のアルミナ粉末を用いると、バイヤー法で得られるアルミナ粉末を用いた場合に比べて、後述する成形工程において、より緻密な成形体が得られ、下記に述べるように、より低い焼成温度でアルミナが焼結し、細かく均一な結晶状態の良好なアルミナ焼結体を得ることができる。
 例えば、同様の粒径のアルミナ粉末で比較した場合、バイヤー法で得られるアルミナ粉末を用いた場合は、焼成温度が1,550℃を下回ると焼結しにくくなるが、ゾル-ゲル法で得られるアルミナ粉末を用いた場合は、1,480℃でも十分に焼結し、より低温域で良好な焼成が可能である。このように、ゾル-ゲル法で得られるアルミナ粉末は、原料コストは高いが、焼成温度を低くできるという利点がある。なお、いずれの原料を用いた場合も焼成温度が1,600℃を超えると結晶粒の成長がみられ、本発明の効果が十分に得られるアルミナ焼結体となり難い。
 また、例えばゾル-ゲル法で得られるような、より粒径が小さく均一なアルミナ粉末を原料に用いることで、後述するように、より強度および熱伝導性などに優れるアルミナ焼結体にできる。本発明者らの詳細な検討によれば、上記したように、用いるアルミナ粉末原料によって最適な焼成が行われる温度範囲に多少の違いがみられ、それに起因して熱特性などにも若干の違いはあるが、平均粒子径が0.2~1μmで、アルミナ含有量が99.5質量%以上のアルミナ粉末原料を用い、本発明で規定する手順および条件で調製すれば、上記に限らず、いずれの製造方法によって得られたアルミナ粉末を原料に用いた場合も、強度および熱伝導性に優れ、従来のアルミナ焼結体では達成し得なかった熱放射部材として有用な機能を示すアルミナ焼結体となる。
 本発明者らの検討によれば、原料にゾル-ゲル法によって得られるアルミナ粉末を用いた場合、同様の粒径のバイヤー法によって得られるアルミナ粉末を用いた場合に比較して、より低温域で焼成でき、しかも強度および熱伝導性に優れたアルミナ焼結体となる。その理由は、ゾル-ゲル法によって得られるアルミナ粉末は、純度が高く、粒子が小さくて均一であり、また、粒子形状が真球に近いためであると考えられる。したがって、本発明に用いるアルミナ粉末原料は、できるだけ純度が高く、より粒子が小さくて均一であり、さらに好ましくは粒子形状が球形であるものが好ましい。本発明では、アルミナ(Al23)の含有量が99.5質量%以上で、平均粒子径が1.0μm以下の微粒のアルミナを原料として用いるが、例えば、バイヤー法によるアルミナ粉末でも、平均粒子径が0.3μm程度のものまで市場から入手可能である。ゾル-ゲル法などによるアルミナ粉末であれば、平均粒子径が0.2~0.4μm程度の、より微粒で、シャープな粒度分布をもつ、形状が真球に近いものを市場から入手できる。勿論、上記した製法のアルミナ粉末に限らず、本発明に用いる原料は、本発明で規定する高純度の微粒のアルミナであればいずれの製法のものであってもよく、また、市場から入手したアルミナ粉末を粉砕あるいは精製して本発明で規定する粒径および純度としたものでもよい。さらに、原料のアルミナ粉末を球形化して用いることも好ましい。
 アルミナ粉末には不可避的な不純物が含まれているので、本発明で用いる原料粉末には焼結助剤を加えなくても焼結体が得られるが、結晶粒成長を抑制するために、原料中に焼結助剤としてマグネシア、シリカを加えてもよい。これらを加えることで、より緻密なアルミナ焼結体を安定して製造することが可能になる。ただし、これらの焼結助剤は結晶粒界に析出し熱的特性に影響を与えるので、できる限り少ないことが好ましい。このため、本発明では、原料粉末中のアルミナの含有量を99.5質量%以上とし、焼結助剤などの添加剤の含有量を合計で0.5質量%未満とした。合計で0.5質量%未満であれば焼結助剤として、例えば、酸化ナトリウム(Na2O)、酸化鉄(Fe23)を加えてもよい。
<原料粉末の顆粒化>
 本発明者らの検討によれば、上記したような粒子径が非常に小さいアルミナ粉末原料を、適度な粒径に顆粒化することで、より緻密な成形体が得られ、さらには、より密度の高いアルミナ焼結体の製造が可能になる。顆粒化の方法は特に限定されないが、例えば、アルミナ原料粉末に後述するような有機質結合剤を添加してスラリー化した後、噴霧、乾燥させることで、粒子径が50~100μmの成形用の顆粒を容易に得ることができる。このようにして得られる顆粒は、球状のものとなる。また、顆粒化することで、微粒子からなるアルミナ粉末原料のハンドリング性を向上させることができるので、製造上も有利である。
(成形工程)
 次に、上記のようにして得た、粒子径が50~100μmの球状顆粒を原料として、適宜に保形性を与えるために有機質結合剤等を添加して、この顆粒状のアルミナを含む原料を加圧成形して成形体を作成する。成形方法は特に限定されないが、成形体に圧力をかけることで、例えば、得られる成形体の密度が2.40g/cm3以上の緻密なものとなるような方法を用いればよい。具体的には、例えば、金型を用いて、成形圧力として1,000~2,500kg/cm2を加えて成形体を作成することが挙げられる。この場合に、成形圧力が1,000kg/cm2より小さいと、成形体における粒子間の間隙が多く、後に行う焼成の際における熱伝導性が悪いため、より緻密な焼結体を得るために焼成温度を高くしなければならなくなる。後述するが、本発明においては、焼結体に所望する機能性を付与するためには焼成温度が極めて重要であり、本発明で規定するよりも焼成温度が高くなると、得られた焼結体中に結晶粒の成長がひき起されて所望する特性が得られなくなるので、成形工程では、より緻密な成形体とすることが好ましい。一方、成形圧力が2,500kg/cm2より大きいと、成形体にひび割れや破損が生じ、歩留まりが低下するので好ましくない。本発明者らの検討によれば、特に、成形圧力が1,200~2,500kg/cm2であると、密度が2.40g/cm3以上の成形体が得られ、後に焼成することで、本発明が所望する緻密なアルミナ焼結体が得られる。さらに、成形圧力が1,500~2,000kg/cm2であることがより好ましい。例えば、前記したゾル-ゲル法によるアルミナ粉末を原料に用いると、密度が2.45g/cm3以上の、より密度の高い緻密な成形体を容易に得ることができる。なお、本発明において、成形体の密度は、成形体の重量と、成形体の測定寸法から求めた体積から算出した。
 成形体を作成する方法は、上記の乾式金型成形法に限らず、他の成形方法、例えば、冷間静水圧成形(CIP)、ホットプレス(HP)、熱間静水圧成形(HIP)、押出成形、射出成型などを用いてもよい。いずれの成形方法を用いた場合でも、密度が2.40g/cm3以上の成形体とすれば、後の焼成工程を経ることにより、緻密で特定の結晶状態を有する、所望性能を実現したアルミナ焼結体を安定して得ることができる。
 上記した顆粒化工程や成形工程で使用する有機質結合剤としては、従来、セラミックスの製造において使用されているものをいずれも用いることができる。具体的には、加熱時に溶融して適度な粘性を示し、加熱・焼成して焼成物とした後に残留しないような特性を有する有機化合物を使用する。このようなものとしては、分子中に酸素原子が多く含まれているポリビニルアルコール、ポリエステルやセルロースの誘導体、更には、適宜な重合度のアクリル樹脂、ポリエチレンオキシドやポリプロピレンオキシド、プロピレンオキシドに任意の量のエチレンオキシドを共重合させたポリエーテルがある。また、セルロースの誘導体である水溶性セルロースエーテル、中でも、メチルセルロースを用いることができる。アクリル樹脂やポリビニルアルコールは、従来よりファインセラミックス製品の押出し成形時の結合剤として用いられており、本発明で用いる原料粉末を顆粒化する際に、或いは、顆粒化した原料に保形性を付与するための有機質結合剤として好適に用いることができる。
(脱脂及び乾燥工程)
 本発明の製造方法では、上記のようにして得た成形体から前記のような有機質結合剤などを除去するために、例えば脱脂炉にて、大気中で500℃まで約100時間かけて一定の昇温速度(約5℃/時)で昇温することが好ましい。このように長い時間をかけて徐々に温度を上げることにより、成形体に含まれる有機質成分を完全に、しかも成形体に割れやひびを生じない状態で除去することができる。
(焼成工程)
 本発明の製造方法では、上記した成形工程で得られた成形体を大気雰囲気中で加熱して、1,480~1,600℃の焼成温度で、より好ましくは、1,500~1,592℃、さらには、1,550~1,592℃の焼成温度で焼成することで、本発明が所望する熱放射性に優れるアルミナ焼結体を得る。下記に述べるように、使用するアルミナ原料粉末の粒子径や粒子形状によって、好適な焼成温度は若干異なる。例えば、平均粒径が1.0μm程度と比較的に粒径が大きく真球状とは言えないアルミナ粉末原料を用いた場合に、所望する緻密なアルミナ焼結体を安定して得るためには、1,550℃以上、より好ましくは、1,555℃以上の焼成温度で焼成するとよい。本発明者らの詳細な検討によれば、この場合に、所望する緻密なアルミナ焼結体をより安定に得るためには、焼成温度を1,592℃以下とすることが好ましい。これに対し、例えば、ゾル-ゲル法によるアルミナ粉末のように、平均粒径がより小さく、均一な真球状に近いアルミナ粉末を原料とする場合は、前記したように、成形工程で得られる成形体をより緻密にできるので、1,500℃以下の低い温度でも所望する緻密なアルミナ焼結体を安定して得ることができる。また、焼成温度が1,600℃以下であれば、所望の緻密なアルミナ焼結体を得ることができるが、焼成温度が低い方が、結晶粒径が小さく、より熱特性、強度に優れた焼結体が得られる傾向にあり、また、エネルギー効率の観点からも焼成温度はできるだけ低い方が好ましい。さらに、焼成温度を低くすると焼成時間が長くなるため、上記したようなアルミナ粉末原料を用いた場合は、1,500℃以上、さらには1,550℃以上にすることが好ましい。上記のことから、アルミナ粉末原料の性状にかかわらず、所望する緻密なアルミナ焼結体をより安定して得ることのできる好適な焼成温度範囲としては、1,500~1,592℃、さらには、1,550~1,592℃である。
 前記焼成温度における焼成時間は2時間以内にすることが好ましい。これ以上長くなると、結晶粒が成長するおそれがあるので好ましくない。また、本発明では、焼成工程における焼成を、空気を流通させたバッチ式の炉内で行うことが好ましい。さらに、上記焼成工程後に、焼成温度に至るまでの昇温速度に対して、1.3~2.0倍の速度で焼成物を急冷して焼結体を得る冷却工程を有することが好ましい。すなわち、本発明において重要なことは、その焼成温度を、焼成温度としては比較的低く、しかも、1,480~1,600℃、より好適には、1,500~1,592℃、さらには1,550~1,592℃と、極めて狭い温度範囲に制御して行うことで所望の結晶状態にすることにあり、焼成後は、結晶粒の成長が抑制されるように急冷することが好ましい。具体的な昇温速度、冷却速度や焼成温度に保持する時間は、成形体の大きさや厚みによっても異なり、一義的に決定できないが、上記した焼成温度までの昇温速度に比べて、焼成温度からの冷却速度(降温速度)を1.5倍程度、速くすることが好ましい。
 図1に、焼成工程と、それに続く冷却工程における、昇温・焼成・冷却の条件の一例を模式的に示した。例えば、アルミナを99.5質量%以上含む成形体を、大気雰囲気中にて、昇温速度を100~200℃/時、より好ましくは140~160℃/時とし、および降温速度を、200~300℃/時、より好ましくは240~270℃/時として焼成を行う。また、焼成温度における保持時間は2時間以下、具体的には1~2時間とした。保持時間が1時間より短いと焼結が不十分になるおそれがあり、2時間を超えると結晶の粒成長を生じるおそれがある。より好ましい保持時間は2時間である。本発明では、低めの特定の狭い範囲の焼成温度、さらに好ましくは昇温速度および降温速度を適切に制御することによって、焼結体が高温に曝される時間を短くでき、これによって焼結体中の結晶粒の成長を抑えることができる。この結果、結晶粒径が適切に制御された、高純度で緻密なアルミナ焼結体を製造できる。得られるアルミナ焼結体は、その原料の純度が極めて高いことに加えて、本発明で規定する温度制御によって、結晶粒の界面への不純物の析出がほとんどみられず、その結果、高い熱伝導率が得られ、これに起因する効率のよい放熱性(熱放射性)の達成が実現できる材料とできたものと考えられる。また、焼結体中の結晶粒の成長が抑制され、結晶粒径が適切に制御されているため、熱伝導性に優れるとともに、その機械的強度に優れ、熱衝撃に強く、実用に耐える耐久性の高いものになったと考えられる。なお、本発明で規定する特定範囲の焼成温度によって、得られる焼結体の結晶状態、さらには性能が異なるものになることについては、実施例をもって詳述する。
 なお、本発明の製造方法でも、通常のセラミックスの製造方法と同様に、焼成工程の前に成形体の脱脂及び乾燥を行うことが好ましいが、成形体の脱脂及び乾燥は、前述するように焼成工程に先立って別途行ってもよい。しかし、これに限らず同じ炉内において脱脂及び乾燥工程と、その後の焼成工程を行ってもよい。その場合には、得られた成形体をバッチ式の炉にて空気を流通させながら、500℃まで100時間程度かけて、ゆっくりと昇温した後、500℃から前述の昇温速度、焼成温度、冷却温度で焼成する。このように同じ炉内において続けて昇温することにより、工程を簡略化することができる。
 また、前述のように、脱脂後、一旦成形体を取り出し、再度同じ炉または異なる炉内にて焼成することもできる。この場合は、室温から前述の昇温速度で昇温して焼成することができ、さらに約1,000℃までは、成形体にひび割れなどが生じない範囲でさらに速い昇温速度にすることが可能である。よって、脱脂及び乾燥用の炉と、焼成用の炉を使い分け、より効率的に大量の熱放射部材用セラミックスを焼成することが可能となる。
 後述する本発明の実施例では、焼成工程における焼成を、空気を流通させたバッチ式の炉内で行った。本発明の実施例で用いた炉は、炉内温度をプロパンなどのガスによって加熱した空気の流量で直接制御するので、温度制御が容易であり、前記の昇温速度、焼成温度、および降温速度を適切な範囲に制御できる。ただし、本発明において焼成に用いる炉は、上記のものに限られるものではなく、大気雰囲気中において、焼成温度を制御しての焼成が可能な炉であれば、いずれのものを用いてもよい。
(熱放射部材用セラミックス)
 次に、上記したような製造方法によって得ることのできる、高純度でかつ緻密な焼結体からなる本発明の熱放射部材用セラミックス(以下、単に「本発明のアルミナ焼結体」とも言う)について説明する。本発明の熱放射部材用セラミックスは、アルミナの含有量が99.5質量%以上、好ましくは99.8質量%以上、さらに好ましくは99.9質量%以上であり、シリカ(SiO2)の含有量が0.1質量%以下、好ましくは0.05質量%以下のアルミナの焼結体であり、その結晶粒は、粒径が1~10μmで、かつ、30×20μmの面積中に結晶粒を30~55個の範囲で有してなり、その熱伝導率が33W/m・k以上であることを特徴とする。このように、本発明のアルミナ焼結体は、極めて高純度でシリカの量が少ないこと、その結晶粒の粒径が適切に制御された状態になっていることで、熱伝導率が高く、効率のよい放熱性が達成されることに加え、機械的強度に優れ、熱衝撃に強いものになる。本発明のアルミナ焼結体は、高純度でかつ緻密な焼結体であるが、アルミナ焼結体の密度は、3.8g/cm3以上であることが好ましい。より好ましくは3.93g/cm3以上、さらに好ましくは3.96g/cm3以上であり、アルミナの理論密度3.987g/cm3に近い、極めて緻密な焼結体である。
 アルミナ焼結体は、アルミナを99.5質量%以上含む、高純度の焼結体である。より純度の高いアルミナ粉末を原料とした場合には、アルミナ純度が99.9質量%以上のさらに高純度の焼結体が得られる。残部は焼結助剤に由来する、マグネシア(0.07~0.15質量%)、シリカ(0.03~0.35質量%)、Na2O(0.03~0.05質量%)、Fe23(0.01~0.02質量%)であるが、いずれも合計で0.5質量%未満であり、より好ましくは合計で0.1質量%未満である。
 本発明のアルミナ焼結体の結晶粒径は、1~10μmの範囲内、より好ましくは1~5μmの範囲内である。また結晶粒径の平均値は2~7μm、より好ましくは2~4μmである。結晶粒径が10μmより大きくなる粒成長がみられる焼結体は強度が低く、また熱伝導率が低い傾向にあり、熱放射部材用としての効果に劣る。すなわち、本発明の目的を達成し得るアルミナ焼結体の結晶状態としては、結晶粒径が小さく、さらに、下記に述べるように均一な大きさで緻密に焼結していることが求められる。なお、焼結体中の結晶粒の粒子径は、後述する測定方法によるものである。結晶粒は前記のように1~10μmと粒子径が小さいだけでなく、アルミナ焼結体表面の30×20μmの面積中に30~55個含まれていることを要し、均一な大きさの結晶粒が緻密に焼結していることが求められる(図2~8参照)。
 前記したように、例えば、ゾル-ゲル法などによって得られる、粒子径が小さく、より均一で、その形状がほぼ真球に近い球状であるアルミナ粉末を原料とした場合には、原料粉末の粒子径のばらつきが小さく最密充填されるためと考えられるが、結晶粒の粒子径が1~5μmとより小さく、平均粒子径も2~4μmとより均一で緻密なものとできる(図7,8参照)
 先に述べたように、本発明のアルミナ焼結体は極めて緻密であり、好適なものの密度は3.93g/cm3以上であり、アルミナの理論密度3.987g/cm3に近い。さらに、原料に、例えば、粒子径がより小さく、より均一で、さらには真球に近い形状を有するアルミナ粉末を用いた場合には、3.96g/cm3以上、例えば3.98g/cm3の密度を有するより緻密なアルミナ焼結体とすることができる。なお、本発明のアルミナ焼結体はアルミナの含有量が増えるに従って、密度が高くなる傾向を示す。例えば、アルミナ含有量が99.9質量%の焼結体の密度は3.98g/cm3であり、理論密度に非常に近いものになる。このことは、アルミナ含有量が既知であるアルミナ焼結体の密度を測定することにより、結晶粒の粒子径の大きさを推測することが可能であることを意味している。アルミナ焼結体中の結晶粒の大きさを密度から算出すると、1~10μmであり、結晶粒の大きさを観察した表面、または断面だけでなく、焼結体内部も同じ大きさの結晶粒からなる焼結体であることがわかる。
 本発明のアルミナ焼結体の熱伝導率は、使用するアルミナ粉末原料、添加する焼結助剤、焼成温度によって異なるが、33(W/m・k)以上、さらには36(W/m・k)以上のものにできる。前記したような、粒子径がより小さく、より均一で、さらには真球に近い形状を有するアルミナ粉末原料を用いて製造したアルミナ焼結体は、熱伝導率が41(W/m・k)以上で、さらに高い熱伝導率を有するものとできる。このような本発明のアルミナ焼結体の熱放射率は0.97以上であり、従来のアルミナ焼結体に比べて熱放射率が高く、電子機器等の発熱部位に設置した場合に顕著な放熱性が認められ、電子機器類の放熱部品として有効に機能できることを確認した。このことは、本発明のアルミナ焼結体は、平板状などの簡単な形状のものを単に発熱部位に接触させた状態に配置するという極めて簡単な構成によって、従来、電子機器類が必須としていた冷却ファンや、複雑な構造や形状の冷却用部品(ヒートシンク)などに代替し得ることを意味しており、その効果は極めて大きい。これは、本発明のアルミナ焼結体は、その高い熱伝導率によって、接触する物体からすばやく熱を吸収し、その高い熱放射率で熱を放射する結果、優れた冷却効果を発揮し、電子機器類におけるヒートシンクとして有効に機能し得るものになったものと考えられる。
 さらに、熱放射部材用とする場合、その放熱効果を上げるために放熱が要求される電子機器等の物体との接触面積を大きくすることが有効であるが、この点でも本発明の熱放射部材用セラミックスは有利である。すなわち、本発明の熱放射部材用セラミックスは、前述したように結晶粒が小さくかつ均一で緻密であるため、焼結体表面の平滑性が高く、発熱部位に接触させたときの接触面積を大きくできる。そのため、表面を研磨しなくても熱放射部材用セラミックスとして使用でき、生産性に優れる。また、表面を研磨することにより、表面を平滑にして発熱部位との密着性をさらに高くし、より高い放熱効果の実現が可能となるが、本発明のアルミナ焼結体は前述のように結晶粒が小さくかつ均一で緻密であるため、表面研磨時に破損やひび割れが起こりにくく、平滑度の高い鏡面仕上げが可能であり、この点においても、実用性が高いと言える。なお当然のことながら、熱伝導の低下につながるため、本発明の熱放射部材用セラミックスを発熱部位に接触させる場合には、間に接着層など他の層を設けずに直接接触させることが好ましい。
 上記したように、高い熱伝導率を有し、高い熱放射率を示す本発明の熱放射性部材用セラミックスを有効に機能させるためには、放熱する必要がある物体の発熱部の形状にできるだけ合致した形状とし、発熱部との密着性が高い形状とすることが好ましい。例えば、平板状あるいは角柱状、または円板状あるいは円柱状などの簡単な形状のものとすれば、成形が容易である。さらに表面研磨も容易にできるので、発熱部との接触面を平滑にすることで、発熱部との密着性をより高めることも可能である。本発明のアルミナ焼結体は、成形体を焼成することで得ることができるため、加工性に優れ、放熱を必要とする電子機器の形状や、その発熱部の形状に合致した最適な形状に容易にすることができるので、この点でも有利である。
 本発明のアルミナ焼結体の曲げ強度は、380~500(MPa)の範囲であり、機械的強度に優れる。さらに、前記したような粒子径がより小さく、より均一で、さらには真球に近い形状を有するアルミナ粉末原料を用いることで得たアルミナ焼結体は、曲げ強度が400~520(MPa)程度と、さらに高い機械的強度を示す。また、本発明のアルミナ焼結体の耐熱衝撃は300~320(℃)であり、急冷による熱衝撃にも強い。このように本発明のアルミナ焼結体は充分な機械的強度を有するとともに、耐久性に優れており、実用に十分耐えうるものである。また、絶縁抵抗は1016(Ω・cm)より大きく、電気的特性にも優れている。
 本発明のアルミナ焼結体は、先に述べたように、それ自体の熱伝導率および熱放射率が高いため、そのままの状態で電子機器類の発熱部や発熱体に接触させた場合に、熱放射部材(ヒートシンク)として有効に機能し得るものとなる。本発明者らの検討によれば、本発明のアルミナ焼結体は、例えば、後述するように、放熱性の指標とされている80℃飽和エネルギーが大きく、発熱体から与えられる多くの熱量を外へ放出し、発熱体自体を80℃の一定温度に保つことができる。本発明のアルミナ焼結体は、このように優れた放熱性を示し、しかも絶縁体であることから、その用途として、例えば、温度が80℃を超えないことが求められる太陽電池モジュールの発電セルや、LED発光モジュールのLED素子に直接接触可能な熱放射部材としても極めて有用である。
 これらの用途に適用されている従来の熱放射部材(ヒートシンク)の多くは、銅やアルミなど熱伝導率が高い金属を材料とし、ヒートシンク性能を向上させるために、蛇腹状としたり多数の凹凸を設けるなど表面積を大きくするために複雑な形状に形成されることが多く、それでも足りない場合にはファンを取り付けて強制的に空気を流すこともあるなど、構造や機構が複雑であった。これに対し、本発明のアルミナ焼結体は、焼結体自体が放熱性に優れるため、従来のような複雑な構造や機構を必要とせず、平板状あるいは円板状などの単純な形状、あるいはこれらに厚みを持たせた形状(角柱状あるいは円柱状)でも十分にその冷却効果を発揮することができる。ここで、80℃飽和エネルギーは、後述するように平板状のアルミナ焼結体の表面積や厚みに依存するため、電子機器や装置に影響を与えない範囲で、できるだけ面積を大きくして発熱部に接する面積が大きくなるようにすることや、厚みを大きくしてより多くの熱を放熱させるようにすることが有効である。また、本発明が提供する熱放射部材は、発熱部に接触させて熱を放射させるので、前記したようにアルミナ焼結体の表面を研磨して発熱部との密着性を高めて接触面積を大きくすることがより好ましい。
 本発明者らは、上記した有用な機能性材料となり得る本発明のアルミナ焼結体の利用可能性について詳細な検討を行った。本発明者らの検討によれば、本発明のアルミナ焼結体は、太陽電池モジュールの熱放射部材として有効であり、これによって発電効率を向上させることができる。例えば、本発明のアルミナ焼結体を、太陽電池モジュールの発電セルの裏面側に設置し、発電セルと接触させる構造としただけで、後述するように太陽電池モジュールの発電力を、設置しない場合(従来のガラス板を使用する場合)に比べて最大で26%高くすることができることがわかった。アルミナ焼結体の面積が大きいほど、80℃飽和エネルギーは大きいため、発電セルの基体として用いる場合には、できるだけアルミナ焼結体の面積が大きくなるように、例えば、大きな平板状にすることが好ましい。さらに表面を研磨して凹凸を減らすと、アルミナ焼結体の表面と、発電セルとの接触面積を大きくすることができるので研磨して鏡面加工することも好ましい。なお、発電セルの裏面側にアルミナ焼結体を設ける場合に接着剤を使用すると、接着剤が、発電セルからの熱をアルミナ焼結体へ移動させる際の抵抗となるので、アルミナ焼結体を発電セルに直接接触させる構造とすることが好ましい。
 また、本発明のアルミナ焼結体をLED発光モジュールに適用し、LED素子の基板とすれば、LED素子から発生する熱をアルミナ焼結体から放熱することができ、この結果、LED素子の温度上昇を防ぎ、発光効率の低下や寿命の短縮を抑制でき、さらには、懸念される発熱による発火事故の発生を未然に防止することが可能になる。本発明者らは、本発明のアルミナ焼結体における、LED発光モジュールのLED素子基板への適用可能性を、下記のようにして検討した。まず、本発明のアルミナ焼結体を図28に示す形状(外径50mm、厚さ5mm)に形成し、その表面に、PVD(物理気相成長法)やCVD(化学的気相成長法)などで、銀、ニッケル、銅などの導電性金属を薄膜形成し、あるいは、上記金属を粒子として含むインクを印刷することにより配線25を形成する。形成した配線上に、LED素子をのせ、導電性接着剤で前記配線と接続し、さらにLED素子を樹脂により封止する。放熱性の向上のため、配線を形成する前にアルミナ焼結体表面を研磨してより平滑にしたものについても検討した。また、この検討の過程で、基体表面、あるいは研磨した基体表面に白色度の高い酸化チタン粒子層を形成すると、LED素子からの光反射率を高めることができることを確認した。酸化チタンは熱伝導率が高いためアルミナ焼結体からの熱放射性を大きく妨げるものではないが、影響を最小限にするためには、できるだけ緻密な粒子層を形成することが好ましい。
 同じ表面積を有するアルミナ焼結体の80℃飽和エネルギーは、後述するように、その厚みが大きくなるほど高い。すなわち、アルミナ焼結体の厚みが大きいほうがより放熱性に優れるため、LED素子の基板に適用する場合にはアルミナ焼結体の厚みを厚くすることが有効である。ただし、厚すぎると、LED発光モジュールが大きい、重いなどの問題が生じるので、例えば、1.8~10mm程度、より好ましくは4.5~5mm程度とすることが好ましい。
 本発明のアルミナ焼結体は、先に述べたように、アルミナ結晶粒子が特定の結晶粒径のものが緻密に焼結した構造を有するため、表面が平滑であり、上記のように金属の薄膜形成や印刷を容易に行うことができる。このように配線パターン形成が容易であるため、パターンは図28に限られず、さらに複雑なパターンも形成可能である。この場合、本発明のアルミナ焼結体の表面を研磨するなどして表面平滑性を向上させれば、さらに細かく複雑な配線パターンを形成できる。先に述べたように、本発明のアルミナ焼結体は、成形体を焼成する加工性に優れた本発明の製造方法で容易に得ることができるので、その形状は所望する適宜なものとできる。例えば、図28に示すような円板状に限らず、凹部を有するものなど、用途に応じた任意の形状のアルミナ焼結体を適宜に適用すればよい。本発明のアルミナ焼結体は、緻密に焼結しているため、切削加工時に結晶粒の脱離や破壊が起こりにくく、焼結体に凹部や貫通孔を形成することも容易であるので、熱放射部材として幅広い用途への実用化が期待できる。例えば、LED素子の基板だけでなく、様々な形状の基板上に複雑なパターンで配線形成が行われるICパッケージやパワートランジスタなどの基板とすることもできる。これらICパッケージやパワートランジスタなども発熱による劣化が問題とされており、放熱性に優れたアルミナ焼結体を基板とすることで、製品の劣化を防ぎ長寿命化を図ることが可能となる。
(遠赤外線放射膜を表面に形成したアルミナ焼結体)
 本発明のアルミナ焼結体は、上述のように高い熱伝導率および熱放射率を有し、熱放射性に優れるが、本発明者らの検討によれば、さらにアルミナ焼結体表面の少なくとも一部に遠赤外線放射膜を形成し、該表面に遠赤外線放射特性を賦与すると、その熱放射性能がさらに向上することがわかった。これは、アルミナ焼結体の熱放射面の少なくとも一部に、遠赤外線放射膜を形成することで、熱源(発熱部)からの熱が該遠赤外線放射膜面において遠赤外線に変換され、その結果、より効率よく熱が外部に放射されるようになったものと考えられる。例えば、六面体形状(四角柱状)のアルミナ焼結体において、発熱部に接触する面以外の面(五面)を熱放射面とし、該表面の少なくとも一部に遠赤外線放射コーティング組成物を用いて遠赤外線放射膜を形成すれば、さらにアルミナ焼結体の放熱性を向上させることができる。この場合、発熱部に接触する面以外の五面の一部または全部に遠赤外線放射膜を形成してもよいし、前記熱源に接触する面以外の五面が、一部に遠赤外線放射膜が形成された面を含むものであってもよい。
 本発明のアルミナ焼結体の形状を、例えば六面体形状とした場合には、熱伝導および熱放射性の観点から、放熱が要求される電子機器等の発熱部に接触する面の面積が最も大きくなるような形状とすることが好ましい。また、遠赤外線放射膜を設ける場合は、例えば、高さの低い四角柱状とした場合、発熱部との接触面に対向する面の少なくとも一部に形成してもよいが、遠赤外線放射膜の膜面積が大きいほど高い熱放射性が得られるため、高い熱放射性を有するアルミナ焼結体とするためには、遠赤外線放射膜を形成する範囲をできるだけ大きくすることが好ましい。
<遠赤外線放射コーティング組成物>
 前記遠赤外線放射膜は、遠赤外線放射コーティング組成物を塗布した後、乾燥および焼き付けすることで形成されるが、本発明に好適な遠赤外線放射コーティング組成物としては、下記のものが挙げられる。すなわち、耐熱性無機接着剤(A)と、少なくとも2種の遷移元素酸化物を混合し、700~1,300℃で仮焼した微粉末状の混合仮焼成物(B)を、A:Bが97:3~20:80の質量比率で含有してなるものを用いることができる。上記の耐熱性無機接着剤(A)としては、シリカ・アルミナ系接着剤が好ましく、上記の遷移元素酸化物としては、MnO2、Fe23を主成分とし、さらに、CoO、CuOおよびCr23から選ばれる少なくとも一種の化合物を含むことが好ましい。
 上記したように、前記遠赤外線放射コーティング組成物は、A:Bが、97:3~20:80の質量比率で含有してなるものが好ましい。前記遷移元素酸化物の仮焼成物(B)が3質量%より少ないと、形成した膜が十分な遠赤外線放射特性を示すものとならない。一方、前記(B)が80質量%より多いとコーティング特性に欠け、塗膜形成が難しくなる。中でも、遠赤外線放射特性およびコーティング特性の面から、前記(B)が20~50質量%、特に30~40質量%の範囲で含有されてなるものが好ましい。
 前記仮焼成物(B)中の遷移元素酸化物の好ましい組成としては、例えば以下の配合割合が挙げられる。
 MnO2:10~80質量%
 Fe23:5~80質量%
 CoO:5~50質量%
 CuO:10~80質量%
 Cr23:2~30質量%
 上記遷移元素酸化物の種類および量を上記範囲内で変化させると、形成される遠赤外線放射膜が放射する赤外線の波長領域を変化させることができるので、適宜に設計することで、より放熱効率を高めることが可能になる。例えば、遷移元素酸化物の量が多いと、形成される遠赤外線放射膜に近赤外線の波長が認められるため、より熱放射性を高めることができる。ただし、コーティング膜を形成できるよう、上記のように耐熱性無機接着剤を少なくとも20質量%含むことが好ましい。
 また、前記仮焼成物(B)の粒径は1~50μmであることが好ましい。粒径が大きいと、塗膜を形成したとき塗膜面にムラが生じ塗膜剥がれを生じやすいので、粒径はできるだけ小さいことが望ましいが、小さすぎると作業性に劣るため、上記範囲が適当である。
<遠赤外線放射膜>
 遠赤外線放射膜は、例えば、前記した組成からなる遠赤外線放射コーティング組成物からなるコーティング膜を形成し、これを焼き付けして形成したものであればよく、特に限定されない。具体的には、例えば、遠赤外線放射コーティング組成物を、刷毛またはスプレーなどで、アルミナ焼結体表面に塗布し、塗布後50~250℃の温度で乾燥、焼き付けすることで、アルミナ焼結体の所望の位置に遠赤外線放射膜を形成することができる。このときの塗膜の厚さは、0.1~0.5mmとすることができるが、厚さが下限値より小さいと十分な遠赤外線放射効果が得られない。また、上限値より厚くても、遠赤外線放射効果の向上がみられない。前記遠赤外線放射コーティング組成物は前記乾燥および焼き付けによって収縮することがほとんどないので、所望の遠赤外線放射膜の厚さに塗布すればよい。
 上記のようにして形成してなる遠赤外線放射膜は、その基体の表面温度が室温(20℃)程度であっても遠赤外線を放射するが、高温に加熱されるほど遠赤外線放射効果が高い。例えば、100℃より高い高温において、遠赤外線をより多く放射し、おおよそ500~650℃の範囲に加熱されると、遠赤外線の放射効果が十分に得られる。このように、上記した遠赤外線放射膜は、一般にその基体の表面温度が高いほど熱を遠赤外線に変換する効果が高い。本発明の熱放射部材用セラミックスは、発熱部位における冷却用途に利用するものであり、その使用状態において、アルミナ焼結体表面は室温(20℃)より高く、例えば50~200℃になると考えられるが、このようなアルミナ焼結体表面に、上記遠赤外線放射膜を形成した場合にも十分な放熱効果を得ることができる。
 本発明のアルミナ焼結体は、前述のように熱伝導率および熱放射率が高く、冷却効果に優れた熱放射部材として機能するものであるが、上記したように、その表面に、上記したような遠赤外線放射膜を形成すると、後述の実験に示されるように、遠赤外線放射膜が熱を遠赤外線として効率よく放射するため、さらに放熱効果が高くなり、より好適なものとなる。例えば、後述の実験に示されるように、遠赤外線放射膜を表面に形成したアルミナ焼結体に加熱したヒータを接触させると、遠赤外線放射膜を形成しないアルミナ焼結体を接触した場合に比べ、ヒータ表面の温度を大きく下げることができる。また、後述する放熱性の指標となる熱抵抗値についても、遠赤外線放射膜を表面に形成したアルミナ焼結体は、遠赤外線放射膜を形成しないアルミナ焼結体よりも、その値が小さく、放熱性に優れ、アルミナ焼結体に接触させた物体の低温化に有利であることが検証される。この点については、後述する。
 次に、実施例及び比較例を挙げて本発明をより詳細に説明する。
(熱放射部材用セラミックス)
〔実施例1〕
 原料粉末としてバイヤー法によって得られたアルミナ粉末を用いた。用いたアルミナ粉末には、平均粒子径0.7μmのものを使用した。この原料は、アルミナ99.5質量%、マグネシア0.16質量%、およびシリカ0.34質量%を含む。このアルミナ粉末を水と共にボールミル(ボール材料:アルミナ質)に入れ、10時間粉砕混合した。得られた粉末の平均粒径をレーザー回折/散乱式粒度分布測定装置により測定したところ3μmであった。この粉末に有機質結合剤(アクリル樹脂およびポリビニルアルコール)を加えスラリー化し、噴霧乾燥して50~100μmの顆粒を作成した。得られた顆粒を金型を用いて、成形圧力2,000kg/cm2で乾式成形法により成形し、縦、横、厚さがそれぞれ20mm、30mm、5mmの大きさの平板状の成形体を得た。この成形体の密度は2.40g/cm3であった。
 得られた成形体を、脱脂炉に入れ、室温から500℃まで100時間かけて昇温して脱脂した。冷却後成形体を取り出し、ガス炉に入れ150℃/時の昇温速度で1,580℃まで昇温し、大気雰囲気中で2時間保持した。その後、炉内に室温の空気を流入させて、258℃/時で冷却した。図1に焼成プロファイルを示す。上記ガス炉は空気を流通させたバッチ式の炉であり、プロパンガスによる燃焼を熱源としている。温度の制御は、プロパンガスの流量およびプロパンガスに混ぜる空気の流量を調節することによって行った。得られた熱放射部材用セラミックスは、緻密に焼結しており、焼成前の成形体に比べて若干小さかった。
〔実施例2〕
 焼成温度を1,583℃とした以外は、実施例1と同様にして、熱放射部材用セラミックスを得た。
〔実施例3〕
 焼成温度を1,555℃とした以外は、実施例1と同様にして、熱放射部材用セラミックスを得た。
〔実施例4〕
 焼成温度を1,592℃とした以外は、実施例1と同様にして、熱放射部材用セラミックスを得た。
〔実施例5〕
 焼成温度を1,570℃とした以外は、実施例1と同様にして、熱放射部材用セラミックスを得た。
〔実施例6〕
 原料粉末として、ゾル-ゲル法によって得られたアルミナ粉末を用いた以外は、実施例1と同様にして、熱放射部材用セラミックスを得た。なお、用いた原料アルミナ粉末は不純物をほとんど含まない、アルミナ含有量99.95%と高純度であり、平均粒子径0.5μmのものを用いた。また、粒子形状は真球状に近かった。
〔実施例7〕
 原料粉末として、ゾル-ゲル法によって得られた平均粒子径0.3μmのアルミナ粉末を用い、かつ焼成温度を1,550℃とした以外は、実施例1と同様にして、熱放射部材用セラミックスを得た。アルミナ粉末原料のアルミナ含有量は実施例6と同様、99.95%あった。また、粒子の形状は真球状に近かった。
〔実施例8〕
 原料粉末として、実施例7で用いたと同様のアルミナ粉末を用い、かつ焼成温度を1,500℃とした以外は、実施例1と同様にして、熱放射部材用セラミックスを得た。この場合は、2時間では焼成が十分でなく、焼成に時間が長くかかった。
〔実施例9〕
 原料粉末として、実施例7で用いたと同様のアルミナ粉末を用い、かつ焼成温度を1,600℃とした以外は、実施例1と同様にして、熱放射部材用セラミックスを得た。この場合は、2時間の焼成では一部に結晶成長がみられ、焼成時間を短くする必要があった。
〔比較例1〕
 焼成温度を1,611℃とした以外は、実施例1と同様にして、熱放射部材用セラミックスを得た。
〔比較例2〕
 焼成温度を1,630℃とした以外は、実施例1と同様にして、熱放射部材用セラミックスを得た。
〔比較例3〕
 焼成温度を1,650℃とした以外は、実施例1と同様にして、熱放射部材用セラミックスを得た。
〔比較例4〕
 焼成温度を1,470℃とした以外は、実施例7と同様にして、熱放射部材用セラミックスを作製した。この場合は、焼成を長時間行っても焼成が十分にされないことがわかった。
<評価A(熱放射部材用セラミックスの特性)>
 上記で得られた実施例1~7及び比較例1~3のそれぞれの熱放射部材用セラミックスについて、下記に示す方法に従って、密度、結晶粒径、結晶数、耐熱衝撃温度、曲げ強さ、熱伝導率および絶縁抵抗を測定した。表1にその結果を示した。また、実施例1~4,7,8および比較例1~3の熱放射部材用セラミックスについて表面の結晶の様子を走査型電子顕微鏡(SEM)で観察した結果を、図2~図11に示した。さらに、実施例1の熱放射部材用セラミックスについて、下記に示す方法に従い、熱放射率および全放射率を測定し、得られた測定スペクトルを図13に示した。なお、熱放射率は、分光放射率の最大値を指すが、本発明者らの検討によれば、アルミナ焼結体において、この値を比較した場合、この値が大きい方が放熱性に優れるので、放熱性を判断する一つの指標となり得る。
〔密度〕
 アルキメデス法による。具体的には、試料の大きさを直径30mm、厚さ5mmの円盤状とし、100℃2時間乾燥後の乾燥重量(W1)と水中重量(W2)をそれぞれ測定して、密度=(W1)/(W1-W2)により求めた。
〔結晶粒径および結晶数〕
 走査型電子顕微鏡観察(SEM)による。具体的には、直径10mm、厚さ5mmの大きさの試料の表面を、1,550℃でサーマルエッチングを行い、さらに金を蒸着した。走査型電子顕微鏡(日本電子株式会社製)により表面の結晶粒の様子を観察した。得られた3,000倍の顕微鏡写真から、30×20μmの面積内に存在する結晶の数(粒子全てが前記面積内に含まれるもの)を計測した。さらに、それぞれの結晶粒について、結晶の横方向および縦方向の最大寸法をそれぞれ測定し、これらの寸法の平均を結晶粒径とした。結晶の数および結晶粒径は30×20μmの面積を有するそれぞれ異なる3箇所について測定した。
〔耐熱衝撃〕
 水中投下法による。具体的には、試料(直径30mm、厚さ5mm)を、120、170、220、320、370℃の各温度に設定した恒温槽に30分間保持した後、20℃の水中へ投下する。投下後、探傷液を用いて、目視または顕微鏡観察にて亀裂や破壊の有無を測定した。亀裂または破壊が観察されなかった最も高い温度と20℃との温度差を、耐熱衝撃温度とした。
〔曲げ強さ〕
 三点曲げ試験による。具体的には、縦4mm、横40mm、厚さ3mmの試料を、曲げ強さ試験機により、三点曲げで測定した。
〔熱伝導率〕
 レーザーフラッシュ法による熱伝導率測定装置を用いて測定した。測定用試料には、直径10mm、厚さ3mmの大きさの鏡面仕上げしたものを用いた。そして試料の密度を上記アルキメデス法により測定後、測定装置を用いて比熱、熱拡散率を測定し、次式により熱伝導率(W/m・k)を算出した。
  熱伝導率=(密度)×(比熱)×(熱拡散率)
〔絶縁抵抗〕
 絶縁抵抗計を用いて測定した。測定用試料として、それぞれの条件で作製した縦、横、高さがそれぞれ10mmの立方体形状の試料を用い、該試料の対向する2面に銀電極を設け、絶縁抵抗計で測定した。
〔熱放射率〕
 熱放射率は、加熱板法を用いて、発熱体表面の温度上昇を測定することにより行った(測定機;温度計HFT-40-安立計器(株))。即ち、マイカヒータを発熱体として用い、印加電圧を調整してその表面(上面)温度を一定に維持した後、当該発熱体表面に熱放射部材用セラミックスを密着させ、熱放射部材用セラミックスが密着していない部分の発熱体表面温度を測定することにより行った。
〔全放射率〕
 JIS R1801(遠赤外ヒータに放射部材として用いられるセラミックスのFTIRによる分光放射率測定方法)に従い、全放射率を測定した。フーリエ変換赤外分光光度計(FT-IR:Perkin Elmer製 System2000型)を用い、試料の形状を縦50mm、横50mm、厚さ5mmとし、測定波長領域370~7,800cm-1(有効範囲:400~6,000cm-1)について室温にて反射スペクトルを測定した。得られた分光放射率スペクトルから、各波長での分光放射率を測定し、全波長領域で平均して全放射率を求めた。
Figure JPOXMLDOC01-appb-I000001
 表1より、焼成温度が1,555~1,592℃である実施例1~5は、いずれも、結晶粒径の大半が1~5μmで、30×20μm中に結晶を30~55個有する緻密なアルミナ焼結体であった。また、図2~6に示されるように結晶の粒成長が見られず、前記の大きさの結晶粒が均一に焼結していた。また、結晶粒の界面にシリカが析出している様子は観察されなかった。
 またゾル-ゲル法によって得られたアルミナ粉末を用いた実施例6~9も緻密な焼結体であったが、結晶粒径が1~3μmとさらに小さく、また30×20μm中の結晶数もバイヤー法によって得られたアルミナ粉末を原料とした実施例1~5より多く、より緻密で高い熱伝導率および曲げ強度を有する焼結体が得られた。これは、原料粉末の純度が高いこと、および粒径がより均一であり、真球状に近いことによると考えられる。なお、バイヤー法によって得られたアルミナ粉末を原料としている実施例5も結晶粒径が1~3μmであるが、これは実施例6より焼成温度が低く結晶の粒成長が抑えられたためと考えられる。
 実施例1の結晶粒径は、表1において2~4μmと示しているが、これは上記方法によって測定された粒子径の最小値が2μm、最大値が4μmであり、30×20μmの観察面積内に観察される結晶粒全てが2~4μmの範囲内にあることを示している。他の実施例2~7および比較例1~3についても同様である。実施例1において観察される結晶粒の粒径の平均値は3μmであった。同様に、他の実施例の結晶粒径の平均値は、実施例2および3は3μm、実施例4は4μm、実施例5は2μm、実施例6は2μm、実施例7は2μmであり、各実施例の結晶粒の平均値はそれぞれの結晶粒の範囲の中央値にほぼ等しかった。表1には実施例8および9の熱放射部材用セラミックスについて示していないが、焼成体密度、結晶粒径などの特性は実施例7のものとほぼ同じであった。
 実施例1~9の熱放射部材用セラミックスは、いずれも優れた耐熱衝撃性、高い熱伝導率を有し、熱特性に優れた焼結体であった。また、曲げ強さの値も高く、機械的特性に優れた緻密な焼結体であった。表1には示していないが、実施例1ないし9の熱放射部材用セラミックスの熱放射率は、いずれも0.97であり、高い熱放射率を有していた。また、比較例1~3について、表1に示す熱伝導率の値から熱放射率を算出すると、比較例1は0.91、比較例2は0.88、比較例3は0.85であり、実施例のものよりも低い値であった。
 実施例1の熱放射部材用セラミックスについてFT-IRを用いて全放射率を測定したところ70.6%であった。全放射率の値は、分光放射率を測定した波長領域370~7,800cm-1(有効範囲400~6,000cm-1)における分光放射率を平均し、100℃における値に換算して求めた。図13に、FT-IRを用いて測定された分光放射率スペクトルを示したが、図13に示されるように、実施例1の熱放射部材用セラミックスは1,100cm-1付近において最大放射率を示し、その分光放射率は0.97であった。
 本発明では、高純度のアルミナ焼結体を対象としているため、その結晶粒に違いがあったとしても分光放射率スペクトルに大きな違いは生じない。上記で検討した比較例においても、実施例と同じ原料を用い、狭い範囲で焼成温度を変えた例であるので、最大放射率や全放射率、特に分光放射率に大きな違いは認められなかった。本発明が目的とする放熱性に優れるアルミナ焼結体であることは、その熱伝導率と、結晶粒の大きさとを指標とすれば、適用試験をすることなく、十分に放熱性を予想できることを確認した。なお、勿論、原料中の焼結助剤の量を多くした場合等では、分光放射率スペクトルに明らかな違いが生じるので、熱放射部材用セラミックス製品の品質管理に、分光放射率スペクトルや、該スペクトルから求めた分光放射率を用いることは有用であると考えられる。
 比較例1~3の熱放射部材用セラミックスは、10μmより小さい粒径の結晶粒もあったが、10μmより大きい結晶がみられ結晶成長が進んでおり、大きい結晶が含まれる分30μm×20μm中に含まれる結晶の数が少なかった。また結晶の粒成長による粗大化がみられた(図9~11)。結晶粒径の平均値は8~15μmであった。また、結晶粒の界面にガラス質のシリカが析出している様子が観察された。
(遠赤外線放射膜の組成と特性)
〔参考例1〕
 下記の遷移元素酸化物を混合し、800℃で仮焼成した。
  MnO2   :50質量%
  Fe23  :35質量%
  CoO   :5質量%
  CuO   :10質量%
 シリカ・アルミナ系接着剤70質量%に対し、上記で得られた遷移元素酸化物の仮焼成微粉末30質量%を添加し、ボールミルにてよく混合し、遠赤外線放射コーティング組成物を得た。このコーティング組成物を、基体として縦横それぞれ50mm、厚さ1mmのステンレス板(SUS-304)の片側表面に、0.25mmの厚さで塗布し、120℃で30分間焼き付けして、遠赤外線放射膜コーティング板を得た。
 上記で得た板の遠赤外線放射強度を、先のアルミナ焼結体の全放射率と同様、JIS R1801(遠赤外ヒータに放射部材として用いられるセラミックスのFTIRによる分光放射率測定方法)に従い、フーリエ変換赤外分光光度計(FT-IR:Perkin Elmer製 System2000型)を用いて測定温度141.6℃にて測定した。図14に、得られた分光放射率スペクトルを示した。図14より、この遠赤外線放射膜コーティング板は、波長帯10~20μmにおいて90~95%の遠赤外線放射強度を示すことがわかる。
 比較として、コーティング組成物を塗布していないステンレス板そのものの遠赤外線放射強度を測定した。上記で遠赤外線放射膜を形成したものと同じ、縦横それぞれ50mm、厚さ1mmのステンレス板(SUS-304)について、上記と同様に遠赤外線放射強度を測定温度144.9℃にて測定した分光放射率スペクトルを、図15に示した。図15に示されるように、ステンレス板は波長帯4~20μmにおける放射強度が15~20%である。したがって、上記で遠赤外線放射膜を形成した基体であるステンレス板からは遠赤外線の放射はほとんどなく、上記図14において遠赤外線放射膜コーティング板が示す、波長帯10~20μmにおける遠赤外線放射強度はそのほとんどが赤外線放射膜によるものであることがわかる。
(遠赤外線放射膜を有するアルミナ焼結体)
〔実施例10〕
 実施例1と同様の方法で、縦横がそれぞれ50mm、厚さが5mmの平板状のアルミナ焼結体を作成した。得られたアルミナ焼結体の一方の表面(50mm×50mm)に、口径2mmのスプレーガンを用いて参考例1の遠赤外線放射コーティング組成物を塗布し、250℃の温度で焼き付けて遠赤外線放射膜を形成し、これを、本実施例の遠赤外線放射膜を有するアルミナ焼結体とした。
<評価B(熱放射部材用セラミックスの放熱特性)>
(B-I)ヒータ表面温度、放熱温度および熱抵抗値
 上記で得た実施例10にかかる遠赤外線放射膜を有するアルミナ焼結体と、実施例10で作成した遠赤外線放射膜を形成する前の、大きさのみが実施例1と異なるアルミナ焼結体(以下、実施例1のアルミナ焼結体と呼ぶ)について、下記に示す方法に従って、加熱時のヒータ表面温度、放熱温度、および熱抵抗値を測定し、それぞれの熱放射特性(放熱性)を評価した。また、縦横が50mm、厚さが5mmと、大きさのみが実施例7のアルミナ焼結体と異なるアルミナ焼結体(以下、実施例7のアルミナ焼結体と呼ぶ)についても同様の評価を行った。なお、試験に用いた各アルミナ焼結体は、いずれも焼成したままであり、研磨処理は行っていない。
 また、本発明にかかる熱放射部材用セラミックスの放熱効果、特に、アルミナ焼結体の表面に遠赤外線放射膜を形成することで向上する放熱効果を検証するため、比較例として、ヒートシンクの材料として用いられている金属銅板と、さらに基体を該金属銅板にして、該銅板上に遠赤外線放射膜を形成したものを用意して、同様の測定を行い、放熱効果の違いを比較した。具体的には、縦、横が50mm、厚さが5mmの平板状の金属銅板(比較例5)と、該銅板の平板状の上表面(50mm×50mm)に、実施例10と同様にして遠赤外線放射膜を形成した金属銅板(比較例6)を用いた。具体的な、それぞれの測定方法及び算出方法は、下記に示す通りである。結果は、表2~4にまとめて示した。
〔加熱時のヒータ表面温度〕
 ヒータ(熱源)として、縦、横が50mm、厚さが4mmの平板状で、表面がSUS製であって内部にマイカヒータが内蔵されているものを用いた。図17に示すように、実施例10の遠赤外線放射膜2を有するアルミナ焼結体1を、アルミナ焼結体の膜2が設けられていない側の50mm×50mmの面を下にしてヒータ10の上表面にのせて両者を密着させた。そして、ヒータの下表面に温度センサ5(K種熱電対、安立計器株式会社製 モデルHFT-40)を取り付けて、ヒータ10に通電し、通電30分経過後のヒータ表面温度を測定した。表2中に、投入電力をそれぞれ1、3、5、7Wとしたときのヒータ表面温度をそれぞれ示した。温度測定は、図16に示したように、測定用のガラス製の箱(縦260mm、横220mm、高さ360mm)内において、支持具を用いてヒータの下面を箱の底面から50mm離した高さにセットし、同じガラス製の蓋で密閉して行った。なお、ヒータ通電後1分おきに温度測定を行った。投入電力によって多少の違いはあったが、いずれの場合も約20分経過後は温度変化がみられなくなり恒温になったため、30分後の温度を測定温度とした。
 図18に示すように、遠赤外線放射膜を設けていない実施例1および実施例7のアルミナ焼結体1についても上記と同様にして、通電30分経過後のヒータ表面温度の変化を測定した。測定結果を表2中に示した。さらに、比較例5の金属銅板、および比較例6の一方の表面に遠赤外線放射膜を形成した金属銅板についても、上記と同様にして、通電30分経過後のヒータ表面温度の変化を測定した。結果を表2中に示した。また、温度低下率を算出するため、何も載せないヒータ10単独の場合について、上記と同様にして通電30分経過後のヒータ表面温度を測定した。測定結果を表2に「ヒータのみ」として示した。
Figure JPOXMLDOC01-appb-I000002
〔放熱温度〕
 実施例10の遠赤外線放射膜を有するアルミナ焼結体、実施例1および実施例7のアルミナ焼結体、比較例5の金属銅板および比較例6の遠赤外線放射膜を有する金属銅板について、それぞれの投入電力におけるヒータ表面温度と、ヒータを単独で加熱した場合のヒータ表面温度との差を放熱温度として算出し、結果をそれぞれ表3に示した。また、ヒータ単独の表面温度と比較して生じた、各試験体を載せたことによるヒータ表面温度の低下率(%)を算出し、それぞれ表3中の括弧内に示した。その結果、従来のヒートシンクの材料である金属銅板と比較し、本発明の実施例のアルミナ焼結体はいずれも、その温度低下率において明らかに有意な差がみられ、ヒートシンクの材料として有用であることが確認できた。さらに、アルミナ焼結体とする場合に用いるアルミナ粉末原料の粒径をより細かく、より均一にし、より真球状にすることや、一方の面に遠赤外線放射膜を形成することによって、温度低下率をさらに高めることができることが確認された。特に、遠赤外線放射膜を形成することによる効果は大きく、原料に、より細かくて真球状に近く、均一な粒径のアルミナ粉末を用いることはコスト面での課題があることから、遠赤外線放射膜を形成する方法は実用化の際に有効である。
Figure JPOXMLDOC01-appb-I000003
〔熱抵抗値〕
 さらに、上記の放熱温度の測定で得た値を用い、各焼結体について下記の方法で熱抵抗値を算出して、それぞれを評価した。具体的には、表2に示した投入電力を1Wと7Wとした場合における各ヒータ表面温度の値を使用して、下記の方法によって熱抵抗値を算出した。すなわち、表2に示した投入電力1Wの場合のヒータ表面温度と7Wの場合のヒータ表面温度との差を算出し、次に、この値を投入電力の差(6W)で除した値を算出し、これを熱抵抗値(℃/W)とした。このようにして算出した熱抵抗値の値を表4に示した。
Figure JPOXMLDOC01-appb-I000004
 表4の結果は、特に、アルミナ焼結体の表面に遠赤外線放射膜を形成する方法の適用は、放熱効果をさらに高めることを可能にし得ることを示している。また、表4に示した熱抵抗値の算出結果では、金属銅板について行った比較例の場合は、表面に遠赤外線放射膜を形成したことによる有意な差がみられなかったことから、この効果は、特に本発明のアルミナ焼結体の場合に大きいことがわかった。また、実施例のアルミナ焼結体は、従来のヒートシンク材料の金属銅板に比べて熱放射性(放熱性)に優れ、熱放射性部材として有用な材料であること、さらに、アルミナ焼結体の表面に遠赤外線放射膜を形成することによって、熱放射性(放熱性)をさらに向上でき、熱放射性部材としてさらに高い効果が期待できることが確認できた。
 なお一般に、熱抵抗値は、ヒータと測定物を接触させた状態において、ヒータに与えられた電力W(W)に対する、ヒータ表面温度(T1)と測定物の表面温度(T2)の差として(1)式のように表されるが、本試験では上記の方法で算出した値とした。
 熱抵抗(℃/W)=(T2-T1)/W     (1)
(B-II)熱放射性の厚みによる違い
 実施例1と同じ原料および焼成条件で、厚さを変えてそれぞれ製造したアルミナ焼結体(実施例1のアルミナ焼結体)を用い、アルミナ焼結体の厚みによる熱放射性の違いを検討した。具体的には、ヒータに接触させる面積が同じで厚みの異なるアルミナ焼結体について、図19に示す装置を用い、ヒータで加熱した時のヒータ表面およびアルミナ焼結体表面の温度を測定することにより、熱放射性の違いを評価した。図19に示す装置は図16に示す(B-I)における前記熱放射特性の評価に用いた装置と基本構造は同じであるが、本試験ではアルミナ焼結体およびヒータを鉛直方向に立て、アルミナ焼結体のヒータに接触しない側の表面温度も同時に測定した。測定は、厚さ3mmの透明なアクリル樹脂板製の箱(縦440mm、横170mm、高さ170mm)内で行った。
 アルミナ焼結体1として、縦および横がそれぞれ23mm(表面の面積530mm2)で、それぞれヒータに接触する側の表面が同じ面積を有し、その厚さがそれぞれ、4.5mm、5.5mm、6.5mm、7.5mm、8.5mmと異なる5種類を用意した。縦23mm、横23mmの面のほぼ中央に、縦20mm、横10mm、厚さが2mmの抵抗加熱ヒータ10を密着させ(接触面積200mm2)、ヒータ表面およびアルミナ焼結体表面に温度センサ5を取り付けた。アルミナ焼結体1を木製台13に鉛直方向に立て、ヒータに通電し、通電後それぞれの時間経過後のヒータ表面およびアルミナ焼結体表面の温度をそれぞれ測定した。所定時間経過後のそれぞれの温度を表5および図20に示した。ヒータ単独の場合についても通電後所定時間経過後の表面温度を測定し、表5および図20中に合わせて示した。
 図20に、厚みの異なるアルミナ焼結体を密着させた場合におけるヒータ表面温度の変化をそれぞれ示した。この結果、ヒータ単独の場合その表面温度が95℃であるのに対して、該ヒータにアルミナ焼結体を接触させた場合は、いずれの場合も、ヒータの表面温度は、いずれも70℃程度で安定に推移することがわかった。表5よりヒータと反対側のアルミナ焼結体の表面温度も同様である。このことは、本発明の実施例1のアルミナ焼結体を発熱部に設置することで、ヒータによって付与され続ける熱エネルギーが、連続的にアルミナ焼結体から放出されることを示している。また、アルミナ焼結体の厚みを厚くした方が放熱の効果が高くなるものの、4.5mmの厚さのものでもヒータ表面温度を73℃以下と、ヒータの温度より20℃以上も低い温度に維持することができた。また、6.5mm以上にすればヒータ表面温度を70℃以下に維持させることもできるが、それ以上厚くしてもヒータ表面温度はほとんど変化しなかった。いずれの厚さのアルミナ焼結体を用いた場合もヒータ通電後約60分でヒータ表面温度が一定となった。この一定となった温度を平衡温度として、熱放射効果(ヒータ単独の場合のヒータ表面温度と前記平衡温度との差)とともに、アルミナ焼結体のそれぞれの厚さについて表6に示した。表6に示したように、前記平衡温度は厚さが厚くてもあまり変化しなかった。このことは、アルミナ焼結体の熱放射性は、アルミナ焼結体のヒータと接触する側の面の面積に占めるヒータ表面に接触している面積が同じ場合は、その厚みを増大させても熱放射性を向上させる効果が少ないことを意味している。上記した試験条件であれば、熱放射部材(放熱材)として十分な機能を示すアルミナ焼結体は厚さが4~6mm程度であるとできる。
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
 次に、実施例1のアルミナ焼結体について、体積を一定とし、厚さがそれぞれに異なる平板状のアルミナ焼結体、すなわち、ヒータ側の表面積が異なるアルミナ焼結体を用いて熱放射性を評価した。この場合は、図21に示す装置を用い、ヒータで加熱した時のヒータ表面およびアルミナ焼結体表面の温度を測定することにより、熱放射性の違いを評価した。図21に示す装置は図19に示す試験装置と基本構造は同じであるが、本試験ではアルミナ焼結体およびヒータを水平方向に支持して測定した。測定は、図19と同じアクリル樹脂板製の箱(縦440mm、横170mm、高さ170mm)内で行った。
 評価対象のアルミナ焼結体1として、縦31.0mm、横18.0mm、厚さ5.0mmのもの(A)、縦19.4mm、横18.0mm、厚さ8.0mmのもの(B)、縦14.1mm、横18.0mm、厚さ11.0mmのもの(C)、の3種類を用意した。これらの体積はA:2,790mm3、B:2,794mm3、C:2,792mm3でほぼ一定である。A~Cのアルミナ焼結体のほぼ中央に、縦20mm、横10mm、厚さが2mmの抵抗加熱ヒータ10を密着させ(接触面積200mm2)、ヒータ表面およびアルミナ焼結体表面に温度センサ5を取り付けた。アルミナ焼結体1を木製台13にヒータ10が下側になるように支持して、ヒータ10に通電し、通電後それぞれの時間経過後のヒータ10表面およびアルミナ焼結体1表面の温度をそれぞれ測定した。所定時間経過後のそれぞれの温度を表7に示した。ヒータ単独の場合についても通電後、所定時間経過後の表面温度を測定し、表7中に合わせて示した。また、ヒータ単独およびA~Cのアルミナ焼結体の場合の、ヒータ表面温度の変化を図22に示した。
 表7および図22に示したように、いずれのアルミナ焼結体を用いた場合も、ヒータ表面温度は80℃以下に維持され、これらの形状のアルミナ焼結体も高い熱放射性を示すことが確認された。また、表7および表8の結果から、アルミナ焼結体の熱放射性は、アルミナ焼結体のヒータと接触する側の面の面積に占めるヒータ表面に接触している面積が小さい方が、より高い熱放射性を示す傾向があることがわかった。このことは、同じ体積であれば、よりヒータ表面に接触する側の面積が広くなるような形状とすることが熱放射性の向上に有効であることを示している。
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
(B-III)80℃飽和エネルギー
 実施例1のアルミナ焼結体(実施例1と同じ原料および焼成条件で製造したアルミナ焼結体)について、下記に示す方法に従って、「80℃飽和エネルギー」を測定することにより、本発明の熱放射部材用セラミックスの熱放射性(放熱性)を評価した。ここで「80℃飽和エネルギー」とは、アルミナ焼結体と接触させた発熱体の温度を80℃に保つために与えるエネルギー量(投入電力(W))のことである。すなわち、エネルギー量を増やしていった場合に、アルミナ焼結体からの放熱によって同量のエネルギーが放出されることで、発熱体およびアルミナ焼結体の温度が80℃を超えないで維持される最大のエネルギー量を指し、この値が大きいほど放熱性に優れる。具体的には図23に示す装置を用いて測定した。
 図23に示す試験装置は、図16に示す(B-I)、図19および図21に示す(B-II)における熱放射特性の評価に用いた試験装置などと基本構造は同じである。ただし、本試験ではアルミナ焼結体などの被測定物の四隅に竹製ニードル14(外径3mm、長さ50mm、熱伝導率0.15W/m・k)をそれぞれ1本ずつ立て、対象とするアルミナ焼結体への荷重が40kgf/m2となるように重り15を1つのせてアルミナ焼結体1を抵抗加熱ヒータ10に強く密着させ、ヒータ10下側の四隅を上記と同じニードル14で支持した状態で測定を行った。上記重り15には、アルミナを90質量%含有するセラミックス製の直方体(縦25mm、横45mm、厚さ130mm)を用いた。測定は、図16の試験装置と同様、ガラス製の箱11内に密閉した状態で、箱11内に設置した温度計16および風速計17(Model AM-B11/11-2111)によって、温度が20~25℃の範囲、風速が0.05m/sec以下を測定開始条件とし、さらに測定中も温度および風速を記録しながら行った。なお、測定中は箱内の風速はほぼ0m/secの無風状態であった。
 上記試験装置を用い、縦20mm、横40mm、厚さが2mmの大きさの抵抗加熱ヒータ10の上面(20mm×40mm)上に、ヒータ10と同じ大きさの実施例1のアルミナ焼結体1を重ね、ヒータの下表面に温度センサ5(K種熱電対、安立計器株式会社製 モデルHFT-40)を取り付けて測定を行った。まず、ヒータ10に投入電力3Wで通電し、ヒータ通電後のヒータ表面温度の変化を図24に示した。図24中の破線は、アルミナ焼結体1をヒータ表面に重ねて測定した場合における温度変化を示し、点線は、アルミナ焼結体1の代わりにアルミナ焼結体1と同じ大きさの銅板(熱放射率は0.1より小さい)を重ねて測定した場合における温度変化を示す。実線は、ヒータ単独の場合に測定されたヒータ表面温度の変化である。
 図24に示したように、投入電力3Wで通電によりヒータの表面温度は100℃近くに達するが、銅板を重ねるとヒータ表面温度は約10℃下がる。これに対し、アルミナ焼結体をヒータ表面に重ねた場合には、ヒータ表面温度はそれよりもさらに20℃以上下がって、約68℃で平衡に達した。また、アルミナ焼結体をヒータ表面に重ねた場合には平衡に達する時間も約13分と短いことがわかった。このことから、本発明のアルミナ焼結体は、銅板より放熱性に優れ、しかも、接触しているヒータの表面温度の上昇に速やかに追随して放熱が行われ、ヒータ表面温度を70℃に迅速に下げることができることが確認された。
 次に、アルミナ焼結体をヒータ表面に重ねたままの状態でヒータ投入電力をさらに上げて付与するエネルギー量を増やしていき、ヒータ表面温度が80℃に保たれるように電力を調整し、80℃で一定に達したときの投入電力(4.5W)を80℃飽和エネルギーとした。銅板をヒータ表面に重ねた場合について同様に試験したところ、この場合は、投入電力を調整することなく80℃に達してしまったので、この投入電力(3.0W)を80℃飽和エネルギーとした。
 実施例1と同じ原料および焼成条件で製造した、ヒータに接触させる面積が異なる形状のアルミナ焼結体(実施例1のアルミナ焼結体)を用い、これを、それぞれのアルミナ焼結体の接触面と同じ大きさをもつヒータ10上に重ね、上記と同様にして80℃飽和エネルギーを測定した。銅板についても上記と同様にして80℃飽和エネルギーを測定した。測定した80℃飽和エネルギーを、アルミナ焼結体および銅板の面積(縦×横)を横軸として図25に示した。図25より、◆で示したアルミナ焼結体、▲で示した銅板のいずれの場合も、80℃飽和エネルギーは、ヒータに接触する面積に比例して大きくなることがわかる。両者の比較において、アルミナ焼結体の80℃飽和エネルギーは、例えば面積が約10,000mm2の場合では、銅板の約9倍と大きく、放熱効果に極めて優れていることがわかった。なお、アルミナ焼結体と銅板について、外挿線が縦軸(横軸=0)と交わる値はニードルを介して移動したエネルギー量である。
 次に、実施例1と同じ原料および焼成条件で、下記に示すような形状の異なるアルミナ焼結体(実施例1のアルミナ焼結体)をそれぞれ製造し、これらのアルミナ焼結体について、図23に示す試験装置を用いる上記した方法で、80℃飽和エネルギーをそれぞれ測定した。具体的には、縦70mm、横90mmの大きさで、厚さをそれぞれ表9に示す厚さとしたアルミナ焼結体と、縦50mm、横50mmの大きさで、表9に示す厚さにしたアルミナ焼結体をそれぞれ作製した。表9に、これらのアルミナ焼結体についての80℃飽和エネルギーの測定値を示した。表9の結果から、ヒータに接触させる面積が同じであるアルミナ焼結体では、厚みが大きくなるほど80℃飽和エネルギーが大きいことがわかる。また、同じ厚さのアルミナ焼結体同士で比較すると、80℃飽和エネルギーは、ヒータに接触させる面積と相関があり、上記試験の場合は厚みにかかわらず、面積が大きい方が2倍弱の80℃飽和エネルギーを示した。
Figure JPOXMLDOC01-appb-I000011
 上記(B-III)の試験では、全て上記実施例1と同一の製造条件で得られたアルミナ焼結体(実施例1のアルミナ焼結体)で形状がそれぞれ異なるものを用いて試験を行った。また、試験に用いた各アルミナ焼結体は表面を研磨することなく用い、ヒータとの間には何らの接着剤を配することなく密着させてそれぞれの試験を行った。さらに、先に述べた(B-I)の結果から、表面に遠赤外線放射膜を有するアルミナ焼結体も、アルミナ焼結体と同様あるいはそれ以上の熱放射特性を発揮することから、アルミナ焼結体表面に遠赤外線放射膜を形成しても、同様の放熱効果、あるいはさらに優れた放熱効果を有すると考えられる。
<評価C(熱放射部材用セラミックスの応用例-太陽電池モジュールへの応用)>
 上記(B-III)で示されるように、本発明のアルミナ焼結体は、80℃飽和エネルギーが大きいことから、太陽電池モジュールへの応用を検討した。
 図26に示すように、発電セル18の裏面側(太陽光の受光側と反対面)に実施例1の製造条件で得たアルミナ焼結体1を配置したときの発電力を測定し、結果を図27に示した。発電セルには、ポリクリスタルシリコンからなり、(Isc)0.72A、(Voc)0.6V、の起電力を発生させることが可能なセルを用いて、下記のようにして試験を行った。アルミナ焼結体1の上に配置した発電セル18が水平面に対し30°の角度を有するように傾け、図23に示した支持体と同じニードル14でアルミナ焼結体の四隅を支持した。図23に示す装置と同じガラス製の箱11内にセットし、屋外に置いて太陽光が十分に当たるようにした。測定前および測定中のガラス箱内は風速0.05m/sec以下の無風状態であった。また測定開始前の温度は35~40℃であった。上記と同様にして、アルミナ焼結体の代わりにガラス板を配置した状態で発電セルの発電力を測定し、図27に結果を合わせて示した。図27中の■はアルミナ焼結体を配置した場合であり、◆は、アルミナ焼結体を配置しない場合(ガラス板を配置した場合)を示す。ガラス板およびアルミナ焼結体は縦横いずれも50mm、厚さ5mmとした。
 図27に示すように、太陽電池セルの発電力は、裏面側にアルミナ焼結体を置いた場合(■)、置かない場合(◆)に比べて、最大26%高かった。これより、本発明の熱放射部材用セラミックスは、太陽電池セルの冷却機構として使用可能であることが示された。さらに、本発明の熱放射部材用セラミックスは熱放射特性に優れており、太陽電池セルに接して設置するだけで上記のような発電効率の向上がみられることから、太陽電池セルの冷却機構として有効であることが示唆された。
 なお、上記試験では、前記実施例1と同一の製造条件で得られたアルミナ焼結体を用いて試験を行ったが、前記(B-I)に示されるように、表面に遠赤外線放射膜を有するアルミナ焼結体も、アルミナ焼結体と同様あるいはそれ以上の熱放射特性を発揮することから、表面に遠赤外線放射膜を形成したアルミナ焼結体も同様の放熱効果、あるいはさらに優れた放熱効果を有すると考えられる。
 本発明の活用例としては、従来のセラミックスでは達成されなかった高い熱伝導率を有し、効率のよい放熱性を実現でき、しかも、機械的強度や耐熱衝撃性にも優れることから、電子機器等において問題となっている動作中における発熱の問題を、アルミナ焼結体、さらに好ましくは遠赤外線放射膜を有するアルミナ焼結体を発熱部位に密着させた状態で直接設置するだけで放熱器として機能させることができるので、その利用価値は絶大である。特に、近年における電子機器は、小型化、精密化および高機能化の傾向が著しく、また、近年における地球温暖化の問題は深刻であり、装置や電子機器に対する省エネの要求は強く、ファン等の冷却装置の設置を不要とし、放熱器として機能し得る本発明の熱放射部材用セラミックスへの期待は、各方面において極めて大きい。本発明において応用例の一例として示した太陽電池モジュールやLED発光モジュールに限らず、高い放熱性を有する本発明の熱放射部材用セラミックスは、各種電子機器など高い放熱が期待される機器におけるヒートシンク材としての利用が期待される。
 1:アルミナ焼結体
 2:遠赤外線放射膜
 5:温度センサ
 10:ヒータ
 11:測定用箱
 12:支持具
 13:木製台
 14:ニードル
 15:重り
 16:温度計
 17:風速計
 18:発電セル
 25:配線

Claims (14)

  1.  アルミナ(Al23)の含有量が99.5質量%以上で、かつ、平均粒子径が0.2~1μmであるアルミナ粉末を原料として用い、該粉末を50~100μmの顆粒状にする顆粒化工程と、該顆粒化工程で得られた顆粒状のアルミナを含む原料を加圧成形する成形工程と、該成形工程で得られた成形体を大気雰囲気中で加熱して、1,480~1,600℃の焼成温度で焼成して焼結体を得る焼成工程とを有することを特徴とする熱放射部材用セラミックスの製造方法。
  2.  前記焼成温度が、1,500~1,592℃である請求項1に記載の熱放射部材用セラミックスの製造方法。
  3.  前記成形工程において、密度が少なくとも2.40g/cm3である成形体を得る請求項1又は2に記載の熱放射部材用セラミックスの製造方法。
  4.  さらに、前記焼成工程後に、該焼成工程における焼成温度までの昇温速度に対して、1.3~2.0倍の速度で焼成物を急冷して焼結体を得る冷却工程を有する請求項1~3のいずれか1項に記載の熱放射部材用セラミックスの製造方法。
  5.  前記焼成工程における焼成を、空気を流通させたバッチ式の炉内で行う請求項1~4のいずれか1項に記載の熱放射部材用セラミックスの製造方法。
  6.  さらに、前記焼成工程で得られた焼結体の表面の少なくとも一部に、遠赤外線放射コーティング組成物からなるコーティング膜を形成し、焼き付けして遠赤外線放射膜を形成する工程を有する請求項1に記載の熱放射部材用セラミックスの製造方法。
  7.  前記遠赤外線放射コーティング組成物は、耐熱性無機接着剤と、少なくとも2種の遷移元素酸化物を混合し、700~1,300℃で仮焼した微粉末状の混合仮焼成物を、97:3~20:80の質量比率で含有してなる請求項6に記載の熱放射部材用セラミックスの製造方法。
  8.  アルミナ(Al23)の含有量が99.5質量%以上、シリカ(SiO2)の含有量が0.1質量%以下のアルミナの焼結体であり、その結晶粒径が1~10μmで、かつ、30×20μmの面積中に結晶粒を30~55個の範囲で含有してなり、その熱伝導率が33W/m・K以上であることを特徴とする熱放射部材用セラミックス。
  9.  前記焼結体密度が、3.8g/cm3以上である請求項8に記載の熱放射部材用セラミックス。
  10.  前記アルミナ(Al23)の含有量が99.8質量%以上、シリカ(SiO2)の含有量が0.05質量%以下である請求項8又は9に記載の熱放射部材用セラミックス。
  11.  表面の少なくとも一部に、遠赤外線放射膜をさらに有する請求項8~10のいずれか1項に記載の熱放射部材用セラミックス。
  12.  前記遠赤外線放射膜は、耐熱性無機接着剤と、少なくとも2種の遷移元素酸化物を混合し、700~1,300℃で仮焼した微粉末状の混合仮焼成物を、97:3~20:80の質量比率で含有する遠赤外線放射コーティング組成物のコーティング膜を焼き付けてなる請求項11に記載の熱放射部材用セラミックス。
  13.  発電セルの裏面に請求項8~12のいずれか1項に記載の熱放射部材用セラミックスを配置してなることを特徴とする太陽電池モジュール。
  14.  基板表面に回路が形成され、該回路上にLED素子が設けられているLED発光モジュールにおける上記基板が、請求項8~12のいずれか1項に記載の熱放射部材用セラミックスであることを特徴とするLED発光モジュール。
PCT/JP2011/062410 2010-05-31 2011-05-30 熱放射部材用セラミックスの製造方法、熱放射部材用セラミックス、該セラミックスを用いてなる太陽電池モジュールおよびled発光モジュール WO2011152363A2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/393,802 US9108887B2 (en) 2010-05-31 2011-05-30 Method for producing ceramic for heat-radiating members, ceramic for heat-radiating members, and solar cell module and LED light-emitting module using said ceramic
JP2012503826A JP5081332B2 (ja) 2010-05-31 2011-05-30 熱放射部材用セラミックスの製造方法、熱放射部材用セラミックス、該セラミックスを用いてなる太陽電池モジュールおよびled発光モジュール

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010125291 2010-05-31
JP2010-125291 2010-05-31
JP2010-159697 2010-07-14
JP2010159697 2010-07-14
JP2010231824 2010-10-14
JP2010-231824 2010-10-14

Publications (2)

Publication Number Publication Date
WO2011152363A2 true WO2011152363A2 (ja) 2011-12-08
WO2011152363A3 WO2011152363A3 (ja) 2012-01-26

Family

ID=45067157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/062410 WO2011152363A2 (ja) 2010-05-31 2011-05-30 熱放射部材用セラミックスの製造方法、熱放射部材用セラミックス、該セラミックスを用いてなる太陽電池モジュールおよびled発光モジュール

Country Status (3)

Country Link
US (1) US9108887B2 (ja)
JP (2) JP5081332B2 (ja)
WO (1) WO2011152363A2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2623479A1 (en) * 2010-09-29 2013-08-07 Kyocera Corporation Ceramic substrate for light emitting element mounting and light emitting device
JP2015151307A (ja) * 2014-02-14 2015-08-24 株式会社アテクト アルミナ焼結体及びその製造方法
JP2017045979A (ja) * 2015-08-27 2017-03-02 西村陶業株式会社 熱放射部材、パワー半導体モジュール、及びledパッケージ
JP2019511992A (ja) * 2016-02-26 2019-05-09 ヘレウス ドイチュラント ゲーエムベーハー ウント カンパニー カーゲー 銅−セラミックス複合材料
CN109844940A (zh) * 2016-10-27 2019-06-04 京瓷株式会社 散热构件及使用该散热构件的电子装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6691133B2 (ja) * 2015-09-30 2020-04-28 日本碍子株式会社 アルミナ焼結体及び光学素子用下地基板
US11584696B2 (en) * 2016-02-26 2023-02-21 Heraeus Deutschland GmbH & Co. KG Copper-ceramic composite
DE102016203112B4 (de) 2016-02-26 2019-08-29 Heraeus Deutschland GmbH & Co. KG Kupfer-Keramik-Verbund
TWI608074B (zh) * 2017-06-06 2017-12-11 陳明進 複合螢光體製程
US11769864B2 (en) 2017-09-28 2023-09-26 Kyocera Corporation Substrate for mounting a light-emitting element and circuit board for mounting a light-emitting element that includes it, and light-emitting element module
US11760694B2 (en) * 2017-10-05 2023-09-19 Coorstek Kk Alumina sintered body and manufacturing method therefor
WO2019167898A1 (ja) * 2018-02-28 2019-09-06 住友化学株式会社 粒子組成物
WO2020013016A1 (ja) * 2018-07-11 2020-01-16 日本特殊陶業株式会社 光波長変換部材及び発光装置
WO2020067249A1 (ja) * 2018-09-27 2020-04-02 ダイセルポリマー株式会社 表面に粗面化構造を有する非磁性セラミックス成形体とその製造方法
CN111341877B (zh) * 2018-12-17 2024-04-16 苏州阿特斯阳光电力科技有限公司 双面perc电池的制备方法
CN114315324A (zh) * 2020-10-09 2022-04-12 上海三思电子工程有限公司 一种led灯散热体及其制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213771A (ja) * 1983-05-19 1984-12-03 Nishimura Togyo Kk 遠赤外線放射コ−テイング組成物
JPH07237961A (ja) * 1994-02-28 1995-09-12 Kyocera Corp 耐摩耗性アルミナ焼結体及びその製造方法
JP2005210077A (ja) * 2003-12-26 2005-08-04 Ngk Insulators Ltd 静電チャック及びその製造方法並びにアルミナ焼結部材及びその製造方法
JP2006298703A (ja) * 2005-04-21 2006-11-02 Nishimura Togyo Kk 陶磁器熱放射性固体物
JP2007031163A (ja) * 2004-07-02 2007-02-08 Showa Denko Kk 酸化アルミニウム粉体の製造方法及び酸化アルミニウム粉体
JP2008537703A (ja) * 2005-02-23 2008-09-25 ケンナメタル インコーポレイテッド アルミナ−炭化ホウ素セラミックおよびその製造法および使用法
JP2010055685A (ja) * 2008-08-28 2010-03-11 Kyocera Corp 磁気ヘッド用基板および磁気ヘッドならびに磁気記録装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3077877B2 (ja) 1994-08-03 2000-08-21 東芝セラミックス株式会社 アルミナ焼結体の製造方法
JP2981192B2 (ja) 1996-08-01 1999-11-22 日本特殊陶業株式会社 アルミナ基焼結材料及び該材料からなる支持台を用いた磁器誘電体共振器
JP2000128625A (ja) 1998-10-19 2000-05-09 Nippon Steel Corp アルミナ質セラミックス焼結体及びその製造方法
JP3812794B2 (ja) 1999-09-18 2006-08-23 久雄 泉 集光式真空熱コレクター発電装置
JP2002012470A (ja) * 2000-06-23 2002-01-15 Ngk Spark Plug Co Ltd 高純度アルミナ焼結体、高純度アルミナボール、半導体用治具、絶縁碍子、ボールベアリング、チェックバルブ及び高純度アルミナ焼結体の製造方法
US20040170347A1 (en) * 2001-09-28 2004-09-02 Norifumi Ikeda Rolling unit
JP2003112963A (ja) 2001-09-28 2003-04-18 Ngk Spark Plug Co Ltd アルミナ焼結体およびその製造方法
JP2003306386A (ja) 2002-04-09 2003-10-28 Mino Ceramic Co Ltd アルミナセラミックスセッター及びその製造方法
JP2004259797A (ja) 2003-02-25 2004-09-16 Furukawa Electric Co Ltd:The 太陽光発電モジュールの冷却方法及び太陽光発電システム
JP4578076B2 (ja) 2003-08-07 2010-11-10 日本特殊陶業株式会社 アルミナ焼結体、およびic基板
US20070163645A1 (en) * 2003-10-06 2007-07-19 Ngk Spark Plug Co., Ltd. Dye-sensitized solar cell
JP4996045B2 (ja) 2004-08-26 2012-08-08 パナソニック株式会社 光電気変換素子実装用アルミナ基板の製造方法
EP1787601B1 (en) * 2004-08-27 2015-04-15 Tosoh Corporation Orthodontic bracket and process for producing the same
JP2006273670A (ja) * 2005-03-29 2006-10-12 Ngk Insulators Ltd アルミナ管
FR2886289B1 (fr) * 2005-05-26 2008-05-09 Saint Gobain Ct Recherches Produit d'alumine frittee transparent au rayonnement infrarouge
JP2009147258A (ja) 2007-12-18 2009-07-02 Ushio Inc Ledパッケージおよび発光モジュール
JP4357584B1 (ja) 2008-10-01 2009-11-04 株式会社ニッカトー 耐食性、耐熱衝撃抵抗性及び耐久性に優れたアルミナ質焼結体
JP2010225607A (ja) 2009-03-19 2010-10-07 Toshiba Lighting & Technology Corp 発光装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59213771A (ja) * 1983-05-19 1984-12-03 Nishimura Togyo Kk 遠赤外線放射コ−テイング組成物
JPH07237961A (ja) * 1994-02-28 1995-09-12 Kyocera Corp 耐摩耗性アルミナ焼結体及びその製造方法
JP2005210077A (ja) * 2003-12-26 2005-08-04 Ngk Insulators Ltd 静電チャック及びその製造方法並びにアルミナ焼結部材及びその製造方法
JP2007031163A (ja) * 2004-07-02 2007-02-08 Showa Denko Kk 酸化アルミニウム粉体の製造方法及び酸化アルミニウム粉体
JP2008537703A (ja) * 2005-02-23 2008-09-25 ケンナメタル インコーポレイテッド アルミナ−炭化ホウ素セラミックおよびその製造法および使用法
JP2006298703A (ja) * 2005-04-21 2006-11-02 Nishimura Togyo Kk 陶磁器熱放射性固体物
JP2010055685A (ja) * 2008-08-28 2010-03-11 Kyocera Corp 磁気ヘッド用基板および磁気ヘッドならびに磁気記録装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2623479A1 (en) * 2010-09-29 2013-08-07 Kyocera Corporation Ceramic substrate for light emitting element mounting and light emitting device
EP2623479A4 (en) * 2010-09-29 2014-03-12 Kyocera Corp CERAMIC SUBSTRATE FOR MOUNTING LIGHT-EMITTING ELEMENT AND LIGHT-EMITTING DEVICE
US8981630B2 (en) 2010-09-29 2015-03-17 Kyocera Corporation Ceramics substrate for mounting light-emitting element and light-emitting device
JP2015151307A (ja) * 2014-02-14 2015-08-24 株式会社アテクト アルミナ焼結体及びその製造方法
JP2017045979A (ja) * 2015-08-27 2017-03-02 西村陶業株式会社 熱放射部材、パワー半導体モジュール、及びledパッケージ
JP2019511992A (ja) * 2016-02-26 2019-05-09 ヘレウス ドイチュラント ゲーエムベーハー ウント カンパニー カーゲー 銅−セラミックス複合材料
CN109844940A (zh) * 2016-10-27 2019-06-04 京瓷株式会社 散热构件及使用该散热构件的电子装置
CN109844940B (zh) * 2016-10-27 2023-05-23 京瓷株式会社 散热构件及使用该散热构件的电子装置

Also Published As

Publication number Publication date
WO2011152363A3 (ja) 2012-01-26
JP5795555B2 (ja) 2015-10-14
JP2012180275A (ja) 2012-09-20
US9108887B2 (en) 2015-08-18
JP5081332B2 (ja) 2012-11-28
US20130065067A1 (en) 2013-03-14
JPWO2011152363A1 (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5795555B2 (ja) 熱放射部材用セラミックスの製造方法、熱放射部材用セラミックス、該セラミックスを用いてなる太陽電池モジュールおよびled発光モジュール
TWI525703B (zh) heating equipment
JP5121268B2 (ja) 窒化アルミニウム焼結体及び半導体製造装置用部材
CN104291796A (zh) 一种led用透明荧光陶瓷的制备方法
JP7062229B2 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
JP2012180275A5 (ja)
CN105272176A (zh) 一种大功率led散热用陶瓷基板
JP2008069383A (ja) 金属基材と無機材料表面層とからなる構造体
JP7062230B2 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
JP4654577B2 (ja) 光電変換素子実装用セラミックス基板
CN105254308A (zh) 一种陶瓷散热复合材料的制备方法
CN107365155B (zh) 一种氮化铝陶瓷的低温烧结助剂体系
CN103880435A (zh) 一种高质量氮化铝陶瓷基片的微波快速烧结方法
JP2010208871A (ja) 酸化アルミニウム焼結体、その製法及び半導体製造装置部材
CN105777081B (zh) 一种散热用电子陶瓷基板的制备工艺
WO2017041282A1 (zh) 一种高导热陶瓷材料及其制造方法
JP2017028018A (ja) 放熱基板、デバイス及び放熱基板の製造方法
CN109136488B (zh) 一种用于硅钢退火炉的节能高温辐射喷涂料及其制备方法和应用
CN105254286A (zh) 一种高导热陶瓷材料及其制造方法
JP6263301B1 (ja) セラミックス基板及び半導体モジュール
KR20140095460A (ko) 질화규소 소결체 및 그 제조방법
JP2018020929A (ja) 窒化珪素焼結基板及びその製造方法
CN105304795A (zh) 一种led用陶瓷散热基板
CN105405955A (zh) 一种led用陶瓷散热基板的制备工艺
JP6710083B2 (ja) 熱放射部材、パワー半導体モジュール、及びledパッケージ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012503826

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11789766

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13393802

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11789766

Country of ref document: EP

Kind code of ref document: A2