WO2011145550A1 - 酸素吸収性樹脂組成物及びこれを用いた包装体の製造方法 - Google Patents

酸素吸収性樹脂組成物及びこれを用いた包装体の製造方法 Download PDF

Info

Publication number
WO2011145550A1
WO2011145550A1 PCT/JP2011/061160 JP2011061160W WO2011145550A1 WO 2011145550 A1 WO2011145550 A1 WO 2011145550A1 JP 2011061160 W JP2011061160 W JP 2011061160W WO 2011145550 A1 WO2011145550 A1 WO 2011145550A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
resin composition
absorbing resin
ultraviolet
irradiation
Prior art date
Application number
PCT/JP2011/061160
Other languages
English (en)
French (fr)
Inventor
住谷 眞
恵美子 横瀬
中尾 公隆
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2012515873A priority Critical patent/JP5780469B2/ja
Priority to EP11783484A priority patent/EP2573143A1/en
Priority to US13/697,933 priority patent/US20130123380A1/en
Priority to CN2011800245450A priority patent/CN102933660A/zh
Publication of WO2011145550A1 publication Critical patent/WO2011145550A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/266Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to an oxygen-absorbing resin composition characterized by starting oxygen absorption by irradiation with ultraviolet rays having a specific wavelength.
  • the oxygen-absorbing resin composition of the present invention can be used as a whole or a part of an oxygen scavenger or an oxygen-absorbing container.
  • Oxygen scavengers are used to remove oxygen in the packaged containers and bags.
  • the form that was initially developed as an oxygen scavenger and is still widely used is one in which an oxygen scavenger composed of iron powder or ascorbic acid is packed in a breathable sachet.
  • a packaging film including a layer composed of an oxidizable organic component or resin component and a transition metal catalyst is also known (Patent Documents 2 and 3). Furthermore, in order to suppress the odor generated by oxidation of an oxygen scavenger made of organic matter, an oxygen absorbing composition containing an adsorbent such as zeolite or a layer containing a layer containing an adsorbent is laminated. It has been proposed to form a film or a deoxygenating multilayer film in which a layer containing a base as a neutralizing agent is laminated (Patent Documents 4 to 6).
  • Films containing iron powder as an oxygen scavenger start oxygen absorption with moisture as a trigger.
  • a method of initiating oxygen absorption by irradiating ultraviolet rays (UV-C light) having a wavelength of 200 to 280 nm onto a film containing an oxygen-absorbing resin composition in which benzophenone is blended as a catalyst and an initiator in an oxidizable resin has been proposed (Patent Document 7).
  • JP 55-90535 A Japanese Patent No. 2991437 Japanese Patent No. 3183704 Japanese Patent Laid-Open No. 05-247276 Japanese Patent Laid-Open No. 06-100042 Japanese Patent No. 3306071 Japanese Patent No. 3897364
  • the present inventors have found the following problems regarding a method of starting oxygen absorption by irradiating with UV-C light.
  • an irradiation device mainly using an ultraviolet lamp such as a low-pressure mercury lamp as a light source has been widely used.
  • irradiation from an ultraviolet lamp generates toxic ozone.
  • a local exhaust device for removing ozone is required, and a large amount of heat is generated and a cooling facility is required.
  • the irradiation device becomes large.
  • it is necessary to incorporate such a large irradiation device into the packaging line and there are problems in terms of installation area, maintenance cost, and the like.
  • An object of the present invention is to provide an oxygen-absorbing resin composition that can reduce the size of an ultraviolet irradiation device for initiating oxygen absorption and that quickly starts oxygen absorption by irradiation with ultraviolet rays of a specific wavelength.
  • the present inventors have been able to reduce the size of an ultraviolet irradiation device for starting oxygen absorption.
  • the present invention is an oxygen-absorbing resin composition
  • an initiator a transition metal catalyst, and an easily oxidizable resin, wherein the oxygen-absorbing property starts oxygen absorption by ultraviolet irradiation having a peak wavelength in the range of 300 to 400 nm. It is a resin composition.
  • the ultraviolet irradiation apparatus for starting oxygen absorption can be miniaturized, and oxygen absorption can be started quickly by ultraviolet irradiation having a peak wavelength in the range of 300 to 400 nm.
  • the ultraviolet irradiation is performed using an irradiation apparatus using an ultraviolet LED as a light source.
  • UV LEDs have the features of lower power consumption, longer life, less heat generation, smaller size, and narrow emission spectrum width (50 nm or less) compared to UV lamps.
  • Toxic ozone is not generated in an irradiation apparatus using an ultraviolet LED that emits ultraviolet light of 315 to 380 nm (UV-A light) as a light source.
  • UV-A light ultraviolet light
  • the irradiation apparatus which uses ultraviolet LED as a light source does not require a local exhaust apparatus.
  • the irradiation device using the ultraviolet LED as a light source generates little heat.
  • the irradiation apparatus which uses ultraviolet LED as a light source does not require big cooling facilities, such as a chiller and a blower.
  • an irradiation apparatus using an ultraviolet LED as a light source can reduce the thickness of the ultraviolet irradiation section and can shorten the distance between the film and the light source as compared with an irradiation apparatus using an ultraviolet lamp. For this reason, size reduction of an irradiation apparatus is possible. Furthermore, an irradiation apparatus using an ultraviolet LED as a light source can reduce maintenance costs from the viewpoint of low power consumption and long life.
  • the oxygen-absorbing resin composition preferably further contains a sensitizer. This oxygen-absorbing resin composition can start oxygen absorption more rapidly than when no sensitizer is included.
  • the initiator is excited by energy transferred from the sensitizer excited by ultraviolet irradiation of 300 to 400 nm or by irradiation of ultraviolet light of 300 to 400 nm to cause an oxidation reaction of the oxidizable resin. This is the starting material.
  • the initiator is an aromatic ketone and the sensitizer is a thioxanthone. In this case, oxygen absorption can be started more efficiently.
  • the oxygen-absorbing resin composition preferably contains a reaction accelerator.
  • This oxygen-absorbing resin composition can start oxygen absorption more rapidly than when no reaction accelerator is included.
  • the oxygen-absorbing resin composition preferably further contains a sensitizer and a reaction accelerator. In this case, oxygen absorption can be started more quickly than in the case where the oxygen-absorbing resin composition does not contain a sensitizer and a reaction accelerator.
  • the reaction accelerator is preferably a polymer containing a benzyl group.
  • the reaction accelerator has a benzyl group, and the hydrogen of the benzyl group is easily extracted, so that it tends to be a radical. For this reason, oxygen absorption can be started more rapidly.
  • the polymer containing a benzyl group is a copolymer containing a structural unit corresponding to styrene, for example.
  • the present invention is a deoxidizing sheet or film including a deoxidizing layer containing the above-described oxygen-absorbing resin composition.
  • the present invention also relates to a method for producing a package for packaging an article to be packaged, wherein the oxygen-absorbing sheet or film is irradiated with ultraviolet rays having a peak wavelength in the range of 300 to 400 nm. It is the manufacturing method of a package body including the ultraviolet irradiation process which starts the oxygen absorption in a resin composition, and the packaging process which packages the said to-be packaged object with the said sheet
  • the absorption of oxygen in the oxygen-absorbing resin composition is started by irradiating ultraviolet rays having a peak wavelength in the range of 300 to 400 nm, generation of harmful ozone can be prevented.
  • the ultraviolet irradiation device does not require a local exhaust device.
  • the ultraviolet irradiation device generates less heat.
  • a large cooling facility is not required.
  • the packaging manufacturing facility can be reduced in size.
  • oxygen absorption can be started promptly by irradiation with ultraviolet rays having a peak wavelength in the range of 300 to 400 nm.
  • the ultraviolet irradiation step is performed before the packaging step. In this case, since the ultraviolet irradiation process is performed before the packaging process, there is no possibility of damaging the packaged object by the ultraviolet irradiation.
  • the ultraviolet irradiation step is performed using an irradiation device using an ultraviolet LED as a light source.
  • the ultraviolet LED has features such as low power consumption, long life, little heat generation, small size, and a narrow emission spectrum width (50 nm or less) as compared with the ultraviolet lamp.
  • Toxic ozone is not generated in an irradiation apparatus using an ultraviolet LED that emits ultraviolet light of 315 to 380 nm (UV-A light) as a light source. For this reason, the irradiation apparatus which uses ultraviolet LED as a light source does not require a local exhaust apparatus. Further, the irradiation device using the ultraviolet LED as a light source generates little heat.
  • an irradiation apparatus using an ultraviolet LED as a light source can reduce the thickness of the ultraviolet irradiation section and can shorten the distance between the film and the light source as compared with an irradiation apparatus using an ultraviolet lamp. For this reason, size reduction of an irradiation apparatus is possible. Furthermore, an irradiation apparatus using an ultraviolet LED as a light source can reduce maintenance costs from the viewpoint of low power consumption and long life. Furthermore, the irradiation device generates less heat than a conventional ultraviolet lamp. For this reason, the temperature rise of a film is fully suppressed and there is no possibility of damaging a package.
  • the sheet or film is preferably irradiated with ultraviolet rays having an illuminance of 2 mW / cm 2 or more.
  • oxygen absorption can be started promptly by ultraviolet irradiation for a shorter time than when the illuminance is outside the above range.
  • the ultraviolet-ray irradiation apparatus for starting oxygen absorption can be reduced in size, and the oxygen-absorbing resin composition which can start oxygen absorption rapidly by ultraviolet irradiation of a specific wavelength, and a package using the same A method of manufacturing a body is provided.
  • deoxygenation means that the oxygen concentration in a sealed environment is 0.1 vol% or less
  • deoxygenation agent is used for the purpose of realizing a deoxygenation state.
  • deoxygenation agent means that drugs, materials, etc.
  • deoxygenating is synonymous with “having a function as an oxygen scavenger”.
  • oxygen absorption means that drugs, materials, and the like take up oxygen in the environment regardless of the reached oxygen concentration.
  • starting oxygen absorption means that the oxygen absorption amount after 24 hours from the irradiation of ultraviolet rays is 1 mL / g or more.
  • the easily oxidizable thermoplastic resin used in the oxygen-absorbing resin composition of the present invention includes an organic polymer compound having a portion in which carbon and carbon are bonded by a double bond, and a hydrogen atom bonded to a tertiary carbon atom.
  • An organic polymer compound having a benzyl group can be used.
  • the carbon-carbon double bond in the organic polymer compound having a portion in which carbon and carbon are bonded by a double bond may be in the main chain of the polymer or in the side chain.
  • Representative examples include 1,4-polybutadiene, 1,2-polybutadiene, 1,4-polyisoprene, 3,4-polyisoprene, styrene butadiene rubber, styrene-butadiene-styrene block copolymer, and styrene-isoprene-styrene block copolymer.
  • polymers ethylene / methyl acrylate / cyclohexenylmethyl acrylate copolymer, and the like.
  • Examples of the organic polymer compound having a hydrogen atom bonded to a tertiary carbon atom include polypropylene and polymethylpentene.
  • Examples of the organic polymer compound having a benzyl group include hydrogenated styrene butadiene rubber and hydrogenated styrene isoprene rubber. Among these, an organic polymer compound having a portion in which carbon and carbon are bonded by a double bond is preferable, and 1,2-polybutadiene is more preferable.
  • the transition metal catalyst of the present invention is a metal compound such as a salt or oxide of a transition metal.
  • a transition metal manganese, iron, cobalt, nickel, and copper are preferable, and manganese, iron, and cobalt are particularly preferable because they exhibit excellent catalytic action.
  • Transition metal salts include transition metal mineral salts and fatty acid salts. Examples of mineral acid salts include transition metal hydrochlorides, sulfates and nitrates. Examples of fatty acid salts include acetates and higher fatty acid salts.
  • higher fatty acid salts include cobalt octylate, manganese octylate, manganese naphthenate, iron naphthenate, cobalt stearate, and cobalt neodecanoate.
  • the transition metal catalyst is preferably supported on a carrier.
  • carrier is not specifically limited, A zeolite, diatomaceous earth, calcium silicates, etc. can be used.
  • an agglomerate having a size of 0.1 to 200 ⁇ m at the time of preparation and after preparation of the catalyst is preferable because of easy handling.
  • a carrier having a thickness of 10 to 100 nm when dispersed in the resin is preferable because it gives a transparent resin composition when blended in the resin.
  • An example of such a carrier is synthetic calcium silicate.
  • the blending ratio of the transition metal catalyst is preferably 0.001 to 10 wt% as metal atomic weight in the oxygen absorbing resin composition from the viewpoint of oxygen absorption performance, physical strength and economy, and is 0.01 to 1 wt%. It is particularly preferred.
  • the initiator of the present invention is excited by UV irradiation of 300 to 400 nm or by energy transferred from a sensitizer excited by UV irradiation of 300 to 400 nm, and initiates an oxidation reaction of the oxidizable resin or the reaction accelerator. It is a starting material.
  • a hydrogen abstraction type or intramolecular cleavage type initiator is used.
  • the excited initiator molecule extracts hydrogen from the easily oxidizable resin or the reaction accelerator to generate active radicals, and initiates the oxidation reaction.
  • the excited initiator molecule is ⁇ -cleaved to generate a radical, and this radical further draws hydrogen from the oxidizable resin or the reaction accelerator to generate an active radical.
  • the oxidation reaction proceeds.
  • Representative examples of hydrogen abstraction initiators include benzophenones, thiazines, metalloporphyrins, anthraquinones, xanthones, thioxanthones, fluorenones, benzoquinones, and the like. Preferred are fluorenones, thioxanthones, and anthraquinones.
  • intramolecular cleavage initiators include ⁇ -hydroxyketones (Irgacure 127, Irgacure 184, Irgacure 2959, etc.), benzyl ketals (Irgacure 651, etc.), acylphosphine oxides (Darocur TPO, Irgacure 819, etc.) And oxime esters (Irgacure OXE01, Irgacure OXE02, etc.). Of these, ⁇ -hydroxyketones and acylphosphine oxides are preferable.
  • the mixing ratio of the initiator is preferably 0.001 to 10 wt%, particularly preferably 0.01 to 1 wt% in the oxygen-absorbing resin composition.
  • the mixing ratio of the initiator is within the above range, oxygen absorption can be started more quickly than when the initiator is out of the above range, and the amount of the initiator in the oxygen-absorbing resin composition is a necessary and sufficient amount. It can be.
  • the ultraviolet ray to be irradiated has a peak wavelength in the range of 300 to 400 nm, and preferably in the range of 315 to 380 nm.
  • the peak wavelength is less than 300 nm, toxic ozone is generated, which is not preferable.
  • the peak wavelength exceeds 400 nm, oxygen absorption cannot be started, which is not preferable.
  • the sensitizer of the present invention is a substance that causes photosensitization, and excited molecules generated by irradiation with ultraviolet rays transfer excitation energy to other molecules without causing a chemical reaction. It plays a role in causing photochemical reactions such as energy transfer, electron transfer, and hydrogen abstraction reactions in molecules.
  • the sensitizer of the present invention is selected from substances that absorb ultraviolet rays of 300 to 400 nm to be in an excited singlet state and enter an excited triplet state through intersystem crossing.
  • Representative examples of sensitizers include benzophenones, thioxanthones, anthraquinones, and anthracene, with thioxanthones being preferred.
  • the blending ratio of the sensitizer is preferably 0.001 to 10 wt%, particularly preferably 0.01 to 1 wt% in the oxygen-absorbing resin composition.
  • Substances listed as representative examples of sensitizers also have a function as an initiator when used alone, but the wavelength of irradiated ultraviolet light, the maximum absorption wavelength and molar absorption coefficient of the sensitizer, and the excited triplet. In consideration of energy and the like, two or more kinds of substances can be used in combination as a sensitizer and an initiator. When two or more kinds of substances are used in combination, a substance having a higher excited triplet energy functions as a sensitizer and the other substance functions as an initiator.
  • the excited triplet energy of the sensitizer is preferably 10 to 15 kJ / mol higher than the excited triplet energy of the initiator.
  • oxygen absorption can be efficiently started.
  • a combination using an aromatic ketone as an initiator and a thioxanthone as a sensitizer is preferable.
  • the aromatic ketone is more preferably a fluorenone. In this case, oxygen absorption can be started even more efficiently.
  • the reaction accelerator of the present invention is a substance that efficiently starts oxygen absorption when mixed with an oxygen-absorbing resin composition.
  • a polymer containing a benzyl group is preferable.
  • a polymer containing a benzyl group has a benzyl group, and the hydrogen of the benzyl group is easily extracted, and thus tends to be a radical. For this reason, oxygen absorption is started more rapidly.
  • the polymer containing a benzyl group include a copolymer containing a structural unit corresponding to styrene.
  • copolymers containing structural units corresponding to styrene include hydrogenated styrene butadiene rubber (HSBR), styrene-ethylenebutylene-styrene block copolymer (SEBS), and styrene-ethylenebutylene-olefin crystal block copolymer.
  • HSBR hydrogenated styrene butadiene rubber
  • SEBS styrene-ethylenebutylene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • the mixing ratio of the reaction accelerator is preferably 1 to 50 wt%, particularly preferably 5 to 30 wt% in the oxygen-absorbing resin composition. In this case, oxygen absorption can be started more quickly as compared with the case where the blending ratio of the reaction accelerator is out of the above range.
  • the oxygen-absorbing resin composition of the present invention comprises a pellet-like, film-like or sheet-like oxygen obtained by melt-kneading a resin composition containing an easily oxidizable thermoplastic resin, a transition metal catalyst and an initiator using an extruder or the like. It can be an absorbent.
  • the usage form can be used as an oxygen scavenger processed into pellets, films or other small pieces, or an oxygen scavenger package in a form in which the oxygen scavenger is put in a breathable sachet.
  • the said small piece can be shape
  • the oxygen-absorbing resin composition of the present invention can be used as a deoxidizing packaging material for a part or all of a packaging bag or packaging container as it is or by laminating with an appropriate packaging material.
  • the oxygen-absorbing resin composition of the present invention is used as a deoxygenation layer 10, and a thermoplastic resin having high oxygen permeability and heat fusion properties is packaged on one side.
  • the layer 20 is separated from the contents to be separated, and a resin, metal or metal oxide having a low oxygen permeability is laminated as the gas barrier layer 30 on the other side to form a film-like or sheet-like deoxygenating multilayer body 100. It can be.
  • the thickness of the oxygen scavenging layer 10 included in the oxygen scavenging multilayer body 100 is preferably 300 ⁇ m or less, and more preferably 10 to 200 ⁇ m.
  • the oxygen-absorbing resin composition of the present invention can be made transparent. Therefore, the oxygen-absorbing resin composition of the present invention is suitable as a packaging material having transparency.
  • a deoxygenating multilayer body 200 based on a polyolefin layer 40 / deoxygenating layer 10 made of the oxygen-absorbing resin composition of the present invention / transparent gas barrier resin layer 50 is transparent. It can be used as a deoxidizing packaging material.
  • the transparent gas barrier resin layer 50 include a layer made of polyester or polyamide on which silica or alumina is vapor-deposited, nylon MXD6, ethylene-vinyl alcohol copolymer, or vinylidene chloride.
  • the above oxygen-absorbing resin composition can be mixed with at least one selected from a desiccant, an adsorbent, an antibacterial agent, and a colorant to form a composition having other functions such as an oxygen absorption function and a drying function. can do.
  • the multilayer body 300 containing the deoxidation layer 10 which consists of an oxygen absorptive resin composition, and the layer 60 containing 1 or more types chosen from a desiccant, an adsorbent, an antibacterial agent, and a coloring agent.
  • FIG. 4 is a schematic view showing one step in the first embodiment of the method for manufacturing a package of the present invention.
  • a deoxidizing sheet or film (hereinafter simply referred to as “film”) 400 wound around a roll 1 is fed out, and a peak wavelength of 300 is applied to the film 400 by the ultraviolet irradiation device 110.
  • Irradiation of ultraviolet rays in the range of ⁇ 400 nm is started to start oxygen absorption in the oxygen-absorbing resin composition (ultraviolet irradiation step).
  • the object to be packaged 70 is packaged by, for example, pillow packaging using the film 400. Specifically, the packaged object 70 conveyed by the conveyance line 120a is surrounded by the film 400 irradiated with ultraviolet rays. Thus, the object 70 is packaged (packaging process).
  • the packaged item 70 examples include foods, beverages, pharmaceuticals, medical products, cosmetics, metal products, electronic products, and the like that have a high need for storage and quality maintenance.
  • the film 400 includes a deoxygenation layer made of the above-described oxygen-absorbing resin composition.
  • both edges of the film 400 are heat sealed by the heat seal device 130a to form the tubular body 140.
  • the tubular body 140 is further transported by the transport lines 120b and 120c, and the portions before and after the transported object 70 in the tubular body 140 are heat sealed by the heat sealing device 130b and then cut.
  • the package 80 is obtained.
  • the obtained package 80 is conveyed by the conveyance line 120d, for example.
  • the package 80 is usually a bag-shaped body.
  • the package 80 is normally sealed.
  • oxygen absorption is started in the oxygen-absorbing resin composition by irradiating ultraviolet rays having a peak wavelength in the range of 300 to 400 nm, generation of harmful ozone can be prevented.
  • the irradiation apparatus 110 does not require a local exhaust apparatus.
  • the irradiation device 110 generates less heat.
  • a large cooling facility is not required.
  • the manufacturing facility for the package 80 can be reduced in size.
  • oxygen absorption can be started promptly by irradiation with ultraviolet rays having a peak wavelength in the range of 300 to 400 nm.
  • the ultraviolet irradiation device 110 is not particularly limited as long as it can irradiate ultraviolet rays having a peak wavelength in the range of 300 to 400 nm, but is an irradiation device including the ultraviolet LED 90 as a light source for the following reasons. Is preferred.
  • the ultraviolet LED 90 has features such as low power consumption, long life, less heat generation, small size, and a narrow emission spectrum width (50 nm or less) compared to an ultraviolet lamp.
  • Toxic ozone is not generated in the irradiation device 110 using an ultraviolet LED that emits ultraviolet light (UV-A light) of 315 to 380 nm as a light source.
  • UV-A light ultraviolet light
  • the irradiation apparatus 110 which uses ultraviolet LED90 as a light source does not require a local exhaust apparatus.
  • the irradiation device 110 using the ultraviolet LED 90 as a light source generates little heat. For this reason, the irradiation apparatus 110 does not require a large cooling facility.
  • the thickness of the ultraviolet irradiation section can be reduced as compared with the irradiation device 110 using the ultraviolet lamp 90, and the distance between the film and the light source can be shortened. For this reason, size reduction of the irradiation apparatus 110 is possible. Furthermore, the irradiation device 110 using the ultraviolet LED 90 as a light source can reduce maintenance costs from the viewpoint of low power consumption and long life. Further, the irradiation device 110 generates less heat than a conventional ultraviolet lamp. For this reason, the temperature rise of the film 400 is sufficiently suppressed, and there is no possibility of damaging the package 70.
  • FIG. 5 is a partial cross-sectional view showing one step in the second embodiment of the method for manufacturing a package according to the present invention.
  • the same or equivalent components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • the deoxidizing film 400 is irradiated with ultraviolet rays having a peak wavelength in the range of 300 to 400 nm by using the irradiation device 110. It differs from the manufacturing method of the first embodiment in that oxygen absorption is started and the package 80 is obtained.
  • FIG. 4 after unwinding from the roll 1 and irradiating the film 400 before wrapping the package object 70 with ultraviolet rays without wrapping the package object 70 with the film 400, FIG. As described above, the film 400 is irradiated with ultraviolet rays on the transport line 120d in FIG. 4 to start oxygen absorption.
  • ultraviolet absorption having a peak wavelength in the range of 300 to 400 nm is irradiated to start oxygen absorption in the oxygen-absorbing resin composition. Ozone generation can be prevented. For this reason, the irradiation apparatus 110 does not require a local exhaust apparatus. Further, the irradiation device 110 generates less heat. For this reason, a large cooling facility is not required. As a result, the manufacturing facility for the package 80 can be reduced in size. Further, oxygen absorption can be started promptly by irradiation with ultraviolet rays having a peak wavelength in the range of 300 to 400 nm.
  • the object to be packaged 70 may be packaged by the film 400 and the film 400 may be irradiated with ultraviolet rays after being heat sealed, or the object to be packaged 70 may be packaged by the film 400 and irradiated with ultraviolet rays. Later, the film 400 may be heat sealed. In other words, the process of heat sealing the film 400 may be performed between the packaging process and the ultraviolet irradiation process, or may be performed after the ultraviolet irradiation process.
  • ultraviolet is preferably irradiated with 2 mW / cm 2 or more illumination, it is more preferable to irradiate at 10 mW / cm 2 or more illumination. In this case, oxygen absorption can be started promptly by ultraviolet irradiation for a shorter time than when the illuminance is out of the above range. However, it is preferable to irradiate ultraviolet rays with an illuminance of 10,000 mW / cm 2 or less.
  • Such irradiation with high-intensity ultraviolet rays is particularly effective when applied to an oxygen-absorbing resin composition containing an initiator, a transition metal catalyst, an easily oxidizable resin, a photosensitizer and a reaction accelerator.
  • Example 1 An initiator composed of 9-fluorenone (hereinafter referred to as “FL”), cobalt octylate (cobalt content 8 wt%, hereinafter referred to as “Co octylate”) and synthetic calcium silicate (hereinafter referred to as “ MCE ”) was mixed at a mass ratio of 0.45 to 1.7 to 0.85 to obtain a powder.
  • PBR syndiotactic 1,2-polybutadiene
  • An oxygen-absorbing resin composition was prepared by melt-kneading at 0 ° C. (FL 0.024 mmol / g).
  • the produced oxygen-absorbing resin composition was formed into a single-layer film having a thickness of 80 ⁇ m by a hot press.
  • the oxygen absorption performance of the single layer film was evaluated as follows. First, a single-layer film was cut into a size of 50 mm ⁇ 60 mm, and irradiated with ultraviolet rays from an ultraviolet irradiation section (100 ultraviolet LEDs arranged in 50 cm 2 ) of an irradiation device using ultraviolet LEDs (peak wavelength: 375 nm) as a light source (film) And distance of light source 1 cm, illuminance 30 mW / cm 2 ).
  • Example 2 Powder prepared by mixing an initiator composed of 2,4-diethylthioxanthen-9-one (hereinafter referred to as “DETX”), Co octylate and MCE at a mass ratio of 0.45 to 1.7 to 0.85 Got.
  • DETX 2,4-diethylthioxanthen-9-one
  • This powder and the easily oxidizable thermoplastic resin of Example 1 were mixed at a mass ratio of 3.0 to 100, and a single-layer film made of an oxygen-absorbing resin composition was produced in the same manner as in Example 1 (DETX 0. 016 mmol / g).
  • the oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1.
  • Example 3 An initiator composed of 2-isopropylthioxanthone (hereinafter referred to as “ITX”), Co octylate and MCE were mixed at a mass ratio of 0.45 to 1.7 to 0.85 to obtain a powder.
  • This powder and the easily oxidizable thermoplastic resin of Example 1 were mixed at a mass ratio of 3.0 to 100, and a single-layer film made of an oxygen-absorbing resin composition was produced in the same manner as in Example 1 (ITX 0. 017 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. These results are shown in Table 1.
  • Example 4 An initiator composed of FL, a sensitizer composed of DETX, Co octylate and MCE were mixed at a mass ratio of 0.45 to 0.45 to 1.7 to 0.85 to obtain a powder.
  • This powder and the easily oxidizable thermoplastic resin of Example 1 were mixed at a mass ratio of 3.45 to 100, and a single-layer film made of an oxygen-absorbing resin composition was produced in the same manner as in Example 1 (FL 0. 024 mmol / g, DETX 0.016 mmol / g).
  • the oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1.
  • Example 5 An initiator composed of FL, a sensitizer composed of ITX, Co octylate and MCE were mixed at a mass ratio of 0.45 to 0.45 to 1.7 to 0.85 to obtain a powder.
  • This powder and the easily oxidizable thermoplastic resin of Example 1 were mixed at a mass ratio of 3.45 to 100, and a single-layer film made of an oxygen-absorbing resin composition was produced in the same manner as in Example 1 (FL 0. 024 mmol / g, ITX 0.017 mmol / g).
  • the oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. These results are shown in Table 1. From Examples 4 and 5, it was shown that the oxygen absorption performance was improved by mixing the initiator and the sensitizer at the same time.
  • Example 6 An initiator composed of FL, Cooctylate Co and MCE were mixed at a mass ratio of 0.45 to 1.7 to 0.85 to obtain a powder.
  • This powder a reaction accelerator composed of the easily oxidizable thermoplastic resin of Example 1 and a styrene-butadiene-styrene block copolymer (hereinafter referred to as “SBS”) were mixed at a mass ratio of 3.0: 90: 10.
  • SBS styrene-butadiene-styrene block copolymer
  • Example 7 An initiator composed of FL, Co octylate and MCE were mixed at a mass ratio of 0.45 to 1.7 to 0.85 to obtain a powder.
  • a reaction accelerator comprising this powder, the easily oxidizable thermoplastic resin of Example 1 and a styrene-ethylenebutylene-olefin crystal block copolymer (hereinafter referred to as “SEBC”) was used in a mass ratio of 3.0: 80: 20.
  • SEBC styrene-ethylenebutylene-olefin crystal block copolymer
  • Example 8 An initiator consisting of DETX, Co octylate and MCE were mixed in a mass ratio of 0.45 to 1.7 to 0.85 to obtain a powder.
  • This powder, an easily oxidizable thermoplastic resin of Example 1 and a reaction accelerator composed of SEBC were mixed at a mass ratio of 3.0 to 80:20, and a single unit made of an oxygen-absorbing resin composition was mixed in the same manner as in Example 1.
  • a layer film was prepared (DETX 0.016 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. These results are shown in Table 1.
  • Example 9 An initiator composed of ITX, Co octylate and MCE were mixed at a mass ratio of 0.45 to 1.7 to 0.85 to obtain a powder.
  • This powder, an easily oxidizable thermoplastic resin of Example 1 and a reaction accelerator composed of SEBC were mixed at a mass ratio of 3.0 to 80:20, and a single unit made of an oxygen-absorbing resin composition was mixed in the same manner as in Example 1.
  • a layer film was prepared (ITX 0.017 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. These results are shown in Table 1. From Examples 6 to 9, it was shown that the oxygen absorption performance was improved by adding a reaction accelerator.
  • Example 10 An initiator composed of FL, a sensitizer composed of DETX, Co octylate and MCE were mixed at a mass ratio of 0.45 to 0.45 to 1.7 to 0.85 to obtain a powder.
  • a layer film was prepared (FL 0.024 mmol / g, DETX 0.016 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. These results are shown in Table 1.
  • Example 11 An initiator composed of FL, a sensitizer composed of ITX, Co octylate and MCE were mixed at a mass ratio of 0.45 to 0.45 to 1.7 to 0.85 to obtain a powder.
  • a layer film was prepared (FL 0.024 mmol / g, ITX 0.017 mmol / g).
  • the oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. These results are shown in Table 1. From Examples 10 and 11, it was shown that the oxygen absorption performance was further improved by blending the initiator, the sensitizer and the reaction accelerator at the same time.
  • Example 1 The easily oxidizable thermoplastic resin used in Example 1 was melt-kneaded at 140 ° C. using a biaxial kneading extruder to prepare a resin composition. Moreover, the produced resin composition was made into the single layer film of thickness 80micrometer with the heat press. When the oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1, oxygen absorption did not start even after 10 days. These results are shown in Table 1.
  • Example 2 Cots octylate and MCE were mixed at a mass ratio of 1.7 to 0.85 to obtain a powder.
  • This powder and the easily oxidizable thermoplastic resin of Example 1 were mixed at a mass ratio of 2.55 to 100, and a single layer film made of the resin composition was produced in the same manner as in Example 1.
  • oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1, oxygen absorption did not start even after 10 days.
  • Example 12 An initiator composed of FL, a sensitizer composed of DETX, Co octylate and MCE were mixed at a mass ratio of 0.15 to 0.22 to 1.7 to 0.85 to obtain a powder.
  • a layer film was prepared (FL 0.008 mmol / g, DETX 0.008 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 13 An initiator composed of FL, a sensitizer composed of ITX, Co octylate and MCE were mixed at a mass ratio of 0.15 to 0.22 to 1.7 to 0.85 to obtain a powder.
  • a layer film was prepared (FL 0.008 mmol / g, ITX 0.008 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 14 An initiator composed of FL, a sensitizer composed of ITX, Co octylate and MCE were mixed at a mass ratio of 0.15 to 0.22 to 1.7 to 0.85 to obtain a powder.
  • a layer film was prepared (FL 0.008 mmol / g, ITX 0.008 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 15 An initiator composed of benzophenone (referred to as “BP”), Co octylate and MCE were mixed at a mass ratio of 0.89 to 1.7 to 0.85 to obtain a powder.
  • This powder and the easily oxidizable thermoplastic resin of Example 1 were mixed at a mass ratio of 3.44 to 100, and a single-layer film made of an oxygen-absorbing resin composition was produced in the same manner as in Example 1 (BP 0. 047 mmol / g).
  • the single layer film was irradiated with ultraviolet rays from the irradiation apparatus described in Example 1 (distance between the film and the light source: 1 cm, illuminance: 30 mW / cm 2 ).
  • Example 16 An initiator composed of 4-phenylbenzophenone (hereinafter referred to as “PBP”), Co octylate and MCE were mixed at a mass ratio of 0.45 to 1.7 to 0.85 to obtain a powder.
  • PBP 4-phenylbenzophenone
  • Co octylate and MCE were mixed at a mass ratio of 3.0 to 100, and a single-layer film made of an oxygen-absorbing resin composition was produced in the same manner as in Example 1 (PBP 0. 017 mmol / g).
  • the oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 15.
  • Example 17 An initiator composed of BP, a sensitizer composed of DETX, Co octylate and MCE were mixed at a mass ratio of 0.45 to 0.45 to 1.7 to 0.85 to obtain a powder.
  • This powder and the easily oxidizable thermoplastic resin of Example 1 were mixed at a mass ratio of 3.45 to 100, and a single-layer film made of an oxygen-absorbing resin composition was produced in the same manner as in Example 1 (BP 0. 024 mmol / g, DETX 0.016 mmol / g).
  • the oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1.
  • Example 18 An initiator composed of PBP, a sensitizer composed of DETX, Co octylate and MCE were mixed at a mass ratio of 0.45 to 0.45 to 1.7 to 0.85 to obtain a powder.
  • This powder and the easily oxidizable thermoplastic resin of Example 1 were mixed at a mass ratio of 3.45 to 100, and a single layer film made of an oxygen-absorbing resin composition was produced in the same manner as in Example 1 (PBP 0. 017 mmol / g, DETX 0.016 mmol / g).
  • the oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1.
  • Example 19 An initiator composed of PBP, a sensitizer composed of DETX, Co octylate and MCE were mixed at a mass ratio of 0.45 to 0.45 to 1.7 to 0.85 to obtain a powder.
  • Layer films were prepared (PBP 0.017 mmol / g, DETX 0.016 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. These results are shown in Table 2.
  • Example 20 An initiator composed of PBP, a sensitizer composed of ITX, Co octylate and MCE were mixed at a mass ratio of 0.45 to 0.45 to 1.7 to 0.85 to obtain a powder.
  • Layer films were prepared (PBP 0.017 mmol / g, ITX 0.017 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. These results are shown in Table 2.
  • Example 21 An initiator composed of FL, a sensitizer composed of anthracene (hereinafter referred to as "ANT"), Co octylate and MCE were mixed at a mass ratio of 0.45 to 0.45 to 1.7 to 0.85. A powder was obtained. This powder, an easily oxidizable thermoplastic resin of Example 1 and a reaction accelerator composed of SEBC were mixed at a mass ratio of 3.45 to 80:20, and a single unit composed of an oxygen-absorbing resin composition was then prepared in the same manner as in Example 1. A layer film was prepared (FL 0.024 mmol / g, ANT 0.024 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 22 An initiator composed of 2,3,5,6-tetrachloro-1,4-benzoquinone (hereinafter referred to as "TCBQ"), Co octylate and MCE were added at a mass ratio of 0.45 to 1.7 to 0.85. To obtain a powder. This powder, an easily oxidizable thermoplastic resin of Example 1 and a reaction accelerator composed of SEBC were mixed at a mass ratio of 3.0 to 80:20, and a single unit made of an oxygen-absorbing resin composition was mixed in the same manner as in Example 1. A layer film was prepared (TCBQ 0.018 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 23 An initiator composed of TCBQ, a sensitizer composed of ITX, Co octylate and MCE were mixed at a mass ratio of 0.45 to 0.45 to 1.7 to 0.85 to obtain a powder.
  • a layer film was prepared (TCBQ 0.018 mmol / g, ITX 0.017 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 24 Initiator consisting of Irgacure 2959 (manufactured by Ciba Specialty Chemicals, hereinafter referred to as “IRGA”), sensitizer consisting of ITX, Co octylate and MCE in a mass ratio of 0.45 to 0.45 to 1.7 pairs Mixing at 0.85 gave a powder.
  • This powder, an easily oxidizable thermoplastic resin of Example 1 and a reaction accelerator composed of SEBC were mixed at a mass ratio of 3.45 to 80:20, and a single unit composed of an oxygen-absorbing resin composition was then prepared in the same manner as in Example 1.
  • a layer film was prepared (IRGA 0.019 mmol / g, ITX 0.017 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 1. The results are shown in Table 2.
  • Example 25 An initiator composed of FL, a sensitizer composed of DETX, Co octylate and MCE were mixed at a mass ratio of 0.29 to 0.45 to 1.7 to 0.85 to obtain a powder.
  • a layer film was prepared (FL 0.016 mmol / g, DETX 0.016 mmol / g).
  • This single-layer film was cut into a size of 50 ⁇ 60 mm, and irradiated with ultraviolet rays from an ultraviolet irradiation section (165 ultraviolet LEDs arranged at 50 cm 2 ) of an irradiation apparatus using ultraviolet LEDs (peak wavelength: 375 nm) as a light source (film) And distance of light source 1 cm, illuminance 90 mW / cm 2 ).
  • Each film irradiated with ultraviolet rays for 1 second was sealed in an oxygen barrier bag made of silica-deposited PET together with 240 mL of air, and left under conditions of 25 ° C. and 60% RH to obtain initial oxygen. Absorption was measured. The results are shown in Table 3.
  • Example 26 An initiator composed of FL, a sensitizer composed of ITX, Co octylate and MCE were mixed at a mass ratio of 0.29 to 0.45 to 1.7 to 0.85 to obtain a powder.
  • a layer film was prepared (FL 0.016 mmol / g, ITX 0.017 mmol / g). The oxygen absorption performance of this single layer film was evaluated in the same manner as in Example 25. The results are shown in Table 3.
  • oxygen-absorbing resin composition of the present invention is not limited, and the oxygen-absorbing resin composition of the present invention is used for storage and quality maintenance of foods, beverages, pharmaceuticals, medical products, cosmetics, metal products, electronic products, etc. Deoxygenation performance that is highly practical in the field can be exhibited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Packages (AREA)
  • Wrappers (AREA)
  • Containers And Plastic Fillers For Packaging (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明は、酸素吸収を開始させるための紫外線照射装置を小型化でき、特定波長の紫外線照射で速やかに酸素吸収を開始する酸素吸収性樹脂組成物を提供する。本発明は、開始剤、遷移金属触媒、易酸化性樹脂を含む酸素吸収性樹脂組成物であって、ピーク波長が300~400nmの範囲にある紫外線照射によって酸素吸収を開始する酸素吸収性樹脂組成物である。

Description

酸素吸収性樹脂組成物及びこれを用いた包装体の製造方法
 本発明は、特定波長の紫外線照射によって酸素吸収を開始することを特徴とする酸素吸収性樹脂組成物に関する。本発明の酸素吸収性樹脂組成物は、脱酸素剤または酸素吸収性容器の全体もしくは一部に使用することができる。
 食品、飲料、医薬品、医療品、化粧品、金属製品、電子製品に代表される、酸素の影響を受けて変質あるいは劣化し易い各種物品の酸素による酸化を防止し長期に保存する目的で、これらを収納した包装容器や包装袋内の酸素除去を行う脱酸素剤が使用されている。この脱酸素剤として初期に開発され現在も多く使用されている形態は、鉄粉やアスコルビン酸などからなる脱酸素剤を通気性の小袋に詰めたものである。
 近年は、より取扱いが容易で適用範囲が広く誤食の可能性が極めて小さいフィルム状の脱酸素剤も利用されるようになってきた。フィルム状の脱酸素剤に関して、その酸素吸収性組成物およびフィルム構成について多くの提案がなされている。例えば樹脂に鉄粉やアスコルビン酸などからなる脱酸素剤を配合してフィルムやシート等に成形し、一方の側に熱融着性を有する隔離層を積層し、他方の側にガスバリヤー層を積層した基本的な脱酸素性多層体が知られている(特許文献1)。また、酸化可能な有機成分または樹脂成分および遷移金属触媒からなる層を含む包装用フィルムも知られている(特許文献2、3)。さらに、有機物からなる脱酸素剤が酸化に伴い発生する臭気を抑制するために、ゼオライトなどの吸着剤を酸素吸収性組成物に含有させることや、吸着剤を含む層を積層した脱酸素性多層フィルムとすること、あるいは中和剤としての塩基を含む層を積層した脱酸素性多層フィルムとすることが提案されている(特許文献4~6)。
 鉄粉を脱酸素剤として配合したフィルムは水分をトリガーとして酸素吸収を開始させる。一方、被酸化性樹脂に触媒および開始剤としてベンゾフェノンを配合させた酸素吸収性樹脂組成物を含むフィルムに、波長200~280nmの紫外線(UV-C光)を照射して酸素吸収を開始する方法が提案されている(特許文献7)。
特開昭55-90535号公報 特許第2991437号公報 特許第3183704号公報 特開平05-247276号公報 特開平06-100042号公報 特許第3306071号公報 特許第3897364号公報
 本発明者らは、UV-C光を照射して酸素吸収を開始する方法について以下の課題を見出した。
 まずこれまで主に低圧水銀灯等の紫外線ランプを光源とする照射装置が広く用いられてきた。しかし、紫外線ランプからの照射では、有毒なオゾンが発生する。これに伴い、オゾンを除去するための局所排気装置が必要となり、かつ発熱が大きく冷却設備が必要となる。その結果、照射装置が大型化してしまう。また、紫外線照射は包装ライン上で行う方が省力化の点で望ましい。しかし、紫外線ランプにより照射する場合には、このような大型の照射装置を包装ラインに組み込む必要があり、設置面積、維持費用などの点で問題がある。
 本発明は、酸素吸収を開始させるための紫外線照射装置を小型化でき、特定波長の紫外線照射によって速やかに酸素吸収を開始する酸素吸収性樹脂組成物を提供することを課題とする。
 本発明者らは、上記課題を解決するために鋭意検討した結果、酸素吸収を開始させるための紫外線照射装置を小型化でき、特定波長の紫外線照射、特に紫外線LEDを光源とする照射装置による紫外線照射により、速やかに酸素吸収を開始することを見いだし、本発明に到達した。
 すなわち、本発明は、開始剤、遷移金属触媒及び易酸化性樹脂を含む酸素吸収性樹脂組成物であって、ピーク波長が300~400nmの範囲にある紫外線照射によって酸素吸収を開始する酸素吸収性樹脂組成物である。
 この酸素吸収性樹脂組成物によれば、酸素吸収を開始させるための紫外線照射装置を小型化でき、ピーク波長が300~400nmの範囲にある紫外線照射によって速やかに酸素吸収を開始させることができる。
 また、紫外線照射を、紫外線LEDを光源とする照射装置を用いて行うことが好ましい。
 紫外線LEDは、紫外線ランプと比較し、低消費電力、長寿命、発熱が少ない、小型である、発光スペクトルの幅が狭い(50nm以下)という特長を有している。315~380nmの紫外線(UV-A光)を発光する紫外線LEDを光源とする照射装置では有毒なオゾンが発生しない。このため、紫外線LEDを光源とする照射装置は局所排気装置を必要としない。また紫外線LEDを光源とする照射装置では発熱も少ない。このため、紫外線LEDを光源とする照射装置はチラーやブロワー等の大きな冷却設備を必要としない。また紫外線LEDを光源とする照射装置は、紫外線ランプを用いた照射装置と比較し紫外線照射部の厚みを薄くすることができ、かつフィルムと光源との距離を短くすることができる。このため、照射装置の小型化が可能である。さらに紫外線LEDを光源とする照射装置は低消費電力、長寿命の点から、維持費用を低減することも可能である。
 上記酸素吸収性樹脂組成物はさらに増感剤を含有することが好ましい。この酸素吸収性樹脂組成物は、増感剤を含まない場合に比べてより速やかに酸素吸収を開始させることが可能となる。
 前記開始剤は、具体的には、300~400nmの紫外線照射によって、または300~400nmの紫外線照射により励起された前記増感剤から移動したエネルギーによって励起され、前記易酸化性樹脂の酸化反応を開始させる起点となる物質である。
 前記開始剤が芳香族ケトンであり、前記増感剤がチオキサントン類であることが好ましい。この場合、酸素吸収をより効率的に開始させることができる。
 上記酸素吸収性樹脂組成物は、反応促進材を含有することが好ましい。この酸素吸収性樹脂組成物は、反応促進材を含まない場合に比べてより速やかに酸素吸収を開始させることが可能となる。特に上記酸素吸収性樹脂組成物が増感剤及び反応促進材をさらに含むことが好ましい。この場合、上記酸素吸収性樹脂組成物が増感剤及び反応促進材を含まない場合に比べて、より速やかに酸素吸収を開始させることができる。
 前記反応促進材は、ベンジル基を含む重合体であることが好ましい。この場合、反応促進材がベンジル基を有しており、このベンジル基の水素は引き抜かれ易いため、ラジカルになりやすい。このため、酸素吸収をより速やかに開始させることができる。
 ベンジル基を含む重合体は、例えばスチレンに対応する構成単位を含む共重合体である。
 また本発明は、上述した酸素吸収性樹脂組成物を含有する脱酸素層を含む脱酸素性のシートまたはフィルムである。
 また本発明は、被包装物を包装する包装体の製造方法であって、上記脱酸素性のシートまたはフィルムに、ピーク波長が300~400nmの範囲にある紫外線を照射して、前記酸素吸収性樹脂組成物における酸素吸収を開始させる紫外線照射工程と、前記シートまたはフィルムで前記被包装物を包装する包装工程とを含む、包装体の製造方法である。
 上記の製造方法によれば、ピーク波長が300~400nmの範囲にある紫外線を照射して酸素吸収性樹脂組成物において酸素吸収を開始させるため、有害なオゾンの発生を防止することができる。このため、紫外線照射装置は局所排気装置を必要としない。また紫外線照射装置では発熱も少なくなる。このため大きな冷却設備を必要としない。その結果、包装体の製造設備を小型化することができる。また、ピーク波長が300~400nmの範囲にある紫外線照射によって速やかに酸素吸収を開始させることもできる。
 上記製造方法においては、前記包装工程の前に前記紫外線照射工程が行われることが好ましい。この場合、包装工程の前に紫外線照射工程が行われるため、被包装物に紫外線照射によるダメージを与える恐れがなくなる。
 上記製造方法において、前記紫外線照射工程が、紫外線LEDを光源とする照射装置を用いて行われることが好ましい。紫外線LEDは、紫外線ランプと比較し、低消費電力、長寿命、発熱が少ない、小型である、発光スペクトルの幅が狭い(50nm以下)という特長を有している。315~380nmの紫外線(UV-A光)を発光する紫外線LEDを光源とする照射装置では有毒なオゾンが発生しない。このため、紫外線LEDを光源とする照射装置は局所排気装置を必要としない。また紫外線LEDを光源とする照射装置では発熱も少ない。このためチラーやブロワー等の大きな冷却設備を必要としない。また紫外線LEDを光源とする照射装置は、紫外線ランプを用いた照射装置と比較し紫外線照射部の厚みを薄くすることができ、かつフィルムと光源との距離を短くすることができる。このため、照射装置の小型化が可能である。さらに紫外線LEDを光源とする照射装置は低消費電力、長寿命の点から、維持費用を低減することも可能である。さらに、照射装置は、従来の紫外線ランプに比べ発熱が少ない。このため、フィルムの温度上昇が十分に抑制され、被包装物にダメージを与える恐れがなくなる。
 前記紫外線照射工程において、前記シートまたはフィルムに、2mW/cm以上の照度の紫外線を照射することが好ましい。
 この場合、照度が上記範囲を外れる場合に比べてより短時間の紫外線照射により、酸素吸収を速やかに開始させることができる。
 本発明によれば、酸素吸収を開始させるための紫外線照射装置を小型化でき、特定波長の紫外線照射によって速やかに酸素吸収を開始させることが可能な酸素吸収性樹脂組成物及びこれを用いた包装体の製造方法が提供される。
本発明に係る脱酸素性のシートまたはフィルムの一実施形態を示す断面図である。 本発明に係る脱酸素性のシートまたはフィルムの他の実施形態を示す断面図である。 本発明に係る脱酸素性のシートまたはフィルムのさらに他の実施形態を示す断面図である。 本発明に係る包装体の製造方法の一実施形態における一工程を示す概略図である。 本発明に係る包装体の製造方法の他の実施形態における一工程を示す部分断面図である。
 本明細書において「脱酸素」とは密閉された環境中の酸素濃度が0.1vol%以下となることを意味し、「脱酸素剤」とは脱酸素状態を実現させることを目的として使用される薬剤、材料等を意味する。また、「脱酸素性」とは「脱酸素剤としての機能を有する」と同義である。さらに、「酸素吸収」とは到達酸素濃度に関わらず、薬剤、材料等が環境中の酸素を取り込むことを意味する。また「酸素吸収を開始する」とは、紫外線を照射してから24時間後の酸素吸収量が1mL/g以上となることを意味する。
 本発明の酸素吸収性樹脂組成物に用いられる易酸化性熱可塑性樹脂には、炭素と炭素が二重結合で結合した部分を有する有機高分子化合物、第3級炭素原子に結合した水素原子を有する有機高分子化合物、ベンジル基を有する有機高分子化合物を用いることができる。炭素と炭素が二重結合で結合した部分を有する有機高分子化合物における炭素-炭素二重結合は高分子の主鎖にあっても良いし、側鎖にあっても良い。代表例として1,4-ポリブタジエン、1,2-ポリブタジエン、1,4-ポリイソプレン、3,4-ポリイソプレン、スチレンブタジエンゴム、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、エチレン/アクリル酸メチル/アクリル酸シクロヘキセニルメチル共重合体等が挙げられる。また、第3級炭素原子に結合した水素原子を有する有機高分子化合物として、ポリプロピレン、ポリメチルペンテン等が挙げられる。ベンジル基を有する有機高分子化合物として水添スチレンブタジエンゴム、水添スチレンイソプレンゴム等が挙げられる。これらのうち好ましくは、炭素と炭素が二重結合で結合した部分を有する有機高分子化合物であり、より好ましくは、1,2-ポリブタジエンである。
 本発明の遷移金属触媒は遷移金属の塩や酸化物等の金属化合物である。遷移金属としては、マンガン、鉄、コバルト、ニッケル、銅が好適であり、マンガン、鉄、コバルトが優れた触媒作用を示すため特に好適である。遷移金属の塩には、遷移金属の鉱酸塩および脂肪酸塩が含まれる。鉱酸塩としては、例えば遷移金属の塩酸塩、硫酸塩および硝酸塩が挙げられる。脂肪酸塩としては、例えば酢酸塩及び高級脂肪酸塩が挙げられる。高級脂肪酸塩の代表例としては、オクチル酸コバルト、オクチル酸マンガン、ナフテン酸マンガン、ナフテン酸鉄、ステアリン酸コバルト及びネオデカン酸コバルト等があげられる。
 扱い易さの点から、遷移金属触媒は、担体に担持することが好ましい。担体の種類は、特に限定されないが、ゼオライト、珪藻土、ケイ酸カルシウム類などを用いることができる。特に、触媒調製時および調製後の大きさが0.1~200μmの凝集体が、取扱い性が良いため好ましい。特に、樹脂中に分散した際に10~100nmである担体が、樹脂に配合した際に透明な樹脂組成物を与えるため好ましい。このような担体として、合成ケイ酸カルシウムが例示される。遷移金属触媒の配合割合は、酸素吸収性能、物理強度および経済性から、酸素吸収性樹脂組成物中の金属原子重量として0.001~10wt%であることが好ましく、0.01~1wt%であることが特に好ましい。
 本発明の開始剤は、300~400nmの紫外線照射によって、または300~400nmの紫外線照射により励起された増感剤から移動したエネルギーによって励起され、易酸化性樹脂または反応促進材の酸化反応を開始させる起点となる物質である。本発明においては、水素引き抜き型または分子内開裂型の開始剤を用いる。水素引き抜き型の開始剤では、励起された開始剤分子が易酸化性樹脂又は反応促進材から水素を引き抜いて活性なラジカルを生じさせ、酸化反応を開始させる。また、分子内開裂型の開始剤では、励起された開始剤分子がα―開裂してラジカルを生じ、このラジカルがさらに易酸化性樹脂又は反応促進材から水素を引き抜いて活性なラジカルを生じさせることにより酸化反応が進行する。水素引き抜き型開始剤の代表例としては、ベンゾフェノン類、チアジン類、金属ポルフィリン類、アントラキノン類、キサントン類、チオキサントン類、フルオレノン類、ベンゾキノン類等があげられる。好ましくは、フルオレノン類、チオキサントン類、アントラキノン類である。分子内開裂型開始剤の代表例としては、α―ヒドロキシケトン類(イルガキュア127、イルガキュア184、イルガキュア2959等)、ベンジルケタール類(イルガキュア651等)、アシルホスフィンオキサイド類(ダロキュアTPO、イルガキュア819等)、オキシムエステル類(イルガキュアOXE01、イルガキュアOXE02等)が挙げられる。中でも、α―ヒドロキシケトン類、アシルホスフィンオキサイド類が好ましい。開始剤の配合割合は、酸素吸収性樹脂組成物中、0.001~10wt%であることが好ましく、0.01~1wt%であることが特に好ましい。開始剤の配合割合が上記範囲内にあると、上記範囲を外れる場合に比べて酸素吸収をより速やかに開始させることができ、かつ酸素吸収性樹脂組成物中の開始剤の量を必要十分量とすることができる。
 照射する紫外線は、ピーク波長が300~400nmの範囲にあり、315~380nmの範囲にある事が好ましい。ピーク波長が300nm未満では有毒のオゾンを発生するので好ましくなく、ピーク波長が400nmを超えると酸素吸収を開始する事が出来ない為好ましくない。
 本発明の増感剤は、光増感を起こさせる物質であり、紫外線が照射されることにより生成した励起状態の分子が化学反応をせずに他の分子に励起エネルギーを移し、その結果その分子にエネルギー移動、電子移動、水素引抜き反応などの光化学反応を起こさせる役割を担う。また、本発明の増感剤は、300~400nmの紫外線を吸収して励起一重項状態となり、項間交差を経て励起三重項状態となる物質から選択する。増感剤の代表例としては、ベンゾフェノン類、チオキサントン類、アントラキノン類、アントラセン類があげられ、チオキサントン類が好ましい。増感剤の配合割合は、酸素吸収性樹脂組成物中、0.001~10wt%であることが好ましく、0.01~1wt%であることが特に好ましい。増感剤の代表例にあげた物質は、単独で用いた場合は開始剤としての機能も有するが、照射される紫外線の波長と、増感剤の最大吸収波長およびモル吸収係数、励起三重項エネルギー等を考慮して2種以上の物質を増感剤と開始剤として組み合わせて使用することもできる。2種以上の物質を組み合わせて使用する場合は、励起三重項エネルギーがより高い物質が増感剤として機能し、もう一方の物質が開始剤として機能する。また、増感剤の励起三重項エネルギーは開始剤の励起三重項エネルギーより10~15kJ/mol高いことが好ましい。増感剤と開始剤の組み合わせを適切に選択することで、効率的に酸素吸収を開始させることが出来、特に、開始剤に芳香族ケトンを、増感剤にチオキサントン類を用いる組合せが好ましい。ここで、芳香族ケトンがフルオレノン類であることがより好ましい。この場合、酸素吸収をより一層効率的に開始させることができる。
 本発明の反応促進材とは、酸素吸収性樹脂組成物に混合することにより、効率的に酸素吸収を開始させる物質である。反応促進材としては、ベンジル基を含む重合体が好ましい。ベンジル基を含む重合体は、ベンジル基を有しており、このベンジル基の水素は引き抜かれ易いため、ラジカルになりやすい。このため、酸素吸収がより速やかに開始される。ベンジル基を含む重合体としては、例えばスチレンに対応する構成単位を含む共重合体が挙げられる。スチレンに対応する構成単位を含む共重合体の代表例としては、水添スチレンブタジエンゴム(HSBR)、スチレン-エチレンブチレン-スチレンブロック共重合体(SEBS)、スチレン-エチレンブチレン-オレフィン結晶ブロック共重合体(SEBC)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)があげられる。反応促進材の配合割合は、酸素吸収性樹脂組成物中、1~50wt%であることが好ましく、5~30wt%であることが特に好ましい。この場合、反応促進材の配合割合が上記範囲を外れる場合に比べて、酸素吸収をより速やかに開始させることができる。
 本発明の酸素吸収性樹脂組成物は、易酸化性熱可塑性樹脂、遷移金属触媒および開始剤を含む樹脂組成物を押出成形機等を用いた溶融混練によりペレット状、フィルム状またはシート状の酸素吸収剤とすることができる。その使用形態は、ペレット状もしくはフィルム状その他の小片状に加工した脱酸素剤、または、これを通気性小袋に入れた形態の脱酸素剤包装体として用いることができる。また、前記小片をラベル、カード、パッキングなどの形態に成形して、脱酸素体として用いることができる。
 さらに、本発明の酸素吸収性樹脂組成物は、そのまま、または適当な包装材料と積層することにより、脱酸素性の包装材料として包装袋または包装容器の一部もしくは全部に用いることができる。例えば、図1に示すように、本発明の酸素吸収性樹脂組成物を脱酸素層10とし、一方の側に酸素透過性が高く、かつ熱融着性を兼ね備えた熱可塑性樹脂を、包装される内容物との隔離層20として積層し、他方の側に酸素透過性が低い樹脂、金属または金属酸化物をガスバリヤー層30として積層して、フィルム状またはシート状の脱酸素性多層体100とすることができる。脱酸素性多層体100に含まれる脱酸素層10の厚みは、300μm以下であることが好ましく、10~200μmであることがより好ましい。
 本発明の酸素吸収性樹脂組成物は、透明にすることができる。したがって、本発明の酸素吸収性樹脂組成物は、透視性を有する包装材料として、好適である。特に、図2に示すように、ポリオレフィン層40/本発明の酸素吸収性樹脂組成物からなる脱酸素層10/透明ガスバリヤー性樹脂層50を基本構成とする脱酸素性多層体200は、透明な脱酸素性包装材料として使用できる。透明ガスバリヤー性樹脂層50としては、シリカもしくはアルミナを蒸着したポリエステルもしくはポリアミド、ナイロンMXD6、エチレン-ビニルアルコール共重合体または塩化ビニリデンからなる層を例示することができる。
 また、上記の酸素吸収性樹脂組成物は、乾燥剤、吸着剤、抗菌剤、着色剤から選んだ一種以上と混合することにより、酸素吸収機能と乾燥機能などの他の機能を併せ持つ組成物にすることができる。また、酸素吸収性樹脂組成物からなる脱酸素層10と、乾燥剤、吸着剤、抗菌剤、着色剤から選んだ一種以上を含有する層60を含む多層体300とすることもできる。
 次に、本発明の包装体の製造方法の第1実施形態について図4を用いて説明する。図4は、本発明の包装体の製造方法の第1実施形態における一工程を示す概略図である。
 まず図4に示すように、ロール1に巻かれた脱酸素性のシートまたはフィルム(以下、単に「フィルム」と呼ぶ)400を繰り出し、紫外線照射装置110によりフィルム400に対して、ピーク波長が300~400nmの範囲にある紫外線を照射して酸素吸収性樹脂組成物における酸素吸収を開始させる(紫外線照射工程)。
 次に、フィルム400を用いて、被包装物70を例えばピロー包装により包装する。具体的には、搬送ライン120aによって搬送されてきた被包装物70を、紫外線を照射されたフィルム400によって包囲する。こうして被搬送物70が包装される(包装工程)。
 被包装物70としては、例えば食品、飲料、医薬品、医療品、化粧品、金属製品、電子製品などの保存および品質保持の必要性の高いものが挙げられる。フィルム400は、上述した酸素吸収性樹脂組成物からなる脱酸素層を含む。
 そして、フィルム400の両縁部をヒートシール装置130aによりヒートシールして筒状体140を形成する。そして、この筒状体140を搬送ライン120b及び120cによってさらに搬送し、ヒートシール装置130bによって、筒状体140のうち被搬送物70の前後の箇所をそれぞれヒートシールした後に切断する。こうして包装体80が得られる。得られた包装体80は例えば搬送ライン120dによって搬送される。ここで、包装体80は通常は袋状体である。また包装体80は通常、密閉されている。
 上記製造方法によれば、ピーク波長が300~400nmの範囲にある紫外線を照射して酸素吸収性樹脂組成物において酸素吸収を開始させるため、有害なオゾンの発生を防止することができる。このため、照射装置110は局所排気装置を必要としない。また照射装置110では発熱も少なくなる。このため、大きな冷却設備を必要としない。その結果、包装体80の製造設備を小型化することができる。また、ピーク波長が300~400nmの範囲にある紫外線照射によって速やかに酸素吸収を開始させることもできる。
 ここで、紫外線の照射装置110は、ピーク波長が300~400nmの範囲にある紫外線を照射することが可能であれば特に限定されないが、以下の理由により紫外線LED90を光源として含む照射装置であることが好ましい。
 紫外線LED90は、紫外線ランプと比較し、低消費電力、長寿命、発熱が少ない、小型である、発光スペクトルの幅が狭い(50nm以下)という特長を有している。315~380nmの紫外線(UV-A光)を発光する紫外線LEDを光源とする照射装置110では有毒なオゾンが発生しない。このため、紫外線LED90を光源とする照射装置110は局所排気装置を必要としない。また紫外線LED90を光源とする照射装置110では発熱も少ない。このため照射装置110は大きな冷却設備を必要としない。また紫外線ランプ90を用いた照射装置110と比較し紫外線照射部の厚みを薄くすることができ、かつフィルムと光源との距離を短くすることができる。このため、照射装置110の小型化が可能である。さらに紫外線LED90を光源とする照射装置110は低消費電力、長寿命の点から、維持費用を低減することも可能である。さらに、照射装置110は、従来の紫外線ランプに比べ発熱が少ない。このため、フィルム400の温度上昇が十分に抑制され、被包装物70にダメージを与える恐れがなくなる。
 次に、本発明の包装体の製造方法の第2実施形態について図5を参照して説明する。図5は、本発明に係る包装体の製造方法の第2実施形態における一工程を示す部分断面図である。なお、本実施形態の説明において、第1実施形態と同一又は同等の構成要素には同一符号を付し、重複する説明を省略する。
 本実施形態は、図4において、被包装物70を包装した後に、脱酸素性のフィルム400に対し、照射装置110を用いることにより、ピーク波長が300~400nmの範囲にある紫外線を照射して酸素吸収を開始させ、包装体80を得る点で第1実施形態の製造方法と相違する。すなわち、本実施形態では、ロール1から繰り出した後、被包装物70を包装する前のフィルム400に対して紫外線を照射せず、被包装物70をフィルム400で包装した後、図5に示すように、図4の搬送ライン120d上でフィルム400に紫外線を照射して酸素吸収を開始させる。
 本実施形態の製造方法によっても、第1実施形態の製造方法と同様、ピーク波長が300~400nmの範囲にある紫外線を照射して酸素吸収性樹脂組成物において酸素吸収を開始させるため、有害なオゾンの発生を防止することができる。このため、照射装置110は局所排気装置を必要としない。また照射装置110では発熱も少なくなる。このため、大きな冷却設備を必要としない。その結果、包装体80の製造設備を小型化することができる。また、ピーク波長が300~400nmの範囲にある紫外線照射によって速やかに酸素吸収を開始させることもできる。
 本実施形態においては、被包装物70がフィルム400によって包装され、フィルム400がヒートシールされた後に紫外線が照射されてもよいし、被包装物70がフィルム400によって包装され、紫外線が照射された後に、フィルム400がヒートシールされてもよい。言い換えると、フィルム400をヒートシールする工程は、包装工程と紫外線照射工程との間に行われてもよいし、紫外線照射工程の後に行われてもよい。
 なお、上記第1及び第2実施形態において、紫外線は、2mW/cm以上の照度で照射することが好ましく、10mW/cm以上の照度で照射することがより好ましい。この場合、照度が上記範囲を外れる場合に比べてより短時間の紫外線照射により、酸素吸収を速やかに開始させることができる。但し、紫外線は、10000mW/cm以下の照度で照射することが好ましい。
 このような高照度の紫外線の照射は、特に開始剤、遷移金属触媒、易酸化性樹脂、光増感剤及び反応促進剤を含む酸素吸収性樹脂組成物に対して行うと効果的である。
 以下に実施例と比較例を用いて本発明をさらに詳しく説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
 9-フルオレノン(以下、「FL」と表記する)からなる開始剤、オクチル酸コバルト(コバルト含有量8重量%、以下、「オクチル酸Co」と表記する。)および合成ケイ酸カルシウム(以下、「MCE」と表記する。)を質量比0.45対1.7対0.85で混合して粉末を得た。この粉末および易酸化性熱可塑性樹脂であるシンジオタクチック1,2-ポリブタジエン(以下、「PBR」と表記する)を質量比3.0対100で混合し、2軸混練押出機を用いて140℃で溶融混練し、酸素吸収性樹脂組成物を作製した(FL 0.024mmol/g)。また、作製した酸素吸収性樹脂組成物を加熱プレスにより厚み80μmの単層フィルムとした。
 上記の単層フィルムの酸素吸収性能を次のように評価した。まず単層フィルムを50mm×60mmの大きさに切り出し、紫外線LED(ピーク波長375nm)を光源とする照射装置の紫外線照射部(50cmに前記紫外線LEDを100個配置)から紫外線を照射した(フィルムと光源の距離 1cm、照度 30mW/cm)。10秒間(照射量300mJ/cm)、60秒間(照射量1800mJ/cm)紫外線を照射した単層フィルムについて、それぞれシリカ蒸着PETからなる酸素バリヤー性の袋に空気240mLと共に封入し、25℃、60%RHの条件下に放置し、24時間経過後の酸素吸収量(以下、「初期酸素吸収量」と表記する)を測定した。初期酸素吸収量は10秒間照射した場合は0mL/g、60秒間照射した場合は6mL/gであった。これらの結果を表1に示した。
(実施例2)
 2,4-ジエチルチオキサンテン-9-オン(以下、「DETX」と表記する)からなる開始剤、オクチル酸CoおよびMCEを質量比0.45対1.7対0.85で混合して粉末を得た。この粉末および実施例1の易酸化性熱可塑性樹脂を質量比3.0対100で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(DETX 0.016mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表1に示した。
(実施例3)
 2-イソプロピルチオキサントン(以下、「ITX」と表記する)からなる開始剤、オクチル酸CoおよびMCEを質量比0.45対1.7対0.85で混合して粉末を得た。この粉末および実施例1の易酸化性熱可塑性樹脂を質量比3.0対100で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(ITX 0.017mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表1に示した。
(実施例4)
 FLからなる開始剤、DETXからなる増感剤、オクチル酸CoおよびMCEを質量比0.45対0.45対1.7対0.85で混合して粉末を得た。この粉末および実施例1の易酸化性熱可塑性樹脂を質量比3.45対100で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.024mmol/g、DETX 0.016mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表1に示した。
(実施例5)
 FLからなる開始剤、ITXからなる増感剤、オクチル酸CoおよびMCEを質量比0.45対0.45対1.7対0.85で混合して粉末を得た。この粉末および実施例1の易酸化性熱可塑性樹脂を質量比3.45対100で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.024mmol/g、ITX 0.017mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表1に示した。実施例4、5より、開始剤と増感剤を同時に配合させることにより酸素吸収性能が向上することが示された。
(実施例6)
 FLからなる開始剤、オクチル酸CoおよびMCEを質量比0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびスチレン-ブタジエン-スチレンブロック共重合体(以下「SBS」と表記する)からなる反応促進材を質量比3.0対90対10で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.024mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表1に示した。
(実施例7)
 FLからなる開始剤、オクチル酸CoおよびMCEを質量比0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびスチレン-エチレンブチレン-オレフィン結晶ブロック共重合体(以下、「SEBC」と表記する)からなる反応促進材を質量比3.0対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.024mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表1に示した。
(実施例8)
 DETXからなる開始剤、オクチル酸CoおよびMCEを質量比0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.0対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(DETX 0.016mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表1に示した。
(実施例9)
 ITXからなる開始剤、オクチル酸CoおよびMCEを質量比0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.0対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(ITX 0.017mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表1に示した。実施例6~9より、反応促進材を配合させることにより酸素吸収性能が向上することが示された。
(実施例10)
 FLからなる開始剤、DETXからなる増感剤、オクチル酸CoおよびMCEを質量比0.45対0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.45対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.024mmol/g、DETX 0.016mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表1に示した。
(実施例11)
 FLからなる開始剤、ITXからなる増感剤、オクチル酸CoおよびMCEを質量比0.45対0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.45対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.024mmol/g、ITX 0.017mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表1に示した。実施例10、11より、開始剤、増感剤および反応促進材を同時に配合させることにより酸素吸収性能はさらに向上することが示された。
(比較例1)
 実施例1で用いた易酸化性熱可塑性樹脂を、2軸混練押出機を用いて140℃で溶融混練し、樹脂組成物を作製した。また、作製した樹脂組成物を加熱プレスにより厚み80μmの単層フィルムとした。この単層フィルムの酸素吸収性能を実施例1と同様に評価したところ、10日間経過しても酸素吸収を開始しなかった。これらの結果を表1に示した。
(比較例2)
 オクチル酸CoおよびMCEを質量比1.7対0.85で混合して粉末を得た。この粉末および実施例1の易酸化性熱可塑性樹脂を質量比2.55対100で混合し、実施例1と同様にして樹脂組成物からなる単層フィルムを作製した。この単層フィルムの酸素吸収性能を実施例1と同様に評価したところ、10日間経過しても酸素吸収を開始しなかった。これらの結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 
(実施例12)
 FLからなる開始剤、DETXからなる増感剤、オクチル酸CoおよびMCEを質量比0.15対0.22対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比2.92対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.008mmol/g、DETX 0.008mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。結果を表2に示す。
(実施例13)
 FLからなる開始剤、ITXからなる増感剤、オクチル酸CoおよびMCEを質量比0.15対0.22対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比2.92対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.008mmol/g、ITX 0.008mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。結果を表2に示す。
(実施例14)
 FLからなる開始剤、ITXからなる増感剤、オクチル酸CoおよびMCEを質量比0.15対0.22対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSBSからなる反応促進材を質量比2.92対90対10で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.008mmol/g、ITX 0.008mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。結果を表2に示す。
 表2の実施例12~14からも明らかなように、開始剤、増感剤および反応促進材を同時に配合した酸素吸収性樹脂組成物において、開始剤および増感剤の配合量を削減しても10秒間の紫外線照射で24時間以内に酸素吸収を開始した。
(実施例15)
 ベンゾフェノン(「BP」と表記する)からなる開始剤、オクチル酸CoおよびMCEを質量比0.89対1.7対0.85で混合して粉末を得た。この粉末および実施例1の易酸化性熱可塑性樹脂を質量比3.44対100で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(BP 0.047mmol/g)。この単層フィルムに実施例1記載の照射装置から紫外線を照射した(フィルムと光源の距離 1cm、照度 30mW/cm)。10秒間(照射量300mJ/cm)、60秒間(照射量1800mJ/cm)、300秒間(照射量9000mJ/cm)照射したフィルムについて、それぞれシリカ蒸着PETからなる酸素バリヤー性の袋に空気240mLと共に封入し、25℃、60%RHの条件下に放置し、初期酸素吸収量を測定した。これらの結果を表2に示した。
(実施例16)
 4-フェニルベンゾフェノン(以下、「PBP」と表記する)からなる開始剤、オクチル酸CoおよびMCEを質量比0.45対1.7対0.85で混合して粉末を得た。この粉末および実施例1の易酸化性熱可塑性樹脂を質量比3.0対100で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(PBP 0.017mmol/g)。この単層フィルムの酸素吸収性能を実施例15と同様に評価した。これらの結果を表2に示した。
(実施例17)
 BPからなる開始剤、DETXからなる増感剤、オクチル酸CoおよびMCEを質量比0.45対0.45対1.7対0.85で混合して粉末を得た。この粉末および実施例1の易酸化性熱可塑性樹脂を質量比3.45対100で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(BP 0.024mmol/g、DETX 0.016mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表2に示した。
(実施例18)
 PBPからなる開始剤、DETXからなる増感剤、オクチル酸CoおよびMCEを質量比0.45対0.45対1.7対0.85で混合して粉末を得た。この粉末および実施例1の易酸化性熱可塑性樹脂を質量比3.45対100で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(PBP 0.017mmol/g、DETX 0.016mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表2に示した。
(実施例19)
 PBPからなる開始剤、DETXからなる増感剤、オクチル酸CoおよびMCEを質量比0.45対0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.45対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(PBP 0.017mmol/g、DETX 0.016mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表2に示した。
(実施例20)
 PBPからなる開始剤、ITXからなる増感剤、オクチル酸CoおよびMCEを質量比0.45対0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.45対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(PBP 0.017mmol/g、ITX 0.017mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。これらの結果を表2に示した。
(実施例21)
 FLからなる開始剤、アントラセン(以下、「ANT」と表記する)からなる増感剤、オクチル酸CoおよびMCEを質量比0.45対0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.45対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.024mmol/g、ANT 0.024mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。結果を表2に示す。
(実施例22)
 2,3,5,6-テトラクロロ-1,4-ベンゾキノン(以下、「TCBQ」と表記する)からなる開始剤、オクチル酸CoおよびMCEを質量比0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.0対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(TCBQ 0.018mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。結果を表2に示す。
(実施例23)
 TCBQからなる開始剤、ITXからなる増感剤、オクチル酸CoおよびMCEを質量比0.45対0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.45対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(TCBQ 0.018mmol/g、ITX 0.017mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。結果を表2に示す。
(実施例24)
 イルガキュア2959(チバ・スペシャリティ・ケミカルズ製、以下「IRGA」と表記する)からなる開始剤、ITXからなる増感剤、オクチル酸CoおよびMCEを質量比0.45対0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.45対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(IRGA 0.019mmol/g、ITX 0.017mmol/g)。この単層フィルムの酸素吸収性能を実施例1と同様に評価した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
(実施例25)
 FLからなる開始剤、DETXからなる増感剤、オクチル酸CoおよびMCEを質量比0.29対0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.29対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.016mmol/g、DETX 0.016mmol/g)。この単層フィルムを50×60mmの大きさに切り出し、紫外線LED(ピーク波長375nm)を光源とする照射装置の紫外線照射部(50cmに前記紫外線LEDを165個配置)から紫外線を照射した(フィルムと光源の距離 1cm、照度 90mW/cm)。紫外線を1秒間(照射量90mJ/cm)照射したフィルムについて、それぞれシリカ蒸着PETからなる酸素バリヤー性の袋に空気240mLと共に封入し、25℃、60%RHの条件下に放置し、初期酸素吸収量を測定した。結果を表3に示す。
(実施例26)
 FLからなる開始剤、ITXからなる増感剤、オクチル酸CoおよびMCEを質量比0.29対0.45対1.7対0.85で混合して粉末を得た。この粉末、実施例1の易酸化性熱可塑性樹脂およびSEBCからなる反応促進材を質量比3.29対80対20で混合し、実施例1と同様にして酸素吸収性樹脂組成物からなる単層フィルムを作製した(FL 0.016mmol/g、ITX 0.017mmol/g)。この単層フィルムの酸素吸収性能を実施例25と同様に評価した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の実施例25、26からも明らかなように、開始剤、増感剤、反応促進材を含む酸素吸収性樹脂組成物に高照度の紫外線を照射した場合は、僅か1秒間の照射時間で酸素吸収を開始することが可能となった。
 本発明の酸素吸収性樹脂組成物の用途に制限はなく、本発明の酸素吸収性樹脂組成物は、食品、飲料、医薬品、医療品、化粧品、金属製品、電子製品などの保存および品質保持の分野において実用性の高い脱酸素性能を発揮することができる。
 1…ロール
 10…脱酸素層
 20…隔離層
 30…ガスバリヤー層
 40…ポリオレフィン層
 50…透明ガスバリヤー性樹脂層
 60…乾燥剤、吸着剤、抗菌剤、着色剤から選んだ一種以上を含有する層
 70…被包装物
 80…包装体
 90…紫外線LED
 100,200,300,400…脱酸素性のシートまたはフィルム
 110…照射装置
 120a,120b,120c,120d…搬送ライン
 130a,130b…ヒートシール装置
 140…筒状体

Claims (13)

  1.  開始剤、遷移金属触媒及び易酸化性樹脂を含む酸素吸収性樹脂組成物であって、ピーク波長が300~400nmの範囲にある紫外線照射によって酸素吸収を開始する酸素吸収性樹脂組成物。
  2.  紫外線照射を、紫外線LEDを光源とする照射装置を用いて行う請求項1記載の酸素吸収性樹脂組成物。
  3.  さらに増感剤を含有する請求項1又は2に記載の酸素吸収性樹脂組成物。
  4.  前記開始剤が、300~400nmの紫外線照射によって、または300~400nmの紫外線照射により励起された前記増感剤から移動したエネルギーによって励起され、前記易酸化性樹脂の酸化反応を開始させる起点となる物質である、請求項3に記載の酸素吸収性樹脂組成物。
  5.  前記開始剤が芳香族ケトンであり、前記増感剤がチオキサントン類である、請求項4に記載の酸素吸収性樹脂組成物。
  6.  さらに反応促進材を含有する請求項1~5のいずれか一項に記載の酸素吸収性樹脂組成物。
  7.  前記反応促進材が、ベンジル基を含む重合体である、請求項6に記載の酸素吸収性樹脂組成物。
  8.  前記ベンジル基を含む重合体が、スチレンに対応する構成単位を含む共重合体である、請求項7に記載の酸素吸収性樹脂組成物。
  9.  請求項1~8のいずれか一項に記載の酸素吸収性樹脂組成物を含有する脱酸素層を含む脱酸素性のシートまたはフィルム。
  10.  被包装物を包装する包装体の製造方法であって、
     請求項9に記載の脱酸素性のシートまたはフィルムに、ピーク波長が300~400nmの範囲にある紫外線を照射して、前記酸素吸収性樹脂組成物における酸素吸収を開始させる紫外線照射工程と、
     前記シートまたはフィルムで前記被包装物を包装する包装工程とを含む、包装体の製造方法。
  11.  前記包装工程の前に、前記紫外線照射工程が行われる、請求項10に記載の包装体の製造方法。
  12.  前記紫外線照射工程が、紫外線LEDを光源とする照射装置を用いて行われる、請求項10又は11に記載の包装体の製造方法。
  13.  前記紫外線照射工程において、前記シートまたはフィルムに、2mW/cm以上の照度の紫外線を照射する、請求項10~12のいずれか一項に記載の包装体の製造方法。
PCT/JP2011/061160 2010-05-17 2011-05-16 酸素吸収性樹脂組成物及びこれを用いた包装体の製造方法 WO2011145550A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012515873A JP5780469B2 (ja) 2010-05-17 2011-05-16 酸素吸収性樹脂組成物及びこれを用いた包装体の製造方法
EP11783484A EP2573143A1 (en) 2010-05-17 2011-05-16 Oxygen-absorbable resin composition, and process for production of packaging material using same
US13/697,933 US20130123380A1 (en) 2010-05-17 2011-05-16 Oxygen-absorbing resin composition and method for manufacturing packaging body using the same
CN2011800245450A CN102933660A (zh) 2010-05-17 2011-05-16 吸氧性树脂组合物及使用其的包装体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-113166 2010-05-17
JP2010113166 2010-05-17

Publications (1)

Publication Number Publication Date
WO2011145550A1 true WO2011145550A1 (ja) 2011-11-24

Family

ID=44991653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061160 WO2011145550A1 (ja) 2010-05-17 2011-05-16 酸素吸収性樹脂組成物及びこれを用いた包装体の製造方法

Country Status (6)

Country Link
US (1) US20130123380A1 (ja)
EP (1) EP2573143A1 (ja)
JP (1) JP5780469B2 (ja)
CN (1) CN102933660A (ja)
TW (1) TW201210687A (ja)
WO (1) WO2011145550A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224202A (ja) * 2013-05-17 2014-12-04 三菱瓦斯化学株式会社 酸素バリア性樹脂組成物ならびにこれらを用いた積層体および成型体
JP2016160385A (ja) * 2015-03-03 2016-09-05 日本ボールドウィン株式会社 フイルムの表面処理装置
JP2019519438A (ja) * 2016-06-10 2019-07-11 株式会社フジシールインターナショナル ラベルを製品に装着するための方法、装置、およびシステム

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9758666B2 (en) * 2012-09-07 2017-09-12 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition and oxygen-absorbing multilayer body using the same
EP2931622A1 (en) * 2012-12-12 2015-10-21 BASF Corporation Gas storage and release into packaging after filling
CN104309836A (zh) * 2014-10-20 2015-01-28 合肥市春晖机械制造有限公司 一种下走纸全自动枕式包装机
US10518243B2 (en) 2016-12-15 2019-12-31 Altria Client Services Llc Portion of an electronic vaping device formed of an oxygen sequestering agent
CN109966733A (zh) * 2019-04-23 2019-07-05 中山市公泰动漫科技有限公司 一种商品容纳袋和娃娃机

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590535A (en) 1978-12-28 1980-07-09 Nippon Synthetic Chem Ind Co Ltd:The Membranous substance
JPH05194949A (ja) * 1991-06-27 1993-08-03 W R Grace & Co 酸素捕捉用の方法および組成物
JPH05247276A (ja) 1992-03-04 1993-09-24 Toppan Printing Co Ltd 酸素バリアー性樹脂組成物
JPH06100042A (ja) 1992-09-14 1994-04-12 Toppan Printing Co Ltd 酸素バリアー性積層体
JP2991437B2 (ja) 1987-07-27 1999-12-20 カヌードメタルボックス パブリック リミテド カンパニー 包装に関する改良
JP2000516560A (ja) * 1996-08-02 2000-12-12 クライオバツク・インコーポレイテツド 酸素捕獲フィルムを作動化するための方法、装置及びシステム
JP3183704B2 (ja) 1991-04-02 2001-07-09 クライオバツク・インコーポレイテツド 包装用フイルム、包装方法、包装用物体及び酸素掃去方法
JP2002505575A (ja) * 1997-05-16 2002-02-19 シェブロン ケミカル カンパニー エルエルシー 光開始剤及び酸素捕捉組成物
JP3306071B2 (ja) 1996-03-07 2002-07-24 シェブロン ケミカル カンパニー エルエルシー 副生物を中和する物質を含む酸素捕捉システム
JP2005502547A (ja) * 2000-12-22 2005-01-27 クライオバック・インコーポレイテツド 酸素感受性製品を滅菌し、かつ脱酸素剤を誘発する方法、および得られる包装物
JP2006335801A (ja) * 2005-05-31 2006-12-14 Nippon Zeon Co Ltd 酸素の捕捉方法および酸素吸収性包装容器の製造方法
JP2010000742A (ja) * 2008-06-23 2010-01-07 Dic Corp 紫外線硬化型印刷物の製造方法およびそれを用いた紫外線硬化型印刷物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1096315A (zh) * 1992-11-24 1994-12-14 联邦科学及工业研究组织 除氧组合物
JP2003305815A (ja) * 2002-04-12 2003-10-28 Mitsubishi Chemicals Corp 保護層を有するpetボトル
AU2005238379A1 (en) * 2004-04-30 2005-11-10 Toyo Seikan Kaisha, Ltd. Oxygen absorbing resin, oxygen absorbing resin composition and oxygen absorbing container
JP2007283565A (ja) * 2006-04-14 2007-11-01 Mitsubishi Plastics Ind Ltd ガスバリア性フィルム、並びに該フィルムを用いた包装材及び包装体
WO2009091058A1 (ja) * 2008-01-18 2009-07-23 Toyo Seikan Kaisha, Ltd. 酸素吸収性樹脂組成物及びそれを用いた酸素吸収性容器
FR2933497B1 (fr) * 2008-07-03 2012-06-01 Claude Goutelard Procedes et systemes d'emission codee et de reception antennaires notamment pour radar

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5590535A (en) 1978-12-28 1980-07-09 Nippon Synthetic Chem Ind Co Ltd:The Membranous substance
JP2991437B2 (ja) 1987-07-27 1999-12-20 カヌードメタルボックス パブリック リミテド カンパニー 包装に関する改良
JP3183704B2 (ja) 1991-04-02 2001-07-09 クライオバツク・インコーポレイテツド 包装用フイルム、包装方法、包装用物体及び酸素掃去方法
JPH05194949A (ja) * 1991-06-27 1993-08-03 W R Grace & Co 酸素捕捉用の方法および組成物
JPH05247276A (ja) 1992-03-04 1993-09-24 Toppan Printing Co Ltd 酸素バリアー性樹脂組成物
JPH06100042A (ja) 1992-09-14 1994-04-12 Toppan Printing Co Ltd 酸素バリアー性積層体
JP3306071B2 (ja) 1996-03-07 2002-07-24 シェブロン ケミカル カンパニー エルエルシー 副生物を中和する物質を含む酸素捕捉システム
JP2000516560A (ja) * 1996-08-02 2000-12-12 クライオバツク・インコーポレイテツド 酸素捕獲フィルムを作動化するための方法、装置及びシステム
JP3897364B2 (ja) 1996-08-02 2007-03-22 クライオバツク・インコーポレイテツド 酸素捕獲フィルムを作動化するための方法、装置及びシステム
JP2002505575A (ja) * 1997-05-16 2002-02-19 シェブロン ケミカル カンパニー エルエルシー 光開始剤及び酸素捕捉組成物
JP2005502547A (ja) * 2000-12-22 2005-01-27 クライオバック・インコーポレイテツド 酸素感受性製品を滅菌し、かつ脱酸素剤を誘発する方法、および得られる包装物
JP2006335801A (ja) * 2005-05-31 2006-12-14 Nippon Zeon Co Ltd 酸素の捕捉方法および酸素吸収性包装容器の製造方法
JP2010000742A (ja) * 2008-06-23 2010-01-07 Dic Corp 紫外線硬化型印刷物の製造方法およびそれを用いた紫外線硬化型印刷物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014224202A (ja) * 2013-05-17 2014-12-04 三菱瓦斯化学株式会社 酸素バリア性樹脂組成物ならびにこれらを用いた積層体および成型体
JP2016160385A (ja) * 2015-03-03 2016-09-05 日本ボールドウィン株式会社 フイルムの表面処理装置
JP2019519438A (ja) * 2016-06-10 2019-07-11 株式会社フジシールインターナショナル ラベルを製品に装着するための方法、装置、およびシステム
US11571848B2 (en) 2016-06-10 2023-02-07 Fuji Seal International, Inc. Method, apparatus and system for attaching a label on a product

Also Published As

Publication number Publication date
TW201210687A (en) 2012-03-16
JP5780469B2 (ja) 2015-09-16
US20130123380A1 (en) 2013-05-16
EP2573143A1 (en) 2013-03-27
JPWO2011145550A1 (ja) 2013-07-22
CN102933660A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
JP5780469B2 (ja) 酸素吸収性樹脂組成物及びこれを用いた包装体の製造方法
JP5472109B2 (ja) 脱酸素性多層体
KR101464813B1 (ko) 탈산소성 다층체
JP2000506087A (ja) 副生物を中和する物質を含む酸素捕捉システム
JP4074622B2 (ja) 脱酸素剤を賦活化し、保存し、かつ配送するための方法、および保存された脱酸素剤
HU213185B (en) Method of scavenging oxygen process for preparing layer suitable scavenging oxygen and packaging oxygen sensitive products, composition and packaging articles for scavenging oxygen
CN108349202A (zh) 从UV活化的亚氯酸根离子按需释放ClO2气体的方法和组合物
TWI600718B (zh) 氧吸收性樹脂組成物及使用其之氧吸收性多層體
JP5023521B2 (ja) 酸素吸収性樹脂組成物
JP6327522B2 (ja) 酸素吸収性多層体の梱包体及び保存方法
JP2005104064A (ja) 酸素吸収性積層体、これを用いた包装体およびこれを用いた内容物の充填方法
JP2013203436A (ja) 脱酸素性多層体及びそれを用いた重量袋
JP5092814B2 (ja) 酸素吸収性樹脂組成物
JP2010248334A (ja) 酸素吸収性樹脂組成物
JP2004269735A (ja) 酸素吸収性樹脂組成物およびその製造法
JP2009179672A (ja) 酸素吸収性樹脂組成物
JP2006335801A (ja) 酸素の捕捉方法および酸素吸収性包装容器の製造方法
JP4752238B2 (ja) 酸素吸収能を有する包装体
JP2014079916A (ja) 酸素吸収性多層体
JP6186875B2 (ja) 酸素バリア性樹脂組成物ならびにこれらを用いた積層体および成型体
JP2005350101A (ja) 酸素吸収能を有する包装体
JP2006063237A (ja) 熱収縮酸素吸収性フィルムの製造方法
JP5093182B2 (ja) 酸素吸収性樹脂組成物
JP2011084682A (ja) 酸素吸収性樹脂組成物
JP2010248333A (ja) 酸素吸収性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180024545.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11783484

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012515873

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011783484

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13697933

Country of ref document: US