WO2011142276A1 - 非水電解質二次電池及び非水電解質二次電池用非水電解液 - Google Patents

非水電解質二次電池及び非水電解質二次電池用非水電解液 Download PDF

Info

Publication number
WO2011142276A1
WO2011142276A1 PCT/JP2011/060426 JP2011060426W WO2011142276A1 WO 2011142276 A1 WO2011142276 A1 WO 2011142276A1 JP 2011060426 W JP2011060426 W JP 2011060426W WO 2011142276 A1 WO2011142276 A1 WO 2011142276A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
secondary battery
electrolyte secondary
negative electrode
active material
Prior art date
Application number
PCT/JP2011/060426
Other languages
English (en)
French (fr)
Inventor
英和 山本
康平 続木
泰三 砂野
神野 丸男
大橋 洋一
古田土 稔
Original Assignee
三洋電機株式会社
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, 三菱化学株式会社 filed Critical 三洋電機株式会社
Priority to JP2012514766A priority Critical patent/JP5806660B2/ja
Priority to EP11780533.3A priority patent/EP2571088A4/en
Priority to CN201180021983.1A priority patent/CN102870267B/zh
Priority to US13/639,396 priority patent/US9153841B2/en
Publication of WO2011142276A1 publication Critical patent/WO2011142276A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery.
  • non-aqueous electrolyte secondary batteries that use a non-aqueous electrolyte and move lithium ions between the positive electrode and the negative electrode to charge and discharge are used. Yes.
  • a graphite material is widely used as a negative electrode active material in the negative electrode.
  • the electrolytic solution is composed of a solute and a solvent for dissolving the solute.
  • chain carbonate is used and its content is relatively large. Therefore, the viscosity of the electrolytic solution can be decreased by reducing the viscosity of the chain carbonate. For example, viscosity can be lowered by replacing commonly used diethyl carbonate with a chain carbonate having a low carbon number in the side chain such as methyl ethyl carbonate and dimethyl carbonate.
  • the viscosity of the electrolytic solution can be further reduced by using a carboxylic acid ester or ketone having a lower viscosity than the chain carbonate.
  • reaction with the electrolytic solution becomes particularly prominent when stored in a charged state in a high-temperature environment, causing problems such as an increase in the thickness of the electrode due to the generation of gas resulting from this.
  • Patent Document 1 discloses that the reaction between a negative electrode active material such as silicon and a nonaqueous electrolytic solution can be suppressed by adding a small amount of fluorobenzene, cyclohexylbenzene, cyclohexylfluorobenzene, or the like to the electrolytic solution. However, it is required to further suppress the reaction with the electrolytic solution and further improve the charge / discharge cycle characteristics.
  • the present invention uses a non-aqueous electrolyte containing benzotrifluoride and a diisocyanate compound.
  • Patent Document 2 discloses a non-aqueous electrolyte secondary battery using an electrolytic solution containing a diisocyanate compound. However, there is no disclosure about the effects when used in combination with benzotrifluoride.
  • the present invention can increase the electrochemical stability of the non-aqueous electrolyte and suppress side reactions of the non-aqueous electrolyte during charging and discharging.
  • a nonaqueous electrolyte secondary battery of the present invention is a nonaqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a nonaqueous electrolyte solution in which a solute is dissolved in a nonaqueous solvent.
  • the non-aqueous electrolyte contains benzotrifluoride and a diisocyanate compound, and the content of benzotrifluoride is 5% by volume or more in the non-aqueous electrolyte excluding the solute. .
  • the diisocyanate compound contained in the non-aqueous electrolyte reacts with and binds to a hydroxyl group present on the surface of the negative electrode active material, and a film formed by this reaction is generated between the negative electrode and the electrolyte. It is considered that the deterioration of battery characteristics can be suppressed by suppressing the side reaction. In the present invention, it is considered that benzotrifluoride contained in the nonaqueous electrolytic solution interacts with the diisocyanate compound to form a denser film.
  • the content of benzotrifluoride is preferably 5 to 50% by volume, more preferably 10 to 40% by volume in the non-aqueous electrolyte excluding the solute.
  • diisocyanate compound used in the present invention various diisocyanate compounds can be used, and in particular, an alkylene diisocyanate compound is preferably used.
  • the number of carbon atoms of the aliphatic hydrocarbon group in the alkylene diisocyanate compound is preferably 4 or more and 12 or less, and more preferably 6 or more and 12 or less.
  • Specific examples of such an alkylene diisocyanate compound include 1,6-diisocyanatohexane, 1,7-isocyanatoheptane, 1,8-diisocyanatooctane, 1,9-diisocyanatononane, 1,10 -Diisocyanatodecane, 1,11-diisocyanatoundecane, 1,12-diisocyanatododecane and the like.
  • the content of the diisocyanate compound is preferably in the range of 0.01% by volume to 10% by volume, more preferably 0.1% by volume to 5% by volume, in the nonaqueous electrolytic solution excluding the solute. And particularly preferably in the range of 0.5% by volume to 4% by volume. If the content of the diisocyanate compound is too small, a sufficient film may not be formed on the negative electrode active material. Moreover, when there is too much content of a diisocyanate compound, resistance inside a battery will become large and it may cause the fall of battery capacity.
  • chain carbonates such as diethyl carbonate, methyl ethyl carbonate, and dimethyl carbonate can be used as the non-aqueous solvent.
  • a low-viscosity solvent having a narrower potential window than a chain carbonate such as a carboxylic acid ester or a ketone can also be used.
  • carboxylic acid ester examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, ethyl butyrate, and propyl butyrate.
  • ketone examples include acetone, ethyl methyl ketone, diethyl ketone, methyl propyl ketone, ethyl propyl ketone, and dipropyl ketone.
  • At least part of hydrogen in the chain carbonate, carboxylic acid ester, or ketone may be substituted with fluorine.
  • the content of the solvent is preferably in the range of 50% by volume to 95% by volume in the non-aqueous electrolyte excluding the solute. More preferably, it is in the range of 60% by volume to 90% by volume, and particularly preferably in the range of 70% by volume to 85% by volume. If the content is too small, the viscosity of the non-aqueous electrolyte may be lowered, and battery characteristics such as charge / discharge cycle characteristics may not be sufficiently improved. Moreover, when there is too much content, the electrical conductivity of electrolyte solution may fall.
  • a cyclic carbonate is contained as the non-aqueous solvent.
  • the cyclic carbonate include ethylene carbonate, propylene carbonate, butylene carbonate and the like. Further, it is more preferable that a part of the cyclic carbonate is fluorinated.
  • fluorinated cyclic carbonate examples include 4-fluoro-1,3-dioxolan-2-one, 4,5-difluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3- Dioxolan-2-one, 4-fluoro-5-methyl-1,3-dioxolan-2-one, 4-fluoro-4-methyl-1,3-dioxolan-2-one, 4-trifluoromethyl-1, Examples include fluorinated cyclic carbonate derivatives such as 3-dioxolan-2-one.
  • fluorinated cyclic carbonate 4-fluoro-1,3-dioxolane-2-one and 4,5-difluoro-1,3-dioxolane-2-one are preferably used. 4-fluoro-1,3-dioxolane -2-one is particularly preferably used.
  • the content of the fluorinated cyclic carbonate in the non-aqueous electrolyte is preferably in the range of 5% by volume to 50% by volume, more preferably in the range of 10% by volume to 40% by volume, and particularly preferably. Is in the range of 10-20% by volume. If the content of the fluorinated cyclic carbonate is too small, the cycle characteristics may deteriorate. Moreover, when there is too much content of a fluorinated cyclic carbonate, the gas generation by high temperature storage may increase.
  • the non-aqueous solvent in the present invention is not limited to a low-viscosity solvent having a narrow potential window and a fluorinated cyclic carbonate, and other chain carbonates and cyclic carbonates are included as non-aqueous solvents. It may be.
  • a negative electrode active material that can be generally used in a nonaqueous electrolyte secondary battery can be used.
  • carbon materials such as graphite, silicon alloyed with lithium, germanium, tin, etc. These materials can be used.
  • a negative electrode active material containing silicon is particularly preferably used.
  • a battery having a high capacity can be formed.
  • carbon materials, such as graphite as a negative electrode active material, the effect of this invention that a cycling characteristic and a charge storage characteristic can be improved can be acquired.
  • Examples of the negative electrode active material containing silicon include powdered silicon and / or a silicon alloy.
  • Examples of the silicon alloy used for the negative electrode active material include a solid solution of silicon and one or more other elements, an intermetallic compound of silicon and one or more other elements, silicon and one or more other elements. Eutectic alloy of the above.
  • a known method can be used. For example, an arc melting method, a liquid quenching method, a mechanical alloying method, a sputtering method, a chemical vapor deposition method, a firing method, or the like is used. Can do. Further, as the liquid quenching method, various atomizing methods such as a single roll quenching method, a twin roll quenching method, a gas atomizing method, a water atomizing method, and a disk atomizing method can be used.
  • the negative electrode in the present invention is preferably a negative electrode current collector provided with a negative electrode active material made of powdered silicon and / or a silicon alloy and a negative electrode mixture layer made of a binder. And after providing the negative electrode mixture layer which consists of a negative electrode active material and a binder on a negative electrode collector, it was made to sinter in the non-oxidizing atmosphere at the temperature more than the glass transition temperature of the said binder. It is preferable to produce a negative electrode. By sintering at a temperature equal to or higher than the glass transition temperature of the binder, adhesion between the negative electrode active materials and between the negative electrode active material and the negative electrode current collector can be improved.
  • the adhesion between the negative electrode active material and the adhesion between the negative electrode active material and the negative electrode current collector are improved, and the negative electrode active material is separated from the negative electrode current collector due to expansion and contraction of the negative electrode active material during charge and discharge.
  • the binder it is preferable to use a polyimide resin.
  • the negative electrode can be sintered at a temperature equal to or higher than the glass transition temperature of the binder, so that the adhesion between the negative electrode active materials and between the negative electrode active material and the negative electrode current collector is improved. It is possible to suppress deterioration due to expansion of the negative electrode active material made of powdered silicon and / or silicon alloy due to charge and discharge.
  • the temperature at which the negative electrode is sintered is preferably equal to or higher than the glass transition temperature of the binder, and is preferably in the range of 200 to 500 ° C. when a polyimide resin is used.
  • the non-oxidizing atmosphere is preferably an inert gas atmosphere such as argon or a nitrogen gas atmosphere.
  • a reducing atmosphere such as hydrogen gas may be used.
  • a negative electrode current collector having a surface roughness Ra of 0.2 ⁇ m or more It is preferable to use a negative electrode current collector having a surface roughness Ra of 0.2 ⁇ m or more.
  • a negative electrode current collector having a surface roughness Ra of 0.2 ⁇ m or more When a negative electrode current collector having a surface roughness Ra of 0.2 ⁇ m or more is used, the contact area between the negative electrode active material and the negative electrode current collector is increased, and the binder enters the uneven portions on the surface of the negative electrode current collector. .
  • the anchor effect is also exhibited, the adhesion between the negative electrode active material and the negative electrode current collector is greatly improved, and the negative electrode active material is collected by the expansion / contraction of the negative electrode active material during charge / discharge. The peeling from the electric body is further suppressed.
  • a commonly used positive electrode active material can be used as the positive electrode active material used for the positive electrode.
  • lithium cobaltate LiCoO 2 when used as the positive electrode active material, it is desirable to fix zirconium to the surface thereof. Thereby, while stabilizing the crystal structure of lithium cobaltate and improving a charge / discharge cycle characteristic, it can suppress that side reactions other than a charge / discharge reaction occur in the interface with a non-aqueous electrolyte.
  • a lithium salt generally used in a non-aqueous electrolyte secondary battery can be used as a solute dissolved in the non-aqueous solvent.
  • lithium salt include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2), LiC (CF 3 SO 2) 3, LiC (C 2 F 5 SO 2) 3, LiAsF 6, LiClO 4, Li 2 B 10 Cl 10, Li 2 B 12 Cl 12 and, of these A mixture or the like can be used.
  • lithium salt having an oxalato complex As the lithium salt having such an oxalato complex as an anion, lithium-bis (oxalato) borate or the like can be used.
  • the content of the solute in the non-aqueous electrolyte is not particularly limited, but generally it is preferably in the range of 0.5 mol / liter to 2 mol / liter, more preferably 0.6 mol. / Liter to 1.8 mol / liter, particularly preferably 0.7 to 1.7 mol / liter.
  • the non-aqueous electrolyte of the present invention is a non-aqueous electrolyte for a non-aqueous electrolyte secondary battery containing a non-aqueous solvent and a solute dissolved in the non-aqueous solvent, and contains a benzotrifluoride and a diisocyanate compound. .
  • the content of benzotrifluoride is 5% by volume or more in the nonaqueous electrolytic solution excluding the solute.
  • the electrochemical stability of the non-aqueous electrolyte can be improved even when a low-viscosity solvent having a narrow potential window is used, and the non-aqueous electrolyte during charge / discharge can be improved.
  • a side reaction of the electrolytic solution can be suppressed to suppress a decrease in battery characteristics, and a non-aqueous electrolyte secondary battery excellent in storage characteristics in a high temperature environment can be obtained.
  • the electrochemical stability of the non-aqueous electrolyte can be increased, and the side reaction of the non-aqueous electrolyte during charge / discharge can be reduced.
  • a non-aqueous electrolyte secondary battery having excellent storage characteristics in a high-temperature environment can be obtained.
  • FIG. 1 is a plan view showing a nonaqueous electrolyte secondary battery manufactured in an example according to the present invention.
  • FIG. 2 is a plan view showing an electrode body produced in an example according to the present invention.
  • FIG. 3 is a partial cross-sectional view showing an electrode body produced in an example according to the present invention.
  • Example 1 [Production of positive electrode]
  • a material in which a zirconium compound was fixed on the surface of lithium cobaltate represented by LiCoO 2 (average particle diameter 13 ⁇ m, BET specific surface area 0.35 m 2 / g) was used.
  • Lithium cobaltate having a zirconium compound attached to the surface can be produced by adding a zirconium compound to a raw material and baking it.
  • the positive electrode active material, the carbon material powder of the conductive agent, and the polyvinylidene fluoride as the binder were in a mass ratio of 95: 2.5: 2.5, and an N-methyl-2-pyrrolidone solution was added thereto. Was added and kneaded to prepare a positive electrode mixture slurry.
  • the positive electrode mixture slurry was applied to one side of the positive electrode current collector with a length of 340 mm and a width of 50 mm.
  • the opposite surface was coated with a length of 271 mm and a width of 50 mm. This was dried and rolled to produce a positive electrode.
  • the thickness of the positive electrode was 143 ⁇ m
  • the amount of the positive electrode mixture on the positive electrode current collector was 48 mg / cm 2
  • the packing density of the positive electrode mixture was 3.75 g / cm 3 .
  • a positive electrode current collecting tab made of an aluminum flat plate having a thickness of 70 ⁇ m, a length of 35 mm, and a width of 4 mm was attached to a portion where the positive electrode mixture was not applied.
  • the negative electrode active material silicon powder having an average particle size of 10 ⁇ m (purity: 99.9% by mass) was used.
  • the negative electrode active material, the graphite powder as a conductive agent, and the thermoplastic polyimide as a binder having a glass transition temperature of 295 ° C. were added in a mass ratio of 87: 3: 7.5.
  • An N-methyl-2-pyrrolidone solution was added and kneaded to prepare a negative electrode mixture slurry.
  • this negative electrode mixture slurry was Cu—Ni—Si—Mg (Ni: 3 mass%, Si: 0.65 mass%, Mg: 0.15) having a surface roughness Ra of 0.3 ⁇ m and a thickness of 20 ⁇ m. (Mass%)
  • a negative electrode current collector made of an alloy foil was applied on both sides and dried. The amount of the negative electrode mixture on the negative electrode current collector was 5.6 mg / cm 2 .
  • the negative electrode current collector provided with the negative electrode mixture as described above was cut out into a rectangular shape having a length of 380 mm and a width of 52 mm, rolled, and heat-treated in an argon atmosphere at 400 ° C. for 10 hours to be sintered.
  • the sintered negative electrode had a thickness of 56 ⁇ m.
  • the negative electrode current collection tab which consists of a nickel flat plate of thickness 70micrometer, length 35mm, and width 4mm was attached to the edge part of said negative electrode.
  • a non-aqueous electrolyte secondary battery was produced using the positive electrode, negative electrode, and non-aqueous electrolyte prepared above.
  • the positive electrode and the negative electrode were disposed so as to face each other with a separator interposed therebetween, and these were wound so as to be bent at a predetermined position, and pressed to produce a flat electrode body.
  • FIG. 2 shows the produced electrode body 10
  • FIG. 3 is a partial sectional view of the electrode body 10.
  • the separator 3 is interposed between the positive electrode 1 and the negative electrode 2, and this is wound.
  • two separators made of a polyethylene porous body having a thickness of 22 ⁇ m, a length of 430 mm, and a width of 54.5 mm were used.
  • the electrode body 10 was produced from the electrode body 10 so that the positive electrode current collecting tab 1a connected to the positive electrode 1 and the negative electrode current collecting tab 2a connected to the negative electrode 2 protruded.
  • FIG. 1 is a plan view showing a non-aqueous electrolyte secondary battery produced using the electrode body shown in FIG.
  • the electrode body 10 is housed in a battery container 20 made of an aluminum laminate film, the non-aqueous electrolyte is added to the battery container 20, and the positive electrode current collecting tab 1 a and the negative electrode current collector are added.
  • the non-aqueous electrolyte secondary battery was manufactured by sealing the opening of the battery container 20 so that the tab 2a was taken out.
  • the designed capacity of the produced nonaqueous electrolyte secondary battery is 950 mAh.
  • Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the volume ratio of FEC: DMC: CF 3 Ph: HMDI was changed to 20: 49: 30: 1.
  • Example 3 A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 2 except that 1,12-diisocyanatododecane (DMDI) was used instead of HMDI.
  • DMDI 1,12-diisocyanatododecane
  • Example 1 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the volume ratio of FEC: DMC was set to 20:80 without using CF 3 Ph and HMDI.
  • Example 2 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the volume ratio of FEC: DMC: CF 3 Ph was set to 20:70:10 without using HMDI.
  • Example 3 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the volume ratio of FEC: DMC: CF 3 Ph was set to 20:50:30 without using HMDI.
  • Example 4 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the volume ratio of FEC: DMC: CF 3 Ph was set to 20:30:50 without using HMDI.
  • Example 5 A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 1 except that the volume ratio of FEC: DMC: HMDI was 20: 79: 1 without using CF 3 Ph.
  • Example 6 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the volume ratio of FEC: DMC: CF 3 Ph: HMDI was 20: 77: 2: 1.
  • Example 7 A nonaqueous electrolyte was prepared in the same manner as in Example 1 except that pentafluorobenzene (PFB) was used instead of CF 3 Ph and the volume ratio of FEC: DMC: PFB: HMDI was 20: 69: 10: 1. A secondary battery was produced.
  • PFB pentafluorobenzene
  • Example 8 The nonaqueous electrolyte 2 was prepared in the same manner as in Example 1 except that hexyl isocyanate was used in place of HMDI, and the volume ratio of FEC: DMC: CF 3 Ph: hexyl isocyanate was 20: 49: 30: 1. A secondary battery was produced.
  • Example 4 A non-aqueous electrolyte was prepared in the same manner as in Example 1 except that methyl propionate (MP) was used instead of DMC, and the volume ratio of FEC: MP: CF 3 Ph: HMDI was set to 20: 49: 30: 1. A secondary battery was produced.
  • MP methyl propionate
  • Example 5 A nonaqueous electrolyte secondary battery is fabricated in the same manner as in Example 4 except that DMDI is used instead of HMDI and the volume ratio of FEC: MP: CF 3 Ph: DMDI is 20: 49: 30: 1. did.
  • Example 9 A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 4 except that the volume ratio of FEC: MP was set to 20:80 without using CF 3 Ph and HMDI.
  • the battery is charged at a constant current of 950 mA until it reaches 4.2 V, further charged at a constant voltage of 4.2 V until the current value reaches 48 mA, and then discharged at a constant current of 950 mA until it reaches 2.75 V.
  • the initial charge / discharge was performed. From the results of this initial charge / discharge test, the discharge load characteristics were calculated by the following equation.
  • Discharge load characteristics (discharge capacity at 950 mA / discharge capacity at 180 mA) ⁇ 100
  • Capacity maintenance rate (Q250 / Q1) x 100
  • the battery thickness after storage for 20 days was measured, and the increase in battery thickness increased when stored at 60 ° C. for 20 days. The amount was calculated.
  • Battery thickness increase (battery thickness after storage-battery thickness before storage)
  • the increase in battery thickness is a phenomenon caused by the gas component generated by the reaction in the battery expanding the laminate, that is, the battery thickness in this case is the amount of gas generated in the storage test. Can think.
  • Example 2 with HMDI added and Example 3 with DMDI added and Comparative Example 8 with hexyl isocyanate, which is a monoisocyanate were compared, Examples 2 and 3 were better than Comparative Example 8.
  • the cycle characteristics, charge storage characteristics, and discharge load characteristics all show good results.
  • Examples 4 and 5 using a non-aqueous electrolyte containing benzotrifluoride and a diisocyanate compound were more effective in cycle characteristics and charge storage characteristics at high temperatures than Comparative Example 9. Shows good results.
  • Example 4 when Examples 1 and 2 to which the same amount of HMDI was added were compared with Example 4, and Example 3 and Example 5 to which the same amount of DMDI was added were compared, in each case propionic acid
  • the nonaqueous electrolyte secondary batteries according to Examples 4 and 5 using methyl are superior in both charge storage characteristics and discharge load characteristics. Therefore, it is more preferable to use methyl propionate than dimethyl carbonate.
  • HMDI which is a diisocyanate compound
  • Such a dense coating can suppress side reactions such as decomposition of the electrolyte that occur during charge and discharge, and thus can significantly improve charge and discharge cycle characteristics and charge storage characteristics. It is done.
  • the content of benzotrifluoride is preferably 5% by volume or more, more preferably It turns out that it is 10 volume% or more.
  • a low viscosity solvent such as DMC or MP can be used in a state of high electrochemical stability. Therefore, an electrode active material that causes large volume expansion and contraction due to charge / discharge of silicon or the like can be obtained. Even when used, the electrolyte extruded from the electrode body can smoothly penetrate again into the electrode, so that local deterioration inside the battery due to non-uniform charge / discharge reaction can be suppressed, Excellent battery characteristics can be obtained.
  • Example 6 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the volume ratio of FEC: DMC: CF 3 Ph: HMDI was changed to 20: 49.5: 30: 0.5.
  • Example 7 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the volume ratio of FEC: DMC: CF 3 Ph: HMDI was changed to 20: 46: 30: 4.
  • Example 8 4,5-Difluoro-1,3-dioxolan-2-one (difluoroethylene carbonate: DFEC) was used as the solvent, and the volume ratio of FEC: DFEC: DMC: CF 3 Ph: HMDI was 19: 1: 49: A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the ratio was changed to 30: 1.
  • Example 9 Except for using ethylene carbonate (EC) as a solvent and changing the volume ratio of FEC: EC: DMC: CF 3 Ph: HMDI to 10: 10: 49: 30: 1, the same as in Example 1 above. A non-aqueous electrolyte secondary battery was produced.
  • EC ethylene carbonate
  • Example 10 Except for using propylene carbonate (PC) as a solvent and changing the volume ratio of FEC: PC: DMC: CF 3 Ph: HMDI to 15: 5: 49: 30: 1, the same as in Example 1 above. A non-aqueous electrolyte secondary battery was produced.
  • PC propylene carbonate
  • Example 11 EC, PC, and methyl propionate (MP) were used as the solvent, DMDI was used as the diisocyanate compound, and the volume ratio of FEC: EC: PC: DMC: MP: CF 3 Ph: DMDI was 15: 2.5. : A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that the ratio was changed to 2.5: 34: 15: 30: 1.
  • Example 6 the cycle characteristics were also obtained in Example 6 in which the content of HMDI as the diisocyanate compound was 0.5% by volume and Example 7 in which the content of HMDI was 4% by volume. Good results are obtained in charge storage characteristics and discharge load characteristics.
  • FIG. 5 good results are obtained in cycle characteristics, charge storage characteristics, and discharge load characteristics.
  • Example 12 (Production of negative electrode)
  • carboxymethyl cellulose as a thickener is dissolved in water as a dispersion medium
  • artificial graphite having an average particle diameter of 20 ⁇ m as a negative electrode active material, and styrene-butadiene rubber as a binder are used as an active material.
  • the negative electrode slurry was prepared by mixing so that the weight ratio of the binder and the thickener was 97.5: 1: 1.5.
  • the prepared slurry is applied to both sides of an electrolytic copper foil having a thickness of 9 ⁇ m, a length of 317 mm, and a width of 52 mm as a negative electrode current collector so that the coated portion has a length of 284 mm and a width of 52 mm and a back surface of 226 mm and a width of 52 mm. It was applied to, dried and then rolled. The amount of the active material layer on the current collector and the thickness of the negative electrode were 19.3 mg / cm 2 and 130 ⁇ m at the portion where the active material layer was formed on both sides.
  • a positive electrode current collector made of an aluminum foil having a thickness of 15 ⁇ m, a length of 339 mm, and a width of 50 mm was used, and the same positive electrode mixture slurry as that of Example 1 was used.
  • the side surface was coated with a length of 208 mm and a width of 50 mm, dried and rolled to produce a positive electrode.
  • the thickness of the positive electrode was 148 ⁇ m
  • the amount of the positive electrode mixture on the positive electrode current collector was 49.8 mg / cm 2
  • the packing density of the positive electrode mixture was 3.75 g / cm 3 .
  • a positive electrode current collecting tab made of an aluminum flat plate having a thickness of 70 ⁇ m, a length of 35 mm, and a width of 4 mm was attached to a portion where the positive electrode mixture was not applied.
  • a battery was produced in the same manner as in Example 1 and housed in a battery container 20 composed of an aluminum laminate film.
  • the same electrolytic solution as in Example 3 was used for the electrolytic solution.
  • the designed capacity of the produced battery was 830 mAh.
  • Example 13 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 12 except that the volume ratio of FEC: EC: DMC: CF 3 Ph: HMDI was changed to 10: 10: 49: 30: 1.
  • Example 14 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 12 except that the volume ratio of FEC: MP: CF 3 Ph: HMDI was changed to 20: 49: 30: 1.
  • Example 15 A nonaqueous electrolyte secondary battery was prepared in the same manner as in Example 12 except that the volume ratio of FEC: EC: PC: DMC: CF 3 Ph: HMDI was changed to 10: 5: 5: 49: 30: 1. Produced.
  • Example 16 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 12 except that the volume ratio of FEC: PC: DMC: CF 3 Ph: HMDI was changed to 15: 5: 49: 30: 1.
  • Example 17 A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 12 except that the volume ratio of FEC: MP: CF 3 Ph: DMDI was changed to 20: 49: 30: 1.
  • Example 10 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 12 except that the volume ratio of FEC: DMC was changed to 20:80.
  • Example 11 A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 12 except that the volume ratio of FEC: DMC: HMDI was changed to 20: 79: 1.
  • Example 12 A nonaqueous electrolyte secondary battery was fabricated in the same manner as in Example 12 except that the volume ratio of FEC: DMC: CF 3 Ph was changed to 20:50:30.
  • Example 13 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 12 except that the FEC: MP volume ratio was changed to 20:80.
  • the increase in battery thickness is a phenomenon caused by the gas component generated by the reaction in the battery expanding the laminate, that is, the battery thickness in this case is the amount of gas generated in the storage test. Can think.
  • the evaluation results are shown in Table 3 together with the electrolyte compositions in the batteries of the above Examples and Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電位窓が狭い低粘度の溶媒を用いた場合においても、非水電解液の電気化学的安定性を高めることができ、充放電時における非水電解液の副反応を抑制して、電池特性の低下を抑制することができると共に、高温環境下における保存特性にも優れた非水電解質二次電池及び非水電解質二次電池用非水電解液を得る。 正極活物質を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備える非水電解質二次電池であって、非水電解液に、ベンゾトリフルオライド及びジイソシアネート化合物が含まれており、ベンゾトリフルオライドの含有量が、溶質を除く非水電解液中において、5体積%以上であることを特徴としている。

Description

非水電解質二次電池及び非水電解質二次電池用非水電解液
 本発明は、非水電解質二次電池及び非水電解質二次電池用非水電解液に関するものである。
 携帯電子機器や電力貯蔵用等の電源として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて、充放電を行うようにした非水電解質二次電池が利用されている。このような非水電解質二次電池においては、その負極における負極活物質として黒鉛材料が広く利用されている。
 一方、近年においては、携帯電話、ノートパソコン、PDA等のモバイル機器の小型化・軽量化が著しく進行しており、また多機能化に伴って消費電力も増加しており、これらの電源として使用される非水電解質二次電池においても、軽量化及び高容量化の要望が高まっている。
 非水電解質二次電池を高容量化させるために、電池内に活物質を多く充填させ、充填度を高める手法が用いられているが、このとき、活物質の充填度を高めると、電解液が電池内部全域に浸透しにくくなる。このため、充放電反応が不均一となり、電池内部において局所的な劣化が引き起こされやすくなる。従って、従来の材料よりも、高い容量を有する活物質が必要となる。負極活物質においては、黒鉛より高い容量を有する材料が求められている。
 このため、近年においては、高容量の負極活物質として、シリコン、ゲルマニウム、スズなど、リチウムと合金化する材料を用いることが検討されている。このようなリチウムと合金化する材料を用いた場合、電池容量を増加させることができるが、充電反応により、リチウムとこれらの材料が合金化する際に、黒鉛材料などと比較して、負極活物質の体積が大幅に増加する。このとき、負極活物質が、隣接しているセパレータや正極活物質層を抑圧するため、電極内部に含浸されている電解液が、電極体から押し出され、その結果、電極周辺の電解液の量が低下する。このため、充放電反応が不均一となり、電池内部の局所的な劣化を引き起こしやすくなる。
 電池特性を安定化させるためには、電解液が電池内部に均一に拡散している状態を維持することが重要である。このため、電極体から押し出された電解液を、電極体内部に再度浸透させる必要がある。そのためには、電解液の粘性を下げることが効果的である。
 一般的に、電解液は、溶質と、その溶質を溶解させる溶媒から構成されている。一般的な溶媒として、鎖状カーボネートが用いられており、その含有量も比較的多い。従って、この鎖状カーボネートの粘性を低下させることにより、電解液の粘性を低下させることができる。例えば、一般的に用いられているジエチルカーボネートを、メチルエチルカーボネート、ジメチルカーボネートなどの側鎖における炭素数の低い鎖状カーボネートに代えることにより、粘性を下げることができる。
 また、鎖状カーボネートよりも低い粘性を示すカルボン酸エステルやケトンを用いることにより、電解液の粘性をさらに低下させることができる。
 しかしながら、低粘度の鎖状カーボネートや、カルボン酸エステル、ケトン等は、分子量の小ささや反応性の高さに起因して、電位窓が比較的狭い。このため、非水電解液が電気化学的に不安定となり、活物質材料と副反応を起こしやすく、電池特性を低下させる傾向にある。負極活物質として、リチウムと合金化するシリコン等の材料を用いた場合、これらの材料は特に電解液と反応しやすいため、電池特性がより顕著に低下するという問題を生じる。
 また、電解液との反応は、高温環境下において充電状態で保存した場合、特に顕著となり、これに起因するガスの発生等により、電極の厚みが増加する等の問題を生じる。
 特許文献1においては、フルオロベンゼン、シクロヘキシルベンゼン、シクロヘキシルフルオロベンゼン等を電解液に少量添加することにより、シリコン等の負極活物質と非水電解液との反応を抑制できることが開示されている。しかしながら、電解液との反応をさらに抑制し、充放電サイクル特性をさらに向上させることが求められている。
 本発明は、後述するように、ベンゾトリフルオライド及びジイソシアネート化合物を含む非水電解液を用いるものである。
 特許文献2においては、ジイソシアネート化合物を含む電解液を用いた非水電解質二次電池が開示されている。しかしながら、ベンゾトリフルオライドと併用した場合の効果については何ら開示されていない。
特開2007-299543号公報 特開2007-242411号公報
 本発明は、電位窓が狭い、低粘度の溶媒を用いた場合においても、非水電解液の電気化学的安定性を高めることができ、充放電時における非水電解液の副反応を抑制して、電池特性の低下を抑制することができると共に、高温環境下における保存特性にも優れた非水電解質二次電池及び非水電解質二次電池用非水電解液を提供することにある。
 本発明の非水電解質二次電池は、正極活物質を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備える非水電解質二次電池であって、非水電解液に、ベンゾトリフルオライド及びジイソシアネート化合物が含まれており、ベンゾトリフルオライドの含有量が、溶質を除く非水電解液中において、5体積%以上であることを特徴としている。
 本発明においては、非水電解液中に含まれるジイソシアネート化合物が、負極活物質の表面に存在する水酸基と反応して結合し、この反応により生成した被膜が、負極と電解液との間で生じる副反応を抑制することにより、電池特性の低下を抑制することができると考えられる。また、本発明においては、非水電解液中に含まれるベンゾトリフルオライドが、ジイソシアネート化合物と相互作用を起こし、より緻密な被膜を生成すると考えられる。この緻密な被膜の形成により、電位窓の狭い低粘度の溶媒を用いた場合においても、非水電解液の電気化学的安定性を向上させることができ、電池特性を向上させ、高温保存特性を向上させることができると考えられる。
 本発明において、ベンゾトリフルオライドの含有量は、溶質を除く非水電解液中において、5~50体積%であることが好ましく、10~40体積%の範囲内とすることがさらに好ましい。このような範囲内とすることにより、充放電サイクル特性を向上させることができ、かつ高温環境下における保存特性も向上させることができる。
 本発明において用いるジイソシアネート化合物としては、各種のジイソシアネート化合物を用いることができるが、特に、アルキレンジイソシアネート化合物を用いることが好ましい。
 アルキレンジイソシアネート化合物における脂肪族炭化水素基の炭素数は、4以上12以下であることが好ましく、6以上12以下であることがさらに好ましい。このようなアルキレンジイソシアネート化合物の具体例としては、1,6-ジイソシアナトヘキサン、1,7-イソシアナトヘプタン、1,8-ジイソシアナトオクタン、1,9‐ジイソシアナトノナン、1,10-ジイソシアナトデカン、1,11-ジイソシアナトウンデカン、1,12-ジイソシアナトドデカンなどが挙げられる。
 本発明において、ジイソシアネート化合物の含有量は、溶質を除く非水電解液中において、0.01体積%~10体積%の範囲内であることが好ましく、さらに好ましくは0.1体積~5体積%の範囲内であり、特に好ましくは0.5体積%~4体積%の範囲内である。ジイソシアネート化合物の含有量が少なすぎると、負極活物質の上に十分な被膜を形成することができない場合がある。また、ジイソシアネート化合物の含有量が多すぎると、電池内部の抵抗が大きくなり電池容量の低下を招く場合がある。
 本発明においては、非水系溶媒として、ジエチルカーボネートやメチルエチルカーボネート、ジメチルカーボネート等の鎖状カーボネートを用いることができる。また、カルボン酸エステルやケトンなど、鎖状カーボネートより、電位窓が狭い低粘度の溶媒も用いることができる。
 また、カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、酪酸エチル、酪酸プロピルなどが挙げられる。また、ケトンとしては、アセトン、エチルメチルケトン、ジエチルケトン、メチルプロピルケトン、エチルプロピルケトン、ジプロピルケトンなどが挙げられる。
 さらに、鎖状カーボネートやカルボン酸エステル、ケトン中の水素の少なくとも一部がフッ素で置換されていても良い。
 電位窓が狭い低粘度の溶媒を非水電解液が含む場合の該溶媒の含有量としては、溶質を除く非水電解液中において、50体積%~95体積%の範囲内であることが好ましく、さらに好ましくは60体積%~90体積%の範囲内であり、特に好ましくは70体積~85体積%の範囲内である。含有量が少なすぎると、非水電解液の粘性を低くし、充放電サイクル特性などの電池特性を十分に改善できない場合がある。また、含有量が多すぎると、電解液の電導度が低下する場合がある。
 本発明においては、非水系溶媒として、環状カーボネートが含有されていることが好ましい。環状カーボネートの具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。また、環状カーボネートの一部がフッ素化されていることが、さらに好ましい。フッ素化環状カーボネートの具体例としては、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オン、4,4-ジフルオロ-1,3-ジオキソラン-2-オン、4-フルオロ-5-メチル-1,3-ジオキソラン-2-オン、4-フルオロ-4-メチル-1,3-ジオキソラン-2-オン、4-トリフルオロメチル-1,3-ジオキソラン-2-オンなど、フッ素化環状カーボネート誘導体が挙げられる。
 フッ素化環状カーボネートとしては、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンが好ましく用いられ、4-フルオロ-1,3-ジオキソラン-2-オンが特に好ましく用いられる。これらのフッ素化環状カーボネートを用いることにより、充放電サイクル特性をさらに向上させることができる。
 非水電解液中のフッ素化環状カーボネートの含有量としては、5体積%~50体積%の範囲内であることが好ましく、さらに好ましくは10体積%~40体積%の範囲内であり、特に好ましくは10体積%~20体積%の範囲内である。フッ素化環状カーボネートの含有量が少なすぎると、サイクル特性が低下する場合がある。また、フッ素化環状カーボネートの含有量が多すぎると、高温保存によるガス発生が多くなる場合がある。
 本発明における非水系溶媒は、上記の電位窓が狭い低粘度の溶媒及びフッ素化環状カ
ーボネートのみからなるものに限定されるものではなく、その他の鎖状カーボネート及び環状カーボネートが非水系溶媒として含まれていてもよい。
 本発明において用いる負極活物質としては、非水電解質二次電池において一般に用いることができる負極活物質を用いることができ、例えば、黒鉛などの炭素材料、リチウムと合金化するシリコン、ゲルマニウム、錫などの材料を用いることができる。これらの中でも、特にシリコンを含む負極活物質が好ましく用いられる。シリコンを含む負極活物質を用いることにより、容量の高い電池を構成することができる。
 また、負極活物質として、黒鉛などの炭素材料を用いた場合にも、サイクル特性及び充電保存特性を向上することができるという本発明の効果を得ることができる。
 シリコンを含む負極活物質としては、例えば、粉末状のシリコン及び/またはシリコン合金を挙げることができる。
 負極活物質に用いる上記のシリコン合金としては、シリコンと他の1種以上の元素との固溶体、シリコンと他の1種以上の元素との金属間化合物、シリコンと他の1種以上の元素との共晶合金などが挙げられる。
 このようなシリコン合金の製造方法としては、公知の方法を用いることができ、例えば、アーク溶解法、液体急冷法、メカニカルアロイング法、スパッタリング法、化学気相成長法、焼成法などを用いることができる。また、液体急冷法としては、単ロール急冷法、双ロール急冷法、及びガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法などの各種アトマイズ法を用いることができる。
 本発明における負極は、負極集電体の上に、粉末状のシリコン及び/またはシリコン合金からなる負極活物質と、結着剤からなる負極合剤層を設けたものであることが好ましい。そして、負極集電体の上に、負極活物質と結着剤からなる負極合剤層を設けた後、非酸化性雰囲気中で上記結着剤のガラス転移温度以上の温度で焼結させて負極を作製することが好ましい。結着剤のガラス転移温度以上の温度で焼結させることにより、負極活物質間及び負極活物質と負極集電体間の密着性を向上させることができる。また、負極活物質間の密着性及び負極活物質と負極集電体との間の密着性を高め、充放電における負極活物質の膨張・収縮によって負極活物質が負極集電体から剥離するのを抑制するため、負極集電体の上に負極合剤層を設けた後、これを圧延し、その後焼結させることが好ましい。
 結着剤としては、ポリイミド樹脂を用いることが好ましい。ポリイミド樹脂を用いることにより、結着剤のガラス転移温度以上の温度で負極を焼結させることができるため、負極活物質間及び負極活物質と負極集電体の間の密着性を向上させることができ、充放電による粉末状のシリコン及び/またはシリコン合金からなる負極活物質の膨張による劣化を抑制することができる。
 負極を焼結させる温度は、上述のように結着剤のガラス転移温度以上であることが好ましく、ポリイミド樹脂を用いる場合、200~500℃の範囲内であることが好ましい。
 非酸化性雰囲気としては、アルゴンなどの不活性ガスの雰囲気や窒素ガスの雰囲気であることが好ましい。水素ガスなどの還元性雰囲気であってもよい。
 上記の負極集電体としては、その表面粗さRaが0.2μm以上のものを用いることが好ましい。表面粗さRaが0.2μm以上の負極集電体を用いると、負極活物質と負極集電体との接触面積が大きくなると共に、負極集電体の表面の凹凸部分に結着剤が入り込む。この状態で焼結させると、アンカー効果も発現して、負極活物質と負極集電体との密着性が大きく向上し、充放電時における負極活物質の膨張・収縮によって負極活物質が負極集電体から剥離したりするのが一層抑制されるようになる。
 本発明の非水電解質二次電池において、その正極に用いる正極活物質としては、一般に使用されている公知の正極活物質を用いることができる。例えば、LiCoO等のリチウム・コバルト複合酸化物、LiNiO等のリチウム・ニッケル複合酸化物、LiMn,LiMnO等のリチウム・マンガン複合酸化物、LiNi1-xCo(0<x<1)等のリチウム・ニッケル・コバルト複合酸化物、LiMn1-xCo(0<x<1)等のリチウム・マンガン・コバルト複合酸化物、LiNiCoMn(x+y+z=1)等のリチウム・ニッケル・コバルト・マンガン複合酸化物、LiNiCoAl(x+y+z=1)等のリチウム・ニッケル・コバルト・アルミニウム複合酸化物等のリチウム含有遷移金属酸化物などを用いることができる。
 ここで、正極活物質にコバルト酸リチウムLiCoOを用いる場合、その表面にジルコニウムを固着させることが望ましい。これにより、コバルト酸リチウムの結晶構造を安定化させて充放電サイクル特性を向上させると共に、非水電解液との界面とにおいて充放電反応以外の副反応が生じるのを抑制することができる。
 本発明において、非水系溶媒に溶解させる溶質としては、非水電解質二次電池において一般に使用されているリチウム塩を用いることができる。このようなリチウム塩としては、例えば、LiPF,LiBF,LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,LiAsF,LiClO,Li10Cl10,Li12Cl12や、これらの混合物等を用いることができる。また、これらのリチウム塩に加えて、オキサラト錯体をアニオンとするリチウム塩を含ませることが好ましい。また、このようなオキサラト錯体をアニオンとするリチウム塩としては、リチウム-ビス(オキサラト)ボレートなどを用いることができる。
 非水電解液中における溶質の含有量は、特に限定されるものではないが、一般に、0.5モル/リットル~2モル/リットルの範囲内であることが好ましく、さらに好ましくは0.6モル/リットル~1.8モル/リットルの範囲内であり、特に好ましくは0.7モル/リットル~1.7モル/リットルの範囲内である。
 本発明の非水電解液は、非水系溶媒と、非水系溶媒に溶解させた溶質とを含む非水電解質二次電池用非水電解液であり、ベンゾトリフルオライド及びジイソシアネート化合物が含まれている。ベンゾトリフルオライドの含有量が、溶質を除く非水電解液中において、5体積%以上であることを特徴としている。
 本発明の非水電解液を用いることにより、電位窓が狭い、低粘度の溶媒を用いた場合においても、非水電解液の電気化学的安定性を高めることができ、充放電時における非水電解液の副反応を抑制して、電池特性の低下を抑制することができると共に、高温環境下における保存特性にも優れた非水電解質二次電池とすることができる。
 本発明によれば、電位窓が狭い、低粘度の溶媒を用いた場合においても、非水電解液の電気化学的安定性を高めることができ、充放電時における非水電解液の副反応を抑制して、電池特性の低下を抑制することができると共に、高温環境下における保存特性にも優れた非水電解質二次電池とすることができる。
図1は、本発明に従う実施例において作製した非水電解質二次電池を示す平面図である。 図2は、本発明に従う実施例において作製した電極体を示す平面図である。 図3は、本発明に従う実施例において作製した電極体を示す部分断面図である。
 以下、本発明を具体的な実施例により説明するが、本発明は以下の実施例に限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することができるものである。
 <実験1>
 (実施例1)
 〔正極の作製〕
 正極活物質としては、LiCoOで表されるコバルト酸リチウム(平均粒子径13μm、BET比表面積0.35m/g)の表面にジルコニウム化合物を固着させたものを用いた。表面にジルコニウム化合物が付着したコバルト酸リチウムは、原料中にジルコニウム化合物を添加し焼成することにより製造することができる。
 この正極活物質と、導電剤の炭素材料粉末と、結着剤のポリフッ化ビニリデンとが95:2.5:2.5の質量比になるようにし、これにN-メチル-2-ピロリドン溶液を加えて混練し、正極合剤スラリーを調製した。
 次いで、厚み15μm,長さ402mm,幅50mmのアルミニウム箔からなる正極集電体を用い、上記の正極合剤スラリーを、この正極集電体の片面には長さ340mm,幅50mmで塗布し、反対側の面には長さ271mm,幅50mmで塗布した。これを乾燥させて圧延して、正極を作製した。ここで、上記の正極の厚みは143μmであり、正極集電体上の正極合剤の量は48mg/cmであり、正極合剤の充填密度は3.75g/cmであった。
 そして、上記の正極において、正極合剤が塗布されていない部分に、厚み70μm,長さ35mm,幅4mmのアルミニウム平板からなる正極集電タブを取り付けた。
 〔負極の作製〕
 負極活物質としては、平均粒子径が10μmのシリコン粉末(純度99.9質量%)を用いた。
 この負極活物質と、導電剤である黒鉛粉末と、結着剤であるガラス転移温度が295℃の熱可塑性ポリイミドとを、87:3:7.5の質量比になるようにして、これらにN-メチル-2-ピロリドン溶液を加え、これを混練して負極合剤スラリーを調製した。
 そして、この負極合剤スラリーを、表面粗さRaが0.3μmで、厚みが20μmのCu-Ni-Si-Mg(Ni:3質量%,Si:0.65質量%,Mg:0.15質量%)合金箔からなる負極集電体である両面に塗布し、これを乾燥させた。なお、負極集電体上の負極合剤の量は5.6mg/cmであった。
 次いで、上記のように負極合剤を設けた負極集電体を、長さ380mm,幅52mmの長方形状に切り抜いて圧延させ、アルゴン雰囲気中において400℃で10時間熱処理して焼結させて負極を作製した。なお、焼結後の負極の厚みは56μmであった。
 そして、上記の負極の端部に厚み70μm,長さ35mm,幅4mmのニッケル平板からなる負極集電タブを取り付けた。
 〔非水電解液の作製〕
 4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート:FEC)と、ジメチルカーボネート(DMC)と、ベンゾトリフルオライド(CFPh)と、1,6-ジイソシアナトヘキサン(HMDI)とを、20:69:10:1の体積比となるように混合した混合溶媒を作製した。この混合溶媒に、溶質としてLiPFを1.0モル/リットルの濃度となるように溶解させ、これに炭酸ガスを0.4質量%溶解させて、非水電解液を作製した。
 〔非水電解質二次電池の作製〕
 上記で作製した正極、負極、及び非水電解液を用いて非水電解質二次電池を作製した。正極と負極とはセパレータを介して対向するように配置し、これらを所定の位置で折り曲げるようにして巻回し、これをプレスして扁平形状の電極体を作製した。
 図2は作製した電極体10を示しており、図3は電極体10の部分断面図である。図3に示すように、正極1と負極2との間にセパレータ3を介在させ、これを巻回している。セパレータ3としては、厚さ22μm、長さ430mm、幅54.5mmのポリエチレン製多孔体からなるセパレータを2枚用いた。
 図2に示すように、電極体10から、正極1に接続した正極集電タブ1aと、負極2に接続した負極集電タブ2aとが突き出るように電極体10を作製した。
 図1は、図2に示す電極体を用いて作製した非水電解質二次電池を示す平面図である。図1に示すように、アルミニウムラミネートフィルムで構成された電池容器20内に、電極体10を収納させ、電池容器20内に上記の非水電解液を加え、正極集電タブ1a及び負極集電タブ2aとが外部に取り出されるようにして、電池容器20の開口部を封口させ、非水電解質二次電池を作製した。作製した非水電解質二次電池の設計容量は、950mAhである。
 (実施例2)
 FEC:DMC:CFPh:HMDIの体積比を、20:49:30:1に変更する以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (実施例3)
 HMDIに代えて、1,12-ジイソシアナトドデカン(DMDI)を用いる以外は、上記実施例2と同様にして非水電解質二次電池を作製した。
 (比較例1)
 CFPh及びHMDIを用いずに、FEC:DMCの体積比を20:80とする以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (比較例2)
 HMDIを用いずに、FEC:DMC:CFPhの体積比を20:70:10とする以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (比較例3)
 HMDIを用いずに、FEC:DMC:CFPhの体積比を20:50:30とする以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (比較例4)
 HMDIを用いずに、FEC:DMC:CFPhの体積比を20:30:50とする以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (比較例5)
 CFPhを用いずに、FEC:DMC:HMDIの体積比を20:79:1とする以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (比較例6)
 FEC:DMC:CFPh:HMDIの体積比を20:77:2:1とする以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (比較例7)
 CFPhに代えて、ペンタフルオロベンゼン(PFB)を用い、FEC:DMC:PFB:HMDIの体積比を20:69:10:1とする以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (比較例8)
 HMDIに代えて、イソシアン酸ヘキシルを用い、FEC:DMC:CFPh:イソシアン酸ヘキシルの体積比を20:49:30:1とする以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (実施例4)
 DMCに代えて、プロピオン酸メチル(MP)を用い、FEC:MP:CFPh:HMDIの体積比を20:49:30:1とする以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (実施例5)
 HMDIに代えて、DMDIを用い、FEC:MP:CFPh:DMDIの体積比を20:49:30:1とする以外は、上記実施例4と同様にして非水電解質二次電池を作製した。
 (比較例9)
 CFPh及びHMDIを用いずに、FEC:MPの体積比を20:80とする以外は、上記実施例4と同様にして非水電解質二次電池を作製した。
 〔非水電解質二次電池の評価〕
 <放電負荷特性>
 実施例1~5及び比較例1~9の各非水電解質二次電池について、それぞれ25℃の室温条件において、190mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が48mAになるまで定電圧充電させた後、190mAの定電流で2.75Vになるまで放電させた。その後、950mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が48mAになるまで定電圧充電させた後、950mAの定電流で2.75Vになるまで放電させ、初期充放電を行った。この初期充放電試験の結果から、放電負荷特性を下記の式により算出した。
 放電負荷特性=(950mAでの放電容量/180mAでの放電容量)×100
 <サイクル特性>
 次に、上記のように初期充放電させた実施例1~5及び比較例1~9の各非水電解質二次電池を、それぞれ45℃の温度条件において、950mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が48mAになるまで定電圧充電させた後、950mAの定電流で2.75Vになるまで放電させた。これを1サイクルとして250サイクルの充放電を繰り返して行った。
 そして、実施例1~5及び比較例1~9の各非水電解質二次電池について、それぞれ1サイクル目の放電容量Q1と250サイクル目の放電容量Q250とを求めて、下記の式により、それぞれ45℃の温度条件での250サイクル目の容量維持率を求めた。
 容量維持率=(Q250/Q1)× 100
 <充電保存特性>
 また、上記のように初期充放電させた実施例1~5及び比較例1~9の各非水電解質二次電池を、それぞれ25℃の温度条件において、950mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が48mAになるまで定電圧充電させた。この状態でそれぞれの電池の厚みを測定した後に、60℃の環境下で20日間保存した。
 そして、実施例1~5及び比較例1~9の各非水電解質二次電池について、それぞれ20日間保存した後の電池厚みを測定し、60℃で20日間保存した際に増加した電池厚み増加量を算出した。
 電池厚み増加量=(保存後の電池厚み - 保存前の電池厚み)
 このとき、電池厚みの増加は、電池内の反応により発生したガス成分がラミネートを膨張させることにより、引き起こされる現象であり、すなわち、この場合の電池厚みとは、保存試験で発生したガス量と考えることができる。
 上記各実施例及び比較例の電池における電解液組成と共に、評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ジメチルカーボネートを含んだ電解液組成において、ベンゾトリフルオライド及びジイソシアネート化合物が含まれた非水電解液を用いた実施例1~3は、比較例1~8に比べ、サイクル特性及び高温における充電保存特性において良好な結果を示している。
 また、HMDIが添加された実施例2及びDMDIが添加された実施例3とモノイソシアネートであるイソシアン酸ヘキシルが添加された比較例8とを比較すると、実施例2及び3のほうが比較例8よりも、サイクル特性・充電保存特性・放電負荷特性のいずれも良好な結果を示している。
 また、プロピオン酸メチルを用いた電解液組成において、ベンゾトリフルオライド及びジイソシアネート化合物を含む非水電解液を用いた実施例4及び5は、比較例9に比べ、サイクル特性及び高温における充電保存特性において良好な結果を示している。
 また、同量のHMDIが添加された実施例1・2と実施例4とを比較し、同量のDMDIが添加された実施例3と実施例5とを比較すると、いずれの場合もプロピオン酸メチルを用いた実施例4および5に係る非水電解質二次電池のほうが充電保存特性も放電負荷特性も優れている。これより、ジメチルカーボネートよりもプロピオン酸メチルを用いるほうが好ましい。
 ベンゾトリフルオライドのみを含む比較例2~4、及びジイソシアネート化合物のみを含む比較例5は、ベンゾトリフルオライド及びジイソシアネート化合物の両方を含まない比較例1に比べサイクル特性は若干向上している。しかしながら、ベンゾトリフルオライド及びジイソシアネート化合物の両方を含む実施例1~3は、ベンゾトリフルオライドのみを含む比較例2~4、及びジイソシアネート化合物のみを含む比較例5に比べ、サイクル特性及び充電保存特性が顕著に向上している。このことから、本発明の効果は、ベンゾトリフルオライドとジイソシアネート化合物の相乗効果によってもたらされるものであることがわかる。
 すなわち、ジイソシアネート化合物であるHMDIが負極活物質の表面に被膜を形成するが、この被膜は、ベンゾトリフルオライドの作用により、緻密化されるものと考えられる。このような緻密な被膜により、充放電の際に生じる、電解液が分解する等の副反応を抑制することができるため、充放電サイクル特性及び充電保存特性を著しく向上させることができるものと考えられる。
 ベンゾトリフルオライドを2体積%含む比較例6と、ベンゾトリフルオライドを10体積%含む実施例1との比較から、ベンゾトリフルオライドの含有量は、5体積%以上であることが好ましく、さらに好ましくは10体積%以上であることがわかる。
 また、ベンゾトリフルオライドを用いた実施例1と、ペンタフルオロベンゼンを用いた比較例7との比較から、本発明の効果は、ペンタフルオロベンゼンでは発揮されないことがわかる。
 以上のように、本発明に従えば、DMCやMPのような電位窓が狭い低粘度の溶媒を用いた場合においても、電池特性の低下を抑制することができ、高温環境下における保存特性も向上させることができる。
 本発明によれば、DMCやMPのような粘度の低い溶媒を電気化学的安定性の高い状態で使用することができるので、シリコン等の充放電により大きな体積膨張及び収縮を生じる電極活物質を用いた場合にも、電極体から押し出された電解液を電極内部に再度スムーズに浸透させることができるので、充放電反応の不均一に基づく電池内部の局所的な劣化を抑制することができ、優れた電池特性を得ることができる。
 <実験2>
 ここでは、ジイソシアネート化合物であるHMDIの含有量を変化させた実験、及びフッ素化環状カーボネートであるFECの含有量を変化させた実験を行った。
 (実施例6)
 FEC:DMC:CFPh:HMDIの体積比を、20:49.5:30:0.5に変更する以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (実施例7)
 FEC:DMC:CFPh:HMDIの体積比を、20:46:30:4に変更する以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (実施例8)
 溶媒として、4,5-ジフルオロ-1,3-ジオキソラン-2-オン(ジフルオロエチレンカーボネート:DFEC)を用い、FEC:DFEC:DMC:CFPh:HMDIの体積比を、19:1:49:30:1に変更する以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (実施例9)
 溶媒として、エチレンカーボネート(EC)を用い、FEC:EC:DMC:CFPh:HMDIの体積比を、10:10:49:30:1に変更する以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (実施例10)
 溶媒として、プロピレンカーボネート(PC)を用い、FEC:PC:DMC:CFPh:HMDIの体積比を、15:5:49:30:1に変更する以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 (実施例11)
 溶媒として、EC、PC、及びプロピオン酸メチル(MP)を用い、ジイソシアネート化合物として、DMDIを用い、FEC:EC:PC:DMC:MP:CFPh:DMDIの体積比を、15:2.5:2.5:34:15:30:1に変更する以外は、上記実施例1と同様にして非水電解質二次電池を作製した。
 [非水電解質二次電池の評価]
 実験1と同様にして、実施例6~11のサイクル特性、充電保存特性及び放電負荷特性を評価した。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から明らかなように、ジイソシアネート化合物であるHMDIの含有量が0.5体積%である実施例6、及びHMDIの含有量が4体積%である実施例7においても、サイクル特性、充電保存特性及び放電負荷特性で良好な結果が得られている。
 また、フッ素化環状カーボネートであるFECの一部を、DFEC、ECまたはPCで置き換えた実施例8~10、並びにFECの一部をEC及びPCで置き換え、さらにDMCをMPで置き換えた実施例11においても、サイクル特性、充電保存特性、及び放電負荷特性で良好な結果が得られている。
 <実験3>
 ここでは、負極活物質として炭素材料を用いた実験を行った。
 (実施例12)
 〔負極の作製〕
 分散媒としての水に、増粘剤であるカルボキシメチルセルロースを溶かした水溶液中に、負極活物質としての平均粒径20μmの人造黒鉛と、結着剤としてのスチレン-ブタジエンゴムとを、活物質と結着剤と増粘剤の重量比が97.5:1:1.5の比率になるように混合し、負極スラリーを作製した。作製したスラリーを、負極集電体としての厚さ9μm、長さ317mm、幅52mmの電解銅箔の両面に、塗布部が表面で長さ284mm幅52mm、裏面で長さ226mm幅52mmとなるように塗布し、乾燥した後、圧延した。集電体上の活物質層量、及び負極の厚みは、両面に活物質層が形成されている部分で19.3mg/cm、130μmであった。
 [正極の作製]
 厚み15μm,長さ339mm,幅50mmのアルミニウム箔からなる正極集電体を用い、実施例1と同じ正極合剤スラリーを、この正極集電体の片面には長さ277mm,幅50mmで、反対側の面には長さ208mm,幅50mmで塗布し、これを乾燥させて圧延して、正極を作製した。ここで、上記の正極の厚みは148μmで、正極集電体上の正極合剤の量は49.8mg/cmであり、正極合剤の充填密度は3.75g/cmであった。
 そして、上記の正極において、正極合剤が塗布されていない部分に、厚み70μm,長さ35mm,幅4mmのアルミニウム平板からなる正極集電タブを取り付けた。
 [非水電解質二次電池の作製]
 実施例1と同様に電池を作製しアルミニウムラミネートフィルムで構成された電池容器20内に収容させた。電解液については、実施例3と同じ電解液を用いた。作製した電池の設計容量は830mAhであった。
 (実施例13)
 FEC:EC:DMC:CFPh:HMDIの体積比を、10:10:49:30:1に変更する以外は、上記実施例12と同様にして非水電解質二次電池を作製した。
 (実施例14)
 FEC:MP:CFPh:HMDIの体積比を、20:49:30:1に変更する以外は、上記実施例12と同様にして非水電解質二次電池を作製した。
 (実施例15)
 FEC:EC:PC:DMC:CFPh:HMDIの体積比を、10:5:5:49:30:1に変更する以外は、上記実施例12と同様にして非水電解質二次電池を作製した。
 (実施例16)
 FEC:PC:DMC:CFPh:HMDIの体積比を、15:5:49:30:1に変更する以外は、上記実施例12と同様にして非水電解質二次電池を作製した。
 (実施例17)
 FEC:MP:CFPh:DMDIの体積比を、20:49:30:1に変更する以外は、上記実施例12と同様にして非水電解質二次電池を作製した。
 (比較例10)
 FEC:DMCの体積比を、20:80に変更する以外は、上記実施例12と同様にして非水電解質二次電池を作製した。
 (比較例11)
 FEC:DMC:HMDIの体積比を、20:79:1に変更する以外は、上記実施例12と同様にして非水電解質二次電池を作製した。
 (比較例12)
 FEC:DMC:CFPhの体積比を、20:50:30に変更する以外は、上記実施例12と同様にして非水電解質二次電池を作製した。
 (比較例13)
 FEC:MPの体積比を、20:80に変更する以外は、上記実施例12と同様にして非水電解質二次電池を作製した。
 <放電負荷特性>
 上記の実施例12~17及び比較例10~13の各非水電解質二次電池については、それぞれ25℃の室温条件において、166mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が41mAになるまで定電圧充電させた後、166mAの定電流で2.75Vになるまで放電させた。その後、830mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が41mAになるまで定電圧充電させた後、830mAの定電流で2.75Vになるまで放電させ、初期充放電を行った。この初期充放電試験の結果から、放電負荷特性を下記の式により算出した。
 放電負荷特性=(830mAでの放電容量/166mAでの放電容量)×100
 <サイクル特性>
 次に、上記のように初期充放電させた実施例12~17及び比較例10~13の各非水電解質二次電池を、それぞれ45℃の温度条件において、830mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が41mAになるまで定電圧充電させた後、830mAの定電流で2.75Vになるまで放電させた。これを1サイクルとして250サイクルの充放電を繰り返して行った。そして、実施例12~17及び比較例10~13の各非水電解質二次電池について、それぞれ1サイクル目の放電容量Q1と250サイクル目の放電容量Q250とを求めて、下記の式により、それぞれ45℃の温度条件での250サイクル目の容量維持率を求めた。
 容量維持率=(Q250/Q1)× 100
 <充電保存特性>
 一方で また、上記のように初期充放電させた実施例12~17及び比較例10~13の各非水電解質二次電池を、それぞれ25℃の温度条件において、830mAの定電流で4.2Vになるまで充電し、さらに4.2Vの定電圧で電流値が41mAになるまで定電圧充電させた。この状態でそれぞれの電池の厚みを測定した後に、60℃の環境下で20日間保存した。そして、実施例12~17及び比較例10~13の各非水電解質二次電池について、それぞれ20日間保存した後の電池厚みを測定し、60℃で20日間保存した際に増加した電池厚み増加量を算出した。
 電池厚み増加量=(保存後の電池厚み - 保存前の電池厚み)
 このとき、電池厚みの増加は、電池内の反応により発生したガス成分がラミネートを膨張させることにより、引き起こされる現象であり、すなわち、この場合の電池厚みとは、保存試験で発生したガス量と考えることができる。上記各実施例及び比較例の電池における電解液組成と共に、評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から明らかなように、負極活物質として黒鉛を用いる場合においても、ベンゾトリフルオライドとジイソシアネート化合物を用いることにより、サイクル特性及び充電保存特性を向上させることができる。
 以上のように、負極活物質として黒鉛などの炭素材料を用いた場合にも、本発明の効果を得ることができる。
 1…正極
 1a…正極集電タブ
 2…負極
 2a…負極集電タブ
 3…セパレータ
 10…電極体
 20…電池容器

Claims (8)

  1.  正極活物質を含む正極と、負極活物質を含む負極と、非水系溶媒に溶質を溶解させた非水電解液とを備える非水電解質二次電池であって、
     前記非水電解液に、ベンゾトリフルオライド及びジイソシアネート化合物が含まれており、ベンゾトリフルオライドの含有量が、前記溶質を除く前記非水電解液中において、5体積%以上であることを特徴とする非水電解質二次電池。
  2.  ベンゾトリフルオライドの含有量が、前記溶質を除く前記非水電解液中において、10体積%以上であることを特徴とする請求項1に記載の非水電解質二次電池。
  3.  前記ジイソシアネート化合物が、アルキレンジイソシアネート化合物であることを特徴とする請求項1に記載の非水電解質二次電池。
  4.  前記ジイソシアネート化合物の含有量が、前記溶質を除く前記非水電解液中において、0.5~4.0体積%の範囲であることを特徴とする請求項1に記載の非水電解質二次電池。
  5.  前記負極活物質が、シリコンを含むことを特徴とする請求項1に記載の非水電解質二次電池。
  6.  前記負極活物質が、黒鉛材料を含むことを特徴とする請求項1に記載の非水電解質二次電池。
  7.  前記非水系溶媒として、ジメチルカーボネート、メチルエチルカーボネート、カルボン酸エステルまたはケトンが含まれていることを特徴とする請求項1に記載の非水電解質二次電池。
  8.  非水系溶媒と、非水系溶媒に溶解させた溶質とを含む非水電解質二次電池用非水電解液であって、
     ベンゾトリフルオライド及びジイソシアネート化合物が含まれており、ベンゾトリフルオライドの含有量が、前記溶質を除く前記非水電解液中において、5体積%以上であることを特徴とする非水電解質二次電池用非水電解液。
PCT/JP2011/060426 2010-05-10 2011-04-28 非水電解質二次電池及び非水電解質二次電池用非水電解液 WO2011142276A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012514766A JP5806660B2 (ja) 2010-05-10 2011-04-28 非水電解質二次電池及び非水電解質二次電池用非水電解液
EP11780533.3A EP2571088A4 (en) 2010-05-10 2011-04-28 NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY, AND NONAQUEOUS ELECTROLYTE SOLUTION FOR NONAQUEOUS ELECTROLYTE RECHARGEABLE BATTERY
CN201180021983.1A CN102870267B (zh) 2010-05-10 2011-04-28 非水电解质二次电池和非水电解质二次电池用非水电解液
US13/639,396 US9153841B2 (en) 2010-05-10 2011-04-28 Non-aqueous electrolyte secondary battery, and non-aqueous electrolyte solution for non-aqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-108225 2010-05-10
JP2010108225 2010-05-10

Publications (1)

Publication Number Publication Date
WO2011142276A1 true WO2011142276A1 (ja) 2011-11-17

Family

ID=44914332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060426 WO2011142276A1 (ja) 2010-05-10 2011-04-28 非水電解質二次電池及び非水電解質二次電池用非水電解液

Country Status (5)

Country Link
US (1) US9153841B2 (ja)
EP (1) EP2571088A4 (ja)
JP (1) JP5806660B2 (ja)
CN (1) CN102870267B (ja)
WO (1) WO2011142276A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175369A (ja) * 2012-02-24 2013-09-05 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
US9947965B2 (en) * 2013-03-27 2018-04-17 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
JP2019145324A (ja) * 2018-02-20 2019-08-29 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用電解液及び非水電解質二次電池
US10938070B2 (en) 2018-02-20 2021-03-02 Samsung Sdi Co., Ltd. Non-aqueous electrolyte solution for rechargeable battery, rechargeable battery having the same and method of preparing the same
WO2021090815A1 (ja) 2019-11-05 2021-05-14 国立大学法人九州大学 電解液
US11444328B2 (en) 2018-02-20 2022-09-13 Samsung Sdi Co., Ltd. Non-aqueous electrolyte for secondary battery, secondary battery having the same and method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104752763B (zh) * 2013-12-25 2017-04-12 中国科学院宁波材料技术与工程研究所 一种新型锂离子电解液添加剂体系
JP2019125538A (ja) * 2018-01-19 2019-07-25 株式会社日立製作所 負極、半二次電池、二次電池
CN113454809A (zh) * 2019-02-28 2021-09-28 三洋电机株式会社 非水电解质二次电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112335A (ja) * 1996-10-03 1998-04-28 Hitachi Maxell Ltd 有機電解液二次電池
JP2002008719A (ja) * 2000-06-27 2002-01-11 Mitsui Chemicals Inc 非水電解液およびそれを使用した二次電池
JP2007035616A (ja) * 2005-06-23 2007-02-08 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液二次電池
JP2007242411A (ja) 2006-03-08 2007-09-20 Sony Corp 電池及び電解液組成物
JP2007299543A (ja) 2006-04-27 2007-11-15 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2009245923A (ja) * 2008-03-10 2009-10-22 Sony Corp 二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106209A (ja) * 1998-09-30 2000-04-11 Mitsui Chemicals Inc 非水電解液および非水電解液二次電池
CN1278444C (zh) 2001-04-09 2006-10-04 三星Sdi株式会社 锂二次电池的无水电解液及包含它的锂二次电池的制备方法
KR100458568B1 (ko) * 2002-04-03 2004-12-03 삼성에스디아이 주식회사 리튬 전지용 전해질 및 이를 포함하는 리튬 전지
KR20060029747A (ko) 2004-10-01 2006-04-07 삼성에스디아이 주식회사 리튬이온 이차전지용 전해액 및 이를 포함하는 리튬이온이차전지
EP2278652B1 (en) 2005-06-23 2013-02-13 Mitsubishi Chemical Corporation Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery using the same
CN101432923B (zh) 2006-04-27 2012-04-18 三菱化学株式会社 非水电解液及非水电解质二次电池
JP5319899B2 (ja) * 2007-08-23 2013-10-16 株式会社東芝 非水電解液電池
WO2009035054A1 (ja) * 2007-09-12 2009-03-19 Mitsubishi Chemical Corporation 二次電池用非水系電解液及びそれを用いた非水系電解液二次電池
CN102082298B (zh) 2008-03-10 2013-12-11 索尼株式会社 二次电池
WO2010021236A1 (ja) * 2008-08-20 2010-02-25 三洋電機株式会社 非水電解質二次電池
EP2958181B1 (en) * 2010-02-12 2017-06-14 Mitsubishi Chemical Corporation Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112335A (ja) * 1996-10-03 1998-04-28 Hitachi Maxell Ltd 有機電解液二次電池
JP2002008719A (ja) * 2000-06-27 2002-01-11 Mitsui Chemicals Inc 非水電解液およびそれを使用した二次電池
JP2007035616A (ja) * 2005-06-23 2007-02-08 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液二次電池
JP2007242411A (ja) 2006-03-08 2007-09-20 Sony Corp 電池及び電解液組成物
JP2007299543A (ja) 2006-04-27 2007-11-15 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いた非水系電解液二次電池
JP2009245923A (ja) * 2008-03-10 2009-10-22 Sony Corp 二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2571088A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175369A (ja) * 2012-02-24 2013-09-05 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
US9947965B2 (en) * 2013-03-27 2018-04-17 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
JP2019145324A (ja) * 2018-02-20 2019-08-29 三星エスディアイ株式会社Samsung SDI Co., Ltd. 非水電解質二次電池用電解液及び非水電解質二次電池
US10938070B2 (en) 2018-02-20 2021-03-02 Samsung Sdi Co., Ltd. Non-aqueous electrolyte solution for rechargeable battery, rechargeable battery having the same and method of preparing the same
JP7131923B2 (ja) 2018-02-20 2022-09-06 三星エスディアイ株式会社 非水電解質二次電池用電解液及び非水電解質二次電池
US11444328B2 (en) 2018-02-20 2022-09-13 Samsung Sdi Co., Ltd. Non-aqueous electrolyte for secondary battery, secondary battery having the same and method of manufacturing the same
WO2021090815A1 (ja) 2019-11-05 2021-05-14 国立大学法人九州大学 電解液

Also Published As

Publication number Publication date
EP2571088A4 (en) 2013-10-23
EP2571088A1 (en) 2013-03-20
CN102870267B (zh) 2015-05-20
US20130022879A1 (en) 2013-01-24
US9153841B2 (en) 2015-10-06
JPWO2011142276A1 (ja) 2013-07-22
JP5806660B2 (ja) 2015-11-10
CN102870267A (zh) 2013-01-09

Similar Documents

Publication Publication Date Title
JP5538226B2 (ja) 非水電解質二次電池
JP5806660B2 (ja) 非水電解質二次電池及び非水電解質二次電池用非水電解液
EP2924796B1 (en) Lithium ion secondary battery
JP4837614B2 (ja) リチウム二次電池
JP4697382B2 (ja) 非水電解質二次電池
US10263286B2 (en) Secondary battery electrolyte and secondary battery
JP5441221B2 (ja) 非水電解質二次電池及び非水電解質二次電池用非水電解液
JPWO2005057713A1 (ja) 二次電池
JP5310711B2 (ja) 非水電解質二次電池
JP5999090B2 (ja) 二次電池用活物質
EP3346539A1 (en) Electrolyte solution and lithium ion secondary battery
KR20090092220A (ko) 비수전해질 이차 전지
JP4288402B2 (ja) 二次電池用電解液、二次電池および二次電池の使用方法
JP4433163B2 (ja) リチウム二次電池用電解液およびそれを用いたリチウム二次電池
US20100081063A1 (en) Non-aqueous electrolyte secondary battery
KR20190064272A (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2014171518A2 (ja) リチウムイオン二次電池
JP4265169B2 (ja) 二次電池用電解液およびそれを用いた二次電池
CN112542608A (zh) 可再充电锂电池及其制造方法
JP4525018B2 (ja) リチウム二次電池用電解液およびそれを用いたリチウム二次電池
US20090081556A1 (en) Non-aqueous electrolyte secondary battery
EP3982460A1 (en) Manufacturing method of lithium secondary battery
KR20190116892A (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
JP2009099536A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021983.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780533

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514766

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13639396

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011780533

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE