WO2011142032A1 - ブラシレスモータの駆動装置 - Google Patents

ブラシレスモータの駆動装置 Download PDF

Info

Publication number
WO2011142032A1
WO2011142032A1 PCT/JP2010/058207 JP2010058207W WO2011142032A1 WO 2011142032 A1 WO2011142032 A1 WO 2011142032A1 JP 2010058207 W JP2010058207 W JP 2010058207W WO 2011142032 A1 WO2011142032 A1 WO 2011142032A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
detected
phase
brushless motor
motor
Prior art date
Application number
PCT/JP2010/058207
Other languages
English (en)
French (fr)
Inventor
藤本 千明
政弘 木全
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/640,250 priority Critical patent/US10298162B2/en
Priority to KR1020127026337A priority patent/KR101393828B1/ko
Priority to PCT/JP2010/058207 priority patent/WO2011142032A1/ja
Priority to CN201080066767.4A priority patent/CN102893508B/zh
Priority to JP2012514659A priority patent/JP5414893B2/ja
Priority to EP10851415.9A priority patent/EP2571158B1/en
Publication of WO2011142032A1 publication Critical patent/WO2011142032A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors

Definitions

  • the present invention relates to a brushless motor driving apparatus that controls the driving of a brushless motor by using a phase current flowing in an armature winding of the brushless motor.
  • the current flowing through the current detection resistor provided for each phase in the motor drive inverter circuit is It is detected as an armature current.
  • the duty ratio for each phase corresponding to the deviation between the target current and the detected current is calculated, and the switching elements of each phase constituting the inverter circuit are ON / OFF controlled by PWM control.
  • FIG. 14 is a circuit configuration diagram illustrating an example of a conventional brushless motor driving apparatus as disclosed in Patent Document 1, for example.
  • a conventional brushless motor driving apparatus includes, for each phase, an upper switching element 5uH, 5vH, 5wH (hereinafter also referred to simply as 5H), an armature winding 9, and a lower switching element.
  • 5 uL, 5 vL, and 5 wL (hereinafter also simply referred to as 5L) are connected, and current detection resistors 6u, 6v, and 6w (hereinafter collectively referred to simply as 6) between the lower switching element 5L and the ground. .) Is arranged to arrange.
  • the drive control circuit 4 which is a PWM control means, turns the switching element 5 L into the ON state, the armature winding of the motor
  • the armature current of the line 9 flows through the lower switching element 5L and the current detection resistor 6 to the ground.
  • the armature current is measured by detecting a potential difference between both ends of the current detection resistor 6 in a state where the current detection resistor 6 is allowed to flow.
  • the fact that the lower switching element 5L is in the ON state means that current is passed through the armature winding 9 and current is not passed through the upper and lower switching elements in the same phase. It will be in the OFF state. In order to detect the armature current in this way, detection is possible only when the upper switching element 5H is OFF and the lower switching element 5L is ON.
  • the switching elements for the U phase, the V phase, and the W phase are assigned to the brushless motor constituted by the U phase, the V phase, and the W phase based on the duty ratio instruction from the PWM control unit.
  • ON / OFF control when the switching element is turned ON / OFF at a duty ratio of the U phase less than a predetermined value, it is difficult for the U phase to detect the current.
  • Iu -(Iv + Iw) (1)
  • the V phase and W phase which are other phases should be calculated from the current detected in the other phase. Is described.
  • the U-phase current cannot be directly detected.
  • the U-phase current is calculated by detecting the phase, that is, the V-phase and W-phase currents.
  • the other phases, V phase, and W phase must be in a state where they can be detected.
  • the duty ratio of the two phases out of the three phases must be set to a predetermined value or more. Therefore, the duty ratio is limited to a range in which the current can be detected. Therefore, there is a problem that the duty ratio cannot be freely controlled.
  • the present invention has been made to solve the above-described problems.
  • the motor can be driven regardless of the state in which the armature current can be detected, and it is not necessary to limit the duty ratio.
  • An object of the present invention is to provide a brushless motor driving device that can freely apply a voltage to the armature winding of the motor and improve the output of the motor.
  • the brushless motor driving device is connected in series to each other, which includes a first (upper) switching element arranged on the power supply side and a second (lower) switching element arranged on the ground side.
  • a drive circuit for a brushless motor in which a plurality of arms including a pair of switching elements are connected in parallel, and a current detection means for detecting a current flowing in the armature winding of the brushless motor during a period when the switching elements of the drive circuit are ON And a voltage command for applying to the armature winding of the brushless motor based on the deviation between the target current value for driving the brushless motor and the detected current value detected by the current detecting means
  • An arithmetic processing means for calculating a value, a drive signal is generated based on a voltage command value from the arithmetic processing means, and the switch of the drive circuit
  • a brushless motor driving device comprising: PWM driving means for controlling ON / OFF of the driving element, wherein the arithmetic processing means is further configured to
  • the motor can be driven regardless of the state in which the armature current can be detected, the duty ratio need not be limited, and the power supply voltage utilization rate is increased.
  • a brushless motor driving apparatus capable of improving the output of the motor can be obtained.
  • FIG. 2 is a detailed control block diagram of coordinate conversion means in Embodiment 1 of the present invention. It is a flowchart which shows the process of the electric current detection in Embodiment 1 of this invention. It is a flowchart which shows the process at the time of abnormality of the motor drive device in Embodiment 1 of this invention.
  • FIG. 4 is a detailed control block diagram of coordinate conversion means in Embodiment 2 of the present invention. It is a flowchart which shows the process of the electric current detection in Embodiment 2 of this invention. It is a figure which shows the motor angle and current detectable range in Embodiment 2 of this invention. It is a flowchart which shows the process at the time of abnormality of the motor drive device in Embodiment 2 of this invention. It is a flowchart which shows the other example of the process at the time of abnormality of the motor drive device in Embodiment 2 of this invention. It is a schematic block diagram which shows an example of a conventional apparatus.
  • FIG. 1 is a schematic configuration diagram of a brushless motor driving apparatus according to the first embodiment.
  • the brushless motor is composed of a three-phase synchronous permanent magnet motor having armature windings 9, and includes a position sensor 10 composed of, for example, a resolver that detects the magnetic pole position of the motor. 10, the magnetic pole position information of the motor is output to a control unit (controller) described later.
  • the drive circuit for driving the brushless motor is arranged on the ground side with an FET (field effect transistor) 5H (5 uH, 5 vH, 5 wH) which is a first switching element arranged on the power supply 8 side.
  • FETs 5L (5uL, 5vL, 5wL), which are the second switching elements, are connected in series so as to be paired with each other. 9 is connected to each phase.
  • the conduction and non-conduction of the FETs 5H and 5L are controlled according to the drive signal from the PWM drive means 4, and the motor is driven by controlling the voltage applied to the motor armature winding 9.
  • a current detecting resistor 6 (6 u, 6 v, 6 w) as a current detecting means is connected. Specific operation of current detection will be described later.
  • the arithmetic processing means which is a motor control unit, is constituted by a microcomputer and inputs a signal from the position sensor 10 for detecting the rotational position of the motor and calculates the motor position ⁇ . Further, currents flowing in the U, V, and W phases of the armature winding 9 are input from the current detection means 6 that detects the current flowing in each phase of the brushless motor.
  • the arithmetic processing means will be described.
  • the currents Iu, Iv, and Iw from the current detection unit 6 are input to the coordinate conversion unit 100, and the coordinate conversion unit 100 performs qq conversion from the motor position ⁇ and the U, V, and W phase detection currents by qq.
  • the detection currents Iq and Id for the two axes of the axis and d axis are obtained.
  • the motor target current command calculation means 1 calculates and outputs a target q-axis current TIq and a target d-axis current TId, which are command currents for driving the motor.
  • the deviation between the target q-axis current TIq from the target current command calculation means 1 and the actually detected q-axis current Iq is PI-controlled by the proportional-integral calculation means 2 which is the target voltage calculation means, and the q-axis command voltage Vq is obtained.
  • a PI control calculation is performed on the deviation between the target d-axis current TId and the detected d-axis current Id to obtain the d-axis command voltage Vd.
  • the q-axis command voltage Vq and the d-axis command voltage Vd calculated by the proportional-integral calculation means 2 are input to the three-phase conversion calculation means 3, and the three-phase conversion calculation means 3 receives the d- and q-axis command voltages. Is converted into voltage command values Vu, Vv, and Vw to be applied to the U, V, and W three-phase armature windings of the motor by performing three-phase conversion, that is, dq reverse conversion.
  • the voltage command values Vu, Vv, and Vw are input to the PWM drive means 4 that is a control means of the drive circuit.
  • the PWM drive means 4 replaces these three-phase voltage command values with a duty ratio, performs pulse width modulation, Instructs the drive circuit to drive.
  • the FET drive circuit receives the drive signal from the PWM drive means 4 and realizes chopper control. As a result, current flows in each phase of the armature winding 9 of the brushless motor, and the brushless motor generates torque and rotates.
  • (1) is a timer indicating a carrier in pulse width modulation (PWM), and the duty ratio (2) is shown with the minimum state being 0% and the maximum state being 100%.
  • PWM pulse width modulation
  • the signal (3) turns on the FET 5H arranged in the upper stage, and the signal (4) turns off the FET 5L arranged in the lower stage.
  • the signal (3) turns off the FET 5H arranged in the upper stage, and the signal (4) turns on the FET 5L arranged in the lower stage.
  • the voltage applied to the armature winding 9 is controlled by controlling the time ratio between ON and OFF.
  • the sample hold instruction signal for extracting only the current detection value needs to be sampled and held in the ON state, that is, within the time t1 in FIG. Since the sample and hold time t2 is determined by the sample and hold means, it is necessary that t1 ⁇ t2 in order to detect the current. That is, whether or not current can be detected can be determined as current detection possible when the ON state period t1 is larger than t2, and it can be determined that current detection is impossible when the ON state period t1 is smaller than t2.
  • the ON state period t1 indicates the ON time of the lower stage FET 5L, and t1 can be determined from the duty ratio if the PWM carrier period T is fixed. For this reason, the duty ratio that can be detected by the current indicates a time t2 / T or more, and it can be said that the current detection is possible when the duty ratio is t2 / T or more. Conversely, when it is less than t2 / T, it can be determined that the current cannot be detected. Further, since the duty ratio is obtained from the command voltage (voltage command value) of each phase, it is determined whether each phase can detect current from the duty ratio indicated by each phase or the command voltage of each phase. I can do it.
  • the current it is determined whether the current can be detected based on the indicated duty ratio or the command voltage, but the voltage on the armature winding varies between the power supply voltage and the ground voltage by the upper and lower FETs 5H and 5L. is doing.
  • By detecting this voltage variation measuring the time during which the voltage on the armature winding is in the grounded state, and determining whether it is time t2 or more, it may be determined whether the current can be detected. Also, measure the time when the voltage on the armature winding is in the ground side state and the time when it is in the power source side state, and calculate the actual duty ratio by calculating the ratio to determine whether the current can be detected. May be.
  • the duty ratio can be calculated by detecting the voltage on the armature winding and the power supply voltage, respectively, and obtaining the ratio. Whether the current can be detected may be determined from the duty ratio.
  • the current detection switching processing unit 105 outputs an instruction signal for switching the current detected by each phase in addition to the process for determining whether each phase can detect a current as described above.
  • the U phase current input processing unit 101 outputs the input detection current ADu as it is as Iu.
  • Iu -(ADv + ADw) (2)
  • the current detection switching processing unit 105 when only one phase can be detected or all phases cannot be detected, the current of each phase is output as the calculated phase current.
  • FIG. 6 is a flowchart showing the above processing.
  • step S1 the U-phase duty ratio Du is compared with t2 / T to determine whether or not current detection is possible. When it is detectable, it progresses to step S2. When it is determined that it cannot be detected, the process proceeds to step S3.
  • step S2 it is determined whether the current can be detected by comparing the V-phase duty ratio Dv with t2 / T. When it is detectable, it progresses to step S4. When it is determined that it cannot be detected, the process proceeds to step S5.
  • step S3 the V-phase duty ratio Dv is compared with t2 / T to determine whether or not current detection is possible. When it is detectable, it progresses to step S6. When it is determined that it cannot be detected, the process proceeds to step S13.
  • step S4 the W-phase duty ratio Dw is compared with t2 / T to determine whether or not current detection is possible. When it is detectable, it progresses to step S7. When it is determined that it cannot be detected, the process proceeds to step S8.
  • step S5 the W-phase duty ratio Dw is compared with t2 / T to determine whether or not current detection is possible. When it is detectable, it progresses to step S9. When it is determined that it cannot be detected, the process proceeds to step S10.
  • step S6 the W-phase duty ratio Dw is compared with t2 / T to determine whether or not current detection is possible. When it is detectable, it progresses to step S11. When it is determined that it cannot be detected, the process proceeds to step S12.
  • step S7 all three phases can be detected, and the signals ADu, Adv, ADw detected by the current detection means are used as they are.
  • step S8 since the W-phase cannot be detected, the current of the W-phase is calculated according to the equation (4), and the other U and V phases use the signals ADu and ADv detected by the current detecting means as they are.
  • step S9 since the V-phase cannot be detected, the current of the V-phase is calculated according to the equation (3), and the other U and W phases use the signals ADu and ADw detected by the current detecting means as they are.
  • step S10 two phases cannot be detected, that is, only one phase can be detected, so the detected current of each phase uses the previous value.
  • step S11 since the U-phase cannot be detected, the current of the U-phase is calculated according to the equation (2), and the other V and W phases use the signals ADv and ADw detected by the current detecting means as they are.
  • step S12 two phases cannot be detected, that is, only one phase can be detected, so the detected current of each phase uses the previous value.
  • step S13 two or more phases cannot be detected, that is, two phases or all phases cannot be detected, and the detected current of each phase uses the previous value.
  • step S17 equation (5) is calculated from the detected currents of the three phases.
  • the brushless motor driving apparatus includes the first (upper) switching element arranged on the power supply side and the second (lower) switching element arranged on the ground side.
  • a brushless motor drive circuit in which a plurality of arms including a pair of switching elements connected in series are connected in parallel, and a current flowing through the armature winding of the brushless motor during a period when the switching element of the drive circuit is ON
  • Current detection means for detecting the current, and the target current value for driving the brushless motor and the detected current value detected by the current detection means are compared and applied to the armature winding of the brushless motor based on the deviation
  • a calculation processing means for calculating a voltage command value of the drive circuit, a drive signal is generated based on the voltage command value from the calculation processing means, and the drive circuit is switched on
  • a brushless motor drive device comprising PWM drive means for controlling ON / OFF of the element, wherein the arithmetic processing means is further configured to operate the electric motor of each phase of the brushless motor according to the operating
  • the current detection capability determination means for determining whether or not the current flowing in the child winding can be detected, and the arithmetic processing means, when the current detection possibility determination means determines that the current cannot be detected, Since the voltage command value is obtained by comparing the target current value with the detected current value when it can be detected and the motor drive is continued, the range in which the duty ratio of each phase can be detected. Therefore, the duty ratio can be maximized.
  • the brushless motor has an armature winding composed of n phases, and the arithmetic processing means determines that the phase that can be detected by the current detectability determining means is (n ⁇ 2) or less. Using the phase current detection value when all phase currents could be detected, and comparing this phase current detection value with the target current value, the voltage command value is obtained and the motor drive is continued. Therefore, even if only one phase can be detected and each phase cannot be estimated, the motor can be driven regardless of the state where the current cannot be detected, and it is not necessary to limit the duty ratio.
  • the U, V, and W phase command voltages need to increase as the d and q axis target voltages increase.
  • the situation in which the voltage of the armature winding of the motor is increased means that the motor rotates, a back electromotive force is generated according to the number of rotations, and the induced voltage of each phase increases. Therefore, in order to avoid the situation where the current cannot be detected due to the failure of the motor drive device, it is only necessary to detect the rotation state of the motor. That is, when the current cannot be detected, the motor drive is stopped when the motor rotation speed is equal to or lower than a predetermined value. Thereby, it can be detected that there is an abnormality in the motor drive device, and the motor drive can be stopped.
  • FIG. 7 shows the above-mentioned contents processed in the PWM drive means 4 based on the processing of FIG.
  • the current undetectable state flag Flg obtained by the processing in FIG. 6 is checked. If the current is detectable, the process proceeds to step S34. If the current is not detectable, the process proceeds to step S32.
  • step S32 it is determined whether or not the motor rotation number is equal to or greater than a predetermined value ⁇ . If it is equal to or greater than the predetermined value, the process proceeds to step S34, and if it is less than the predetermined value ⁇ , the process proceeds to step S33.
  • step S33 it is determined that there is an abnormality, and an instruction is given to stop the PWM control.
  • step S34 each instructed phase voltage is converted into a duty so that PWM control can be performed.
  • step S35 in order to turn on or off the FETs of the motor drive circuit, an ON / OFF instruction based on the PWM control or a control signal is output to turn off all the FETs so as to stop the PWM control. Is done.
  • a threshold TH determined by the motor rotational speed and the q-axis current is obtained in advance, and the motor rotational speed obtained from the detected motor angle and the detected q-axis current.
  • the motor driving is stopped.
  • step S32 it is determined in step S32 whether or not the motor speed is less than a predetermined value.
  • the process proceeds to step S34, and if it is B, the process proceeds to step S33.
  • the current detection enable determination means is the armature winding at a predetermined motor angle or at a predetermined motor rotational speed or less.
  • FIG. FIG. 9 shows another method of the coordinate conversion means 100 in the second embodiment of the present invention.
  • the UVW phase coordinate conversion processing unit 111 calculates the following equation (6) from the phase currents ADu, ADv, ADw obtained from each phase, assuming that all phase currents can be detected, and Id D and q axis detection currents indicated by Iq are output.
  • the VW phase coordinate conversion processing unit 114 calculates the following equation (7) from the phase currents ADv and ADw obtained from the remaining two phases, and is represented by Id and Iq. d, q axis detection current is output.
  • the UW phase coordinate conversion processing unit 113 calculates the following equation (8) from the phase currents ADu and ADw obtained from the remaining two phases, and is represented by Id and Iq. d, q axis detection current is output.
  • the UV phase coordinate conversion processing unit 112 calculates the following equation (9) from the phase currents ADu and ADv obtained from the remaining two phases, and is represented by Id and Iq. d, q axis detection current is output.
  • the d and q axis current switching processing unit 110 can detect three phases, the d and q axis currents Id and Iq obtained by the UVW phase coordinate conversion processing unit 111 are selected.
  • the d, q-axis current Id, and Iq obtained by the VW phase coordinate conversion processing unit 114 are selected.
  • the d and q axis currents Id and Iq obtained by the UW phase coordinate conversion processing unit 113 are selected.
  • the d, q-axis current Id, and Iq obtained by the VW phase coordinate conversion processing unit 112 are selected.
  • Id and Iq are not subjected to coordinate conversion and use the previous values.
  • FIG. 10 is a flowchart showing the above processing.
  • step S121 the U-phase duty ratio Du is compared with t2 / T to determine whether or not current detection is possible. When it is detectable, it progresses to step S122. When it is determined that it cannot be detected, the process proceeds to step S123.
  • step S122 the V-phase duty ratio Dv is compared with t2 / T to determine whether or not current detection is possible. When it is detectable, it progresses to step S124. When it is determined that it cannot be detected, the process proceeds to step S125.
  • step S123 the V-phase duty ratio Dv is compared with t2 / T to determine whether or not current detection is possible. When it is detectable, it progresses to step S126. When it is determined that it cannot be detected, the process proceeds to step S137.
  • step S124 the W-phase duty ratio Dw is compared with t2 / T to determine whether or not current detection is possible. When it is detectable, it progresses to step S127. When it is determined that it cannot be detected, the process proceeds to step S129.
  • step S125 the W phase duty ratio Dw is compared with t2 / T to determine whether or not current detection is possible. When it is detectable, it progresses to step S131. When it is determined that it cannot be detected, the process proceeds to step S133.
  • step S126 the W phase duty ratio Dw is compared with t2 / T to determine whether or not current detection is possible. When it is detectable, it progresses to step S134. When it is determined that it cannot be detected, the process proceeds to step S136.
  • step S127 all three phases can be detected, and the signals ADu, ADv, ADw detected by the current detection means are used as they are.
  • step S1208 equation (6) is calculated.
  • step S129 since the W phase cannot be detected, the signals ADu and ADv detected by the current detecting means are used as they are for the U and V phases.
  • step S130 equation (9) is calculated.
  • step S131 since the V phase cannot be detected, the other U and W phases use the signals ADu and ADw detected by the current detection means as they are.
  • step S132 equation (8) is calculated.
  • step S133 it is impossible to detect two phases, that is, only one phase can be detected. Therefore, the detected values of the d and q axes use the previous values.
  • step S134 since the U-phase cannot be detected, the signals ADv and ADw detected by the current detection means are used as they are for the other V and W phases.
  • step S13 equation (7) is calculated.
  • step S136 two phases cannot be detected, that is, only one phase can be detected, so the d and q axis detection currents use the previous values.
  • step S137 two or more phases cannot be detected.
  • two or all phases cannot be detected, and the d and q axis detection currents use the previous values.
  • the brushless motor is provided with the armature winding composed of the U, V, and W three phases, and the arithmetic processing means is detected by the current detection means.
  • a first coordinate conversion means for converting the detected current into a biaxial current composed of a d-axis current indicating a current in the magnetic flux direction and a q-axis current indicating a current in the torque direction; a target current value of the two axes;
  • a target voltage calculation means for obtaining a target voltage for two axes from the two-axis detected current value obtained by the first coordinate conversion means, and a three-phase voltage command for the target voltage for two axes obtained by the target voltage calculation means.
  • Three-phase conversion means (second coordinate conversion means) for converting into values, and when the current detection possibility determination means determines that the current flowing through the armature winding of each phase can be detected in all three phases, Biaxial current from U, V, W phase detected current by first coordinate conversion means When it is determined that one phase cannot be detected by the current detection capability determination means, the phase that cannot be detected is obtained from the other two detectable phases, and the first coordinate conversion is performed from the detected currents of the U, V, and W phases.
  • the current-detectable determination means determines that two or more phases cannot be detected
  • the d-axis and q-axis current obtained by the previous first coordinate conversion means are Since it is used for the calculation of the voltage command value, even if only one phase can be detected and each phase current cannot be estimated, the detected value of each phase current is calculated and converted to a biaxial current. Therefore, it is not necessary to limit the duty ratio of each phase to a range where current can be detected, and the duty ratio can be utilized to the maximum.
  • the processing load of the calculation processing means can be reduced.
  • FIG. 12 shows the above-mentioned contents processed in the PWM driving means 4 and shown as a flowchart.
  • step S150 the instruction voltage of each phase is converted to Duty.
  • step S151 the current non-detectable state presence flag Flg obtained by the processing in FIG. 10 is checked. If Flg is 0, the process proceeds to step S152. If 1 the process proceeds to step S153. If there is, the process proceeds to step S155, and if it is 4, the process proceeds to step S156.
  • step S152 it is determined whether or not the vehicle is in area A from the motor angle. If it is area A, the process proceeds to step S158; otherwise, the process proceeds to step S157.
  • step S153 it is determined whether or not the vehicle is in the region B from the motor angle. If it is area B, the process proceeds to step S158; otherwise, the process proceeds to S157.
  • step S154 it is determined whether or not it is in region C from the motor angle. If it is area C, the process proceeds to step S158; otherwise, the process proceeds to step S157.
  • step S155 it is determined whether or not the vehicle is in the region D from the motor angle. If it is area D, the process proceeds to step S158; otherwise, the process proceeds to step S157.
  • step S156 it is determined whether or not the vehicle is in region E from the motor angle. If it is area E, the process proceeds to step S158; otherwise, the process proceeds to step S157.
  • step S157 the duty ratio obtained in step S150 is limited and set to be t2 / T or more. At that duty, it is possible to forcibly switch to an area where current can be detected.
  • the current can be detected by changing the PWM drive signal so as to extend the ON time of the lower-stage FET shown in the first embodiment. Therefore, the current can be detected, and abnormality can be determined by detecting the current.
  • it is not necessary to stop the motor drive, and the voltage applied to the armature winding decreases, but the motor drive can be continued.
  • limiting the duty ratio it may be performed only for each phase, and by limiting the duty ratio for all phases simultaneously, the current of all phases can be detected.
  • step S158 the duty ratio is output to the FET drive circuit as a PWM drive signal, and the FET drive circuit is driven ON / OFF.
  • the motor angle changes, and the area shown in FIG. 11 always changes. That is, the state where current cannot be detected does not continue for a long time, and the state where current can be detected and the state where current cannot be detected change according to the motor speed. Therefore, even if it is not determined by the motor angle, the time during which the current cannot be detected is measured, and a predetermined value, for example, the time according to the motor rotation speed is set. Sometimes it can be determined to be abnormal.
  • FIG. 13 shows a flowchart in which steps S152 to S156 for determining an abnormality in the flowchart shown in FIG. 12 are replaced with the duration of each state continuing for a predetermined time. As shown in FIG. 13, even if the steps S161 to S164 for determining abnormality are replaced with the steps, the same effects can be obtained.
  • the PWM drive unit when the state in which the current cannot be detected continues for a predetermined time, the PWM drive unit can detect the phase current that cannot be detected. Since the drive signal for extending the ON period of the second switching element of the phase is output, the state in which the abnormality of the motor drive device cannot be detected in the state where the motor drive is continued by the previous detection current is prevented. be able to.
  • the PWM drive unit when the state in which the current cannot be detected for the second predetermined time continues, the PWM drive unit outputs a drive signal that extends the ON period of the second switching elements of all phases. Therefore, even if the motor drive device fails, it is possible to prevent a state in which the failure cannot be detected, and to reduce all outputs and drive the motor smoothly.
  • a means for detecting the angle of the magnetic pole position of the brushless motor is provided, and when it is determined that the phase current cannot be detected by the current detection capability determination means when the motor angle is a predetermined angle, steps S161 to S164 in FIG.
  • the same effect can be obtained by limiting the duty ratio as shown in step S157 and outputting a drive signal that extends the ON period of the second switching element, as in the determination shown in FIG. Can do.
  • a means for calculating the motor rotation speed by angle detection is provided, and when the current detection capability determination means determines that the phase current cannot be detected by being below the predetermined motor rotation speed, the PWM drive means Similarly, even if the drive signal that extends the ON period of the switching element 2 is output, it is possible to prevent a state in which an abnormality of the motor drive device cannot be detected, and to reduce the output and smoothly drive the motor. can do.
  • the PWM drive unit sets a period during which all the second switching elements are turned on. A similar effect can be obtained by outputting an extended drive signal.
  • the present invention is a brushless motor driving device suitable for use in, for example, an electric power steering device mounted on a vehicle.
  • 1 target current command calculation means 2 target voltage calculation means (PI control calculation means) 3 three-phase conversion calculation means, 4 PWM drive means, 5H (5uH, 5vH, 5wH) First switching element (FET), 5L (5uL, 5vL, 5wL) Second switching element (FET), 6 (6u, 6v, 6w) Current detection means, 9 Armature winding of brushless motor 10 Position sensor, 100 Coordinate conversion means

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

駆動回路のスイッチング素子(5H、5L)がONする期間において、電機子巻線(9)に流れる電流を検出する電流検出手段6と、目標電流値と検出電流値とを比較し、電機子巻線に印加するための電圧指令値を演算する演算処理手段と、この電圧指令値に基づいてスイッチング素子のON、OFFを制御するPWM駆動手段(4)を備えたブラシレスモータの駆動装置であって、演算処理手段は更に、各相におけるスイッチング素子の動作状態により、電機子巻線(9)に流れる電流を検出することが出来るか否かを判定する電流検出可能判定手段を備え、電流検出可能判定手段が、電流検出できない状態と判断したときは、検出することが出来たときの検出電流値を用いて、電圧指令値を求め、モータ駆動を継続する。

Description

ブラシレスモータの駆動装置
 この発明は、ブラシレスモータの電機子巻線に流れる相電流を利用してブラシレスモータの駆動を制御するようにしたブラシレスモータの駆動装置に関するものである。
 ブラシレスモータの出力をモータの電機子巻線を流れる電機子電流に応じてフィードバック制御するモータ駆動装置においては、モータ駆動用インバータ回路に相毎に設ける電流検出用抵抗に流れる電流を、相毎の電機子電流として検出している。目標電流と検出電流との偏差に応じた相毎のデューティ比を算出し、PWM制御により、そのインバータ回路を構成する各相のスイッチング素子をON/OFF制御する。これにより、各相の電機子巻線へ印加する相電圧が変更され、各相の電機子巻線に駆動電流が流れ、モータ出力が制御される。
 図14は、例えば、特許文献1に示されるような、従来のブラシレスモータの駆動装置
の一例を示す回路構成図である。
従来のブラシレスモータの駆動装置は、図14に示すように、相毎に、上段スイッチング素子5uH、5vH、5wH(以下、総称して単に5Hともいう。)と電機子巻線9、下段スイッチング素子5uL、5vL、5wL(以下、総称して単に5Lともいう。)が接続され、下段スイッチング素子5Lとグランドとの間に電流検出用抵抗6u、6v、6w(以下、総称して単に6ともいう。)を配置するように構成されている。電流検出用抵抗6に流れる電流を検出するために、PWM制御手段である駆動制御回路4により、スイッチング素子の状態を下段のスイッチング素子5LがON状態となるようにした時に、モータの電機子巻線9の電機子電流は、下段のスイッチング素子5L、電流検出用抵抗6を通り、グラウンドへ流れる。この電流検出用抵抗6に通流させる状態において、電流検出用抵抗6の両端の電位差を検出することにより、電機子電流を計測することになる。
下段のスイッチング素子5LがON状態にあるということは、電機子巻線9へ電流を通流させ、同相の上、下段のスイッチング素子に電流を貫通させないようにするため、上段のスイッチング素子5HはOFF状態となる。このように電機子電流を検出するためには、上段のスイッチング素子5HがOFF、下段のスイッチング素子5LがONの状態のときのみ検出が可能となる。
 逆にいえば、駆動制御回路4のPWM制御信号によりスイッチング素子5H、5LをON/OFF制御する場合、電流検出用抵抗6に電流が流れ込まない期間が存在する。このため、適正に電流検出できない状況がある。そのため、PWM制御信号のデューティ比、すなわち電機子巻線9へ印加する電圧を制限する必要があり、デューティ比により電源電圧の利用率を低下して利用せねばならず、モータ性能が制限されることになる。
 そこで、特許文献1においては、U相、V相、W相で構成されるブラシレスモータに対し、PWM制御手段からのデューティ比の指示に基づきU相、V相、W相、それぞれのスイッチング素子をON/OFF制御する場合、U相が所定値未満のデューティ比でスイッチング素子をON/OFFする場合においては、U相は、電流を検出することは困難な状態となるため、U相の電流Iuは、検出されたV相の電流Iv並びに、W相の電流Iwより、以下の式(1)を用いて算出することが記載されている。
 Iu=-(Iv+Iw)・・・・・(1)
 また、他の相であるV相、ないしW相も同様に、デューティ比が所定値未満のデューティ比でスイッチング素子をON/OFFする場合においては、他の相で検出された電流より算出することが記載されている。
特許第4140454号公報
 上記の従来技術においては、ある相のデューティ比が所定値未満であるとき、例えば、U相のデューディ比が所定値未満である状態において、U相電流は直接検出することができないため、他の相、つまり、V相、及びW相電流を検出することにより、U相電流を算出する。しかし、このとき、他の相、V相、W相は、必ず検出できるような状態でなければならない。つまり、3相中の2相は必ずデューティ比を所定値以上になるようにしなければならない。したがって、デューティ比は、電流の検出できる範囲に制限され、そのため、自由にデューティ比を制御することができないという問題があった。
 この発明は、上記のような問題点を解消するためになされたもので、電機子電流の検出
ができる状態に関係なく、モータを駆動することができ、デューティ比を制限する必要がなく、従って自由にモータの電機子巻線へ電圧を印加することができ、モータの出力を向上させることができるブラシレスモータの駆動装置を提供することを目的とする。
 この発明に係るブラシレスモータの駆動装置は、電源側に配置された第一の(上側の)スイッチング素子と接地側に配置された第二の(下側の)スイッチング素子とからなる互いに直列接続されたスイッチング素子対を含むアームが並列に複数接続された、ブラシレスモータの駆動回路と、前記駆動回路のスイッチング素子がONする期間において、ブラシレスモータの電機子巻線に流れる電流を検出する電流検出手段と、前記ブラシレスモータを駆動するための目標電流値と前記電流検出手段により検出された検出電流値とを比較し、その偏差に基づいて前記ブラシレスモータの電機子巻線に印加するための電圧指令値を演算する演算処理手段と、この演算処理手段からの電圧指令値に基づいて駆動信号を発生し、前記駆動回路のスイッチング素子のON、OFFを制御するPWM駆動手段とを備えたブラシレスモータの駆動装置であって、前記演算処理手段は更に、前記駆動回路の各相における前記スイッチング素子の動作状態により、ブラシレスモータの各相の電機子巻線に流れる電流を検出することが出来るか否かを判定する電流検出可能判定手段を備えており、前記演算処理手段は、前記電流検出可能判定手段が、電流検出できない状態と判断したときは、検出することが出来たときの検出電流値を用いて、前記目標電流値と比較することにより、前記電圧指令値を求め、モータ駆動を継続するようにしたものである。
 この発明のブラシレスモータの駆動装置によれば、電機子電流の検出ができる状態に関係なく、モータを駆動することができ、デューティ比を制限する必要をなくして、電源電圧の利用率を高め、モータの出力を向上させることができるブラシレスモータの駆動装置を得ることができる。
 上述した、またその他の、この発明の目的、特徴、効果は、以下の実施の形態における詳細な説明および図面の記載からより明らかとなるであろう。
この発明の実施の形態1に係るブラシレスモータの駆動装置の構成を示す概略構成図である。 この発明の実施の形態1における電流検出手段の動作を説明するためのタイムチャートを示すものである。 この発明の実施の形態1における上段FETの駆動を示すものである。 この発明の実施の形態1における下段FETの駆動を示すものである。 この発明の実施の形態1における座標変換手段の詳細制御ブロック図を示すものである。 この発明の実施の形態1における電流検出の処理を示すフローチャートである。 この発明の実施の形態1におけるモータ駆動装置の異常時の処理を示すフローチャートである。 この発明の実施の形態1におけるモータ特性と電流検出可能な範囲を示す図である。 この発明の実施の形態2における座標変換手段の詳細の制御ブロック図を示すものである。 この発明の実施の形態2における電流検出の処理を示すフローチャートである。 この発明の実施の形態2におけるモータ角度と電流検出可能範囲を示す図である。 この発明の実施の形態2におけるモータ駆動装置の異常時の処理を示すフローチャートである。 この発明の実施の形態2におけるモータ駆動装置の異常時の処理の他の例を示すフローチャートである。 従来装置の一例を示す概略構成図である。
実施の形態1.
 以下、この発明の実施の形態1のブラシレスモータの駆動装置について図面を参照しながら説明する。図1は、実施の形態1におけるブラシレスモータの駆動装置の概略構成図である。図1において、ブラシレスモータは、電機子巻線9を有する3相同期式永久磁石モータで構成され、モータの磁極位置を検出する、例えばレゾルバで構成される位置センサ10を備えており、位置センサ10により、モータの磁極位置情報を後述する制御部(コントローラ)へ出力するよう成されている。
 ブラシレスモータを駆動する駆動回路は、周知のように、電源8側に配置された第一のスイッチング素子であるFET(電界効果型トランジスタ)5H(5uH、5vH、5wH)と、接地側に配置された第二のスイッチング素子であるFET5L(5uL、5vL、5wL)とが互いに対となるように直列に接続されて構成され、各対をなすFET5H、5Lの接続点が、モータの電機子巻線9の各相にそれぞれ接続されている。そして、PWM駆動手段4からの駆動信号に応じて各FET5H、5Lの導通、非導通が制御され、モータ電機子巻線9への印加電圧を制御してモータを駆動する。
 下段のFET5(5uL、5vL、5wL)とグランドとの間には、電流検出手段である電流検出用抵抗6(6u、6v、6w)が接続されている。電流検出の具体的な動作については後述する。
 モータの制御部である演算処理手段は、マイクロコンピュータで構成されており、モータの回転位置を検出する位置センサ10からの信号を入力し、モータ位置θを算出する。
また、ブラシレスモータの各相に流れる電流を検出する電流検出手段6から、電機子巻線9のU、V、W各相に流れる電流が入力される。
以下、演算処理手段の各部について、説明する。
 電流検出手段6からの電流Iu、Iv、Iwは、座標変換手段100に入力され、座標変換手段100は、モータ位置θとU、V、W相検出電流とから、dq変換することで、q軸、d軸2軸の検出電流Iq、Idを求める。
また、モータの目標電流指令演算手段1は、モータ駆動のための指示電流である、目標q軸電流TIq、目標d軸電流TIdを算出し、出力する。
目標電流指令演算手段1からの目標q軸電流TIqと、実際に検出したq軸電流Iqとの偏差を、目標電圧演算手段である比例積分演算手段2でPI制御演算し、q軸の指令電圧Vqを求める。また同様に、目標d軸電流TIdと、検出d軸電流Idとの偏差をPI制御演算し、d軸指令電圧Vdを求める。
 比例積分演算手段2で演算された、q軸の指令電圧Vqとd軸の指令電圧Vdは、3相変換演算手段3に入力され、3相変換演算手段3は、d、q軸の指令電圧を3相変換、つまり、dq逆変換を行うことにより、モータのU、V、W3相の電機子巻線に印加すべき電圧指令値Vu、Vv、Vwに変換する。
 この電圧指令値Vu、Vv、Vwは、駆動回路の制御手段であるPWM駆動手段4に入力され、PWM駆動手段4はこれら3相電圧指令値をデューティ比に置き換え、パルス幅変調して、FET駆動回路へ駆動を指示する。FET駆動回路は、PWM駆動手段4からの駆動信号を受けてチョッパ制御を実現する。これによりブラシレスモータの電機子巻線9の各相に電流が流れ、ブラシレスモータはトルクを発生し回転する。
 次に、電流検出手段6u、6v、6wでの電流検出の具体的な動作について、図2を参照して説明する。図2において、(1)はパルス幅変調(PWM)における、キャリアを示すタイマであり、この最小の状態を0%、最大の状態を100%として、デューティ比(2)を示している。
キャリア(1)がデューティ比(2)より上回るとき、信号(3)は、上段に配置されるFET5HをONするようにし、信号(4)は、下段に配置されるFET5LをOFFする。逆に、キャリア(1)がデューティ比(2)より下回るとき、信号(3)は、上段に配置されるFET5HをOFFし、信号(4)は、下段に配置されるFET5LをONする。
このように、ONとOFFとの時間比率を制御することで、電機子巻線9に印加する電圧を制御する。
 図3に示すように、電流検出においては、上述した信号(3)、(4)により、上段側FETがON、下段側FETがOFFとなるときをOFF状態とし、電機子巻線9を流れる電流は電流検出手段6を通過しないことになり、電流検出を行うことが出来ないことになる。逆に、図4に示すように、上段側FETがOFF、下段側FETONとなるときをON状態とすることにより、電機子巻線9を流れる電流は、電流検出手段6を通過することになり、電流検出することができることになる。したがって、電流検出回路において、上記ON状態のときに電流を検出する必要がある。
 図4の電流検出手段6において、電流検出値のみを取り出すためのサンプルホールドの指示信号は、ON状態、つまり、図2のt1の時間内にサンプルホールドする必要がある。サンプルホールドする時間t2は、そのサンプルホールドする手段により定まっているため、電流検出するためには、t1≧t2 となる必要がある。
 即ち、電流検出可能かどうかの判定は、ON状態期間t1がt2より大きいとき、電流検出可能と判定し、ON状態期間t1がt2より小さいとき電流検出不可と判定することができる。
 ON状態期間t1は、下段側FET5LのON時間を示し、さらに、PWMのキャリア周期Tが固定であるとすると、デューティ比よりt1を定めることができる。このため、電流検出可能なデューティ比は、t2/T以上のときを示し、デューティ比がt2/T以上のときを電流検出可能状態であるといえる。逆に、t2/T未満であるときは、電流検出不可能状態として判断することができる。さらに、デューティ比は、各相の指令電圧(電圧指令値)より求められることから、各相の指示するデューティ比、もしくは、各相の指令電圧より、各相が電流検出できるかどうかを判定することが出来る。
 また、上述においては、指示するデューティ比、もしくは、指令電圧により電流検出可能かどうかを判定したが、電機子巻線上の電圧は、上下段のFET5H、5Lにより電源電圧と、接地電圧とに変動している。この電圧変動を検出し、電機子巻線上の電圧が接地側の状態にある時間を計測し、t2以上の時間であるかどうかを判定することで、電流検出可能を判定してもよい。また、電機子巻線上の電圧が接地側の状態にある時間と電源側の状態にある時間を計測し、その比率を求めることで実際のデューティ比を算出して、電流検出可能かどうかを判定してもよい。
 また、電機子巻線上の電圧と電源電圧をそれぞれ検出し、その比率を求めることでデューティ比を算出することができる。このディーティ比から電流検出可能かどうかを判定してもよい。
 次に、この発明の主要部である座標変換手段100の詳細について、図5を基に説明する。図5において、電流検出切替え処理部105では、上述により、各相が電流検出可能かどうかを判定する処理に加え、各相により検出された電流を切替える指示信号を出力する。U相電流入力処理部101では、U相が電流検出可能であるとき、入力された検出電流ADuをそのままIuとして出力する。
U相が電流検出不可能と判断されたときには、以下の式(2)として出力する。
 Iu=-(ADv+ADw)・・・・・(2)   
 V相電流入力処理部102でも同様であり、V相が電流検出可能であるとき、入力された検出電流ADvをそのままIvとして出力する。
V相が電流検出不可能と判断されたときには、以下の式(3)として出力する。
 Iv=-(ADu+ADw)・・・・・・(3)   
 W相電流入力処理部103でも同様であり、V相が電流検出可能であるとき、入力された検出電流ADwをそのままIwとして出力する。W相が電流検出不可能と判断されたときには、以下の式(4)として出力する。
 Iw=-(ADu+ADv)・・・・・(4) 
 電流検出切替え処理部105において、電流検出可能である相が1相のみ、または全相が検出できない場合、各相の電流は、演算されたときの相電流を出力する。
 以上のようにして各相から得られた相電流Iu、Iv、Iwから以下の式(5)を演算し、Id、Iqで示されるd、q軸検出電流を出力する。
Figure JPOXMLDOC01-appb-M000001
 
 以上の処理をフローチャートにして示したものが図6である。
ステップS1において、U相のデューティ比Duがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS2へ進む。検出できないと判断されたとき、ステップS3へ進む。
 ステップS2では、V相のデューティ比Dvがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS4へ進む。検出できないと判断されたとき、ステップS5へ進む。
 ステップS3では、V相のデューティ比Dvがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS6へ進む。検出できないと判断されたとき、ステップS13へ進む。
 ステップS4では、W相のデューティ比Dwがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS7へ進む。検出できないと判断されたとき、ステップS8へ進む。
 ステップS5では、W相のデューティ比Dwがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS9へ進む。検出できないと判断されたとき、ステップS10へ進む。
 ステップS6では、W相のデューティ比Dwがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS11へ進む。検出できないと判断されたとき、ステップS12へ進む。
 ステップS7では、3相とも検出することができ、電流検出手段より検出された信号ADu、Adv、ADwをそのまま利用する。
 ステップS8では、W相が検出できないことから、式(4)により、W相の電流を演算し、その他のU、V相は、電流検出手段より検出された信号ADu、ADvをそのまま利用する。
 ステップS9では、V相が検出できないことから、式(3)により、V相の電流を演算し、その他のU,W相は、電流検出手段より検出された信号ADu、ADwをそのまま利用する。
 ステップS10では、2相検出できないことになり、つまり、1相しか相検出できないことから、各相の検出電流は前回値を利用する。
 ステップS11では、U相が検出できないことから、式(2)により、U相の電流を演算し、その他のV,W相は、電流検出手段より検出された信号ADv、ADwをそのまま利用する。
 ステップS12では、2相検出できないことになり、つまり、1相しか検出できないことから、各相の検出電流は前回値を利用する。
 ステップS13では、2相以上検出できないことになり、つまり、2相、もしくは全相検出できないことから、各相の検出電流は前回値を利用する。
 ステップS15では、電流検出できる状態としてFlg=0とする。
 ステップS16では、電流検出不可となる状態が存在しているとしてFlg=1とする。
 ステップS17では、3相の検出電流から、式(5)を演算する。
 以上のように、実施の形態1のブラシレスモータの駆動装置は、電源側に配置された第一の(上側の)スイッチング素子と接地側に配置された第二の(下側の)スイッチング素子とからなる互いに直列接続されたスイッチング素子対を含むアームが並列に複数接続された、ブラシレスモータの駆動回路と、この駆動回路のスイッチング素子がONする期間において、ブラシレスモータの電機子巻線に流れる電流を検出する電流検出手段と、ブラシレスモータを駆動するための目標電流値と電流検出手段により検出された検出電流値とを比較し、その偏差に基づいてブラシレスモータの電機子巻線に印加するための電圧指令値を演算する演算処理手段と、この演算処理手段からの電圧指令値に基づいて駆動信号を発生し、駆動回路のスイッチング素子のON、OFFを制御するPWM駆動手段とを備えたブラシレスモータの駆動装置であって、演算処理手段は更に、駆動回路の各相におけるスイッチング素子の動作状態により、ブラシレスモータの各相の電機子巻線に流れる電流を検出することが出来るか否かを判定する電流検出可能判定手段を備えており、演算処理手段は、電流検出可能判定手段が、電流検出できない状態と判断したときは、検出することが出来たときの検出電流値を用いて、目標電流値と比較することにより、電圧指令値を求め、モータ駆動を継続するようにしたので、各相のデューティ比を電流検出できる範囲に制限する必要が無く、デューティ比を最大限利用することができる。
 また、ブラシレスモータは、n相により構成される電機子巻線を持ち、演算処理手段は、電流検出可能判定手段により検出できる相が、(n-2)以下である状態と判断された時に、全ての相電流を検出することが可能であった時の相電流検出値を用い、この相電流検出値を目標電流値と比較することにより、電圧指令値を求め、モータ駆動を継続するようにしたので、例え、1相しか検出できず、各相を推定出来なくなったとしても、電流検出できない状態に関係なく、モータ駆動することが出来、デューティ比を制限する必要もなくなる。
 ところで、電流検出が不可能となるような状況は、d、q軸の目標電圧の増加に伴い、U、V、W相の指令電圧が大きくなる必要がある。つまり、モータの電機子巻線の電圧上昇が生じる状況とは、モータが回転し、その回転数に応じ逆起電力が発生し、各相の誘起電圧が大きくなることになる。従って、モータ駆動装置の故障により、電流検出できない状況となることを回避するためには、モータの回転状態を検出すればよいことになる。
 つまり、電流検出ができない状況となるときにおいて、モータ回転数が所定値以下であるとき、モータ駆動を停止するようにする。これにより、モータ駆動装置に異常があったことを検知し、モータ駆動を停止することができる。
 図6の処理に基づき、PWM駆動手段4において、上述の内容を処理し、それをフローチャートにして示したものが図7である。
図7において、図6における処理により得た電流検出不可状態フラグFlgをチェックし、電流検出可能状態であれば、ステップS34へ進み、電流検出不可能状態であれば、ステップS32へ進む。
ステップS32では、モータ回転数が所定値α以上であるかどうかを判定し、所定値以上であれば、ステップS34へ進み、所定値α未満であるときは、ステップS33へ進む。
ステップS33では、異常と判定し、PWM制御を停止するように指示する。
ステップS34では、指示された各相電圧をPWM制御できるようにデューティに変換する。
ステップS35では、モータ駆動回路のFETをON、ないしOFFするために、PWM制御に基づいたON/OFF指示、もしくは、PWM制御を停止するように、全てのFETをOFFするように制御信号が出力される。
 通常、モータは、図8に示すような特性Mとなることが知られている。
したがって、より異常の検出精度を上げるためには、モータ回転数とq軸電流によって決定される閾値THを予め求めておき、検出されたモータ角度から求めたモータ回転数と検出されたq軸電流とにより、閾値THよりも大きいAとなる領域であるか、もしくは閾値THよりも小さいBとなる領域かを判定し、Bの領域でかつ、電流検出できない状況となったときには、モータ駆動を停止する。
 図7において示せば、ステップS32でモータ回転数が所定値未満かどうかを判定したが、これを図8に示すように、q軸電流とモータ回転数により示される領域がAかBかを判定し、Aであれば、ステップS34へ、Bであれば、ステップS33へ進むようにすればよいことになる。
 以上のようにこの発明の実施の形態1のブラシレスモータの駆動装置によれば、所定のモータ角度のとき、または、所定のモータ回転数以下にあって、電流検出可能判定手段が電機子巻線の相電流を検出できないと判定した時、あるいはまた、予め定められたモータ特性の範囲内であって、電流検出可能判定手段により相電流が検出できないと判定された時に、PWM駆動手段が、全てのスイッチング素子をOFFし、モータ駆動を停止するようにしたので、電流検出ができない状態においても、モータ駆動装置の異常を検出することができ、モータ駆動を停止することが出来る。
実施の形態2.
 図9はこの発明の実施の形態2における、座標変換手段100の別方式を示すものである。図9において、UVW相座標変換処理部111では、全相電流検出可能であるときを想定し、各相から得られた相電流ADu、ADv、ADwから以下の式(6)を演算し、Id、Iqで示されるd、q軸検出電流を出力する。
Figure JPOXMLDOC01-appb-M000002
  
 U相が検出できないことを想定し、VW相座標変換処理部114において、残りの2相から得られた相電流ADv、ADwから、以下の式(7)を演算し、Id、Iqで示されるd、q軸検出電流を出力する。
Figure JPOXMLDOC01-appb-M000003
 V相が検出できないことを想定し、UW相座標変換処理部113において、残りの2相から得られた相電流ADu、ADwから、以下の式(8)を演算し、Id、Iqで示されるd、q軸検出電流を出力する。
Figure JPOXMLDOC01-appb-M000004
 W相が検出できないことを想定し、UV相座標変換処理部112において、残りの2相から得られた相電流ADu、ADvから、以下の式(9)を演算し、Id、Iqで示されるd、q軸検出電流を出力する。
Figure JPOXMLDOC01-appb-M000005
 d、q軸電流切り替え処理部110において、3相検出できる場合において、UVW相座標変換処理部111により得られたd、q軸電流Id、Iqを選択する。
U相のみ検出できない場合において、VW相座標変換処理部114により得られたd、q軸電流Id、Iqを選択する。
V相のみ検出できない場合において、UW相座標変換処理部113により得られたd、q軸電流Id,Iqを選択する。
W相のみ検出できない場合において、VW相座標変換処理部112により得られたd、q軸電流Id、Iqを選択する。2相、ないし全相検出できない場合、Id、Iqは、座標変換されず、前回値を利用する。
 以上の処理をフローチャートにして示したものが図10である。
ステップS121において、U相のデューティ比Duがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS122へ進む。検出できないと判断されたとき、ステップS123へ進む。
 ステップS122では、V相のデューティ比Dvがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS124へ進む。検出できないと判断されたとき、ステップS125へ進む。
 ステップS123では、V相のデューティ比Dvがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS126へ進む。検出できないと判断されたとき、ステップS137へ進む。
 ステップS124では、W相のデューティ比Dwがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS127へ進む。検出できないと判断されたとき、ステップS129へ進む。
 ステップS125では、W相のデューティ比Dwがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS131へ進む。検出できないと判断されたとき、ステップS133へ進む。
 ステップS126では、W相のデューティ比Dwがt2/Tと比べ、電流検出可能なかどうかを判定する。検出可能であるとき、ステップS134へ進む。検出できないと判断されたとき、ステップS136へ進む。
 ステップS127では、3相とも検出することができ、電流検出手段より検出された信号ADu、ADv、ADwをそのまま利用する。
 ステップS128では、式(6)を演算する。
 ステップS129では、W相が検出できないことから、U、V相は、電流検出手段より検出された信号ADu、ADvをそのまま利用する。
 ステップS130では、式(9)を演算する。
 ステップS131では、V相が検出できないことから、その他のU、W相は、電流検出手段より検出された信号ADu、ADwをそのまま利用する。
 ステップS132では、式(8)を演算する。
 ステップS133では、2相検出できないことになり、つまり、1相しか検出できないことから、d、q軸の検出電流は前回値を利用する。
 ステップS134では、U相が検出できないことから、その他のV、W相は、電流検出手段より検出された信号ADv、ADwをそのまま利用する。
 ステップS135では、式(7)を演算する。
 ステップS136では、2相検出できないことになり、つまり、1相しか検出できないことから、d、q軸の検出電流は前回値を利用する。
 ステップS137では、2相以上検出できないことになり、つまり、2相、もしくは全相検出できないことから、d、q軸の検出電流は前回値を利用する。
 ステップS141では、全相電流検出可能状態であることから、Flg=0とする。
 ステップS142では、W相が電流検出できない状態であることから、Flg=3とする。
 ステップS143では、V相が電流検出できない状態であることから、Flg=2とする。
 ステップS144では、2相以上電流検出できない状態であることから、Flg=4とする。
 ステップS145では、U相が電流検出できない状態であることから、Flg=1とする。
 ステップS146では、2相以上電流検出できない状態であることから、Flg=4とする。
 ステップS147では、2相以上電流検出できない状態であることから、Flg=4とする。
 以上のように、この発明の実施の形態2によれば、ブラシレスモータはU、V、W3相により構成される電機子巻線を備えており、演算処理手段は、電流検出手段によって検出された検出電流を、磁束方向の電流を示すd軸電流と、トルク方向の電流を示すq軸電流とから成る2軸の電流に変換する第1の座標変換手段と、2軸の目標電流値と、第1の座標変換手段により求められた2軸の検出電流値とから、2軸の目標電圧を求める目標電圧演算手段と、目標電圧演算手段で求めた2軸の目標電圧を3相の電圧指令値に変換する3相変換手段(第2の座標変換手段)とを備え、電流検出可能判定手段により、各相の電機子巻線に流れる電流を3相とも検出できると判断されたときは、U、V、W相の検出電流から第1の座標変換手段によって2軸の電流に変換し、電流検出可能判定手段により、1相が検出できないと判定されたときは、検出できない相を他の検出できる2相より求め、U、V、W相の検出電流から第1の座標変換手段によって2軸の電流に変換し、電流検出可能判定手段により、2相以上検出できないと判定されたときは、前回の第1の座標変換手段により求められたd軸、並びにq軸電流を、電圧指令値の演算に利用するようにしているので、1相しか検出できず、各相電流を推定出来なくなったとしても、各相電流の検出値を演算し、2軸の電流に変換することができるため、各相のデューティ比を電流検出できる範囲に制限する必要が無く、デューティ比を最大限利用することができる。
また、座標変換も兼ねて演算できることから、演算処理手段の処理負荷を軽減することができる。
 ところで、電機子巻線に印加される電圧、言わばデューティ比の振幅が大きくなると、一様に電流検出ができなくなるわけではなく、各相の電機子巻線に応じて作用するため、モータ角度により電流検出できなくなる領域は異なる。それは、図11に示すように、領域Aにあるように、デューティ比の振幅が小さいとき、各相全て電流検出可能である。
デューティ比の振幅が大きくなると、領域BからDにて示す領域において1相分が検出できない状況となる。このとき、領域B、C、Dは、それぞれ電流検出できない相が異なることを示す。
さらに、デューティ比の振幅が大きくなると、領域Eにて示す2相検出できなくなる。
 従って、図11に示す電流検出ができない状態とそのときのモータ角度との関係を確認することにより、モータ駆動装置の異常を検出することができる。
 PWM駆動手段4において、上述の内容を処理し、それをフローチャートにして示したものが図12である。
 図12において、ステップS150では、各相の指示電圧よりDutyに変換する。
 ステップS151では、図10における処理により得た電流検出不可状態存在フラグFlgをチェックし、Flgが0であればステップS152へ、1であればステップS153へ、2であればステップS154へ、3であればステップS155へ、4であればステップS156へ進む。
 ステップS152では、モータ角度から領域Aにあるかどうかを判定する。領域Aであれば、ステップS158へ、そうでなければ、ステップS157へ進む。
 ステップS153では、モータ角度から領域Bにあるかどうかを判定する。領域Bであれば、ステップS158へ、そうでなければ、S157へ進む。
 ステップS154では、モータ角度から領域Cにあるかどうかを判定する。領域Cであれば、ステップS158へ、そうでなければ、ステップS157へ進む。
 ステップS155では、モータ角度から領域Dにあるかどうかを判定する。領域Dであれば、ステップS158へ、そうでなければ、ステップS157へ進む。
 ステップS156では、モータ角度から領域Eにあるかどうかを判定する。領域Eであれば、ステップS158へ、そうでなければ、ステップS157へ進む。
 ステップS157では、ステップS150で求めたデューティ比を制限し、t2/T以上となるように設定する。そのデューティにおいて、電流検出可能な領域へ強制的に切替えることができることになる。つまり、上記実施の形態1で示した下段側のFETのON時間を延ばすようにPWM駆動信号を変更することで電流を検出することが可能となる。
したがって、電流を検出することが出来るようになり、電流を検出することで異常を判定することができる。また、実施の形態1に示した方法のように、モータ駆動を停止する必要はなく、電機子巻線へ印加する電圧は低下するものの、モータ駆動を継続することができる。また、デューティ比を制限する場合において、各相だけで実施してもよく、全相同時にデューティ比を制限することにより、全相の電流を検出することも出来る
 ステップS158では、デューティ比をPWM駆動信号としてFET駆動回路に出力し、FET駆動回路をON/OFF駆動する。
 実施の形態1で述べたように、電流検出できないときには、モータは回転している。
このため、モータ角度は変化していることになり、図11に示す領域は、常に変わることになる。つまり、電流検出できない状態は長時間継続することはなく、電流検出可能状態と電流検出できない状態とがモータ回転数に合わせて移り変わる。
したがって、モータ角度により判定しなくても、電流検出できない状態が継続する時間を計測し、所定値、例えば、モータ回転数に応じた時間を設定し、電流検出できない状態がその時間以上を継続したときに、異常であると判断することができる。
 図12で示したフローチャートにおいて、異常を判定するステップS152~S156を、各状態が継続する時間が所定時間継続することに置き換えたフローチャートを図13に示す。この図13に示すように、異常を判定するステップステップS161~S164のステップに置き換えても、同様の作用効果を得ることができる。
 以上のように、この発明の実施の形態2によれば、電流検出可能判定手段において、所定時間電流検出できない状態が継続するとき、PWM駆動手段が、検出できない相電流が検出できるように、当該相の第2のスイッチング素子のONする期間を延長する駆動信号を出力するようにしたので、前回の検出電流によりモータ駆動を継続している状態において、モータ駆動装置の異常を検出できない状態を防ぐことができる。
 また、電流検出可能判定手段において、第2の所定時間電流検出できない状態が継続するとき、PWM駆動手段が、全ての相の第2のスイッチング素子のONする期間を延長する駆動信号を出力するようにしたので、モータ駆動装置が故障しても、故障を検出できない状態を防ぐとともに、全ての出力を下げ、滑らかにモータ駆動することができる。
 また、ブラシレスモータの磁極位置の角度を検出する手段を備え、モータ角度が所定の角度のときに、電流検出可能判定手段により相電流が検出できないと判定されたとき、図13のステップS161~S164に示す判定と同様に考え、ステップS157にて示すようにデューティ比を制限し、第2のスイッチング素子のONする期間を延長する駆動信号を出力するようにすることでも、同様な効果を得ることができる。
 さらに、角度検出によりモータ回転数を演算する手段を備え、所定のモータ回転数以下にあって、電流検出可能判定手段により相電流が検出できないと判定された時、PWM駆動手段が、全ての第2のスイッチング素子のONする期間を延長する駆動信号を出力するようにしても、同様に、モータ駆動装置の異常を検出できない状態を防ぐことができると共に、全ての出力を下げ、滑らかにモータ駆動することができる。
 更に又、予め定められたモータ特性の範囲内であって、電流検出可能判定手段により相電流が検出できないと判定された時、PWM駆動手段が、全ての第2のスイッチング素子のONする期間を延長する駆動信号を出力するようにすることによって、同様の効果を得ることができる。
 この発明は、車両に搭載される、例えば電動パワーステアリング装置に用いて好適なブラシレスモータの駆動装置である。
 1 目標電流指令演算手段、2 目標電圧演算手段(PI制御演算手段)
 3 3相変換演算手段、4 PWM駆動手段、
 5H(5uH、5vH、5wH) 第1のスイッチング素子(FET)、
 5L(5uL、5vL、5wL) 第2のスイッチング素子(FET)、
 6(6u、6v、6w) 電流検出手段、9 ブラシレスモータの電機子巻線
 10 位置センサ、100 座標変換手段

Claims (14)

  1.  電源側に配置された第一の(上側の)スイッチング素子と接地側に配置された第二の(下側の)スイッチング素子とからなる互いに直列接続されたスイッチング素子対を含むアームが並列に複数接続された、ブラシレスモータの駆動回路と、前記駆動回路のスイッチング素子がONする期間において、ブラシレスモータの電機子巻線に流れる電流を検出する電流検出手段と、前記ブラシレスモータを駆動するための目標電流値と前記電流検出手段により検出された検出電流値とを比較し、その偏差に基づいて前記ブラシレスモータの電機子巻線に印加するための電圧指令値を演算する演算処理手段と、この演算処理手段からの電圧指令値に基づいて駆動信号を発生し、前記駆動回路のスイッチング素子のON、OFFを制御するPWM駆動手段とを備えたブラシレスモータの駆動装置であって、前記演算処理手段は更に、前記駆動回路の各相における前記スイッチング素子の動作状態により、ブラシレスモータの各相の電機子巻線に流れる電流を検出することが出来るか否かを判定する電流検出可能判定手段を備えており、前記演算処理手段は、前記電流検出可能判定手段が、電流検出できない状態と判断したときは、前回検出することが出来たときの検出電流値を用いて、前記目標電流値と比較することにより、前記電圧指令値を求め、モータ駆動を継続するようにしたことを特徴とするブラシレスモータの駆動装置。
  2.  前記ブラシレスモータは、n相により構成される電機子巻線を持ち、前記演算処理手段は、前記電流検出可能判定手段により検出できる相が、(n-2)以下である状態と判断されたときに、全ての相電流を検出することが可能であったときの相電流検出値を用い、この相電流検出値を前記目標電流値と比較することにより、前記電圧指令値を求め、モータ駆動を継続するようにしたことを特徴とする請求項1に記載のブラシレスモータの駆動装置。
  3.  前記ブラシレスモータはU、V、W3相により構成される電機子巻線を備えており、前記演算処理手段は、前記電流検出手段によって検出された検出電流を、磁束方向の電流を示すd軸電流と、トルク方向の電流を示すq軸電流とから成る2軸の電流に変換する第1の座標変換手段と、2軸の目標電流値と、前記第1の座標変換手段により求められた2軸の検出電流値とから、2軸の目標電圧を求める目標電圧演算手段と、前記目標電圧演算手段で求めた前記2軸の目標電圧を3相の電圧指令値に変換する3相変換手段(第2の座標変換手段)と、を備え、前記電流検出可能判定手段により、各相の電機子巻線に流れる電流を3相とも検出できると判断されたときは、U、V、W相の検出電流から前記第1の座標変換手段によって前記2軸の電流に変換し、前記電流検出可能判定手段により、1相が検出できないと判定されたときは、検出できない相を他の検出できる2相より求め、U、V、W相の検出電流から前記第1の座標変換手段によって前記2軸の電流に変換し、前記電流検出可能判定手段により、2相以上検出できないと判定されたときは、前回の第1の座標変換手段により求められたd軸、並びにq軸電流を、前記電圧指令値の演算に利用することを特徴とする請求項1に記載のブラシレスモータの駆動装置。
  4.  前記演算処理手段は、前記電流検出可能判定手段により、各相の電機子巻線に流れる電流を3相とも検出できると判断されたときは、U、V、W相の検出電流から前記第1の座標変換手段によって前記2軸の電流に変換し、
    前記電流検出可能判定手段により、U相が検出できないと判定されたときは、V、W相の検出電流から前記2軸の電流に変換し、
    前記電流検出可能判定手段により、V相が検出できないと判定されたときは、U、W相の検出電流から前記2軸の電流に変換し、
    前記電流検出可能判定手段により、W相が検出できないと判定されたときは、U、V相の電流検出から前記2軸の電流に変換し、
    前記電流検出可能判定手段により、2相以上検出できないと判定されたときは、前回の座標変換により求められたd軸、並びにq軸電流を利用することを特徴とする請求項1に記載のブラシレスモータの駆動装置。
  5.  前記電流検出可能判定手段において、所定時間電流検出できない状態が継続するとき、前記PWM駆動手段は、検出できない相電流が検出できるように、当該相の前記第2のスイッチング素子のONする期間を延長する駆動信号を出力するようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載のブラシレスモータの駆動装置。
  6.  前記電流検出可能判定手段において、第2の所定時間電流検出できない状態が継続するとき、前記PWM駆動手段は、全ての相の前記第2のスイッチング素子のONする期間を延長する駆動信号を出力するようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載のブラシレスモータの駆動装置。
  7.  ブラシレスモータの磁極位置の角度を検出する手段を備え、モータ角度が所定の角度のときに、前記電流検出可能判定手段により相電流が検出できないと判定されたとき、前記PWM駆動手段は、検出できない相電流が検出できるように、当該相の前記第2のスイッチング素子のONする期間を延長する駆動信号を出力するようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載のブラシレスモータの駆動装置。
  8.  ブラシレスモータの磁極位置の角度を検出する手段を備え、モータ角度が所定の角度のときに、前記電流検出可能判定手段により相電流が検出できないと判定されたとき、前記PWM駆動手段は、全ての前記第2のスイッチング素子のONする期間を延長する駆動信号を出力するようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載のブラシレスモータの駆動装置。
  9.  角度検出によりモータ回転数を演算する手段を備え、所定のモータ回転数以下にあって、前記電流検出可能判定手段により相電流が検出できないと判定されたとき、前記PWM駆動手段は、全ての前記第2のスイッチング素子のONする期間を延長する駆動信号を出力するようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載のブラシレスモータの駆動装置。
  10.  予め定められたモータ特性の範囲内であって、前記電流検出可能判定手段により相電流が検出できないと判定されたとき、前記PWM駆動手段は、全ての前記第2のスイッチング素子のONする期間を延長する駆動信号を出力するようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載のブラシレスモータの駆動装置。
  11.  前記電流検出可能判定手段において、第2の所定時間電流検出できない状態が継続するとき、前記PWM駆動手段は、全ての前記スイッチング素子をOFFし、モータ駆動を停止するようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載のブラシレスモータの駆動装置。
  12.  ブラシレスモータの磁極位置の角度を検出する手段を備え、モータ角度が所定の角度のときに、前記電流検出可能判定手段により相電流が検出できないと判定されたとき、前記PWM駆動手段は、全ての前記スイッチング素子をOFFし、モータ駆動を停止するようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載のブラシレスモータの駆動装置。
  13.  角度検出によりモータ回転数を演算する手段を備え、所定のモータ回転数以下にあって、前記電流検出可能判定手段により相電流検出できないと判定されたとき、前記PWM駆動手段は、全ての前記スイッチング素子をOFFし、モータ駆動を停止するようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載のブラシレスモータの駆動装置。
  14.  予め定められたモータ特性の範囲内であって、前記電流検出可能判定手段により相電流が検出できないと判定されたとき、前記PWM駆動手段は、全ての前記スイッチング素子をOFFし、モータ駆動を停止するようにしたことを特徴とする請求項1~請求項4のいずれか1項に記載のブラシレスモータの駆動装置。
PCT/JP2010/058207 2010-05-14 2010-05-14 ブラシレスモータの駆動装置 WO2011142032A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/640,250 US10298162B2 (en) 2010-05-14 2010-05-14 Brushless-motor drive apparatus
KR1020127026337A KR101393828B1 (ko) 2010-05-14 2010-05-14 브러시레스 모터의 구동 장치
PCT/JP2010/058207 WO2011142032A1 (ja) 2010-05-14 2010-05-14 ブラシレスモータの駆動装置
CN201080066767.4A CN102893508B (zh) 2010-05-14 2010-05-14 无刷电动机的驱动装置
JP2012514659A JP5414893B2 (ja) 2010-05-14 2010-05-14 ブラシレスモータの駆動装置
EP10851415.9A EP2571158B1 (en) 2010-05-14 2010-05-14 Brushless-motor drive apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/058207 WO2011142032A1 (ja) 2010-05-14 2010-05-14 ブラシレスモータの駆動装置

Publications (1)

Publication Number Publication Date
WO2011142032A1 true WO2011142032A1 (ja) 2011-11-17

Family

ID=44914100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058207 WO2011142032A1 (ja) 2010-05-14 2010-05-14 ブラシレスモータの駆動装置

Country Status (6)

Country Link
US (1) US10298162B2 (ja)
EP (1) EP2571158B1 (ja)
JP (1) JP5414893B2 (ja)
KR (1) KR101393828B1 (ja)
CN (1) CN102893508B (ja)
WO (1) WO2011142032A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199900A (ja) * 2014-04-02 2015-11-12 Jnc株式会社 液晶組成物および液晶表示素子
JP2018007505A (ja) * 2016-07-07 2018-01-11 キヤノン株式会社 モータ制御装置及び画像形成装置
JP2019161934A (ja) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 モータ制御装置、モータ制御プログラム及びモータ制御方法
JP2020058230A (ja) * 2016-01-27 2020-04-09 富士電機株式会社 電流検出装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8587246B2 (en) * 2012-04-17 2013-11-19 GM Global Technology Operations LLC System and method for estimating electrical current in motor control circuits to improve performance and diagnostic capability
GB201308249D0 (en) 2013-05-08 2013-06-12 Trw Ltd Method of controlling a motor of an electric power assisted steering system
DE102017203457A1 (de) * 2017-03-02 2018-09-06 Volkswagen Aktiengesellschaft Strommessverfahren, Betriebsverfahren, Lenkhilfe, Computerprogrammerzeugnis und Arbeitsvorrichtung
DE202018104044U1 (de) * 2018-07-13 2019-10-15 Wago Verwaltungsgesellschaft Mbh Erdleiter-Überwachung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189670A (ja) * 2001-12-14 2003-07-04 Matsushita Electric Ind Co Ltd 電動機駆動装置及びそれを用いた冷凍装置
JP2005001574A (ja) * 2003-06-13 2005-01-06 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2009071971A (ja) * 2007-09-13 2009-04-02 Omron Corp 多相交流モータ駆動装置
WO2009113509A1 (ja) * 2008-03-12 2009-09-17 三洋電機株式会社 インバータ装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261382A (ja) * 1984-06-07 1985-12-24 Mitsubishi Electric Corp エレベ−タの制御装置
GB2190754A (en) * 1986-04-11 1987-11-25 Hitachi Ltd Load current detecting device for pulse width modulation inverter
JP2507688B2 (ja) * 1990-08-02 1996-06-12 株式会社東芝 直流モ―タ駆動回路
JP2624382B2 (ja) * 1991-01-21 1997-06-25 株式会社三協精機製作所 ブラシレスモータの駆動回路
US6411237B1 (en) * 1997-10-21 2002-06-25 Emhiser Research Ltd Nonlinear digital-to-analog converters
JP4880828B2 (ja) * 2001-06-19 2012-02-22 株式会社東芝 インバータ装置
JP3801906B2 (ja) * 2001-11-07 2006-07-26 株式会社日立製作所 電気車の制御装置及び制御方法
JP3674578B2 (ja) * 2001-11-29 2005-07-20 株式会社デンソー 三相インバータの電流検出装置
JP3644922B2 (ja) * 2001-12-06 2005-05-11 本田技研工業株式会社 電動パワーステアリング装置
JP4474896B2 (ja) * 2003-10-22 2010-06-09 株式会社ジェイテクト パワーステアリング装置
JP4371844B2 (ja) * 2004-02-16 2009-11-25 株式会社デンソー ブラシレスモータ駆動装置
JP4027339B2 (ja) * 2004-04-20 2007-12-26 本田技研工業株式会社 電動パワーステアリング装置
JP4708992B2 (ja) * 2005-12-12 2011-06-22 日立オートモティブシステムズ株式会社 位置検出装置及びこれを用いた同期モータ駆動装置
KR100789441B1 (ko) * 2005-12-30 2007-12-28 엘에스산전 주식회사 인버터의 전류 검출 장치 및 방법
JP4716118B2 (ja) * 2006-03-29 2011-07-06 株式会社ジェイテクト モータ制御装置
JP4956123B2 (ja) * 2006-09-28 2012-06-20 三洋電機株式会社 モータ制御装置
JP5014034B2 (ja) * 2007-09-12 2012-08-29 オムロンオートモーティブエレクトロニクス株式会社 多相交流モータ駆動装置
JP5189349B2 (ja) * 2007-12-04 2013-04-24 レンゴー株式会社 梱包箱
JP5228578B2 (ja) * 2008-03-31 2013-07-03 株式会社ジェイテクト モータ制御装置および電動パワーステアリング装置
JP4746667B2 (ja) * 2008-11-26 2011-08-10 本田技研工業株式会社 電動機の相電流推定装置および電動機の磁極位置推定装置
US20100158055A1 (en) * 2008-12-18 2010-06-24 Symbol Technologies, Inc. Method and apparatus for controlling and monitoring laser power in barcode readers
KR101167130B1 (ko) * 2009-05-26 2012-07-23 현대제철 주식회사 연속식 하역장치
EP2472716B1 (en) * 2009-08-28 2019-07-10 Nissan Motor Co., Ltd. Anomaly detection device for a permanent magnet synchronous electric motor
JP5428688B2 (ja) * 2009-09-14 2014-02-26 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置
JP2011135641A (ja) * 2009-12-22 2011-07-07 Denso Corp モータ制御装置
KR101382305B1 (ko) * 2010-12-06 2014-05-07 현대자동차주식회사 하이브리드 차량용 모터 제어 장치
KR101236837B1 (ko) * 2010-12-14 2013-02-25 삼성중공업 주식회사 밀봉 조립체 및 이를 구비한 풍력 발전기
JP5920769B2 (ja) * 2011-09-27 2016-05-18 株式会社ミツバ ブラシレスモータ制御方法及びブラシレスモータ制御装置並びに電動パワーステアリング装置
KR101304471B1 (ko) * 2012-02-22 2013-09-05 주식회사 포스벨 기계식 가연물 선별장치용 높낮이 조절장치
US8587246B2 (en) * 2012-04-17 2013-11-19 GM Global Technology Operations LLC System and method for estimating electrical current in motor control circuits to improve performance and diagnostic capability
US20160065854A1 (en) * 2014-08-28 2016-03-03 Samsung Electro-Mechanics Co., Ltd. Offset cancellation apparatus and voice coil motor driver including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189670A (ja) * 2001-12-14 2003-07-04 Matsushita Electric Ind Co Ltd 電動機駆動装置及びそれを用いた冷凍装置
JP2005001574A (ja) * 2003-06-13 2005-01-06 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP4140454B2 (ja) 2003-06-13 2008-08-27 株式会社ジェイテクト 電動パワーステアリング装置
JP2009071971A (ja) * 2007-09-13 2009-04-02 Omron Corp 多相交流モータ駆動装置
WO2009113509A1 (ja) * 2008-03-12 2009-09-17 三洋電機株式会社 インバータ装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015199900A (ja) * 2014-04-02 2015-11-12 Jnc株式会社 液晶組成物および液晶表示素子
JP2020058230A (ja) * 2016-01-27 2020-04-09 富士電機株式会社 電流検出装置
JP2018007505A (ja) * 2016-07-07 2018-01-11 キヤノン株式会社 モータ制御装置及び画像形成装置
JP2019161934A (ja) * 2018-03-15 2019-09-19 トヨタ自動車株式会社 モータ制御装置、モータ制御プログラム及びモータ制御方法

Also Published As

Publication number Publication date
EP2571158B1 (en) 2018-08-01
CN102893508B (zh) 2015-07-29
EP2571158A1 (en) 2013-03-20
US10298162B2 (en) 2019-05-21
CN102893508A (zh) 2013-01-23
EP2571158A4 (en) 2014-03-05
JP5414893B2 (ja) 2014-02-12
JPWO2011142032A1 (ja) 2013-07-22
KR101393828B1 (ko) 2014-05-12
KR20120136388A (ko) 2012-12-18
US20130026960A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5414893B2 (ja) ブラシレスモータの駆動装置
JP5641335B2 (ja) 電力変換装置
JP5664928B2 (ja) 回転電機制御装置
JP5614598B2 (ja) モータ制御装置
US20070205743A1 (en) Motor control device and motor control method
JP5273450B2 (ja) モータ制御装置
US11431273B2 (en) Controller for rotary machine and electric power steering apparatus
US20110062904A1 (en) Alternating current motor control system
EP1985523B1 (en) Systems and methods for controlling torque of a motor
JP2011004538A (ja) インバータ装置
JP2012147520A (ja) 回転機の制御装置
JP6394885B2 (ja) 電動パワーステアリング装置
JP6482999B2 (ja) モータ駆動装置及びモータ駆動装置の制御方法
JP2004023920A (ja) 交流モータ制御装置
US11396236B2 (en) Electric vehicle control device
JP5762794B2 (ja) モータ駆動用の電力変換装置
JP6730488B2 (ja) 三相同期電動機の制御装置および駆動装置、並びに電動パワーステアリング装置
US11205980B2 (en) Motor driving control device
JP2018137869A (ja) モータ駆動装置
JP2011004539A (ja) インバータ装置
JP2008284977A (ja) 電動パワーステアリング制御装置、及びモータ駆動制御方法
JP2008029088A (ja) モータ用制御装置
JP2006033928A (ja) ブラシレスモータ
JP3518440B2 (ja) 多相ブラシレスモータの電気制御装置
WO2019163382A1 (ja) モータ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066767.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851415

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514659

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127026337

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13640250

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010851415

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE