WO2011141949A1 - 結晶性半導体膜の製造方法、結晶性半導体膜付き基板、薄膜トランジスタ - Google Patents

結晶性半導体膜の製造方法、結晶性半導体膜付き基板、薄膜トランジスタ Download PDF

Info

Publication number
WO2011141949A1
WO2011141949A1 PCT/JP2010/003157 JP2010003157W WO2011141949A1 WO 2011141949 A1 WO2011141949 A1 WO 2011141949A1 JP 2010003157 W JP2010003157 W JP 2010003157W WO 2011141949 A1 WO2011141949 A1 WO 2011141949A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor film
crystalline semiconductor
region
range
laser light
Prior art date
Application number
PCT/JP2010/003157
Other languages
English (en)
French (fr)
Inventor
加藤智也
尾田智彦
大高盛
Original Assignee
パナソニック株式会社
パナソニック液晶ディスプレイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社, パナソニック液晶ディスプレイ株式会社 filed Critical パナソニック株式会社
Priority to CN2010800087344A priority Critical patent/CN102754187A/zh
Priority to PCT/JP2010/003157 priority patent/WO2011141949A1/ja
Priority to JP2011533465A priority patent/JPWO2011141949A1/ja
Priority to KR1020117019213A priority patent/KR20130044124A/ko
Priority to US13/212,465 priority patent/US20110297950A1/en
Publication of WO2011141949A1 publication Critical patent/WO2011141949A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1281Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor by using structural features to control crystal growth, e.g. placement of grain filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Definitions

  • the present invention relates to a method of manufacturing a crystalline semiconductor film, a method of manufacturing a substrate with a crystalline semiconductor film, and a thin film transistor.
  • a thin film transistor which constitutes a liquid crystal panel or an organic EL panel for a display device.
  • a semiconductor layer made of silicon, for example, which is a channel portion of the thin film transistor is formed of an amorphous semiconductor film or a crystalline semiconductor film.
  • the semiconductor film to be a channel portion of the thin film transistor is preferably formed using a crystalline semiconductor film having high mobility as compared to amorphous silicon.
  • a crystalline semiconductor film is formed by crystallizing an amorphous semiconductor film after formation of the amorphous semiconductor film.
  • an excimer laser crystallization (ELA) method As a method of forming a crystalline semiconductor film from an amorphous semiconductor film, an excimer laser crystallization (ELA) method, a thermal annealing crystallization method using a Ni catalyst or the like, an infrared semiconductor laser light and a light absorption layer are provided. There is a crystallization method using a combination of sample structures.
  • ELA excimer laser crystallization
  • Patent Document 1 a technique capable of controlling the width of the crystal grain of the crystalline semiconductor film of the thin film transistor is disclosed. Further, in the ELA method, there is disclosed a technique capable of controlling the direction of the crystal grain boundary of the crystalline semiconductor film of the thin film transistor and the width of the crystal grain (Patent Document 2).
  • a crystalline semiconductor film having large-grain crystals with a width of 0.5 to 10 ⁇ m or less is made to grow crystals in a predetermined direction by laser light irradiation. It can be formed. Further, by forming a semiconductor element using the film formed in such a manner, an excellent semiconductor device with less variation in adjacent can be manufactured.
  • Patent Document 1 and Patent Document 2 merely disclose a method of forming a crystalline semiconductor film having large grain size crystals.
  • the noncrystalline semiconductor film is irradiated with a pulsed excimer laser light, and the temperature is raised instantaneously (with an irradiation time on the order of nanoseconds) to be melted and then crystallized.
  • the irradiation time of the pulsed excimer laser light is as short as nanoseconds.
  • the amorphous semiconductor film does not crystallize unless it is melted once at a temperature higher than or equal to (1414 ° C.) the melting point of the semiconductor film (silicon), but the crystal grain size changes depending on conditions. Furthermore, due to volume expansion at the time of crystallization of the non-crystalline semiconductor film, that is, volume expansion at the time of becoming liquid (at the time of melting) to solid (at the time of crystallization), surface protrusions are formed on the crystalline semiconductor film after crystallization. It occurs and the flatness is lost. That is, in-plane variation occurs in the grain size of the crystalline semiconductor film. Therefore, it becomes a problem in a thin film transistor manufacturing process such as an etching process. In addition, as a countermeasure against the in-plane variation of the crystalline semiconductor film after crystallization, a large number of shots are indispensable, and there is a problem in cost and tact.
  • a thin film transistor having such a crystalline semiconductor film for example, when a voltage is applied to the gate electrode, the amount of current flowing between the source and the drain varies.
  • a current-driven display device such as an organic EL display device includes the above-described thin film transistor
  • the gradation of the organic EL is controlled by the current, and the variation in the amount of current directly leads to the variation in the display image. That is, high-precision images can not be obtained.
  • a protrusion formed in the crystalline semiconductor film causes a leak current between the source and drain electrodes, and the characteristics are degraded.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a method for producing a crystalline semiconductor film having a crystalline structure with good in-plane uniformity, a method for producing a substrate with a crystalline semiconductor film, and a thin film transistor. To aim.
  • a method of manufacturing a crystalline semiconductor film according to the present invention is characterized in that a continuous wave laser light having a continuous light intensity distribution convex upward in the minor axis and the major axis is noncrystalline.
  • the non-crystalline semiconductor film irradiated with the continuous wave laser light in the first step A second step of crystallization corresponding to the temperature range of 600 ° C. to 1100 ° C., and a predetermined temperature in the plane of the non-crystalline semiconductor film is non-crystalline by irradiation of the continuous wave laser light. C. to 1414.degree.
  • the upward convex continuous light intensity distribution has a region range in which the predetermined intensity is equal to or greater than the predetermined intensity in the long axis direction, and the region range is a temperature of 1100 ° C. to 1414 ° C. by the latent heat. It corresponds to the region on the non-crystalline semiconductor film which becomes the range.
  • the present invention it is possible to realize a method for producing a crystalline semiconductor film having a crystalline structure with good in-plane uniformity, a method for producing a substrate with a crystalline semiconductor film, and a thin film transistor.
  • FIG. 1 is a view showing a configuration example of a CW laser light crystallization apparatus in the present embodiment.
  • FIG. 2A is a diagram showing a short axis profile of CW laser light in the present embodiment.
  • FIG. 2B is a view showing a long axis profile of CW laser light in the present embodiment.
  • FIG. 3A is a view showing a short axis profile of CW oscillation laser light.
  • FIG. 3B is a view showing a long axis profile of laser light of CW oscillation.
  • FIG. 4 is a figure for demonstrating the problem of the crystallization which used the long-axis top flat beam.
  • FIG. 5A is a diagram showing an example of the crystal structure of SPC.
  • FIG. 5A is a diagram showing an example of the crystal structure of SPC.
  • FIG. 5B is a diagram showing a crystal structure when crystallized using CW laser light in the present embodiment.
  • FIG. 5C is a view showing a crystal structure of polycrystalline silicon formed by furnace annealing or the like for comparison.
  • FIG. 6 is a diagram showing the relationship between temperature and energy with respect to crystallization of silicon.
  • FIG. 7 is a diagram for explaining the growth mechanism of the Ex crystal structure.
  • FIG. 8 is a diagram for explaining crystallization using CW laser light in the present embodiment.
  • FIG. 9 is a diagram for describing an application example to a substrate with a crystalline semiconductor film in the present embodiment.
  • FIG. 10 is a diagram for illustrating a method of manufacturing the bottom gate thin film transistor according to the present embodiment.
  • FIG. 10 is a diagram for illustrating a method of manufacturing the bottom gate thin film transistor according to the present embodiment.
  • FIG. 11 is a flowchart for explaining the method for manufacturing the bottom gate thin film transistor according to the present embodiment.
  • FIG. 12 is a diagram showing a configuration of a bottom gate thin film transistor provided with the crystalline semiconductor film of this embodiment.
  • FIG. 13 is a diagram for describing a case where a plurality of gate bottom type thin film transistors are simultaneously manufactured.
  • FIG. 14 is a diagram for illustrating a method of manufacturing the top gate thin film transistor according to the present embodiment.
  • FIG. 15 is a diagram showing the configuration of the top gate thin film transistor according to the third embodiment.
  • FIG. 16 is a diagram showing another configuration of the top gate thin film transistor in the third embodiment.
  • FIG. 17 is a flowchart for explaining the method of manufacturing the top gate thin film transistor according to the present embodiment.
  • a continuous wave laser beam having a continuous light intensity distribution convex upward at the minor axis and the major axis is obtained at a temperature of the amorphous semiconductor film
  • the first step of irradiating the non-crystalline semiconductor film to a temperature in the range of 600 ° C. to 1100 ° C., and the non-crystalline semiconductor film irradiated with the continuous wave laser light in the first step is the 600 ° C.
  • the second step of crystallization corresponding to a temperature range from 1 to 1100 ° C., and the predetermined temperature in the plane of the non-crystalline semiconductor film is crystallized by irradiation of the continuous wave laser light.
  • the continuous light intensity distribution having a convex shape has a region range in which the predetermined intensity is equal to or greater than the predetermined intensity in the major axis direction, and the region range is the non-crystalline having a temperature range of 1100 ° C. to 1414 ° C. by the latent heat. It corresponds to the region on the semiconductor film.
  • continuous wave laser light such as green laser light and blue laser light is irradiated not for a short time of 10 to 100 nanoseconds but for a relatively long time of 10 to 100 microseconds.
  • the non-crystalline semiconductor film is irradiated with an output density such that the temperature of the non-crystalline semiconductor film is in the range of 600 ° C. to 1100 ° C. Then, when the non-crystalline semiconductor film is irradiated so that the temperature of the non-crystalline semiconductor film instantaneously becomes in the range of 600 ° C. to 1100 ° C., the temperature of the non-crystalline semiconductor film is generated at the time of crystallization. It rises further by the latent heat.
  • the non-crystalline semiconductor film passes a temperature range which exceeds the temperature considered as the melting point of amorphous silicon which changes depending on the network structure of atoms in amorphous silicon and which becomes the melting point 1414 ° C. or less of crystalline silicon.
  • a slight increase in grain size from crystals obtained by growth and without loss of uniformity surface protrusions are not formed, and for example, a crystalline semiconductor film of high quality can be obtained in the fabrication of thin film transistors.
  • production of surface protrusion can be suppressed, the flatness of the surface of the said semiconductor film can be maintained, and the characteristic of the thin-film transistor device containing the said semiconductor film can be improved.
  • the convex continuous light intensity distribution is a Gaussian distribution.
  • the non-crystalline semiconductor film is irradiated such that the temperature range of the non-crystalline semiconductor film is in the range of 600 ° C. to 800 ° C. in the continuous wave laser light.
  • the temperature range of the non-crystalline semiconductor film in the first step is in the range of 600 ° C. to 800 ° C., the same effect as the range of 600 ° C. to 1100 ° C. is obtained.
  • the non-crystalline semiconductor film is irradiated with the continuous wave laser light in the order of microseconds.
  • the irradiation time for irradiating the noncrystalline semiconductor film with continuous wave laser light can be extended, in the noncrystalline semiconductor film, the atomic structure is crystallized from the amorphous state, and further, Sufficient time can be secured to rearrange atoms from the amorphous state.
  • the time for irradiating the non-crystalline semiconductor film with the continuous wave laser light is 10 to 100 microseconds.
  • the atomic structure is rearranged from the amorphous state to be crystallized. You have enough time to do it.
  • a fourth step of preparing a base prior to the first step, a fourth step of preparing a base, a fifth step of arranging a plurality of gate electrodes on the base at predetermined intervals, and a plurality of elements arranged at the predetermined intervals And a seventh step of forming the insulating film on the gate electrode and a seventh step of forming the non-crystalline semiconductor film on the insulating film, the plurality of steps being arranged at predetermined intervals.
  • the temperature of the region on the non-crystalline semiconductor film corresponding to the gate electrode is from 1100 ° C. to 1414 ° C. by the latent heat, so that the constant convex light intensity distribution in the direction of the long axis of the upward convex light intensity distribution The width is specified.
  • the width of the Gaussian distribution in the major axis direction of the continuous wave laser is made to correspond to the region on the non-crystalline semiconductor film corresponding to the gate electrodes arranged at predetermined intervals.
  • the region on the non-crystalline semiconductor film corresponding to the plurality of gate electrodes disposed at the predetermined intervals is at the predetermined intervals. It may be a region covering the width of the plurality of gate electrodes arranged.
  • the crystalline semiconductor film is composed of crystal grains having an average crystal grain size of 40 nm to 60 nm, and a region in which the plurality of gate electrodes are disposed.
  • a first region in the crystalline semiconductor film formed continuously across the first and the average crystal grain size of 25 nm to 35 nm, the crystal being formed adjacent to the first region And a second region in the conductive semiconductor film.
  • the first region constituted by crystal grains having an average crystal grain size of 40 nm to 60 nm in the crystalline semiconductor film is continuously formed across the region where the plurality of gate electrodes are disposed. Ru. Then, by forming a thin film transistor using such a crystalline semiconductor film, it is possible to secure mobility capable of obtaining an on-characteristic sufficient for a thin film transistor used for an organic EL display.
  • the crystalline semiconductor film may contain mixed crystals of amorphous and crystal.
  • the crystalline semiconductor film contains mixed crystals of amorphous and crystal, that is, crystal grains having an average crystal grain size of 40 nm to 60 nm and an amorphous structure around crystal grains having an average crystal grain size of 40 nm to 60 nm. Contains the area. This structure can reduce surface roughness.
  • the plurality of gate electrodes are arranged in a line above the base material, and a first region in a crystalline semiconductor film formed of crystal grains having an average crystal grain size of 40 nm to 60 nm is the first region.
  • a plurality of gate electrodes may be continuously formed in a band shape across the regions arranged in a row.
  • the first region constituted by crystal grains having an average crystal grain size of 40 nm to 60 nm in the crystalline semiconductor film
  • the first region is formed in a band shape across the region where the plurality of gate electrodes are arranged in rows. It is formed continuously.
  • the first region in the crystalline semiconductor film constituted by crystal grains having an average crystal grain size of 40 nm to 60 nm is a continuous oscillation having a continuous light intensity distribution convex upward in the minor axis and the major axis.
  • the latent heat generated when the non-crystalline semiconductor film is crystallized by the continuous wave laser light irradiation becomes 1100 ° C. to 1414 ° C., corresponding to the temperature range of 1100 ° C. to 1414 ° C.
  • a third step of expanding the crystal grain size of the crystallized non-crystalline semiconductor film, and the area on the non-crystalline semiconductor film having a temperature range of 1100 ° C. to 1414 ° C. due to the latent heat has a constant width
  • the region on the non-crystalline semiconductor film is defined to have a continuous light intensity distribution convex upward in the long axis direction so as to have a temperature range of 1100 ° C. to 1414 ° C. by the latent heat. It may correspond to one area.
  • the temperature of the non-crystalline semiconductor film is 600 in the microsecond order, not in the nanosecond order, such as continuous wave laser light such as green laser light and blue laser light.
  • the amorphous semiconductor film is irradiated so as to have a temperature in the range of 0 ° C. to 800 ° C.
  • the non-crystalline semiconductor film Since the latent heat generated in the film is also crystallized at 1414 ° C. or less, the crystal grain size is relatively small, surface protrusions are not formed, and there is no problem.
  • the temperature of the non-crystalline semiconductor film is 600 ° C., instead of irradiating the laser light so that the temperature of the non-crystalline semiconductor film is in the range of 1100 ° C. to 1414 ° C.
  • the amorphous semiconductor film is irradiated so as to be in the range of 800 ° C.
  • the temperature of the non-crystalline semiconductor film is in the range of 1100 ° C. to 1414 ° C. due to the latent heat generated in the non-crystalline semiconductor film at that time.
  • the non-crystalline semiconductor film melts and crystallizes with the non-crystalline semiconductor film at a temperature of 1414 ° C. or less, so the average crystal grain size is compared with 40 nm to 60 nm Small. Further, no protrusion is formed on the surface of the crystalline semiconductor film formed by crystallization in this manner, and the flatness of the surface of the crystalline semiconductor film is maintained. Therefore, the characteristics of the thin film transistor device using this crystalline semiconductor film can be improved.
  • the non-crystalline semiconductor film is generated in the non-crystalline semiconductor film when the entire surface of the non-crystalline semiconductor film is irradiated such that the temperature of the non-crystalline semiconductor film is in the range of 1100 ° C. to 1414 ° C.
  • the latent heat causes a region of 1414 ° C. or more to be formed in the non-crystalline semiconductor film.
  • the film is crystallized through the region of 1414 ° C. or more, for example, with respect to the film thickness of 50 nm, 50 nm of surface protrusions having the same width as the film thickness are formed.
  • the non-crystalline semiconductor film is irradiated with the laser light so that the temperature of the non-crystalline semiconductor film is in the range of 600 ° C. to 800 ° C. by the laser light irradiation.
  • the non-crystalline semiconductor film is crystallized by the latent heat generated in the non-crystalline semiconductor film so that the temperature of the non-crystalline semiconductor film is in the range of 1100 ° C. to 1414 ° C.
  • a thin film transistor according to one embodiment of the present invention is a bottom gate thin film transistor, and includes a gate electrode, an insulating film formed over the gate electrode, and a crystalline semiconductor film formed over the insulating film.
  • the crystal grain is a continuous wave laser beam having a continuous light intensity distribution convex upward in the minor axis and the major axis, and the temperature of the non-crystalline semiconductor film is in the range of 600 ° C. to 800 ° C.
  • the non-crystalline semiconductor film irradiated with the continuous wave laser beam is in the temperature range of 600 ° C. to 800 ° C.
  • the second step of crystallizing the non-crystalline semiconductor film, and the predetermined temperature in the surface of the non-crystalline semiconductor film is crystallized by irradiation of the continuous wave laser light. C. to 1414.degree. C.
  • the non-crystalline semiconductor film is irradiated with the laser light so that the temperature of the non-crystalline semiconductor film is in the range of 600 ° C. to 800 ° C. by the laser light irradiation.
  • the non-crystalline semiconductor film is crystallized by the latent heat generated in the non-crystalline semiconductor film so that the temperature of the non-crystalline semiconductor film is in the range of 1100 ° C. to 1414 ° C.
  • a substrate with a crystalline semiconductor film comprises a substrate, a plurality of source / drain electrodes disposed above the substrate, and an insulating film formed on the source / drain electrodes. And a crystalline semiconductor film formed so as to cover insulating films formed on a plurality of source / drain electrodes disposed above the base material, wherein the crystalline semiconductor film is formed of the crystalline semiconductor film.
  • the crystalline semiconductor film which is composed of crystal grains having an average crystal grain size of 40 nm to 60 nm in the semiconductor film, and which is continuously formed across the regions where the plurality of source / drain electrodes are disposed.
  • a first region, and a second region in the crystalline semiconductor film which has an average crystal grain diameter of 25 nm to 35 nm and is formed adjacent to the first region.
  • the first region constituted by crystal grains having an average crystal grain size of 40 nm to 60 nm in the crystalline semiconductor film is continuously formed across the region where the plurality of gate electrodes are disposed. ing. Therefore, by forming a thin film transistor using such a crystalline semiconductor film, it is possible to secure mobility sufficient to obtain an on-characteristic as a thin film transistor used for an organic EL display.
  • the crystalline semiconductor film may contain mixed crystals of amorphous and crystal.
  • the crystalline semiconductor film includes mixed crystals of amorphous and crystal, that is, crystal grains having an average crystal grain size of 40 nm to 60 nm and crystal grains having the average crystal grain size of 40 nm to 60 nm. And a region of amorphous structure around. This structure can reduce surface roughness.
  • the plurality of gate electrodes are arranged in a line above the base material, and a first region in a crystalline semiconductor film formed of crystal grains having an average crystal grain size of 40 nm to 60 nm is the first region.
  • a plurality of gate electrodes may be continuously formed in a band shape across the regions arranged in a row.
  • the first region constituted by crystal grains having an average crystal grain size of 40 nm to 60 nm in the crystalline semiconductor film is formed in a strip shape across the region in which the plurality of gate electrodes are arranged in rows. Are formed continuously.
  • dicing can be performed along the above-described band-like region.
  • the first region in the crystalline semiconductor film constituted by crystal grains having an average crystal grain size of 40 nm to 60 nm is a continuous oscillation having a continuous light intensity distribution convex upward in the minor axis and the major axis.
  • the temperature of the film becomes from 1100 ° C. to 1414 ° C.
  • the region on the non-crystalline semiconductor film which is formed by the third step of enlarging the crystal grain size of the crystallized non-crystalline semiconductor film and which has a temperature range of 1100 ° C. to 1414 ° C. by the latent heat is constant.
  • the region on the non-crystalline semiconductor film is defined to have a continuous light intensity distribution convex upward in the long axis direction so as to have a width of, and the latent heat reaches a temperature range of 1100 ° C. to 1414 ° C. It corresponds to the first area.
  • the non-crystalline semiconductor film is irradiated with the laser light so that the temperature of the non-crystalline semiconductor film is in the range of 600 ° C. to 800 ° C. by the laser light irradiation.
  • the non-crystalline semiconductor film is crystallized by the latent heat generated in the non-crystalline semiconductor film so that the temperature of the non-crystalline semiconductor film is in the range of 1100 ° C. to 1414 ° C.
  • a thin film transistor is a top gate thin film transistor, and includes a source / drain electrode, a crystalline semiconductor film formed on the source / drain electrode, and the crystalline semiconductor film.
  • the crystal grain is a continuous wave laser beam having a continuous light intensity distribution convex upward in the minor axis and the major axis, and the temperature of the non-crystalline semiconductor film is in the range of 600 ° C. to 800 ° C.
  • the distribution is defined.
  • the non-crystalline semiconductor film is irradiated with the laser light so that the temperature of the non-crystalline semiconductor film is in the range of 600 ° C. to 800 ° C. by the laser light irradiation.
  • the non-crystalline semiconductor film is crystallized by the latent heat generated in the non-crystalline semiconductor film so that the temperature of the non-crystalline semiconductor film is in the range of 1100 ° C. to 1414 ° C.
  • FIG. 1 is a view showing a configuration example of a CW laser light crystallization apparatus in the present embodiment.
  • FIG. 2A is a diagram showing a short axis profile of CW laser light in the present embodiment.
  • FIG. 2B is a view showing a long axis profile of CW laser light in the present embodiment.
  • the CW laser light crystallization apparatus 100 shown in FIG. 1 is a CW (Continuous Wave laser) of continuous laser light for a sample 9 in which an amorphous semiconductor such as an amorphous silicon layer is formed on a glass substrate, for example. It is an apparatus which irradiates with a microsecond order using a laser beam.
  • the CW laser light crystallization apparatus 100 includes a laser device 20, a long axis forming lens 30, a mirror 40, a short axis forming lens 50, a condensing lens 60, a beam profiler 70, and a quartz glass 80. .
  • the laser device 20 oscillates a continuous wave laser. That is, the laser device 20 oscillates CW laser light.
  • the laser device 20 oscillates, for example, green laser light or blue laser light for a relatively long time of 10 to 100 microseconds instead of a short time of 10 to 100 nanoseconds.
  • the CW laser light oscillated by the laser device 20 passes through the long axis molded lens 30, and the mirror 40 changes the irradiation direction.
  • the CW laser light whose irradiation direction has been changed by the mirror 40 passes through the short axis molded lens 50, is condensed by the condensing lens 60, and is irradiated onto the sample 9. Further, most of the CW laser light collected by the collecting lens 60 passes through the silica glass 80 and is irradiated to the sample 9, but a part of the CW laser light collected by the collecting lens 60 is
  • the beam profiler 70 is incident upon the beam profiler 70 to measure the beam profile.
  • the beam profile of the CW laser beam collected by the focusing lens 60 that is, the beam profile of the CW laser beam irradiated by the CW laser light crystallization apparatus 100 is a light of Gaussian distribution as shown in FIGS. 2A and 2B. It has an intensity distribution.
  • the vertical axes in FIGS. 2A and 2B are relative intensities, where the laser beam intensity at the position where the laser beam intensity in the profile of the laser beam shown in FIGS. 2A and 2B is maximum is 100%.
  • the beam profile of the CW laser light condensed by the condensing lens 60 has a light intensity distribution of Gaussian distribution in the short axis and the long axis.
  • the light intensity distribution is formed such that the CW laser light oscillated by the laser device 20 passes through the short axis molded lens 50 and the long axis molded lens 30.
  • the beam profile of the CW laser beam condensed by the condenser lens 60 and irradiated to the sample 9 typically has a light intensity distribution of Gaussian distribution, but is not limited thereto. It may be a continuous upward light intensity distribution.
  • the reason why the beam profile of the CW laser beam focused by the focusing lens 60 typically has a Gaussian type light intensity distribution for both the short axis and the long axis will be described.
  • the intensity distribution of the CW laser beam oscillated by the device for oscillating the CW laser beam is originally Gaussian distribution or equivalent thereto. Therefore, since it is not necessary to introduce a special additional device or part into the optical system of the CW laser light crystallization apparatus 100, in the CW laser light crystallization apparatus 100, the beam profile is Gaussian type in both the short axis and the long axis.
  • the CW laser light having a light intensity distribution can be irradiated relatively easily.
  • the amorphous semiconductor is made into a crystalline semiconductor by irradiating the amorphous semiconductor with CW laser light in microsecond order using the CW laser light crystallization apparatus 100 configured as described above.
  • CW laser light crystallization apparatus 100 configured as described above.
  • FIG. 3A is a view showing a short axis profile of a conventional CW laser beam.
  • FIG. 3B is a view showing a longitudinal axis profile of conventional CW laser light.
  • FIG. 4 is a schematic view for explaining crystallization using conventional CW laser light. The horizontal axis t indicates the passage of time.
  • FIG. 4A shows a cross-sectional view of a beam profile in the long axis direction of the conventional CW laser light.
  • FIG. 4B shows the temperature distribution of the cross-sectional view of the amorphous semiconductor film of Sample 9.
  • FIG. 4C shows a state surface view of the amorphous semiconductor film of the sample 9.
  • the SPC (Sollid Phase Crystallization) range is a temperature range in which the non-crystalline semiconductor film is crystallized in the range below the melting point of amorphous silicon, that is, in the temperature range of 600 ° C. to 1100 ° C. That is, SPC is a phenomenon in which crystallization is performed by solid phase growth in the range of not higher than the melting point of amorphous silicon, that is, in the temperature range of 600 ° C. to 1100 ° C.
  • FIG. 5A shows an example of the crystalline structure of silicon by SPC.
  • the crystalline structure of silicon by SPC has an average particle diameter of about 30 nm and a flat surface.
  • the Ex (Explosive Nucleation) range is a temperature range at which the non-crystalline semiconductor film crystallizes in the temperature range of not less than the melting point of amorphous silicon and not more than the melting point of silicon, ie, 1100 ° C. to 1414 ° C. . That is, Ex is a phenomenon in which crystallization occurs through a supercooled liquid state in the temperature range of not less than the melting point of amorphous silicon and not more than the melting point of silicon, ie, 1100 ° C. to 1414 ° C.
  • FIG. 5B shows an example of the crystal structure of silicon according to Ex.
  • the crystal structure of silicon according to Ex has a flat surface with an average particle diameter of about 40 to 50 nm, as shown in, for example, FIG. 5B.
  • the melting range is the melting point of silicon, that is, the temperature range of 1414 ° C. or higher.
  • FIG. 5C shows an example of the crystal structure crystallized after melting. As shown in FIG. 5C, when amorphous silicon is crystallized in the melting range, the average particle diameter is P-Si (polycrystalline silicon) of about 500 nm, and projections are present on the surface.
  • P-Si polycrystalline silicon
  • Conventional CW laser light has a Gaussian type light intensity distribution on the minor axis as shown in FIGS. 3A and 3B, but has a top flat type intensity distribution on the major axis.
  • an amorphous semiconductor film specifically, an amorphous silicon (a-Si) film 1 is prepared.
  • the amorphous silicon film 1 is irradiated with the long-axis top flat CW laser beam shown in FIG. 4A.
  • the long-axis top flat type CW laser light is continuously irradiated in the beam scan direction shown in FIG. 4C.
  • the amorphous silicon film 1 exhibits a temperature distribution in the SPC range in the region irradiated with the long-axis top flat type CW laser beam.
  • fluctuation of light intensity occurs in the top flat portion of the long axis. In FIG. 4A, it is expressed by the projection of the top flat portion of the long axis.
  • the scan with the long-axis top flat CW laser beam with respect to the plane of the amorphous silicon film 1, that is, the irradiation of all the planes of the amorphous silicon film 1 is completed.
  • the temperature of the amorphous silicon film 1 is further raised by the latent heat generated at the time of crystallization, but is substantially within the SPC range.
  • the temperature of the region of the amorphous silicon film 1 irradiated with the projection portion of the top flat portion of the long axis, that is, the fluctuation portion of the light intensity rises to the Ex range beyond the SPC range.
  • Ex unevenness unevenness
  • the semiconductor film of Ex is present in the semiconductor film of SPC, that is, Ex unevenness occurs.
  • the problem of That is, not only the flatness of the surface of the crystalline semiconductor film is lost such as generation of projections on the surface, but also the dispersion of the grain size occurs in the surface of the crystalline semiconductor film. Then, there is a problem that the characteristics of the thin film transistor having the crystalline semiconductor film are adversely affected.
  • FIG. 6 is a diagram showing the relationship between temperature and energy with respect to crystallization of silicon.
  • the horizontal axis represents temperature
  • the vertical axis represents energy (heat).
  • silicon in an amorphous state is heated, for example, by laser light irradiation, to be in the SPC range, that is, the temperature range of 600 ° C. to 1100 ° C. Then, silicon in the amorphous state is solid-phase grown and microcrystalline. The silicon crystallized through the SPC range becomes SPC crystalline silicon having an average crystal grain size of 25 nm to 35 nm.
  • FIG. 7 is a diagram for explaining the growth mechanism of the Ex crystal structure.
  • the crystallization mechanism is different between the case of crystallization in the SPC range, the case of crystallization in the Ex range beyond the SPC range, and the case of crystallization in the melting range, and the crystallization mechanism is different after crystallization.
  • the particle size etc will be different.
  • FIG. 8 is a schematic view for explaining crystallization using CW laser light in the present embodiment.
  • the horizontal axis t indicates the passage of time.
  • FIG. 8A shows a cross-sectional view of the beam profile in the long axis direction of the CW laser light.
  • FIG. 8B shows the temperature distribution of the cross-sectional view of the amorphous semiconductor film of Sample 9.
  • FIG. 8C shows a state surface view of the amorphous semiconductor film of the sample 9.
  • an amorphous semiconductor film of sample 9 is a CW laser beam (hereinafter referred to as a long axis Gaussian CW laser beam) whose beam profile of the long axis shown in FIG. Specifically, the amorphous silicon (a-Si) film 10 is irradiated.
  • the long-axis Gaussian CW laser light has a power density such that the temperature of the irradiated amorphous silicon film 10 is in the range of 600 ° C. to 1100 ° C., and in the beam scan direction shown in FIG. Irradiated continuously. Then, the amorphous silicon film 10 exhibits a temperature distribution in the SPC range shown in FIG.
  • the amorphous silicon film 10 is continuously irradiated with the long-axis Gaussian CW laser light, and the irradiation of the long-axis Gaussian CW laser light reaches the end of the amorphous silicon film 10 ing.
  • the region irradiated with the long-axis Gaussian CW laser beam at time t11 becomes the SPC 11 as described above.
  • the SPC 11 irradiated with the long-axis Gaussian CW laser light at time t10 is further raised in temperature by the latent heat generated at the time of crystallization, and the temperature distribution in the Ex range is It becomes an Ex area 12 shown.
  • the heat of the Ex area 12 is conducted to become the area of the SPC area, that is, the SPC 11, that is, the heat in the Ex area 12 is conducted to the side face in the beam scan direction of the Ex area 12.
  • the Ex range is a range exceeding the temperature (1100 ° C.) considered as the melting point which changes depending on the network structure of atoms in the amorphous silicon film 10 and the melting point 1414 ° C. or less of silicon.
  • the scanning with the long-axis Gaussian CW laser light with respect to the amorphous silicon film 10, that is, the irradiation of all the planes of the amorphous silicon film 10 is completed.
  • the SPC 11, which is a region of the SPC range irradiated with the long-axis Gaussian CW laser beam at time t11 is further heated by the latent heat generated during crystallization as described above. Increases to become an Ex region 12 showing a temperature distribution in the Ex range.
  • the heat in the Ex region 12 is conducted to the adjacent region on the side surface of the amorphous silicon film 10 which has become the Ex region 12 at time t11 in the beam scan direction, and becomes SPC 11 which is a region of the SPC range.
  • the width in the direction perpendicular to the beam scan direction of the Ex region 12, that is, the width in the side direction of the Ex region 12 corresponds to the width of the region range in which the predetermined intensity is equal to or greater than the predetermined intensity in the long axis direction of the long axis Gaussian CW laser beam.
  • the range of the region where the predetermined intensity is greater than or equal to the predetermined intensity in the long axis direction of the long axis Gaussian CW laser light means that the temperature of the amorphous silicon film 10 is in the range of 600.degree. C. to 1100.degree. This means the range of the output density of the long-axis Gaussian CW laser beam, which is the SPC range).
  • the long-axis Gaussian CW laser light is irradiated within the width of the region where the predetermined intensity or more is obtained.
  • the region of the amorphous silicon film 10 is crystallized into a crystalline silicon film of Ex.
  • the close region on the side surface in the beam scan direction of the region of the amorphous silicon film 10 irradiated with the long-axis Gaussian CW laser light is crystallized into the SPC crystalline silicon film.
  • the crystalline silicon film of Ex thus crystallized, that is, the crystalline silicon film consisting of the crystal structure of Ex slightly expands in particle diameter from the crystals obtained by solid phase growth and loses uniformity. There is no surface protrusion formed.
  • the average crystal grain size of the crystalline silicon film of Ex becomes 40 nm to 60 nm while maintaining in-plane uniformity.
  • the average crystal grain size of the SPC crystalline silicon film is 25 nm to 35 nm.
  • the amorphous semiconductor film is crystallized by irradiating the amorphous semiconductor film with the long-axis Gaussian CW laser beam at an output density such that the temperature of the amorphous semiconductor film is in the range of 600 ° C. to 1100 ° C.
  • Semiconductor film The temperature of the non-crystalline semiconductor film irradiated with the long-axis Gaussian CW laser light is considered to be the melting point of amorphous silicon which changes the network structure of the atoms of the amorphous silicon by raising the temperature further due to the latent heat generated during crystallization. After the temperature is exceeded and the melting point of crystalline silicon is 1414 ° C. or lower, the crystalline semiconductor film is crystallized to form EX.
  • the surface protrusions are slightly expanded from the crystals obtained by solid phase growth and without losing uniformity. It is crystallized without being formed.
  • the average crystal grain size of the crystalline semiconductor film is 40 nm to 60 nm while maintaining in-plane uniformity.
  • the amorphous semiconductor film is irradiated with a long-axis Gaussian CW laser beam at a power density such that the temperature of the irradiated amorphous silicon film 10 is in the range of 600 ° C. to 1100 ° C. But it is not limited to this.
  • the noncrystalline semiconductor film may be irradiated with an output density such that the temperature of the irradiated amorphous silicon film 10 is in the range of 600 ° C. to 800 ° C., and the effect is the same.
  • a crystalline silicon film of Ex that is, a crystalline semiconductor film having a crystalline structure with good in-plane uniformity.
  • 10 to 100 microseconds of the long-axis Gaussian CW laser light is applied to the non-crystalline semiconductor film so that the temperature of the non-crystalline semiconductor film is in the range of 600.degree. C. to 1100.degree. C. (SPC range).
  • Irradiation on the order of microseconds can form a crystalline semiconductor film having a crystalline structure with high in-plane uniformity. This is performed by irradiating the noncrystalline semiconductor film with a long axis Gaussian CW laser beam so that the temperature of the noncrystalline semiconductor film is in the range of 600 ° C. to 1100 ° C. (SPC range). This is because the temperature of the non-crystalline semiconductor film is made to fall within the range of 1100.degree. C.
  • the irradiated non-crystalline semiconductor film is not crystallized through the temperature range of 1414 ° C. or higher, and is crystallized through the temperature range of 1100 ° C. to 1414 ° C. It can be suppressed and the flatness of the surface can be maintained. Therefore, the thin film transistor having the crystalline semiconductor film formed in this manner can have improved characteristics.
  • the long-axis Gaussian CW laser light is irradiated to the non-crystalline semiconductor film not on the nanosecond order but on the microsecond order.
  • the irradiation time of the long-axis Gaussian CW laser light can be extended, so that sufficient time is required for the atomic structure in the non-crystalline semiconductor film to rearrange and crystallize from the amorphous state. It can be secured.
  • the amorphous semiconductor is irradiated from the beginning with a power density such that the temperature of the irradiated amorphous semiconductor film instantaneously becomes in the range of 1100 ° C. to 1414 ° C. from the long-axis Gaussian CW laser beam. It is also conceivable to use a film as a crystalline semiconductor film. However, it is unsuitable for the following reasons. That is, due to the latent heat generated in the region of the irradiated non-crystalline semiconductor film, the region of the non-crystalline semiconductor film is crystallized after being melted at 1414 ° C. or higher. In the case where the non-crystalline semiconductor film is crystallized through a temperature range of 1414 ° C.
  • the non-crystalline semiconductor film is melted and reduced in volume and then crystallized with volume expansion. Not only surface protrusions of the same height are generated, but also the in-plane variation of the particle diameter is increased. Therefore, from the beginning, the amorphous semiconductor film is irradiated with the long-axis Gaussian CW laser light at such a power density that the temperature of the irradiated amorphous silicon film 10 instantaneously becomes in the range of 1100 ° C. to 1414 ° C.
  • the method of making the crystalline semiconductor film is not suitable because it can not realize the production of a crystalline semiconductor film having a crystalline structure with good in-plane uniformity.
  • Embodiment Mode 2 an application example of a crystalline semiconductor film having a crystal structure with high in-plane uniformity formed by the method of Embodiment Mode 1 will be described.
  • FIG. 9 is a diagram for describing an application example to a substrate with a crystalline semiconductor film in the present embodiment.
  • a substrate with a non-crystalline semiconductor film in which a non-crystalline semiconductor film 210 is formed on a base material 200, and a long-axis Gaussian CW laser beam are prepared.
  • the beam profile of the long-axis Gaussian CW laser beam shows a Gaussian light intensity distribution, as shown in FIG. 9 (a).
  • a long-axis Gaussian CW laser beam is irradiated to the non-crystalline semiconductor film 210 in microsecond order.
  • a long-axis Gaussian CW laser beam is applied to the non-crystalline semiconductor film 210 so that the temperature of the non-crystalline semiconductor film 210 is in the range of 600 ° C. to 800 ° C. (SPC range).
  • the region irradiated with the long-axis Gaussian CW laser beam becomes the SPC crystalline semiconductor film 211.
  • the SPC crystalline semiconductor film 211 is a crystalline semiconductor film having a crystal structure (crystal grains) crystallized by solid phase growth in a temperature range (SPC range) of 600 ° C. to 1100 ° C. is there.
  • the width of a partial region to be the Ex crystalline semiconductor film 212 is the width of a range of regions where the predetermined intensity or more in the long axis direction of the long axis Gaussian CW laser light It corresponds to
  • the crystalline semiconductor film having a crystalline structure with high in-plane uniformity using long-axis Gaussian CW laser light is not limited to the above case.
  • the present invention may be applied to a bottom gate thin film transistor.
  • FIG. 10 is a diagram for explaining a method of manufacturing a bottom gate thin film transistor in the present embodiment
  • FIG. 11 is a flowchart for explaining a method of manufacturing a bottom gate thin film transistor in the present embodiment.
  • FIG. 12 is a diagram showing a configuration of a bottom gate thin film transistor provided with the crystalline semiconductor film of this embodiment.
  • a base material 200 such as glass or an insulating substrate is prepared.
  • the base material 200 is washed (S201), and a contamination preventing film is formed on the base material 200 (S202).
  • the gate electrode 220 is formed on the base material 200 (S203). Specifically, a metal to be the gate electrode 220 is deposited on the substrate 200 by sputtering, and the gate electrode 220 is patterned by photolithography and etching.
  • the gate electrode 220 is a metal such as molybdenum (Mo) or Mo alloy, a metal such as titanium (Ti), aluminum (Al) or Al alloy, a metal such as copper (Cu) or Cu alloy, or silver Ag), chromium (Cr), tantalum (Ta) or tungsten (W) or other metal material.
  • a gate insulating film 230 is formed on the gate electrode 220, and an amorphous semiconductor such as an amorphous silicon film is formed on the gate insulating film 230.
  • the film 240 is formed (S204). Specifically, a gate insulating film 230 is formed on the gate electrode 220 so as to cover the substrate 200 and the gate electrode 220 by plasma CVD (FIG. 10 (b)), and the gate insulating film is formed.
  • the amorphous semiconductor film 240 is continuously formed on the film 230 (FIG. 10C).
  • dehydrogenation treatment is performed as preparation for irradiating the non-crystalline semiconductor film 240 with the long-axis Gaussian CW laser beam (S205). Specifically, annealing is performed, for example, at 400 ° C. to 500 ° C. for 30 minutes.
  • the amorphous semiconductor film 240 usually contains 5% to 15% of hydrogen as SiH. In the case of crystallization of the non-crystalline semiconductor film 240 containing 5% to 15% hydrogen, hydrogen not only blocks the silicon hand and inhibits crystallization, but also phenomena such as bumping occur. It becomes easy to happen. That is, dehydrogenation treatment is performed because it is not preferable for process control.
  • the noncrystalline semiconductor film 240 is irradiated with long-axis Gaussian CW laser light to crystallize the noncrystalline semiconductor film 240 (S206). .
  • the region of the non-crystalline semiconductor film 240 irradiated in the region range where the predetermined intensity or more is in the long axis direction of the long axis Gaussian CW laser light becomes the Ex crystalline semiconductor film 242, and the Ex crystal The SPC crystalline semiconductor film 241 is formed in a region close to the crystalline semiconductor film 242.
  • the region of the non-crystalline semiconductor film 240 hardly irradiated with the long-axis Gaussian CW laser light remains the non-crystalline semiconductor film 240.
  • the width of the region range in which the predetermined intensity is equal to or greater than the predetermined intensity in the long axis direction of the long axis Gaussian CW laser light is wider than at least the width of the gate electrode 220 (width in the direction perpendicular to the long axis direction of CW laser light).
  • the description will be omitted.
  • hydrogen plasma processing is performed (S207). Specifically, by performing hydrogen plasma treatment, the non-crystalline semiconductor film 240 irradiated with the long-axis Gaussian CW laser light, that is, the non-crystalline semiconductor film 240, the SPC crystalline semiconductor film 241, and the Ex crystalline semiconductor Hydrogen termination treatment of the membrane 242 is performed.
  • the semiconductor film 250 is formed (S208). Specifically, the semiconductor film 250 is formed over the non-crystalline semiconductor film 240, the SPC crystalline semiconductor film 241, and the Ex crystalline semiconductor film 242 by plasma CVD. Then, patterning is performed so that the region of the Ex crystalline semiconductor film 242 remains, and the semiconductor film 250, the noncrystalline semiconductor film 240, and the SPC crystalline semiconductor film 241 are removed by etching. Accordingly, only the crystalline semiconductor film having a crystalline structure with high in-plane uniformity can be used as a channel portion of the bottom gate thin film transistor.
  • source and drain electrodes 270 are formed (S210). Specifically, a metal to be the source / drain electrode 270 is deposited on the semiconductor film 250 by sputtering. Subsequently, the source / drain electrode 270 is patterned.
  • the semiconductor film 250 is an ohmic contact layer connecting the Ex crystalline semiconductor film 242 and the source / drain electrode 270.
  • the gate bottom type thin film transistor shown in FIG. 12 is manufactured.
  • a plurality of gate bottom type thin film transistors may be manufactured simultaneously.
  • FIG. 13 is a diagram for describing a case where a plurality of gate bottom type thin film transistors are simultaneously manufactured.
  • a plurality of gate electrodes 220 arranged at predetermined intervals are formed on the base 200 in S201 to S205 described above, and the gate insulating film 230 is formed on the gate electrode 220. Film formation.
  • the plurality of gate electrodes 220 may be arranged in a line at a predetermined interval, or the lines may be arranged at a predetermined interval. FIG. 13 shows the latter example.
  • the region (striped region) of the non-crystalline semiconductor film 240 corresponding to the gate electrodes 220 in which the long-axis Gaussian CW laser beams are aligned at predetermined intervals is continuous. Irradiation may be performed to crystallize the region of the non-crystalline semiconductor film 240.
  • the width of the region range in which the predetermined intensity is greater than or equal to the predetermined intensity in the long axis direction of the long axis Gaussian CW laser light is wider than the width of the region (striped region) of the noncrystalline semiconductor film 240.
  • the width of the region (striped region) of the non-crystalline semiconductor film 240 is a width perpendicular to the scanning direction of the long-axis Gaussian CW laser beam.
  • the long-axis Gaussian CW laser light is a region on the non-crystalline semiconductor film 240 corresponding to the plurality of gate electrodes 220 disposed at predetermined intervals, and the plurality of gates disposed at predetermined intervals.
  • a region (a band-like region in the drawing) of the non-crystalline semiconductor film 240 covering a width in a direction perpendicular to the arrangement direction of the electrodes is continuously irradiated.
  • the region of the non-crystalline semiconductor film 240 corresponding to the gate electrode 220 can be made the Ex crystalline semiconductor film 242.
  • the adjacent region perpendicular to the scanning direction of the long-axis Gaussian CW laser beam of the Ex crystalline semiconductor film 242 is the SPC crystalline semiconductor film 241 as described above.
  • the width of the Gaussian distribution in the long axis direction of the continuous wave laser is made to correspond to (the width of) the region on the non-crystalline semiconductor film corresponding to the plurality of gate electrodes arranged at predetermined intervals.
  • the region corresponding to the gate electrode over the non-crystalline semiconductor film can be selectively irradiated.
  • the region of the crystalline semiconductor film formed as a channel portion in the thin film transistor can be selectively microcrystalline, and in addition, a crystalline semiconductor film with a flat surface can be formed.
  • the region of the Ex crystalline semiconductor film 242 is formed of crystal grains having an average crystal grain size of 40 nm to 60 nm, and a plurality of gate electrodes 220 are arranged in a row (arranged in a line at predetermined intervals) ) Is continuously formed in a band across the area.
  • the SPC crystalline semiconductor film 241 is formed in proximity to the Ex crystalline semiconductor film 242.
  • the second embodiment it is possible to realize a bottom gate type thin film transistor to which a crystalline semiconductor film having a crystalline structure with good in-plane uniformity is applied and a substrate with a crystalline semiconductor film.
  • Embodiment 2 application examples to a bottom gate type thin film transistor and a substrate with a crystalline semiconductor film have been described.
  • Embodiment 3 an application example to a top gate thin film transistor is described.
  • FIG. 14 is a diagram for illustrating a method of manufacturing the top gate thin film transistor according to the present embodiment.
  • FIG. 15 is a diagram showing the configuration of the top gate thin film transistor according to the third embodiment.
  • FIG. 14 shows a part of the manufacturing process of the top gate thin film transistor extracted.
  • the manufacturing process is shown in which the source / drain electrode 310 is formed on the base material 300 and the non-crystalline semiconductor film 320 is formed on the source / drain electrode 310. . Then, the manufacturing process is shown in which the long-axis Gaussian CW laser beam shown in FIG. 14A is irradiated to the non-crystalline semiconductor film 320 to crystallize as shown in FIG. 14C.
  • the region serving as the gate of the non-crystalline semiconductor film 320 is irradiated with a region range having a predetermined intensity or more in the long axis direction of the long axis Gaussian CW laser light.
  • the region of the non-crystalline semiconductor film 320 irradiated with the region range having a predetermined intensity or more in the long axis direction of the long axis Gaussian CW laser light becomes the Ex crystalline semiconductor film 322, and the Ex crystalline semiconductor film In the region close to 322, the SPC crystalline semiconductor film 321 is formed.
  • the region of the non-crystalline semiconductor film 320 hardly irradiated with the long-axis Gaussian CW laser light remains the non-crystalline semiconductor film 320.
  • the details of the irradiation method of the long-axis Gaussian CW laser beam are omitted because they are the same as described above.
  • a top gate thin film transistor having the Ex crystalline semiconductor film 322 shown in FIG. 15 is formed.
  • the top gate thin film transistor illustrated in FIG. 15 includes a substrate 300, a source / drain electrode 310, an Ex crystalline semiconductor film 322, a gate insulating film 340 formed over the Ex crystalline semiconductor film, and a gate. And a gate electrode 350 formed on the insulating film 340.
  • FIG. 16 is a diagram illustrating another configuration of the top gate thin film transistor according to the third embodiment. The same elements as in FIG. 15 are assigned the same reference numerals.
  • a protective film 460 formed on the gate electrode 350 is shown.
  • FIG. 17 is a flowchart for explaining the method of manufacturing the top gate thin film transistor according to the present embodiment.
  • the processes of S301 to S311 are the same as the processes of S201 to S209 except for the order of forming the source / drain electrode 310 and the gate electrode 350, and therefore the description thereof is omitted. Also, since S305 is as described in FIG. 14, the description is omitted.
  • a protective film (for example, a protective film 460) is formed on the gate electrode 350.
  • a plurality of top gate type thin film transistors of this embodiment shown in FIG. 16 or 17 may be manufactured simultaneously as in the second embodiment.
  • a plurality of source / drain electrodes 310 arranged at predetermined intervals may be formed on the base 300, and the gate insulating film 340 may be formed on the gate electrode 220.
  • the plurality of source / drain electrodes 310 may be arranged in a line at a predetermined interval, or the lines may be arranged at a predetermined interval.
  • the long-axis Gaussian CW laser light is a region (band-like region) on the non-crystalline semiconductor film corresponding to the region where the gate electrode 350 is formed between the plurality of source / drain electrodes 310 arranged at predetermined intervals. ) Is irradiated continuously.
  • the region of the non-crystalline semiconductor film corresponding to the region where the gate electrode 350 is formed can be used as the Ex crystalline semiconductor film 322.
  • the region of the Ex crystalline semiconductor film 322 is formed of crystal grains having an average crystal grain diameter of 40 nm to 60 nm, and is continuously formed in a band shape across the region where the plurality of gate electrodes 350 are arranged in rows. It is done.
  • the SPC crystalline semiconductor film is formed in proximity to the Ex crystalline semiconductor film 322.
  • the third embodiment it is possible to realize a top gate thin film transistor to which a crystalline semiconductor film having a crystalline structure with good in-plane uniformity is applied.
  • a continuous wave laser beam having a short axis and a long axis with Gaussian distribution so that the temperature of the non-crystalline semiconductor film is in the range of 600 ° C. to 800 ° C. (SPC range)
  • SPC range the temperature of the non-crystalline semiconductor film is in the range of 600 ° C. to 800 ° C.
  • the non-crystalline semiconductor film is crystallized by the latent heat generated in the non-crystalline semiconductor film at that time through the temperature range of 1100 ° C. to 1414 ° C. (Ex range).
  • the crystallized region is not formed in the non-crystalline semiconductor film through the 1414 ° C. or higher (melting range)
  • the generation of surface protrusions can be suppressed and the surface flatness can be maintained.
  • a crystalline semiconductor film can be formed. Therefore, it is possible to realize not only a crystalline semiconductor film capable of suppressing the generation of surface protrusions and maintaining the flatness of the surface, but also a thin film transistor having the same.
  • the amorphous semiconductor film is crystallized by irradiating a CW laser having a light intensity gradient in the long axis direction, such as Gaussian distribution, for an irradiation time on the order of microseconds.
  • the effect of latent heat is used to crystallize the amorphous semiconductor film in a temperature range which is higher than the melting point of the amorphous and lower than the melting point of the crystal.
  • the in-plane grain size variation is suppressed, and at the same time, a crystal structure in which the grain size is expanded as compared to the case of crystallization by solid phase growth is formed.
  • a thin film transistor with less variation in characteristics by forming a crystallized semiconductor film made of an Ex crystal structure having a microcrystalline structure which is superior in electrical characteristics and superior in in-plane uniformity to the SPC crystal structure, A display device using the thin film transistor can be realized.
  • the crystalline semiconductor film of Ex is composed of crystal grains having an average crystal grain size of 40 nm to 60 nm. Therefore, for example, a top gate type thin film transistor formed using an Ex crystalline semiconductor film has an effect of being able to secure mobility capable of obtaining sufficient on characteristics as a thin film transistor used for an organic EL display.
  • the crystalline semiconductor film may be formed only of the crystalline semiconductor film of Ex, or may be formed of a mixed crystal of amorphous and crystal of Ex.
  • the crystalline semiconductor film contains mixed crystals of amorphous and crystal, that is, crystal grains having an average crystal grain size of 40 to 60 nm and an amorphous structure around crystal grains having the average crystal grain size of 40 to 60 nm.
  • the crystalline semiconductor film can relax the crystallographic mismatch of the interface between adjacent crystal grains with an amorphous structure.
  • the present invention can be used for a method of manufacturing a crystalline semiconductor film, a method of manufacturing a substrate with a crystalline semiconductor film, and a thin film transistor, and in particular, to a channel portion of a thin film transistor of an organic EL display used as an FPD display device such as a television. be able to.

Abstract

 面内均一性の良い結晶組織を有する結晶性半導体膜の製造方法を提供する。短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から1100℃の範囲になるよう非結晶性半導体膜に照射する第1工程と、その非結晶性半導体膜が、前記600℃から1100℃の温度範囲に対応して結晶化する第2工程と、非結晶性半導体膜の面内における所定の温度が、連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414℃になり、1100℃から1414℃の温度範囲に対応して結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、を含み、前記上に凸の連続的な光強度分布は、長軸方向で所定の強度以上となる領域範囲を有し、前記領域範囲は、潜熱により1100℃から1414℃の温度範囲になる非結晶性半導体膜上の領域に対応している。

Description

結晶性半導体膜の製造方法、結晶性半導体膜付き基板、薄膜トランジスタ
 本発明は、結晶性半導体膜の製造方法、結晶性半導体膜付き基板の製造方法、薄膜トランジスタに関する。
 例えば、表示装置用の液晶パネルまたは有機ELパネルを構成する薄膜トランジスタ(TFT:Thin Film Transistor)がある。その薄膜トランジスタのチャネル部となる例えばシリコンからなる半導体層は、一般的に、非晶質性(アモルファス)半導体膜または結晶性半導体膜で形成される。薄膜トランジスタのチャネル部となる半導体膜は、アモルファルシリコンと比較して高い移動度を有する結晶性半導体膜で形成されることが好ましい。一般的に、結晶性半導体膜は、非晶質性半導体膜の形成後に非晶質性半導体膜を結晶化することにより形成される。
 非晶質性半導体膜から結晶性半導体膜を形成する方法としては、エキシマレーザ結晶化(ELA)法、Ni触媒等を用いた熱アニール結晶化法、赤外半導体レーザ光と光吸収層を有する試料構造の組合せを使った結晶化法等がある。
 しかし、ELA法による結晶化では、微結晶または多結晶からなる結晶性半導体膜が形成されるため、結晶粒(結晶組織)の大きさや分布によりその電気特性がばらついてしまう。そのため、結晶性半導体膜を薄膜トランジスタに用いた場合、特性にばらつきが発生してしまう。
 一方、熱アニール結晶化法では、均一な結晶化ができるものの、触媒金属の処理が難しい。また、赤外半導体レーザ光と光吸収層を有する試料構造の組合せを使う結晶化方法では、光吸収層とバッファ層とを試料に成膜して除去するというプロセスが必要で、タクトの点で問題がある。さらに、これらの固相成長法で結晶化した膜を使って薄膜トランジスタを作製しても、膜の平均粒径が小さいために、目標とする電気特性に達しないという問題がある。
 それに対して、ELA法において、薄膜トランジスタの結晶性半導体膜の結晶粒の幅を制御することができる技術が開示されている(特許文献1)。また、ELA法において、薄膜トランジスタの結晶性半導体膜の結晶粒界の方向や結晶粒の幅を制御することができる技術が開示されている(特許文献2)。
 特許文献1及び特許文献2に開示される技術を用いると、レーザ光照射により、所定の方向に結晶成長させて、幅が0.5~10μm以下の大粒径結晶を有する結晶性半導体膜を形成することができる。また、そのように形成された膜を用いて半導体素子を形成することにより、隣接ばらつきが少ない優れた半導体装置を作製できる。
特開2008-85317号公報 特開2008-85318号公報
 しかしながら、上記特許文献1及び特許文献2では、大粒径結晶を有する結晶性半導体膜を形成する方法が開示されているに過ぎない。
 すなわち、ELA法では、パルス発振のレーザ光(例えば、波長λ = 308 nmのXeClエキシマレーザ光)を用い、非結晶性半導体膜を結晶化する。その際、パルス発振のエキシマレーザ光を非結晶性半導体膜に照射することで瞬間的に(ナノ秒オーダの照射時間で)温度を上昇させ溶融させた後に結晶化する。しかし、パルス発振のエキシマレーザ光の照射時間は、ナノ秒オーダという短い照射時間である。非結晶性半導体膜は、その温度を半導体膜(シリコン)の融点以上(1414℃以上)にしていったん融解させてからでないと結晶化しないが、結晶粒径は、条件により変化してしまう。さらに、非結晶性半導体膜を結晶化する際の体積膨張、すなわち液体(溶融時)から固体(結晶化時)になる際の体積膨張により、結晶化後の結晶性半導体膜には表面突起が生じて平坦性が失われる。すなわち、結晶性半導体膜の粒径に面内ばらつきが生じる。そのため、エッチングプロセス等の薄膜トランジスタ製造プロセスにおいて問題となる。また、結晶化後の結晶性半導体膜の面内ばらつきの対策として多数回ショットが不可欠で、コスト及びタクトの点で問題がある。
 また、このような結晶性半導体膜を有する薄膜トランジスタでは、例えばゲート電極に電圧を印加する際、ソース・ドレイン間に流れる電流量がばらつく。例えば、有機EL表示装置のような電流駆動の表示デバイスが上記の薄膜トランジスタを備える場合、有機ELは電流により階調制御されるため、電流量のばらつきは表示画像のばらつきに直結する。つまり、高精度な画像が得られない。また、上記の薄膜トランジスタでは、結晶性半導体膜に生じた突起がソース・ドレイン電極間のリーク電流の原因となり、特性が劣化する。
 それに対して、上記特許文献1及び特許文献2では、上記のELA法についての課題のうち、結晶粒径の制御については開示されているものの、表面突起についての課題を解決するものではなく、その示唆もない。
 本発明は、上記の問題点を鑑みてなされたもので、面内均一性の良い結晶組織を有する結晶性半導体膜の製造方法、結晶性半導体膜付き基板の製造方法、薄膜トランジスタを提供することを目的とする。
 上記目的を達成するために、本発明に係る結晶性半導体膜の製造方法は、短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から1100℃の範囲になるよう前記非結晶性半導体膜に照射する第1工程と、前記第1工程において前記連続発振型のレーザ光が照射された非結晶性半導体膜は、前記600℃から1100℃の温度範囲に対応して結晶化する第2工程と、前記非結晶性半導体膜の面内における所定の温度が、前記連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414 ℃になり、前記1100℃から1414℃の温度範囲に対応して前記結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、を含み、前記上に凸の連続的な光強度分布は、前記長軸方向に所定の強度以上となる領域範囲を有し、前記領域範囲は、前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域に対応している。
 本発明によれば、面内均一性の良い結晶組織を有する結晶性半導体膜の製造方法、結晶性半導体膜付き基板の製造方法、薄膜トランジスタを実現することができる。
図1は、本実施の形態におけるCWレーザ光結晶化装置の構成例を示す図である。 図2Aは、本実施の形態におけるCWレーザ光の短軸プロファイルを示す図である。 図2Bは、本実施の形態におけるCWレーザ光の長軸プロファイルを示す図である。 図3Aは、CW発振のレーザ光の短軸プロファイルを示す図である。 図3Bは、CW発振のレーザ光の長軸プロファイルを示す図である。 図4は、長軸トップフラットビームを用いた結晶化の問題点を説明するための図である。 図5Aは、SPCの結晶組織の例を示す図である。 図5Bは、本実施の形態におけるCWレーザ光を用いた結晶化したときの結晶組織を示す図である。 図5Cは、比較のため、炉アニール等で形成した多結晶シリコンの結晶組織を示す図である。 図6は、シリコンの結晶化に対する温度とエネルギーの関係を示す図である。 図7は、Ex結晶組織の成長メカニズムを説明するための図である。 図8は、本実施の形態におけるCWレーザ光を用いた結晶化について説明するための図である。 図9は、本実施の形態における結晶性半導体膜付き基板への適用例について説明するための図である。 図10は、本実施の形態におけるボトムゲート型薄膜トランジスタの製造方法を説明するための図である。 図11は、本実施の形態におけるボトムゲート型薄膜トランジスタの製造方法を説明するためのフロー図である。 図12は、本実施の形態の結晶性半導体膜を備えるボトムゲート型薄膜トランジスタの構成を示す図である。 図13は、複数のゲートボトム型薄膜トランジスタを同時に製造する場合について説明するための図である。 図14は、本実施の形態におけるトップゲート型薄膜トランジスタの製造方法を説明するための図である。 図15は、本実施の形態3におけるトップゲート型薄膜トランジスタの構成を示す図である。 図16は、本実施の形態3におけるトップゲート型薄膜トランジスタの別の構成を示す図である。 図17は、本実施の形態におけるトップゲート型薄膜トランジスタの製造方法を説明するためのフロー図である。
 本発明の一態様に係る結晶性半導体膜の製造方法は、短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から1100℃の範囲になるよう前記非結晶性半導体膜に照射する第1工程と、前記第1工程において前記連続発振型のレーザ光が照射された非結晶性半導体膜は、前記600℃から1100℃の温度範囲に対応して結晶化する第2工程と、前記非結晶性半導体膜の面内における所定の温度が、前記連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414 ℃になり、前記1100℃から1414℃の温度範囲に対応して前記結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、を含み、前記上に凸の連続的な光強度分布は、前記長軸方向に所定の強度以上となる領域範囲を有し、前記領域範囲は、前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域に対応している。
 例えば、グリーンレーザ光やブルーレーザ光など連続発振型のレーザ光を、10~100ナノセンカンドという短時間ではなく10~100マイクロセカンドという比較的長い時間、照射する。本態様によれば、非結晶性半導体膜の温度が600℃から1100℃の範囲になるような出力密度で非結晶性半導体膜上に照射する。そして非結晶性半導体膜は、非結晶性半導体膜の温度が瞬間的に600℃から1100℃の範囲になるよう照射されると、非結晶性半導体膜の温度は、結晶化の際に発生する潜熱によりさら上がる。このときに非結晶性半導体膜は、アモルファスシリコンにおける原子のネットワーク構造によって変化するアモルファスシリコンの融点として考えられる温度を越え、かつ、結晶性シリコンの融点1414℃以下となる温度範囲を経て、固相成長で得られる結晶からわずかに粒径拡大して、かつ均一性を失うことなく、表面突起は形成されず、例えば薄膜トランジスタを作製する上で品質の良い結晶性半導体膜となる。そして、表面突起の発生を抑え、前記半導体膜の表面の平坦性を保ち、前記半導体膜を含む薄膜トランジスタ装置の特性を向上させることができる。
 このように、面内均一性の良い結晶組織を有する結晶性半導体膜の製造方法を実現できる。
 ここで、前記凸の連続的な光強度分布は、ガウシアン分布である。
 また、前記第1工程において、前記連続発振型のレーザ光を、前記非結晶性半導体膜の温度範囲が600℃から800℃の範囲になるよう前記非結晶性半導体膜に照射する。
 本態様によれば、第1工程での非結晶性半導体膜の温度範囲を、600℃から800℃の範囲としても、600℃から1100℃の範囲と同等の効果を有する。
 また、記第1工程において、前記連続発振型のレーザ光を、前記非結晶性半導体膜にマイクロセカンドオーダにて照射する。
 本態様によれば、連続発振型のレーザ光を非結晶性半導体膜に照射する照射時間を長くとることができるため、非結晶性半導体膜において、原子の構造がアモルファスの状態から結晶化し、さらにアモルファスの状態から原子が再配列するのに十分な時間を確保できる。
 また、前記第1工程において、前記連続発振型のレーザ光を前記非結晶性半導体膜上に照射する時間は、10~100マイクロセカンドである。
 本態様によれば、連続発振型のレーザ光を非結晶性半導体膜上に照射する照射時間が長くなるため、非結晶性半導体膜において、原子の構造がアモルファスの状態から再配列して結晶化するのに十分な時間を確保できる。
 また、前記第1工程の前に、基材を準備する第4工程と、前記基材の上にゲート電極を所定間隔ごとに複数配置する第5工程と、前記所定間隔ごとに配置された複数のゲート電極上に前記絶縁膜を成膜する第6工程と、前記絶縁膜上に前記非結晶性半導体膜を成膜する第7工程と、を含み、前記所定間隔ごとに配置された複数のゲート電極に対応する前記非結晶性半導体膜上の領域の温度が前記潜熱により1100℃から1414 ℃になるように、前記上に凸の連続的な光強度分布の前記長軸の方向における一定の幅が規定されている。
 本態様のように、連続発振型のレーザの長軸方向のガウシアン分布の幅を、複数所定間隔ごとに配置されたゲート電極に対応する非結晶性半導体膜上の領域に対応させることにより、非結晶性半導体膜上のゲート電極に対応する領域を選択的に照射して、薄膜トランジスタのチャネル部として形成される結晶性半導体膜の領域を選択的に微結晶化できる。また、その結果、チャネル部として、表面が平坦な結晶性半導体膜を形成できる。
 また、本発明の別の一態様に係る結晶性半導体膜付き基板は、前記所定間隔ごとに配置された複数のゲート電極に対応する前記非結晶性半導体膜上の領域は、前記所定間隔ごとに配置された複数のゲート電極の幅を覆う領域であるとしてもよい。
 また、基材と、前記基材の上方に配置された複数のゲート電極と、前記ゲート電極上に形成された絶縁膜と、前記基材の上方に配置された複数のゲート電極上の絶縁膜を覆って形成された結晶性半導体膜とを具備し、前記結晶性半導体膜は、平均結晶粒径が40nmから60nmである結晶粒によって構成されており、前記複数のゲート電極が配置された領域にまたがって連続して形成される前記結晶性半導体膜内の第1領域と、平均結晶粒径が25nmから35nmによって構成されており、前記第1領域に隣接して形成されている、前記結晶性半導体膜内の第2領域とを有する。
 本態様によれば、結晶性半導体膜内の平均結晶粒径が40nmから60nmである結晶粒によって構成される第1領域が、複数のゲート電極が配置された領域にまたがって連続して形成される。そして、このような結晶性半導体膜を用いて薄膜トランジスタを形成すれば、有機ELディスプレイに用いる薄膜トランジスタとして十分なオン特性が得られる移動度を確保できる。
 また、前記結晶性半導体膜は、アモルファスと結晶の混晶を含むとしてもよい。
 例えば、結晶性半導体膜は、アモルファスと結晶との混晶を含む、すなわち、平均結晶粒径が40nmから60nmの結晶粒と、平均結晶粒径が40nmから60nmの結晶粒の周囲にアモルファス構造の領域とを含んでいる。この構造により、表面ラフネスを低減することができる。
 また、前記複数のゲート電極は、前記基材の上方に列状に配置され、前記平均結晶粒径が40nmから60nmである結晶粒によって構成される結晶性半導体膜内の第1領域は、前記複数のゲート電極が列状に配置された領域にまたがって帯状に連続して形成されているとしてもよい。
 本態様によれば、結晶性半導体膜内の平均結晶粒径が40nmから60nmである結晶粒によって構成される第1領域は、複数のゲート電極が列状に配置された領域にまたがって帯状に連続して形成されている。本態様の結晶性半導体膜付き基板は、結晶性半導体膜付き基板から、多数の個片にダイシング等により分割される際、上記の帯状の領域に沿ってダイシングを行うことができるので、ダイシング等により容易に多数の個片に分割することができる結晶性半導体膜付き基板を実現できる。
 また、前記平均結晶粒径が40nmから60nmである結晶粒によって構成される結晶性半導体膜内の第1領域は、短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から800℃の範囲になるよう前記非結晶性半導体膜に照射する第1工程と、前記第1工程において前記連続発振型のレーザ光が照射された非結晶性半導体膜が、前記600℃から800℃の温度範囲に対応して前記非結晶性半導体膜を結晶化する第2工程と、前記非結晶性半導体膜の面内における所定の温度が、前記連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414℃になり、前記1100℃から1414℃の温度範囲に対応して前記結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、により形成され、前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域が一定の幅を持つように、前記長軸方向において上に凸の連続的な光強度分布を規定され、前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域は、前記第1領域に対応するとしてもよい。
 本態様によれば、第1工程は、例えば、グリーンレーザ光やブルーレーザ光などの連続発振型のレーザ光を、ナノセンカンドオーダではなくマイクロセカンドオーダで、非結晶性半導体膜の温度が600℃から800℃の範囲になるよう非結晶性半導体膜に照射する。第1工程では、非結晶性半導体膜の全面について、非結晶性半導体膜の温度が600℃から800℃の範囲になるよう非結晶性半導体膜を照射しても、その際に非結晶性半導体膜に生ずる潜熱によっても1414℃以下で結晶化されるため、結晶粒径も比較的小さく、表面突起は形成されず、問題がない。
 また、第2工程では、このレーザ光を、非結晶性半導体膜の温度が1100℃から1414℃の範囲になるよう性半導体膜に照射するのではなく、非結晶性半導体膜の温度が600℃から800℃の範囲になるよう非結晶性半導体膜に照射する。このように照射することで、非結晶性半導体膜は、その際に非結晶性半導体膜に生ずる潜熱によって非結晶性半導体膜の温度が1100℃から1414℃の範囲となる。
 第2工程に続く第3工程では、非結晶性半導体膜の温度は1414℃以下の状態で、非結晶性半導体膜が溶融して結晶化するため、その平均結晶粒径は40nmから60nm と比較的小さい。また、このように結晶化して形成された結晶性半導体膜の表面には、突起が生ぜず、結晶性半導体膜の表面の平坦性を保つことになる。したがって、この結晶性半導体膜を用いた薄膜トランジスタ装置の特性を向上させることができる。
 なお、非結晶性半導体膜は、非結晶性半導体膜の全面について、非結晶性半導体膜の温度が1100℃から1414℃の範囲になるように照射されると、非結晶性半導体膜内に生ずる潜熱により、非結晶性半導体膜内に1414℃以上の領域ができてしまう。この1414℃以上の領域を経て結晶化されると、例えば、膜厚50nmに対してこの膜厚と同一幅の表面突起50nmができてしまう。
 このように、本態様によれば、レーザ光の照射によって、非結晶性半導体膜の温度が600℃から800℃の範囲になるように、レーザ光を非結晶性半導体膜に照射する。その際、非結晶性半導体膜は、非結晶性半導体膜に生ずる潜熱によって非結晶性半導体膜の温度が1100℃から1414℃の範囲になって結晶化する。こうすることで、非結晶性半導体膜内に1414℃以上を経て結晶化される領域がないので、表面突起の発生を抑え、表面の平坦性を保った、結晶性半導体膜を形成でき、これを有する結晶性半導体膜付き基板を実現できる。
 また、本発明の一態様に係る薄膜トランジスタは、ボトムゲート型の薄膜トランジスタであって、ゲート電極と、前記ゲート電極上に形成された絶縁膜と、前記絶縁膜上に形成された結晶性半導体膜と、前記結晶性半導体膜上に形成されたソース/ドレイン電極と、を具備し、前記結晶性半導体膜は、前記結晶性半導体膜内の平均結晶粒径が40nmから60nmである結晶粒によって構成され、前記結晶粒は、短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から800℃の範囲になるよう前記非結晶性半導体膜に照射する第1工程と、前記第1工程において前記連続発振型のレーザ光が照射された非結晶性半導体膜が、前記600℃から800℃の温度範囲に対応して前記非結晶性半導体膜を結晶化する第2工程と、前記非結晶性半導体膜の面内における所定の温度が、前記連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414℃になり、前記1100℃から1414℃の温度範囲に対応して前記結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、により形成され、前記潜熱により1100℃から1414℃ の温度範囲になる前記非結晶性半導体膜上の領域が一定の幅を持つように、前記長軸方向において上に凸の連続的な光強度分布を規定されている。
 本態様によれば、レーザ光の照射によって、非結晶性半導体膜の温度が600℃から800℃の範囲になるように、レーザ光を非結晶性半導体膜に照射する。その際、非結晶性半導体膜は、非結晶性半導体膜に生ずる潜熱によって非結晶性半導体膜の温度が1100℃から1414℃の範囲になって結晶化する。こうすることで、非結晶性半導体膜内に1414℃以上を経て結晶化される領域がないので、表面突起の発生を抑え、表面の平坦性を保った、結晶性半導体膜を形成でき、これを有する薄膜トランジスタを実現できる。
 また、本発明の一態様に係る結晶性半導体膜付き基板は、基材と、前記基材の上方に配置された複数のソース/ドレイン電極と、前記ソース/ドレイン電極上に形成された絶縁膜と、前記基材の上方に配置された複数のソース/ドレイン電極上に形成された絶縁膜を覆って形成された結晶性半導体膜と、を具備し、前記結晶性半導体膜は、前記結晶性半導体膜内の平均結晶粒径が40nmから60nmである結晶粒によって構成されており、前記複数のソース/ドレイン電極が配置された領域にまたがって連続して形成される前記結晶性半導体膜内の第1領域と、平均結晶粒径が25nmから35nmによって構成されており、前記第1領域に隣接して形成されている前記結晶性半導体膜内の第2領域とを有する。
 本態様によれば、結晶性半導体膜内の平均結晶粒径が40nmから60nmである結晶粒によって構成される第1領域が、複数のゲート電極が配置された領域にまたがって連続して形成されている。そのため、このような結晶性半導体膜を用いて薄膜トランジスタを形成すれば、有機ELディスプレイに用いる薄膜トランジスタとして十分オン特性が得られる移動度を確保できる。
 また、前記結晶性半導体膜は、アモルファスと結晶の混晶を含むとしてもよい。
 本態様によれば、結晶性半導体膜は、アモルファスと結晶との混晶を含む、すなわち、平均結晶粒径が40nmから60nmの結晶粒と、前記平均結晶粒径が40nmから60nmの結晶粒の周囲にアモルファス構造の領域とを含んでいる。この構造により、表面ラフネスを低減することができる。
 また、前記複数のゲート電極は、前記基材の上方に列状に配置され、前記平均結晶粒径が40nmから60nmである結晶粒によって構成される結晶性半導体膜内の第1領域は、前記複数のゲート電極が列状に配置された領域にまたがって帯状に連続して形成されているとしてもよい。
 本態様によれば、結晶性半導体膜内の平均結晶粒径が40nmから60nmである結晶粒によって構成される第1領域は、前記複数のゲート電極が列状に配置された領域にまたがって帯状に連続して形成されている。本態様の結晶性半導体膜付き基板は、結晶性半導体膜付き基板から、多数の個片にダイシング等により分割される際、上記の帯状の領域に沿ってダイシングを行うことができるので、ダイシング等により容易に多数の個片に分割することができる結晶性半導体膜付き基板を実現できる。
 また、前記平均結晶粒径が40nmから60nmである結晶粒によって構成される結晶性半導体膜内の第1領域は、短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から800℃の範囲になるよう前記非結晶性半導体膜に照射する第1工程と、前記第1工程において前記連続発振型のレーザ光が照射された非結晶性半導体膜が、前記600℃から800℃の温度範囲に対応して前記非結晶性半導体膜を結晶化する第2工程と、前記非結晶性半導体膜の面内における所定の温度が、前記連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414 ℃になり、前記1100 ℃から1414 ℃の温度範囲に対応して前記結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、により形成され、前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域は、一定の幅を持つように、前記長軸方向において上に凸の連続的な光強度分布を規定され、前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域は、前記第1領域に対応する。
 本態様によると、レーザ光の照射によって、非結晶性半導体膜の温度が600℃から800℃の範囲になるように、レーザ光を非結晶性半導体膜に照射する。その際、非結晶性半導体膜は、非結晶性半導体膜に生ずる潜熱によって非結晶性半導体膜の温度が1100℃から1414℃の範囲になって結晶化す。こうすることで、非結晶性半導体膜内に1414℃以上を経て結晶化される領域がないので、表面突起の発生を抑え、表面の平坦性を保った、結晶性半導体膜を形成でき、これを有する前記結晶性半導体膜付き基板を実現できる。
 また、本発明の一態様に係る薄膜トランジスタは、トップゲート型の薄膜トランジスタであって、ソース/ドレイン電極と、前記ソース/ドレイン電極上に形成された結晶性半導体膜と、前記結晶性半導体膜上に形成された絶縁膜と、前記絶縁膜上に形成されたゲート電極と、を具備し、前記結晶性半導体膜は、前記結晶性半導体膜内の平均結晶粒径が40nmから60nmである結晶粒によって構成され、前記結晶粒は、短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から800℃の範囲になるよう前記非結晶性半導体膜に照射する第1工程と、前記第1工程において前記連続発振型のレーザ光が照射された非結晶性半導体膜が、前記600℃から800℃の温度範囲に対応して前記非結晶性半導体膜を結晶化する第2工程と、前記非結晶性半導体膜の面内における所定の温度が、前記連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414℃になり、前記1100℃から1414℃の温度範囲に対応して前記結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、により形成され、前記潜熱により1100℃から1414℃ の温度範囲になる前記非結晶性半導体膜上の領域が一定の幅を持つように、前記長軸方向において上に凸の連続的な光強度分布を規定されている。
 本態様によれば、レーザ光の照射によって、非結晶性半導体膜の温度が600℃から800℃の範囲になるように、レーザ光を非結晶性半導体膜に照射する。その際、非結晶性半導体膜は、非結晶性半導体膜に生ずる潜熱によって非結晶性半導体膜の温度が1100℃から1414℃の範囲になって結晶化する。こうすることで、非結晶性半導体膜内に1414℃以上を経て結晶化される領域がないので、表面突起の発生を抑え、表面の平坦性を保った、結晶性半導体膜を形成でき、これを有する薄膜トランジスタを実現できる。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
 (実施の形態1)
 図1は、本実施の形態におけるCWレーザ光結晶化装置の構成例を示す図である。図2Aは、本実施の形態におけるCWレーザ光の短軸プロファイルを示す図である。図2Bは、本実施の形態におけるCWレーザ光の長軸プロファイルを示す図である。
 図1に示すCWレーザ光結晶化装置100は、アモルファスシリコン層等の非晶質性半導体が例えばガラス基板上に形成された試料9に対して、連続的なレーザ光のCW(Continuous Wave laser)レーザ光を用いてマイクロセカンドオーダで照射する装置である。CWレーザ光結晶化装置100は、レーザ装置20と、長軸成形レンズ30と、ミラー40と、短軸成形レンズ50と、集光レンズ60と、ビームプロファーラー70と、石英ガラス80とを備える。
 レーザ装置20は、連続発振型のレーザを発振する。すなわち、レーザ装置20は、CWレーザ光を発振する。レーザ装置20は、例えば、グリーンレーザ光またはブルーレーザ光を、10~100ナノセンカンドという短時間ではなく10~100マイクロセカンドという比較的長い時間で発振する。
 CWレーザ光結晶化装置100において、レーザ装置20が発振するCWレーザ光は、長軸成形レンズ30を通過し、ミラー40で照射方向を変更する。ミラー40で照射方向を変更したCWレーザ光は、短軸成形レンズ50を通過し、集光レンズ60で集光されて試料9に照射される。また、集光レンズ60で集光されたCWレーザ光の大半は、石英ガラス80を通過して試料9に照射されるが、集光レンズ60で集光されたCWレーザ光の一部は、ビームプロファーラー70に入射されて、ビームプロファイルが測定される。
 ここで、集光レンズ60により集光されたCWレーザ光、すなわち、CWレーザ光結晶化装置100が照射するCWレーザ光のビームプロファイルは、図2A及び図2Bに示すように、ガウシアン分布の光強度分布を有する。ここで、図2A及び図2Bの縦軸は、図2A及び図2Bに示すレーザ光のプロファイルのレーザ光強度が最大となる位置でのレーザ光強度を100%とした、相対強度である。
 なお、集光レンズ60により集光されたCWレーザ光のビームプロファイルは、短軸及び長軸においてガウシアン分布の光強度分布を有する。この光強度分布は、レーザ装置20が発振するCWレーザ光が短軸成形レンズ50及び長軸成形レンズ30を通過することに成形される。なお、集光レンズ60により集光されて試料9に照射されるCWレーザ光のビームプロファイルは、典型的には、ガウシアン分布の光強度分布を有するが、それに限らない。上に凸の連続的な光強度分布であればよい。
 ここで、集光レンズ60で集光されたCWレーザ光のビームプロファイルが短軸及び長軸ともにガウシアン型の光強度分布を有する場合が典型的である理由を説明する。CWレーザ光を発振する装置が発振するCWレーザ光の強度分布は、元来ガウシアン分布かそれに相当するものである。そのため、CWレーザ光結晶化装置100の光学系に特別な付加装置、または部品を導入しなくてもよいので、CWレーザ光結晶化装置100は、ビームプロファイルが短軸及び長軸ともにガウシアン型の光強度分布であるCWレーザ光を比較的簡便に照射することができる。
 続いて、以上のように構成されたCWレーザ光結晶化装置100を用いてマイクロセカンドオーダにてCWレーザ光を、非晶質性半導体に照射することで非晶質性半導体を結晶性半導体にする方法について説明する。なお、比較のため、従来のCWレーザ光を用いて非晶質性半導体を結晶性半導体にする場合についても合わせて説明する。
 最初に、従来のCWレーザ光を用いて非晶質性半導体を結晶性半導体にする場合では、問題があることを説明する。
 図3Aは、従来のCWレーザ光の短軸プロファイルを示す図である。図3Bは、従来のCWレーザ光の長軸プロファイルを示す図である。図4は、従来のCWレーザ光を用いた結晶化について説明するための模式図である。横軸tは、時間の経過を示している。図4(a)は、従来のCWレーザ光の長軸方向のビームプロファイルの断面図を示している。図4(b)は、試料9の非晶質性半導体膜の断面図の温度分布を示している。図4(c)は、試料9の非晶質性半導体膜の状態表面図を示している。
 ここで、SPC(Sollid Phase Crystallization)範囲とは、アモルファスシリコンの融点以下の範囲すなわち600℃~1100℃の温度範囲において非結晶性半導体膜が結晶化する温度範囲のことである。すなわち、SPCは、アモルファスシリコンの融点以下の範囲すなわち600℃~1100℃の温度範囲で、固相成長で結晶化する現象である。なお、図5Aは、SPCによるシリコンの結晶組織の例を示している。SPCによるシリコンの結晶組織は、例えば図5Aに示すように、平均粒径30nm程度で、平坦な表面を有する。
 また、Ex(Explosive Nucleation)範囲とは、アモルファスシリコンの融点以上で、かつ、シリコンの融点以下すなわち1100℃~1414℃の温度範囲において非結晶性半導体膜が結晶化する温度の範囲のことである。すなわち、Exは、アモルファスシリコンの融点以上、シリコンの融点以下すなわち1100℃~1414℃の温度範囲で、過冷却液体状態を経て結晶化する現象である。なお、図5Bは、Exによるシリコンの結晶組織の例を示している。Exによるシリコンの結晶組織は、例えば図5Bに示すように、平均粒径40~50nm程度で、平坦な表面を有する。
 また、溶融範囲とは、シリコンの融点すなわち、1414℃以上の温度範囲である。なお、図5Cは、溶融後に結晶化した結晶組織の例を示している。図5Cに示すように、アモルファスシリコンを溶融範囲で結晶化した場合には、平均粒径は500nm程度のP-Si(多結晶シリコン)であり、表面に突起が存在することになる。
 従来のCWレーザ光は、図3A及び図3Bに示すように、短軸においてガウシアン型の光強度分布を有するが、長軸において、トップフラット型の強度分布を有する。
 この従来のCWレーザ光(以下、長軸トップフラット型CWレーザ光と記載)を、試料9の非晶質性半導体膜に照射する場合について、図4を用いて説明する。
 まず、時間t1において、図4(c)に示すように、非晶質性半導体膜、具体的にはアモルファスシリコン(a-Si)膜1が用意されている。
 次に、時間t2において、図4(a)に示す長軸トップフラット型CWレーザ光を、アモルファスシリコン膜1に照射する。ここで、長軸トップフラット型CWレーザ光は、図4(c)に示すビームスキャン方向で連続的に照射される。すると、アモルファスシリコン膜1は、長軸トップフラット型CWレーザ光が照射された領域では、図4(b)に示すように、SPC範囲の温度分布を示す。なお、図4(a)に示す長軸トップフラット型CWレーザ光は、長軸のトップフラット部分において、光強度の揺らぎが発生する。それを、図4(a)において、長軸のトップフラット部分の突起で表現している。
 次に、時間t3において、アモルファスシリコン膜1の平面に対して長軸トップフラット型CWレーザ光でのスキャンすなわちアモルファスシリコン膜1の平面すべての照射が完了する。その際、アモルファスシリコン膜1は、図4(b)に示すように、結晶化の際に発生する潜熱によりさらに温度が上昇するが、ほぼSPC範囲内に収まっている。しかし、長軸のトップフラット部分の突起部分すなわち光強度の揺らぎ部分が照射されたアモルファスシリコン膜1の領域は、SPC範囲を超えてEx範囲にまで温度が上がってしまっている。SPC範囲で結晶化した場合とSPC範囲を超えてEx範囲を経て結晶化した場合とでは、結晶化するメカニズムが異なり結晶化後の粒径等が異なることになる。そのため、SPC範囲を超えてEx範囲を経て結晶化した部分は結晶粒の粒径のムラ(以下、Exムラ、と称する)となってしまう。
 このように、従来の長軸トップフラット型CWレーザ光を用いて非晶質性半導体を結晶性半導体膜にする場合では、SPCの半導体膜中にExの半導体膜があるすなわちExムラが発生してしまうという問題がある。つまり、表面に突起が発生するなど、結晶性半導体膜の表面の平坦性が失われるだけなく、結晶性半導体膜の面内で粒径のばらつきが発生してしまう。そして、この結晶性半導体膜を有する薄膜トランジスタの特性に悪影響を及ぼしてしまうという問題がある。
 ここで、図を用いて、シリコンの結晶化メカニズムについて説明する。図6は、シリコンの結晶化に対する温度とエネルギーの関係を示す図である。なお、図6において、横軸は、温度を示しており、縦軸はエネルギー(熱)を示している。
 図6に示すように、アモルファス状態のシリコンは、例えばレーザ光の照射などで熱せられ、SPC範囲すなわち、600℃~1100℃の温度範囲になるとする。すると、アモルファス状態のシリコンは、固相成長して微結晶化する。なお、このSPC範囲を経て結晶化したシリコンは、平均結晶粒径が25nmから35nmであるSPCの結晶性シリコンとなる。
 さらに、SPC範囲のシリコンに熱を加えて、Ex範囲、すなわち、アモルファスシリコンにおける原子のネットワーク構造が変化する融点として考えられる温度である1100℃を越え、かつ、シリコンの融点1414℃以下の範囲になるとする。すると、固相成長で得られる結晶(SPCの結晶性シリコン)からわずかに粒径拡大する。これは、アモルファスシリコンの融点以上の温度となるため、部分的に溶融がすることで粒径が大きくなるためと考えられる。なお、このEx範囲を経て結晶化したシリコンは、平均結晶粒径が40nmから60nmであるExの結晶性シリコンとなる。
 そして、さらに、Ex範囲のシリコンに熱を加えて、溶融範囲すなわちシリコンの融点である1414℃以上の温度範囲になるとする。そこで、Ex範囲で得られる結晶(Exの結晶性シリコン)は、シリコンの融点において熱エネルギーが潜熱として与えられ、溶融する(液相となる)。なお、溶融範囲を経て結晶化したシリコンは、溶融して体積が縮小した後に体積膨張を伴って結晶化し、平均粒径は50nm以上のP-Si(多結晶シリコン)となる。
 次に、Ex範囲のシリコンが溶融するメカニズムについて説明する。図7は、Ex結晶組織の成長メカニズムを説明するための図である。
 SPC範囲にあるシリコンでは、確率的に原子が複数集まって、臨界粒径(~1nm)を越えると結晶核となり、結晶成長する。
 それに対し、Ex範囲にあるシリコンでは、アモルファスシリコンの融点以上の温度が加えられているため、原子の移動が促進され、図7(a)に示すように、結晶核の形成が促進される。そして、成長性の核が発生した核の周囲は、潜熱により溶融して(図7(b))、結晶化する。
 以上のように、SPC範囲で結晶化した場合と、SPC範囲を超えてEx範囲を経て結晶化した場合と、溶融範囲を経て結晶化した場合とでは、結晶化するメカニズムが異なり結晶化後の粒径等が異なることになる。
 それに対して、図8は、本実施の形態におけるCWレーザ光を用いた結晶化について説明するための模式図である。横軸tは、時間の経過を示している。図8(a)は、CWレーザ光の長軸方向のビームプロファイルの断面図を示している。図8(b)は、試料9の非晶質性半導体膜の断面図の温度分布を示している。図8(c)は、試料9の非晶質性半導体膜の状態表面図を示している。
 まず、時間t10において、図8(a)に示す長軸のビームプロファイルがガウシアン型であるCWレーザ光(以下、長軸ガウシアン型CWレーザ光と記載)を、試料9の非晶質性半導体膜、具体的にはアモルファスシリコン(a-Si)膜10に照射する。ここで、長軸ガウシアン型CWレーザ光は、照射されたアモルファスシリコン膜10の温度が600℃から1100℃の範囲になるような出力密度で、かつ、図8(c)に示すビームスキャン方向に連続して照射される。すると、アモルファスシリコン膜10は、長軸ガウシアン型CWレーザ光が照射された領域(図中、SPC11と記載)では、図8(b)に示すSPC範囲の温度分布を示す。なお、図8(a)に示す長軸ガウシアン型CWレーザ光では、長軸のトップフラット型CWレーザ光のような、光強度の揺らぎはない。
 次に、時間t11において、アモルファスシリコン膜10に対して長軸ガウシアン型CWレーザ光の照射は続けて行われており、長軸ガウシアン型CWレーザ光の照射はアモルファスシリコン膜10の端までに達している。
 すると、時間t11で長軸ガウシアン型CWレーザ光が照射された領域は、上述のようにSPC11となる。また、図8(b)に示すように、時間t10で長軸ガウシアン型CWレーザ光が照射されたSPC11は、結晶化の際に発生する潜熱によりさらに温度が上昇し、Ex範囲の温度分布を示すEx領域12となる。それとともに、Ex領域12のビームスキャン方向からみた側面すなわちEx領域12の側面の近接領域は、Ex領域12の熱が伝導されて、SPC範囲の領域すなわちSPC11となっている。なお、Ex範囲とは、上述したが、アモルファスシリコン膜10における原子のネットワーク構造によって変化する融点として考えられる温度(1100℃)を越え、かつ、シリコンの融点1414℃以下の範囲である。
 その後、時間t12において、アモルファスシリコン膜10に対して長軸ガウシアン型CWレーザ光でのスキャンすなわちアモルファスシリコン膜10の平面すべての照射が完了する。すると、時間t11で長軸ガウシアン型CWレーザ光が照射されたSPC範囲の領域であるSPC11は、図8(c)に示すように、上記同様に、結晶化の際に発生する潜熱によりさらに温度が上昇し、Ex範囲の温度分布を示すEx領域12となる。それとともに、時間t11でEx領域12となったアモルファスシリコン膜10のビームスキャン方向からみた側面の近接領域は、Ex領域12の熱が伝導されて、SPC範囲の領域であるSPC11となる。
 ここで、Ex領域12のビームスキャン方向に垂直方向の幅すなわちEx領域12の側面方向の幅は、長軸ガウシアン型CWレーザ光の長軸方向で所定の強度以上となる領域範囲の幅に対応している。つまり、長軸ガウシアン型CWレーザ光の長軸方向で所定の強度以上となる領域範囲とは、この領域範囲で照射された場合に、アモルファスシリコン膜10の温度が600℃から1100℃の範囲(SPC範囲)になる長軸ガウシアン型CWレーザ光の出力密度となる領域範囲を意味する。
 このように、長軸ガウシアン型CWレーザ光を用いてアモルファスシリコン膜10を結晶性シリコン膜にする場合には、長軸ガウシアン型CWレーザ光が所定の強度以上となる領域範囲の幅で照射されたアモルファスシリコン膜10の領域では、Exの結晶性シリコン膜に結晶化される。また、長軸ガウシアン型CWレーザ光が照射されたアモルファスシリコン膜10の領域のビームスキャン方向で側面の近接領域は、SPCの結晶性シリコン膜に結晶化される。なお、このように結晶化されたExの結晶性シリコン膜すなわちExの結晶組織からなる結晶性シリコン膜は、固相成長で得られる結晶からわずかに粒径拡大して、かつ均一性を失うことなく、表面突起は形成されていない。また、Exの結晶性シリコン膜の平均結晶粒径は、面内均一性を保ちつつ、40nmから60nmとなる。一方、SPCの結晶性シリコン膜の平均結晶粒径は、25nmから35nmとなる。
 言い換えると、非結晶性半導体膜の温度が600℃から1100℃の範囲になるような出力密度で長軸ガウシアン型CWレーザ光を非結晶性半導体膜に照射することで非結晶性半導体膜を結晶性半導体膜にする。この長軸ガウシアン型CWレーザ光が照射された非結晶性半導体膜は、結晶化する際に発生する潜熱によりさらに温度が上がり、アモルファスシリコンの原子のネットワーク構造を変化させるアモルファスシリコンの融点として考えられる温度を越え、かつ結晶性シリコンの融点1414℃以下となった後に結晶化して、EXの結晶性半導体膜となる。このようにして、長軸ガウシアン型CWレーザ光が照射された非結晶性半導体膜は、固相成長で得られる結晶からわずかに粒径拡大して、かつ均一性を失うことなく、表面突起は形成されないで結晶化される。また、その際、結晶性半導体膜の平均結晶粒径は、面内均一性を保ちつつ40nmから60nmとなる。
 なお、時間t10において、長軸ガウシアン型CWレーザ光を、照射されたアモルファスシリコン膜10の温度が600℃から1100℃の範囲になるような出力密度で非結晶性半導体膜に照射されるとしたが、これに限らない。照射されたアモルファスシリコン膜10の温度が600℃から800℃の範囲になるような出力密度で非結晶性半導体膜に照射するとしてもよく、効果は同じである。
 以上、実施の形態1によれば、Exの結晶性シリコン膜すなわち面内均一性の良い結晶組織を有する結晶性半導体膜の製造を実現することができる。
 具体的には、長軸ガウシアン型CWレーザ光を、非結晶性半導体膜の温度が600℃から1100℃の範囲(SPC範囲)になるよう非結晶性半導体膜に例えば10~100マイクロセカンドなどのマイクロセカンドオーダにて照射することで、面内均一性の良い結晶組織を有する結晶性半導体膜の形成することができる。これは、長軸ガウシアン型CWレーザ光を、非結晶性半導体膜の温度が600℃から1100℃の範囲(SPC範囲)になるよう非結晶性半導体膜に照射することで、照射された非結晶性半導体膜が結晶化の際に生ずる潜熱によってその非結晶性半導体膜の温度が1100℃から1414℃の範囲に収まるようにしているからである。これにより、照射された非結晶性半導体膜は、1414℃以上の温度範囲を経て結晶化されることはなく、1100℃から1414℃の温度範囲を経て結晶化されるので、表面突起の発生を抑えることができ、表面の平坦性を保つことができる。そのため、このように形成された結晶性半導体膜を有する薄膜トランジスタは、特性を向上させることができる。
 また、長軸ガウシアン型CWレーザ光は、ナノセカンドオーダではなくマイクロセカンドオーダで非結晶性半導体膜に照射される。それにより、長軸ガウシアン型CWレーザ光の照射時間を長くとることができるため、非結晶性半導体膜における原子の構造がアモルファスの状態から原子が再配列して結晶化するまでの十分な時間を確保することができる。
 なお、最初から、長軸ガウシアン型CWレーザ光を、照射された非結晶性半導体膜の温度が瞬間的に1100℃から1414℃の範囲になるような出力密度で照射することで非結晶性半導体膜を結晶性半導体膜にする場合も考えられる。しかし、それは、以下の理由で不適である。すなわち、照射された非結晶性半導体膜の領域内に生ずる潜熱により、非結晶性半導体膜の領域は、1414℃以上となって溶融してしまった後に、結晶化することになる。非結晶性半導体膜が1414℃以上の温度領域を経て結晶化される場合、非結晶性半導体膜は、溶融して体積が縮小した後に体積膨張を伴って結晶化するため、例えば膜厚とほぼ同じ高さの表面突起が発生してしまうだけでなく、粒径の面内ばらつきも大きくなってしまう。したがって、最初から、長軸ガウシアン型CWレーザ光を、照射されたアモルファスシリコン膜10の温度が瞬間的に1100℃から1414℃の範囲になるような出力密度で照射することで非結晶性半導体膜を結晶性半導体膜にする方法は、面内均一性の良い結晶組織を有する結晶性半導体膜の製造を実現することができず、不適である。
 (実施の形態2)
 実施の形態2では、実施の形態1の方法で形成した面内均一性の良い結晶組織を有する結晶性半導体膜の適用例について説明する。
 図9は、本実施の形態における結晶性半導体膜付き基板への適用例について説明するための図である。
 まず、基材200上に非結晶性半導体膜210が形成された非結晶質半導体膜付き基板と、長軸ガウシアン型CWレーザ光とを準備する。ここで、長軸ガウシアン型CWレーザ光のビームプロファイルは、図9(a)に示すように、ガウシアンの光強度分布を示している。
 次に、長軸ガウシアン型のCWレーザ光を非結晶性半導体膜210にマイクロセカンドオーダにて照射する。具体的には、非結晶性半導体膜210の温度が600℃から800℃の範囲(SPC範囲)になるように、長軸ガウシアン型のCWレーザ光を非結晶性半導体膜210に照射する。
 すると、図9(b)に示すように、 長軸ガウシアン型CWレーザ光が照射された領域は、SPC結晶性半導体膜211となる。ここで、SPC結晶性半導体膜211は、上述したように、600℃~1100℃の温度範囲(SPC範囲)で、固相成長で結晶化した結晶組織(結晶粒)を有する結晶性半導体膜である。
 そして、長軸ガウシアン型のCWレーザ光の照射が終了して、一定時間経過すると、長軸ガウシアン型CWレーザ光が照射されたSPC結晶性半導体膜211の一部の領域は、結晶化の際に発生する潜熱によりさらにEx範囲の温度に上昇して結晶粒径を拡大させて、図9(b)に示すように、Ex結晶性半導体膜212となる。
 ここで、SPC結晶性半導体膜211のうち、Ex結晶性半導体膜212となる一部の領域の幅は、長軸ガウシアン型CWレーザ光の長軸方向で所定の強度以上となる領域範囲の幅に対応している。
 このようにして、長軸ガウシアン型CWレーザ光を用いた面内均一性の良い結晶組織を有する結晶性半導体膜を有する結晶性半導体膜付き基板を実現できる。
 なお、長軸ガウシアン型CWレーザ光を用いた面内均一性の良い結晶組織を有する結晶性半導体膜は、上記の場合に限られない。ボトムゲート型薄膜トランジスタに適用してよい。
 図10は、本実施の形態におけるボトムゲート型薄膜トランジスタの製造方法を説明するため図であり、図11は、本実施の形態におけるボトムゲート型薄膜トランジスタの製造方法を説明するためのフロー図である。図12は、本実施の形態の結晶性半導体膜を備えるボトムゲート型薄膜トランジスタの構成を示す図である。
 まず、例えばガラスまたは絶縁基板などの基材200を準備する。次いで、基材200の洗浄を行い(S201)、基材200に汚染防止膜を成膜する(S202)。
 次に、図10(a)に示すように、基材200上に、ゲート電極220を形成する(S203)。具体的には、スパッタ法により基材200上にゲート電極220となる金属を堆積し、フォトリソグラフィ及びエッチングによりゲート電極220をパターニングする。ここで、ゲート電極220は、モリブデン(Mo)若しくはMo合金などの金属、チタニウム(Ti)、アルミニウム(Al)若しくはAl合金などの金属、銅(Cu)若しくはCu合金などの金属、または、銀(Ag)、クロム(Cr)、タンタル(Ta)若しくはタングステン(W)等の金属の材料で形成される。
 次に、図10(b)及び図10(c)に示すように、ゲート電極220上にゲート絶縁膜230を成膜し、ゲート絶縁膜230上に例えばアモルファルシリコン膜などの非結晶性半導体膜240を成膜する(S204)。具体的には、プラズマCVD法により、ゲート電極220上にすなわち基材200とゲート電極220とを覆うようにゲート絶縁膜230を成膜し(図10(b))、成膜したゲート絶縁膜230上に非結晶性半導体膜240を連続的に成膜する(図10(c))。
 次に、非結晶性半導体膜240に長軸ガウシアン型CWレーザ光を照射する前準備として、脱水素処理を行う(S205)。具体的には、例えば400℃~500℃で30分間のアニールを行う。非結晶性半導体膜240には、通常、5%~15%の水素がSiHとして含有されている。5%~15%の水素を含有したままの非結晶性半導体膜240を結晶化する場合、水素がシリコンの手を塞いでしまい結晶化を阻害してしまうだけでなく、突沸のような現象が起こりやすくなる。つまり、プロセス制御上好ましくないため、脱水素処理を行う。
 次に、図10(d)及び図10(e)に示すように、長軸ガウシアン型CWレーザ光を非結晶性半導体膜240に照射し、非結晶性半導体膜240を結晶化する(S206)。具体的には、長軸ガウシアン型CWレーザ光の長軸方向で所定の強度以上となる領域範囲で照射された非結晶性半導体膜240の領域は、Ex結晶性半導体膜242になり、Ex結晶性半導体膜242に近接する領域では、SPC結晶性半導体膜241となる。一方、長軸ガウシアン型CWレーザ光がほとんど照射されていない非結晶性半導体膜240の領域は、非結晶性半導体膜240のままである。ここで、長軸ガウシアン型CWレーザ光の長軸方向で所定の強度以上となる領域範囲の幅は、少なくともゲート電極220の幅(CWレーザ光の長軸方向に垂直方向の幅)より広い。なお、長軸ガウシアン型CWレーザ光の照射方法の詳細は、上述したので説明を省略する。
 次に、水素プラズマ処理を行う(S207)。具体的には、水素プラズマ処理を行うことで、長軸ガウシアン型CWレーザ光が照射された非結晶性半導体膜240すなわち、非結晶性半導体膜240、SPC結晶性半導体膜241及びEx結晶性半導体膜242の水素終端化処理を行う。
 次に、半導体膜250を形成する(S208)。具体的には、プラズマCVD法により、非結晶性半導体膜240、SPC結晶性半導体膜241及びEx結晶性半導体膜242上に、半導体膜250を成膜する。そして、Ex結晶性半導体膜242の領域が残るようにパターニングし、半導体膜250と非結晶性半導体膜240とSPC結晶性半導体膜241とをエッチングにより除去する。それにより、面内均一性の良い結晶組織を有する結晶性半導体膜のみをボトムゲート型薄膜トランジスタのチャネル部とすることができる。
 次に、ソース・ドレイン電極270を形成する(S210)。具体的には、半導体膜250上に、スパッタ法によりソース・ドレイン電極270となる金属が堆積される。続いて、ソース・ドレイン電極270のパターニングを行う。ここで、半導体膜250は、Ex結晶性半導体膜242とソース・ドレイン電極270とを接続するオーミックコンタクト層となっている。
 このようにして、図12に示すゲートボトム型薄膜トランジスタが製造される。
 なお、上記では、説明の便宜のため1つのゲートボトム型薄膜トランジスタを製造する方法について説明したが、それに限らない。複数のゲートボトム型薄膜トランジスタを同時に製造するとしてもよい。
 図13は、複数のゲートボトム型薄膜トランジスタを同時に製造する場合について説明するための図である。
 複数のゲートボトム型薄膜トランジスタを同時に製造する場合には、上述したS201~S205において、所定の間隔で並んだ複数のゲート電極220を基材200上に形成し、ゲート電極220上にゲート絶縁膜230を成膜すればよい。ここで、複数のゲート電極220は、所定の間隔で一列に並んでいるとしてもよいし、さらに、この列が一定の間隔で配置されているとしてもよい。なお、図13は後者の例を示している。
 そして、S206において、図13に示すように、長軸ガウシアン型CWレーザ光を所定の間隔で一列に並んでいるゲート電極220に対応する非結晶性半導体膜240の領域(帯状の領域)を連続的に照射して、非結晶性半導体膜240の領域を結晶化すればよい。ここで、長軸ガウシアン型CWレーザ光の長軸方向で所定の強度以上となる領域範囲の幅は、この非結晶性半導体膜240の領域(帯状の領域)の幅よりも広い。なお、非結晶性半導体膜240の領域(帯状の領域)の幅は、長軸ガウシアン型CWレーザ光のスキャン方向に垂直の幅である。
 言い換えると、長軸ガウシアン型CWレーザ光は、所定間隔ごとに配置された複数のゲート電極220に対応する非結晶性半導体膜240上の領域であって、所定間隔ごとに配置された複数のゲート電極の配置方向と垂直な方向の幅を覆う非結晶性半導体膜240の領域(図中、帯状の領域)に連続的に照射される。それにより、ゲート電極220に対応する非結晶性半導体膜240の領域をEx結晶性半導体膜242にすることができる。なお、Ex結晶性半導体膜242の長軸ガウシアン型CWレーザ光のスキャン方向に垂直な近接領域は、上述と同様に、SPC結晶性半導体膜241となっている。
 このように、連続発振型のレーザの長軸方向のガウシアン分布の幅を、所定間隔ごとに配置された複数のゲート電極に対応する非結晶性半導体膜上の領域(の幅)に対応させることにより、非結晶性半導体膜上のゲート電極に対応する領域を選択的に照射することができる。それにより、薄膜トランジスタにおいてチャネル部として形成される結晶性半導体膜の領域を選択的に微結晶化でき、加えて表面が平坦な結晶性半導体膜を形成できる。
 なお、Ex結晶性半導体膜242の領域は、平均結晶粒径が40nmから60nmである結晶粒によって構成され、複数のゲート電極220が列状に配置された(所定の間隔で一列に並んでいる)領域にまたがって帯状に連続して形成されている。また、SPC結晶性半導体膜241は、Ex結晶性半導体膜242に近接して形成されている。このような結晶性半導体膜を有する基材200は、多数の個片にダイシング等により分割する際、上記の帯状の領域に沿ってダイシングを行うことができるので容易に分割することができるという効果を奏する。
 以上、本実施の形態2によれば、面内均一性の良い結晶組織を有する結晶性半導体膜が適用されたボトムゲート型薄膜トランジスタ、及び、結晶性半導体膜付き基板を実現することができる。
 (実施の形態3)
 実施の形態2では、ボトムゲート型薄膜トランジスタ、及び、結晶性半導体膜付き基板への適用例について説明した。実施の形態3は、トップゲート型薄膜トランジスタへの適用例について説明する。
 図14は、本実施の形態におけるトップゲート型薄膜トランジスタの製造方法を説明するための図である。図15は、本実施の形態3におけるトップゲート型薄膜トランジスタの構成を示す図である。
 図14は、トップゲート型薄膜トランジスタの製造工程の一部を抜き出したものである。
 すなわち、図14(b)に示すように、基材300上にソース・ドレイン電極310が形成され、ソース・ドレイン電極310上に、非結晶性半導体膜320が形成される製造工程を示している。そして、図14(a)に示す長軸ガウシアン型CWレーザ光を非結晶性半導体膜320に照射し、図14(c)に示すように結晶化するという製造工程を示している。
 具体的には、長軸ガウシアン型CWレーザ光の長軸方向で所定の強度以上となる領域範囲を、非結晶性半導体膜320のゲートとなる領域に照射する。
 すると、長軸ガウシアン型CWレーザ光の長軸方向で所定の強度以上となる領域範囲が照射された非結晶性半導体膜320の領域は、Ex結晶性半導体膜322になり、Ex結晶性半導体膜322に近接する領域では、SPC結晶性半導体膜321となる。一方、長軸ガウシアン型CWレーザ光がほとんど照射されていない非結晶性半導体膜320の領域は、非結晶性半導体膜320のままである。なお、長軸ガウシアン型CWレーザ光の照射方法の詳細は、上述と同様のため省略する。
 このようにして、Ex結晶性半導体膜322を有する例えば図15に示すトップゲート型薄膜トランジスタが形成される。ここで、図15に示すトップゲート型薄膜トランジスタは、基材300と、ソース・ドレイン電極310と、Ex結晶性半導体膜322と、Ex結晶性半導体膜上に形成されたゲート絶縁膜340と、ゲート絶縁膜340上に形成されたゲート電極350とを備える。
 なお、トップゲート型薄膜トランジスタの構成としては、図15に限らず、例えば図16に示すようなものもある。ここで、図16は、本実施の形態3におけるトップゲート型薄膜トランジスタの別の構成を示す図である。図15と同様の要素には同一の符号を付している。なお、図15に示すトップゲート型薄膜トランジスタでは、ゲート電極350上に形成された保護膜460が図示されている。
 図17は、本実施の形態におけるトップゲート型薄膜トランジスタの製造方法を説明するためのフロー図である。
 S301~S311の工程は、ソース・ドレイン電極310とゲート電極350とを形成する順番以外は、S201~S209の工程と同様のため説明を省略する。また、S305については、図14で説明したとおりであるので説明を省略する。なお、S312では、ゲート電極350上に、保護膜(例えば保護膜460)を形成している。
 また、図16または図17に示す本実施の形態のトップゲート型薄膜トランジスタは、実施の形態2と同様に、同時に複数製造されるとしてももちろん構わない。その場合には、S301~S303において、所定の間隔で並んだ複数のソース・ドレイン電極310を基材300上に形成し、ゲート電極220上にゲート絶縁膜340を成膜すればよい。ここで、複数のソース・ドレイン電極310は、所定の間隔で一列に並んでいるとしてもよいし、さらに、この列が一定の間隔で配置されているとしてもよい。
 そして、長軸ガウシアン型CWレーザ光は、所定間隔ごとに配置された複数のソース・ドレイン電極310間のゲート電極350が形成される領域に対応する非結晶性半導体膜上の領域(帯状の領域)に連続的に照射される。それにより、ゲート電極350が形成される領域に対応する非結晶性半導体膜の領域をEx結晶性半導体膜322にすることができる。
 なお、Ex結晶性半導体膜322の領域は、平均結晶粒径が40nmから60nmである結晶粒によって構成され、複数のゲート電極350が列状に配置される領域にまたがって帯状に連続して形成されている。また、SPC結晶性半導体膜は、Ex結晶性半導体膜322に近接して形成される。このような結晶性半導体膜を有する基材300は、多数の個片にダイシング等により分割される際、上記の帯状の領域に沿ってダイシングを行うことができるので容易に分割することができるという効果を奏する。
 以上、本実施の形態3によれば、面内均一性の良い結晶組織を有する結晶性半導体膜が適用されたトップゲート型薄膜トランジスタを実現することができる。
 以上のように、非結晶性半導体膜の温度が600℃から800℃の範囲(SPC範囲)になるよう、短軸及び長軸がガウシアン分布である連続発振型のレーザ光を、非結晶性半導体膜に照射することで、その際に非結晶性半導体膜に生ずる潜熱によって非結晶性半導体膜の温度が1100℃から1414℃の範囲(Ex範囲)を経て非結晶性半導体膜を結晶化させる。この方法では、非結晶性半導体膜内に1414℃以上(溶融範囲)を経て結晶化された領域が形成されることはないので、表面突起の発生を抑え、表面の平坦性を保つことができる結晶性半導体膜を形成できる。したがって、表面突起の発生を抑え、表面の平坦性を保つことができる結晶性半導体膜を実現できるだけでなく、これを有する薄膜トランジスタを実現できる。
 以上、本発明によれば、ガウシアン分布等、長軸方向に光強度勾配を有するCWレーザをマイクロ秒オーダの照射時間で照射することで、非晶質性半導体膜を結晶化する。その際、潜熱の効果を利用して、非晶質の融点以上で、かつ、結晶の融点以下の温度範囲で非晶質性半導体膜を結晶化している。それにより、結晶化された結晶性半導体膜は、面内の粒径ばらつきが抑制されると同時に、固相成長により結晶化された場合よりも粒径が拡大した結晶組織が形成される。それにより、面内均一性の良い結晶組織を有する結晶性半導体膜の製造方法、結晶性半導体膜付き基板の製造方法、薄膜トランジスタを実現することができる。
 また、このように、SPC結晶組織よりも電気特性に優れ、かつ面内均一性が良い微結晶組織を有するEx結晶組織からなる結晶化半導体膜を形成することで、特性ばらつきが少ない薄膜トランジスタ、及び、その薄膜トランジスタを用いた表示装置を実現することができる。
 Exの結晶性半導体膜は、平均結晶粒径が40nmから60nmである結晶粒によって構成されている。そのため、例えば、Ex結晶性半導体膜を用いて形成されたトップゲート型の薄膜トランジスタは、有機ELディスプレイに用いる薄膜トランジスタとして十分なオン特性が得られる移動度を確保できるという効果を奏する。
 なお、結晶性半導体膜は、Exの結晶性半導体膜のみからなるとしてもよいし、アモルファスとExの結晶の混晶で構成されているとしてもよい。その場合、結晶性半導体膜は、アモルファスと結晶の混晶を含む、すなわち、平均結晶粒径が40nmから60nmの結晶粒と、前記平均結晶粒径が40nmから60nmの結晶粒の周囲にアモルファス構造の領域とを含んでいる。この構造により、結晶性半導体膜は、隣接する結晶粒の界面の結晶学的不整合を、アモルファス構造で緩和することができる。
 以上、本発明の結晶性半導体膜の製造方法、結晶性半導体膜付き基板の製造方法、薄膜トランジスタについて、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
 本発明は、結晶性半導体膜の製造方法、結晶性半導体膜付き基板の製造方法、薄膜トランジスタに利用でき、特に、テレビなどのFPD表示装置として用いられる有機EL表示装置の薄膜トランジスタのチャネル部に利用することができる。
 1、10  アモルファスシリコン膜
 11  SPC
 12  Ex領域
 20  レーザ装置
 30  長軸成形レンズ
 40  ミラー
 50  短軸成形レンズ
 60  集光レンズ
 70  ビームプロファーラー
 80  石英ガラス
 100  CWレーザ光結晶化装置
 200、300  基材
 210、240、320  非結晶性半導体膜
 211、241、321  SPC結晶性半導体膜
 212、242、322  Ex結晶性半導体膜
 220、350  ゲート電極
 230、340  ゲート絶縁膜
 250 半導体膜
 270、310 ドレイン電極
 460 保護膜

Claims (17)

  1.  短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から1100℃の範囲になるよう前記非結晶性半導体膜に照射する第1工程と、
     前記第1工程において前記連続発振型のレーザ光が照射された非結晶性半導体膜は、前記600℃から1100℃の温度範囲に対応して結晶化する第2工程と、
     前記非結晶性半導体膜の面内における所定の温度が、前記連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414℃になり、前記1100℃から1414℃の温度範囲に対応して前記結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、を含み、
     前記上に凸の連続的な光強度分布は、前記長軸方向に所定の強度以上となる領域範囲を有し、
     前記領域範囲は、前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域に対応している
     結晶性半導体膜の製造方法。
  2.  前記凸の連続的な光強度分布は、ガウシアン分布である
     請求項1に記載の結晶性半導体膜の製造方法。
  3.  前記第1工程において、前記連続発振型のレーザ光を、前記非結晶性半導体膜の温度範囲が600℃から800℃の範囲になるよう前記非結晶性半導体膜に照射する
     請求項1に記載の結晶性半導体膜の製造方法。
  4.  前記第1工程において、
     前記連続発振型のレーザ光を、前記非結晶性半導体膜にマイクロセカンドオーダにて照射する
     請求項1に記載の結晶性半導体膜の製造方法。
  5.  前記第1工程において、
     前記連続発振型のレーザ光を前記非結晶性半導体膜上に照射する時間は、10~100マイクロセカンドである
     請求項4に記載の結晶性半導体膜の製造方法。
  6.  前記第1工程の前に、
     基材を準備する第4工程と、
     前記基材の上にゲート電極を所定間隔ごとに複数配置する第5工程と、
     前記所定間隔ごとに配置された複数のゲート電極上に絶縁膜を成膜する第6工程と、
     前記絶縁膜上に前記非結晶性半導体膜を成膜する第7工程と、を含み、
     前記所定間隔ごとに配置された複数のゲート電極に対応する前記非結晶性半導体膜上の領域の温度が前記潜熱により1100℃から1414℃になるように、前記上に凸の連続的な光強度分布の前記長軸の方向における一定の幅が規定されている
     請求項1に記載の結晶性半導体膜の製造方法。
  7.  前記所定間隔ごとに配置された複数のゲート電極に対応する前記非結晶性半導体膜上の領域は、前記所定間隔ごとに配置された複数のゲート電極の幅を覆う領域である
     請求項6に記載の結晶性半導体膜の製造方法。
  8.  基材と、
     前記基材の上方に配置された複数のゲート電極と、
     前記ゲート電極上に形成された絶縁膜と、
     前記基材の上方に配置された複数のゲート電極上の絶縁膜を覆って形成された結晶性半導体膜と、を具備し、
     前記結晶性半導体膜は、
     平均結晶粒径が40nmから60nmである結晶粒によって構成されており、前記複数のゲート電極が配置された領域にまたがって連続して形成される前記結晶性半導体膜内の第1領域と、
     平均結晶粒径が25nmから35nmによって構成されており、前記第1領域に隣接して形成されている、前記結晶性半導体膜内の第2領域とを有する
     結晶性半導体膜付き基板。
  9.  前記結晶性半導体膜は、アモルファスと結晶の混晶を含む
     請求項8に記載の結晶性半導体膜付き基板。
  10.  前記複数のゲート電極は、前記基材の上方に列状に配置され、
     前記平均結晶粒径が40nmから60nmである結晶粒によって構成される結晶性半導体膜内の第1領域は、前記複数のゲート電極が列状に配置された領域にまたがって帯状に連続して形成されている
     請求項8または請求項9に記載の結晶性半導体膜付き基板。
  11.  前記平均結晶粒径が40nmから60nmである結晶粒によって構成される結晶性半導体膜内の第1領域は、
     短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から800℃の範囲になるよう前記非結晶性半導体膜に照射する第1工程と、前記第1工程において前記連続発振型のレーザ光が照射された非結晶性半導体膜が、前記600℃から800℃の温度範囲に対応して前記非結晶性半導体膜を結晶化する第2工程と、
     前記非結晶性半導体膜の面内における所定の温度が、前記連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414℃になり、前記1100℃から1414℃の温度範囲に対応して前記結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、により形成され、
     前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域が一定の幅を持つように、前記長軸方向において上に凸の連続的な光強度分布を規定され、
     前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域は、前記第1領域に対応する
     請求項8~請求項10のいずれか1項に記載の結晶性半導体膜付き基板。
  12.  ボトムゲート型の薄膜トランジスタであって、
     ゲート電極と、
     前記ゲート電極上に形成された絶縁膜と、
     前記絶縁膜上に形成された結晶性半導体膜と、
     前記結晶性半導体膜上に形成されたソース/ドレイン電極と、を具備し、
     前記結晶性半導体膜は、
     前記結晶性半導体膜内の平均結晶粒径が40nmから60nmである結晶粒によって構成され、
     前記結晶粒は、
     短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から800℃の範囲になるよう前記非結晶性半導体膜に照射する第1工程と、
     前記第1工程において前記連続発振型のレーザ光が照射された非結晶性半導体膜が、前記600℃から800℃の温度範囲に対応して前記非結晶性半導体膜を結晶化する第2工程と、
     前記非結晶性半導体膜の面内における所定の温度が、前記連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414℃になり、前記1100℃から1414℃の温度範囲に対応して前記結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、により形成され、
     前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域が一定の幅を持つように、前記長軸方向において上に凸の連続的な光強度分布を規定されている
     薄膜トランジスタ。
  13.  基材と、
     前記基材の上方に配置された複数のソース/ドレイン電極と、
     前記ソース/ドレイン電極上に形成された絶縁膜と、
     前記基材の上方に配置された複数のソース/ドレイン電極上に形成された絶縁膜を覆って形成された結晶性半導体膜と、を具備し、
     前記結晶性半導体膜は、
     前記結晶性半導体膜内の平均結晶粒径が40nmから60nmである結晶粒によって構成されており、前記複数のソース/ドレイン電極が配置された領域にまたがって連続して形成される前記結晶性半導体膜内の第1領域と、
     平均結晶粒径が25nmから35nmによって構成されており、前記第1領域に隣接して形成されている前記結晶性半導体膜内の第2領域とを有する
     結晶性半導体膜付き基板。
  14.  前記結晶性半導体膜は、アモルファスと結晶の混晶を含む
     請求項13に記載の結晶性半導体膜付き基板。
  15.  前記複数のゲート電極は、前記基材の上方に列状に配置され、
     前記平均結晶粒径が40nmから60nmである結晶粒によって構成される結晶性半導体膜内の第1領域は、前記複数のゲート電極が列状に配置された領域にまたがって帯状に連続して形成されている
     請求項13または請求項14に記載の結晶性半導体膜付き基板。
  16.  前記平均結晶粒径が40nmから60nmである結晶粒によって構成される結晶性半導体膜内の第1領域は、
     短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から800℃の範囲になるよう前記非結晶性半導体膜に照射する第1工程と、
     前記第1工程において前記連続発振型のレーザ光が照射された非結晶性半導体膜が、前記600℃から800℃の温度範囲に対応して前記非結晶性半導体膜を結晶化する第2工程と、
     前記非結晶性半導体膜の面内における所定の温度が、前記連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414℃になり、前記1100℃から1414℃の温度範囲に対応して前記結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、により形成され、
     前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域は、一定の幅を持つように、前記長軸方向において上に凸の連続的な光強度分布を規定され、
     前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域は、前記第1領域に対応する
     請求項13~請求項15のいずれか1項に記載の結晶性半導体膜付き基板。
  17.  トップゲート型の薄膜トランジスタであって、
     ソース/ドレイン電極と、
     前記ソース/ドレイン電極上に形成された結晶性半導体膜と、
     前記結晶性半導体膜上に形成された絶縁膜と、
     前記絶縁膜上に形成されたゲート電極と、を具備し、
     前記結晶性半導体膜は、
     前記結晶性半導体膜内の平均結晶粒径が40nmから60nmである結晶粒によって構成され、
     前記結晶粒は、
     短軸及び長軸において上に凸の連続的な光強度分布を有する連続発振型のレーザ光を、非結晶性半導体膜の温度が600℃から800℃の範囲になるよう前記非結晶性半導体膜に照射する第1工程と、
     前記第1工程において前記連続発振型のレーザ光が照射された非結晶性半導体膜が、前記600℃から800℃の温度範囲に対応して前記非結晶性半導体膜を結晶化する第2工程と、
     前記非結晶性半導体膜の面内における所定の温度が、前記連続発振型のレーザ光の照射により非結晶性半導体膜が結晶化する際に生じる潜熱により1100℃から1414℃になり、前記1100℃から1414℃の温度範囲に対応して前記結晶化した非結晶性半導体膜の結晶粒径を拡大させる第3工程と、により形成され、
     前記潜熱により1100℃から1414℃の温度範囲になる前記非結晶性半導体膜上の領域が一定の幅を持つように、前記長軸方向において上に凸の連続的な光強度分布を規定されている
     薄膜トランジスタ。
PCT/JP2010/003157 2010-05-10 2010-05-10 結晶性半導体膜の製造方法、結晶性半導体膜付き基板、薄膜トランジスタ WO2011141949A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800087344A CN102754187A (zh) 2010-05-10 2010-05-10 结晶性半导体膜的制造方法、带结晶性半导体膜的基板、薄膜晶体管
PCT/JP2010/003157 WO2011141949A1 (ja) 2010-05-10 2010-05-10 結晶性半導体膜の製造方法、結晶性半導体膜付き基板、薄膜トランジスタ
JP2011533465A JPWO2011141949A1 (ja) 2010-05-10 2010-05-10 結晶性半導体膜の製造方法、結晶性半導体膜付き基板、薄膜トランジスタ
KR1020117019213A KR20130044124A (ko) 2010-05-10 2010-05-10 결정성 반도체막의 제조 방법, 결정성 반도체막을 갖는 기판, 박막 트랜지스터
US13/212,465 US20110297950A1 (en) 2010-05-10 2011-08-18 Crystalline semiconductor film manufacturing method, substrate coated with crystalline semiconductor film, and thin-film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/003157 WO2011141949A1 (ja) 2010-05-10 2010-05-10 結晶性半導体膜の製造方法、結晶性半導体膜付き基板、薄膜トランジスタ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/212,465 Continuation US20110297950A1 (en) 2010-05-10 2011-08-18 Crystalline semiconductor film manufacturing method, substrate coated with crystalline semiconductor film, and thin-film transistor

Publications (1)

Publication Number Publication Date
WO2011141949A1 true WO2011141949A1 (ja) 2011-11-17

Family

ID=44914029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003157 WO2011141949A1 (ja) 2010-05-10 2010-05-10 結晶性半導体膜の製造方法、結晶性半導体膜付き基板、薄膜トランジスタ

Country Status (5)

Country Link
US (1) US20110297950A1 (ja)
JP (1) JPWO2011141949A1 (ja)
KR (1) KR20130044124A (ja)
CN (1) CN102754187A (ja)
WO (1) WO2011141949A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130045136A (ko) 2010-06-21 2013-05-03 파나소닉 액정 디스플레이 주식회사 박막 트랜지스터 어레이 장치, 유기 el 표시 장치, 및, 박막 트랜지스터 어레이 장치의 제조 방법
WO2012120563A1 (ja) 2011-03-08 2012-09-13 パナソニック株式会社 薄膜トランジスタアレイ装置、有機el表示装置、及び、薄膜トランジスタアレイ装置の製造方法
KR20140018081A (ko) 2011-06-02 2014-02-12 파나소닉 주식회사 박막 반도체 장치의 제조 방법, 박막 반도체 어레이 기판의 제조 방법, 결정성 실리콘 박막의 형성 방법, 및 결정성 실리콘 박막의 형성 장치
WO2013031198A1 (ja) 2011-08-30 2013-03-07 パナソニック株式会社 薄膜形成基板の製造方法、薄膜素子基板の製造方法、薄膜基板及び薄膜素子基板
KR101888089B1 (ko) * 2011-09-29 2018-08-16 엘지디스플레이 주식회사 결정화방법 및 이를 이용한 박막 트랜지스터의 제조방법
JP5724105B2 (ja) 2011-09-30 2015-05-27 株式会社Joled 薄膜トランジスタアレイ装置、el表示パネル、el表示装置、薄膜トランジスタアレイ装置の製造方法、el表示パネルの製造方法
JP5998397B2 (ja) * 2011-10-25 2016-09-28 株式会社Joled 薄膜半導体装置及びその製造方法
KR20230082837A (ko) 2021-12-02 2023-06-09 인하대학교 산학협력단 실리콘계 물질의 단결정 성장방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112001A (ja) * 1997-09-30 1999-04-23 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2003229359A (ja) * 2001-11-29 2003-08-15 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2005136138A (ja) * 2003-10-30 2005-05-26 Sony Corp 薄膜半導体装置の製造方法、薄膜半導体装置、表示装置の製造方法、および表示装置
JP2008112981A (ja) * 2006-10-03 2008-05-15 Semiconductor Energy Lab Co Ltd レーザ照射装置およびレーザ照射方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100848099B1 (ko) * 2002-05-27 2008-07-24 삼성전자주식회사 액정 표시 장치용 박막 트랜지스터 기판
US8101442B2 (en) * 2008-03-05 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing EL display device
WO2009157574A1 (en) * 2008-06-27 2009-12-30 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
TWI500159B (zh) * 2008-07-31 2015-09-11 Semiconductor Energy Lab 半導體裝置和其製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11112001A (ja) * 1997-09-30 1999-04-23 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
JP2003229359A (ja) * 2001-11-29 2003-08-15 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2005136138A (ja) * 2003-10-30 2005-05-26 Sony Corp 薄膜半導体装置の製造方法、薄膜半導体装置、表示装置の製造方法、および表示装置
JP2008112981A (ja) * 2006-10-03 2008-05-15 Semiconductor Energy Lab Co Ltd レーザ照射装置およびレーザ照射方法

Also Published As

Publication number Publication date
CN102754187A (zh) 2012-10-24
US20110297950A1 (en) 2011-12-08
KR20130044124A (ko) 2013-05-02
JPWO2011141949A1 (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
WO2011141949A1 (ja) 結晶性半導体膜の製造方法、結晶性半導体膜付き基板、薄膜トランジスタ
KR100490497B1 (ko) 박막 반도체 장치의 제조 방법
KR100671212B1 (ko) 폴리실리콘 형성방법
US8421080B2 (en) Thin-film transistor array device, organic EL display device, and method of manufacturing thin-film transistor array device
JP2004335839A (ja) 半導体薄膜、薄膜トランジスタ、それらの製造方法および半導体薄膜の製造装置
JP4405902B2 (ja) レーザーマスク、レーザー結晶化方法、及び表示素子の製造方法
WO2012164626A1 (ja) 薄膜半導体装置の製造方法、薄膜半導体アレイ基板の製造方法、結晶性シリコン薄膜の形成方法、及び結晶性シリコン薄膜の形成装置
WO2013031198A1 (ja) 薄膜形成基板の製造方法、薄膜素子基板の製造方法、薄膜基板及び薄膜素子基板
JP2006295117A (ja) 多結晶シリコン薄膜の製造方法、及びこれを有する薄膜トランジスタの製造方法
JP2007281421A (ja) 半導体薄膜の結晶化方法
JP2007281420A (ja) 半導体薄膜の結晶化方法
US8535994B2 (en) Thin-film transistor array device manufacturing method
KR100660814B1 (ko) 박막트랜지스터의 반도체층 형성방법
WO2013030885A1 (ja) 薄膜形成基板の製造方法及び薄膜基板
KR20060106170A (ko) 다결정 실리콘 박막의 제조방법 및 이를 갖는 박막트랜지스터의 제조방법
JP2005072181A (ja) 薄膜半導体の製造方法
JP2001127301A (ja) 半導体装置および半導体装置の製造方法
KR101137734B1 (ko) 다결정 실리콘 박막의 제조방법 및 이를 갖는 박막트랜지스터의 제조방법
JPH08293464A (ja) 半導体基板及び半導体装置の製造方法
TWI435390B (zh) 結晶質膜的製造方法以及製造裝置
JPH09260286A (ja) 半導体装置の製造方法
WO2019107108A1 (ja) レーザ照射装置、レーザ照射方法及び投影マスク
KR20060106171A (ko) 다결정 실리콘 박막의 제조방법 및 이를 갖는 박막트랜지스터의 제조방법
JPH0566422A (ja) 液晶表示装置の製造方法及びセンサの製造方法
JP2525101B2 (ja) 多結晶半導体膜の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008734.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011533465

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117019213

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851342

Country of ref document: EP

Kind code of ref document: A1