WO2013030885A1 - 薄膜形成基板の製造方法及び薄膜基板 - Google Patents

薄膜形成基板の製造方法及び薄膜基板 Download PDF

Info

Publication number
WO2013030885A1
WO2013030885A1 PCT/JP2011/004841 JP2011004841W WO2013030885A1 WO 2013030885 A1 WO2013030885 A1 WO 2013030885A1 JP 2011004841 W JP2011004841 W JP 2011004841W WO 2013030885 A1 WO2013030885 A1 WO 2013030885A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
region
substrate
band
shaped
Prior art date
Application number
PCT/JP2011/004841
Other languages
English (en)
French (fr)
Inventor
尾田 智彦
孝啓 川島
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to PCT/JP2011/004841 priority Critical patent/WO2013030885A1/ja
Priority to PCT/JP2012/005414 priority patent/WO2013031198A1/ja
Publication of WO2013030885A1 publication Critical patent/WO2013030885A1/ja
Priority to US14/187,692 priority patent/US9236487B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Definitions

  • the present invention relates to a method for forming a thin film forming substrate, a thin film substrate, a method for manufacturing a thin film transistor, and a thin film transistor.
  • TFT Thin Film Transistor
  • thin film transistors are arranged in an array to form a thin film transistor array device, and each pixel is used to select a thin film transistor (drive transistor) used to drive the pixel and a pixel.
  • a thin film transistor switching transistor is formed.
  • a self-luminous organic EL display device including an organic EL element has different performance requirements for a drive transistor and a switching transistor, and the drive transistor has an excellent on-state for improving the drive performance of the organic EL element. Current characteristics are required, and switching transistors are required to have excellent off-current characteristics.
  • a thin film transistor has a gate electrode, a semiconductor layer (channel layer), a source electrode, and a drain electrode formed on a substrate, and a silicon thin film is generally used as the channel layer.
  • Silicon thin films are roughly classified into amorphous silicon thin films (amorphous silicon films) and crystalline silicon thin films (crystalline silicon thin films).
  • a thin film transistor using a crystalline silicon thin film as a channel layer has higher carrier mobility and excellent on-current characteristics than a thin film transistor using an amorphous silicon thin film as a channel layer. For this reason, it is known to use a crystalline silicon thin film as a channel layer of a driving transistor. A technique for forming a crystalline silicon thin film will be described below.
  • One conventional method for forming a crystalline silicon thin film is to add a metal catalyst to an amorphous silicon film formed on a substrate and apply heat to polycrystallize the amorphous silicon film.
  • this method has an advantage that it can be crystallized at a low temperature, there is a problem that the cost increases due to an increase in the number of steps, and it is difficult to completely remove the metal element after crystallization.
  • Patent Document 1 a method for polycrystallizing an amorphous silicon film by laser irradiation at a predetermined excimer laser energy density at a predetermined film formation temperature.
  • Patent Document 1 a method for polycrystallizing an amorphous silicon film by laser irradiation at a predetermined excimer laser energy density at a predetermined film formation temperature.
  • the burden on the glass substrate is small, and a crystalline silicon thin film having a molten silicon crystal structure with a large crystal structure and high mobility can be formed.
  • this method shapes the beam obtained by gaseous gas discharge, there is a problem that the frequency of overhaul of the apparatus is high and the running cost is high.
  • the crystallinity of polycrystallizing the amorphous silicon film by converting the wavelength from infrared light of 1064 nm to green light of 532 nm using a solid conversion crystal element and irradiating the amorphous silicon film with this green laser light.
  • a method for forming a silicon thin film With this method, since a solid conversion crystal element is used, the frequency of maintenance is low, and the running cost can be greatly reduced as compared with the crystallization method using an excimer laser.
  • a method using a laser there is a method in which a polycrystalline silicon thin film is formed by irradiating an amorphous silicon film with a pulse laser having a wavelength of 532 nm (Patent Document 2).
  • One means for improving the on-current characteristics of the thin film transistor is to increase the crystal grain size of the crystalline semiconductor thin film serving as the channel layer.
  • a crystalline silicon thin film having a large crystal grain size can be obtained by increasing the maximum intensity of laser light during crystallization.
  • simply increasing the maximum intensity of the laser beam requires a laser beam with a larger output energy, which increases the input energy and requires a high-power laser facility. .
  • crystalline semiconductor thin films having different characteristics may be formed in one device.
  • the organic EL display device since the characteristics required for the drive transistor and the switching transistor are different as described above, a plurality of crystalline semiconductor thin films having different crystal structures are formed in the same pixel to have different characteristics.
  • Two kinds of thin film transistors are preferably formed in the same pixel.
  • the amorphous semiconductor thin film is crystallized, if the laser output is changed by changing the output state of the laser light between the driving transistor and the switching transistor, the characteristics of the transistors between the pixels may vary, There is a problem that the in-plane uniformity is lowered and the laser equipment is complicated. In addition, when laser irradiation is performed at different timings as described above, there is a problem that throughput is lowered.
  • the present invention has been made in view of the above-described problems, and manufacture of a thin film forming substrate capable of forming a crystalline thin film including regions formed in different crystalline states at the same time while suppressing further input energy. It is an object to provide a method and a thin film substrate.
  • one aspect of a method for manufacturing a thin film formation substrate includes a substrate preparation step of preparing a substrate, a thin film formation step of forming a thin film on the substrate, and the thin film Irradiating a continuous wave light beam having a predetermined wavelength at a predetermined speed while relatively scanning, and crystallizing at least a predetermined region of the thin film to form a crystallized region,
  • the irradiation shape of the light beam has a long axis in a direction intersecting with the relative scanning direction, and in the crystallization step, the crystallization region extends in a direction intersecting with the relative scanning direction.
  • a first region of the shape and a second region adjacent to the first region of the band shape, and an average crystal grain size of the first region of the band shape is an average crystal grain size of the second region It is formed to be larger.
  • the method of manufacturing a thin film forming substrate according to the present invention it is possible to simultaneously form the band-shaped first region and the second region having different average crystal grain sizes without increasing the input energy of the laser.
  • region of the different crystal state formed simultaneously can be obtained. Therefore, it is possible to easily produce two types of elements (such as thin film transistors) having different characteristics in one device.
  • the present invention it is possible to form the band-shaped first region by increasing the scanning speed of the light beam used when crystallizing the thin film, so that high throughput can be realized. it can.
  • a crystalline thin film including a crystallized region (first region) having a large crystal grain size can be formed, when a thin film transistor is manufactured using the crystalline thin film as a channel layer, a thin film transistor having excellent on-current characteristics can be obtained. Can be realized.
  • FIG. 1 is a cross-sectional view schematically showing each step in the method of manufacturing a thin film forming substrate according to the embodiment of the present invention.
  • FIG. 2 is a top view schematically showing the state of the crystal structure of the crystallization region of the crystalline silicon thin film in the embodiment of the present invention.
  • FIG. 3A is a perspective view schematically showing a state in which a silicon thin film is irradiated with laser light in the method for manufacturing a thin film forming substrate according to the embodiment of the present invention.
  • FIG. 3B is a diagram showing an intensity distribution of laser light used in the crystallization step of the method for manufacturing the thin film formation substrate according to the embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing each step in the method of manufacturing a thin film forming substrate according to the embodiment of the present invention.
  • FIG. 2 is a top view schematically showing the state of the crystal structure of the crystallization region of the crystalline silicon thin film in the embodiment of the present invention.
  • FIG. 4 shows the relationship between the laser light conditions (scanning speed and beam minor axis width) and the crystalline structure of the crystalline silicon thin film in the crystallization step in the method of manufacturing a thin film forming substrate according to the embodiment of the present invention.
  • FIG. FIG. 5A is a diagram schematically showing the crystal structure of the crystalline silicon thin film formed under the laser irradiation conditions in region A of FIG.
  • FIG. 5B is a diagram schematically showing the crystal structure of the crystalline silicon thin film formed under the laser irradiation conditions in region B of FIG.
  • FIG. 5C is a diagram schematically showing the crystal structure of the crystalline silicon thin film formed under the laser irradiation conditions in the region C of FIG.
  • FIG. 5D is a diagram schematically showing the crystal structure of the crystalline silicon thin film formed under the laser irradiation conditions in region D of FIG.
  • FIG. 5E is a diagram schematically showing the crystal structure of the crystalline silicon thin film formed under the laser irradiation conditions in the region E of FIG.
  • FIG. 6A is a diagram showing the relationship between the scanning speed of laser light and the pitch width of the first region in the crystallization step of the method for manufacturing a thin film formation substrate according to the embodiment of the present invention.
  • FIG. 6B is a diagram showing the relationship between the irradiation time of the laser beam and the pitch width of the first region in the crystallization step of the method for manufacturing the thin film formation substrate according to the embodiment of the present invention.
  • FIG. 7 is a diagram showing a process in the case of forming a crystalline silicon thin film using a pulse laser.
  • FIG. 8 is a diagram showing a configuration of the crystalline semiconductor thin film forming apparatus according to the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of each step in the method for manufacturing the bottom-gate thin film transistor according to the embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of each step in the method for manufacturing the top-gate thin film transistor according to the embodiment of the present invention.
  • FIG. 11 is a planar SEM image of the crystalline silicon thin film obtained by the laser irradiation conditions in the embodiment of the present invention.
  • FIG. 12 is a planar SEM image of the crystalline silicon thin film obtained according to the laser irradiation conditions in the comparative example.
  • FIG. 13A is a diagram when the crystalline structure of the crystalline silicon thin film obtained under the laser irradiation conditions in this embodiment is observed with an optical microscope (stage scanning speed is 460 mm / s).
  • FIG. 13B is a diagram when the crystal structure of the crystalline silicon thin film obtained under the laser irradiation conditions in this embodiment is observed with an optical microscope (the scanning speed of the stage is 480 mm / s).
  • FIG. 13A is a diagram when the crystalline structure of the crystalline silicon thin film obtained under the laser irradiation conditions in this embodiment is observed with an optical microscope (stage scanning speed is 460 mm / s).
  • FIG. 13B is a diagram when the crystal structure of the crystalline silicon thin film obtained under the laser irradiation conditions in this embodiment is observed with an optical microscope (the scanning speed of the stage is 480 mm
  • FIG. 13C is a diagram when the crystal structure of the crystalline silicon thin film obtained under the laser irradiation conditions in this embodiment is observed with an optical microscope (the scanning speed of the stage is 520 mm / s).
  • FIG. 14A is a diagram showing a Raman shift spectrum obtained by a Raman spectroscopic measurement method in a crystalline silicon thin film formed under each of the laser irradiation conditions in the embodiment of the present invention and the comparative example.
  • FIG. 14B shows the laser scanning speed and the Raman shift obtained by the Raman spectroscopic measurement method of FIG. 13A in the crystalline silicon thin film formed under each of the laser irradiation conditions in the present embodiment and the comparative example are 520 cm ⁇ 1.
  • FIG. 15A is a graph showing the relationship between the scanning speed and the mobility of a thin film transistor at the time of laser irradiation in a thin film transistor manufactured using a crystalline silicon thin film formed according to laser irradiation conditions in the embodiment of the present invention and a comparative example. It is.
  • FIG. 15B is a diagram showing a relationship between laser energy density and thin film transistor mobility in a thin film transistor manufactured using a crystalline silicon thin film formed according to laser irradiation conditions in the embodiment of the present invention and a comparative example. .
  • FIG. 15A is a graph showing the relationship between the scanning speed and the mobility of a thin film transistor at the time of laser irradiation in a thin film transistor manufactured using a crystalline silicon thin film formed according to laser irradiation conditions in the embodiment of the present invention and a comparative example.
  • FIG. 15B is a diagram showing a relationship between laser energy density and thin film transistor mobility in a thin film transistor manufactured using a crystalline silicon thin film formed
  • One aspect of the method for producing a thin film forming substrate according to the present invention includes a substrate preparing step of preparing a substrate, a thin film forming step of forming a thin film on the substrate, and a predetermined wavelength of continuous oscillation with respect to the thin film.
  • the crystallization region includes a band-shaped first region extending in a direction intersecting the relative scanning direction; And a second region adjacent to the band-shaped first region, and the average crystal grain size of the band-shaped first region is larger than the average crystal grain size of the second region.
  • the band-shaped first region can be formed by increasing the scanning speed of the light beam used for crystallizing the thin film. That is, since the scanning speed of the light beam can be increased, a high throughput can be realized.
  • the band-shaped first region formed by increasing the scanning speed has a crystal structure with a relatively large crystal grain size, when a thin film transistor is manufactured using the obtained crystalline thin film as a channel layer, the on-current A thin film transistor having excellent characteristics can be realized.
  • the belt-shaped first region is continuous within the length of the long axis.
  • the electron mobility can be improved and a crystalline silicon thin film having excellent uniformity can be realized.
  • the band-shaped first region is formed so as to contain crystal grains having an average crystal grain size of 100 nm to 500 nm.
  • the second region is preferably formed so as to contain crystal grains having an average crystal grain size of 30 nm or more and less than 100 nm.
  • a thin film transistor having excellent on-state current characteristics can be realized by using a thin film including a first region including crystal grains having an average crystal grain size of 100 nm to 500 nm.
  • a plurality of the band-shaped first regions are formed at uniform intervals in the crystallization step.
  • each of the plurality of band-shaped first regions has a full width at half maximum of a peak spectrum of Raman shift by Raman spectroscopy. It is preferably formed so as to be not less than 0.8 cm ⁇ 1 and not more than 5.5 cm ⁇ 1 .
  • a plurality of the band-shaped first regions in the crystallization step, have an interval between adjacent band-shaped first regions of 2.0 ⁇ m or less. It is preferable to be formed so that
  • the light beam having the predetermined wavelength is preferably a laser having a wavelength of 405 nm to 632 nm.
  • a crystal structure in which the band-shaped first region and the second region are mixed can be easily formed by laser irradiation by high-speed scanning.
  • high-speed scanning can be easily realized, so that the uniform spacing between the band-shaped first regions can be easily realized.
  • a value obtained by dividing the minor axis width of the laser intensity distribution by the predetermined speed is preferably 60 ⁇ sec or less.
  • the thin film is preferably a silicon thin film.
  • one mode of the thin film substrate according to the present invention includes a substrate and a thin film including a crystallized region formed on the substrate and crystallized, and the crystallized region is a band-shaped first region. And a second region adjacent to the band-shaped first region, wherein the average crystal grain size of the band-shaped first region is larger than the average crystal grain size of the second region.
  • the thin film substrate in this aspect includes a thin film including a band-shaped first region having a relatively large crystal grain size and a second region having a relatively small crystal grain size in the substrate surface. This makes it possible to easily produce two types of elements (such as thin film transistors) having different characteristics in one device.
  • the band-shaped first region contains crystal grains having an average crystal grain size of 100 nm to 500 nm, and the second region has an average crystal grain size of 30 nm. It is preferable to contain crystal grains of less than 100 nm.
  • a thin film transistor having excellent on-state current characteristics can be realized by using a thin film including a first region including crystal grains having an average crystal grain size of 100 nm to 500 nm.
  • a plurality of the band-shaped first regions are formed at uniform intervals.
  • each of the plurality of band-shaped first regions has a half-value width of a peak spectrum of Raman shift by Raman spectroscopic analysis of 4.8 cm ⁇ 1 or more and 5.5 cm ⁇ 1. It is preferable to be formed to be as follows.
  • the interval between the adjacent band-shaped first regions is 2.0 ⁇ m or less.
  • the crystallization region crystallizes the thin film by irradiating the thin film with a light beam having a predetermined wavelength while being relatively scanned at a predetermined speed.
  • the irradiation shape of the light beam in the thin film has a major axis in a direction intersecting with the relative scanning direction, and the first region of the band shape intersects with the relative scanning direction. It is preferable that it extends in the direction of
  • the thin film is preferably a silicon thin film.
  • FIG. 1 is a cross-sectional view and a plan view schematically showing each step in the method for manufacturing a thin film forming substrate according to the embodiment of the present invention.
  • (a2) to (e2) are plan views
  • (a1) to (e1) are cross-sectional views taken along lines XX of (a2) to (e2), respectively.
  • a substrate 10 is prepared (substrate preparation step).
  • a glass substrate can be used as the substrate 10.
  • the preparation of the substrate includes, for example, a cleaning process for removing deposits attached to the surface of the glass substrate, a glass substrate surface etching process for removing alkali metal components on the surface of the glass substrate, or a glass substrate.
  • a step of forming an undercoat layer such as a SiN film on the surface of the glass substrate may be included as an example in order to prevent the alkali metal component being diffused from diffusing into the semiconductor film or the like.
  • a thin film such as an amorphous semiconductor thin film is formed above the substrate 10 (thin film forming step).
  • an amorphous silicon thin film 13 made of an amorphous silicon film is formed above the substrate 10.
  • a light beam having a predetermined wavelength is prepared to crystallize the amorphous silicon thin film 13, and a predetermined wavelength is applied to the amorphous silicon thin film 13.
  • a predetermined wavelength is applied to the amorphous silicon thin film 13.
  • the laser beam 30 having a predetermined light intensity distribution is used as the light beam having the predetermined wavelength in the present embodiment, and the intensity distribution shape of the laser beam 30 on the surface of the amorphous silicon thin film 13 is as follows.
  • the laser beam 30 has a substantially rectangular shape having a minor axis in the scanning direction 40 and a major axis in a direction intersecting the scanning direction 40.
  • the irradiation shape of the laser beam 30 on the surface of the amorphous silicon thin film 13 is also substantially rectangular having a minor axis in the scanning direction 40 of the laser beam 30 and a major axis in a direction intersecting the scanning direction 40.
  • the curve illustrated in the upper part of the laser beam 30 in FIG. 1C2 shows an example of the intensity distribution in the minor axis direction of the laser beam 30, and has, for example, an intensity distribution of a Gaussian curve.
  • laser light 30 is applied to the amorphous silicon thin film 13 in the scanning direction 40 at a predetermined speed.
  • the silicon thin film 13 is irradiated with a laser beam 30 by relative scanning.
  • the silicon thin film 13 in the region irradiated with the laser beam 30 is crystallized to form the crystalline silicon thin film 15 which is a polycrystalline silicon thin film including the crystallized region 50 (crystallization step). That is, the region of the amorphous silicon thin film 13 irradiated with the laser beam 30 is annealed and crystallized by the thermal energy generated by the laser beam 30 to become the crystalline silicon thin film 15.
  • the crystallization region 50 has a band-shaped first extending in a direction intersecting the relative scanning direction (scanning direction 40) of the laser beam 30.
  • One region 51 and a second region 52 adjacent to the first region 51 are formed.
  • the band-shaped first region 51 and second region 52 are illustrated as curved in the Y-axis direction. What is necessary is just to become the shape extended in the direction which cross
  • FIG. 2 is a top view schematically showing the state of the crystal structure of the crystallized region 50 of the crystalline silicon thin film 15 in the embodiment of the present invention, and shows the region R surrounded by the broken line in (e2) of FIG. It is an enlarged view.
  • the crystalline silicon thin film 15 is composed of a plurality of crystal grains (crystal grains) having different crystal grain diameters, and the boundaries of the crystal grains form crystal grain boundaries.
  • the crystallization region 50 of the crystalline silicon thin film 15 in the present embodiment is a band-shaped first region extending in a substantially orthogonal direction that is a form intersecting the scanning direction 40 of the laser light 30 ( A band-shaped first region) 51, and a band-shaped second region (band-shaped second region) 52 extending in a substantially orthogonal direction, which is one form of a direction intersecting the scanning direction 40 of the laser light 30; Is composed of a mixed crystal structure.
  • the first region 51 and the second region 52 are adjacent to each other in the scanning direction 40, and are formed so that the strip-shaped first regions 51 and the strip-shaped second regions 52 appear alternately.
  • the crystal structure in which the first region 51 and the second region 52 coexist is scanned by scanning the laser light 30 in the scanning direction 40 at a predetermined scanning speed in the crystallization process of the silicon thin film 13. It is formed in a band shape in a direction substantially perpendicular to.
  • the first region 51 is formed by a series of crystal grains having a relatively large average crystal grain size.
  • the second region 52 is formed by a series of crystal grains having a relatively small average crystal grain size. That is, the first region 51 and the second region 52 are formed such that the average crystal grain size of the silicon particles in the first region 51 is larger than the average crystal grain size of the silicon particles in the second region 52. .
  • the average crystal grain size of the silicon crystal grains in the first region 51 is not less than 100 nm and not more than 500 nm
  • the average crystal grain size of the silicon crystal grains in the second region 52 is not less than 30 nm and less than 100 nm.
  • the second region 52 may include a crystal grain having an average crystal grain size smaller than the average crystal grain size of the crystal grains contained in the first region 51 in the amorphous amorphous material. According to this aspect, for example, it is useful for realizing a switching TFT having excellent off characteristics.
  • the carriers that move through the crystalline silicon thin film 15 pass through a plurality of crystal grains (the crystal grain boundaries existing between the crystal grains are However, since the crystal grain boundary is a crystal defect, carriers are easily captured at the crystal grain boundary. For this reason, the larger the crystal grain size, the smaller the number of crystal grain boundaries, so the probability that carriers are trapped decreases and the mobility of carriers improves. Accordingly, the carrier in the crystalline silicon thin film 15 has a higher probability of moving in the first region 51 having a relatively larger crystal grain size than the second region 52. Thus, the carrier mobility can be improved by forming the first region 51 in the crystalline silicon thin film 15.
  • a plurality of strip-shaped first regions 51 in the present embodiment are formed with substantially the same width.
  • the interval between the adjacent first regions 51 can be made equal by adjusting the scanning speed of the laser light 30 as shown in FIG. That is, the plurality of first regions 51 can be formed at a uniform pitch.
  • the average crystal is obtained by irradiating the amorphous silicon thin film 13 (amorphous silicon film) with laser light at a predetermined scanning speed.
  • the first region 51 having a large particle size and a band shape can be formed.
  • high-speed scanning (scanning speed higher than the scanning speed when the entire region of the silicon thin film 13 is a crystalline silicon thin film having an average crystal grain size in the second region 52)
  • High-speed scanning is irradiated with laser light.
  • the crystallization region 50 is formed in the second region 52 so that the first region 51 having a large crystal grain size and a band shape appears.
  • the reason why the band-shaped first region 51 is formed by the high-speed scanning laser irradiation will be discussed below.
  • the temperature profile in the scanning direction at a certain point in the thin film becomes steeper in a short time compared to when laser irradiation is performed at low speed scanning. It becomes hot and cools down).
  • the temperature profile in the direction intersecting the scanning direction in the present embodiment, the direction substantially orthogonal
  • the temperature gradient is Since it is almost absent, the high temperature state is maintained for a sufficient time for crystal growth.
  • the crystal growth of the thin film is promoted in the direction intersecting the scanning direction of the laser beam, and the crystal grows in the lateral direction intersecting the scanning direction of the laser beam.
  • the crystal grains in the direction intersecting the scanning direction of the laser beam The crystal grain size increases.
  • the silicon crystal growth of the amorphous silicon thin film 13 is promoted in a direction substantially orthogonal to the laser beam scanning direction, and as shown in FIG. 2, a band extending in a direction intersecting with the laser scanning direction.
  • a first region 51 having a shape is formed.
  • the volume of silicon crystal grains expands with crystal growth, but in this embodiment, the crystal grains in the first region 51 grow more than the crystal grains in the second region 52 as described above. Therefore, the volume of the crystal grains in the first region 51 expands more than the crystal grains in the second region 52. Thereby, in the grain boundary of the crystal grain in the 1st field 51, it will be in the state where crystal grains collide and have raised.
  • the band-shaped first region 51 can be formed by increasing the scanning speed of the laser beam when crystallizing the silicon thin film. This has been studied by the present inventors. The result is obtained. Based on this result, the inventor of the present application generates a crystal gradient (first region 51) having a large crystal grain size in a direction intersecting the laser scanning direction by generating a temperature gradient of a certain level or more in the laser scanning direction. ) Can be obtained.
  • the steep temperature gradient for generating a crystal region (first region 51) having a large crystal grain size may be achieved by shortening the irradiation time of the laser beam and increasing the scanning speed of the laser beam as described above. It is presumed that this can be realized not only by reducing the minor axis width in the intensity distribution of laser light.
  • band-shaped first region 51 is normally considered as a cause of variations in device characteristics.
  • the inventor of the present application as will be described later, It has been found that the band-shaped first regions 51 can be formed at uniform intervals by adjusting the scanning speed or the like. As a result, it was possible to obtain a new idea that a device having no characteristic variation can be realized.
  • FIG. 3A is a perspective view schematically showing a state in which the amorphous silicon thin film 13 is irradiated with the laser beam 30 in the method for manufacturing a thin film forming substrate according to the embodiment of the present invention.
  • FIG. 3B is a figure which shows intensity distribution (beam profile) of the laser beam 30 used at the crystallization process of the manufacturing method of the thin film formation board
  • the laser beam 30 is irradiated while being relatively scanned with respect to the silicon thin film 13 in a predetermined relative scanning direction. That is, the laser beam 30 is relatively scanned with respect to the amorphous silicon thin film 13 by moving at least one of the laser beam 30 and the substrate 10 on which the silicon thin film 13 is formed. In the present embodiment, the laser beam 30 is fixed, and the substrate 10 on which the silicon thin film 13 is formed is moved in the first direction 41 in the X-axis direction with respect to the silicon thin film 13 as shown in FIG. 3A.
  • the laser beam 30 was scanned in the scanning direction 40 (second direction opposite to the first direction 41 in the X-axis direction). Note that the entire region of the silicon thin film 13 can be irradiated with the laser beam 30 by moving the substrate 10 in the Y-axis direction and repeating scanning in the X-axis direction a plurality of times.
  • the laser used in this embodiment is preferably a continuous wave laser (CW laser). Since the CW laser continuously oscillates the laser light, it can be faster than the pulse laser. Moreover, since the scanning speed of the CW laser is one digit or more faster than that of the pulse laser, the throughput can be easily improved.
  • CW laser continuous wave laser
  • the laser used in this embodiment is preferably a laser having a wavelength of 405 nm to 632 nm.
  • a semiconductor laser in a range from 405 nm blue laser light to 632 nm green laser light can be used. This is because, in the case of an excimer laser having a wavelength of 308 nm, all of the light is absorbed on the surface of the amorphous silicon film, so that the vertical crystal growth due to the temperature gradient from the film surface to the film thickness direction becomes remarkable. This is because it becomes difficult to form the first region 51 obtained by the directional growth.
  • the laser beam can be transmitted through the entire thickness direction of the amorphous silicon film within the wavelength range of 405 nm to 632 nm, which promotes the lateral crystallization of the thin film. Therefore, it is estimated that the first region 51 is easily obtained.
  • the laser light in the present embodiment has a convex distribution in which the light intensity distribution in the minor axis (X axis) direction is a Gaussian distribution, and is orthogonal to the minor axis direction.
  • the beam is shaped so that the light intensity distribution in the major axis (Y-axis) direction is a top-flat distribution.
  • the beam minor axis width W1 represents the half-value width (FWHM: Full Width at Half Maximum) of the intensity distribution in the minor axis direction of the laser beam 30.
  • the beam major axis width W2 represents the width (flat width) in the major axis direction of the intensity distribution in the major axis direction of the laser beam.
  • the short axis direction of the intensity distribution of the laser beam 30 is set as the scanning direction 40 and is relatively with respect to the amorphous silicon thin film 13. Scanned.
  • the irradiation shape of the laser beam 30 on the silicon thin film 13 can be made substantially rectangular.
  • a CW laser composed of a semiconductor laser emitting green light having a wavelength of 532 nm is used.
  • the beam minor axis width W1 is 32 ⁇ m
  • the beam major axis width W2 is 300 ⁇ m
  • the beam major axis width W2 is configured to be larger than the beam minor axis width W1.
  • laser irradiation is performed on the amorphous silicon thin film 13 using the laser beam 30 thus beam-shaped.
  • the inventor of the present application performs the irradiation with the laser beam 30 as described above. Accordingly, the present inventors have found that the crystalline structure of the obtained crystalline silicon thin film 15 changes according to the scanning speed of the laser light 30 and the short axis width W1 of the laser light 30.
  • FIG. 4 shows the relationship between the irradiation conditions (scanning speed and beam minor axis width) of the laser beam 30 and the crystal structure of the crystalline silicon thin film 15 in the crystallization step in the method for manufacturing a thin film forming substrate according to the embodiment of the present invention. It is a figure which shows a relationship.
  • 5A to 5E are diagrams schematically showing the crystal structure of the crystalline silicon thin film 15 corresponding to the laser irradiation conditions in the regions A to E in FIG.
  • ablation 54 occurs in the amorphous silicon film as shown in FIG. Film peeling or the like occurs on the silicon thin film 15.
  • the reason why the ablation 54 occurs is that the laser beam scanning speed is too slow or the laser beam short axis width W1 is too wide, so that the irradiation energy to the silicon thin film 13 becomes too large. It is believed that there is.
  • the crystal grain size is not a molten silicon crystal but a small crystal grain size as shown in FIG. 5E. It becomes the crystalline silicon thin film 15 comprised by the SPC crystal structure 53 which consists of a crystal grain by a solid phase growth (SPC: Solid Phase Crystallization).
  • the amorphous silicon thin film 13 made of an amorphous silicon film is crystallized in accordance with the irradiation condition of the laser beam 30 in the range from the region B to the region D sandwiched between the region A and the region E in FIG. A molten silicon crystal can be obtained.
  • the scanning speed of the laser light is relatively slow, or the beam minor axis width W1 of the laser light is relatively low.
  • the crystalline silicon thin film 15 constituted by the crystal structure in which the band-shaped first region 51 is not formed is formed under the irradiation condition of the very wide region B. 5B.
  • the crystalline structure of the crystalline silicon thin film 15 in FIG. 5B is composed only of silicon particles having an average crystal grain size corresponding to the second region 52.
  • the band shape extends in a direction substantially perpendicular to the scanning direction 40 of the laser light 30.
  • the band-shaped first regions 51 are randomly generated at non-uniform intervals. If the irradiation condition of the laser beam 30 in the range of the region D in FIG. 4 where the scanning speed is higher than the irradiation condition of the laser beam 30 or the beam minor axis width W1 is narrower is as shown in FIG. 5D. In addition, the band-shaped first regions 51 are uniformly generated at equal intervals.
  • FIG. 6A is a diagram showing the pitch width of the first region 51 with respect to the scanning speed of the laser light 30 in the crystallization step of the method for manufacturing the thin film formation substrate according to the embodiment of the present invention.
  • FIG. 6B is a diagram in which the horizontal axis in FIG. 6A is replaced with the laser irradiation time from the scanning speed.
  • a laser irradiation time of 60 ( ⁇ sec) in FIG. 6B corresponds to a scanning speed of about 533 (mm / s) in FIG. 6A.
  • Each data in FIGS. 6A and 6B is obtained by measuring the pitch width of the first region 51 on the gate electrode having a width of 25 ⁇ m.
  • the band shape width of the first region 51 is the width of the gate electrode (25 ⁇ m). Is exceeded, the pitch width of the first region 51 is plotted as 25 ⁇ m.
  • the scanning speed of the laser beam 30 during crystallization is 550 mm / s or more, that is, when the irradiation time of the laser beam 30 is about 58.2 ( ⁇ ⁇ sec) or less
  • the interval between the adjacent first regions 51 is 2.0 ⁇ m or less and is almost saturated. That is, the adjacent first regions 51 can be formed at equal intervals by forming the first regions 51 so that the interval between the adjacent first regions 51 is 2.0 ⁇ m or less.
  • the first regions 51 formed at uniform intervals can be obtained. Note that the interval (pitch width) between the adjacent first regions 51 is the center position in the width direction of one first region 51 and the width direction of the other first region 51 in the two adjacent first regions 51. It is the distance between the center position.
  • the manufacturing method of the thin film formation substrate which concerns on embodiment of this invention, by crystallizing thin films, such as an amorphous silicon film, by the irradiation conditions of the laser beam 30 in the range of the area
  • a crystalline thin film including a crystallized region (first region 51) having a large crystal grain size can be formed.
  • the crystalline thin film according to the present embodiment is channeled.
  • a thin film transistor is manufactured as a layer, a thin film transistor with high mobility and excellent on-state current characteristics can be realized.
  • the crystallization region 50 including such a band-shaped first region 51 can be formed by irradiating the continuous wave laser beam 30 with high-speed scanning. Compared with the case of crystallizing with a laser, high throughput can also be realized. That is, the throughput can be improved as compared with the case where the crystalline silicon thin film 15 constituted by the crystal structure composed only of crystal grains having the crystal grain size corresponding to the second region 52 is formed by laser crystallization.
  • the belt-shaped first region 51 is continuously formed within the length in the major axis direction (Y direction) of the laser irradiation region. That is, the band-shaped first region 51 is continuously generated without interruption over the major axis width of the laser beam with respect to the major axis direction (Y direction) of the laser beam.
  • the mobility of carriers can be improved, and a crystalline silicon thin film excellent in uniformity can be realized.
  • the crystalline silicon thin film 15 is preferably formed under the laser irradiation conditions in the region D in FIG.
  • the band-shaped first regions 51 can be formed at uniform intervals.
  • the crystal grain size of the first region 51 of the crystalline silicon thin film 15 in the present embodiment is 100 nm or more and 500 nm or less and less than a micrometer order, that is, not a large grain size.
  • the band-shaped first region 51 can be formed with a crystal grain size of 100 nm or more and 500 nm or less and at uniform intervals, a crystal structure having excellent in-plane uniformity of the substrate can be obtained.
  • an element having no characteristic variation can be easily manufactured.
  • the laser light used in the crystallization process is preferably green laser light using a CW laser for the following reason.
  • a thin film transistor having the crystalline silicon thin film 15 as a channel layer has high mobility and excellent on-current characteristics.
  • the beam long axis width is increased by the green laser beam, the beam length increases due to the influence of optical interference. It becomes difficult to ensure the beam intensity uniformity in the axial direction.
  • it is conceivable to reduce the number of scans by mounting a plurality of lasers in the laser device but there is a problem if the initial cost of the device increases significantly due to the increase in the number of lasers.
  • the method for manufacturing a thin film forming substrate according to the present embodiment is suitable for crystallization of a thin film using green laser light.
  • FIG. 8 is a diagram showing a configuration of the crystalline semiconductor thin film forming apparatus according to the embodiment of the present invention.
  • Crystalline semiconductor thin film forming apparatus 100 according to the present embodiment forms laser light 30 having a light intensity distribution as shown in FIG. 3B to crystallize an amorphous semiconductor thin film such as amorphous silicon thin film 13. It is a device for.
  • a crystalline semiconductor thin film forming apparatus 100 is a silicon thin film crystallization apparatus using CW laser light, and includes a substrate holding unit 110, a laser light oscillation unit 120, an optical system unit 130, and the like. And a control unit 140 including a scanning control unit 141 and a laser light intensity distribution adjusting unit 142.
  • the substrate holding unit 110 is a stage that holds the substrate 10 on which an amorphous silicon thin film to be crystallized is formed.
  • an amorphous silicon film (amorphous silicon film) is formed as an amorphous silicon thin film on the surface 10S of the substrate 10 that is the irradiation surface of the laser beam 30.
  • the laser beam oscillation unit 120 is a laser light source that oscillates a laser beam 30 for crystallizing an amorphous silicon thin film.
  • the laser light oscillation unit 120 in the present embodiment is provided with four semiconductor laser devices, and each semiconductor laser device oscillates laser light having a symmetric single-peak light intensity distribution.
  • the semiconductor laser device for example, a blue laser light or a green laser light having a wavelength band of 405 nm to 632 nm that continuously oscillates in a microsecond order of, for example, 10 to 100 ⁇ sec can be used.
  • the optical system unit 130 includes a plurality of beam shaping lenses, and is configured to irradiate a predetermined region of the silicon thin film while beam-forming the laser beam 30 oscillated from the laser beam oscillation unit 120 into a predetermined intensity distribution. ing.
  • the optical system unit 130 includes a homogenizer 131, a condenser lens 132, and a DOE (Differential Optical Element: diffractive optical element) lens 133.
  • the beam shaping lens a lens for shaping the beam profile in the long axis direction and a lens for shaping the beam profile in the short axis direction may be provided separately.
  • the scanning control unit 141 controls the substrate holding unit 110 or the optical system unit 130 so that the laser light 30 irradiating the amorphous silicon thin film is beam-scanned relative to the silicon thin film. To do. As shown in FIG. 3A, the scanning control unit 141 in the present embodiment controls the substrate holding unit 110 to move to a predetermined position to move the substrate 10.
  • the laser light intensity distribution adjusting unit 142 shapes the laser light 30 so as to have a predetermined intensity distribution.
  • the laser light intensity distribution adjusting unit 142 in the present embodiment forms the laser light 30 oscillated from the laser light oscillating unit 120 by adjusting the lens constituting the optical system unit 130, and the light as shown in FIG. 3B. Beam shaping is performed so that the laser beam 30 has an intensity distribution.
  • the crystalline semiconductor thin film forming apparatus 100 may further include an optical component such as a mirror or a condenser lens, or may include a beam beam profiler for measuring the beam profile of laser light. .
  • an optical component such as a mirror or a condenser lens
  • the laser light intensity distribution adjusting unit 142 adjusts the lens of the optical system unit 130 so that the laser light applied to the silicon thin film has a desired light intensity distribution. Can be adjusted.
  • a method of manufacturing a thin film transistor according to an embodiment of the present invention includes a step of preparing a substrate (substrate preparation step), a step of forming a gate electrode above the substrate (gate electrode forming step), and gate insulation above the substrate.
  • a step of crystallizing the silicon thin film formed on the substrate by irradiating laser light to form a crystalline silicon thin film (silicon thin film crystallization step).
  • the silicon thin film crystallization step can be performed by the same method as the crystallization step in the method for manufacturing a thin film forming substrate described above. Note that the crystalline silicon thin film obtained by the silicon thin film crystallization step serves as a channel layer of the thin film transistor.
  • the bottom gate type thin film transistor has a layer configuration of a gate electrode, a gate insulating film, and a channel layer (silicon semiconductor film) in order from the bottom.
  • the top gate type thin film transistor has a layer structure of a channel layer, a gate insulating film, and a gate electrode in order from the bottom.
  • FIG. 9 is a cross-sectional view schematically showing each step in the method for manufacturing the bottom-gate thin film transistor according to the embodiment of the present invention.
  • the substrate 10 is prepared (substrate preparation step).
  • the substrate 10 for example, a glass substrate can be used.
  • an undercoat film made of an insulating film such as a silicon oxide film or a silicon nitride film may be formed on the substrate 10.
  • a pattern of the gate electrode 11 is formed above the substrate 10 (gate electrode forming step).
  • gate electrode forming step molybdenum (Mo), tungsten (W), copper (Cu), silver (Ag), aluminum (Al), chromium (so that the film thickness is in the range of 10 to 500 nm over the entire surface above the substrate 10.
  • a gate metal film such as Cr), titanium (Ti), tantalum (Ta), or an alloy thereof is formed by sputtering, and the gate metal film is patterned by performing photolithography and wet etching.
  • a gate electrode 11 having a predetermined shape is formed.
  • a gate insulating film 12 is formed above the substrate 10 (gate insulating film forming step).
  • silicon oxide (SiO), silicon nitride (SiN x ), silicon oxynitride (SiON) is formed on the entire upper surface of the substrate 10 so as to cover the gate electrode 11 so that the film thickness is in the range of 10 to 500 nm.
  • the gate insulating film 12 made of an insulating film such as) is formed by plasma CVD.
  • the gate insulating film may have a laminated structure.
  • an amorphous silicon thin film 13 is formed above the substrate 10 (silicon thin film forming step).
  • an amorphous silicon film is formed as the amorphous silicon thin film 13 on the gate insulating film 12 by plasma CVD so that the film thickness is in the range of 10 to 200 nm.
  • the amorphous silicon thin film 13 is irradiated with laser light on a predetermined area of the amorphous silicon thin film 13 while the amorphous silicon thin film 13 is relatively scanned.
  • the thin film 13 is crystallized to form a crystalline silicon thin film 15 (silicon thin film crystallization step). This step is performed by the same method as the crystallization step in the method for manufacturing a thin film forming substrate described above.
  • laser irradiation is performed by scanning the amorphous silicon thin film 13 with laser light in the X-axis direction (perpendicular to the paper surface) under the irradiation conditions shown in the region C or region D of FIG.
  • FIG. 9E a partial region of the amorphous silicon thin film 13 is crystallized, but the entire region of the amorphous silicon thin film 13 may be crystallized.
  • the silicon thin film 13 which is an uncrystallized region not irradiated with laser and the crystalline silicon thin film 15 which is crystallized by laser irradiation are selectively patterned to be amorphous.
  • the silicon thin film 13 is removed and the crystalline silicon thin film 15 is patterned in an island shape.
  • the amorphous silicon film is doped with an impurity such as phosphorus so that the film thickness is in the range of 10 to 100 nm.
  • An impurity-doped n + layer is formed.
  • a source / drain metal film 17 having, for example, a three-layer structure of MoW / Al / MoW is formed on the contact layer 16 by sputtering.
  • the source electrode 17S and the drain electrode 17D are formed above the substrate 10 (source / drain electrode formation step).
  • the source / drain metal film 17 is patterned by performing photolithography and wet etching, thereby forming a pair of opposing source electrode 17S and drain electrode 17D.
  • the contact layer 16 is separated by performing dry etching while leaving the resist for patterning the source / drain metal film 17 to form a pair of opposing contact layers 16. Thereby, as shown in FIG. 9G, a bottom gate type thin film transistor can be manufactured.
  • the irradiation condition of the laser beam when crystallizing the silicon thin film serving as the channel layer is set as the range of region C or region D in FIG.
  • the beam minor axis width and the scanning speed so that the crystalline silicon thin film 15 having a crystal structure including the first region 51 having a larger average crystal grain size than the second region 52 and including the band-shaped first region 51 is obtained.
  • the crystal grain size of the crystalline silicon thin film 15 can be increased without increasing the laser output and increasing the scanning speed. Therefore, the thin film transistor having excellent on-current characteristics while achieving high throughput. Can be manufactured.
  • the crystalline silicon thin film 15 is more preferably formed under laser irradiation conditions in the region D.
  • the interval between the band-shaped first regions 51 can be made uniform.
  • a thin film transistor array comprising a plurality of thin film transistors having TFT characteristics with excellent in-plane uniformity can be manufactured.
  • FIG. 10 is a cross-sectional view schematically showing each step in the method for manufacturing the top-gate thin film transistor according to the embodiment of the present invention.
  • the substrate 10 is prepared (substrate preparation process).
  • the substrate 10 for example, a glass substrate can be used.
  • an undercoat film 18 made of an insulating film such as a silicon oxide film or a silicon nitride film is formed on the substrate 10.
  • an amorphous silicon thin film 13 is formed above the substrate 10 (silicon thin film forming step).
  • an amorphous silicon film is formed as an amorphous silicon thin film 13 on the undercoat film 18 by plasma CVD or the like.
  • the amorphous silicon thin film 13 is irradiated with laser light on a predetermined region of the amorphous silicon thin film 13 while relatively scanning the laser light with the laser light.
  • the thin film 13 is crystallized to form a crystalline silicon thin film 15 (silicon thin film crystallization step).
  • This step is the same method as the crystallization step in the method for manufacturing a thin film forming substrate described above, that is, the same as the silicon thin film crystallization step in the method for manufacturing a bottom gate type thin film transistor as shown in FIG. By the way.
  • laser irradiation is performed by scanning the amorphous silicon thin film 13 with laser light in the X-axis direction (perpendicular to the paper surface) under the laser light irradiation conditions shown in the region C or region D of FIG. I do.
  • FIG. 10C a partial region of the amorphous silicon thin film 13 is crystallized, but the entire region of the amorphous silicon thin film 13 may be crystallized.
  • the silicon thin film 13 which is an uncrystallized region not irradiated with laser and the crystalline silicon thin film 15 crystallized by laser irradiation. Is selectively patterned to remove the amorphous silicon thin film 13 and pattern the crystalline silicon thin film 15 in an island shape.
  • a gate insulating film 12 is formed above the substrate 10 (gate insulating film forming step).
  • the gate insulating film 12 made of an insulating film such as silicon dioxide is formed on the entire surface above the substrate 10 so as to cover the island-shaped crystalline silicon thin film 15 by plasma CVD or the like.
  • the gate electrode 11 is patterned on the substrate 10 (gate electrode forming step).
  • a gate metal film such as molybdenum tungsten (MoW) is formed on the entire upper surface of the substrate 10 by sputtering, and the gate metal film is patterned by performing photolithography and wet etching, so that the upper part of the crystalline silicon thin film 15 is formed.
  • a gate electrode 11 having a predetermined shape is formed through a gate insulating film 12.
  • LDD Lightly Doped Drain
  • a passivation film 20 is formed above the substrate 10.
  • a passivation film 20 made of an insulating film such as silicon dioxide is formed on the entire upper surface of the substrate 10 so as to cover the gate electrode 11 and the gate insulating film 12 by plasma CVD or the like.
  • a contact hole is formed in the passivation film 20 so as to expose the LDD region 19.
  • a pair of source electrode 17S and drain electrode 17D are formed on the passivation film 20 so as to fill the contact hole of the passivation film 20.
  • a top gate type thin film transistor can be manufactured.
  • the irradiation condition of the laser beam when crystallizing the silicon thin film serving as the channel layer is set as the range of region C or region D in FIG.
  • the crystalline silicon thin film 15 constituted by the crystal structure including the band-shaped first region 51 having an average crystal grain size larger than that of the second region 52 is formed. can do.
  • the crystal grain size of the crystalline silicon thin film 15 can be increased without increasing the laser output and increasing the scanning speed. Therefore, the thin film transistor having excellent on-current characteristics while achieving high throughput. Can be manufactured.
  • the crystalline silicon thin film 15 is more preferably formed under laser irradiation conditions in the region D.
  • the interval between the band-shaped first regions 51 can be made uniform.
  • a thin film transistor array comprising a plurality of thin film transistors having TFT characteristics with excellent in-plane uniformity can be manufactured.
  • a glass substrate is prepared as the substrate 10, and an undercoat film made of an insulating film of a silicon oxide film is formed on the glass substrate by plasma CVD to a thickness of 500 nm.
  • a metal film made of molybdenum tungsten (MoW) is deposited on the undercoat film by sputtering to a thickness of 50 nm, and the metal film is patterned to obtain a gate as shown in FIG. The electrode 11 is formed. Thereafter, as shown in FIG.
  • a gate insulating film 12 made of a laminated film of a silicon oxide film having a thickness of 70 nm and a silicon nitride film having a thickness of 85 nm is formed on the gate electrode 11 by plasma CVD. Further, as shown in FIG. 9D, an amorphous silicon thin film 13 made of an amorphous silicon film is continuously formed to a thickness of 50 nm. Thereafter, the hydrogen content in the amorphous silicon film is reduced to 3.0 atomic% or less by dehydrogenation treatment at 500 ° C.
  • the substrate 10 on which the amorphous silicon thin film 13 is formed is fixed on the substrate holding portion (stage) 110 of the crystalline semiconductor thin film forming apparatus 100 shown in FIG.
  • the silicon thin film 13 is crystallized to form a crystalline silicon thin film 15.
  • the laser irradiation condition on the first substrate is the laser irradiation condition in the present embodiment, the power density is 70.0 kW / cm 2, and the scanning speed of the substrate holder 110 is in the range of 400 to 580 mm / s. did.
  • the laser irradiation conditions on the second substrate were the laser irradiation conditions in the comparative example, where the power density was 60.0 kW / cm 2 and the stage scanning speed was in the range of 340 to 480 mm / s.
  • FIG. 11 shows laser irradiation conditions (power density: 70.0 kW / cm 2 , stage scanning speed: 580 mm / s, irradiation time: 49.0 ⁇ sec, input energy density in this embodiment. : 3.5 J / cm 2 ) is a planar SEM image when the crystalline structure of the crystalline silicon thin film 15 obtained by SEM is observed by SEM, and (b) is an enlarged view of a region indicated by a broken line in (a). is there.
  • the crystalline silicon thin film 15 formed under the laser irradiation conditions in the present embodiment has a mixture of the band-shaped first region 51 and the second region 52. Can be confirmed.
  • the portion that appears whitish is the portion in which the silicon crystal grains in the first region 51 collide with each other due to volume expansion and are raised.
  • the average crystal grain size of the silicon crystal grains in the first region 51 was 440 nm, and the average crystal grain size of the silicon crystal grains in the second region 52 was 80 nm.
  • region 51 was 1.8 micrometers, and was a uniform pitch.
  • FIGS. 12A and 12B show the laser irradiation conditions (power density: 60 kW / cm 2 , stage scanning speed: 400 mm / s, irradiation time: 80.0 ⁇ sec, input energy density: 4 in the comparative example.
  • .8 J / cm 2 is a planar SEM image when the crystalline structure of the crystalline silicon thin film obtained by SEM is observed with SEM, and (b) is an enlarged view of a region indicated by a broken line in (a).
  • the crystalline silicon thin film formed under the laser irradiation conditions in the comparative example has a long irradiation time of 60.0 ⁇ sec or more, and therefore the first region 51 does not exist.
  • the second region 52 exists, and the average crystal grain size of the silicon crystal grains in the crystal structure was 75 nm.
  • the laser irradiation conditions according to the present embodiment in FIG. 11 are the average crystal grains in spite of the increased scanning speed and the lower input energy density.
  • the band-shaped first regions 51 having a diameter in the range of 100 to 500 nm can be formed at intervals of 2.0 ⁇ m or less.
  • FIGS. 13A to 13C are diagrams when the crystal structure of the crystalline silicon thin film 15 obtained by the laser irradiation condition in the present embodiment is observed with an optical microscope.
  • FIGS. 13A, 13B, and 13C are respectively This corresponds to the case where the scanning speed of the stage is 460 mm / s, 480 mm / s, and 520 mm / s.
  • FIG. 14A is a diagram showing a Raman shift spectrum obtained by a Raman spectroscopic measurement method in the crystalline silicon thin film formed under the laser irradiation conditions in the present embodiment and the comparative example.
  • FIG. 14B shows the laser scanning speed and the Raman shift obtained by the Raman spectroscopic measurement method of FIG. 14A in the crystalline silicon thin film formed under the laser irradiation conditions in this embodiment and the comparative example are 520 cm ⁇ 1. It is a figure which shows the relationship with the half value width of the peak spectrum of c-Si (crystalline silicon component) near.
  • the measurement conditions in Raman spectroscopic analysis are as follows.
  • the measurement position is a crystalline silicon thin film on the gate electrode, the excitation wavelength is 532 nm, the measurement spot diameter is 1.3 ⁇ m ⁇ , and the wave number resolution is 1.5 cm ⁇ 1 .
  • Each data point in FIG. 14B is an average value of 120 points in the crystalline silicon thin film on the gate electrode.
  • the result of one point out of 120 points in points D1 and D2 in FIG. 14B is obtained. Illustrated.
  • the first region 51 does not exist in the crystalline silicon thin film formed by the laser irradiation condition in the present embodiment in which the first region 51 and the second region 52 are mixed. It can be seen that the half width of the peak spectrum of the Raman shift is smaller than that of the crystalline silicon thin film formed by the laser irradiation condition in the comparative example in which only the second region 52 exists. Such a small Raman half-width indicates that the crystalline structure of the crystalline silicon thin film is composed of silicon particles having a large crystal grain size.
  • the range of the half-value width of the peak spectrum of Raman shift in the crystalline silicon thin film formed under the laser irradiation conditions in this embodiment is 4.8 to 5.5 cm ⁇ 1 . That is, by setting the range of the Raman half width in the crystalline silicon thin film to 4.8 to 5.5 cm ⁇ 1 , the crystalline silicon thin film having a crystal structure including the first region 51 having a large crystal grain size and a band shape It can be.
  • the amorphous silicon thin film 13 and the crystalline property are obtained.
  • the crystalline silicon thin film 15 is patterned in an island shape.
  • an intrinsic amorphous silicon film (not shown) is formed to a thickness of 50 nm by plasma CVD or the like, and subsequently on the amorphous silicon film by plasma CVD.
  • An impurity-doped n + layer is formed to a thickness of 30 nm to be the contact layer 16 made of an amorphous silicon film doped with an impurity such as phosphorus.
  • a source / drain metal film 17 having a three-layer structure of, for example, MoW (50 nm) / Al (400 nm) / MoW (50 nm) is deposited on the contact layer 16 by a sputtering method.
  • the source / drain metal film 17 is separated by patterning to form a pair of opposing source and drain electrodes 17S and 17D.
  • a silicon nitride film is formed to a thickness of 400 nm by plasma CVD or the like, and contact holes are formed in the silicon nitride film by performing photolithography and dry etching, and then a transparent electrode is formed by sputtering.
  • the ITO film may be patterned by depositing an ITO film with a thickness of 100 nm and performing photolithography and dry etching.
  • FIG. 15A is a diagram showing a relationship between the scanning speed and the mobility of a thin film transistor at the time of laser irradiation in a thin film transistor manufactured using a crystalline silicon thin film formed according to laser irradiation conditions in this embodiment mode and a comparative example. is there.
  • FIG. 15B is a graph showing the relationship between the energy density of laser light and the mobility of a thin film transistor in a thin film transistor manufactured using a crystalline silicon thin film formed according to laser irradiation conditions in this embodiment mode and a comparative example. is there.
  • the mobility in FIGS. 15A and 15B shows the results when the channel width of the channel layer (crystalline silicon thin film) is 50 ⁇ m and the channel length is 10 ⁇ m.
  • a thin film transistor having a channel layer of a crystalline silicon thin film formed by laser irradiation conditions in the present embodiment in which the first region 51 and the second region 52 are mixed is first. Since the mobility is higher than that of a thin film transistor using a crystalline silicon thin film formed by laser irradiation conditions in a comparative example in which the region 51 is not present and only the second region 52 is present as a channel layer, the laser in the present embodiment It can be seen that the crystalline silicon thin film formed according to the irradiation conditions contains silicon particles having a larger crystal grain size. In addition, since a thin film transistor using a crystalline silicon thin film formed according to laser irradiation conditions in this embodiment as a channel layer has higher mobility, a thin film transistor having excellent on-current characteristics can be realized. I understand.
  • the energy density of the laser beam is compared at 5.0 J / cm 2 , depending on the laser irradiation condition in the present embodiment in which the first region 51 and the second region 52 are mixed.
  • the mobility is 39.0 (cm 2 / V ⁇ sec)
  • the first region 51 is not present, and only the second region 52 is present.
  • the mobility is 27.1 (cm 2 / V ⁇ sec).
  • a thin film transistor using a crystalline silicon thin film crystallized under laser irradiation conditions in this embodiment as a channel layer has higher mobility
  • a thin film transistor having excellent on-current characteristics can be realized.
  • the crystalline silicon thin film can be formed with a lower energy density under the laser irradiation conditions in this embodiment.
  • FIG. 16 shows the variation in the pitch width and mobility (3 ⁇ / Ave) of the band-shaped first region of the thin film transistor manufactured using the crystalline silicon thin film formed according to the laser irradiation conditions in this embodiment and the comparative example. .) Is a diagram showing a relationship with.
  • the mobility variation is 15.
  • the mobility variation is 20% or more.
  • the thin film transistor according to the laser irradiation condition region D in FIG. 4 in the present embodiment in which the first region 51 and the second region 52 having a uniform interval are mixed by further increasing the scanning speed. It can be seen that the mobility variation can be improved to 10% to 20%, and that excellent mobility variation can be realized even when compared with the laser irradiation conditions in the comparative example.
  • a silicon thin film is used as the semiconductor thin film, but a semiconductor thin film other than the silicon thin film can be used.
  • a crystalline semiconductor thin film can be formed by crystallizing a semiconductor thin film made of germanium (Ge) or SiGe.
  • the laser beam is configured such that the beam minor axis width W1 is smaller than the beam major axis width W2, but the beam minor axis width W1 is larger than the beam major axis width W2. You may comprise. Even in this case, the laser beam scanning direction is not changed as in the present embodiment, and the laser beam scanning is performed so that the minor axis of the laser beam coincides with the scanning direction.
  • the irradiation shape (intensity distribution shape) of the laser light when irradiated to the silicon thin film is a rectangular shape having a major axis and a minor axis, but is not limited thereto.
  • the irradiation shape (intensity distribution shape) of the laser light when irradiated to the silicon thin film may be a shape having other major and minor axes such as an elliptical shape, or a circle or a square.
  • the thin film transistor or the thin film transistor array substrate manufactured according to this embodiment can be used for a display device such as an organic EL display device or a liquid crystal display device.
  • the display device can be used as a flat panel display and can be applied to electronic devices such as a television set, a personal computer, and a mobile phone.
  • the crystalline silicon thin film formed according to the present embodiment can be used not only for a thin film transistor but also for various electronic devices such as a photoelectric conversion element such as a solar cell or an image sensor.
  • the crystalline silicon thin film may be an n-type semiconductor or a p-semiconductor.
  • the method for producing a thin film-forming substrate and the thin film substrate according to the present invention are useful in an electronic device having a crystalline silicon thin film such as a thin film transistor, a solar cell, or a sensor.
  • the method for manufacturing a thin film-formed substrate and the thin film substrate according to the present invention can be widely used in a display device such as a television set, a personal computer or a mobile phone, or other electrical equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 本発明に係る薄膜形成基板の製造方法は、基板(10)を準備する基板準備工程と、前記基板(10)上にシリコン薄膜(13)を形成する薄膜形成工程と、前記薄膜に対して、連続発振の所定の波長の光線を、所定の速度で相対走査させつつ照射し、前記薄膜の少なくとも所定領域を結晶化して結晶化領域(50)を形成する結晶化工程と、を含み、前記結晶化工程において、前記薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、前記結晶化領域は、前記相対走査の方向に対して交差する方向に延びる帯形状の第1領域(51)と、前記帯形状の第1領域に隣接する第2領域(52)とを含むように、かつ、前記帯形状の第1領域の平均結晶粒径が前記第2領域の平均結晶粒径よりも大きくなるように形成される。

Description

薄膜形成基板の製造方法及び薄膜基板
 本発明は、薄膜形成基板の形成方法及び薄膜基板、並びに、薄膜トランジスタの製造方法及び薄膜トランジスタに関する。
 有機EL(Electro Luminescence)表示装置又は液晶表示装置等のアクティブマトリクス駆動型の表示装置では、薄膜トランジスタ(TFT:Thin Film Transistor)と呼ばれる薄膜半導体装置が用いられている。
 この種の表示装置では、薄膜トランジスタがアレイ状に配置されて薄膜トランジスタアレイ装置を構成しており、各画素には、画素を駆動するために用いられる薄膜トランジスタ(駆動トランジスタ)及び画素を選択するために用いられる薄膜トランジスタ(スイッチングトランジスタ)が形成されている。
 中でも、有機EL素子を備える自発光型の有機EL表示装置では、駆動トランジスタとスイッチングトランジスタとに要求される性能が異なっており、駆動トランジスタでは有機EL素子の駆動性能を向上させるために優れたオン電流特性が要求され、スイッチングトランジスタでは優れたオフ電流特性が要求される。
 薄膜トランジスタは、基板上に、ゲート電極、半導体層(チャネル層)、ソース電極及びドレイン電極が形成されたものであり、チャネル層としてシリコン薄膜を用いることが一般的である。シリコン薄膜は、非結晶のシリコン薄膜(アモルファスシリコン膜)と、結晶性を有するシリコン薄膜(結晶性シリコン薄膜)とに大別される。
 結晶性シリコン薄膜をチャネル層とする薄膜トランジスタは、非結晶性シリコン薄膜をチャネル層とする薄膜トランジスタと比べて、キャリアの移動度が大きくオン電流特性に優れている。このため、駆動トランジスタのチャネル層として結晶性シリコン薄膜を用いることが知られている。以下に結晶性シリコン薄膜を形成する技術を説明する。
 従来の結晶性シリコン薄膜の形成方法の1つとして、基板上に形成されたアモルファスシリコン膜に金属触媒を添加し、熱を与えることでアモルファスシリコン膜を多結晶化させる方法がある。この方法は、低温で結晶化させることができるという利点があるが、工程数の増加によってコストが増加し、結晶化後の金属元素の完全除去が困難であるという問題がある。
 また、従来の結晶性シリコン薄膜の形成方法の他の1つとして、基板上にCVD(Chemical Vapor Deposition)成膜により結晶性シリコン薄膜を形成する方法がある。この方法は、工程数の減少によりコストを低減させることができるが、得られる結晶組織が微結晶組織のため、前述の駆動トランジスタに要求されるオン電流特性を満たすことが困難であるという問題がある。
 また、従来の結晶性シリコン薄膜の形成方法のさらに他の1つとして、所定の成膜温度に設定し、所定のエキシマレーザーのエネルギー密度でアモルファスシリコン膜をレーザー照射することにより多結晶化させる方法がある(特許文献1)。この方法は、レーザー照射時間が非常に短いためにガラス基板への負担が少なく、また、結晶組織が大きく移動度が高い溶融シリコン結晶組織の結晶性シリコン薄膜を形成することが可能となる。しかしながら、この方法は、気体のガス放電によって得られるビームを整形しているため、装置のオーバーホールの頻度が高く、ランニングコストが高いという問題がある。
 そこで、固体の変換結晶素子を用いて、1064nmの赤外光から532nmのグリーン光に波長変換し、このグリーンレーザー光をアモルファスシリコン膜に照射することで、アモルファスシリコン膜を多結晶化する結晶性シリコン薄膜の形成方法がある。この方法であれば、固体の変換結晶素子を使用しているためメンテナンスの頻度が少なく、エキシマレーザーを用いた結晶化方法よりもランニングコストを大幅に低減できる。また、レーザーを用いた方法としては、非晶質シリコン膜に波長が532nmのパルスレーザーを照射して多結晶シリコン薄膜を形成するという方法もある(特許文献2)。
特開平7-235490号公報 特開2008-016717号公報
 近年、より高速駆動かつ高精細なディスプレイの要望が高まり、薄膜トランジスタのオン電流特性のさらなる向上が要求されている。薄膜トランジスタのオン電流特性を向上させる手段の一つに、チャネル層となる結晶性半導体薄膜の結晶粒径を大きくすることが考えられる。例えば、レーザー照射によってアモルファスシリコン膜を結晶化して結晶性シリコン薄膜を形成する場合、結晶化の際のレーザー光の最大強度を上げることによって結晶粒径の大きな結晶性シリコン薄膜を得ることができる。しかしながら、単純にレーザー光の最大強度を上げると、その分だけ出力エネルギーが大きいレーザー光が必要となるので、投入エネルギーが大きくなったり高出力用のレーザー設備が必要になったりするという問題がある。
 また、1つのデバイスにおいて、異なる特性の結晶性半導体薄膜を形成することが要求される場合がある。例えば、有機EL表示装置では、上述のように駆動トランジスタとスイッチングトランジスタとに要求される特性が異なることから、結晶組織が異なる結晶性半導体薄膜を同一画素内に複数形成して、異なる特性を有する2種類の薄膜トランジスタを同一画素内に形成することが好ましい。この場合、非結晶半導体薄膜を結晶化する際、駆動トランジスタとスイッチングトランジスタとでレーザー光の出力状態を変えてレーザー照射しようとすると、画素間のトランジスタ同士で特性のばらつきが生じたり、結晶組織の面内均一性が低下したり、レーザー設備が複雑化したりするという問題がある。また、このように異なるタイミングでレーザー照射すると、スループットが低下するという問題もある。
 本発明は、上記の問題点を鑑みてなされたものであり、さらなる投入エネルギーを抑制しつつ、同時に形成された結晶状態が異なる領域を含む結晶性薄膜を形成することのできる薄膜形成基板の製造方法及び薄膜基板を提供することを目的とする。
 上記目的を達成するために、本発明に係る薄膜形成基板の製造方法の一態様は、基板を準備する基板準備工程と、前記基板上に薄膜を形成する薄膜形成工程と、前記薄膜に対して、連続発振の所定の波長の光線を、所定の速度で相対走査させつつ照射し、前記薄膜の少なくとも所定領域を結晶化して結晶化領域を形成する結晶化工程と、を含み、前記薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、前記結晶化工程において、前記結晶化領域は、前記相対走査の方向に対して交差する方向に延びる帯形状の第1領域と、前記帯形状の第1領域に隣接する第2領域とを含むように、かつ、前記帯形状の第1領域の平均結晶粒径が前記第2領域の平均結晶粒径よりも大きくなるように形成される。
 本発明に係る薄膜形成基板の製造方法によれば、レーザーの投入エネルギーを上げることなく、平均結晶粒径の異なる帯形状の第1領域と第2領域とを同時に形成することができる。これにより、同時形成された異なる結晶状態の領域を含む結晶組織によって構成された結晶性薄膜を得ることができる。従って、1つのデバイスにおいて、異なる特性を有する2種類の素子(薄膜トランジスタ等)を容易に作製することが可能となる。
 さらに、本発明によれば、薄膜を結晶化する際に用いられる光線の走査速度を速くすることで帯形状の第1領域を形成することが可能であるので、高スループット化を実現することもできる。
 また、結晶粒径の大きな結晶化領域(第1領域)を含む結晶性薄膜を形成することができるので、当該結晶性薄膜をチャネル層として薄膜トランジスタを作製した場合、オン電流特性に優れた薄膜トランジスタを実現することができる。
図1は、本発明の実施の形態に係る薄膜形成基板の製造方法における各工程を模式的に示す断面図である。 図2は、本発明の実施の形態における結晶性シリコン薄膜の結晶化領域の結晶組織の状態を模式的に示す上面図である。 図3Aは、本発明の実施の形態に係る薄膜形成基板の製造方法において、シリコン薄膜にレーザー光を照射する際の様子を模式的に示す斜視図である。 図3Bは、本発明の実施の形態に係る薄膜形成基板の製造方法の結晶化工程で用いられるレーザー光の強度分布を示す図である。 図4は、本発明の実施の形態に係る薄膜形成基板の製造方法における結晶化工程において、レーザー光の条件(走査速度及びビーム短軸幅)と結晶性シリコン薄膜の結晶組織との関係を示す図である。 図5Aは、図4の領域Aにおけるレーザー照射条件によって形成された結晶性シリコン薄膜の結晶組織を模式的に示す図である。 図5Bは、図4の領域Bにおけるレーザー照射条件によって形成された結晶性シリコン薄膜の結晶組織を模式的に示す図である。 図5Cは、図4の領域Cにおけるレーザー照射条件によって形成された結晶性シリコン薄膜の結晶組織を模式的に示す図である。 図5Dは、図4の領域Dにおけるレーザー照射条件によって形成された結晶性シリコン薄膜の結晶組織を模式的に示す図である。 図5Eは、図4の領域Eにおけるレーザー照射条件によって形成された結晶性シリコン薄膜の結晶組織を模式的に示す図である。 図6Aは、本発明の実施の形態に係る薄膜形成基板の製造方法の結晶化工程において、レーザー光の走査速度と第1領域のピッチ幅との関係を示す図である。 図6Bは、本発明の実施の形態に係る薄膜形成基板の製造方法の結晶化工程において、レーザー光の照射時間と第1領域のピッチ幅との関係を示す図である。 図7は、パルスレーザーを用いて結晶性シリコン薄膜を形成する場合の工程を示す図である。 図8は、本発明の実施の形態に係る結晶性半導体薄膜形成装置の構成を示す図である。 図9は、本発明の実施の形態に係るボトムゲート型の薄膜トランジスタの製造方法における各工程の断面図である。 図10は、本発明の実施の形態に係るトップゲート型の薄膜トランジスタの製造方法における各工程の断面図である。 図11は、本発明の実施の形態におけるレーザー照射条件によって得られる結晶性シリコン薄膜の平面SEM像である。 図12は、比較例におけるレーザー照射条件によって得られる結晶性シリコン薄膜の平面SEM像である。 図13Aは、本実施の形態におけるレーザー照射条件によって得られた結晶性シリコン薄膜の結晶組織を光学顕微鏡によって観察したときの図である(ステージの走査速度が460mm/s)。 図13Bは、本実施の形態におけるレーザー照射条件によって得られた結晶性シリコン薄膜の結晶組織を光学顕微鏡によって観察したときの図である(ステージの走査速度が480mm/s)。 図13Cは、本実施の形態におけるレーザー照射条件によって得られた結晶性シリコン薄膜の結晶組織を光学顕微鏡によって観察したときの図である(ステージの走査速度が520mm/s)。 図14Aは、本発明の実施の形態及び比較例におけるレーザー照射条件のそれぞれによって形成された結晶性シリコン薄膜において、ラマン分光測定法により得られたラマンシフトのスペクトルを示す図である。 図14Bは、本実施の形態及び比較例におけるレーザー照射条件のそれぞれによって形成された結晶性シリコン薄膜において、レーザーの走査速度と、図13Aのラマン分光測定法により得られたラマンシフトが520cm-1付近のc-Siピークスペクトルの半値幅との関係を示す図である。 図15Aは、本発明の実施の形態及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製した薄膜トランジスタにおいて、レーザー照射時の走査速度と薄膜トランジスタの移動度との関係を示す図である。 図15Bは、本発明の実施の形態及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製した薄膜トランジスタにおいて、レーザーのエネルギー密度と薄膜トランジスタの移動度との関係を示す図である。 図16は、本発明の実施の形態及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製された薄膜トランジスタについて、帯形状の第1領域のピッチ幅と移動度のばらつきとの関係を示す図である。
 本発明に係る薄膜形成基板の製造方法の一態様は、基板を準備する基板準備工程と、前記基板上に薄膜を形成する薄膜形成工程と、前記薄膜に対して、連続発振の所定の波長の光線を、所定の速度で相対走査させつつ照射し、前記薄膜の少なくとも所定領域を結晶化して結晶化領域を形成する結晶化工程と、を含み、前記薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、前記結晶化工程において、前記結晶化領域は、前記相対走査の方向に対して交差する方向に延びる帯形状の第1領域と、前記帯形状の第1領域に隣接する第2領域とを含むように、かつ、前記帯形状の第1領域の平均結晶粒径が前記第2領域の平均結晶粒径よりも大きくなるように形成される。
 これにより、レーザーの投入エネルギーを上げることなく、平均結晶粒径の異なる帯形状の第1領域と第2領域とを同時に形成することができる。これにより、同時形成された異なる結晶状態の領域を含む結晶組織によって構成された結晶性薄膜を得ることができる。
 さらに、帯形状の第1領域は、薄膜を結晶化する際に用いられる光線の走査速度を速くすることによって形成することができる。つまり、光線の走査速度を高速化することもできるので、高スループット化を実現することもできる。
 また、走査速度に高速化によって形成される帯形状の第1領域は、結晶粒径が相対的に大きな結晶組織であるので、得られる結晶性薄膜をチャネル層として薄膜トランジスタを作製した場合、オン電流特性に優れた薄膜トランジスタを実現することができる。
 さらに、本発明に係る薄膜形成基板の製造方法の一態様において、前記帯形状の第1領域は、前記長軸の長さ内で連続していることが好ましい。
 これにより、電子移動度を向上させることができるとともに、均一性に優れた結晶性シリコン薄膜を実現することができる。
 さらに、本発明に係る薄膜形成基板の製造方法の一態様において、前記結晶化工程において、前記帯形状の第1領域は、平均結晶粒径が100nm以上500nm以下の結晶粒を含有するように形成され、前記第2領域は、平均結晶粒径が30nm以上100nm未満の結晶粒を含有するように形成されることが好ましい。
 このように構成することで基板面内均一性に優れた結晶組織とすることができ、特性ばらつきの少ない素子を実現することができる。また、平均結晶粒径が100nm以上500nm以下の結晶粒からなる第1領域を含む薄膜を用いて薄膜トランジスタを作製することによって、オン電流特性に優れた薄膜トランジスタを実現することができる。
 また、本発明に係る薄膜形成基板の製造方法の一態様では、前記結晶化工程において、前記帯形状の第1領域は、均一な間隔で複数形成されることが好ましい。
 これにより、さらに基板面内均一性に優れた結晶組織とすることができ、特性ばらつきのない素子を実現することができる。
 また、本発明に係る薄膜形成基板の製造方法の一態様では、前記結晶化工程において、複数の前記帯形状の第1領域の各々は、ラマン分光分析によるラマンシフトのピークスペクトルの半値幅が4.8cm-1以上5.5cm-1以下となるように形成されることが好ましい。
 これにより、結晶粒径が大きく帯形状の第1領域を含む結晶組織によって構成された結晶性シリコン薄膜を形成することができる。
 また、本発明に係る薄膜形成基板の製造方法の一態様では、前記結晶化工程において、複数の前記帯形状の第1領域は、隣り合う前記帯形状の第1領域の間隔が2.0μm以下となるように形成されることが好ましい。
 これにより、基板面内において結晶粒径が大きく帯形状の第1領域を均一な間隔で形成することができる。従って、このような第1領域を含む結晶性薄膜をチャネル層とする薄膜トランジスタを作製することで、オン電流特性に優れるとともに面内均一性に優れた薄膜トランジスタアレイを実現することができる。
 また、本発明に係る薄膜形成基板の製造方法の一態様において、前記所定の波長の光線は、波長が405nm~632nmのレーザーであることが好ましい。
 これにより、高速走査によるレーザー照射で、帯形状の第1領域と第2領域とが混在する結晶組織を容易に形成することができる。また、このようなレーザーを用いることにより、高速走査を容易に実現できるので、帯形状の第1領域の間隔の均一化を容易に実現することができる。
 また、本発明に係る薄膜形成基板の製造方法の一態様において、前記レーザーの強度分布の短軸幅を前記所定の速度で除した値が、60μsec以下であることが好ましい。
 これにより、帯形状の第1領域の間隔を均一にすることができる。
 また、本発明に係る薄膜形成基板の製造方法の一態様において、前記薄膜は、シリコン薄膜であることが好ましい。
 これにより、第1領域と第2領域とが混在する結晶性シリコン薄膜を形成することができる。
 また、本発明に係る薄膜基板の一態様は、基板と、前記基板上に形成され、結晶化された結晶化領域を含む薄膜と、を含み、前記結晶化領域は、帯形状の第1領域と、前記帯形状の第1領域に隣接する第2領域とを含み、前記帯形状の第1領域の平均結晶粒径は、前記第2領域の平均結晶粒径よりも大きい。
 本態様における薄膜基板は、基板面内において相対的に結晶粒径の大きい帯形状の第1領域と相対的に結晶粒径の小さい第2領域とが含まれる薄膜を備える。これにより、1つのデバイスにおいて、異なる特性を有する2種類の素子(薄膜トランジスタ等)を容易に作製することが可能となる。
 また、本発明に係る薄膜基板の一態様において、前記帯形状の第1領域は、平均結晶粒径が100nm以上500nm以下の結晶粒を含有し、前記第2領域は、平均結晶粒径が30nm以上100nm未満の結晶粒を含有することが好ましい。
 このように構成することで基板面内均一性に優れた結晶組織とすることができ、特性ばらつきの少ない素子を実現することができる。また、平均結晶粒径が100nm以上500nm以下の結晶粒からなる第1領域を含む薄膜を用いて薄膜トランジスタを作製することによって、オン電流特性に優れた薄膜トランジスタを実現することができる。
 また、本発明に係る薄膜基板の一態様において、前記帯形状の第1領域は、均一な間隔で複数形成されることが好ましい。
 これにより、さらに基板面内均一性に優れた結晶組織とすることができ、特性ばらつきのない素子を実現することができる。
 また、本発明に係る薄膜基板の一態様において、複数の前記帯形状の第1領域の各々は、ラマン分光分析によるラマンシフトのピークスペクトルの半値幅が4.8cm-1以上5.5cm-1以下となるように形成されることが好ましい。
 これにより、結晶粒径が大きく帯形状の第1領域を含む結晶組織によって構成された結晶性シリコン薄膜を形成することができる。
 また、本発明に係る薄膜基板の一態様において、隣り合う前記帯形状の第1領域の間隔は、2.0μm以下であることが好ましい。
 これにより、基板面内において結晶粒径が大きく帯形状の第1領域を均一な間隔で形成することができる。従って、このような第1領域を含む結晶性薄膜をチャネル層とする薄膜トランジスタを作製することで、オン電流特性に優れるとともに面内均一性に優れた薄膜トランジスタを実現することができる。
 また、本発明に係る薄膜基板の一態様において、前記結晶化領域は、前記薄膜に対して、所定の波長の光線を所定の速度で相対走査させつつ照射することで前記薄膜を結晶化することより形成され、前記薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、前記帯形状の第1領域は、前記相対走査の方向に対して交差する方向に延びていることが好ましい。
 これにより、レーザーの投入エネルギーを上げることなく同時に形成された第1領域と第2領域とが混在する結晶組織によって構成された結晶性薄膜とすることができる。
 また、本発明に係る薄膜基板の一態様において、前記薄膜は、シリコン薄膜であることが好ましい。
 これにより、第1領域と第2領域とが混在する結晶性シリコン薄膜を形成することができる。
 (実施の形態)
 以下、本発明に係る薄膜形成基板の製造方法及び薄膜基板並びに薄膜トランジスタの製造方法及び薄膜トランジスタについて、図面を参照しながら説明するが、本発明は、請求の範囲の記載に基づいて特定される。よって、以下の実施の形態における構成要素のうち、請求項に記載されていない構成要素は、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。
 (薄膜形成基板の製造方法)
 まず、本発明に係る薄膜形成基板の製造方法の一実施の形態として、基板上に結晶性シリコン薄膜を形成する方法について、図1を用いて説明する。図1は、本発明の実施の形態に係る薄膜形成基板の製造方法における各工程を模式的に示す断面図及び平面図である。図1において、(a2)~(e2)は平面図であり、(a1)~(e1)は、それぞれ(a2)~(e2)のX-X線における断面図である。
 まず、図1の(a1)及び(a2)に示すように、基板10を準備する(基板準備工程)。基板10としては、例えばガラス基板を用いることができる。ここで、基板の準備には、例えばガラス基板の表面に付着した付着物等を除去する洗浄工程、ガラス基板表面のアルカリ金属成分を除去するためのガラス基板表面エッチング工程、あるいはガラス基板に含まれているアルカリ金属成分が半導体膜などに無拡散することを防止するためにSiN膜などのアンダーコート層をガラス基板表面に形成する工程、などが一例として含まれていても構わない。
 次に、図1の(b1)及び(b2)に示すように、基板10の上方に、非結晶性半導体薄膜などの薄膜を形成する(薄膜形成工程)。例えば、基板10の上方に、アモルファスシリコン膜からなる非結晶のシリコン薄膜13を形成する。
 次に、図1の(c1)及び(c2)に示すように、非結晶のシリコン薄膜13を結晶化させるために所定の波長の光線を準備し、非結晶のシリコン薄膜13に対して所定の光を照射する準備を行う。本実施の形態における所定の波長の光線としては、後述するように、所定の光強度分布を有するレーザー光30を用いており、非結晶のシリコン薄膜13表面におけるレーザー光30の強度分布形状は、レーザー光30の走査方向40に短軸を有するとともに走査方向40に対して交差する方向に長軸を有する略矩形状である。これにより、非結晶のシリコン薄膜13表面におけるレーザー光30の照射形状も、レーザー光30の走査方向40に短軸を有するとともに走査方向40に対して交差する方向に長軸を有する略矩形状となる。なお、図1の(c2)のレーザー光30の上部に図示される曲線は、レーザー光30の短軸方向における強度分布の一例を示すものであり、例えばガウシアン曲線の強度分布を有する。
 次に、図1の(c1)及び(c2)から図1の(d1)及び(d2)に示すように、非結晶のシリコン薄膜13に対してレーザー光30を所定の速度で走査方向40に相対走査させて、シリコン薄膜13にレーザー光30を照射する。これにより、レーザー光30が照射された領域のシリコン薄膜13を結晶化させて、結晶化領域50を含む多結晶シリコン薄膜である結晶性シリコン薄膜15を形成する(結晶化工程)。すなわち、レーザー光30が照射された非結晶のシリコン薄膜13の領域は、レーザー光30による熱エネルギーによってアニールされて結晶化し、結晶性シリコン薄膜15となる。なお、その後、非結晶のシリコン薄膜13へのレーザー光30の照射を所定の位置まで続けることにより、図1の(e1)及び(e2)に示すように、シリコン薄膜13における所定領域の結晶化が完了する。
 このとき、図1の(d2)及び(e2)に示すように、結晶化領域50には、レーザー光30の相対走査の方向(走査方向40)に対して交差する方向に延びる帯形状の第1領域51と、当該第1領域51に隣接する第2領域52とが形成される。なお、図1の(d2)及び(e2)において、帯形状の第1領域51と第2領域52とは、Y軸方向に曲線状となるように例示されているが、レーザー光30の走査方向に対して交差する方向に延びる形状となっていればよく、例えば図11に示すような直線状となっていてもよい。また、レーザー光の走査方向に対して交差する、とは、例えば図1の(d2)にも示すように、レーザー光30の走査方向をX軸方向とすると、X軸方向に直交する方向(Y軸方向)だけではなく、X軸方向からY軸方向に任意の角度で傾いた方向をも意味し、X軸方向と交差する方向であれば良い。
 ここで、結晶性シリコン薄膜15における結晶化領域50の結晶組織について、図2を用いて詳細に説明する。図2は、本発明の実施の形態における結晶性シリコン薄膜15の結晶化領域50の結晶組織の状態を模式的に示す上面図であり、図1の(e2)の破線で囲まれる領域Rの拡大図である。
 図2に示すように、結晶性シリコン薄膜15は、結晶粒径が異なる複数の結晶粒(結晶粒子)によって構成されており、結晶粒の境界は結晶粒界を形成している。そして、本実施の形態における結晶性シリコン薄膜15の結晶化領域50は、レーザー光30の走査方向40に対して交差する方向の一形態である略直交する方向に延びる帯形状の第1領域(帯形状の第1領域)51と、レーザー光30の走査方向40に対して交差する方向の一形態である略直交する方向に延びる帯形状の第2領域(帯形状の第2領域)52とが混在した結晶組織によって構成されている。
 第1領域51と第2領域52とは走査方向40において互いに隣接し、帯形状の第1領域51と帯形状の第2領域52とが交互に現れるように形成されている。このように第1領域51と第2領域52とが混在する結晶組織は、シリコン薄膜13の結晶化工程において、レーザー光30を走査方向40に所定の走査速度で走査させることで、走査方向40に略垂直な方向に帯形状で形成される。
 また、第1領域51は、平均結晶粒径が相対的に大きい結晶粒が帯状に連なって形成されている。また、第2領域52は、平均結晶粒径が相対的に小さい結晶粒が帯状に連なって形成されている。すなわち、第1領域51と第2領域52とは、第1領域51におけるシリコン粒子の平均結晶粒径が第2領域52におけるシリコン粒径の平均結晶粒径よりも大きくなるように形成されている。本実施の形態において、第1領域51におけるシリコン結晶粒の平均結晶粒径は100nm以上500nm以下であり、第2領域52におけるシリコン結晶粒の平均結晶粒径は30nm以上100nm未満である。なお、第2領域52は、非結晶質のアモルファス中に第1領域51に含まれる結晶粒の平均結晶粒径より小さい平均結晶粒径の結晶粒が含まれるものであってもよい。この態様によれば、例えばオフ特性に優れたスイッチ用TFTを実現する上で有用である。
 ここで、結晶性シリコン薄膜15を移動する電子や正孔などのキャリアについて考えると、結晶性シリコン薄膜15を移動するキャリアは複数の結晶粒を通過する(結晶粒間に存在する結晶粒界を通過する)ことになるが、結晶粒界は結晶欠陥であるので結晶粒界においてキャリアは捕獲されやすい。このため、結晶粒径が大きい程、結晶粒界の数が少なくなるのでキャリアが捕獲される確率が減少し、キャリアの移動度が向上する。従って、結晶性シリコン薄膜15内のキャリアは、第2領域52よりも相対的に結晶粒径が大きい第1領域51の方を移動する確率が高くなる。このように、結晶性シリコン薄膜15に第1領域51を形成することによってキャリアの移動度を向上させることができる。
 なお、本実施の形態における帯形状の第1領域51は、図1及び図2に示すように、略同じ幅で複数本形成されているが、レーザー光の照射条件を調整することによって、一本のみとすることもできる。また、第1領域51を複数本形成する場合、レーザー光30の走査速度を調整することにより、図1に示すように、隣り合う第1領域51の間隔を等間隔にすることにできる。すなわち、複数の第1領域51を均一ピッチで形成することができる。
 このように、本実施の形態に係る薄膜形成基板の製造方法によれば、非結晶のシリコン薄膜13(アモルファスシリコン膜)に対して所定の走査速度でレーザー光の照射を行うことにより、平均結晶粒径が大きく帯形状の第1領域51を形成することができる。
 より具体的には、本実施の形態では、シリコン薄膜13の全領域を上記第2領域52における平均結晶粒径の結晶性シリコン薄膜とするときの走査速度よりも速い走査速度である高速走査(高速スキャン)でレーザー光を照射している。これにより、第2領域52の中に、結晶粒径が大きく帯形状の第1領域51が現れるようにして結晶化領域50が形成される。このように、高速走査のレーザー照射によって帯形状の第1領域51が形成される理由について、以下考察する。
 高速走査でレーザー照射を行うと、低速走査でレーザー照射を行った場合と比べて、薄膜(シリコン薄膜)におけるある点での走査方向の温度プロファイルは短時間に急峻となる(短時間の間に高温となり、冷却される)。一方、走査方向に交差する方向(本実施の形態では略直交する方向)の温度プロファイルはほぼフラットである。この場合、走査方向では、急峻な温度勾配に沿って薄膜は短時間に急速加熱及び急速冷却されるが、走査方向に交差する方向(本実施の形態では略直交する方向)では、温度勾配がほぼないために結晶成長するのに十分な時間で高温状態が保たれる。その結果、レーザー光の走査方向に交差する方向では薄膜の結晶成長が促進され、レーザー光の走査方向に交差するラテラル方向に結晶成長し、この結果、レーザーの走査方向に交差する方向における結晶粒の結晶粒径が大きくなる。このように、レーザーの走査方向に一定以上の温度勾配が発生すると、レーザーの走査方向と交差する方向の結晶成長が助長されて結晶粒径が大きな結晶領域が生成される。本実施の形態では、レーザー光の走査方向に略直交する方向において非結晶のシリコン薄膜13のシリコンの結晶成長が促進され、図2に示すように、レーザーの走査方向と交差する方向に延びる帯形状の第1領域51が形成される。このとき、シリコンの結晶粒は結晶成長とともに体積が膨張することになるが、本実施の形態では、上記のように、第1領域51における結晶粒が第2領域52における結晶粒よりも結晶成長が促進されるので、第1領域51における結晶粒の方が第2領域52における結晶粒よりも体積が膨張することになる。これにより、第1領域51における結晶粒の粒界では、結晶粒同士が衝突しあって隆起している状態となる。
 以上のように、シリコン薄膜を結晶化する際のレーザー光の走査速度を速めることによって帯形状の第1領域51を形成することができるのであるが、このことは、本願発明者が鋭意検討した結果得られたものである。そして、この結果に基づいて、本願発明者は、レーザーの走査方向に一定以上の温度勾配を発生させることによって、レーザーの走査方向と交差する方向に結晶粒径が大きな結晶領域(第1領域51)を生成することができるという知見を得ることができた。また、結晶粒径が大きな結晶領域(第1領域51)を発生させるための急峻な温度勾配は、レーザー光の照射時間を短くすればよく、上述のように、レーザー光の走査速度を速くするだけではなく、レーザー光の強度分布における短軸幅を小さくすることによっても実現可能であると推察される。
 しかも、このような帯形状の第1領域51は、通常デバイス特性のばらつきの原因として考えられるのであるが、本願発明者は、さらに検討した結果、後述するように、レーザーの照射条件(レーザーの走査速度等)を調整することによって帯形状の第1領域51を均一な間隔で形成させることができるということを見出した。これにより、特性ばらつきのないデバイスを実現できるという新たな着想を得ることができた。
 次に、非結晶のシリコン薄膜13を結晶化する際の様子について、図3A及び図3Bを用いてさらに詳細に説明する。図3Aは、本発明の実施の形態に係る薄膜形成基板の製造方法において、非結晶のシリコン薄膜13にレーザー光30を照射する際の様子を模式的に示す斜視図である。また、図3Bは、本発明の実施の形態に係る薄膜形成基板の製造方法の結晶化工程で用いられるレーザー光30の強度分布(ビームプロファイル)を示す図である。
 図3Aに示すように、基板10上に形成された非結晶のシリコン薄膜13をレーザーによって結晶化させる際、レーザー光30は、シリコン薄膜13に対して所定の相対走査方向に相対走査させながら照射する。すなわち、レーザー光30及びシリコン薄膜13が形成された基板10の少なくともいずれか一方を移動させることで、非結晶のシリコン薄膜13に対してレーザー光30を相対走査させる。本実施の形態では、レーザー光30を固定し、図3Aに示すように、シリコン薄膜13が形成された基板10をX軸方向の第1方向41に移動させることによって、シリコン薄膜13に対してレーザー光30を走査方向40(X軸方向における第1方向41とは反対方向の第2方向)に走査した。なお、基板10をY軸方向に移動させてX軸方向の走査を複数回繰り返して行うことによって、シリコン薄膜13の全領域に対してレーザー光30を照射させることができる。
 また、本実施の形態で用いるレーザーは、連続発振型のレーザー(CWレーザー)であることが望ましい。CWレーザーは、連続的にレーザー光が発振されるため、パルスレーザーよりも高速化が可能である。また、CWレーザーは、パルスレーザーよりも走査速度が1桁以上速いため、スループットを容易に向上させることができる。
 また、本実施の形態で用いるレーザーは、波長が405nm~632nmのレーザーであることが好ましい。例えば、405nmのブルーレーザー光から632nmのグリーンレーザー光までの範囲の半導体レーザーを用いることができる。これは、波長が308nmのようなエキシマレーザーの場合、アモルファスシリコン膜の表面において光が全て吸収されるため、膜表面からの膜厚方向への温度勾配による縦方向の結晶成長が顕著となり、横方向成長で得られる第1領域51の形成が困難となるからである。なお、パルスレーザーであっても、405nm~632nmの波長領域範囲であれば、アモルファスシリコン膜の膜厚方向全体に対してレーザー光を透過させることができ、薄膜の横方向の結晶化を助長させることができるので、第1領域51が得られ易くなると推測される。
 また、本実施の形態におけるレーザー光は、図3Bに示すように、短軸(X軸)方向における光強度分布がガウシアン分布である凸形状の分布となるように、また、短軸方向に直交する長軸(Y軸)方向における光強度分布がトップフラット状の分布となるように、ビーム成形されている。なお、図3Bにおいて、ビーム短軸幅W1は、レーザー光30の短軸方向における強度分布の半値幅(FWHM:Full Width at Half Maximum)を表している。また、図3Bにおいてビーム長軸幅W2は、レーザー光の長軸方向における強度分布の長軸方向の幅(フラット幅)を表している。このように構成されたレーザー光30は、非結晶のシリコン薄膜13に照射される際、レーザー光30の強度分布の短軸方向を走査方向40として非結晶のシリコン薄膜13に対して相対的に走査される。このように、図3Bに示す強度分布を有するレーザー光30を用いてシリコン薄膜13にレーザー照射することにより、当該シリコン薄膜13におけるレーザー光30の照射形状を略矩形状とすることができる。
 なお、本実施の形態では、波長が532nmのグリーン光を発する半導体レーザーからなるCWレーザーを用いた。また、ビーム短軸幅W1は32μmとし、ビーム長軸幅W2は300μmとしており、ビーム長軸幅W2がビーム短軸幅W1よりも大きくなるように構成している。
 本実施の形態では、このようにビーム成形されたレーザー光30を用いて非結晶のシリコン薄膜13に対してレーザー照射を行うが、本願発明者は、上述のとおり、レーザー光30の照射時間に応じて(すなわち、レーザー光30の走査速度及びレーザー光30のビーム短軸幅W1に応じて)、得られる結晶性シリコン薄膜15の結晶組織が変化することを見出した。
 以下、結晶粒径が大きな帯状の結晶領域(第1領域51)を発生させるためのレーザー光30の照射条件(レーザーの走査速度及びレーザー光の短軸幅)に関し、レーザー光30の照射条件と結晶性シリコン薄膜15の結晶組織との関係について、図4及び図5A~図5Eを用いて説明する。図4は、本発明の実施の形態に係る薄膜形成基板の製造方法における結晶化工程において、レーザー光30の照射条件(走査速度及びビーム短軸幅)と結晶性シリコン薄膜15の結晶組織との関係を示す図である。また、図5A~図5Eは、図4の領域A~領域Eのレーザー照射条件に対応する結晶性シリコン薄膜15の結晶組織を模式的に示す図である。なお、レーザー光30の照射時間は、レーザー光30のビーム短軸幅W1(FWHM)を走査速度で除することによって算出され、照射時間=(短軸幅)/(走査速度)として表すことができる。
 図4の領域Aの範囲におけるレーザー光30の照射条件によってアモルファスシリコン膜からなる非結晶のシリコン薄膜13を結晶化すると、図5Aに示すように、アモルファスシリコン膜にアブレーション54が発生し、結晶性シリコン薄膜15に膜剥がれ等が発生する。このように、アブレーション54が発生する理由は、レーザー光の走査速度が遅すぎる、あるいは、レーザー光のビーム短軸幅W1が広すぎることにより、シリコン薄膜13への照射エネルギーが大きくなりすぎたからであると考えられる。
 一方、図4の領域Eの範囲におけるレーザー光の照射条件によってアモルファスシリコン膜からなる非結晶のシリコン薄膜13を結晶化すると、図5Eに示すように、溶融シリコン結晶ではなく、結晶粒径が小さい固相成長(SPC:Solid Phase Crystallization)による結晶粒からなるSPC結晶組織53によって構成された結晶性シリコン薄膜15となる。このようなSPC結晶組織53が形成される理由は、レーザー光の走査速度が速すぎる、あるいは、レーザー光のビーム短軸幅W1が狭すぎることにより、シリコン薄膜13への照射エネルギーが小さくなり、シリコンの融点1414℃以下の温度で結晶化したからであると考えられる。
 また、図4の領域Aと領域Eとで挟まれた領域B~領域Dの範囲におけるレーザー光30の照射条件によってアモルファスシリコン膜からなる非結晶のシリコン薄膜13を結晶化すると、いずれの場合も溶融シリコン結晶を得ることができるが、この溶融シリコン結晶が形成される領域B~領域Dのうち、レーザー光の走査速度が比較的に遅い、あるいは、レーザー光のビーム短軸幅W1が比較的に広い領域Bの照射条件では、図5Bに示すように、帯形状の第1領域51が形成されていない結晶組織によって構成された結晶性シリコン薄膜15が形成される。なお、図5Bにおける結晶性シリコン薄膜15の結晶組織は、第2領域52に相当する平均結晶粒径のシリコン粒子のみによって構成されている。
 そして、領域Bのレーザー光30の照射条件よりも、走査速度が速い、あるいは、ビーム短軸幅W1が狭い照射条件にすると、レーザー光30の走査方向40と略垂直な方向に延びる帯形状で、かつ平均結晶粒径が他の部分(第2領域52)よりも大きい第1領域51が形成された結晶組織の結晶性シリコン薄膜15が形成される。
 この場合、図4の領域Cの範囲におけるレーザー光30の照射条件とすると、図5Cに示すように、帯形状の第1領域51は、不均一な間隔でランダムに発生するが、領域Cのレーザー光30の照射条件よりも、さらに、走査速度が速い、あるいは、ビーム短軸幅W1が狭い条件である図4の領域Dの範囲におけるレーザー光30の照射条件にすると、図5Dに示すように、帯形状の第1領域51は、等間隔で均一に発生する。
 ここで、隣り合う第1領域51の間隔(ピッチ幅)とレーザー光の照射時間との関係について、図6A及び図6Bを用いて説明する。図6Aは、本発明の実施の形態に係る薄膜形成基板の製造方法の結晶化工程において、レーザー光30の走査速度に対する第1領域51のピッチ幅を示す図である。また、図6Bは、図6Aの横軸を、走査速度からレーザー照射時間に置換した図である。すなわち、レーザー照射時間=ビーム短軸幅/走査速度=32(μm)/走査速度(mm/s)として置換している。例えば、図6Bにおけるレーザー照射時間が60(μsec)は、図6Aにおける走査速度が約533(mm/s)に対応する。なお、図6A及び図6Bの各データは、幅が25μmのゲート電極上における第1領域51のピッチ幅を測定したものであり、第1領域51の帯形状幅がゲート電極の幅(25μm)を超えた場合、第1領域51のピッチ幅は25μmとしてプロットしている。
 図6A及び図6Bに示すように、結晶化時におけるレーザー光30の走査速度が550mm/s以上になると、すなわち、レーザー光30の照射時間が約58.2(μ・sec)以下になると、隣り合う第1領域51の間隔は、2.0μm以下となり、ほぼ飽和していることが分かる。すなわち、隣り合う第1領域51の間隔が2.0μm以下となるように第1領域51を形成することにより、隣り合う第1領域51を等間隔で形成することができる。このように、レーザー光30の照射時間(短軸幅/走査速度)が60μsec以下となるように、ビーム短軸幅W1及びレーザー光30の走査速度の条件を決定することにより、図5Dに示されるように、均一な間隔で形成された第1領域51を得ることができる。なお、隣り合う第1領域51の間隔(ピッチ幅)とは、隣り合う2つの第1領域51において、一方の第1領域51の幅方向の中心位置と他方の第1領域51の幅方向の中心位置との間の距離のことである。
 以上、本発明の実施の形態に係る薄膜形成基板の製造方法によれば、図4の領域C又は領域Dの範囲におけるレーザー光30の照射条件によってアモルファスシリコン膜などの薄膜を結晶化することにより、レーザー光30の投入エネルギーを上げることなく、同時に形成された結晶状態が異なる領域を含む結晶組織によって構成された結晶性薄膜を、高速で形成することができる。すなわち、同時に形成された平均結晶粒径の異なる帯形状の第1領域51と第2領域52とを含む結晶化領域50を有する結晶性薄膜が形成された薄膜形成基板を製造することができる。これにより、1つのデバイスに、異なる特性を有する2種類の素子(薄膜トランジスタ等)を容易に作製することが可能となる。
 さらに、本実施の形態によれば、結晶粒径の大きな結晶化領域(第1領域51)を含む結晶性薄膜を形成することができるので、例えば、本実施の形態に係る結晶性薄膜をチャネル層として薄膜トランジスタを作製した場合、移動度が高くオン電流特性に優れた薄膜トランジスタを実現することができる。
 さらに、本実施の形態によれば、このような帯形状の第1領域51を含む結晶化領域50は、連続発振のレーザー光30を高速走査で照射することによって形成することができるので、パルスレーザーによって結晶化する場合と比べて、高スループット化を実現することもできる。すなわち、第2領域52に相当する結晶粒径の結晶粒のみからなる結晶組織によって構成される結晶性シリコン薄膜15をレーザー結晶化によって形成する場合と比べて、スループットを向上させることができる。
 しかも、パルスレーザーを用いて非結晶性のシリコン膜を結晶化する場合、パルス発振によって高速走査すると、先行特許文献2(特開2008-016717)にも開示されているように、図7に示すように、レーザーの走査方向と交差する方向において結晶粒径の異なる2つの縦筋結晶領域(縦筋領域A及び縦筋領域B)が形成されやすい。これは、可視光の波長領域において、結晶性シリコン薄膜の光吸収率が非結晶のシリコン膜のおよそ1/10であるため、1ショット目のパルスレーザー照射によって形成された結晶組織に、2ショット目のパルスレーザーが照射されたとしても光吸収されにくくなり、1ショット目のパルスレーザー照射で形成された結晶組織が残りやすくなっているためであると考えられる。この場合、図7において小さい結晶粒径からなる領域Bの結晶組織には、1ショット目のエッジ領域に形成された30nm以下の微結晶組織も存在すると推測される。それゆえに、A領域とB領域との結晶粒径の差が大きくなるという問題がある。また、先行特許文献2の図5にも示されるように、パルスレーザーによって形成された縦筋結晶領域は、レーザーの走査方向と交差する方向において断続的に形成されており、当該縦筋には連続性が無い。このため、縦筋の連続性が途切れている位置がキャリアのトラップとなり、キャリアの移動度を低下させてしまうともに、縦筋の不連続性によって薄膜特性の均一性が低下するという問題もある。なお、先行特許文献2では、段落[0048]~[0051]において、縦筋の発生は好ましくない旨が指摘されている。
 これに対して、本実施の形態では、帯形状の第1領域51は、レーザーの照射領域の長軸方向(Y方向)の長さ内において連続して形成されている。すなわち、帯形状の第1領域51は、レーザー光の長軸方向(Y方向)に対してレーザー光の長軸幅にわたって途切れることなく連続的に発生している。これにより、キャリアの移動度を向上させることができるとともに、均一性に優れた結晶性シリコン薄膜を実現することができる。
 また、本実施の形態において、結晶性シリコン薄膜15は、図4における領域Dの範囲のレーザー照射条件によって形成することが好ましい。領域Dの範囲の条件によって非結晶のシリコン薄膜13を結晶化させて結晶性シリコン薄膜15を形成することにより、帯形状の第1領域51を均一な間隔で形成することができる。また、本実施の形態における結晶性シリコン薄膜15の第1領域51の結晶粒径は、100nm以上500nm以下であってマイクロメーターオーダ未満の大きさ、すなわち大粒径ではない大きさである。このように、帯形状の第1領域51を、100nm以上500nm以下の結晶粒径で、かつ、均一な間隔で形成することができるので、基板面内均一性に優れた結晶組織とすることができ、特に、例えば大画面表示装置用のTFTアレイ基板を形成する際に特性ばらつきのない素子を容易に作製することができる。
 また、本実施の形態において、結晶化工程に用いるレーザー光は、以下の理由により、CWレーザーを用いたグリーンレーザー光であることが好ましい。
 CWレーザーを用いたグリーンレーザー光によって結晶性シリコン薄膜15を形成することで、この結晶性シリコン薄膜15をチャネル層とする薄膜トランジスタは、移動度が高くオン電流特性に優れたものとなる。一方、スループットを向上させるには、レーザー光のビーム長軸幅を大きくして走査回数を減少させることが考えられるが、グリーンレーザー光でビーム長軸幅を大きくした場合、光干渉の影響によって長軸方向のビーム強度均一性を確保することが困難となる。また、スループットを向上させるには、レーザー装置に複数のレーザーを搭載させて走査回数を減少させることも考えられるが、レーザー数増加による装置のイニシャルコストが大幅に上昇すると問題がある。このように、従来、グリーンレーザー光を用いた薄膜の結晶化ではスループットを向上させることが困難であったが、本実施の形態では、レーザー光を高速走査させることで所望の結晶化領域を形成することができるので、スループットの向上を図ることもできる。従って、本実施の形態に係る薄膜形成基板の製造方法は、グリーンレーザー光を用いた薄膜の結晶化に適している。
 次に、本発明の実施の形態に係る薄膜形成基板の製造方法の結晶化工程において用いられる結晶性半導体薄膜形成装置100について、図8を用いて説明する。図8は、本発明の実施の形態に係る結晶性半導体薄膜形成装置の構成を示す図である。本実施の形態に係る結晶性半導体薄膜形成装置100は、図3Bに示すような光強度分布を有するレーザー光30を成形して、非結晶のシリコン薄膜13などの非結晶半導体薄膜を結晶化するための装置である。
 図8に示すように、結晶性半導体薄膜形成装置100は、CWレーザー光を用いたシリコン薄膜の結晶化装置であって、基板保持部110と、レーザー光発振部120と、光学系部130と、走査制御部141及びレーザー光強度分布調整部142を含む制御部140とを備える。
 基板保持部110は、結晶化対象である非結晶のシリコン薄膜が形成された基板10を保持するステージである。レーザー光30の照射面である基板10の表面10Sには、非結晶のシリコン薄膜として、例えばアモルファスシリコン膜(非晶質シリコン膜)が形成されている。
 レーザー光発振部120は、非結晶のシリコン薄膜を結晶化させるためのレーザー光30を発振するレーザー光源である。本実施の形態におけるレーザー光発振部120には、4つの半導体レーザー装置が設けられており、各半導体レーザー装置は、いずれも左右対称の単峰状の光強度分布を有するレーザー光を発振する。半導体レーザー装置としては、例えば、405nm~632nmの波長帯域であるブルーレーザー光又はグリーンレーザー光を、例えば10~100μsecのマイクロセカンドオーダーで連続発振するものを用いることができる。
 光学系部130は、複数のビーム成形レンズからなり、レーザー光発振部120から発振させたレーザー光30を、所定の強度分布にビーム成形するともにシリコン薄膜の所定の領域に照射させるように構成されている。本実施の形態において、光学系部130は、ホモジナイザー131、コンデンサレンズ132及びDOE(Diffractive Optical Element:回折光学素子)レンズ133によって構成されている。なお、ビーム成形レンズとしては、長軸方向のビームプロファイルを成形するレンズと、短軸方向のビームプロファイルを成形するレンズとを別々に設けても構わない。
 制御部140において、走査制御部141は、非結晶のシリコン薄膜に照射するレーザー光30が当該シリコン薄膜に対して相対的にビームスキャンされるように、基板保持部110又は光学系部130を制御する。本実施の形態における走査制御部141は、図3Aに示すように、基板保持部110を所定の位置に移動するように制御して、基板10を移動させる。
 また、レーザー光強度分布調整部142は、所定の強度分布となるようにレーザー光30を成形する。本実施の形態におけるレーザー光強度分布調整部142は、光学系部130を構成するレンズを調整することによりレーザー光発振部120から発振されたレーザー光30を成形し、図3Bに示すような光強度分布を有するレーザー光30となるようにビーム成形する。
 なお、結晶性半導体薄膜形成装置100は、その他に、ミラーや集光レンズ等の光学部品を備えていてもよいし、レーザー光のビームプロファイルを測定するためのビームビームプロファイラーを備えていてもよい。ビームプロファイラーによってビームプロファイルを測定することにより、この測定結果に基づいて、シリコン薄膜に照射するレーザー光が所望の光強度分布となるように、レーザー光強度分布調整部142によって光学系部130のレンズの位置等を調整することができる。
 次に、本発明の実施の形態に係る薄膜トランジスタの製造方法について説明する。本発明の実施の形態に係る薄膜トランジスタの製造方法は、基板を準備する工程(基板準備工程)と、基板の上方にゲート電極を形成する工程(ゲート電極形成工程)と、基板の上方にゲート絶縁膜を形成する工程(ゲート絶縁膜形成工程)と、基板の上方にソース電極及びドレイン電極を形成する工程(ソースドレイン電極形成工程)と、基板の上方にシリコン薄膜を形成する工程(シリコン薄膜形成工程)と、レーザー光を照射することにより基板に形成されたシリコン薄膜を結晶化して結晶性シリコン薄膜を形成する工程(シリコン薄膜結晶化工程)とを含む。
 シリコン薄膜結晶化工程は、上述の薄膜形成基板の製造方法における結晶化工程と同様の方法によって行うことができる。なお、シリコン薄膜結晶化工程によって得られる結晶性シリコン薄膜は、薄膜トランジスタのチャネル層となる。
 また、薄膜トランジスタには、ボトムゲート型とトップゲート型の2種類の構造がある。ボトムゲート型の薄膜トランジスタは、層構成が、下から順に、ゲート電極、ゲート絶縁膜、チャネル層(シリコン半導体膜)となっている。一方、トップゲート型の薄膜トランジスタは、層構成が、下から順に、チャネル層、ゲート絶縁膜、ゲート電極となっている。以下、ボトムゲート型及びトップゲート型の各薄膜トランジスタの製造方法について、図面を参照しながら具体的に説明する。
 まず、本発明の実施の形態に係るボトムゲート型の薄膜トランジスタの製造方法について、図9を用いて説明する。図9は、本発明の実施の形態に係るボトムゲート型の薄膜トランジスタの製造方法における各工程を模式的に示す断面図である。
 図9の(a)に示すように、まず、基板10を準備する(基板準備工程)。基板10としては、例えば、ガラス基板を用いることができる。なお、その後、基板10上に、シリコン酸化膜又はシリコン窒化膜等の絶縁膜からなるアンダーコート膜を形成してもよい。
 次に、図9の(b)に示すように、基板10の上方に、ゲート電極11をパターン形成する(ゲート電極形成工程)。例えば、基板10の上方の全面に、膜厚が10~500nmの範囲となるように、モリブデン(Mo)、タングステン(W)、銅(Cu)、銀(Ag)、アルミニウム(Al)、クロム(Cr)、チタン(Ti)、タンタル(Ta)、あるいはそれらを組み合わせた合金などのゲート金属膜をスパッタリング法によって成膜し、フォトリソグラフィ及びウェットエッチングを施すことにより、前記ゲート金属膜をパターニングして所定形状のゲート電極11を形成する。
 次に、図9の(c)に示すように、基板10の上方に、ゲート絶縁膜12を形成する(ゲート絶縁膜形成工程)。例えば、ゲート電極11を覆うようにして、基板10の上方の全面に、膜厚が10~500nmの範囲となるように、酸化シリコン(SiO)、窒化シリコン(SiN)、酸窒化シリコン(SiON)等の絶縁膜からなるゲート絶縁膜12をプラズマCVD法によって成膜する。ここで、ゲート絶縁膜は積層構造でも構わない。
 次に、図9の(d)に示すように、基板10の上方に、非結晶のシリコン薄膜13を形成する(シリコン薄膜形成工程)。例えば、ゲート絶縁膜12上に、膜厚が10~200nmの範囲となるように、非結晶のシリコン薄膜13としてアモルファスシリコン膜をプラズマCVD法によって成膜する。
 次に、図9の(e)に示すように、非結晶のシリコン薄膜13に対してレーザー光を相対走査させつつ、レーザー光をシリコン薄膜13の所定領域に照射することにより、非結晶のシリコン薄膜13を結晶化して結晶性シリコン薄膜15を形成する(シリコン薄膜結晶化工程)。この工程は、上述の薄膜形成基板の製造方法における結晶化工程と同様の方法によって行う。
 具体的には、図4の領域C又は領域Dに示される照射条件にて、非結晶のシリコン薄膜13に対してX軸方向(紙面垂直方向)にレーザー光を走査させてレーザー照射を行う。なお、図9の(e)では、非結晶のシリコン薄膜13の一部の領域を結晶化させているが、非結晶のシリコン薄膜13の全領域を結晶化させても構わない。
 次に、フォトリソグラフィ及びウェットエッチングを施すことにより、レーザー未照射の未結晶化領域であるシリコン薄膜13及びレーザー照射によって結晶化された結晶性シリコン薄膜15を選択的にパターニングすることにより、非結晶のシリコン薄膜13を除去するとともに結晶性シリコン薄膜15を島状にパターン形成する。
 次に、図9の(f)に示すように、プラズマCVDによる成膜時に、アモルファスシリコン膜にリン等の不純物をドーピングして、膜厚が10~100nmの範囲となるように、コンタクト層16となる不純物ドープのn層を形成する。その後、同図に示すように、コンタクト層16の上に、例えばMoW/Al/MoWの三層構造のソースドレイン金属膜17をスパッタリング法によって成膜する。
 次に、図9の(g)に示すように、基板10の上方に、ソース電極17S及びドレイン電極17Dを形成する(ソースドレイン電極形成工程)。例えば、フォトリソグラフィ及びウェットエッチングを施すことにより、ソースドレイン金属膜17をパターニングすることにより、対向する一対のソース電極17S及びドレイン電極17Dを形成する。
 その後、ソースドレイン金属膜17をパターニングするときのレジストを残したままドライエッチングを施すことによりコンタクト層16を分離して、対向する一対のコンタクト層16を形成する。これにより、図9の(g)に示すように、ボトムゲート型の薄膜トランジスタを製造することができる。
 以上、本実施の形態に係るボトムゲート型の薄膜トランジスタの製造方法によれば、チャネル層となるシリコン薄膜を結晶化する際におけるレーザー光の照射条件を、図4の領域C又は領域Dの範囲となるようにビーム短軸幅と走査速度とを制御することで、第2領域52よりも平均結晶粒径が大きく帯形状の第1領域51を含む結晶組織によって構成された結晶性シリコン薄膜15を形成することができる。これにより、レーザー出力を上げることなく、かつ走査速度を高速化させながら、結晶性シリコン薄膜15の結晶粒径を大きく形成することができるので、高スループット化を図りながらオン電流特性に優れた薄膜トランジスタを製造することができる。
 なお、結晶性シリコン薄膜15は、領域Dの範囲のレーザーの照射条件にて形成することがより好ましい。領域Dの範囲の条件によって非結晶のシリコン薄膜13を結晶化させて結晶性シリコン薄膜15を形成することにより、帯形状の第1領域51の間隔を均一化することができる。これにより、面内均一性に優れたTFT特性を有する複数の薄膜トランジスタからなる薄膜トランジスタアレイを製造することができる。
 次に、本発明の実施の形態に係るトップゲート型の薄膜トランジスタの製造方法について、図10を用いて説明する。図10は、本発明の実施の形態に係るトップゲート型の薄膜トランジスタの製造方法における各工程を模式的に示す断面図である。
 図10の(a)に示すように、まず、基板10を準備する(基板準備工程)。基板10としては、例えば、ガラス基板を用いることができる。
 次に、図10の(b)に示すように、基板10上に、シリコン酸化膜又はシリコン窒化膜等の絶縁膜からなるアンダーコート膜18を形成する。その後、同図に示すように、基板10の上方に、非結晶のシリコン薄膜13を形成する(シリコン薄膜形成工程)。例えば、アンダーコート膜18の上に、非結晶のシリコン薄膜13としてアモルファスシリコン膜をプラズマCVD等によって成膜する。
 次に、図10の(c)に示すように、非結晶のシリコン薄膜13に対してレーザー光を相対走査させつつ、レーザー光をシリコン薄膜13の所定領域に照射することにより、非結晶のシリコン薄膜13を結晶化して結晶性シリコン薄膜15を形成する(シリコン薄膜結晶化工程)。この工程は、上述の薄膜形成基板の製造方法における結晶化工程と同様の方法、すなわち、図9の(e)に示すようにボトムゲート型の薄膜トランジスタの製造方法におけるシリコン薄膜結晶化工程と同様の方法によって行う。
 具体的には、図4の領域C又は領域Dに示されるレーザー光の照射条件にて、非結晶のシリコン薄膜13に対してX軸方向(紙面垂直方向)にレーザー光を走査させてレーザー照射を行う。なお、図10の(c)では、非結晶のシリコン薄膜13の一部の領域を結晶化させているが、非結晶のシリコン薄膜13の全領域を結晶化させても構わない。
 次に、図10の(d)に示すように、フォトリソグラフィ及びウェットエッチングを施すことにより、レーザー未照射の未結晶化領域であるシリコン薄膜13及びレーザー照射によって結晶化された結晶性シリコン薄膜15を選択的にパターニングすることにより、非結晶のシリコン薄膜13を除去するとともに結晶性シリコン薄膜15を島状にパターン形成する。
 その後、同図に示すように、基板10の上方に、ゲート絶縁膜12を形成する(ゲート絶縁膜形成工程)。例えば、島状の結晶性シリコン薄膜15を覆うようにして、基板10の上方の全面に、二酸化シリコン等の絶縁膜からなるゲート絶縁膜12をプラズマCVD等によって成膜する。
 次に、図10の(e)に示すように、基板10の上方に、ゲート電極11をパターン形成する(ゲート電極形成工程)。例えば、基板10の上方の全面にモリブデンタングステン(MoW)等のゲート金属膜をスパッタによって成膜し、フォトリソグラフィ及びウェットエッチングを施すことによりゲート金属膜をパターニングして、結晶性シリコン薄膜15の上方にゲート絶縁膜12を介して所定形状のゲート電極11を形成する。
 次に、図10の(f)に示すように、ゲート電極11をマスクとして結晶性シリコン薄膜15の両端部に不純物をライトドープすることにより、LDD(Lightly Doped Drain)領域19を形成する。
 次に、図10の(g)に示すように、基板10の上方に、パッシベーション膜20を形成する。例えば、ゲート電極11及びゲート絶縁膜12を覆うようにして、基板10の上方の全面に、二酸化シリコン等の絶縁膜からなるパッシベーション膜20をプラズマCVD等によって成膜する。その後、同図に示すように、LDD領域19を露出させるようにパッシベーション膜20にコンタクトホールを形成する。
 次に、図10の(h)に示すように、パッシベーション膜20のコンタクトホールを埋めるように、パッシベーション膜20上に一対のソース電極17S及びドレイン電極17Dを形成する。これにより、図10の(h)に示すように、トップゲート型の薄膜トランジスタを製造することができる。
 以上、本実施の形態に係るボトムゲート型の薄膜トランジスタの製造方法によれば、チャネル層となるシリコン薄膜を結晶化する際におけるレーザー光の照射条件を、図4の領域C又は領域Dの範囲となるようにビーム短軸幅と走査速度を制御することで、第2領域52よりも平均結晶粒径が大きい帯形状の第1領域51を含む結晶組織によって構成された結晶性シリコン薄膜15を形成することができる。これにより、レーザー出力を上げることなく、かつ走査速度を高速化させながら、結晶性シリコン薄膜15の結晶粒径を大きく形成することができるので、高スループット化を図りながらオン電流特性に優れた薄膜トランジスタを製造することができる。
 なお、結晶性シリコン薄膜15は、領域Dの範囲のレーザーの照射条件にて形成することがより好ましい。領域Dの範囲の条件によって非結晶のシリコン薄膜13を結晶化させて結晶性シリコン薄膜15を形成することにより、帯形状の第1領域51の間隔を均一化することができる。これにより、面内均一性に優れたTFT特性を有する複数の薄膜トランジスタからなる薄膜トランジスタアレイを製造することができる。
 (実施例)
 次に、本発明に係る薄膜形成基板の製造方法及び薄膜基板並びに薄膜トランジスタの製造方法及び薄膜トランジスタの実施例について、図9を参照しながら説明する。なお、ここでは、ボトムゲート型の薄膜トランジスタを製造する場合の工程を用いて説明するが、トップゲート型の薄膜トランジスタの場合にも適用することができる。
 まず、図9の(a)に示すように、基板10としてガラス基板を準備し、そのガラス基板上に、シリコン酸化膜の絶縁膜からなるアンダーコート膜をプラズマCVDによって500nm成膜する。次に、アンダーコート膜の上にモリブデンタングステン(MoW)からなる金属膜をスパッタリング法により50nm堆積し、当該金属膜に対してパターニングを施すことにより、図9の(b)に示すように、ゲート電極11を形成する。その後、図9の(c)に示すように、ゲート電極11の上に、膜厚が70nmの酸化シリコン膜と膜厚が85nmの窒化シリコン膜との積層膜からなるゲート絶縁膜12をプラズマCVDによって成膜し、さらにその上に、図9の(d)に示すように、アモルファスシリコン膜からなる非結晶のシリコン薄膜13を50nmの膜厚で連続成膜する。その後、500℃の脱水素処理により、アモルファスシリコン膜中の水素含有量を3.0atmic%以下にする。
 その後、この非結晶のシリコン薄膜13が形成された基板10を、図8に示す結晶性半導体薄膜形成装置100の基板保持部(ステージ)110上に固定し、非結晶のシリコン薄膜13に対してレーザー照射を行うことで、シリコン薄膜13を結晶化して結晶性シリコン薄膜15を形成する。
 ここで、レーザー照射の条件としては、ビーム短軸幅W1(半値幅)を32.0μmで固定とし、レーザーの照射パワー密度及び基板保持部110の走査速度を変えた2種類の基板を作製した。1つ目の基板におけるレーザー照射条件は、本実施の形態におけるレーザー照射条件であって、パワー密度を70.0kW/cmとし、基板保持部110の走査速度を400~580mm/sの範囲とした。2つ目の基板におけるレーザー照射条件は、比較例におけるレーザー照射条件であって、パワー密度を60.0kW/cmとし、ステージの走査速度を340~480mm/sの範囲とした。
 ここで、前述の2条件のレーザー照射によって得られる結晶性シリコン薄膜15の結晶組織について、図11及び図12を用いて説明する。
 図11の(a)及び(b)は、本実施の形態におけるレーザー照射条件(パワー密度:70.0kW/cm、ステージの走査速度:580mm/s、照射時間:49.0μsec、投入エネルギー密度:3.5J/cm)によって得られた結晶性シリコン薄膜15の結晶組織をSEMによって観察したときの平面SEM像であり、(b)は(a)の破線で示される領域の拡大図である。
 図11の(a)及び(b)に示すように、本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜15は、帯形状の第1領域51と第2領域52との混在を確認することができる。なお、図11の(b)において、白っぽく見える部分は、第1領域51におけるシリコンの結晶粒が体積膨張により衝突し合って隆起した部分である。
 本実施例において、第1領域51におけるシリコンの結晶粒の平均結晶粒径は440nmであり、第2領域52におけるシリコンの結晶粒の平均結晶粒径は80nmであった。また、第1領域51のピッチは1.8μmであり均一ピッチとなっていた。
 一方、図12の(a)及び(b)は、比較例におけるレーザー照射条件(パワー密度:60kW/cm、ステージの走査速度:400mm/s、照射時間:80.0μsec、投入エネルギー密度:4.8J/cm)によって得られた結晶性シリコン薄膜の結晶組織をSEMによって観察したときの平面SEM像であり、(b)は(a)の破線で示される領域の拡大図である。
 図12の(a)及び(b)に示すように、比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜は、照射時間が60.0μsec以上と長いため、第1領域51が存在せずに第2領域52のみが存在する結晶組織であり、その結晶組織におけるシリコンの結晶粒の平均結晶粒径は75nmであった。
 このように、図11及び図12に示される結果によると、図11における本実施の形態に係るレーザー照射条件は、走査速度が高速化され、投入エネルギー密度が少ないにもかかわらず、平均結晶粒径が100~500nmの範囲となる帯形状の第1領域51を、2.0μm以下の間隔で形成することができる。
 なお、上記の本実施の形態におけるレーザー照射条件では、ステージの走査速度が580mm/sの場合について説明したが、図13A~図13Cに示すように、ステージの走査速度が、460mm/s、480mm/s、520mm/sの場合でも、帯形状の第1領域51が形成される。図13A~図13Cは、本実施の形態におけるレーザー照射条件によって得られた結晶性シリコン薄膜15の結晶組織を光学顕微鏡によって観察したときの図であり、図13A、図13B及び図13Cはそれぞれ、ステージの走査速度が460mm/s、480mm/s及び520mm/sの場合に対応する。
 図13A及び図13Bに示すように、ステージの走査速度が460mm/s及び480mm/sの場合は、不均一の間隔ではあるが、帯形状の第1領域51が形成されていることが確認できる。また、図13Cに示すように、ステージの走査速度が520mm/sの場合は、図11と同様に、均一な間隔で帯形状の第1領域51が形成されることが確認できる。なお、図13A~図13Cにおいて、ステージの走査速度以外の条件は、図11における本実施の形態におけるレーザー照射条件と同じである。
 次に、本実施の形態におけるレーザー照射条件(第1領域と第2領域との混在)と比較例におけるレーザー照射条件(第1領域なし、第2領域のみ)とによって形成された結晶性シリコン薄膜に関し、レーザー光の走査速度に対するラマン半値幅について、図14A及び図14Bを用いて説明する。
 ここで、図14Aは、本実施の形態及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜において、ラマン分光測定法により得られたラマンシフトのスペクトルを示す図である。また、図14Bは、本実施の形態及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜において、レーザーの走査速度と、図14Aのラマン分光測定法により得られたラマンシフトが520cm-1付近のc-Si(結晶シリコン成分)のピークスペクトルの半値幅との関係を示す図である。
 また、図14Aにおいて、ラマン分光測分析における測定条件としては、測定位置はゲート電極上の結晶性シリコン薄膜であり、励起波長は532nmであり、測定スポット径は1.3μmΦであり、波数分解能は1.5cm-1である。なお、図14Bの各データ点は、ゲート電極上の結晶性シリコン薄膜における120点の平均値であり、図14Aでは、図14Bの点D1及び点D2における120点の内の1点の結果を例示している。
 図14Bに示す結果により、第1領域51と第2領域52とが混在している本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜の方が、第1領域51が存在せず第2領域52のみが存在している比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜よりも、ラマンシフトのピークスペクトルの半値幅が小さくなることが分かる。このようにラマン半値幅が小さいことは、結晶性シリコン薄膜の結晶組織が結晶粒径の大きいシリコン粒子によって構成されていることを示している。
 また、図14Bに示すように、本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜におけるラマンシフトのピークスペクトルの半値幅の範囲は、4.8~5.5cm-1である。すなわち、結晶性シリコン薄膜におけるラマン半値幅の範囲を、4.8~5.5cm-1とすることにより、結晶粒径が大きく帯形状の第1領域51を含む結晶組織を有する結晶性シリコン薄膜とすることができる。
 次に、図9に戻り、図9の(e)に示される結晶性シリコン薄膜15が形成された基板に対して、フォトリソグラフィ及びウェットエッチングを施すことにより、非結晶のシリコン薄膜13及び結晶性シリコン薄膜15を選択的にパターニングすることにより、結晶性シリコン薄膜15を島状にパターン形成する。
 次に、図9の(f)に示すように、プラズマCVD等によって真性のアモルファスシリコン膜(不図示)を50nmの膜厚で成膜し、引き続きプラズマCVDによって、当該アモルファスシリコン膜の上に、リン等の不純物がドーピングされたアモルファスシリコン膜からなるコンタクト層16となる不純物ドープのn層を30nmの膜厚で成膜する。その後、同図に示すように、コンタクト層16の上に、例えばMoW(50nm)/Al(400nm)/MoW(50nm)の三層構造のソースドレイン金属膜17をスパッタリング法によって堆積する。
 次に、フォトリソグラフィ及びドライエッチングを施すことにより、ソースドレイン金属膜17をパターニングすることにより分離して、対向する一対のソース電極17S及びドレイン電極17Dを形成する。
 次に、ソースドレイン金属膜17をパターニングするときのレジストを残したままドライエッチングを施すことによりコンタクト層16を分離して、対向する一対のコンタクト層16を形成し、その後、レジストを除去する。これにより、ボトムゲート型の薄膜トランジスタを作製することができる。
 なお、その後、プラズマCVD等によってシリコン窒化膜を400nmの膜厚で成膜し、フォトリソグラフィ及びドライエッチングを施すことにより、シリコン窒化膜にコンタクトホールを形成し、さらにその後、スパッタリングにより、透明電極であるITO膜を100nmの膜厚で堆積し、フォトリソグラフィ及びドライエッチングを施すことにより、ITO膜をパターニングしてもよい。
 次に、本実施の形態におけるレーザー照射条件(第1領域と第2領域との混在)と比較例におけるレーザー照射条件(第1領域なし、第2領域のみ)とによって形成された結晶性シリコン薄膜を用いて作製した薄膜トランジスタの移動度について、図15A及び図15Bを用いて説明する。
 図15Aは、本実施の形態及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製された薄膜トランジスタにおいて、レーザー照射時の走査速度と薄膜トランジスタの移動度との関係を示す図である。また、図15Bは、本実施の形態及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製した薄膜トランジスタにおいて、レーザー光のエネルギー密度と薄膜トランジスタの移動度との関係を示す図である。なお、図15A及び図15Bにおける移動度は、チャネル層(結晶性シリコン薄膜)のチャネル幅を50μmとし、チャネル長を10μmとしたときの結果を示している。
 図15Aに示すように、第1領域51と第2領域52とが混在している本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜をチャネル層とする薄膜トランジスタの方が、第1領域51が存在せず第2領域52のみが存在している比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜をチャネル層とする薄膜トランジスタよりも移動度が高いので、本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜の方が、結晶粒径が大きいシリコン粒子を含んでいることが分かる。また、本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜をチャネル層とする薄膜トランジスタの方が高い移動度となっているので、オン電流特性に優れた薄膜トランジスタを実現できていることが分かる。
 また、図15Bに示すように、レーザー光のエネルギー密度が5.0J/cmで比較した場合、第1領域51と第2領域52とが混在している本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いた薄膜トランジスタでは、移動度が39.0(cm/V・sec)であり、第1領域51が存在せず第2領域52のみが存在している比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いた薄膜トランジスタでは、移動度が27.1(cm/V・sec)である。すなわち、同じエネルギー密度によるレーザー光によって結晶性シリコン薄膜を形成した場合、本実施の形態におけるレーザー照射条件で結晶化させた結晶性シリコン薄膜をチャネル層とする薄膜トランジスタの方が高い移動度であり、オン電流特性に優れた薄膜トランジスタを実現することができる。言い換えると、所定の移動度となるような結晶性シリコン薄膜を形成しようとする場合、本実施の形態におけるレーザー照射条件の方が小さいエネルギー密度で結晶性シリコン薄膜を形成することができる。
 次に、本実施の形態におけるレーザー照射条件(第1領域と第2領域との混在)と比較例におけるレーザー照射条件(第1領域なし、第2領域のみ)とによって形成された結晶性シリコン薄膜を用いて作製された薄膜トランジスタにおける第1領域51のピッチと移動度ばらつきとの関係について、図16を用いて説明する。図16は、本実施の形態及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製された薄膜トランジスタについて、帯形状の第1領域のピッチ幅と移動度のばらつき(3σ/Ave.)との関係を示す図である。
 図16に示すように、第1領域51が存在せず第2領域52のみが存在している比較例におけるレーザー照射条件(図4中の領域B)に係る薄膜トランジスタでは、移動度ばらつきが15.5%であるのに対し、不均一間隔の第1領域51と第2領域52とが混在する本実施の形態におけるレーザー照射条件(図4中の領域C)に係る薄膜トランジスタでは、移動度ばらつきは20%以上となっている。
 これに対して、さらに高速スキャン化させて、均一間隔の第1領域51と第2領域52とが混在している本実施の形態におけるレーザー照射条件(図4中の領域D)に係る薄膜トランジスタでは、移動度ばらつきを10%~20%に改善することができ、比較例におけるレーザー照射条件と比較しても、良好な移動度ばらつきを実現できることが分かる。
 以上、本発明に係る薄膜形成基板の製造方法及び薄膜基板並びに薄膜トランジスタの製造方法及び薄膜トランジスタについて、実施の形態及び実施例に基づいて説明したが、本発明は上記の実施の形態及び実施例に限定されるものではない。
 例えば、上記の実施の形態では、半導体薄膜としてシリコン薄膜を用いたが、シリコン薄膜以外の半導体薄膜を用いることができる。例えば、ゲルマニウム(Ge)又はSiGeからなる半導体薄膜を結晶化させて結晶性半導体薄膜を形成することもできる。
 また、上記の実施の形態では、レーザー光は、ビーム短軸幅W1がビーム長軸幅W2よりも小さくなるように構成したが、ビーム短軸幅W1がビーム長軸幅W2よりも大きくなるように構成しても構わない。なお、この場合であっても、本実施の形態と同様にレーザー光の走査方向は変わらず、レーザー光の短軸と走査方向とが一致するようにレーザー光の走査を行う。
 また、上記の実施の形態において、シリコン薄膜に照射されたときのレーザー光の照射形状(強度分布形状)は長軸及び短軸を有する矩形状としたが、これに限らない。例えば、シリコン薄膜に照射されたときのレーザー光の照射形状(強度分布形状)は、楕円形状等のその他の長軸及び短軸を有する形状、あるいは、円形や正方形とすることもできる。
 また、本実施の形態によって製造される薄膜トランジスタ又は薄膜トランジスタアレイ基板は、有機EL表示装置又は液晶表示装置等の表示装置に用いることができる。また、当該表示装置については、フラットパネルディスプレイとして利用することができ、テレビジョンセット、パーソナルコンピュータ又は携帯電話などの電子機器に適用することができる。
 また、本実施の形態によって形成される結晶性シリコン薄膜は、薄膜トランジスタだけではなく、太陽電池又はイメージセンサ等の光電変換素子等、各種電子デバイスにも用いることができる。
 また、本実施の形態において、結晶性シリコン薄膜は、n型半導体であっても、p半導体であっても良い。
 なお、その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本発明に係る薄膜形成基板の製造方法及び薄膜基板は、薄膜トランジスタ、太陽電池又はセンサ等の結晶性シリコン薄膜を有する電子デバイスにおいて有用である。また、本発明に係る薄膜形成基板の製造方法及び薄膜基板は、テレビジョンセット、パーソナルコンピュータ又は携帯電話などの表示装置又はその他電気機器等において広く利用することができる。
 10 基板
 10S 表面
 11 ゲート電極
 12 ゲート絶縁膜
 13 シリコン薄膜
 15 結晶性シリコン薄膜
 16 コンタクト層
 17 ソースドレイン金属膜
 17S ソース電極
 17D ドレイン電極
 18 アンダーコート膜
 19 LDD領域
 20 パッシベーション膜
 30 レーザー光
 40 走査方向
 41 第1方向
 50 結晶化領域
 51 第1領域
 52 第2領域
 53 SPC結晶組織
 54 アブレーション
 100 結晶性半導体薄膜形成装置
 110 基板保持部
 120 レーザー光発振部
 130 光学系部
 131 ホモジナイザー
 132 コンデンサレンズ
 133 DOEレンズ
 140 制御部
 141 走査制御部
 142 レーザー光強度分布調整部
 

Claims (16)

  1.  基板を準備する基板準備工程と、
     前記基板上に薄膜を形成する薄膜形成工程と、
     前記薄膜に対して、連続発振の所定の波長の光線を、所定の速度で相対走査させつつ照射し、前記薄膜の少なくとも所定領域を結晶化して結晶化領域を形成する結晶化工程と、を含み、
     前記薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、
     前記結晶化工程において、
     前記結晶化領域は、前記相対走査の方向に対して交差する方向に延びる帯形状の第1領域と、前記帯形状の第1領域に隣接する第2領域とを含むように、かつ、前記帯形状の第1領域の平均結晶粒径が前記第2領域の平均結晶粒径よりも大きくなるように形成される、
     薄膜形成基板の製造方法。
  2.  前記帯形状の第1領域は、前記長軸の長さ内で連続している、
     請求項1に記載の薄膜形成基板の製造方法。
  3.  前記結晶化工程において、
     前記帯形状の第1領域は、平均結晶粒径が100nm以上500nm以下の結晶粒を含有するように形成され、
     前記第2領域は、平均結晶粒径が30nm以上100nm未満の結晶粒を含有するように形成される、
     請求項1又は2に記載の薄膜形成基板の製造方法。
  4.  前記結晶化工程において、
     前記帯形状の第1領域は、均一な間隔で複数形成される、
     請求項1~3のいずれか1項に記載の薄膜形成基板の製造方法。
  5.  前記結晶化工程において、
     複数の前記帯形状の第1領域の各々は、ラマン分光分析によるラマンシフトのピークスペクトルの半値幅が4.8cm-1以上5.5cm-1以下となるように形成される、
     請求項4に記載の薄膜形成基板の製造方法。
  6.  前記結晶化工程において、
     複数の前記帯形状の第1領域は、隣り合う前記帯形状の第1領域の間隔が2.0μm以下となるように形成される、
     請求項4に記載の薄膜形成基板の製造方法。
  7.  前記所定の波長の光線は、波長が405nm~632nmのレーザーである、
     請求項1~4のいずれか1項に記載の薄膜形成基板の製造方法。
  8.  前記レーザーの強度分布の短軸幅を前記所定の速度で除した値が、60μsec以下である、
     請求項6又は7に記載の薄膜形成基板の製造方法。
  9.  前記薄膜は、シリコン薄膜である、
     請求項1~8のいずれか1項に記載の薄膜形成基板の製造方法。
  10.  基板と、
     前記基板上に形成され、結晶化された結晶化領域を含む薄膜と、を含み、
     前記結晶化領域は、帯形状の第1領域と、前記帯形状の第1領域に隣接する第2領域とを含み、
     前記帯形状の第1領域の平均結晶粒径は、前記第2領域の平均結晶粒径よりも大きい、
     薄膜基板。
  11.  前記帯形状の第1領域は、平均結晶粒径が100nm以上500nm以下の結晶粒を含有し、
     前記第2領域は、平均結晶粒径が30nm以上100nm未満の結晶粒を含有する、
     請求項10に記載の薄膜基板。
  12.  前記帯形状の第1領域は、均一な間隔で複数形成される、
     請求項10又は11に記載の薄膜基板。
  13.  複数の前記帯形状の第1領域の各々は、ラマン分光分析によるラマンシフトのピークスペクトルの半値幅が4.8cm-1以上5.5cm-1以下となるように形成される、
     請求項12に記載の薄膜基板。
  14.  隣り合う前記帯形状の第1領域の間隔は、2.0μm以下である、
     請求項12又は13に記載の薄膜基板。
  15.  前記結晶化領域は、前記薄膜に対して、連続発振の所定の波長の光線を所定の速度で相対走査させつつ照射することで前記薄膜を結晶化することより形成され、
     前記薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、
     前記帯形状の第1領域は、前記相対走査の方向に対して交差する方向に延びている、
     請求項10~14のいずれか1項に記載の薄膜基板。
  16.  前記薄膜は、シリコン薄膜である、
     請求項10~15のいずれか1項に記載の薄膜基板。
     
PCT/JP2011/004841 2011-08-30 2011-08-30 薄膜形成基板の製造方法及び薄膜基板 WO2013030885A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2011/004841 WO2013030885A1 (ja) 2011-08-30 2011-08-30 薄膜形成基板の製造方法及び薄膜基板
PCT/JP2012/005414 WO2013031198A1 (ja) 2011-08-30 2012-08-28 薄膜形成基板の製造方法、薄膜素子基板の製造方法、薄膜基板及び薄膜素子基板
US14/187,692 US9236487B2 (en) 2011-08-30 2014-02-24 Method of manufacturing substrate having thin film thereabove, method of manufacturing thin-film-device substrate, thin-film substrate, and thin-film-device substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/004841 WO2013030885A1 (ja) 2011-08-30 2011-08-30 薄膜形成基板の製造方法及び薄膜基板

Publications (1)

Publication Number Publication Date
WO2013030885A1 true WO2013030885A1 (ja) 2013-03-07

Family

ID=47755446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004841 WO2013030885A1 (ja) 2011-08-30 2011-08-30 薄膜形成基板の製造方法及び薄膜基板

Country Status (1)

Country Link
WO (1) WO2013030885A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169331A1 (de) * 2014-05-05 2015-11-12 Masdar Pv Gmbh Verfahren zum aufbringen von halbleitermaterial, halbleitermodul und substratherstellungsanlage
CN106784412A (zh) * 2017-03-30 2017-05-31 武汉华星光电技术有限公司 柔性有机发光二极管显示器及其制作方法
WO2023013145A1 (ja) * 2021-08-04 2023-02-09 Jswアクティナシステム株式会社 レーザ照射装置、情報処理方法、プログラム、及び学習モデルの生成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340118A (ja) * 1995-06-09 1996-12-24 Sony Corp 薄膜半導体装置の製造方法
JP2003178982A (ja) * 2001-09-14 2003-06-27 Sony Corp レーザ照射装置および半導体薄膜の処理方法
JP2007035812A (ja) * 2005-07-26 2007-02-08 Mitsubishi Electric Corp 多結晶シリコン膜の製造方法および薄膜トランジスタ
JP2011165717A (ja) * 2010-02-04 2011-08-25 Hitachi Displays Ltd 表示装置及び表示装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340118A (ja) * 1995-06-09 1996-12-24 Sony Corp 薄膜半導体装置の製造方法
JP2003178982A (ja) * 2001-09-14 2003-06-27 Sony Corp レーザ照射装置および半導体薄膜の処理方法
JP2007035812A (ja) * 2005-07-26 2007-02-08 Mitsubishi Electric Corp 多結晶シリコン膜の製造方法および薄膜トランジスタ
JP2011165717A (ja) * 2010-02-04 2011-08-25 Hitachi Displays Ltd 表示装置及び表示装置の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015169331A1 (de) * 2014-05-05 2015-11-12 Masdar Pv Gmbh Verfahren zum aufbringen von halbleitermaterial, halbleitermodul und substratherstellungsanlage
CN106784412A (zh) * 2017-03-30 2017-05-31 武汉华星光电技术有限公司 柔性有机发光二极管显示器及其制作方法
US10573671B2 (en) 2017-03-30 2020-02-25 Wuhan China Star Optoelectronics Technology Co., Ltd. Flexible organic light emitting diode display with directional crystallized channel and manufacturing method thereof
WO2023013145A1 (ja) * 2021-08-04 2023-02-09 Jswアクティナシステム株式会社 レーザ照射装置、情報処理方法、プログラム、及び学習モデルの生成方法

Similar Documents

Publication Publication Date Title
WO2013051221A1 (ja) 薄膜素子、薄膜素子アレイ及び薄膜素子の製造方法
JP4291539B2 (ja) 半導体装置およびその製造方法
US8421080B2 (en) Thin-film transistor array device, organic EL display device, and method of manufacturing thin-film transistor array device
WO2012164626A1 (ja) 薄膜半導体装置の製造方法、薄膜半導体アレイ基板の製造方法、結晶性シリコン薄膜の形成方法、及び結晶性シリコン薄膜の形成装置
KR100492152B1 (ko) 실리콘 결정화방법
US9236487B2 (en) Method of manufacturing substrate having thin film thereabove, method of manufacturing thin-film-device substrate, thin-film substrate, and thin-film-device substrate
WO2011141949A1 (ja) 結晶性半導体膜の製造方法、結晶性半導体膜付き基板、薄膜トランジスタ
US7651928B2 (en) Method for crystallizing a semiconductor thin film
JP4169073B2 (ja) 薄膜半導体装置および薄膜半導体装置の製造方法
WO2013030885A1 (ja) 薄膜形成基板の製造方法及び薄膜基板
US20070212860A1 (en) Method for crystallizing a semiconductor thin film
JP2011165717A (ja) 表示装置及び表示装置の製造方法
JP4353352B2 (ja) 半導体装置及びその製造方法
US7541615B2 (en) Display device including thin film transistors
US8535994B2 (en) Thin-film transistor array device manufacturing method
US9218968B2 (en) Method for forming crystalline thin-film and method for manufacturing thin film transistor
JP2007281422A (ja) 薄膜半導体装置および薄膜半導体装置の製造方法
US20080237724A1 (en) Semiconductor thin film manufacturing method, semiconductor thin film and thin film transistor
KR20060106170A (ko) 다결정 실리콘 박막의 제조방법 및 이를 갖는 박막트랜지스터의 제조방법
TW200307903A (en) Active-matrix type display device and method for manufacturing the same
JP2007281465A (ja) 多結晶膜の形成方法
JPH09246183A (ja) 多結晶半導体膜の製造方法
KR102034136B1 (ko) 박막 트랜지스터 기판의 제조방법
JPH09237767A (ja) 半導体装置の製造方法
JP4730514B2 (ja) レーザ処理方法およびレーザ照射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP