WO2013031198A1 - 薄膜形成基板の製造方法、薄膜素子基板の製造方法、薄膜基板及び薄膜素子基板 - Google Patents

薄膜形成基板の製造方法、薄膜素子基板の製造方法、薄膜基板及び薄膜素子基板 Download PDF

Info

Publication number
WO2013031198A1
WO2013031198A1 PCT/JP2012/005414 JP2012005414W WO2013031198A1 WO 2013031198 A1 WO2013031198 A1 WO 2013031198A1 JP 2012005414 W JP2012005414 W JP 2012005414W WO 2013031198 A1 WO2013031198 A1 WO 2013031198A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
region
band
substrate
shaped
Prior art date
Application number
PCT/JP2012/005414
Other languages
English (en)
French (fr)
Inventor
尾田 智彦
孝啓 川島
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2011/004841 external-priority patent/WO2013030885A1/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013031198A1 publication Critical patent/WO2013031198A1/ja
Priority to US14/187,692 priority Critical patent/US9236487B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1296Multistep manufacturing methods adapted to increase the uniformity of device parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1229Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with different crystal properties within a device or between different devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1281Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor by using structural features to control crystal growth, e.g. placement of grain filters

Definitions

  • the present invention relates to a method for forming a thin film forming substrate, a method for manufacturing a thin film element substrate, a thin film substrate, and a thin film element substrate.
  • TFT Thin Film Transistor
  • thin film transistors are arranged in an array to form a thin film transistor array device, and each pixel is used to select a thin film transistor (drive transistor) used to drive the pixel and a pixel.
  • a thin film transistor switching transistor is formed.
  • a peripheral circuit region in which a gate driver circuit or a source driver circuit used for driving or selecting each pixel is disposed around the pixel region in which the pixels are disposed.
  • a self-luminous organic EL display device including an organic EL element has different performance requirements for a drive transistor and a switching transistor, and the drive transistor has an excellent on-state for improving the drive performance of the organic EL element. Current characteristics are required, and switching transistors are required to have excellent off-current characteristics.
  • LTPS Low Temperature Poly Silicon
  • the performance required for the thin film transistor provided in the peripheral circuit region and the thin film transistor provided in the pixel region is different.
  • a thin film transistor provided in the region requires excellent on-current characteristics, and a thin film transistor provided in the pixel region requires excellent off-current characteristics.
  • a thin film transistor has a gate electrode, a semiconductor layer (channel layer), a source electrode, and a drain electrode formed on a substrate, and a silicon thin film is generally used as the channel layer.
  • Silicon thin films are roughly classified into amorphous silicon thin films (amorphous silicon films) and crystalline silicon thin films (crystalline silicon thin films).
  • a thin film transistor using a crystalline silicon thin film as a channel layer has higher carrier mobility and excellent on-current characteristics than a thin film transistor using an amorphous silicon thin film as a channel layer. For this reason, it is known to use a crystalline silicon thin film as a channel layer of a driving transistor.
  • One conventional method for forming a crystalline silicon thin film is to add a metal catalyst to an amorphous silicon film formed on a substrate and apply heat to polycrystallize the amorphous silicon film.
  • this method has an advantage that it can be crystallized at a low temperature, there is a problem that the cost increases due to an increase in the number of steps, and it is difficult to completely remove the metal element after crystallization.
  • Patent Document 1 a method for polycrystallizing an amorphous silicon film by laser irradiation at a predetermined excimer laser energy density at a predetermined film formation temperature.
  • Patent Document 1 a method for polycrystallizing an amorphous silicon film by laser irradiation at a predetermined excimer laser energy density at a predetermined film formation temperature.
  • Patent Document 2 As a method for crystallizing amorphous silicon using a laser, there is a method in which a polycrystalline silicon thin film is formed by irradiating an amorphous silicon film with a pulse laser having a wavelength of 532 nm (Patent Document 2).
  • the present invention has been made in view of the above problems, and is a thin film forming substrate capable of forming a crystalline thin film including regions having different crystal states formed in the same process while suppressing further input energy. It is an object of the present invention to provide a manufacturing method, a manufacturing method of a thin film element substrate, a thin film substrate, and a thin film element substrate.
  • one aspect of a method for manufacturing a thin film formation substrate includes a substrate preparation step of preparing a substrate, a thin film formation step of forming a thin film on the substrate, and the thin film And a crystallization step of irradiating a continuous wave light beam while relatively scanning to crystallize at least a predetermined region of the thin film to form a crystallized region, and the irradiation shape of the light beam in the thin film comprises the relative A long axis in a direction intersecting a scanning direction, and in the crystallization step, the crystallization region includes a band-shaped first region extending in a direction intersecting the relative scanning direction; And a second region adjacent to the band-shaped first region, and the average crystal grain size of the band-shaped first region is larger than the average crystal grain size of the second region. It is characterized by that.
  • the method for manufacturing a thin film forming substrate according to the present invention it is possible to form the band-shaped first region and the second region having different average crystal grain sizes in the same step without increasing the input energy of the laser.
  • region of a different crystalline state can be obtained. Therefore, it is possible to easily produce two types of elements (such as thin film transistors) having different characteristics in one device.
  • the present invention it is possible to form the band-shaped first region by increasing the scanning speed of the light beam used when crystallizing the thin film, so that high throughput can be realized. it can.
  • a crystalline thin film including a crystallized region (first region) having a large crystal grain size can be formed, when a thin film transistor is manufactured using the crystalline thin film as a channel layer, a thin film transistor having excellent on-current characteristics can be obtained. Can be realized.
  • FIG. 1 is a cross-sectional view schematically showing each step in the method for manufacturing a thin film formation substrate according to Embodiment 1 of the present invention.
  • FIG. 2 is a top view schematically showing the state of the crystal structure of the crystallization region of the crystalline silicon thin film in the first embodiment of the present invention.
  • FIG. 3A is a perspective view schematically showing a state of irradiating a silicon thin film with laser light in the method for manufacturing a thin film forming substrate according to Embodiment 1 of the present invention.
  • FIG. 3B is a diagram showing an intensity distribution of laser light used in the crystallization step of the method for manufacturing the thin film formation substrate according to Embodiment 1 of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing each step in the method for manufacturing a thin film formation substrate according to Embodiment 1 of the present invention.
  • FIG. 2 is a top view schematically showing the state of the crystal structure of the crystallization region of the crystalline silicon thin film
  • FIG. 4 shows the relationship between the laser light conditions (scanning speed and beam minor axis width) and the crystalline structure of the crystalline silicon thin film in the crystallization step in the method for manufacturing the thin film forming substrate according to Embodiment 1 of the present invention.
  • FIG. FIG. 5A is a diagram schematically showing the crystal structure of the crystalline silicon thin film formed under the laser irradiation conditions in region A of FIG.
  • FIG. 5B is a diagram schematically showing the crystal structure of the crystalline silicon thin film formed under the laser irradiation conditions in region B of FIG.
  • FIG. 5C is a diagram schematically showing the crystal structure of the crystalline silicon thin film formed under the laser irradiation conditions in the region C of FIG.
  • FIG. 5D is a diagram schematically showing the crystal structure of the crystalline silicon thin film formed under the laser irradiation conditions in region D of FIG.
  • FIG. 5E is a diagram schematically showing the crystal structure of the crystalline silicon thin film formed under the laser irradiation conditions in the region E of FIG.
  • FIG. 6A is a diagram showing the relationship between the scanning speed of laser light and the pitch width of the first region in the crystallization step of the method for manufacturing the thin film formation substrate according to Embodiment 1 of the present invention.
  • FIG. 6B is a diagram showing the relationship between the laser light irradiation time and the pitch width of the first region in the crystallization step of the method for manufacturing the thin film formation substrate according to Embodiment 1 of the present invention.
  • FIG. 7A is a diagram showing a state in which an amorphous silicon thin film is crystallized by a pulse laser.
  • FIG. 7B is a diagram schematically showing a crystal structure of a crystalline silicon thin film formed using a pulse laser.
  • FIG. 8 is a diagram showing a configuration of the crystalline semiconductor thin film forming apparatus according to Embodiment 1 of the present invention.
  • FIG. 9 is a cross-sectional view of each step in the method for manufacturing the bottom-gate thin film transistor according to the first embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of each step in the method for manufacturing the top-gate thin film transistor according to the first embodiment of the present invention.
  • FIG. 11 is a planar SEM image of the crystalline silicon thin film obtained under the laser irradiation conditions in the first embodiment of the present invention.
  • FIG. 12 is a planar SEM image of the crystalline silicon thin film obtained according to the laser irradiation conditions in the comparative example.
  • FIG. 13A is a diagram when the crystalline structure of the crystalline silicon thin film obtained under the laser irradiation conditions in Embodiment 1 of the present invention is observed with an optical microscope (stage scanning speed is 460 mm / s).
  • FIG. 13B is a diagram when the crystal structure of the crystalline silicon thin film obtained under the laser irradiation conditions in Embodiment 1 of the present invention is observed with an optical microscope (stage scanning speed is 480 mm / s).
  • stage scanning speed is 480 mm / s
  • FIG. 13C is a diagram when the crystalline structure of the crystalline silicon thin film obtained under the laser irradiation conditions in Embodiment 1 of the present invention is observed with an optical microscope (stage scanning speed is 520 mm / s).
  • FIG. 14A is a diagram showing a Raman shift spectrum obtained by a Raman spectroscopic measurement method in the crystalline silicon thin film formed under each of the laser irradiation conditions in the first embodiment of the present invention and the comparative example.
  • FIG. 14B shows the laser scanning speed and the Raman shift obtained by the Raman spectroscopic measurement method of FIG. 13A in the crystalline silicon thin film formed under each of the laser irradiation conditions in Embodiment 1 and the comparative example of the present invention.
  • FIG. 15A shows the relationship between the scanning speed at the time of laser irradiation and the mobility of the thin film transistor in the thin film transistor manufactured using the crystalline silicon thin film formed under the laser irradiation conditions in Embodiment Mode 1 and Comparative Example of the present invention.
  • FIG. 15B is a diagram showing the relationship between the energy density of a laser and the mobility of the thin film transistor in the thin film transistor manufactured using the crystalline silicon thin film formed according to the laser irradiation conditions in Embodiment Mode 1 and Comparative Example of the present invention. is there.
  • FIG. 15A shows the relationship between the scanning speed at the time of laser irradiation and the mobility of the thin film transistor in the thin film transistor manufactured using the crystalline silicon thin film formed under the laser irradiation conditions in Embodiment Mode 1 and Comparative Example of the present invention.
  • FIG. 15B is a diagram showing the relationship between the energy density of a laser and the mobility of the thin film transistor in the thin film transistor manufactured using the crystalline silicon thin film formed according
  • FIG. 16 shows the variation in the pitch width and mobility of the band-shaped first region for the thin film transistor manufactured using the crystalline silicon thin film formed according to the laser irradiation conditions in the first embodiment of the present invention and the comparative example. It is a figure which shows the relationship.
  • FIG. 17A is a plan view showing a configuration of a switching transistor that constitutes a pixel of an organic EL display according to Embodiment 2 of the present invention.
  • FIG. 17B is a plan view showing a configuration of a drive transistor that constitutes a pixel of the organic EL display according to Embodiment 2 of the present invention.
  • FIG. 18 is an equivalent circuit diagram of a pixel circuit using the thin film element according to the second embodiment of the present invention.
  • FIG. 19 is a plan view showing a pixel configuration of the organic EL display according to Embodiment 2 of the present invention.
  • FIG. 20A is a schematic configuration diagram of a switching transistor according to Embodiment 2 of the present invention.
  • FIG. 20B is a schematic configuration diagram of a drive transistor according to Embodiment 2 of the present invention.
  • FIG. 21A is a diagram for explaining electron mobility in the switching transistor according to Embodiment 2 of the present invention.
  • FIG. 21B is a diagram for explaining electron mobility in the drive transistor according to Embodiment 2 of the present invention.
  • FIG. 22 is a cross-sectional view schematically showing each step in the method for manufacturing the bottom-gate thin film transistor according to the second embodiment of the present invention.
  • FIG. 23 is a diagram showing Id-Vg characteristics of the switching transistor and the driving transistor according to the second embodiment of the present invention.
  • FIG. 24 is a diagram showing Ion and Ioff of the switching transistor and the driving transistor according to the second embodiment of the present invention.
  • FIG. 25 is a cross-sectional view schematically showing each step in the method for manufacturing the top-gate thin film transistor according to the second embodiment of the present invention.
  • FIG. 26A is a plan view showing a schematic configuration of the thin film element array substrate according to Embodiment 3 of the present invention.
  • FIG. 26B is a diagram showing a mother substrate in the thin film element array substrate according to Embodiment 3 of the present invention.
  • FIG. 27A is a schematic configuration diagram of a pixel transistor according to Embodiment 3 of the present invention.
  • FIG. 27B is a schematic configuration diagram of a peripheral transistor according to Embodiment 3 of the present invention.
  • FIG. 28A is a diagram for explaining electron mobility in the pixel transistor according to Embodiment 3 of the present invention.
  • FIG. 28B is a diagram for explaining electron mobility in the peripheral transistor according to Embodiment 3 of the present invention.
  • FIG. 29 is a cross-sectional view schematically showing each step in the method for manufacturing the bottom-gate thin film transistor (pixel transistor) according to Embodiment 3 of the present invention.
  • FIG. 30 is a cross-sectional view schematically showing each step in the method for manufacturing the bottom-gate thin film transistor (peripheral transistor) according to Embodiment 3 of the present invention.
  • FIG. 31 is a diagram showing Id-Vg characteristics of a pixel transistor and peripheral transistors according to Embodiment 3 of the present invention.
  • FIG. 32 is a diagram showing Ion and Ioff of the pixel transistor and peripheral transistors according to Embodiment 3 of the present invention.
  • FIG. 33A is a plan view of a display panel according to Embodiment 4 of the present invention.
  • FIG. 33B is a cross-sectional view of the display panel according to Embodiment 4 of the present invention.
  • One means for improving the on-current characteristics of the thin film transistor is to increase the crystal grain size of the crystalline semiconductor thin film serving as the channel layer.
  • a crystalline silicon thin film having a large crystal grain size can be obtained by increasing the maximum intensity of laser light during crystallization.
  • simply increasing the maximum intensity of the laser beam requires a laser beam with a larger output energy, which increases the input energy and requires a high-power laser facility. .
  • crystalline semiconductor thin films having different characteristics in one device.
  • a single device may be required to form a thin film transistor with excellent on-current characteristics and a thin film transistor with excellent off-current characteristics.
  • the crystalline semiconductor thin film serving as the channel layer should have a larger crystal grain size.
  • the crystalline semiconductor thin film serving as the channel layer may be improved. Smaller crystal grain size is better. For this reason, in one device, there is a problem that it is difficult to collectively form a thin film element having excellent on-current characteristics and a thin film element having excellent off-current characteristics in the same process.
  • the characteristics required for the drive transistor and the switching transistor are different as described above. For this reason, it is preferable that a plurality of crystalline semiconductor thin films having different crystal structures are formed in the same pixel, and two types of thin film transistors having different characteristics are formed in the same pixel.
  • the amorphous semiconductor thin film is crystallized, if the laser output is changed by changing the output state of the laser light between the driving transistor and the switching transistor, the characteristics of the transistors between the pixels may vary, There is a problem that the in-plane uniformity is lowered and the laser equipment is complicated. In addition, when laser irradiation is performed at different timings as described above, there is a problem that throughput is lowered.
  • a display device using LTPS such as a liquid crystal display device
  • characteristics required for a thin film transistor provided in the peripheral circuit region and a thin film transistor provided in the pixel region are different.
  • it is preferable that a plurality of crystalline semiconductor thin films having different crystal structures are formed in the same pixel, and two types of thin film transistors having different characteristics are formed in the same pixel.
  • the amorphous semiconductor thin film is crystallized, if the laser light output state is changed between the thin film transistor provided in the peripheral circuit region and the thin film transistor provided in the pixel region, There are problems that the characteristics of the transistors vary depending on the region, the in-plane uniformity of the crystal structure is lowered, and the laser equipment is complicated.
  • the present invention has been made on the basis of such knowledge, and a method and the like capable of forming a crystalline thin film including regions having different crystal states formed in the same process while suppressing further input energy.
  • the purpose is to provide.
  • one aspect of a method of manufacturing a thin film formation substrate includes a substrate preparation step of preparing a substrate, a thin film formation step of forming a thin film on the substrate, and the thin film And a crystallization step of irradiating a continuous wave light beam while relatively scanning to crystallize at least a predetermined region of the thin film to form a crystallized region, and the irradiation shape of the light beam in the thin film comprises the relative A long axis in a direction intersecting a scanning direction, and in the crystallization step, the crystallization region includes a band-shaped first region extending in a direction intersecting the relative scanning direction; And a second region adjacent to the band-shaped first region, and the average crystal grain size of the band-shaped first region is larger than the average crystal grain size of the second region. It is characterized by that.
  • the first region and the second region of the band shape having different average crystal grain sizes in the same process without increasing the input energy of the laser.
  • region of a different crystalline state can be obtained.
  • the band-shaped first region can be formed by increasing the scanning speed of the light beam used for crystallizing the thin film. That is, since the scanning speed of the light beam can be increased, a high throughput can be realized.
  • the band-shaped first region formed by increasing the scanning speed has a crystal structure with a relatively large crystal grain size, when a thin film transistor is manufactured using the obtained crystalline thin film as a channel layer, the on-current A thin film transistor having excellent characteristics can be realized.
  • the second region is located on both sides of the first region, and the first region of the band shape is the first region of the band shape.
  • a plurality of crystal grains in contact with each of the second regions located on both sides may be provided.
  • the ratio of the crystal grains in contact with each of the second regions located on both sides of the band-shaped first region in the longitudinal direction of the band-shaped first region may be 80% or more. preferable.
  • the first region of the band shape may be continuous within the length of the major axis.
  • the carrier mobility can be further improved, and a crystalline thin film having excellent uniformity can be realized.
  • the band-shaped first region is formed so as to contain crystal grains having an average crystal grain size of 100 nm or more and 500 nm or less, and the second region has an average crystal grain size of 30 nm or more. It may be formed so as to contain crystal grains of less than 100 nm.
  • a thin film transistor having excellent on-state current characteristics can be realized by using a thin film including a first region including crystal grains having an average crystal grain size of 100 nm to 500 nm.
  • a plurality of the band-shaped first regions may be formed at uniform intervals.
  • each of the plurality of band-shaped first regions has a half-value width of a Raman shift peak spectrum by Raman spectroscopic analysis of 4.8 cm ⁇ 1 or more and 5.5 cm ⁇ 1 or less. It may be formed.
  • the plurality of band-shaped first regions may be formed such that an interval between the adjacent band-shaped first regions is 2.0 ⁇ m or less.
  • the light beam may be a laser having a wavelength of 405 nm to 632 nm.
  • a crystal structure in which the band-shaped first region and the second region are mixed can be easily formed by laser irradiation by high-speed scanning.
  • high-speed scanning can be easily realized, so that the uniform spacing between the band-shaped first regions can be easily realized.
  • the value obtained by dividing the short axis width of the intensity distribution of the laser by the speed of relative scanning with respect to the thin film may be 60 ⁇ sec or less.
  • the step of crystallizing the thin film includes a strip-shaped first region extending in a direction intersecting the relative scanning direction and a second region adjacent to the strip-shaped first region.
  • the thin film is crystallized
  • the first region and the second region of the band shape having different average crystal grain sizes are formed in the same process in correspondence with the first gate electrode and the second gate electrode without increasing the input energy of the laser. Can do. Accordingly, a plurality of thin film transistors having different characteristics can be easily manufactured in one device.
  • the second region is located on both sides of the first region, and the band-shaped first region is the band-shaped first region.
  • a plurality of crystal grains in contact with each of the second regions located on both sides may be provided.
  • the ratio of the crystal grains in contact with each of the second regions located on both sides of the band-shaped first region in the longitudinal direction of the band-shaped first region may be 80% or more. preferable.
  • an aspect of the thin film substrate according to the present invention is the substrate, the first region of the band shape, which is positioned on the substrate, is located on both sides of the first region of the band shape, and the first region of the band shape.
  • the thin film substrate in this aspect includes a thin film including a band-shaped first region having a relatively large crystal grain size and a second region having a relatively small crystal grain size in the substrate surface. This makes it possible to easily produce two types of elements (such as thin film transistors) having different characteristics in one device.
  • a plurality of connected crystal grains exist from one end to the other end in the short side direction (width direction) of the band-shaped first region in the band-shaped first region.
  • the crystal grains that are in contact with each of the second regions located on both sides of the strip-shaped first region occupy in the longitudinal direction of the strip-shaped first region.
  • the ratio is preferably 80% or more.
  • the band-shaped first region contains crystal grains having an average crystal grain size of 100 nm to 500 nm, and the second region has an average crystal grain size of 30 nm. It is good also as containing the crystal grain below 100 nm or more.
  • a thin film transistor having excellent on-state current characteristics can be realized by using a thin film including a first region including crystal grains having an average crystal grain size of 100 nm to 500 nm.
  • a plurality of the band-shaped first regions may be provided, and the interval between the first regions may be substantially uniform.
  • each of the plurality of band-shaped first regions has a half-value width of a peak spectrum of Raman shift by Raman spectroscopic analysis of 4.8 cm ⁇ 1 or more and 5.5 cm ⁇ 1. It may be formed as follows.
  • the interval between the adjacent first regions of the band shape may be 2.0 ⁇ m or less.
  • an aspect of the thin film element substrate according to the present invention is the first shape of the band shape in the short direction of the substrate, the first region of the band shape, and the first region of the band shape.
  • a second element having at least a part of the region as a channel, and the band-shaped first region includes crystal grains in contact with each of the second regions located on both sides of the band-shaped first region. It is characterized by having a plurality.
  • the thin film element substrate includes a thin film including a band-shaped first region having a relatively large crystal grain size and a second region having a relatively small crystal grain size within the substrate plane.
  • a plurality of connected crystal grains exist from one end to the other end in the short side direction (width direction) of the band-shaped first region in the band-shaped first region.
  • the crystal grains in contact with each of the second regions located on both sides of the strip-shaped first region are in the longitudinal direction of the strip-shaped first region.
  • the occupying ratio is preferably 80% or more.
  • the first element is formed in a peripheral region on the substrate, and the second element is in an internal region inside the peripheral region on the substrate. It may be formed.
  • the first element having relatively high carrier mobility and excellent on-state characteristics can be used as a peripheral transistor in a driver circuit provided in the peripheral region, and the first element having relatively low carrier mobility.
  • the second element that has better off characteristics than the element can be used as a switching transistor in the pixel region.
  • the substrate has a plurality of pixels arranged in a matrix, and the first element and the second element are formed in each of the plurality of pixels.
  • the first element may be a transistor that drives the pixel
  • the second element may be a switching transistor that selectively switches a pixel to be driven from the plurality of pixels.
  • the first element having a relatively high carrier mobility and excellent on characteristics can be used as a drive transistor, and the first element having a relatively low carrier mobility and superior off characteristics than the first element.
  • the two elements can be used as switching transistors.
  • the gate electrodes of the first element and the second element, and the gate electrodes of the first element and the second element which are formed on the substrate.
  • the center line of the region where the source electrode and the drain electrode face each other in the element may intersect with the center line of the region where the source electrode and the drain electrode face each other in the second element.
  • the channel directions of the first element and the second element can be crossed. Accordingly, a plurality of types of thin film transistors having different current characteristics can be easily manufactured on one substrate.
  • the band-shaped first region contains crystal grains having an average crystal grain size of 100 nm to 500 nm, and the second region has an average crystal grain size. It is good also as containing the crystal grain of 30 nm or more and less than 100 nm.
  • a thin film transistor having excellent on-state current characteristics can be realized by using a thin film including a first region including crystal grains having an average crystal grain size of 100 nm to 500 nm.
  • a plurality of the band-shaped first regions may be provided, and the interval between the first regions may be substantially uniform.
  • each of the plurality of band-shaped first regions has a half-width of a peak spectrum of Raman shift by Raman spectroscopic analysis of 4.8 cm ⁇ 1 or more and 5.5 cm ⁇ . It may be formed to be 1 or less.
  • the interval between the adjacent band-shaped first regions may be 2.0 ⁇ m or less.
  • FIG. 1 is a cross-sectional view and a plan view schematically showing each step in the method for manufacturing a thin film forming substrate according to Embodiment 1 of the present invention.
  • (a2) to (e2) are plan views
  • (a1) to (e1) are cross-sectional views taken along lines XX of (a2) to (e2), respectively.
  • a substrate 10 is prepared (substrate preparation step).
  • a glass substrate can be used as the substrate 10.
  • the preparation of the substrate includes, for example, a cleaning process for removing deposits attached to the surface of the glass substrate, a glass substrate surface etching process for removing alkali metal components on the surface of the glass substrate, or a glass substrate.
  • a step of forming an undercoat layer such as a SiN film on the surface of the glass substrate may be included as an example in order to prevent the alkali metal component being diffused from diffusing into the semiconductor film or the like.
  • a thin film such as an amorphous semiconductor thin film is formed above the substrate 10 (thin film forming step).
  • an amorphous silicon thin film 13 made of an amorphous silicon film is formed above the substrate 10.
  • a light beam having a predetermined wavelength is prepared to crystallize the amorphous silicon thin film 13, and a predetermined wavelength is applied to the amorphous silicon thin film 13.
  • a predetermined wavelength is applied to the amorphous silicon thin film 13.
  • the laser beam 30 having a predetermined light intensity distribution is used as the light beam having the predetermined wavelength in the present embodiment, and the intensity distribution shape of the laser beam 30 on the surface of the amorphous silicon thin film 13 is as follows.
  • the laser beam 30 has a substantially rectangular shape having a minor axis in the scanning direction 40 and a major axis in a direction intersecting the scanning direction 40.
  • the irradiation shape of the laser beam 30 on the surface of the amorphous silicon thin film 13 is also substantially rectangular having a minor axis in the scanning direction 40 of the laser beam 30 and a major axis in a direction intersecting the scanning direction 40.
  • the curve illustrated in the upper part of the laser beam 30 in FIG. 1C2 shows an example of the intensity distribution in the minor axis direction of the laser beam 30, and has, for example, an intensity distribution of a Gaussian curve.
  • laser light 30 is applied to the amorphous silicon thin film 13 in the scanning direction 40 at a predetermined speed.
  • the amorphous silicon thin film 13 is irradiated with a laser beam 30 by relative scanning.
  • the amorphous silicon thin film 13 in the region irradiated with the laser beam 30 is crystallized to form the crystalline silicon thin film 15 which is a polycrystalline silicon thin film including the crystallized region 50 (laser beam irradiation step ( Crystallization step)).
  • the region of the amorphous silicon thin film 13 irradiated with the laser beam 30 is annealed and crystallized by the thermal energy generated by the laser beam 30 to become the crystalline silicon thin film 15.
  • a predetermined region in the amorphous silicon thin film 13 is obtained as shown in (e1) and (e2) of FIG. Crystallization is complete.
  • a band-shaped first region (bead streak) 51 extending in the intersecting direction and a second region 52 adjacent to the first region 51 can be formed.
  • the band-shaped first region 51 and second region 52 are illustrated as curved in the Y-axis direction.
  • the shape may be a shape extending in a direction intersecting the direction, for example, a straight shape. Further, “crossing with respect to the scanning direction of the laser light” means, for example, as shown in FIG.
  • FIG. 2 is a top view schematically showing the state of the crystal structure of the crystallization region 50 of the crystalline silicon thin film 15 according to the first embodiment of the present invention, and is a region R surrounded by a broken line in (e2) of FIG. FIG.
  • the crystalline silicon thin film 15 is composed of a plurality of crystal grains (crystal grains) having different crystal grain diameters, and the boundaries of the crystal grains form crystal grain boundaries.
  • the crystallization region 50 of the crystalline silicon thin film 15 in the present embodiment is a band-shaped first region extending in a substantially orthogonal direction that is a form intersecting the scanning direction 40 of the laser light 30 ( A band-shaped first region) 51, and a band-shaped second region (band-shaped second region) 52 extending in a substantially orthogonal direction, which is one form of a direction intersecting the scanning direction 40 of the laser light 30; Is composed of a mixed crystal structure.
  • the first region 51 and the second region 52 are adjacent to each other in the scanning direction 40, and are formed so that the strip-shaped first regions 51 and the strip-shaped second regions 52 appear alternately.
  • the crystal structure in which the first region 51 and the second region 52 are mixed is obtained by scanning the laser beam 30 in the scanning direction 40 at a predetermined scanning speed in the crystallization process of the amorphous silicon thin film 13.
  • a band shape is formed in a direction substantially perpendicular to the scanning direction 40.
  • the first region 51 is formed by a series of crystal grains having a relatively large average crystal grain size.
  • the second region 52 is formed by a series of crystal grains having a relatively small average crystal grain size. That is, the first region 51 and the second region 52 are formed such that the average crystal grain size of the silicon particles in the first region 51 is larger than the average crystal grain size of the silicon particles in the second region 52. .
  • the average crystal grain size of the silicon crystal grains in the first region 51 is not less than 100 nm and not more than 500 nm
  • the average crystal grain size of the silicon crystal grains in the second region 52 is not less than 30 nm and less than 100 nm.
  • the second region 52 may include a crystal grain having an average crystal grain size smaller than the average crystal grain size of the crystal grains contained in the first region 51 in the amorphous amorphous material. According to this aspect, for example, it is useful for realizing a switching TFT having excellent off characteristics.
  • the carriers that move through the crystalline silicon thin film 15 pass through a plurality of crystal grains (the crystal grain boundaries existing between the crystal grains are However, since the crystal grain boundary is a crystal defect, carriers are easily captured at the crystal grain boundary. For this reason, the larger the crystal grain size, the smaller the number of crystal grain boundaries, so the probability that carriers are trapped decreases and the mobility of carriers improves. Accordingly, the carrier in the crystalline silicon thin film 15 has a higher probability of moving in the first region 51 having a relatively larger crystal grain size than the second region 52. Thus, the carrier mobility can be improved by forming the first region 51 in the crystalline silicon thin film 15.
  • the band-shaped first region 51 there are a plurality of crystals (crystal grains) that are in contact with the second regions 52 located on both sides of the band-shaped first region 51. . That is, in the first region 51, there are many crystals that straddle the adjacent second regions 52, and crystals having a width substantially equal to the lateral width of the first region 51 are formed. Further, the proportion of such crystal grains in the longitudinal direction of the band-shaped first region 51 is 80% or more.
  • a plurality of strip-shaped first regions 51 in the present embodiment are formed with substantially the same width.
  • the interval between the adjacent first regions 51 can be made equal by adjusting the scanning speed of the laser light 30 as shown in FIG. That is, the plurality of first regions 51 can be formed at a uniform pitch.
  • the average crystal is obtained by irradiating the amorphous silicon thin film 13 (amorphous silicon film) with laser light at a predetermined scanning speed.
  • the first region 51 having a large particle size and a band shape can be formed.
  • the scanning speed is higher than the scanning speed when the entire region of the amorphous silicon thin film 13 is a crystalline silicon thin film having an average crystal grain size in the second region 52.
  • Laser light is emitted by high-speed scanning (high-speed scanning).
  • the crystallization region 50 is formed in the second region 52 so that the first region 51 having a large crystal grain size and a band shape appears. The reason why the band-shaped first region 51 is formed by the high-speed scanning laser irradiation will be discussed below.
  • the temperature profile in the laser scanning direction at a certain point (location) in the thin film (silicon thin film) becomes steep in a short time (shorter) than when laser irradiation is performed at low speed scanning. Over time, it becomes hot and cools).
  • the temperature profile in the direction crossing the laser scanning direction in the present embodiment, the direction substantially orthogonal to the scanning direction
  • the thin film in the scanning direction, the thin film is rapidly heated and rapidly cooled in a short time along a steep temperature gradient, but in the direction crossing the scanning direction, there is almost no temperature gradient, so that it is sufficient for crystal growth. High temperature is maintained over time.
  • the above-described temperature gradient is generated in the horizontal direction of the substrate (hereinafter referred to as the lateral direction), which is the laser scanning direction.
  • the crystal growth of the thin film is promoted along such a temperature gradient, and the crystal grows in the lateral direction.
  • the crystal grain size of the crystal grains in the direction crossing the laser scanning direction increases.
  • the scanning speed is further increased, the thin film grows more uniformly in the lateral direction due to the balance between the temperature distribution and the degree of crystal growth speed.
  • the silicon crystal growth of the amorphous silicon thin film 13 is promoted in a direction substantially orthogonal to the laser beam scanning direction, and as shown in FIG. 2, a band extending in a direction intersecting with the laser scanning direction.
  • a first region 51 having a shape is formed.
  • the volume of silicon crystal grains expands with crystal growth, but in this embodiment, the crystal grains in the first region 51 grow more than the crystal grains in the second region 52 as described above. Therefore, the volume of the crystal grains in the first region 51 expands more than the crystal grains in the second region 52. Thereby, in the grain boundary of the crystal grain in the 1st field 51, it will be in the state where crystal grains collide and have raised.
  • the band-shaped first region 51 can be formed by increasing the scanning speed of the laser beam when crystallizing the silicon thin film. This has been studied by the present inventors. The result is obtained. Based on this result, the inventor of the present application generates a crystal gradient (first region 51) having a large crystal grain size in a direction intersecting the laser scanning direction by generating a temperature gradient of a certain level or more in the laser scanning direction. ) Can be obtained.
  • the steep temperature gradient for generating a crystal region (first region 51) having a large crystal grain size may be achieved by shortening the irradiation time of the laser beam and increasing the scanning speed of the laser beam as described above. It is presumed that this can be realized not only by reducing the minor axis width in the intensity distribution of laser light.
  • band-shaped first region 51 is normally considered as a cause of variations in device characteristics.
  • the inventor of the present application as will be described later, It has been found that the band-shaped first regions 51 can be formed at uniform intervals by adjusting the scanning speed or the like. As a result, it was possible to obtain a new idea that a device with less characteristic variation can be realized.
  • FIG. 3A is a perspective view schematically showing a state in which the amorphous silicon thin film 13 is irradiated with the laser light 30 in the method for manufacturing the thin film forming substrate according to Embodiment 1 of the present invention.
  • FIG. 3B is a figure which shows intensity distribution (beam profile) of the laser beam 30 used at the crystallization process of the manufacturing method of the thin film formation board
  • the laser light 30 is relatively scanned in a predetermined relative scanning direction with respect to the amorphous silicon thin film 13. Irradiate while letting That is, the laser light 30 is relatively scanned with respect to the amorphous silicon thin film 13 by moving at least one of the laser light 30 and the substrate 10 on which the amorphous silicon thin film 13 is formed.
  • the laser beam 30 is fixed, and the substrate 10 on which the amorphous silicon thin film 13 is formed is moved in the first direction 41 in the X-axis direction, as shown in FIG.
  • the silicon thin film 13 was scanned with the laser beam 30 in the scanning direction 40 (second direction opposite to the first direction 41 in the X-axis direction). Note that the entire region of the amorphous silicon thin film 13 can be irradiated with the laser beam 30 by moving the substrate 10 in the Y-axis direction and repeating scanning in the X-axis direction a plurality of times.
  • the laser used in this embodiment is preferably a continuous wave laser (CW laser). Since the CW laser continuously oscillates the laser light, it can be faster than the pulse laser. Moreover, since the scanning speed of the CW laser is one digit or more faster than that of the pulse laser, the throughput can be easily improved.
  • CW laser continuous wave laser
  • the laser used in this embodiment is preferably a laser having a wavelength of 405 nm to 632 nm.
  • a semiconductor laser in a range from 405 nm blue laser light to 632 nm green laser light can be used. This is because, in the case of an excimer laser having a wavelength of 308 nm, all of the light is absorbed on the surface of the amorphous silicon film, so that the vertical crystal growth due to the temperature gradient from the film surface to the film thickness direction becomes remarkable. This is because it becomes difficult to form the first region 51 obtained by the directional growth.
  • the laser beam can be transmitted through the entire thickness direction of the amorphous silicon film within the wavelength range of 405 nm to 632 nm, which promotes the lateral crystallization of the thin film. Therefore, it is estimated that the first region 51 is easily obtained.
  • the laser light in the present embodiment has a convex distribution in which the light intensity distribution in the minor axis (X axis) direction is a Gaussian distribution, and is orthogonal to the minor axis direction.
  • the beam is shaped so that the light intensity distribution in the major axis (Y-axis) direction is a top-flat distribution.
  • the beam minor axis width W1 represents the half-value width (FWHM: Full Width at Half Maximum) of the intensity distribution in the minor axis direction of the laser beam 30.
  • the beam major axis width W2 represents the width (flat width) in the major axis direction of the intensity distribution in the major axis direction of the laser beam.
  • the short axis direction of the intensity distribution of the laser beam 30 is set as the scanning direction 40 and is relatively with respect to the amorphous silicon thin film 13. Scanned.
  • the irradiation shape of the laser beam 30 on the silicon thin film 13 can be made substantially rectangular.
  • a CW laser composed of a semiconductor laser emitting green light having a wavelength of 532 nm is used.
  • the beam minor axis width W1 is 32 ⁇ m
  • the beam major axis width W2 is 300 ⁇ m
  • the beam major axis width W2 is configured to be larger than the beam minor axis width W1.
  • laser irradiation is performed on the amorphous silicon thin film 13 using the laser beam 30 thus beam-shaped.
  • the inventor of the present application performs the irradiation with the laser beam 30 as described above. Accordingly, the present inventors have found that the crystalline structure of the obtained crystalline silicon thin film 15 changes according to the scanning speed of the laser light 30 and the short axis width W1 of the laser light 30.
  • FIG. 4 shows the irradiation conditions (scanning speed and beam minor axis width) of the laser beam 30 and the crystal structure of the crystalline silicon thin film 15 in the crystallization step in the method for manufacturing the thin film forming substrate according to Embodiment 1 of the present invention. It is a figure which shows the relationship.
  • 5A to 5E are diagrams schematically showing the crystal structure of the crystalline silicon thin film 15 corresponding to the laser irradiation conditions in the regions A to E in FIG.
  • ablation 54 occurs in the amorphous silicon film as shown in FIG. Film peeling or the like occurs on the silicon thin film 15.
  • the ablation 54 occurs because the scanning speed of the laser beam is too slow, or the beam minor axis width W1 of the laser beam is too wide, so that the irradiation energy to the amorphous silicon thin film 13 increases. This is probably because it was too much.
  • the crystal grain size is not a molten silicon crystal but a small crystal grain size as shown in FIG. 5E. It becomes the crystalline silicon thin film 15 comprised by the SPC crystal structure 53 which consists of a crystal grain by a solid phase growth (SPC: Solid Phase Crystallization).
  • SPC Solid Phase Crystallization
  • the amorphous silicon thin film 13 made of an amorphous silicon film is crystallized in accordance with the irradiation condition of the laser beam 30 in the range from the region B to the region D sandwiched between the region A and the region E in FIG. A molten silicon crystal can be obtained.
  • the scanning speed of the laser light is relatively slow, or the beam minor axis width W1 of the laser light is relatively low.
  • the crystalline silicon thin film 15 constituted by the crystal structure in which the band-shaped first region 51 is not formed is formed under the irradiation condition of the very wide region B. 5B.
  • the crystalline structure of the crystalline silicon thin film 15 in FIG. 5B is composed only of silicon particles having an average crystal grain size corresponding to the second region 52.
  • the band shape extends in a direction substantially perpendicular to the scanning direction 40 of the laser light 30.
  • the band-shaped first regions 51 are randomly generated at non-uniform intervals. If the irradiation condition of the laser beam 30 in the range of the region D in FIG. 4 where the scanning speed is higher than the irradiation condition of the laser beam 30 or the beam minor axis width W1 is narrower is as shown in FIG. 5D. In addition, the band-shaped first regions 51 are uniformly generated at equal intervals.
  • FIG. 6A is a diagram showing the pitch width of the first region 51 with respect to the scanning speed of the laser light 30 in the crystallization step of the method for manufacturing the thin film formation substrate according to Embodiment 1 of the present invention.
  • FIG. 6B is a diagram in which the horizontal axis in FIG. 6A is replaced with the laser irradiation time from the scanning speed.
  • a laser irradiation time of 60 ( ⁇ sec) in FIG. 6B corresponds to a scanning speed of about 533 (mm / s) in FIG. 6A.
  • Each data in FIGS. 6A and 6B is obtained by measuring the pitch width of the first region 51 on the gate electrode having a width of 25 ⁇ m.
  • the band shape width of the first region 51 is the width of the gate electrode (25 ⁇ m). Is exceeded, the pitch width of the first region 51 is plotted as 25 ⁇ m.
  • the scanning speed of the laser beam 30 during crystallization is 550 mm / s or more, that is, when the irradiation time of the laser beam 30 is about 58.2 ( ⁇ ⁇ sec) or less
  • the interval between the adjacent first regions 51 is 2.0 ⁇ m or less and is almost saturated. That is, the adjacent first regions 51 can be formed at equal intervals by forming the first regions 51 so that the interval between the adjacent first regions 51 is 2.0 ⁇ m or less.
  • FIG. 5D the first regions 51 formed at uniform intervals can be obtained.
  • the interval (pitch width) between the adjacent first regions 51 is the center position in the width direction of one first region 51 and the width direction of the other first region 51 in the two adjacent first regions 51. It is the distance between the center position.
  • an amorphous thin film such as an amorphous silicon film is crystallized depending on the irradiation condition of the laser beam 30 in the region C or region D of FIG.
  • a crystalline thin film composed of crystal structures including regions having different crystal states formed in the same process at high speed. That is, it is possible to manufacture a thin film forming substrate on which a crystalline thin film having a crystallization region 50 including a first region 51 and a second region 52 having different average crystal grain sizes formed in the same process is formed. it can. Accordingly, two types of elements (thin film transistors and the like) having different characteristics can be easily manufactured in one device.
  • a crystalline thin film including a crystallized region (first region 51) having a large crystal grain size can be formed.
  • the crystalline thin film according to the present embodiment is channeled.
  • a thin film transistor is manufactured as the layer, a thin film transistor with high carrier mobility and excellent on-current characteristics can be realized.
  • the crystallization region 50 including such a band-shaped first region 51 can be formed by irradiating the continuous wave laser beam 30 with high-speed scanning. Compared with the case of crystallizing with a laser, high throughput can also be realized. That is, the throughput can be improved as compared with the case where the crystalline silicon thin film 15 constituted by the crystal structure composed only of crystal grains having the crystal grain size corresponding to the second region 52 is formed by laser crystallization.
  • the crystal structure of a band-shaped region (streak), specifically, the crystal structure The size of is very different. That is, when the thin film is crystallized using continuous wave laser light as in this embodiment, as described above, the temperature profile in the scanning direction at a certain point in the thin film becomes steep, and the crystal follows the temperature gradient. Growth is promoted and lateral (lateral) growth occurs, and the crystal grain size increases. On the other hand, when a thin film is crystallized using pulsed laser light, the irradiation time of pulsed laser light is extremely short (one shot is on the order of nsec). A crystal structure is formed.
  • the physical length of the crystal grain size is very small even in a region where the crystal is relatively large. That is, in the case of a pulse laser, a band-shaped region having a crystal with a large particle size is not formed as in this embodiment.
  • the principle of crystal growth of the thin film differs between the case of crystallization using continuous wave laser light and the case of crystallization using a pulse laser.
  • the first region 51 located on both sides of the band-shaped first region 51 is.
  • the short axis width (half-value width) of the laser has a micron order or more. Therefore, in addition to the difficulty of crystal growth, the width of the band shape inevitably increases, so that it is not possible to form crystal grains in contact with the regions on both sides of the band shape region.
  • the laser beam extends in a direction intersecting with the laser scanning direction.
  • Two vertical stripe crystal regions (vertical stripe region A and vertical stripe region B) having different crystal grain sizes may be formed. This is because, in the wavelength region of visible light, the crystalline silicon thin film has an optical absorptance of about 1/10 that of an amorphous silicon film. It is considered that light absorption is difficult even when the eye pulse laser is irradiated, and the crystal structure formed by the first shot pulse laser irradiation is likely to remain.
  • the band-shaped first region 51 is continuously formed within the length in the major axis direction (Y direction) of the laser irradiation region. That is, the band-shaped first region 51 is continuously generated without interruption over the major axis width of the laser beam with respect to the major axis direction (Y direction) of the laser beam. Thereby, the mobility of carriers can be improved, and a crystalline silicon thin film excellent in uniformity can be realized.
  • the crystalline silicon thin film 15 is preferably formed under the laser irradiation conditions in the region D in FIG.
  • the band-shaped first regions 51 can be formed at uniform intervals.
  • the crystal grain size of the first region 51 of the crystalline silicon thin film 15 in the present embodiment is 100 nm or more and 500 nm or less and less than a micrometer order, that is, not a large grain size.
  • the band-shaped first region 51 can be formed with a crystal grain size of 100 nm or more and 500 nm or less and at uniform intervals, a crystal structure having excellent in-plane uniformity of the substrate can be obtained.
  • an element with small characteristic variation can be easily manufactured.
  • the laser light used in the crystallization process is preferably green laser light using a CW laser for the following reason.
  • a thin film transistor having the crystalline silicon thin film 15 as a channel layer has high carrier mobility and excellent on-current characteristics.
  • the beam long axis width is increased by the green laser beam, the beam length increases due to the influence of optical interference. It becomes difficult to ensure the beam intensity uniformity in the axial direction.
  • the method for manufacturing a thin film forming substrate according to the present embodiment is suitable for crystallization of a thin film using green laser light.
  • FIG. 8 is a diagram showing a configuration of the crystalline semiconductor thin film forming apparatus according to Embodiment 1 of the present invention.
  • Crystalline semiconductor thin film forming apparatus 100 according to the present embodiment forms laser light 30 having a light intensity distribution as shown in FIG. 3B to crystallize an amorphous semiconductor thin film such as amorphous silicon thin film 13. It is a device for.
  • a crystalline semiconductor thin film forming apparatus 100 is a silicon thin film crystallization apparatus using CW laser light, and includes a substrate holding unit 110, a laser light oscillation unit 120, an optical system unit 130, and the like. And a control unit 140 including a scanning control unit 141 and a laser light intensity distribution adjusting unit 142.
  • the substrate holding unit 110 is a stage that holds the substrate 10 on which an amorphous silicon thin film to be crystallized is formed.
  • an amorphous silicon film (amorphous silicon film) is formed as an amorphous silicon thin film on the surface 10S of the substrate 10 that is the irradiation surface of the laser beam 30.
  • the laser beam oscillation unit 120 is a laser light source that oscillates a laser beam 30 for crystallizing an amorphous silicon thin film.
  • the laser light oscillation unit 120 in the present embodiment is provided with four semiconductor laser devices, and each semiconductor laser device oscillates laser light having a symmetric single-peak light intensity distribution.
  • the semiconductor laser device for example, a blue laser light or a green laser light having a wavelength band of 405 nm to 632 nm that continuously oscillates in a microsecond order of, for example, 10 to 100 ⁇ sec can be used.
  • the optical system unit 130 includes a plurality of beam shaping lenses, and is configured to irradiate a predetermined region of the silicon thin film while beam-forming the laser beam 30 oscillated from the laser beam oscillation unit 120 into a predetermined intensity distribution. ing.
  • the optical system unit 130 includes a homogenizer 131, a condenser lens 132, and a DOE (Differential Optical Element: diffractive optical element) lens 133.
  • the beam shaping lens a lens for shaping the beam profile in the long axis direction and a lens for shaping the beam profile in the short axis direction may be provided separately.
  • the scanning control unit 141 controls the substrate holding unit 110 or the optical system unit 130 so that the laser light 30 irradiating the amorphous silicon thin film is beam-scanned relative to the silicon thin film. To do. As shown in FIG. 3A, the scanning control unit 141 in the present embodiment controls the substrate holding unit 110 to move to a predetermined position to move the substrate 10.
  • the laser light intensity distribution adjusting unit 142 shapes the laser light 30 so as to have a predetermined intensity distribution.
  • the laser light intensity distribution adjusting unit 142 in the present embodiment forms the laser light 30 oscillated from the laser light oscillating unit 120 by adjusting the lens constituting the optical system unit 130, and the light as shown in FIG. 3B. Beam shaping is performed so that the laser beam 30 has an intensity distribution.
  • the crystalline semiconductor thin film forming apparatus 100 may further include an optical component such as a mirror or a condenser lens, or may include a beam beam profiler for measuring the beam profile of laser light. .
  • an optical component such as a mirror or a condenser lens
  • the laser light intensity distribution adjusting unit 142 adjusts the lens of the optical system unit 130 so that the laser light applied to the silicon thin film has a desired light intensity distribution. Can be adjusted.
  • the method of manufacturing a thin film transistor according to the first embodiment of the present invention includes a step of preparing a substrate (substrate preparation step), a step of forming a gate electrode above the substrate (gate electrode forming step), and a gate above the substrate.
  • a step of forming an insulating film (gate insulating film forming step), a step of forming source and drain electrodes above the substrate (source drain electrode forming step), and a step of forming a silicon thin film above the substrate (silicon thin film) Forming step) and a step of crystallizing the silicon thin film formed on the substrate by irradiating laser light to form a crystalline silicon thin film (silicon thin film crystallization step).
  • the silicon thin film crystallization step in the thin film transistor manufacturing method according to the present embodiment can be performed by the same method as the crystallization step in the thin film formation substrate manufacturing method described above. Note that the crystalline silicon thin film obtained by the silicon thin film crystallization step serves as a channel layer of the thin film transistor.
  • the bottom gate type thin film transistor has a layer configuration of a gate electrode, a gate insulating film, and a channel layer (silicon semiconductor film) in order from the bottom.
  • the top gate type thin film transistor has a layer structure of a channel layer, a gate insulating film, and a gate electrode in order from the bottom.
  • FIG. 9 is a cross-sectional view schematically showing each step in the manufacturing method of the bottom-gate thin film transistor (channel etch type) according to the second embodiment of the present invention.
  • the substrate 10 is prepared (substrate preparation step).
  • the substrate 10 for example, a glass substrate can be used.
  • an undercoat film made of an insulating film such as a silicon oxide film or a silicon nitride film may be formed on the substrate 10.
  • a pattern of the gate electrode 11 is formed above the substrate 10 (gate electrode forming step).
  • gate electrode forming step molybdenum (Mo), tungsten (W), copper (Cu), silver (Ag), aluminum (Al), chromium (so that the film thickness is in the range of 10 to 500 nm over the entire surface above the substrate 10.
  • a gate metal film such as Cr), titanium (Ti), tantalum (Ta), or an alloy thereof is formed by sputtering, and the gate metal film is patterned by performing photolithography and wet etching.
  • a gate electrode 11 having a predetermined shape is formed.
  • a gate insulating film 12 is formed above the substrate 10 (gate insulating film forming step).
  • a silicon oxide (SiO) film, a silicon nitride (SiN x ) film, a silicon oxynitride film is formed on the entire upper surface of the substrate 10 so as to cover the gate electrode 11 so that the film thickness is in the range of 10 to 500 nm.
  • a gate insulating film 12 made of an insulating film such as a (SiON) film is formed by plasma CVD. Note that the gate insulating film may have a single-layer structure or a stacked structure.
  • an amorphous silicon thin film 13 is formed above the substrate 10 (silicon thin film forming step).
  • an amorphous silicon film is formed as the amorphous silicon thin film 13 on the gate insulating film 12 by plasma CVD so that the film thickness is in the range of 10 to 200 nm.
  • the laser beam is applied to a predetermined region of the amorphous silicon thin film 13 while relatively scanning the amorphous silicon thin film 13 with the laser beam in a predetermined scanning direction 40.
  • the amorphous silicon thin film 13 is crystallized to form a crystalline silicon thin film 15 (silicon thin film crystallization step). This step is performed by the same method as the crystallization step in the method for manufacturing a thin film forming substrate described above.
  • laser irradiation is performed by scanning the amorphous silicon thin film 13 with laser light in the X-axis direction (perpendicular to the paper surface) under the irradiation conditions shown in the region C or region D of FIG.
  • a band-shaped first region is generated in the crystalline silicon thin film 15 in a direction substantially orthogonal to the scanning direction 40.
  • FIG. 9E a partial region of the amorphous silicon thin film 13 is crystallized, but the entire region of the amorphous silicon thin film 13 may be crystallized.
  • the silicon thin film 13 which is an uncrystallized region not irradiated with laser and the crystalline silicon thin film 15 which is crystallized by laser irradiation are selectively patterned to be amorphous.
  • the silicon thin film 13 is removed and the crystalline silicon thin film 15 is patterned in an island shape.
  • the amorphous silicon film is doped with an impurity such as phosphorus so that the film thickness is in the range of 10 to 100 nm.
  • An impurity-doped n + layer is formed.
  • a source / drain metal film 17 having, for example, a three-layer structure of MoW / Al / MoW is formed on the contact layer 16 by sputtering.
  • the source electrode 17S and the drain electrode 17D are patterned on the substrate 10 as shown in FIG. 9G (source / drain electrode forming step).
  • the source / drain metal film 17 is patterned by performing photolithography and wet etching, thereby forming a pair of opposing source electrode 17S and drain electrode 17D.
  • the contact layer 16 is separated by performing dry etching while leaving the resist used for patterning the source / drain metal film 17 (or removing the resist) to form a pair of opposing contact layers 16. Thereby, as shown in FIG. 9G, a bottom gate type thin film transistor can be manufactured. Thereafter, a passivation film made of a silicon nitride film may be formed by plasma CVD or the like so as to cover the whole.
  • the irradiation condition of the laser beam when crystallizing the silicon thin film serving as the channel layer is set as the range of region C or region D in FIG.
  • the beam minor axis width and the scanning speed so that the crystalline silicon thin film 15 having a crystal structure including the first region 51 having a larger average crystal grain size than the second region 52 and including the band-shaped first region 51 is obtained.
  • the crystal grain size of the crystalline silicon thin film 15 can be increased without increasing the laser output and increasing the scanning speed. Therefore, the thin film transistor having excellent on-current characteristics while achieving high throughput. Can be manufactured.
  • a method for manufacturing a channel etch type thin film transistor has been described as an example.
  • a channel stopper type (channel protection type) thin film transistor in which a channel protective film is formed on a crystalline silicon thin film 15 is also described. Can be applied.
  • the crystalline silicon thin film 15 is more preferably formed under the laser irradiation conditions in the region D.
  • the crystalline silicon thin film 15 is more preferably formed under the laser irradiation conditions in the region D.
  • the interval between the band-shaped first regions 51 can be made uniform.
  • a thin film transistor array comprising a plurality of thin film transistors having TFT characteristics with excellent in-plane uniformity can be manufactured.
  • FIG. 10 is a cross-sectional view schematically showing each step in the method for manufacturing the top-gate thin film transistor according to the first embodiment of the present invention.
  • the substrate 10 is prepared (substrate preparation process).
  • the substrate 10 for example, a glass substrate can be used.
  • an undercoat film 18 made of an insulating film such as a silicon oxide film or a silicon nitride film is formed on the substrate 10.
  • an amorphous silicon thin film 13 is formed above the substrate 10 (silicon thin film forming step).
  • an amorphous silicon film is formed as an amorphous silicon thin film 13 on the undercoat film 18 by plasma CVD or the like.
  • the laser beam is applied to a predetermined region of the amorphous silicon thin film 13 while relatively scanning the amorphous silicon thin film 13 with a laser beam in a predetermined scanning direction 40.
  • the amorphous silicon thin film 13 is crystallized to form a crystalline silicon thin film 15 (silicon thin film crystallization step). This step is performed by the same method as the crystallization step in the method for manufacturing the thin film forming substrate in the first embodiment.
  • laser irradiation is performed by scanning the amorphous silicon thin film 13 with laser light in the X-axis direction (perpendicular to the paper surface) under the laser light irradiation conditions shown in the region C or region D of FIG. I do.
  • a band-shaped first region is generated in the crystalline silicon thin film 15 in a direction substantially orthogonal to the scanning direction 40.
  • FIG. 10C a partial region of the amorphous silicon thin film 13 is crystallized, but the entire region of the amorphous silicon thin film 13 may be crystallized.
  • the silicon thin film 13 which is an uncrystallized region not irradiated with laser and the crystalline silicon thin film 15 crystallized by laser irradiation. Is selectively patterned to remove the amorphous silicon thin film 13 and form an island-like crystalline silicon thin film 15.
  • a gate insulating film 12 is formed above the substrate 10 (gate insulating film forming step).
  • the gate insulating film 12 made of an insulating film such as silicon dioxide is formed on the entire surface above the substrate 10 so as to cover the island-shaped crystalline silicon thin film 15 by plasma CVD or the like.
  • the gate electrode 11 is patterned on the substrate 10 (gate electrode forming step).
  • a gate metal film such as molybdenum tungsten (MoW) is formed on the entire upper surface of the substrate 10 by sputtering, and the gate metal film is patterned by performing photolithography and wet etching, so that the upper part of the crystalline silicon thin film 15 is formed.
  • a gate electrode 11 having a predetermined shape is formed through a gate insulating film 12.
  • LDD Lightly Doped Drain
  • a passivation film 20 is formed above the substrate 10.
  • a passivation film 20 made of an insulating film such as a silicon dioxide film is formed on the entire upper surface of the substrate 10 so as to cover the gate electrode 11 and the gate insulating film 12 by plasma CVD or the like.
  • a contact hole is formed in the passivation film 20 so as to expose the LDD region 19.
  • a pair of source electrode 17S and drain electrode 17D are formed on the passivation film 20 so as to fill the contact hole of the passivation film 20.
  • a top gate type thin film transistor can be manufactured as shown in FIG.
  • the irradiation condition of the laser beam when crystallizing the silicon thin film serving as the channel layer is set as the range of region C or region D in FIG.
  • the crystalline silicon thin film 15 constituted by the crystal structure including the band-shaped first region 51 having an average crystal grain size larger than that of the second region 52 is formed. can do.
  • the crystal grain size of the crystalline silicon thin film 15 can be increased without increasing the laser output and increasing the scanning speed. Therefore, the thin film transistor having excellent on-current characteristics while achieving high throughput. Can be manufactured.
  • the crystalline silicon thin film 15 is more preferably formed under the laser irradiation conditions in the region D.
  • the crystalline silicon thin film 15 is more preferably formed under the laser irradiation conditions in the region D.
  • the interval between the band-shaped first regions 51 can be made uniform.
  • a thin film transistor array comprising a plurality of thin film transistors having TFT characteristics with excellent in-plane uniformity can be manufactured.
  • Example of Embodiment 1 Next, an example of a method for manufacturing a thin film forming substrate, a thin film substrate, a method for manufacturing a thin film transistor, and a thin film transistor according to Embodiment 1 of the present invention will be described with reference to FIG. Note that although a description is given here using a process for manufacturing a bottom-gate thin film transistor, the present invention can also be applied to a top-gate thin film transistor.
  • a glass substrate is prepared as the substrate 10, and an undercoat film made of an insulating film of a silicon oxide film is formed on the glass substrate by plasma CVD to a thickness of 500 nm.
  • a metal film made of molybdenum tungsten (MoW) is deposited on the undercoat film by sputtering to a thickness of 50 nm, and the metal film is patterned to obtain a gate as shown in FIG. The electrode 11 is formed. Thereafter, as shown in FIG.
  • a gate insulating film 12 made of a laminated film of a silicon oxide film having a thickness of 70 nm and a silicon nitride film having a thickness of 85 nm is formed on the gate electrode 11 by plasma CVD. Further, as shown in FIG. 9D, an amorphous silicon thin film 13 made of an amorphous silicon film is continuously formed to a thickness of 50 nm. Thereafter, the hydrogen content in the amorphous silicon film is reduced to 3.0 atomic% or less by dehydrogenation treatment at 500 ° C.
  • the substrate 10 on which the amorphous silicon thin film 13 is formed is fixed on the substrate holding portion (stage) 110 of the crystalline semiconductor thin film forming apparatus 100 shown in FIG.
  • the amorphous silicon thin film 13 is crystallized to form a crystalline silicon thin film 15.
  • the laser irradiation condition on the first substrate is the laser irradiation condition in the present embodiment, the power density is 70.0 kW / cm 2, and the scanning speed of the substrate holder 110 is in the range of 400 to 580 mm / s. did.
  • the laser irradiation conditions on the second substrate were the laser irradiation conditions in the comparative example, where the power density was 60.0 kW / cm 2 and the stage scanning speed was in the range of 340 to 480 mm / s.
  • 11A and 11B show the laser irradiation conditions (power density: 70.0 kW / cm 2 , stage scanning speed: 580 mm / s, irradiation time: 49.0 ⁇ sec, in Embodiment 1 of the present invention.
  • (B) is a planar SEM image when the crystalline structure of the crystalline silicon thin film 15 obtained by (input energy density: 3.5 J / cm 2 ) is observed by SEM, and
  • (b) is a region in a region indicated by a broken line in (a). It is an enlarged view.
  • the crystalline silicon thin film 15 formed under the laser irradiation conditions in the present embodiment has a mixture of the band-shaped first region 51 and the second region 52. Can be confirmed.
  • the portion that appears whitish is the portion in which the silicon crystal grains in the first region 51 collide with each other due to volume expansion and are raised.
  • the average crystal grain size of the silicon crystal grains in the first region 51 was 440 nm, and the average crystal grain size of the silicon crystal grains in the second region 52 was 80 nm.
  • region 51 was 1.8 micrometers, and was a uniform pitch.
  • FIGS. 12A and 12B show the laser irradiation conditions (power density: 60 kW / cm 2 , stage scanning speed: 400 mm / s, irradiation time: 80.0 ⁇ sec, input energy density: 4 in the comparative example.
  • .8 J / cm 2 is a planar SEM image when the crystalline structure of the crystalline silicon thin film obtained by SEM is observed with SEM, and (b) is an enlarged view of a region indicated by a broken line in (a).
  • the crystalline silicon thin film formed under the laser irradiation conditions in the comparative example has a long irradiation time of 60.0 ⁇ sec or more, and therefore the first region 51 does not exist.
  • the second region 52 exists, and the average crystal grain size of the silicon crystal grains in the crystal structure was 75 nm.
  • the laser irradiation conditions according to the present embodiment in FIG. 11 are the average crystal grains in spite of the increased scanning speed and the lower input energy density.
  • the band-shaped first regions 51 having a diameter in the range of 100 to 500 nm can be formed at intervals of 2.0 ⁇ m or less.
  • the band-shaped first region 51 includes a plurality of crystal grains that are in contact with the second regions 52 located on both sides of the band-shaped first region 51. I understand that That is, in the band-shaped first region 51, one continuous crystal grain (stretching between the adjacent second regions 52) from one end to the other end in the lateral direction (width direction) of the band-shaped first region. It can be seen that there are a plurality of crystal grains.
  • the thin film transistor having excellent on-current characteristics can be realized by using the crystalline silicon thin film 15 in this embodiment as a channel layer. it can.
  • a large grain size region has a plurality of crystal grains in the scanning direction, and the number of grain boundaries (trap sites) increases. Therefore, a crystalline silicon thin film obtained by a pulse laser cannot realize a thin film transistor having excellent on-current characteristics as compared with a crystalline silicon thin film obtained by using continuous wave laser light.
  • the ratio of the crystal grains in contact with the second regions 52 on both sides in the longitudinal direction of the band-shaped first region 51 is 80% or more. That is, the rate of lateral growth in the longitudinal direction of the band-shaped first region 51 is 80% or more.
  • a thin film transistor having excellent on-current characteristics and low carrier mobility element variation as described later. can be realized.
  • the pulse laser a plurality of crystal grains exist in the scanning direction in the large grain size region. For this reason, the amount of current may vary depending on the path through which the current flows. Therefore, when each transistor arranged on the substrate surface is compared, it may be a cause of variation in on-current in the large particle size region of each transistor.
  • the large grain size region in the present application is one connected crystal grain from one end to the other end, the variation due to the difference in the number of crystal grain boundaries in the large grain size region is even compared with the case of the pulse laser. small. Therefore, in-plane variation of on-current can be suppressed.
  • FIGS. 13A to 13C are diagrams when the crystal structure of the crystalline silicon thin film 15 obtained under the laser irradiation conditions in the first embodiment of the present invention is observed with an optical microscope.
  • FIGS. 13A, 13B, and 13C Respectively correspond to the case where the scanning speed of the stage is 460 mm / s, 480 mm / s, and 520 mm / s.
  • FIG. 14A is a diagram showing a spectrum of Raman shift obtained by the Raman spectroscopic measurement method in the crystalline silicon thin film formed under the laser irradiation conditions in the first embodiment of the present invention and the comparative example.
  • FIG. 14B shows the laser scanning speed and the Raman shift obtained by the Raman spectroscopic measurement method of FIG. 14A in the crystalline silicon thin film formed under the laser irradiation conditions in Embodiment 1 and Comparative Example of the present invention. It is a figure which shows the relationship with the half value width of the peak spectrum of c-Si (crystalline silicon component) near 520 cm ⁇ 1 .
  • the measurement conditions in Raman spectroscopic analysis are as follows.
  • the measurement position is a crystalline silicon thin film on the gate electrode, the excitation wavelength is 532 nm, the measurement spot diameter is 1.3 ⁇ m ⁇ , and the wave number resolution is 1.5 cm ⁇ 1 .
  • Each data point in FIG. 14B is an average value of 120 points in the crystalline silicon thin film on the gate electrode.
  • the result of one point out of 120 points in points D1 and D2 in FIG. 14B is obtained. Illustrated.
  • the first region 51 does not exist in the crystalline silicon thin film formed by the laser irradiation condition in the present embodiment in which the first region 51 and the second region 52 are mixed. It can be seen that the half width of the peak spectrum of the Raman shift is smaller than that of the crystalline silicon thin film formed by the laser irradiation condition in the comparative example in which only the second region 52 exists. Such a small Raman half-width indicates that the crystalline structure of the crystalline silicon thin film is composed of silicon particles having a large crystal grain size.
  • the range of the half-value width of the peak spectrum of Raman shift in the crystalline silicon thin film formed under the laser irradiation conditions in this embodiment is 4.8 to 5.5 cm ⁇ 1 . That is, by setting the range of the Raman half width in the crystalline silicon thin film to 4.8 to 5.5 cm ⁇ 1 , the crystalline silicon thin film having a crystal structure including the first region 51 having a large crystal grain size and a band shape It can be.
  • the amorphous silicon thin film 13 and the crystalline property are obtained.
  • the crystalline silicon thin film 15 is patterned in an island shape.
  • an intrinsic amorphous silicon film (not shown) is formed to a thickness of 50 nm by plasma CVD or the like, and subsequently on the amorphous silicon film by plasma CVD.
  • An impurity-doped n + layer is formed to a thickness of 30 nm to be the contact layer 16 made of an amorphous silicon film doped with an impurity such as phosphorus.
  • a source / drain metal film 17 having a three-layer structure of, for example, MoW (50 nm) / Al (400 nm) / MoW (50 nm) is deposited on the contact layer 16 by a sputtering method.
  • the source / drain metal film 17 is separated by patterning to form a pair of opposing source and drain electrodes 17S and 17D.
  • a silicon nitride film is formed to a thickness of 400 nm by plasma CVD or the like, and contact holes are formed in the silicon nitride film by performing photolithography and dry etching, and then a transparent electrode is formed by sputtering.
  • the ITO film may be patterned by depositing an ITO film with a thickness of 100 nm and performing photolithography and dry etching.
  • FIG. 15A shows the relationship between the scanning speed at the time of laser irradiation and the mobility of the thin film transistor in the thin film transistor manufactured using the crystalline silicon thin film formed under the laser irradiation conditions in Embodiment Mode 1 and Comparative Example of the present invention.
  • FIG. FIG. 15B shows the relationship between the energy density of the laser beam and the mobility of the thin film transistor in the thin film transistor manufactured using the crystalline silicon thin film formed according to the laser irradiation conditions in Embodiment Mode 1 and Comparative Example of the present invention.
  • FIG. The mobility in FIGS. 15A and 15B shows the results when the channel width of the channel layer (crystalline silicon thin film) is 50 ⁇ m and the channel length is 10 ⁇ m.
  • a thin film transistor having a channel layer of a crystalline silicon thin film formed by laser irradiation conditions in the present embodiment in which the first region 51 and the second region 52 are mixed is first. Since the mobility is higher than that of a thin film transistor using a crystalline silicon thin film formed by laser irradiation conditions in a comparative example in which the region 51 is not present and only the second region 52 is present as a channel layer, the laser in the present embodiment It can be seen that the crystalline silicon thin film formed according to the irradiation conditions contains silicon particles having a larger crystal grain size. In addition, since a thin film transistor using a crystalline silicon thin film formed according to laser irradiation conditions in this embodiment as a channel layer has higher mobility, a thin film transistor having excellent on-current characteristics can be realized. I understand.
  • the energy density of the laser beam is compared at 5.0 J / cm 2 , depending on the laser irradiation condition in the present embodiment in which the first region 51 and the second region 52 are mixed.
  • the mobility is 39.0 (cm 2 / V ⁇ sec)
  • the first region 51 is not present, and only the second region 52 is present.
  • the mobility is 27.1 (cm 2 / V ⁇ sec).
  • a thin film transistor using a crystalline silicon thin film crystallized under laser irradiation conditions in this embodiment as a channel layer has higher mobility
  • a thin film transistor having excellent on-current characteristics can be realized.
  • the crystalline silicon thin film can be formed with a lower energy density under the laser irradiation conditions in this embodiment.
  • FIG. 16 shows a variation in the pitch width and mobility of the band-shaped first region of the thin film transistor manufactured using the crystalline silicon thin film formed according to the laser irradiation conditions in the first embodiment of the present invention and the comparative example.
  • 3 is a diagram showing a relationship with 3 ⁇ / Ave.).
  • the mobility variation is 15.
  • the mobility variation is 20% or more.
  • the thin film transistor according to the laser irradiation condition region D in FIG. 4 in the present embodiment in which the first region 51 and the second region 52 having a uniform interval are mixed by further increasing the scanning speed. It can be seen that the mobility variation can be improved to 10% to 20%, and that excellent mobility variation can be realized even when compared with the laser irradiation conditions in the comparative example.
  • the thin film element in the present embodiment uses the crystalline silicon thin film 15 in the first embodiment, and a switching transistor and a driving transistor in a pixel of an organic EL display will be described as an example.
  • FIG. 17A is a plan view showing a configuration of a switching transistor that constitutes a pixel of the organic EL display according to Embodiment 2 of the present invention.
  • FIG. 17B is a plan view showing the configuration of the drive transistor that constitutes the pixel of the organic EL display according to Embodiment 2 of the present invention.
  • FIGS. 17A and 17B are diagrams showing the arrangement of the source and drain electrodes of the switching transistor and the driving transistor when the crystal structure of the crystalline silicon thin film in this embodiment is observed with an optical microscope.
  • symbol G indicates the gate electrode of the switching transistor or drive transistor
  • symbol S indicates the source electrode
  • symbol D indicates the drain electrode.
  • the driving transistor corresponds to the first element (first element part) in the present invention
  • the switching transistor corresponds to the second element (second element part) in the present invention.
  • the channel direction is an arrangement direction of the source electrode and the drain electrode.
  • the switching transistor 270a and the driving transistor 270b are composed of two or more belt-shaped first regions 51 and 2 each having a crystalline silicon thin film irradiated with a laser under the above-described conditions.
  • the above-mentioned second region 52 is included, and a striped structure is observed in the crystalline silicon thin film.
  • the switching transistor has a source electrode and a source electrode so that the direction parallel to the scanning direction 40 of the laser beam 30, that is, the direction substantially orthogonal to the band-shaped first region 51 is the channel direction.
  • a drain electrode is formed. Also, as shown in FIG.
  • the direction substantially perpendicular to the scanning direction 40 of the laser beam 30, that is, the direction parallel to the longitudinal direction of the band-shaped first region 51 is the channel direction.
  • a source electrode and a drain electrode are formed. As described above, in this embodiment, the center line of the region where the source electrode and the drain electrode in the driving transistor face each other intersects the center line of the region where the source electrode and the drain electrode in the switching transistor face each other. .
  • FIG. 18 is an equivalent circuit diagram of a pixel circuit using the thin film element according to the second embodiment of the present invention.
  • the pixel PX is a thin film element including a switching transistor 270a, a driving transistor 270b, an organic EL element 230, and a capacitor 280.
  • the drive transistor 270b is a transistor that drives the organic EL element 230
  • the switching transistor 270a is a transistor for selecting a pixel.
  • a plurality of pixels that are thin film elements are arranged to form a pixel array that is a thin film element array.
  • the source electrode of the switching transistor 270a is connected to the data line 250, the gate electrode is connected to the scanning line 240, and the drain electrode is connected to the capacitor 280 and the gate electrode of the driving transistor 270b.
  • drain electrode of the driving transistor 270 b is connected to the current supply line (power supply wiring) 260, and the source electrode is connected to the anode of the organic EL element 230.
  • FIG. 19 is a plan view showing a pixel configuration of the organic EL display according to the second embodiment of the present invention.
  • the pixel PX includes a scanning line 240, a data line 250, a current supply line 260, a capacitance 280, a switching transistor 270a, a driving transistor 270b, and an organic EL element 230. .
  • the crystalline silicon thin film formed on the substrate constituting the pixel PX is irradiated with the laser beam 30 while moving in the scanning direction 40 as shown in FIG. As a result, a band-shaped first region is formed in a direction substantially orthogonal to the scanning direction 40.
  • the switching transistor 270 a is formed so that the channel direction is parallel to the scanning direction 40.
  • the drive transistor 270b is formed so that the channel direction is substantially orthogonal to the scanning direction 40. Therefore, the switching transistor 270a and the driving transistor 270b are arranged so that the channel directions are substantially orthogonal.
  • the data line 250 is formed integrally with the source electrode of the switching transistor 270a. That is, the data line 250 and the source electrode of the switching transistor 270a are formed by patterning the same metal film.
  • the current supply line 260 is formed integrally with the drain electrode of the drive transistor 270b. That is, the current supply line 260 and the drain electrode of the driving transistor 270b are formed by patterning the same metal film.
  • the scanning line 240 is connected to the gate electrode of the switching transistor 270a through a contact hole.
  • the drain electrode of the switching transistor 270a is connected to the capacitance 280 through a contact hole. Further, the capacitance 280 is connected to the current supply line 260.
  • the on-current Ion of the driving transistor 270b can be improved while suppressing the off-current Ioff of the switching transistor 270a.
  • FIG. 20A is a schematic configuration diagram of a switching transistor according to Embodiment 2 of the present invention
  • FIG. 20B is a schematic configuration diagram of a drive transistor according to Embodiment 2 of the present invention.
  • a bottom-gate transistor is illustrated as an example.
  • the switching transistor 270a in the present embodiment uses the crystalline silicon thin film having the crystallization region 50 shown in FIG. 2 as a channel layer, and the length of the band-shaped first region 51 is long.
  • the source electrode 217S and the drain electrode 217D are formed so that the direction substantially orthogonal to the direction is the channel direction.
  • the band-shaped first region 51 is continuous within the length of the channel region.
  • the driving transistor 270b in the present embodiment uses the crystalline silicon thin film having the crystallization region 50 shown in FIG.
  • the source electrode 217S and the drain electrode 217D are formed so that the direction parallel to the longitudinal direction of the transistor is the channel direction.
  • the band-shaped first region 51 is continuous within the length of the channel region.
  • FIG. 21A is a diagram for explaining electron mobility in the switching transistor according to Embodiment 2 of the present invention.
  • FIG. 21B is a diagram for explaining electron mobility in the drive transistor according to Embodiment 2 of the present invention.
  • the switching transistor 270a is required to improve off-current Ioff characteristics. That is, it is preferable that the off-state current Ioff be small in the switching transistor 270a. Therefore, as shown in FIG. 21A, in order to suppress the off-current Ioff, the source electrode is set so that the channel direction of the switching transistor 270a is substantially orthogonal to the band-shaped first region 51 formed in the crystalline silicon thin film. 217S and the drain electrode 217D are formed. As a result, in the band-shaped second region 52 having a small grain size, the number of crystal grain boundaries existing on the electron transfer path 290 between the source and drain electrodes increases. Therefore, the probability that carriers are trapped in the crystal grain boundary is increased.
  • the off-current Ioff can be suppressed in the switching transistor 270a.
  • the on-current Ion of the switching transistor 270a is also suppressed.
  • the switching transistor 270a is particularly required to suppress the off-current Ioff, the effect of suppressing the on-current Ion is considered to be small. .
  • the drive transistor 270b is required to improve the on-current Ion. That is, it is preferable that the on-current Ion is large in the driving transistor 270b. Therefore, as shown in FIG. 21B, in order to increase the on-current Ion, the source electrode 217S and the drain electrode are arranged so that the channel direction of the driving transistor 270b is parallel to the first region 51 formed in the crystalline silicon thin film. 217D is formed. Thereby, in the first region 51 having a large grain size and few crystal grain boundaries, there are few crystal grain boundaries existing on the electron transfer path 290 between the source and drain electrodes. Therefore, the probability that carriers are trapped at the crystal grain boundaries is low. Therefore, current easily flows between the source and drain electrodes, and the on-current Ion can be increased in the driving transistor 270b.
  • the thin film transistor means a switching transistor 270a and a driving transistor 270b formed in a pixel.
  • a step of crystallizing the formed silicon thin film to form a crystalline silicon thin film (silicon thin film crystallization step) and a step of forming a source electrode and a drain electrode above the substrate (source drain electrode forming step) are included.
  • the silicon thin film crystallization step can be performed by the same method as the crystallization step in the method for manufacturing the thin film forming substrate according to the above-described first embodiment, and is obtained by the silicon thin film crystallization step.
  • the crystalline silicon thin film becomes a channel layer of the thin film transistor.
  • FIG. 22 is a cross-sectional view schematically showing each step in the method for manufacturing the bottom-gate thin film transistor according to the second embodiment of the present invention.
  • the switching transistor 270a is a cross-sectional view taken along the X direction shown in FIG. 19 as viewed in the Y direction, and the drive transistor 270b is cut along the Y direction.
  • FIG. 20 is a cross-sectional view of the cross section viewed in the X direction shown in FIG. 19.
  • the substrate 210 is prepared in the same manner as in FIG. 9A (substrate preparation step).
  • gate electrodes 211a and 211b are formed on the substrate 210 in the same manner as in FIG. 9B (gate electrode forming step).
  • a gate insulating film 212 is formed above the substrate 210 in the same manner as in FIG. 9C (gate insulating film forming step).
  • an amorphous silicon thin film 213 is formed above the substrate 210 in the same manner as in FIG. 9D (silicon thin film forming step).
  • the laser beam is scanned relative to the amorphous silicon thin film 213 in a predetermined scanning direction 40 while the laser beam is irradiated to a predetermined region (switching transistor 270a) of the silicon thin film 213. And the region where the driving transistor 270b is formed), the amorphous silicon thin film 213 is crystallized to form crystalline silicon thin films 215a and 315b (silicon thin film crystallization step). This step is performed by the same method as the crystallization step in the method for manufacturing a thin film forming substrate described above.
  • laser irradiation is performed by scanning the amorphous silicon thin film 213 with laser light in the scanning direction 40 under the laser light irradiation conditions shown in the region C or region D of FIG.
  • the beam minor axis width W1 half-value width
  • the irradiation power density of laser light is 70.0 kW / cm 2
  • scanning of the substrate holding unit 110 is performed.
  • the speed can be in the range of 400 to 580 mm / s.
  • the laser beam is irradiated so that the scanning direction 40 is the Y-axis direction (the direction from the left to the right of the paper).
  • the laser beam is irradiated so that the scanning direction 40 is the X-axis direction (the direction from the front of the paper to the back).
  • FIGS. 17A and 17B in the crystalline silicon thin films 215a and 215b, band-shaped first regions 51 and second regions 52 are generated in a direction substantially orthogonal to the scanning direction 40.
  • the longitudinal direction of the band-shaped first region 51 in the crystalline silicon thin film 215a is substantially orthogonal to the longitudinal direction of the band-shaped first region 51 in the crystalline silicon thin film 215b.
  • a part of the amorphous silicon thin film 213, that is, a region where the switching transistor 270a and the driving transistor 270b are formed is crystallized, but the amorphous silicon thin film 213 is crystallized. The entire region may be crystallized.
  • a silicon thin film 213 which is an uncrystallized region not irradiated with laser and a crystalline silicon thin film 215a crystallized by laser irradiation.
  • 215b are selectively patterned to remove the amorphous silicon thin film 213 and pattern the crystalline silicon thin films 215a and 215b in an island shape.
  • contact holes may be formed in the gate insulating film 212 as necessary.
  • an impurity-doped n + layer to be the contact layer 216 is formed in the same manner as in FIG. 9F, and then the source / drain region is formed on the contact layer 216.
  • a metal film 217 is formed.
  • the source electrode 217S and the drain of the switching transistor 270a are formed above the substrate 210 in the same manner as in FIG. 9G.
  • the electrode 217D, the source electrode 217S and the drain electrode 217D of the driving transistor 270b are patterned (source / drain electrode formation step).
  • bottom-gate thin film transistors switching transistor 270a and driving transistor 270b
  • a passivation film 220 made of a silicon nitride film may be formed so as to cover the whole.
  • FIG. 23 is a diagram showing Id-Vg characteristics of the switching transistor and the driving transistor according to the second embodiment of the present invention.
  • FIG. 24 is a diagram showing Ion and Ioff of the switching transistor and the driving transistor according to the second embodiment of the present invention. The Id-Vg characteristics shown in FIGS.
  • the characteristic is shown when the voltage applied between the source and the drain is 10.0 V for the switching transistor and the driving transistor having a bottom gate structure of 20 ⁇ m and channel length: 13 ⁇ m.
  • the drive transistor formed so that the channel direction is substantially orthogonal to the scanning direction 40 has the same gate voltage Vg than the switch transistor formed so that the channel direction is parallel to the scanning direction 40. It can be seen that the current value Id is high.
  • the on-current Ion in the drive transistor when the gate voltage Vg is 10.0 V is 3.48 ⁇ 10 ⁇ 4 A
  • the on-current Ion in the switching transistor is 1. 09 ⁇ 10 ⁇ 5 A. Therefore, it can be seen that the on-current characteristics are improved in the driving transistor.
  • the minimum value of the current in the driving transistor, that is, the off-current Ioff is 9.34 ⁇ 10 ⁇ 11 A
  • the minimum value of the current in the switching transistor, that is, the off-current Ioff is 1.53 ⁇ 10 ⁇ 11 A. Therefore, it can be seen that the off-current characteristics are improved in the switching transistor.
  • the switching transistor 270a includes the source electrode and the crystalline silicon thin film 215a so that the direction substantially perpendicular to the longitudinal direction of the band-shaped first region is the channel direction.
  • a drain electrode is formed.
  • a source electrode and a drain electrode are formed in the crystalline silicon thin film 215b so that a direction parallel to the longitudinal direction of the band-shaped first region is a channel direction.
  • the crystalline silicon thin films 215a and 215b are more preferably formed under the laser irradiation conditions in the region D shown in FIG.
  • the intervals between the band-shaped first regions 51 can be made uniform.
  • Laser irradiation conditions may be, for example, power density: 70.0 kW / cm 2 , stage scanning speed: 580 mm / s, irradiation time: 49.0 ⁇ sec, and input energy density: 3.5 J / cm 2 .
  • the crystalline silicon thin films 215a and 215b formed under the laser irradiation conditions in the present embodiment it is possible to confirm the mixture of the band-shaped first region 51 and the second region 52.
  • the range of the half-value width of the peak spectrum of Raman shift in the crystalline silicon thin film formed under the laser irradiation conditions in this embodiment is 4.8 to 5.5 cm ⁇ 1 .
  • the crystalline silicon thin film having a crystal structure including the first region 51 having a large crystal grain size and a band shape It can be.
  • the average crystal grain size of the silicon crystal grains in the first region 51 of the crystalline silicon thin films 215a and 215b is 440 nm, and the average crystal grain size of the silicon crystal grains in the second region 52 is 80 nm.
  • region 51 is 1.8 micrometers, for example, and a uniform pitch of 2.0 micrometers or less is obtained.
  • the bottom gate type thin film transistor has been described above as an example, but the present invention can also be applied to a top gate type thin film transistor. That is, the switching transistor 270a and the driving transistor 270b in FIG. 19 can be top-gate thin film transistors.
  • FIG. 25 is a cross-sectional view schematically showing each step in the method for manufacturing the top-gate thin film transistor according to the second embodiment of the present invention.
  • the switching transistor corresponds to a cross-sectional view taken along the X direction shown in FIG. 19 when viewed in the Y direction
  • the drive transistor is shown in FIG. This corresponds to a cross-sectional view when a cross section cut along the Y direction is viewed in the X direction.
  • the substrate 210 is prepared in the same manner as in FIG. 10A (substrate preparation step).
  • an undercoat film 218 made of an insulating film such as a silicon oxide film or a silicon nitride film is formed on the substrate 210 in the same manner as in FIG. Thereafter, an amorphous silicon thin film 213 is formed (silicon thin film forming step).
  • the laser beam is scanned relative to the amorphous silicon thin film 213 in a predetermined scanning direction 40 in the same manner as in (c) of FIG. Is irradiated to a predetermined region of the amorphous silicon thin film 213 to crystallize the amorphous silicon thin film 213 to form crystalline silicon thin films 215a and 215b (silicon thin film crystallization step).
  • This step is performed by the same method as the crystallization step in the method for manufacturing the thin film forming substrate in the first embodiment.
  • laser irradiation is performed by scanning the amorphous silicon thin film 213 with the laser light in the scanning direction 40 (X-axis direction) under the laser light irradiation conditions shown in the region C or the region D of FIG. I do.
  • the beam minor axis width W1 half-value width
  • the laser irradiation power density is 70.0 kW / cm 2
  • the scanning speed of the substrate holder 110 is set.
  • a part of the amorphous silicon thin film 213 is crystallized, but the entire area of the amorphous silicon thin film 213 may be crystallized.
  • a gate insulating film 212 is formed above the substrate 210 (gate insulating film forming step).
  • a gate insulating film 212 made of an insulating film such as silicon dioxide is formed on the entire upper surface of the substrate 210 by plasma CVD or the like so as to cover the island-like crystalline silicon thin films 215a and 215b.
  • the gate electrodes 211a and 211b are formed on the substrate 210 in the same manner as in FIG. 10 (e) (gate electrode forming step).
  • an interlayer insulating film 221 is formed over the substrate 210, and the interlayer insulating film 219 is exposed so that the LDD region 219 is exposed. Contact holes are formed in the film 221.
  • a pair of source electrodes 217S and drains are formed on the interlayer insulating film 221 so as to fill the contact holes in the interlayer insulating film 221 as in FIG.
  • An electrode 217D is formed.
  • a top gate type thin film transistor switching transistor 270a and driving transistor 270b
  • the switching transistor 270a has the source electrode and the drain electrode in the crystalline silicon thin film 215a such that the direction substantially perpendicular to the longitudinal direction of the band-shaped first region is the channel direction. Is formed.
  • a source electrode and a drain electrode are formed in the crystalline silicon thin film 215b so that a direction parallel to the longitudinal direction of the band-shaped first region is a channel direction.
  • Embodiment 3 a thin film element, a thin film element array substrate, and a manufacturing method thereof according to Embodiment 3 of the present invention will be described.
  • the thin film element and the thin film element array substrate in the present embodiment use the crystalline silicon thin film 15 in the first embodiment.
  • FIG. 26A is a plan view showing a schematic configuration of the thin film element array substrate according to Embodiment 3 of the present invention.
  • the thin film element array substrate 300 includes a substrate 310 whose plane region is divided into an internal region 310a and a peripheral region 310b, a gate driver circuit 321 and a source driver circuit 322. Is provided.
  • the inside of the area surrounded by the broken line represents the internal area 310a
  • the outside of the area surrounded by the broken line represents the peripheral area 310b.
  • the internal region 310a is a rectangular region corresponding to a pixel region (display region) in which a plurality of pixels on the substrate 310 are arranged in a matrix (matrix), and It is an internal area.
  • the peripheral region 310b is a region around the pixel region (internal region 310a) on the substrate 310, and is a frame-shaped (frame-shaped) region. Note that a thin film transistor such as a switching transistor is provided in each of the plurality of pixels in the internal region 310a.
  • the gate driver circuit 321 is connected to a plurality of gate lines (not shown) formed along the row arrangement direction of the pixels on the substrate 310, and supplies a gate signal to each pixel in the internal region 310a to switch the switching transistor. Drive.
  • the gate driver circuit 321 is configured by a driving transistor formed of a thin film transistor such as a CMOS or PMOS, and other circuit elements.
  • the source driver circuit 322 is connected to a plurality of source lines (not shown) formed along the column arrangement direction of pixels on the substrate 310, and supplies a video signal to each pixel in the internal region 310a.
  • the source driver circuit 322 is also composed of a driving transistor formed of a thin film transistor such as a CMOS or PMOS and other circuit elements.
  • the thin film transistors in the pixels and the thin film transistors of the gate driver circuit 321 and the source driver circuit 322 are formed using a low temperature polysilicon (LTPS: Low Temperature Poly Silicon) technology. . Therefore, the gate driver circuit 321 and the source driver circuit 322 may be directly formed on the substrate 310 using a COG (Chip On Glass) technique or the like.
  • COG Chip On Glass
  • FIG. 26B shows a mother substrate in the thin film element array substrate according to the present embodiment.
  • FIG. 26B shows an example of six-piece production, and six thin film element array substrates 300 can be obtained by cutting this mother substrate.
  • Each of the plurality of pixels arranged in the internal region 310a includes a pixel transistor (switching transistor) for selecting a pixel.
  • the gate driver circuit 321 and the source driver circuit 322 arranged in the peripheral region 310b include a plurality of peripheral transistors (corresponding to each of a plurality of pixel rows or columns arranged in a matrix in the internal region 310a. Drive transistor).
  • Peripheral transistors arranged in the peripheral region 310b are required to improve on-current characteristics, and pixel transistors arranged in the internal region 310a are required to improve off-current characteristics.
  • FIG. 27A is a schematic configuration diagram of a pixel transistor according to Embodiment 3 of the present invention
  • FIG. 27B is a schematic configuration diagram of peripheral transistors according to Embodiment 3 of the present invention.
  • a bottom-gate thin film transistor is illustrated as an example.
  • the pixel transistor 370a in the present embodiment uses the crystalline silicon thin film having the crystallization region 50 shown in FIG. 2 as a channel layer, and the length of the band-shaped first region 51 is long.
  • the source electrode 317S and the drain electrode 317D are formed so that the direction substantially orthogonal to the direction is the channel direction.
  • the band-shaped first region 51 is preferably continuous within the length of the channel region.
  • the source electrode 317S and the drain electrode 317D are formed so that the direction parallel to the longitudinal direction is the channel direction.
  • the band-shaped first region 51 is preferably continuous within the length of the channel region.
  • FIG. 28A is a diagram for explaining electron mobility in the pixel transistor according to Embodiment 3 of the present invention.
  • FIG. 28B is a diagram for explaining electron mobility in the peripheral transistor according to Embodiment 3 of the present invention.
  • the pixel transistor 370a is required to improve off-current Ioff characteristics. That is, it is preferable that the pixel transistor 370a have a small off-current Ioff. Therefore, as shown in FIG. 28A, in order to suppress the off-current Ioff, the channel direction of the pixel transistor 370a is made to be substantially orthogonal to the length direction of the band-shaped first region 51 formed in the crystalline silicon thin film. Then, a source electrode 317S and a drain electrode 317D are formed. Thereby, in the band-shaped second region 52 having a small grain size, the number of crystal grain boundaries existing on the electron transfer path 390 between the source and drain electrodes increases. Therefore, the probability that carriers are trapped in the crystal grain boundary is increased.
  • the off-current Ioff can be suppressed in the pixel transistor 370a.
  • the on-current Ion of the pixel transistor 370a is also suppressed.
  • the pixel transistor 370a is particularly required to suppress the off-current Ioff, the effect of suppressing the on-current Ion is considered to be small. .
  • the peripheral transistor 370b is required to improve the on-current Ion. That is, it is preferable that the on-current Ion is large in the peripheral transistor 370b. Therefore, as shown in FIG. 28B, in order to increase the on-current Ion, the source electrode is set so that the channel direction of the peripheral transistor 370b is parallel to the length direction of the first region 51 formed in the crystalline silicon thin film. 317S and the drain electrode 317D are formed. Thereby, in the first region 51 having a large grain size and few crystal grain boundaries, the crystal grain boundaries existing on the electron transfer path 390 between the source and drain electrodes are reduced. Therefore, the probability that carriers are trapped at the crystal grain boundaries is low. Therefore, current easily flows between the source and drain electrodes, and the on-current Ion can be increased in the peripheral transistor 370b.
  • the method of manufacturing a thin film transistor according to the third embodiment of the present invention includes a step of preparing a substrate (substrate preparation step) and a step of forming a gate electrode above the substrate (gate electrode). Forming step), forming a gate insulating film above the substrate (gate insulating film forming step), forming a silicon thin film above the substrate (silicon thin film forming step), and irradiating with laser light.
  • the silicon thin film crystallization step can be performed by the same method as the crystallization step in the method for manufacturing the thin film forming substrate according to the above-described twelfth embodiment, and the crystal obtained by the silicon thin film crystallization step.
  • the conductive silicon thin film becomes a channel layer of the thin film transistor.
  • FIG. 29 is a cross-sectional view schematically showing each step in the method for manufacturing the bottom-gate thin film transistor (pixel transistor) according to Embodiment 3 of the present invention.
  • a substrate 310 is prepared in the same manner as in FIG. 9A (substrate preparation step).
  • a gate electrode 311a is formed on the substrate 310 in the same manner as in FIG. 9B (gate electrode forming step).
  • a gate insulating film 312 is formed above the substrate 310 in the same manner as in FIG. 9C (gate insulating film forming step).
  • an amorphous silicon thin film 313 is formed above the substrate 310 in the same manner as in FIG. 9D (silicon thin film forming step).
  • the laser light is scanned relative to the amorphous silicon thin film 313 in a predetermined scanning direction 40, while the laser light is scanned in a predetermined area (pixel transistor 370a).
  • the amorphous silicon thin film 313 is crystallized to form the crystalline silicon thin film 315a (silicon thin film crystallization step). This step is performed by the same method as the crystallization step in the method for manufacturing a thin film forming substrate described above.
  • laser irradiation is performed by scanning the amorphous silicon thin film 313 with laser light in the scanning direction 40 (Y-axis direction) under the laser light irradiation conditions shown in the region C or region D of FIG. I do.
  • the beam minor axis width W1 half-value width
  • the irradiation power density of laser light is 70.0 kW / cm 2
  • scanning of the substrate holding unit 110 is performed.
  • the speed can be in the range of 400 to 580 mm / s.
  • the first and second band-shaped regions are formed in the crystalline silicon thin film 315a in a direction substantially orthogonal to the scanning direction 40.
  • a partial region of the amorphous silicon thin film 313, that is, a region where the pixel transistor 370a is formed is crystallized, but the entire region of the amorphous silicon thin film 313 is It may be crystallized.
  • a silicon thin film 313 which is an uncrystallized region not irradiated with laser and a crystalline silicon thin film 315a crystallized by laser irradiation. Is selectively patterned to remove the amorphous silicon thin film 313 and pattern the crystalline silicon thin film 315a in an island shape.
  • an impurity-doped n + layer to be the contact layer 316 is formed in the same manner as in FIG. 9F, and then a source layer is formed on the contact layer 316.
  • a drain metal film 317 is formed.
  • the source electrode 317S of the pixel transistor 370a and A drain electrode 317D is formed (source / drain electrode formation step).
  • a passivation film 320 made of a silicon nitride film may be formed so as to cover the whole.
  • FIG. 30 is a cross-sectional view schematically showing each step in the method for manufacturing the bottom-gate thin film transistor (peripheral transistor) according to Embodiment 3 of the present invention.
  • the substrate 310 is prepared in the same manner as in FIG. 9A (substrate preparation step).
  • the gate electrode 311b is patterned on the substrate 310 in the same manner as in FIG. 9B (gate electrode forming step).
  • a gate insulating film 312 is formed above the substrate 310 in the same manner as in FIG. 9C (gate insulating film forming step).
  • an amorphous silicon thin film 313 is formed above the substrate 310 in the same manner as in FIG. 9D (silicon thin film forming step).
  • the laser beam is scanned in a predetermined region (peripheral transistor 370b) of the silicon thin film 313 while relatively scanning the amorphous silicon thin film 313 with the laser beam in a predetermined scanning direction 40.
  • the amorphous silicon thin film 313 is crystallized to form the crystalline silicon thin film 315b (silicon thin film crystallization step). This step is performed by the same method as the crystallization step in the method for manufacturing a thin film forming substrate described above.
  • laser irradiation is performed by scanning the amorphous silicon thin film 313 with laser light in the scanning direction 40 (X-axis direction) under the laser light irradiation conditions shown in the region C or region D of FIG. I do.
  • the beam minor axis width W1 half-value width
  • the irradiation power density of laser light is 70.0 kW / cm 2
  • scanning of the substrate holding unit 110 is performed.
  • the speed can be in the range of 400 to 580 mm / s.
  • the first region and the second region of the band shape are generated in the crystalline silicon thin film 315b in the direction parallel to the scanning direction 40.
  • a partial region of the amorphous silicon thin film 313, that is, a region where the peripheral transistor 370b is formed is crystallized, but the entire region of the amorphous silicon thin film 313 is It may be crystallized.
  • a silicon thin film 313 which is an uncrystallized region not irradiated with laser and a crystalline silicon thin film 315b crystallized by laser irradiation. Is selectively patterned to remove the amorphous silicon thin film 313 and pattern the crystalline silicon thin film 315b in an island shape.
  • an impurity-doped n + layer to be the contact layer 316 is formed in the same manner as in FIG. 9F, and then a source layer is formed on the contact layer 316.
  • a drain metal film 317 is formed.
  • the source electrode 317S of the peripheral transistor 370b and the source electrode 317S are formed above the substrate 310 as in FIG.
  • a drain electrode 317D is formed (source / drain electrode formation step).
  • a bottom gate type peripheral transistor 370b can be manufactured.
  • a passivation film 320 made of a silicon nitride film may be formed so as to cover the whole.
  • FIG. 31 is a diagram showing Id-Vg characteristics of a pixel transistor and peripheral transistors according to Embodiment 3 of the present invention.
  • FIG. 32 is a diagram showing Ion and Ioff of the pixel transistor and peripheral transistors according to Embodiment 3 of the present invention. The Id-Vg characteristics shown in FIGS.
  • the graph shows the characteristics when the voltage applied between the source and the drain is 10.0 V for the pixel transistor and the peripheral transistor having a bottom gate structure with 20 ⁇ m and channel length: 13 ⁇ m.
  • the peripheral transistor formed so that the channel direction is substantially orthogonal to the scanning direction 40 has the same gate voltage Vg than the switch transistor formed so that the channel direction is parallel to the scanning direction 40. It can be seen that the current value Id is high.
  • the on-current Ion in the peripheral transistor when the gate voltage Vg is 10.0 V is 3.48 ⁇ 10 ⁇ 4 A
  • the on-current Ion in the pixel transistor is 1. 09 ⁇ 10 ⁇ 5 A. Therefore, it can be seen that the on-current characteristics are improved in the peripheral transistors.
  • the minimum value of the current in the peripheral transistor, that is, the off-current Ioff is 9.34 ⁇ 10 ⁇ 11 A
  • the minimum value of the current in the pixel transistor, that is, the off-current Ioff is 1.53 ⁇ 10 ⁇ 11 A. Therefore, it can be seen that the off-current characteristics are improved in the pixel transistor.
  • the pixel transistor includes the source electrode and the crystalline silicon thin film so as to have the channel region in a direction substantially perpendicular to the length direction of the band-shaped first region.
  • a drain electrode is formed.
  • a source electrode and a drain electrode are formed in the crystalline silicon thin film so as to have a channel region in a direction parallel to the length direction of the band-shaped first region.
  • the crystalline silicon thin films 315a and 315b are more preferably formed under the laser irradiation conditions in the region D shown in FIG.
  • the interval between the band-shaped first regions can be made uniform.
  • Laser irradiation conditions may be, for example, power density: 70.0 kW / cm 2 , stage scanning speed: 580 mm / s, irradiation time: 49.0 ⁇ sec, and input energy density: 3.5 J / cm 2 .
  • the crystalline silicon thin films 315a and 315b formed according to the laser irradiation conditions in the present embodiment it is possible to confirm the mixture of the band-shaped first region and the second region.
  • the range of the half-value width of the peak spectrum of Raman shift in the crystalline silicon thin film formed under the laser irradiation conditions in this embodiment is 4.8 to 5.5 cm ⁇ 1 .
  • the crystalline silicon thin film having a crystal structure including a first region having a large crystal grain size and a band shape can do.
  • the average crystal grain size of the silicon crystal grains in the first region of the crystalline silicon thin films 315a and 315b is 440 nm, and the average crystal grain size of the silicon crystal grains in the second region is 80 nm.
  • the pitch of the first region is, for example, 1.8 ⁇ m, and a uniform pitch of 2.0 ⁇ m or less is obtained.
  • the thin film element array substrate thus obtained can be used as a thin film element array substrate for a liquid crystal panel.
  • a bottom-gate thin film transistor is described as an example.
  • the pixel transistor 370a and the peripheral transistor 370b may be top-gate thin film transistors. In this case, it can be manufactured in the same manner as in FIG.
  • the direction of the pixel transistor 370a in the crystalline silicon thin film 315a is substantially orthogonal to the longitudinal direction of the first region of the band shape.
  • a source electrode and a drain electrode are formed so as to be in the channel direction.
  • the source electrode and the drain electrode are formed so that the direction parallel to the longitudinal direction of the band-shaped first region is the channel direction.
  • FIG. 33A is a plan view of a display panel according to Embodiment 4 of the present invention.
  • FIG. 33B is a cross-sectional view of the display panel according to Embodiment 4 of the present invention.
  • the display panel according to the present embodiment includes a display element 466 on a thin film element array substrate 465.
  • the thin film element array substrate 465 includes an internal region in which pixel transistors are arranged and a peripheral region in which peripheral transistors are arranged.
  • the display element 466 is disposed above the internal region so as to cover the internal region of the thin film element array substrate 465.
  • the display element 466 is, for example, a liquid crystal panel or an organic EL panel including a light emitting element.
  • FIG. 33B is a cross-sectional view taken along line YY of the display panel shown in FIG. 33A.
  • a gate driver circuit region 461 or a source driver circuit region (not shown) is provided in a peripheral region where the display element 466 is not disposed in the thin film element array substrate 465.
  • the peripheral transistor formed in the gate driver circuit region 461 or the source driver circuit region is required to have improved on-current characteristics. Therefore, the band-shaped first region formed by irradiating the crystalline silicon thin film with laser light, and The channel region is formed in a direction parallel to the second region.
  • the pixel transistor formed in the inner region is required to have improved off-current characteristics
  • the first and second band-shaped regions formed by irradiating the crystalline silicon thin film with laser light are used. It is formed to have a channel direction in the intersecting direction.
  • the manufacturing method of the thin film formation substrate which concerns on this invention, the manufacturing method of a thin film element, the thin film substrate, the thin film element, the manufacturing method of a thin film transistor, and the thin film transistor were demonstrated based on Embodiment and an Example, this invention is the above-mentioned However, the present invention is not limited to the embodiments and examples.
  • a silicon thin film is used as the semiconductor thin film, but a semiconductor thin film other than the silicon thin film can be used.
  • a crystalline semiconductor thin film can be formed by crystallizing a semiconductor thin film made of germanium (Ge) or SiGe.
  • the laser beam is configured such that the beam minor axis width W1 is smaller than the beam major axis width W2, but the beam minor axis width W1 is larger than the beam major axis width W2. You may comprise. Even in this case, the laser beam scanning direction is not changed as in the present embodiment, and the laser beam scanning is performed so that the minor axis of the laser beam coincides with the scanning direction.
  • the irradiation shape (intensity distribution shape) of the laser light when irradiated to the silicon thin film is a rectangular shape having a major axis and a minor axis, but is not limited thereto.
  • the irradiation shape (intensity distribution shape) of the laser light when irradiated to the silicon thin film may be a shape having other major and minor axes such as an elliptical shape, or a circle or a square.
  • the thin film transistor or the thin film transistor array substrate manufactured according to this embodiment can be used for a display device such as an organic EL display device or a liquid crystal display device.
  • the display device can be used as a flat panel display and can be applied to electronic devices such as a television set, a personal computer, and a mobile phone.
  • the crystalline silicon thin film formed according to the present embodiment can be used not only for a thin film transistor but also for various electronic devices such as a photoelectric conversion element such as a solar cell or an image sensor.
  • the crystalline silicon thin film may be an n-type semiconductor or a p-semiconductor.
  • the method for producing a thin film-forming substrate and the thin film substrate according to the present invention are useful in an electronic device having a crystalline silicon thin film such as a thin film transistor, a solar cell, or a sensor.
  • the method for manufacturing a thin film-formed substrate and the thin film substrate according to the present invention can be widely used in a display device such as a television set, a personal computer or a mobile phone, or other electrical equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 本発明に係る薄膜形成基板の製造方法は、基板(10)を準備する基板準備工程と、前記基板(10)上にシリコン薄膜(13)を形成する薄膜形成工程と、前記シリコン薄膜に対して、連続発振の光線を、相対走査させつつ照射し、前記シリコン薄膜の少なくとも所定領域を結晶化して結晶化領域を形成する結晶化工程と、を含み、前記結晶化工程において、前記シリコン薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、前記結晶化領域は、前記相対走査の方向に対して交差する方向に延びる帯形状の第1領域(51)と、前記帯形状の第1領域に隣接する第2領域(52)とを含むように、かつ、前記帯形状の第1領域の平均結晶粒径が前記第2領域の平均結晶粒径よりも大きくなるように形成される。

Description

薄膜形成基板の製造方法、薄膜素子基板の製造方法、薄膜基板及び薄膜素子基板
 本発明は、薄膜形成基板の形成方法、薄膜素子基板の製造方法、薄膜基板及び薄膜素子基板に関する。
 有機EL(Electro Luminescence)表示装置又は液晶表示装置等のアクティブマトリクス駆動型の表示装置では、薄膜トランジスタ(TFT:Thin Film Transistor)と呼ばれる薄膜半導体装置が用いられている。
 この種の表示装置では、薄膜トランジスタがアレイ状に配置されて薄膜トランジスタアレイ装置を構成しており、各画素には、画素を駆動するために用いられる薄膜トランジスタ(駆動トランジスタ)及び画素を選択するために用いられる薄膜トランジスタ(スイッチングトランジスタ)が形成されている。
 また、画素が配置された画素領域の周辺には、各画素を駆動又は選択するために用いられるゲートドライバ回路又はソースドライバ回路などが配置される周辺回路領域が設けられている。
 中でも、有機EL素子を備える自発光型の有機EL表示装置では、駆動トランジスタとスイッチングトランジスタとに要求される性能が異なっており、駆動トランジスタでは有機EL素子の駆動性能を向上させるために優れたオン電流特性が要求され、スイッチングトランジスタでは優れたオフ電流特性が要求される。
 また、液晶表示装置などのLTPS(Low Temperature Poly Silicon)を使用した表示装置では、周辺回路領域に設けられた薄膜トランジスタと画素領域に設けられた薄膜トランジスタとに要求される性能が異なっており、周辺回路領域に設けられた薄膜トランジスタでは優れたオン電流特性が要求され、画素領域に設けられた薄膜トランジスタでは優れたオフ電流特性が要求される。
 薄膜トランジスタは、基板上に、ゲート電極、半導体層(チャネル層)、ソース電極及びドレイン電極が形成されたものであり、チャネル層としてシリコン薄膜を用いることが一般的である。シリコン薄膜は、非結晶のシリコン薄膜(アモルファスシリコン膜)と、結晶性を有するシリコン薄膜(結晶性シリコン薄膜)とに大別される。
 結晶性シリコン薄膜をチャネル層とする薄膜トランジスタは、非結晶性シリコン薄膜をチャネル層とする薄膜トランジスタと比べて、キャリアの移動度が大きくオン電流特性に優れている。このため、駆動トランジスタのチャネル層として結晶性シリコン薄膜を用いることが知られている。
 従来の結晶性シリコン薄膜の形成方法の1つとして、基板上に形成されたアモルファスシリコン膜に金属触媒を添加し、熱を与えることでアモルファスシリコン膜を多結晶化させる方法がある。この方法は、低温で結晶化させることができるという利点があるが、工程数の増加によってコストが増加し、結晶化後の金属元素の完全除去が困難であるという問題がある。
 また、従来の結晶性シリコン薄膜の形成方法の他の1つとして、基板上にCVD(Chemical Vapor Deposition)成膜により結晶性シリコン薄膜を形成する方法がある。この方法は、工程数の減少によりコストを低減させることができるが、得られる結晶組織が微結晶組織のため、前述の駆動トランジスタに要求されるオン電流特性を満たすことが困難であるという問題がある。
 また、従来の結晶性シリコン薄膜の形成方法のさらに他の1つとして、所定の成膜温度に設定し、所定のエキシマレーザーのエネルギー密度でアモルファスシリコン膜をレーザー照射することにより多結晶化させる方法がある(特許文献1)。しかし、この方法は、気体のガス放電によって得られるビームを整形しているため、装置のオーバーホールの頻度が高く、ランニングコストが高いという問題がある。
 また、レーザーを用いたアモルファスシリコンの結晶化方法としては、非晶質シリコン膜に波長が532nmのパルスレーザーを照射して多結晶シリコン薄膜を形成するという方法もある(特許文献2)。
特開平7-235490号公報 特開2008-016717号公報
 1つのデバイスにおいて異なる特性の半導体薄膜を、簡便な方法によってより特性よく形成することが要求される場合があるが、さらなる投入エネルギーを抑制しつつ、異なる特性の半導体薄膜を同一工程において形成することは難しい。
 本発明は、上記の問題点を鑑みてなされたものであり、さらなる投入エネルギーを抑制しつつ、同一工程において形成された結晶状態が異なる領域を含む結晶性薄膜を形成することのできる薄膜形成基板の製造方法、薄膜素子基板の製造方法、薄膜基板及び薄膜素子基板を提供することを目的とする。
 上記目的を達成するために、本発明に係る薄膜形成基板の製造方法の一態様は、基板を準備する基板準備工程と、前記基板上に薄膜を形成する薄膜形成工程と、前記薄膜に対して、連続発振の光線を、相対走査させつつ照射し、前記薄膜の少なくとも所定領域を結晶化して結晶化領域を形成する結晶化工程と、を含み、前記薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、前記結晶化工程において、前記結晶化領域は、前記相対走査の方向に対して交差する方向に延びる帯形状の第1領域と、前記帯形状の第1領域に隣接する第2領域とを含むように、かつ、前記帯形状の第1領域の平均結晶粒径が前記第2領域の平均結晶粒径よりも大きくなるように形成されることを特徴とする。
 本発明に係る薄膜形成基板の製造方法によれば、レーザーの投入エネルギーを上げることなく、平均結晶粒径の異なる帯形状の第1領域と第2領域とを同一工程において形成することができる。これにより、異なる結晶状態の領域を含む結晶組織によって構成された結晶性薄膜を得ることができる。従って、1つのデバイスにおいて、異なる特性を有する2種類の素子(薄膜トランジスタ等)を容易に作製することが可能となる。
 さらに、本発明によれば、薄膜を結晶化する際に用いられる光線の走査速度を速くすることで帯形状の第1領域を形成することが可能であるので、高スループット化を実現することもできる。
 また、結晶粒径の大きな結晶化領域(第1領域)を含む結晶性薄膜を形成することができるので、当該結晶性薄膜をチャネル層として薄膜トランジスタを作製した場合、オン電流特性に優れた薄膜トランジスタを実現することができる。
図1は、本発明の実施の形態1に係る薄膜形成基板の製造方法における各工程を模式的に示す断面図である。 図2は、本発明の実施の形態1における結晶性シリコン薄膜の結晶化領域の結晶組織の状態を模式的に示す上面図である。 図3Aは、本発明の実施の形態1に係る薄膜形成基板の製造方法において、シリコン薄膜にレーザー光を照射する際の様子を模式的に示す斜視図である。 図3Bは、本発明の実施の形態1に係る薄膜形成基板の製造方法の結晶化工程で用いられるレーザー光の強度分布を示す図である。 図4は、本発明の実施の形態1に係る薄膜形成基板の製造方法における結晶化工程において、レーザー光の条件(走査速度及びビーム短軸幅)と結晶性シリコン薄膜の結晶組織との関係を示す図である。 図5Aは、図4の領域Aにおけるレーザー照射条件によって形成された結晶性シリコン薄膜の結晶組織を模式的に示す図である。 図5Bは、図4の領域Bにおけるレーザー照射条件によって形成された結晶性シリコン薄膜の結晶組織を模式的に示す図である。 図5Cは、図4の領域Cにおけるレーザー照射条件によって形成された結晶性シリコン薄膜の結晶組織を模式的に示す図である。 図5Dは、図4の領域Dにおけるレーザー照射条件によって形成された結晶性シリコン薄膜の結晶組織を模式的に示す図である。 図5Eは、図4の領域Eにおけるレーザー照射条件によって形成された結晶性シリコン薄膜の結晶組織を模式的に示す図である。 図6Aは、本発明の実施の形態1に係る薄膜形成基板の製造方法の結晶化工程において、レーザー光の走査速度と第1領域のピッチ幅との関係を示す図である。 図6Bは、本発明の実施の形態1に係る薄膜形成基板の製造方法の結晶化工程において、レーザー光の照射時間と第1領域のピッチ幅との関係を示す図である。 図7Aは、パルスレーザーによって非結晶のシリコン薄膜が結晶化するときの様子を示す図である。 図7Bは、パルスレーザーを用いて形成された結晶性シリコン薄膜の結晶組織を模式的に示す図である。 図8は、本発明の実施の形態1に係る結晶性半導体薄膜形成装置の構成を示す図である。 図9は、本発明の実施の形態1に係るボトムゲート型の薄膜トランジスタの製造方法における各工程の断面図である。 図10は、本発明の実施の形態1に係るトップゲート型の薄膜トランジスタの製造方法における各工程の断面図である。 図11は、本発明の実施の形態1におけるレーザー照射条件によって得られる結晶性シリコン薄膜の平面SEM像である。 図12は、比較例におけるレーザー照射条件によって得られる結晶性シリコン薄膜の平面SEM像である。 図13Aは、本発明の実施の形態1におけるレーザー照射条件によって得られた結晶性シリコン薄膜の結晶組織を光学顕微鏡によって観察したときの図である(ステージの走査速度が460mm/s)。 図13Bは、本発明の実施の形態1におけるレーザー照射条件によって得られた結晶性シリコン薄膜の結晶組織を光学顕微鏡によって観察したときの図である(ステージの走査速度が480mm/s)。 図13Cは、本発明の実施の形態1におけるレーザー照射条件によって得られた結晶性シリコン薄膜の結晶組織を光学顕微鏡によって観察したときの図である(ステージの走査速度が520mm/s)。 図14Aは、本発明の実施の形態1及び比較例におけるレーザー照射条件のそれぞれによって形成された結晶性シリコン薄膜において、ラマン分光測定法により得られたラマンシフトのスペクトルを示す図である。 図14Bは、本発明の実施の形態1及び比較例におけるレーザー照射条件のそれぞれによって形成された結晶性シリコン薄膜において、レーザーの走査速度と、図13Aのラマン分光測定法により得られたラマンシフトが520cm-1付近のc-Siピークスペクトルの半値幅との関係を示す図である。 図15Aは、本発明の実施の形態1及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製した薄膜トランジスタにおいて、レーザー照射時の走査速度と薄膜トランジスタの移動度との関係を示す図である。 図15Bは、本発明の実施の形態1及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製した薄膜トランジスタにおいて、レーザーのエネルギー密度と薄膜トランジスタの移動度との関係を示す図である。 図16は、本発明の実施の形態1及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製された薄膜トランジスタについて、帯形状の第1領域のピッチ幅と移動度のばらつきとの関係を示す図である。 図17Aは、本発明の実施の形態2に係る有機ELディスプレイの画素を構成するスイッチングトランジスタの構成を示す平面図である。 図17Bは、本発明の実施の形態2に係る有機ELディスプレイの画素を構成する駆動トランジスタの構成を示す平面図である。 図18は、本発明の実施の形態2に係る薄膜素子を用いた画素回路の等価回路図である。 図19は、本発明の実施の形態2に係る有機ELディスプレイの画素の構成を示す平面図である。 図20Aは、本発明の実施の形態2におけるスイッチングトランジスタの概略構成図である。 図20Bは、本発明の実施の形態2における駆動トランジスタの概略構成図である。 図21Aは、本発明の実施の形態2に係るスイッチングトランジスタにおける電子の移動度を説明するための図である。 図21Bは、本発明の実施の形態2に係る駆動トランジスタにおける電子の移動度を説明するための図である。 図22は、本発明の実施の形態2に係るボトムゲート型の薄膜トランジスタの製造方法における各工程を模式的に示す断面図である。 図23は、本発明の実施の形態2に係るスイッチングトランジスタと駆動トランジスタのId-Vg特性を示す図である。 図24は、本発明の実施の形態2に係るスイッチングトランジスタと駆動トランジスタのIon及びIoffを示す図である。 図25は、本発明の実施の形態2に係るトップゲート型の薄膜トランジスタの製造方法における各工程を模式的に示す断面図である。 図26Aは、本発明の実施の形態3に係る薄膜素子アレイ基板の概略構成を示す平面図である。 図26Bは、本発明の実施の形態3に係る薄膜素子アレイ基板におけるマザー基板を示す図である。 図27Aは、本発明の実施の形態3における画素トランジスタの概略構成図である。 図27Bは、本発明の実施の形態3における周辺トランジスタの概略構成図である。 図28Aは、本発明の実施の形態3に係る画素トランジスタにおける電子の移動度を説明するための図である。 図28Bは、本発明の実施の形態3に係る周辺トランジスタにおける電子の移動度を説明するための図である。 図29は、本発明の実施の形態3に係るボトムゲート型の薄膜トランジスタ(画素トランジスタ)の製造方法における各工程を模式的に示す断面図である。 図30は、本発明の実施の形態3に係るボトムゲート型の薄膜トランジスタ(周辺トランジスタ)の製造方法における各工程を模式的に示す断面図である。 図31は、本発明の実施の形態3に係る画素トランジスタと周辺トランジスタのId-Vg特性を示す図である。 図32は、本発明の実施の形態3に係る画素トランジスタと周辺トランジスタのIon及びIoffを示す図である。 図33Aは、本発明の実施の形態4に係る表示パネルの平面図である。 図33Bは、本発明の実施の形態4に係る表示パネルの断面図である。
(本発明に至った経緯)
 近年、より高速駆動かつ高精細なディスプレイの要望が高まり、薄膜トランジスタのオン電流特性のさらなる向上が要求されている。薄膜トランジスタのオン電流特性を向上させる手段の一つに、チャネル層となる結晶性半導体薄膜の結晶粒径を大きくすることが考えられる。例えば、レーザー照射によってアモルファスシリコン膜を結晶化して結晶性シリコン薄膜を形成する場合、結晶化の際のレーザー光の最大強度を上げることによって結晶粒径の大きな結晶性シリコン薄膜を得ることができる。しかしながら、単純にレーザー光の最大強度を上げると、その分だけ出力エネルギーが大きいレーザー光が必要となるので、投入エネルギーが大きくなったり高出力用のレーザー設備が必要になったりするという問題がある。
 また、1つのデバイスにおいて、異なる特性の結晶性半導体薄膜を形成することが要求される場合がある。例えば、1つのデバイスに、オン電流特性に優れた薄膜トランジスタと、オフ電流特性に優れた薄膜トランジスタとを形成することが要求される場合がある。
 上述のように、オン電流特性を向上させるには、チャネル層となる結晶性半導体薄膜の結晶粒径は大きいほうがよいが、オフ電流特性を向上させるには、チャネル層となる結晶性半導体薄膜の結晶粒径は小さいほうがよい。このため、1つのデバイスにおいて、オン電流特性に優れた薄膜素子とオフ電流特性に優れた薄膜素子とを同一工程において一括で形成することが難しいという問題がある。
 また、有機EL表示装置では、上述のように駆動トランジスタとスイッチングトランジスタとに要求される特性が異なる。このため、結晶組織が異なる結晶性半導体薄膜を同一画素内に複数形成して、異なる特性を有する2種類の薄膜トランジスタを同一画素内に形成することが好ましい。この場合、非結晶半導体薄膜を結晶化する際、駆動トランジスタとスイッチングトランジスタとでレーザー光の出力状態を変えてレーザー照射しようとすると、画素間のトランジスタ同士で特性のばらつきが生じたり、結晶組織の面内均一性が低下したり、レーザー設備が複雑化したりするという問題がある。また、このように異なるタイミングでレーザー照射すると、スループットが低下するという問題もある。
 同様に、液晶表示装置などのLTPSを使用した表示装置では、周辺回路領域に設けられた薄膜トランジスタと画素領域に設けられた薄膜トランジスタとに要求される特性が異なる。このため、結晶組織が異なる結晶性半導体薄膜を同一画素内に複数形成して、異なる特性を有する2種類の薄膜トランジスタを同一画素内に形成することが好ましい。この場合、非結晶半導体薄膜を結晶化する際、周辺回路領域に設けられた薄膜トランジスタと画素領域に設けられた薄膜トランジスタとでレーザー光の出力状態を変えてレーザー照射しようとすると、周辺回路領域と画素領域とでトランジスタ同士の特性にばらつきが生じたり、結晶組織の面内均一性が低下したり、レーザー設備が複雑化したりするという問題がある。
 本発明は、このような知見に基づいてなされたものであり、さらなる投入エネルギーを抑制しつつ、同一工程において形成された結晶状態が異なる領域を含む結晶性薄膜を形成することのできる方法等を提供することを目的とする。
 この目的を達成するために、本発明に係る薄膜形成基板の製造方法の一態様は、基板を準備する基板準備工程と、前記基板上に薄膜を形成する薄膜形成工程と、前記薄膜に対して、連続発振の光線を、相対走査させつつ照射し、前記薄膜の少なくとも所定領域を結晶化して結晶化領域を形成する結晶化工程と、を含み、前記薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、前記結晶化工程において、前記結晶化領域は、前記相対走査の方向に対して交差する方向に延びる帯形状の第1領域と、前記帯形状の第1領域に隣接する第2領域とを含むように、かつ、前記帯形状の第1領域の平均結晶粒径が前記第2領域の平均結晶粒径よりも大きくなるように形成されることを特徴とする。
 これにより、レーザーの投入エネルギーを上げることなく、平均結晶粒径の異なる帯形状の第1領域と第2領域とを同一工程において形成することができる。これにより、異なる結晶状態の領域を含む結晶組織によって構成された結晶性薄膜を得ることができる。
 さらに、帯形状の第1領域は、薄膜を結晶化する際に用いられる光線の走査速度を速くすることによって形成することができる。つまり、光線の走査速度を高速化することもできるので、高スループット化を実現することもできる。
 また、走査速度に高速化によって形成される帯形状の第1領域は、結晶粒径が相対的に大きな結晶組織であるので、得られる結晶性薄膜をチャネル層として薄膜トランジスタを作製した場合、オン電流特性に優れた薄膜トランジスタを実現することができる。
 さらに、本発明に係る薄膜形成基板の製造方法の一態様において、前記第2領域は、前記第1領域の両側に位置し、前記帯形状の第1領域は、当該帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する結晶粒を複数有する、としてもよい。この場合、前記帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する前記結晶粒が当該帯形状の第1領域の長手方向において占める割合は、80%以上であることが好ましい。
 この構成により、帯形状の第1領域内に、帯形状の第1領域の短手方向(幅方向)の一端から他端にかけて1つの繋がった結晶粒が複数存在する。これにより、得られる結晶性薄膜をチャネル層として薄膜トランジスタを作製した場合、さらにオン電流特性に優れ、かつ、キャリア移動度のばらつきの少ない均一性に優れた薄膜トランジスタを実現することができる。
 さらに、本発明に係る薄膜形成基板の製造方法の一態様において、前記帯形状の第1領域は、前記長軸の長さ内で連続している、としてもよい。
 これにより、さらに、キャリア移動度を向上させることができるとともに、均一性に優れた結晶性薄膜を実現することができる。
 さらに、前記結晶化工程において、前記帯形状の第1領域は、平均結晶粒径が100nm以上500nm以下の結晶粒を含有するように形成され、前記第2領域は、平均結晶粒径が30nm以上100nm未満の結晶粒を含有するように形成される、としてもよい。
 このように構成することで基板面内均一性に優れた結晶組織とすることができ、特性ばらつきの少ない素子を実現することができる。また、平均結晶粒径が100nm以上500nm以下の結晶粒からなる第1領域を含む薄膜を用いて薄膜トランジスタを作製することによって、オン電流特性に優れた薄膜トランジスタを実現することができる。
 また、前記結晶化工程において、前記帯形状の第1領域は、均一な間隔で複数形成される、としてもよい。
 これにより、さらに基板面内均一性に優れた結晶組織とすることができ、特性ばらつきのない素子を実現することができる。
 また、前記結晶化工程において、複数の前記帯形状の第1領域の各々は、ラマン分光分析によるラマンシフトのピークスペクトルの半値幅が4.8cm-1以上5.5cm-1以下となるように形成される、としてもよい。
 これにより、結晶粒径が大きく帯形状の第1領域を含む結晶組織によって構成された結晶性薄膜を形成することができる。
 また、前記結晶化工程において、複数の前記帯形状の第1領域は、隣り合う前記帯形状の第1領域の間隔が2.0μm以下となるように形成される、としてもよい。
 これにより、基板面内において結晶粒径が大きく帯形状の第1領域を均一な間隔で形成することができる。従って、このような第1領域を含む結晶性薄膜をチャネル層とする薄膜トランジスタを作製することで、オン電流特性に優れるとともに面内均一性に優れた薄膜トランジスタアレイを実現することができる。
 また、前記光線は、波長が405nm~632nmのレーザーである、としてもよい。
 これにより、高速走査によるレーザー照射で、帯形状の第1領域と第2領域とが混在する結晶組織を容易に形成することができる。また、このようなレーザーを用いることにより、高速走査を容易に実現できるので、帯形状の第1領域の間隔の均一化を容易に実現することができる。
 また、前記レーザーの強度分布の短軸幅を前記薄膜に対して相対走査させる速度で除した値が、60μsec以下である、としてもよい。
 これにより、帯形状の第1領域の間隔を均一にすることができる。
 また、本発明に係る薄膜素子基板の製造方法の一態様は、基板を準備する工程と、前記基板の上に第1ゲート電極と第2ゲート電極とを離間して形成する工程と、前記第1ゲート電極及び前記第2ゲート電極の上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜の上に薄膜を形成する工程と、前記第1ゲート電極及び前記第2ゲート電極の上方から前記薄膜に対して連続発振の光線を相対走査させつつ照射し、前記第1ゲート電極及び前記第2ゲート電極の上方の前記薄膜を結晶化する工程と、前記第1ゲート電極及び前記第2ゲート電極のそれぞれの上方に位置する前記薄膜の上方に、ソース電極及びドレイン電極を形成する工程とを含み、前記薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、前記薄膜を結晶化する工程では、前記相対走査の方向に対して交差する方向に延びる帯形状の第1領域と、前記帯形状の第1領域に隣接する第2領域とを含むように、かつ、前記帯形状の第1領域の平均結晶粒径が前記第2領域の平均結晶粒径よりも大きくなるように前記薄膜を結晶化することを特徴とする。
 これにより、レーザーの投入エネルギーを上げることなく、平均結晶粒径の異なる帯形状の第1領域と第2領域とを、第1ゲート電極及び第2ゲート電極に対応させて同一工程において形成することができる。これにより、1つのデバイスにおいて、異なる特性を有する複数の薄膜トランジスタを容易に作製することが可能となる。
 また、本発明に係る薄膜素子基板の製造方法の一態様において、前記第2領域は、前記第1領域の両側に位置し、前記帯形状の第1領域は、当該帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する結晶粒を複数有する、としてもよい。この場合、前記帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する前記結晶粒が当該帯形状の第1領域の長手方向において占める割合は、80%以上であることが好ましい。
 この構成により、帯形状の第1領域内に、帯形状の第1領域の短手方向(幅方向)の一端から他端にかけて1つの繋がった結晶粒が複数存在する。これにより、キャリア移動度のばらつきの少なく、オン電流特性に優れた薄膜トランジスタを実現することができる。
 また、本発明に係る薄膜基板の一態様は、基板と、前記基板上に位置し、帯形状の第1領域と、前記帯形状の第1領域の両側に位置し、前記帯形状の第1領域よりも平均結晶粒径が小さい第2領域とを含む薄膜と、を含み、前記帯形状の第1領域は、当該帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する結晶粒を複数有することを特徴とする。
 本態様における薄膜基板は、基板面内において相対的に結晶粒径の大きい帯形状の第1領域と相対的に結晶粒径の小さい第2領域とが含まれる薄膜を備える。これにより、1つのデバイスにおいて、異なる特性を有する2種類の素子(薄膜トランジスタ等)を容易に作製することが可能となる。
 さらに、本態様の構成により、帯形状の第1領域内に、帯形状の第1領域の短手方向(幅方向)の一端から他端にかけて1つの繋がった結晶粒が複数存在する。これにより、オン電流特性に優れ、かつキャリア移動度のばらつきが少ない素子を実現することができる。
 また、本発明に係る薄膜基板の一態様において、前記帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する前記結晶粒が当該帯形状の第1領域の長手方向において占める割合は、80%以上であることが好ましい。
 これにより、さらに、オン電流特性に優れ、かつ、キャリア移動度のばらつきが少ない均一性に優れた素子を実現することができる。
 また、本発明に係る薄膜基板の一態様において、前記帯形状の第1領域は、平均結晶粒径が100nm以上500nm以下の結晶粒を含有し、前記第2領域は、平均結晶粒径が30nm以上100nm未満の結晶粒を含有する、としてもよい。
 このように構成することで基板面内均一性に優れた結晶組織とすることができ、特性ばらつきの少ない素子を実現することができる。また、平均結晶粒径が100nm以上500nm以下の結晶粒からなる第1領域を含む薄膜を用いて薄膜トランジスタを作製することによって、オン電流特性に優れた薄膜トランジスタを実現することができる。
 また、本発明に係る薄膜基板の一態様において、前記帯形状の第1領域を複数有し、前記第1領域の間隔は略均一である、としてもよい。
 これにより、さらに基板面内均一性に優れた結晶組織とすることができ、特性ばらつきのない素子を実現することができる。
 また、本発明に係る薄膜基板の一態様において、複数の前記帯形状の第1領域の各々は、ラマン分光分析によるラマンシフトのピークスペクトルの半値幅が4.8cm-1以上5.5cm-1以下となるように形成される、としてもよい。
 これにより、結晶粒径が大きく帯形状の第1領域を含む結晶組織によって構成された結晶性薄膜を形成することができる。
 また、本発明に係る薄膜基板の一態様において、隣り合う前記帯形状の第1領域の間隔は、2.0μm以下である、としてもよい。
 これにより、基板面内において結晶粒径が大きく帯形状の第1領域を均一な間隔で形成することができる。従って、このような第1領域を含む結晶性薄膜をチャネル層とする薄膜トランジスタを作製することで、オン電流特性に優れるとともに面内均一性に優れた薄膜トランジスタを実現することができる。
 また、本発明に係る薄膜素子基板の一態様は、基板と、前記基板上に位置し、帯形状の第1領域と、前記帯形状の第1領域の短手方向において当該帯形状の第1領域の両側に位置し、前記帯形状の第1領域よりも平均結晶粒径が小さい第2領域とを含む薄膜と、を含み、前記帯形状の第1領域の長手方向に対して平行する方向をチャネル方向とし、前記帯形状の第1領域の少なくとも一部をチャネルとする第1素子と、前記帯形状の第1領域の長手方向と交差する方向をチャネル方向とし、前記帯形状の第1領域の少なくとも一部をチャネルとする第2素子と、を備え、前記帯形状の第1領域は、当該帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する結晶粒を複数有することを特徴とする。
 本態様における薄膜素子基板は、基板面内において相対的に結晶粒径の大きい帯形状の第1領域と相対的に結晶粒径の小さい第2領域とが含まれる薄膜を有し、帯形状の第1領域の長手方向に平行な方向をチャネル方向とする第1素子と、帯形状の第1領域の長手方向と交差する方向をチャネル方向とする第2素子とを備える。これにより、異なる特性を有する2種類の素子を有する薄膜素子基板を得ることができる。
 さらに、本態様の構成により、帯形状の第1領域内に、帯形状の第1領域の短手方向(幅方向)の一端から他端にかけて1つの繋がった結晶粒が複数存在する。これにより、オン電流特性に優れ、かつキャリア移動度のばらつきが少ない素子を実現することができる。
 また、本発明に係る薄膜素子基板の一態様において、前記帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する前記結晶粒が当該帯形状の第1領域の長手方向において占める割合は、80%以上であることが好ましい。
 これにより、さらに、オン電流特性に優れ、キャリア移動度のばらつきが少ない素子を実現することができる。
 また、本発明に係る薄膜素子基板の一態様において、前記第1素子は、前記基板上の周辺領域に形成され、前記第2素子は、前記基板上の前記周辺領域の内部である内部領域に形成される、としてもよい。
 これにより、相対的にキャリア移動度が高くオン特性に優れた第1素子は、周辺領域に設けられたドライバ回路における周辺トランジスタとして用いることができ、また、相対的にキャリア移動度が小さく第1素子よりもオフ特性に優れた第2素子は、画素領域におけるスイッチングトランジスタとして用いることができる。これにより、1つの基板内において電流特性が異なる複数種の素子を必要とするデバイスの要求を容易に満たすことができる。
 また、本発明に係る薄膜素子基板の一態様において、前記基板は、マトリクス状に配置された複数の画素を有し、前記第1素子及び前記第2素子は、前記複数の画素の各々に形成され、前記第1素子は、前記画素を駆動するトランジスタであり、前記第2素子は、前記複数の画素の中から駆動させる画素を選択的に切り替えるスイッチングトランジスタである、としてもよい。
 これにより、相対的にキャリア移動度が高くオン特性に優れた第1素子は、駆動トランジスタとして用いることができ、また、相対的にキャリア移動度が小さく第1素子よりもオフ特性に優れた第2素子は、スイッチングトランジスタとして用いることができる。これにより、1つの画素内において電流特性が異なる複数種の素子を必要とするデバイスの要求を容易に満たすことができる。
 また、本発明に係る薄膜素子基板の一態様において、前記基板上に形成された、前記第1素子及び前記第2素子の各々のゲート電極と、前記第1素子及び前記第2素子のゲート電極上の各々に対向するゲート絶縁膜と、前記第1素子の前記チャネルの上方及び前記第2素子の前記チャネルの上方の各々に位置する、ソース電極及びドレイン電極と、を有し、前記第1素子において前記ソース電極と前記ドレイン電極とが対向する領域の中心線と、前記第2素子において前記ソース電極と前記ドレイン電極とが対向する領域の中心線とが交差している、としてもよい。
 これにより、第1素子及び第2素子のチャネル方向を交差させることができる。これにより、1つの基板において電流特性が異なる複数種の薄膜トランジスタを容易に作製することができる。
 また、本発明に係る薄膜素子基板の一態様において、前記帯形状の第1領域は、平均結晶粒径が100nm以上500nm以下の結晶粒を含有し、前記第2領域は、平均結晶粒径が30nm以上100nm未満の結晶粒を含有する、としてもよい。
 このように構成することで基板面内均一性に優れた結晶組織とすることができ、特性ばらつきの少ない素子を実現することができる。また、平均結晶粒径が100nm以上500nm以下の結晶粒からなる第1領域を含む薄膜を用いて薄膜トランジスタを作製することによって、オン電流特性に優れた薄膜トランジスタを実現することができる。
 また、本発明に係る薄膜素子基板の一態様において、前記帯形状の第1領域を複数有し、前記第1領域の間隔は、略均一である、としてもよい。
 これにより、さらに基板面内均一性に優れた結晶組織とすることができ、特性ばらつきのない素子を実現することができる。
 また、本発明に係る薄膜素子基板の一態様において、複数の前記帯形状の第1領域の各々は、ラマン分光分析によるラマンシフトのピークスペクトルの半値幅が4.8cm-1以上5.5cm-1以下となるように形成される、としてもよい。
 これにより、結晶粒径が大きく帯形状の第1領域を含む結晶組織によって構成された結晶性薄膜を形成することができる。
 また、本発明に係る薄膜素子基板の一態様において、隣り合う前記帯形状の第1領域の間隔は、2.0μm以下である、としてもよい。
 これにより、基板面内において結晶粒径が大きく帯形状の第1領域を均一な間隔で形成することができる。従って、このような第1領域を含む結晶性薄膜をチャネル層とする薄膜トランジスタを作製することで、オン電流特性に優れるとともに面内均一性に優れた薄膜トランジスタを実現することができる。
 (実施の形態)
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置又は接続形態、ステップ(工程)、及び、ステップの順序などは、一例であり、本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、模式図であり、必ずしも厳密に図示したものではない。また、各図において、同じ構成部材については同じ符号を付している。
 (実施の形態1)
 まず、本発明の実施の形態1に係る薄膜形成基板(薄膜基板)の製造方法として、基板上に結晶性シリコン薄膜等の結晶性薄膜を形成する方法について、図1を用いて説明する。図1は、本発明の実施の形態1に係る薄膜形成基板の製造方法における各工程を模式的に示す断面図及び平面図である。図1において、(a2)~(e2)は平面図であり、(a1)~(e1)は、それぞれ(a2)~(e2)のX-X線における断面図である。
 まず、図1の(a1)及び(a2)に示すように、基板10を準備する(基板準備工程)。基板10としては、例えばガラス基板を用いることができる。ここで、基板の準備には、例えばガラス基板の表面に付着した付着物等を除去する洗浄工程、ガラス基板表面のアルカリ金属成分を除去するためのガラス基板表面エッチング工程、あるいはガラス基板に含まれているアルカリ金属成分が半導体膜などに無拡散することを防止するためにSiN膜などのアンダーコート層をガラス基板表面に形成する工程、などが一例として含まれていても構わない。
 次に、図1の(b1)及び(b2)に示すように、基板10の上方に、非結晶性半導体薄膜などの薄膜を形成する(薄膜形成工程)。例えば、基板10の上方に、アモルファスシリコン膜からなる非結晶のシリコン薄膜13を形成する。
 次に、図1の(c1)及び(c2)に示すように、非結晶のシリコン薄膜13を結晶化させるために所定の波長の光線を準備し、非結晶のシリコン薄膜13に対して所定の光を照射する準備を行う。本実施の形態における所定の波長の光線としては、後述するように、所定の光強度分布を有するレーザー光30を用いており、非結晶のシリコン薄膜13表面におけるレーザー光30の強度分布形状は、レーザー光30の走査方向40に短軸を有するとともに走査方向40に対して交差する方向に長軸を有する略矩形状である。これにより、非結晶のシリコン薄膜13表面におけるレーザー光30の照射形状も、レーザー光30の走査方向40に短軸を有するとともに走査方向40に対して交差する方向に長軸を有する略矩形状となる。なお、図1の(c2)のレーザー光30の上部に図示される曲線は、レーザー光30の短軸方向における強度分布の一例を示すものであり、例えばガウシアン曲線の強度分布を有する。
 次に、図1の(c1)及び(c2)から図1の(d1)及び(d2)に示すように、非結晶のシリコン薄膜13に対してレーザー光30を所定の速度で走査方向40に相対走査させて、非結晶のシリコン薄膜13にレーザー光30を照射する。これにより、レーザー光30が照射された領域の非結晶のシリコン薄膜13を結晶化させて、結晶化領域50を含む多結晶シリコン薄膜である結晶性シリコン薄膜15を形成する(レーザー光照射工程(結晶化工程))。すなわち、レーザー光30が照射された非結晶のシリコン薄膜13の領域は、レーザー光30による熱エネルギーによってアニールされて結晶化し、結晶性シリコン薄膜15となる。なお、その後、非結晶のシリコン薄膜13へのレーザー光30の照射を所定の位置まで続けることにより、図1の(e1)及び(e2)に示すように、非結晶のシリコン薄膜13における所定領域の結晶化が完了する。
 このとき、レーザー光の照射条件を調整することによって、図1の(d2)及び(e2)に示すように、結晶化領域50において、レーザー光30の相対走査の方向(走査方向40)に対して交差する方向に延びる帯形状の第1領域(ビード筋)51と、当該第1領域51に隣接する第2領域52とを形成することができる。なお、図1の(d2)及び(e2)において、帯形状の第1領域51と第2領域52とは、Y軸方向に曲線状となるように例示されているが、レーザー光30の走査方向に対して交差する方向に延びる形状となっていればよく、例えば直線状となっていてもよい。また、レーザー光の走査方向に対して交差する、とは、例えば図1の(d2)にも示すように、レーザー光30の走査方向をX軸方向とすると、X軸方向に直交する方向(Y軸方向)だけではなく、X軸方向からY軸方向に任意の角度で傾いた方向をも意味し、X軸方向と交差する方向であれば良い。
 ここで、結晶性シリコン薄膜15における結晶化領域50の結晶組織について、図2を用いて詳細に説明する。図2は、本発明の実施の形態1における結晶性シリコン薄膜15の結晶化領域50の結晶組織の状態を模式的に示す上面図であり、図1の(e2)の破線で囲まれる領域Rの拡大図である。
 図2に示すように、結晶性シリコン薄膜15は、結晶粒径が異なる複数の結晶粒(結晶粒子)によって構成されており、結晶粒の境界は結晶粒界を形成している。そして、本実施の形態における結晶性シリコン薄膜15の結晶化領域50は、レーザー光30の走査方向40に対して交差する方向の一形態である略直交する方向に延びる帯形状の第1領域(帯形状の第1領域)51と、レーザー光30の走査方向40に対して交差する方向の一形態である略直交する方向に延びる帯形状の第2領域(帯形状の第2領域)52とが混在した結晶組織によって構成されている。
 第1領域51と第2領域52とは走査方向40において互いに隣接し、帯形状の第1領域51と帯形状の第2領域52とが交互に現れるように形成されている。このように第1領域51と第2領域52とが混在する結晶組織は、非結晶のシリコン薄膜13の結晶化工程において、レーザー光30を走査方向40に所定の走査速度で走査させることで、走査方向40に略垂直な方向に帯形状で形成される。
 また、第1領域51は、平均結晶粒径が相対的に大きい結晶粒が帯状に連なって形成されている。また、第2領域52は、平均結晶粒径が相対的に小さい結晶粒が帯状に連なって形成されている。すなわち、第1領域51と第2領域52とは、第1領域51におけるシリコン粒子の平均結晶粒径が第2領域52におけるシリコン粒径の平均結晶粒径よりも大きくなるように形成されている。本実施の形態において、第1領域51におけるシリコン結晶粒の平均結晶粒径は100nm以上500nm以下であり、第2領域52におけるシリコン結晶粒の平均結晶粒径は30nm以上100nm未満である。なお、第2領域52は、非結晶質のアモルファス中に第1領域51に含まれる結晶粒の平均結晶粒径より小さい平均結晶粒径の結晶粒が含まれるものであってもよい。この態様によれば、例えばオフ特性に優れたスイッチ用TFTを実現する上で有用である。
 ここで、結晶性シリコン薄膜15を移動する電子や正孔などのキャリアについて考えると、結晶性シリコン薄膜15を移動するキャリアは複数の結晶粒を通過する(結晶粒間に存在する結晶粒界を通過する)ことになるが、結晶粒界は結晶欠陥であるので結晶粒界においてキャリアは捕獲されやすい。このため、結晶粒径が大きい程、結晶粒界の数が少なくなるのでキャリアが捕獲される確率が減少し、キャリアの移動度が向上する。従って、結晶性シリコン薄膜15内のキャリアは、第2領域52よりも相対的に結晶粒径が大きい第1領域51の方を移動する確率が高くなる。このように、結晶性シリコン薄膜15に第1領域51を形成することによってキャリアの移動度を向上させることができる。
 また、図2に示すように、帯形状の第1領域51には、当該帯形状の第1領域51の両側に位置する第2領域52のそれぞれと接触する結晶(結晶粒)が複数存在する。すなわち、第1領域51には、隣り合う第2領域52に跨がる結晶が多く存在し、第1領域51の横幅と略同等の幅の結晶が形成されている。また、このような結晶粒が当該帯形状の第1領域51の長手方向において占める割合は80%以上となっている。
 この構成により、第1領域51においてばらつきを低減することができる。また、第1領域51中に存在する結晶粒界が少ないため、オン電流特性に優れているとともに、後述するようにキャリア移動度の素子ばらつきが少ない薄膜トランジスタを実現することができる。この点については後ほど詳述する。
 なお、本実施の形態における帯形状の第1領域51は、図1及び図2に示すように、略同じ幅で複数本形成されているが、レーザー光の照射条件を調整することによって、一本のみとすることもできる。また、第1領域51を複数本形成する場合、レーザー光30の走査速度を調整することにより、図1に示すように、隣り合う第1領域51の間隔を等間隔にすることにできる。すなわち、複数の第1領域51を均一ピッチで形成することができる。
 このように、本実施の形態に係る薄膜形成基板の製造方法によれば、非結晶のシリコン薄膜13(アモルファスシリコン膜)に対して所定の走査速度でレーザー光の照射を行うことにより、平均結晶粒径が大きく帯形状の第1領域51を形成することができる。
 より具体的には、本実施の形態では、非結晶のシリコン薄膜13の全領域を上記第2領域52における平均結晶粒径の結晶性シリコン薄膜とするときの走査速度よりも速い走査速度である高速走査(高速スキャン)でレーザー光を照射している。これにより、第2領域52の中に、結晶粒径が大きく帯形状の第1領域51が現れるようにして結晶化領域50が形成される。このように、高速走査のレーザー照射によって帯形状の第1領域51が形成される理由について、以下考察する。
 高速走査でレーザー照射を行うと、低速走査でレーザー照射を行った場合と比べて、薄膜(シリコン薄膜)におけるある点(場所)でのレーザー走査方向の温度プロファイルは短時間に急峻となる(短時間の間に高温となり、冷却される)。一方、レーザー走査方向に交差する方向(本実施の形態では走査方向に略直交する方向)の温度プロファイルはほぼフラットである。この場合、走査方向では、急峻な温度勾配に沿って薄膜は短時間に急速加熱及び急速冷却されるが、走査方向に交差する方向では、温度勾配がほぼないために結晶成長するのに十分な時間で高温状態が保たれる。このように、高速でレーザーの走査を行うと、レーザー走査方向である基板水平方向(以下、ラテラル方向と呼ぶ。)には上記のような温度勾配が生じることになる。このような温度勾配に沿って薄膜の結晶成長が促進され、ラテラル方向に結晶成長する。この結果、レーザーの走査方向に交差する方向における結晶粒の結晶粒径が大きくなる。なお、さらに走査速度を速くすると、温度分布と結晶成長速度の度合いとの釣り合いによって、薄膜はさらに均一に横方向成長する。
 このように、レーザーの走査方向に一定以上の温度勾配が発生すると、レーザーの走査方向と交差する方向の結晶成長が助長されて結晶粒径が大きな結晶領域が生成される。本実施の形態では、レーザー光の走査方向に略直交する方向において非結晶のシリコン薄膜13のシリコンの結晶成長が促進され、図2に示すように、レーザーの走査方向と交差する方向に延びる帯形状の第1領域51が形成される。このとき、シリコンの結晶粒は結晶成長とともに体積が膨張することになるが、本実施の形態では、上記のように、第1領域51における結晶粒が第2領域52における結晶粒よりも結晶成長が促進されるので、第1領域51における結晶粒の方が第2領域52における結晶粒よりも体積が膨張することになる。これにより、第1領域51における結晶粒の粒界では、結晶粒同士が衝突しあって隆起している状態となる。
 以上のように、シリコン薄膜を結晶化する際のレーザー光の走査速度を速めることによって帯形状の第1領域51を形成することができるのであるが、このことは、本願発明者が鋭意検討した結果得られたものである。そして、この結果に基づいて、本願発明者は、レーザーの走査方向に一定以上の温度勾配を発生させることによって、レーザーの走査方向と交差する方向に結晶粒径が大きな結晶領域(第1領域51)を生成することができるという知見を得ることができた。また、結晶粒径が大きな結晶領域(第1領域51)を発生させるための急峻な温度勾配は、レーザー光の照射時間を短くすればよく、上述のように、レーザー光の走査速度を速くするだけではなく、レーザー光の強度分布における短軸幅を小さくすることによっても実現可能であると推察される。
 しかも、このような帯形状の第1領域51は、通常デバイス特性のばらつきの原因として考えられるのであるが、本願発明者は、さらに検討した結果、後述するように、レーザーの照射条件(レーザーの走査速度等)を調整することによって帯形状の第1領域51を均一な間隔で形成させることができるということを見出した。これにより、特性ばらつきが少ないデバイスを実現できるという新たな着想を得ることができた。
 次に、非結晶のシリコン薄膜13を結晶化する際の様子について、図3A及び図3Bを用いてさらに詳細に説明する。図3Aは、本発明の実施の形態1に係る薄膜形成基板の製造方法において、非結晶のシリコン薄膜13にレーザー光30を照射する際の様子を模式的に示す斜視図である。また、図3Bは、本発明の実施の形態1に係る薄膜形成基板の製造方法の結晶化工程で用いられるレーザー光30の強度分布(ビームプロファイル)を示す図である。
 図3Aに示すように、基板10上に形成された非結晶のシリコン薄膜13をレーザーによって結晶化させる際、レーザー光30を、非結晶のシリコン薄膜13に対して所定の相対走査方向に相対走査させながら照射する。すなわち、レーザー光30及び非結晶のシリコン薄膜13が形成された基板10の少なくともいずれか一方を移動させることで、非結晶のシリコン薄膜13に対してレーザー光30を相対走査させる。本実施の形態では、レーザー光30を固定し、図3Aに示すように、非結晶のシリコン薄膜13が形成された基板10をX軸方向の第1方向41に移動させることによって、非結晶のシリコン薄膜13に対してレーザー光30を走査方向40(X軸方向における第1方向41とは反対方向の第2方向)に走査した。なお、基板10をY軸方向に移動させてX軸方向の走査を複数回繰り返して行うことによって、非結晶のシリコン薄膜13の全領域に対してレーザー光30を照射させることができる。
 また、本実施の形態で用いるレーザーは、連続発振型のレーザー(CWレーザー)であることが望ましい。CWレーザーは、連続的にレーザー光が発振されるため、パルスレーザーよりも高速化が可能である。また、CWレーザーは、パルスレーザーよりも走査速度が1桁以上速いため、スループットを容易に向上させることができる。
 また、本実施の形態で用いるレーザーは、波長が405nm~632nmのレーザーであることが好ましい。例えば、405nmのブルーレーザー光から632nmのグリーンレーザー光までの範囲の半導体レーザーを用いることができる。これは、波長が308nmのようなエキシマレーザーの場合、アモルファスシリコン膜の表面において光が全て吸収されるため、膜表面からの膜厚方向への温度勾配による縦方向の結晶成長が顕著となり、横方向成長で得られる第1領域51の形成が困難となるからである。なお、パルスレーザーであっても、405nm~632nmの波長領域範囲であれば、アモルファスシリコン膜の膜厚方向全体に対してレーザー光を透過させることができ、薄膜の横方向の結晶化を助長させることができるので、第1領域51が得られ易くなると推測される。
 また、本実施の形態におけるレーザー光は、図3Bに示すように、短軸(X軸)方向における光強度分布がガウシアン分布である凸形状の分布となるように、また、短軸方向に直交する長軸(Y軸)方向における光強度分布がトップフラット状の分布となるように、ビーム成形されている。なお、図3Bにおいて、ビーム短軸幅W1は、レーザー光30の短軸方向における強度分布の半値幅(FWHM:Full Width at Half Maximum)を表している。また、図3Bにおいてビーム長軸幅W2は、レーザー光の長軸方向における強度分布の長軸方向の幅(フラット幅)を表している。このように構成されたレーザー光30は、非結晶のシリコン薄膜13に照射される際、レーザー光30の強度分布の短軸方向を走査方向40として非結晶のシリコン薄膜13に対して相対的に走査される。このように、図3Bに示す強度分布を有するレーザー光30を用いてシリコン薄膜13にレーザー照射することにより、当該シリコン薄膜13におけるレーザー光30の照射形状を略矩形状とすることができる。
 なお、本実施の形態では、波長が532nmのグリーン光を発する半導体レーザーからなるCWレーザーを用いた。また、ビーム短軸幅W1は32μmとし、ビーム長軸幅W2は300μmとしており、ビーム長軸幅W2がビーム短軸幅W1よりも大きくなるように構成している。
 本実施の形態では、このようにビーム成形されたレーザー光30を用いて非結晶のシリコン薄膜13に対してレーザー照射を行うが、本願発明者は、上述のとおり、レーザー光30の照射時間に応じて(すなわち、レーザー光30の走査速度及びレーザー光30のビーム短軸幅W1に応じて)、得られる結晶性シリコン薄膜15の結晶組織が変化することを見出した。
 以下、結晶粒径が大きな帯状の結晶領域(第1領域51)を発生させるためのレーザー光30の照射条件(レーザーの走査速度及びレーザー光の短軸幅)に関し、レーザー光30の照射条件と結晶性シリコン薄膜15の結晶組織との関係について、図4及び図5A~図5Eを用いて説明する。図4は、本発明の実施の形態1に係る薄膜形成基板の製造方法における結晶化工程において、レーザー光30の照射条件(走査速度及びビーム短軸幅)と結晶性シリコン薄膜15の結晶組織との関係を示す図である。また、図5A~図5Eは、図4の領域A~領域Eのレーザー照射条件に対応する結晶性シリコン薄膜15の結晶組織を模式的に示す図である。なお、レーザー光30の照射時間は、レーザー光30のビーム短軸幅W1(FWHM)を走査速度で除することによって算出され、照射時間=(短軸幅)/(走査速度)として表すことができる。
 図4の領域Aの範囲におけるレーザー光30の照射条件によってアモルファスシリコン膜からなる非結晶のシリコン薄膜13を結晶化すると、図5Aに示すように、アモルファスシリコン膜にアブレーション54が発生し、結晶性シリコン薄膜15に膜剥がれ等が発生する。このように、アブレーション54が発生する理由は、レーザー光の走査速度が遅すぎる、あるいは、レーザー光のビーム短軸幅W1が広すぎることにより、非結晶のシリコン薄膜13への照射エネルギーが大きくなりすぎたからであると考えられる。
 一方、図4の領域Eの範囲におけるレーザー光の照射条件によってアモルファスシリコン膜からなる非結晶のシリコン薄膜13を結晶化すると、図5Eに示すように、溶融シリコン結晶ではなく、結晶粒径が小さい固相成長(SPC:Solid Phase Crystallization)による結晶粒からなるSPC結晶組織53によって構成された結晶性シリコン薄膜15となる。このようなSPC結晶組織53が形成される理由は、レーザー光の走査速度が速すぎる、あるいは、レーザー光のビーム短軸幅W1が狭すぎることにより、非結晶のシリコン薄膜13への照射エネルギーが小さくなり、シリコンの融点1414℃以下の温度で結晶化したからであると考えられる。
 また、図4の領域Aと領域Eとで挟まれた領域B~領域Dの範囲におけるレーザー光30の照射条件によってアモルファスシリコン膜からなる非結晶のシリコン薄膜13を結晶化すると、いずれの場合も溶融シリコン結晶を得ることができるが、この溶融シリコン結晶が形成される領域B~領域Dのうち、レーザー光の走査速度が比較的に遅い、あるいは、レーザー光のビーム短軸幅W1が比較的に広い領域Bの照射条件では、図5Bに示すように、帯形状の第1領域51が形成されていない結晶組織によって構成された結晶性シリコン薄膜15が形成される。なお、図5Bにおける結晶性シリコン薄膜15の結晶組織は、第2領域52に相当する平均結晶粒径のシリコン粒子のみによって構成されている。
 そして、領域Bのレーザー光30の照射条件よりも、走査速度が速い、あるいは、ビーム短軸幅W1が狭い照射条件にすると、レーザー光30の走査方向40と略垂直な方向に延びる帯形状で、かつ平均結晶粒径が他の部分(第2領域52)よりも大きい第1領域51が形成された結晶組織の結晶性シリコン薄膜15が形成される。
 この場合、図4の領域Cの範囲におけるレーザー光30の照射条件とすると、図5Cに示すように、帯形状の第1領域51は、不均一な間隔でランダムに発生するが、領域Cのレーザー光30の照射条件よりも、さらに、走査速度が速い、あるいは、ビーム短軸幅W1が狭い条件である図4の領域Dの範囲におけるレーザー光30の照射条件にすると、図5Dに示すように、帯形状の第1領域51は、等間隔で均一に発生する。
 ここで、隣り合う第1領域51の間隔(ピッチ幅)とレーザー光の照射時間との関係について、図6A及び図6Bを用いて説明する。図6Aは、本発明の実施の形態1に係る薄膜形成基板の製造方法の結晶化工程において、レーザー光30の走査速度に対する第1領域51のピッチ幅を示す図である。また、図6Bは、図6Aの横軸を、走査速度からレーザー照射時間に置換した図である。すなわち、レーザー照射時間=ビーム短軸幅/走査速度=32(μm)/走査速度(mm/s)として置換している。例えば、図6Bにおけるレーザー照射時間が60(μsec)は、図6Aにおける走査速度が約533(mm/s)に対応する。なお、図6A及び図6Bの各データは、幅が25μmのゲート電極上における第1領域51のピッチ幅を測定したものであり、第1領域51の帯形状幅がゲート電極の幅(25μm)を超えた場合、第1領域51のピッチ幅は25μmとしてプロットしている。
 図6A及び図6Bに示すように、結晶化時におけるレーザー光30の走査速度が550mm/s以上になると、すなわち、レーザー光30の照射時間が約58.2(μ・sec)以下になると、隣り合う第1領域51の間隔は、2.0μm以下となり、ほぼ飽和していることが分かる。すなわち、隣り合う第1領域51の間隔が2.0μm以下となるように第1領域51を形成することにより、隣り合う第1領域51を等間隔で形成することができる。このように、レーザー光30の照射時間(短軸幅/走査速度)が60(μsec)以下となるように、ビーム短軸幅W1及びレーザー光30の走査速度の条件を決定することにより、図5Dに示されるように、均一な間隔で形成された第1領域51を得ることができる。なお、隣り合う第1領域51の間隔(ピッチ幅)とは、隣り合う2つの第1領域51において、一方の第1領域51の幅方向の中心位置と他方の第1領域51の幅方向の中心位置との間の距離のことである。
 以上、本発明の実施の形態1に係る薄膜形成基板の製造方法によれば、図4の領域C又は領域Dの範囲におけるレーザー光30の照射条件によってアモルファスシリコン膜などの非結晶の薄膜を結晶化することにより、レーザー光30の投入エネルギーを上げることなく、同一工程において形成された結晶状態が異なる領域を含む結晶組織によって構成された結晶性薄膜を、高速で形成することができる。すなわち、同一工程において形成された平均結晶粒径の異なる帯形状の第1領域51と第2領域52とを含む結晶化領域50を有する結晶性薄膜が形成された薄膜形成基板を製造することができる。これにより、1つのデバイスに、異なる特性を有する2種類の素子(薄膜トランジスタ等)を容易に作製することが可能となる。
 さらに、本実施の形態によれば、結晶粒径の大きな結晶化領域(第1領域51)を含む結晶性薄膜を形成することができるので、例えば、本実施の形態に係る結晶性薄膜をチャネル層として薄膜トランジスタを作製した場合、キャリアの移動度が高くオン電流特性に優れた薄膜トランジスタを実現することができる。
 さらに、本実施の形態によれば、このような帯形状の第1領域51を含む結晶化領域50は、連続発振のレーザー光30を高速走査で照射することによって形成することができるので、パルスレーザーによって結晶化する場合と比べて、高スループット化を実現することもできる。すなわち、第2領域52に相当する結晶粒径の結晶粒のみからなる結晶組織によって構成される結晶性シリコン薄膜15をレーザー結晶化によって形成する場合と比べて、スループットを向上させることができる。
 しかも、本実施の形態のように連続発振のレーザー光を用いた結晶化方法と、パルスレーザーを用いた結晶化方法とでは、帯形状の領域(筋)の結晶組織、具体的には結晶組織の大きさが大きく異なっている。つまり、本実施の形態のように、連続発振のレーザー光を用いて薄膜を結晶化すると、上述のように、薄膜におけるある点での走査方向の温度プロファイルが急峻となり、温度勾配に沿って結晶成長が促進されて、横方向(ラテラル)成長し、結晶粒径が大きくなる。これに対して、パルスレーザー光を用いて薄膜を結晶化する場合、パルスレーザー光の照射時間は極端に短いことから(1ショットがnsecオーダー)、パルス発振による各ショットをオーバーラップさせて均一な結晶組織を形成している。このため、大粒径領域では走査方向に対する温度勾配ができにくく、連続発振のレーザー光を用いたときのようなラテラル成長ができない。例えば、パルス1ショット後の薄膜の結晶組織は、図7Aの(a)に示すようになるので、図7Aの(b)に示すように、低速スキャンの場合は、エネルギーが大きくてショットピッチが小さくなるので、帯形状(筋)の領域は形成されない。また、図7Aの(b)に示すように、高速スキャンの場合は、エネルギーが小さくてショットピッチが大きくなるので、帯形状(筋)の領域が形成される。しかしながら、この場合、帯形状の領域が形成されるものの、結晶が比較的大きい領域おいても、結晶粒径の物理長は非常に小さい。つまり、パルスレーザーの場合は、本実施の形態のように、粒径が大きい結晶を有する帯形状の領域は形成されない。
 このように、連続発振のレーザー光によって結晶化した場合とパルスレーザーを用いて結晶化した場合とでは薄膜の結晶成長の原理が異なっている。この結果、本実施の形態では、大粒径領域である帯形状の第1領域51においては、大きな結晶粒径の成長が進んだ結果、当該帯形状の第1領域51の両側に位置する第2領域52のそれぞれと接触する結晶粒を複数有することになる。つまり、帯形状の第1領域51内に、帯形状の第1領域の短手方向(幅方向)の一端から他端にかけて1つの繋がった結晶粒(帯形状の第1領域51を介して隣接する第2領域52を跨ぐ結晶粒)が複数存在する。これに対して、パルスレーザーを用いた場合では、大粒径領域には、結晶成長が進まず走査方向(大粒径領域の幅方向)の一端から他端にかけて1つの繋がった結晶粒が形成されず、走査方向においては複数の結晶粒が存在することになる。さらに、レーザーの短軸幅(半値幅)はミクロンオーダー以上を有している。そのため、結晶成長が進みにくいことに加え、帯形状の幅が必然的に大きくなるため、帯形状領域の両側の領域に接触する結晶粒を形成することができない。
 また、パルスレーザーを用いて高速走査すると、先行特許文献2(特開2008-016717号公報)にも開示されているように、図7Bに示すように、レーザーの走査方向と交差する方向に延びる結晶粒径の異なる2つの縦筋結晶領域(縦筋領域A及び縦筋領域B)が形成される場合がある。これは、可視光の波長領域において、結晶性シリコン薄膜の光吸収率が非結晶のシリコン膜のおよそ1/10であるため、1ショット目のパルスレーザー照射によって形成された結晶組織に、2ショット目のパルスレーザーが照射されたとしても光吸収されにくくなり、1ショット目のパルスレーザー照射で形成された結晶組織が残りやすくなっているためであると考えられる。この場合、図7Bにおいて小さい結晶粒径からなる領域Bの結晶組織には、1ショット目のエッジ領域に形成された30nm以下の微結晶組織も存在すると推測される。それゆえに、A領域とB領域との結晶粒径の差が大きくなるという問題がある。また、先行特許文献2の図5にも示されるように、パルスレーザーによって形成された縦筋結晶領域は、レーザーの走査方向と交差する方向において断続的に形成されており、当該縦筋には連続性が無い。このため、縦筋の連続性が途切れている位置がキャリアのトラップとなり、キャリアの移動度を低下させてしまうともに、縦筋の不連続性によって薄膜特性の均一性が低下するという問題もある。なお、先行特許文献2では、段落[0048]~[0051]において、縦筋の発生は好ましくない旨が指摘されている。一方、本実施の形態では、帯形状の第1領域51は、レーザーの照射領域の長軸方向(Y方向)の長さ内において連続して形成されている。すなわち、帯形状の第1領域51は、レーザー光の長軸方向(Y方向)に対してレーザー光の長軸幅にわたって途切れることなく連続的に発生している。これにより、キャリアの移動度を向上させることができるとともに、均一性に優れた結晶性シリコン薄膜を実現することができる。
 また、本実施の形態において、結晶性シリコン薄膜15は、図4における領域Dの範囲のレーザー照射条件によって形成することが好ましい。領域Dの範囲の条件によって非結晶のシリコン薄膜13を結晶化させて結晶性シリコン薄膜15を形成することにより、帯形状の第1領域51を均一な間隔で形成することができる。また、本実施の形態における結晶性シリコン薄膜15の第1領域51の結晶粒径は、100nm以上500nm以下であってマイクロメーターオーダ未満の大きさ、すなわち大粒径ではない大きさである。このように、帯形状の第1領域51を、100nm以上500nm以下の結晶粒径で、かつ、均一な間隔で形成することができるので、基板面内均一性に優れた結晶組織とすることができ、特に、例えば大画面表示装置用のTFTアレイ基板を形成する際に特性ばらつきが小さい素子を容易に作製することができる。
 また、本実施の形態において、結晶化工程に用いるレーザー光は、以下の理由により、CWレーザーを用いたグリーンレーザー光であることが好ましい。
 CWレーザーを用いたグリーンレーザー光によって結晶性シリコン薄膜15を形成することで、この結晶性シリコン薄膜15をチャネル層とする薄膜トランジスタは、キャリアの移動度が高くオン電流特性に優れたものとなる。一方、スループットを向上させるには、レーザー光のビーム長軸幅を大きくして走査回数を減少させることが考えられるが、グリーンレーザー光でビーム長軸幅を大きくした場合、光干渉の影響によって長軸方向のビーム強度均一性を確保することが困難となる。また、スループットを向上させるには、レーザー装置に複数のレーザーを搭載させて走査回数を減少させることも考えられるが、レーザー数増加による装置のイニシャルコストが大幅に上昇すると問題がある。このように、従来、グリーンレーザー光を用いた薄膜の結晶化ではスループットを向上させることが困難であったが、本実施の形態では、レーザー光を高速走査させることで所望の結晶化領域を形成することができるので、スループットの向上を図ることもできる。従って、本実施の形態に係る薄膜形成基板の製造方法は、グリーンレーザー光を用いた薄膜の結晶化に適している。
 次に、本発明の実施の形態1に係る薄膜形成基板の製造方法の結晶化工程において用いられる結晶性半導体薄膜形成装置100について、図8を用いて説明する。図8は、本発明の実施の形態1に係る結晶性半導体薄膜形成装置の構成を示す図である。本実施の形態に係る結晶性半導体薄膜形成装置100は、図3Bに示すような光強度分布を有するレーザー光30を成形して、非結晶のシリコン薄膜13などの非結晶半導体薄膜を結晶化するための装置である。
 図8に示すように、結晶性半導体薄膜形成装置100は、CWレーザー光を用いたシリコン薄膜の結晶化装置であって、基板保持部110と、レーザー光発振部120と、光学系部130と、走査制御部141及びレーザー光強度分布調整部142を含む制御部140とを備える。
 基板保持部110は、結晶化対象である非結晶のシリコン薄膜が形成された基板10を保持するステージである。レーザー光30の照射面である基板10の表面10Sには、非結晶のシリコン薄膜として、例えばアモルファスシリコン膜(非晶質シリコン膜)が形成されている。
 レーザー光発振部120は、非結晶のシリコン薄膜を結晶化させるためのレーザー光30を発振するレーザー光源である。本実施の形態におけるレーザー光発振部120には、4つの半導体レーザー装置が設けられており、各半導体レーザー装置は、いずれも左右対称の単峰状の光強度分布を有するレーザー光を発振する。半導体レーザー装置としては、例えば、405nm~632nmの波長帯域であるブルーレーザー光又はグリーンレーザー光を、例えば10~100μsecのマイクロセカンドオーダーで連続発振するものを用いることができる。
 光学系部130は、複数のビーム成形レンズからなり、レーザー光発振部120から発振させたレーザー光30を、所定の強度分布にビーム成形するともにシリコン薄膜の所定の領域に照射させるように構成されている。本実施の形態において、光学系部130は、ホモジナイザー131、コンデンサレンズ132及びDOE(Diffractive Optical Element:回折光学素子)レンズ133によって構成されている。なお、ビーム成形レンズとしては、長軸方向のビームプロファイルを成形するレンズと、短軸方向のビームプロファイルを成形するレンズとを別々に設けても構わない。
 制御部140において、走査制御部141は、非結晶のシリコン薄膜に照射するレーザー光30が当該シリコン薄膜に対して相対的にビームスキャンされるように、基板保持部110又は光学系部130を制御する。本実施の形態における走査制御部141は、図3Aに示すように、基板保持部110を所定の位置に移動するように制御して、基板10を移動させる。
 また、レーザー光強度分布調整部142は、所定の強度分布となるようにレーザー光30を成形する。本実施の形態におけるレーザー光強度分布調整部142は、光学系部130を構成するレンズを調整することによりレーザー光発振部120から発振されたレーザー光30を成形し、図3Bに示すような光強度分布を有するレーザー光30となるようにビーム成形する。
 なお、結晶性半導体薄膜形成装置100は、その他に、ミラーや集光レンズ等の光学部品を備えていてもよいし、レーザー光のビームプロファイルを測定するためのビームビームプロファイラーを備えていてもよい。ビームプロファイラーによってビームプロファイルを測定することにより、この測定結果に基づいて、シリコン薄膜に照射するレーザー光が所望の光強度分布となるように、レーザー光強度分布調整部142によって光学系部130のレンズの位置等を調整することができる。
 次に、本発明の実施の形態1に係る薄膜トランジスタの製造方法について説明する。本発明の実施の形態1に係る薄膜トランジスタの製造方法は、基板を準備する工程(基板準備工程)と、基板の上方にゲート電極を形成する工程(ゲート電極形成工程)と、基板の上方にゲート絶縁膜を形成する工程(ゲート絶縁膜形成工程)と、基板の上方にソース電極及びドレイン電極を形成する工程(ソースドレイン電極形成工程)と、基板の上方にシリコン薄膜を形成する工程(シリコン薄膜形成工程)と、レーザー光を照射することにより基板に形成されたシリコン薄膜を結晶化して結晶性シリコン薄膜を形成する工程(シリコン薄膜結晶化工程)とを含む。
 本実施の形態に係る薄膜トランジスタの製造方法におけるシリコン薄膜結晶化工程は、上述の薄膜形成基板の製造方法における結晶化工程と同様の方法によって行うことができる。なお、シリコン薄膜結晶化工程によって得られる結晶性シリコン薄膜は、薄膜トランジスタのチャネル層となる。
 また、薄膜トランジスタには、ボトムゲート型とトップゲート型の2種類の構造がある。ボトムゲート型の薄膜トランジスタは、層構成が、下から順に、ゲート電極、ゲート絶縁膜、チャネル層(シリコン半導体膜)となっている。一方、トップゲート型の薄膜トランジスタは、層構成が、下から順に、チャネル層、ゲート絶縁膜、ゲート電極となっている。以下、ボトムゲート型及びトップゲート型の各薄膜トランジスタの製造方法について、図面を参照しながら具体的に説明する。
 まず、ボトムゲート型でチャネルエッチ型の薄膜トランジスタの製造方法について、図9を用いて説明する。図9は、本発明の実施の形態2に係るボトムゲート型の薄膜トランジスタ(チャネルエッチ型)の製造方法における各工程を模式的に示す断面図である。
 図9の(a)に示すように、まず、基板10を準備する(基板準備工程)。基板10としては、例えば、ガラス基板を用いることができる。なお、基板準備工程において、基板10上に、シリコン酸化膜又はシリコン窒化膜等の絶縁膜からなるアンダーコート膜を形成してもよい。
 次に、図9の(b)に示すように、基板10の上方に、ゲート電極11をパターン形成する(ゲート電極形成工程)。例えば、基板10の上方の全面に、膜厚が10~500nmの範囲となるように、モリブデン(Mo)、タングステン(W)、銅(Cu)、銀(Ag)、アルミニウム(Al)、クロム(Cr)、チタン(Ti)、タンタル(Ta)、あるいはそれらを組み合わせた合金などのゲート金属膜をスパッタリング法によって成膜し、フォトリソグラフィ及びウェットエッチングを施すことにより、前記ゲート金属膜をパターニングして所定形状のゲート電極11を形成する。
 次に、図9の(c)に示すように、基板10の上方に、ゲート絶縁膜12を形成する(ゲート絶縁膜形成工程)。例えば、ゲート電極11を覆うようにして、基板10の上方の全面に、膜厚が10~500nmの範囲となるように、酸化シリコン(SiO)膜、窒化シリコン(SiN)膜、酸窒化シリコン(SiON)膜等の絶縁膜からなるゲート絶縁膜12をプラズマCVD法によって成膜する。なお、ゲート絶縁膜は、単層構造であってもよいし、積層構造でも構わない。
 次に、図9の(d)に示すように、基板10の上方に、非結晶のシリコン薄膜13を形成する(シリコン薄膜形成工程)。例えば、ゲート絶縁膜12上に、膜厚が10~200nmの範囲となるように、非結晶のシリコン薄膜13としてアモルファスシリコン膜をプラズマCVD法によって成膜する。
 次に、図9の(e)に示すように、非結晶のシリコン薄膜13に対してレーザー光を所定の走査方向40で相対走査させつつ、レーザー光を非結晶のシリコン薄膜13の所定領域に照射することにより、非結晶のシリコン薄膜13を結晶化して結晶性シリコン薄膜15を形成する(シリコン薄膜結晶化工程)。この工程は、上述の薄膜形成基板の製造方法における結晶化工程と同様の方法によって行う。
 具体的には、図4の領域C又は領域Dに示される照射条件にて、非結晶のシリコン薄膜13に対してX軸方向(紙面垂直方向)にレーザー光を走査させてレーザー照射を行う。これにより、結晶性シリコン薄膜15には、走査方向40と略直交する方向に帯形状の第1領域が生じる。なお、図9の(e)では、非結晶のシリコン薄膜13の一部の領域を結晶化させているが、非結晶のシリコン薄膜13の全領域を結晶化させても構わない。
 次に、フォトリソグラフィ及びウェットエッチングを施すことにより、レーザー未照射の未結晶化領域であるシリコン薄膜13及びレーザー照射によって結晶化された結晶性シリコン薄膜15を選択的にパターニングすることにより、非結晶のシリコン薄膜13を除去するとともに結晶性シリコン薄膜15を島状にパターン形成する。
 次に、図9の(f)に示すように、プラズマCVDによる成膜時に、アモルファスシリコン膜にリン等の不純物をドーピングして、膜厚が10~100nmの範囲となるように、コンタクト層16となる不純物ドープのn層を形成する。その後、同図に示すように、コンタクト層16の上に、例えばMoW/Al/MoWの三層構造のソースドレイン金属膜17をスパッタリング法によって成膜する。
 次に、フォトリソグラフィ及びウェットエッチングを施すことにより、図9の(g)に示すように、基板10の上方に、ソース電極17S及びドレイン電極17Dをパターン形成する(ソースドレイン電極形成工程)。例えば、フォトリソグラフィ及びウェットエッチングを施すことにより、ソースドレイン金属膜17をパターニングすることにより、対向する一対のソース電極17S及びドレイン電極17Dを形成する。
 その後、ソースドレイン金属膜17をパターニングするときのレジストを残したまま(あるいはレジストを除去して)ドライエッチングを施すことによりコンタクト層16を分離して、対向する一対のコンタクト層16を形成する。これにより、図9の(g)に示すように、ボトムゲート型の薄膜トランジスタを製造することができる。なお、その後、全体を覆うようにして、プラズマCVD等によってシリコン窒化膜からなるパッシベーション膜を形成してもよい。
 以上、本実施の形態に係るボトムゲート型の薄膜トランジスタの製造方法によれば、チャネル層となるシリコン薄膜を結晶化する際におけるレーザー光の照射条件を、図4の領域C又は領域Dの範囲となるようにビーム短軸幅と走査速度とを制御することで、第2領域52よりも平均結晶粒径が大きく帯形状の第1領域51を含む結晶組織によって構成された結晶性シリコン薄膜15を形成することができる。これにより、レーザー出力を上げることなく、かつ走査速度を高速化させながら、結晶性シリコン薄膜15の結晶粒径を大きく形成することができるので、高スループット化を図りながらオン電流特性に優れた薄膜トランジスタを製造することができる。
 なお、本実施の形態では、チャネルエッチ型の薄膜トランジスタの製造方法を例に説明したが、結晶性シリコン薄膜15の上にチャネル保護膜が形成されたチャネルストッパ型(チャネル保護型)の薄膜トランジスタにも適用することができる。
 また、本実施の形態において、結晶性シリコン薄膜15は、領域Dの範囲のレーザーの照射条件にて形成することがより好ましい。領域Dの範囲の条件によって非結晶のシリコン薄膜13を結晶化させて結晶性シリコン薄膜15を形成することにより、帯形状の第1領域51の間隔を均一化することができる。これにより、面内均一性に優れたTFT特性を有する複数の薄膜トランジスタからなる薄膜トランジスタアレイを製造することができる。
 次に、本発明の実施の形態1に係るトップゲート型の薄膜トランジスタの製造方法について、図10を用いて説明する。図10は、本発明の実施の形態1に係るトップゲート型の薄膜トランジスタの製造方法における各工程を模式的に示す断面図である。
 図10の(a)に示すように、まず、基板10を準備する(基板準備工程)。基板10としては、例えば、ガラス基板を用いることができる。
 次に、図10の(b)に示すように、基板10上に、シリコン酸化膜又はシリコン窒化膜等の絶縁膜からなるアンダーコート膜18を形成する。その後、同図に示すように、基板10の上方に、非結晶のシリコン薄膜13を形成する(シリコン薄膜形成工程)。例えば、アンダーコート膜18の上に、非結晶のシリコン薄膜13としてアモルファスシリコン膜をプラズマCVD等によって成膜する。
 次に、図10の(c)に示すように、非結晶のシリコン薄膜13に対してレーザー光を所定の走査方向40で相対走査させつつ、レーザー光を非結晶のシリコン薄膜13の所定領域に照射することにより、非結晶のシリコン薄膜13を結晶化して結晶性シリコン薄膜15を形成する(シリコン薄膜結晶化工程)。この工程は、上述の実施の形態1における薄膜形成基板の製造方法における結晶化工程と同様の方法によって行う。
 具体的には、図4の領域C又は領域Dに示されるレーザー光の照射条件にて、非結晶のシリコン薄膜13に対してX軸方向(紙面垂直方向)にレーザー光を走査させてレーザー照射を行う。これにより、結晶性シリコン薄膜15には、走査方向40と略直交する方向に帯形状の第1領域が生じる。なお、図10の(c)では、非結晶のシリコン薄膜13の一部の領域を結晶化させているが、非結晶のシリコン薄膜13の全領域を結晶化させても構わない。
 次に、図10の(d)に示すように、フォトリソグラフィ及びウェットエッチングを施すことにより、レーザー未照射の未結晶化領域であるシリコン薄膜13及びレーザー照射によって結晶化された結晶性シリコン薄膜15を選択的にパターニングすることにより、非結晶のシリコン薄膜13を除去するとともに島状の結晶性シリコン薄膜15を形成する。
 その後、同図に示すように、基板10の上方に、ゲート絶縁膜12を形成する(ゲート絶縁膜形成工程)。例えば、島状の結晶性シリコン薄膜15を覆うようにして、基板10の上方の全面に、二酸化シリコン等の絶縁膜からなるゲート絶縁膜12をプラズマCVD等によって成膜する。
 次に、図10の(e)に示すように、基板10の上方に、ゲート電極11をパターン形成する(ゲート電極形成工程)。例えば、基板10の上方の全面にモリブデンタングステン(MoW)等のゲート金属膜をスパッタによって成膜し、フォトリソグラフィ及びウェットエッチングを施すことによりゲート金属膜をパターニングして、結晶性シリコン薄膜15の上方にゲート絶縁膜12を介して所定形状のゲート電極11を形成する。
 次に、図10の(f)に示すように、ゲート電極11をマスクとして結晶性シリコン薄膜15の両端部に不純物をライトドープすることにより、LDD(Lightly Doped Drain)領域19を形成する。
 次に、図10の(g)に示すように、基板10の上方に、パッシベーション膜20を形成する。例えば、ゲート電極11及びゲート絶縁膜12を覆うようにして、基板10の上方の全面に、二酸化シリコン膜等の絶縁膜からなるパッシベーション膜20をプラズマCVD等によって成膜する。その後、同図に示すように、LDD領域19を露出させるようにパッシベーション膜20にコンタクトホールを形成する。
 次に、図10の(h)に示すように、パッシベーション膜20のコンタクトホールを埋めるように、パッシベーション膜20上に一対のソース電極17S及びドレイン電極17Dを形成する。これにより、同図に示すように、トップゲート型の薄膜トランジスタを製造することができる。
 以上、本実施の形態に係るボトムゲート型の薄膜トランジスタの製造方法によれば、チャネル層となるシリコン薄膜を結晶化する際におけるレーザー光の照射条件を、図4の領域C又は領域Dの範囲となるようにビーム短軸幅と走査速度を制御することで、第2領域52よりも平均結晶粒径が大きい帯形状の第1領域51を含む結晶組織によって構成された結晶性シリコン薄膜15を形成することができる。これにより、レーザー出力を上げることなく、かつ走査速度を高速化させながら、結晶性シリコン薄膜15の結晶粒径を大きく形成することができるので、高スループット化を図りながらオン電流特性に優れた薄膜トランジスタを製造することができる。
 なお、本実施の形態では、結晶性シリコン薄膜15は、領域Dの範囲のレーザーの照射条件にて形成することがより好ましい。領域Dの範囲の条件によって非結晶のシリコン薄膜13を結晶化させて結晶性シリコン薄膜15を形成することにより、帯形状の第1領域51の間隔を均一化することができる。これにより、面内均一性に優れたTFT特性を有する複数の薄膜トランジスタからなる薄膜トランジスタアレイを製造することができる。
 (実施の形態1の実施例)
 次に、本発明の実施の形態1に係る薄膜形成基板の製造方法及び薄膜基板並びに薄膜トランジスタの製造方法及び薄膜トランジスタの一実施例について、図9を参照しながら説明する。なお、ここでは、ボトムゲート型の薄膜トランジスタを製造する場合の工程を用いて説明するが、トップゲート型の薄膜トランジスタの場合にも適用することができる。
 まず、図9の(a)に示すように、基板10としてガラス基板を準備し、そのガラス基板上に、シリコン酸化膜の絶縁膜からなるアンダーコート膜をプラズマCVDによって500nm成膜する。次に、アンダーコート膜の上にモリブデンタングステン(MoW)からなる金属膜をスパッタリング法により50nm堆積し、当該金属膜に対してパターニングを施すことにより、図9の(b)に示すように、ゲート電極11を形成する。その後、図9の(c)に示すように、ゲート電極11の上に、膜厚が70nmの酸化シリコン膜と膜厚が85nmの窒化シリコン膜との積層膜からなるゲート絶縁膜12をプラズマCVDによって成膜し、さらにその上に、図9の(d)に示すように、アモルファスシリコン膜からなる非結晶のシリコン薄膜13を50nmの膜厚で連続成膜する。その後、500℃の脱水素処理により、アモルファスシリコン膜中の水素含有量を3.0atmic%以下にする。
 その後、この非結晶のシリコン薄膜13が形成された基板10を、図8に示す結晶性半導体薄膜形成装置100の基板保持部(ステージ)110上に固定し、非結晶のシリコン薄膜13に対してレーザー照射を行うことで、非結晶のシリコン薄膜13を結晶化して結晶性シリコン薄膜15を形成する。
 ここで、レーザー照射の条件としては、ビーム短軸幅W1(半値幅)を32.0μmで固定とし、レーザーの照射パワー密度及び基板保持部110の走査速度を変えた2種類の基板を作製した。1つ目の基板におけるレーザー照射条件は、本実施の形態におけるレーザー照射条件であって、パワー密度を70.0kW/cmとし、基板保持部110の走査速度を400~580mm/sの範囲とした。2つ目の基板におけるレーザー照射条件は、比較例におけるレーザー照射条件であって、パワー密度を60.0kW/cmとし、ステージの走査速度を340~480mm/sの範囲とした。
 ここで、前述の2条件のレーザー照射によって得られる結晶性シリコン薄膜15の結晶組織について、図11及び図12を用いて説明する。
 図11の(a)及び(b)は、本発明の実施の形態1におけるレーザー照射条件(パワー密度:70.0kW/cm、ステージの走査速度:580mm/s、照射時間:49.0μsec、投入エネルギー密度:3.5J/cm)によって得られた結晶性シリコン薄膜15の結晶組織をSEMによって観察したときの平面SEM像であり、(b)は(a)の破線で示される領域の拡大図である。
 図11の(a)及び(b)に示すように、本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜15は、帯形状の第1領域51と第2領域52との混在を確認することができる。なお、図11の(b)において、白っぽく見える部分は、第1領域51におけるシリコンの結晶粒が体積膨張により衝突し合って隆起した部分である。
 本実施例において、第1領域51におけるシリコンの結晶粒の平均結晶粒径は440nmであり、第2領域52におけるシリコンの結晶粒の平均結晶粒径は80nmであった。また、第1領域51のピッチは1.8μmであり均一ピッチとなっていた。
 一方、図12の(a)及び(b)は、比較例におけるレーザー照射条件(パワー密度:60kW/cm、ステージの走査速度:400mm/s、照射時間:80.0μsec、投入エネルギー密度:4.8J/cm)によって得られた結晶性シリコン薄膜の結晶組織をSEMによって観察したときの平面SEM像であり、(b)は(a)の破線で示される領域の拡大図である。
 図12の(a)及び(b)に示すように、比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜は、照射時間が60.0μsec以上と長いため、第1領域51が存在せずに第2領域52のみが存在する結晶組織であり、その結晶組織におけるシリコンの結晶粒の平均結晶粒径は75nmであった。
 このように、図11及び図12に示される結果によると、図11における本実施の形態に係るレーザー照射条件は、走査速度が高速化され、投入エネルギー密度が少ないにもかかわらず、平均結晶粒径が100~500nmの範囲となる帯形状の第1領域51を、2.0μm以下の間隔で形成することができる。
 また、図11の(b)に示すように、帯形状の第1領域51には、当該帯形状の第1領域51の両側に位置する第2領域52のそれぞれと接触する結晶粒が複数存在することが分かる。つまり、帯形状の第1領域51内には、帯形状の第1領域の短手方向(幅方向)の一端から他端にかけて1つの繋がった結晶粒(隣接する第2領域52に跨がる結晶粒)が複数存在することが分かる。
 薄膜トランジスタのオン電流は、粒界(トラップサイト)の数が少ないほど大きくなるので、本実施例における結晶性シリコン薄膜15をチャネル層とすることで、オン電流特性に優れた薄膜トランジスタを実現することができる。なお、パルスレーザーによって結晶化した場合は、上述のように、大粒径領域には走査方向において複数の結晶粒が存在し、粒界(トラップサイト)の数が多くなる。したがって、パルスレーザーによって得られた結晶性シリコン薄膜は、連続発振のレーザー光を用いて得られた結晶性シリコン薄膜と比べて、オン電流特性に優れた薄膜トランジスタを実現することができない。
 また、帯形状の第1領域51において、両側の第2領域52に接触する結晶粒が当該帯形状の第1領域51の長手方向において占める割合は80%以上となっている。つまり、帯形状の第1領域51の長手方向に占めるラテラル成長の割合が80%以上となっている。このように、本実施例では、隣接する第2領域52に跨がる結晶粒が多く存在するので、オン電流特性に優れているとともに、後述するようにキャリア移動度の素子ばらつきが少ない薄膜トランジスタを実現することができる。
 また、パルスレーザーでは、大粒径領域には走査方向において複数の結晶粒が存在している。そのため、電流が流れる経路によっては電流量が異なってしまう可能性がある。そのため、基板面内に配置された各々のトランジスタを比較した場合に、各トランジスタの大粒径領域内のオン電流のばらつき要因となる場合がある。
 一方、本願における大粒径領域は一端から他端にかけて1つの繋がった結晶粒であるため、大粒径領域内の結晶粒界の数の違いによるばらつきは、パルスレーザーの場合と比較しても小さい。そのため、面内のオン電流ばらつきを抑制することができる。
 なお、上記の本実施の形態におけるレーザー照射条件では、ステージの走査速度が580mm/sの場合について説明したが、図13A~図13Cに示すように、ステージの走査速度が、460mm/s、480mm/s、520mm/sの場合でも、帯形状の第1領域51が形成される。図13A~図13Cは、本発明の実施の形態1におけるレーザー照射条件によって得られた結晶性シリコン薄膜15の結晶組織を光学顕微鏡によって観察したときの図であり、図13A、図13B及び図13Cはそれぞれ、ステージの走査速度が460mm/s、480mm/s及び520mm/sの場合に対応する。
 図13A及び図13Bに示すように、ステージの走査速度が460mm/s及び480mm/sの場合は、不均一の間隔ではあるが、帯形状の第1領域51が形成されていることが確認できる。また、図13Cに示すように、ステージの走査速度が520mm/sの場合は、図11と同様に、均一な間隔で帯形状の第1領域51が形成されることが確認できる。なお、図13A~図13Cにおいて、ステージの走査速度以外の条件は、図11における本実施の形態におけるレーザー照射条件と同じである。
 次に、本実施の形態におけるレーザー照射条件(第1領域と第2領域との混在)と比較例におけるレーザー照射条件(第1領域なし、第2領域のみ)とによって形成された結晶性シリコン薄膜に関し、レーザー光の走査速度に対するラマン半値幅について、図14A及び図14Bを用いて説明する。
 ここで、図14Aは、本発明の実施の形態1及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜において、ラマン分光測定法により得られたラマンシフトのスペクトルを示す図である。また、図14Bは、本発明の実施の形態1及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜において、レーザーの走査速度と、図14Aのラマン分光測定法により得られたラマンシフトが520cm-1付近のc-Si(結晶シリコン成分)のピークスペクトルの半値幅との関係を示す図である。
 また、図14Aにおいて、ラマン分光測分析における測定条件としては、測定位置はゲート電極上の結晶性シリコン薄膜であり、励起波長は532nmであり、測定スポット径は1.3μmΦであり、波数分解能は1.5cm-1である。なお、図14Bの各データ点は、ゲート電極上の結晶性シリコン薄膜における120点の平均値であり、図14Aでは、図14Bの点D1及び点D2における120点の内の1点の結果を例示している。
 図14Bに示す結果により、第1領域51と第2領域52とが混在している本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜の方が、第1領域51が存在せず第2領域52のみが存在している比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜よりも、ラマンシフトのピークスペクトルの半値幅が小さくなることが分かる。このようにラマン半値幅が小さいことは、結晶性シリコン薄膜の結晶組織が結晶粒径の大きいシリコン粒子によって構成されていることを示している。
 また、図14Bに示すように、本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜におけるラマンシフトのピークスペクトルの半値幅の範囲は、4.8~5.5cm-1である。すなわち、結晶性シリコン薄膜におけるラマン半値幅の範囲を、4.8~5.5cm-1とすることにより、結晶粒径が大きく帯形状の第1領域51を含む結晶組織を有する結晶性シリコン薄膜とすることができる。
 次に、図9に戻り、図9の(e)に示される結晶性シリコン薄膜15が形成された基板に対して、フォトリソグラフィ及びウェットエッチングを施すことにより、非結晶のシリコン薄膜13及び結晶性シリコン薄膜15を選択的にパターニングすることにより、結晶性シリコン薄膜15を島状にパターン形成する。
 次に、図9の(f)に示すように、プラズマCVD等によって真性のアモルファスシリコン膜(不図示)を50nmの膜厚で成膜し、引き続きプラズマCVDによって、当該アモルファスシリコン膜の上に、リン等の不純物がドーピングされたアモルファスシリコン膜からなるコンタクト層16となる不純物ドープのn層を30nmの膜厚で成膜する。その後、同図に示すように、コンタクト層16の上に、例えばMoW(50nm)/Al(400nm)/MoW(50nm)の三層構造のソースドレイン金属膜17をスパッタリング法によって堆積する。
 次に、フォトリソグラフィ及びドライエッチングを施すことにより、ソースドレイン金属膜17をパターニングすることにより分離して、対向する一対のソース電極17S及びドレイン電極17Dを形成する。
 次に、ソースドレイン金属膜17をパターニングするときのレジストを残したままドライエッチングを施すことによりコンタクト層16を分離して、対向する一対のコンタクト層16を形成し、その後、レジストを除去する。これにより、ボトムゲート型の薄膜トランジスタを作製することができる。
 なお、その後、プラズマCVD等によってシリコン窒化膜を400nmの膜厚で成膜し、フォトリソグラフィ及びドライエッチングを施すことにより、シリコン窒化膜にコンタクトホールを形成し、さらにその後、スパッタリングにより、透明電極であるITO膜を100nmの膜厚で堆積し、フォトリソグラフィ及びドライエッチングを施すことにより、ITO膜をパターニングしてもよい。
 次に、本実施の形態におけるレーザー照射条件(第1領域と第2領域との混在)と比較例におけるレーザー照射条件(第1領域なし、第2領域のみ)とによって形成された結晶性シリコン薄膜を用いて作製した薄膜トランジスタの移動度について、図15A及び図15Bを用いて説明する。
 図15Aは、本発明の実施の形態1及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製された薄膜トランジスタにおいて、レーザー照射時の走査速度と薄膜トランジスタの移動度との関係を示す図である。また、図15Bは、本発明の実施の形態1及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製した薄膜トランジスタにおいて、レーザー光のエネルギー密度と薄膜トランジスタの移動度との関係を示す図である。なお、図15A及び図15Bにおける移動度は、チャネル層(結晶性シリコン薄膜)のチャネル幅を50μmとし、チャネル長を10μmとしたときの結果を示している。
 図15Aに示すように、第1領域51と第2領域52とが混在している本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜をチャネル層とする薄膜トランジスタの方が、第1領域51が存在せず第2領域52のみが存在している比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜をチャネル層とする薄膜トランジスタよりも移動度が高いので、本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜の方が、結晶粒径が大きいシリコン粒子を含んでいることが分かる。また、本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜をチャネル層とする薄膜トランジスタの方が高い移動度となっているので、オン電流特性に優れた薄膜トランジスタを実現できていることが分かる。
 また、図15Bに示すように、レーザー光のエネルギー密度が5.0J/cmで比較した場合、第1領域51と第2領域52とが混在している本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いた薄膜トランジスタでは、移動度が39.0(cm/V・sec)であり、第1領域51が存在せず第2領域52のみが存在している比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いた薄膜トランジスタでは、移動度が27.1(cm/V・sec)である。すなわち、同じエネルギー密度によるレーザー光によって結晶性シリコン薄膜を形成した場合、本実施の形態におけるレーザー照射条件で結晶化させた結晶性シリコン薄膜をチャネル層とする薄膜トランジスタの方が高い移動度であり、オン電流特性に優れた薄膜トランジスタを実現することができる。言い換えると、所定の移動度となるような結晶性シリコン薄膜を形成しようとする場合、本実施の形態におけるレーザー照射条件の方が小さいエネルギー密度で結晶性シリコン薄膜を形成することができる。
 次に、本実施の形態におけるレーザー照射条件(第1領域と第2領域との混在)と比較例におけるレーザー照射条件(第1領域なし、第2領域のみ)とによって形成された結晶性シリコン薄膜を用いて作製された薄膜トランジスタにおける第1領域51のピッチと移動度ばらつきとの関係について、図16を用いて説明する。図16は、本発明の実施の形態1及び比較例におけるレーザー照射条件によって形成された結晶性シリコン薄膜を用いて作製された薄膜トランジスタについて、帯形状の第1領域のピッチ幅と移動度のばらつき(3σ/Ave.)との関係を示す図である。
 図16に示すように、第1領域51が存在せず第2領域52のみが存在している比較例におけるレーザー照射条件(図4中の領域B)に係る薄膜トランジスタでは、移動度ばらつきが15.5%であるのに対し、不均一間隔の第1領域51と第2領域52とが混在する本実施の形態におけるレーザー照射条件(図4中の領域C)に係る薄膜トランジスタでは、移動度ばらつきは20%以上となっている。
 これに対して、さらに高速スキャン化させて、均一間隔の第1領域51と第2領域52とが混在している本実施の形態におけるレーザー照射条件(図4中の領域D)に係る薄膜トランジスタでは、移動度ばらつきを10%~20%に改善することができ、比較例におけるレーザー照射条件と比較しても、良好な移動度ばらつきを実現できることが分かる。
 (実施の形態2)
 次に、本発明の実施の形態2に係る薄膜素子(薄膜素子基板)及びその製造方法について説明する。本実施の形態における薄膜素子は、実施の形態1における結晶性シリコン薄膜15を用いたものであり、有機ELディスプレイの画素におけるスイッチングトランジスタ及び駆動トランジスタを例として説明する。
 図17Aは、本発明の実施の形態2に係る有機ELディスプレイの画素を構成するスイッチングトランジスタの構成を示す平面図である。また、図17Bは、本発明の実施の形態2に係る有機ELディスプレイの画素を構成する駆動トランジスタの構成を示す平面図である。図17A及び図17Bは、本実施の形態における結晶性シリコン薄膜の結晶組織を光学顕微鏡によって観察したときの図に、スイッチングトランジスタ及び駆動トランジスタのソース電極及びドレイン電極の配置を示した図である。図17A及び図17Bに示す記号Gはスイッチングトランジスタ又は駆動トランジスタのゲート電極、記号Sはソース電極、記号Dはドレイン電極をそれぞれ示している。なお、駆動トランジスタは本発明における第1素子(第1素子部)であり、スイッチングトランジスタは本発明における第2素子(第2素子部)に相当する。なお、チャネル方向とは、ソース電極とドレイン電極との並び方向である。
 図17A及び図17Bに示すように、スイッチングトランジスタ270a及び駆動トランジスタ270bは、上記した条件でレーザー照射された結晶性シリコン薄膜が、結晶粒径が大きい2以上の帯形状の第1領域51と2以上の第2領域52とを有しており、結晶性シリコン薄膜には縞状の構造が観測されている。また、図17Aに示すように、スイッチングトランジスタについては、レーザー光30の走査方向40に平行な方向、つまり、帯形状の第1領域51に略直交する方向がチャネル方向となるようにソース電極とドレイン電極とが形成される。また、図17Bに示すように、駆動トランジスタについては、レーザー光30の走査方向40と略直交する方向、つまり、帯形状の第1領域51の長手方向に平行な方向がチャネル方向となるようにソース電極とドレイン電極とが形成される。このように、本実施の形態では、駆動トランジスタにおけるソース電極とドレイン電極とが対向する領域の中心線と、スイッチングトランジスタにおけるソース電極とドレイン電極とが対向する領域の中心線とが交差している。
 まず、本実施の形態に係る薄膜素子により構成される有機ELディスプレイの画素の回路構成について、図18を用いて説明する。図18は、本発明の実施の形態2に係る薄膜素子を用いた画素回路の等価回路図である。
 図18に示すように、本実施の形態に係る画素PXは、スイッチングトランジスタ270aと、駆動トランジスタ270bと、有機EL素子230と、コンデンサ280とを備える薄膜素子である。駆動トランジスタ270bは、有機EL素子230を駆動するトランジスタであり、スイッチングトランジスタ270aは、画素を選択するためのトランジスタである。また、薄膜素子である画素が複数配置され、薄膜素子アレイである画素アレイが構成されている。
 スイッチングトランジスタ270aのソース電極は、データ線250に接続され、ゲート電極は、走査線240に接続され、ドレイン電極は、コンデンサ280及び駆動トランジスタ270bのゲート電極に接続されている。
 また、駆動トランジスタ270bのドレイン電極は、電流供給線(電源配線)260に接続され、ソース電極は有機EL素子230のアノードに接続されている。
 この構成において、走査線240にゲート信号が入力され、スイッチングトランジスタ270aをオン状態にすると、データ線250を介して供給された信号電圧がコンデンサ280に書き込まれる。そして、コンデンサ280に書き込まれた電圧(保持電圧)は、1フレーム期間を通じて保持される。この保持電圧により、駆動トランジスタ270bのコンダクタンスがアナログ的に変化し、発光階調に対応した駆動電流が、有機EL素子230のアノードからカソードへと流れる。これにより、有機EL素子230が発光し、所定の画像を表示することができる。
 次に、画素PXにおける電極及び配線のレイアウトの一例について、図19を用いて説明する。
 図19は、本発明の実施の形態2に係る有機ELディスプレイの画素の構成を示す平面図である。図19に示すように、画素PXは、走査線240と、データ線250と、電流供給線260と、キャパシタンス280と、スイッチングトランジスタ270aと、駆動トランジスタ270bと、有機EL素子230とを備えている。
 また、画素PXを構成する基板上に形成された結晶性シリコン薄膜には、図19に示すように、レーザー光30が走査方向40の方向に移動しながら照射される。これにより、走査方向40と略直交する方向に帯形状の第1領域が形成されている。
 ここで、上記したように、スイッチングトランジスタ270aは、チャネル方向が走査方向40と平行するように形成されている。また、駆動トランジスタ270bは、チャネル方向が走査方向40と略直交するように形成されている。したがって、スイッチングトランジスタ270aと駆動トランジスタ270bとは、チャネル方向が略直交するように配置されている。
 また、データ線250は、スイッチングトランジスタ270aのソース電極と一体に形成されている。つまり、データ線250とスイッチングトランジスタ270aのソース電極とは同一金属膜をパターニングすることによって形成される。また、電流供給線260は、駆動トランジスタ270bのドレイン電極と一体に形成されている。つまり、電流供給線260と駆動トランジスタ270bのドレイン電極とは同一金属膜をパターニングすることによって形成される。
 走査線240は、コンタクトホールを介してスイッチングトランジスタ270aのゲート電極に接続されている。また、スイッチングトランジスタ270aのドレイン電極は、コンタクトホールを介してキャパシタンス280に接続されている。さらに、キャパシタンス280は、電流供給線260に接続されている。
 以上のように、スイッチングトランジスタ270aと駆動トランジスタ270bとを配置することにより、上記したように、スイッチングトランジスタ270aのオフ電流Ioffを抑制しつつ、駆動トランジスタ270bのオン電流Ionを向上することができる。
 次に、本実施の形態における薄膜トランジスタの構成について、図20A及び図20Bを用いて説明する。図20Aは、本発明の実施の形態2におけるスイッチングトランジスタの概略構成図、図20Bは、本発明の実施の形態2における駆動トランジスタの概略構成図である。図20A及び図20Bに示すスイッチングトランジスタ及び駆動トランジスタでは、一例としてボトムゲート型のトランジスタを示している。
 図20Aに示すように、本実施の形態におけるスイッチングトランジスタ270aは、図2に示した結晶化領域50を有する結晶性シリコン薄膜をチャネル層とするものであり、帯形状の第1領域51の長手方向に略直交する方向がチャネル方向となるようにソース電極217Sとドレイン電極217Dとが形成されている。スイッチングトランジスタ270aにおいて、帯形状の第1領域51は、チャネル領域の長さ内では連続していることが好ましい。これにより、電子移動度を小さくしてオフ電流特性を向上させることができるとともに、均一性に優れた結晶性シリコン薄膜を実現することができる。
 また、図20Bに示すように、本実施の形態における駆動トランジスタ270bは、図2に示した結晶化領域50を有する結晶性シリコン薄膜をチャネル層とするものであり、帯形状の第1領域51の長手方向に平行する方向がチャネル方向となるようにソース電極217Sとドレイン電極217Dとが形成されている。駆動トランジスタ270bにおいて、帯形状の第1領域51は、チャネル領域の長さ内では連続していることが好ましい。これにより、電子移動度が高くなりオン電流特性を向上させることができるともに、均一性に優れた結晶性シリコン薄膜を実現することができる。
 ここで、上記したスイッチングトランジスタ270a及び駆動トランジスタ270bにおけるキャリア(電子)の移動度について、図21A及び図21Bを用いて説明する。図21Aは、本発明の実施の形態2に係るスイッチングトランジスタにおける電子の移動度を説明するための図である。また、図21Bは、本発明の実施の形態2に係る駆動トランジスタにおける電子の移動度を説明するための図である。
 スイッチングトランジスタ270aでは、オフ電流Ioff特性の向上が求められる。つまり、スイッチングトランジスタ270aでは、オフ電流Ioffが小さいことが好ましい。したがって、図21Aに示すように、オフ電流Ioffを抑制するために、スイッチングトランジスタ270aのチャネル方向が、結晶性シリコン薄膜に形成された帯形状の第1領域51と略直交するように、ソース電極217S及びドレイン電極217Dを形成する。これにより、小粒径である帯形状の第2領域52において、ソース-ドレイン電極間の電子移動経路290上に存在する結晶粒界は多くなる。したがって、結晶粒界にキャリアが捕獲される確率が高くなる。よって、ソース-ドレイン電極間に電流が流れにくくなり、スイッチングトランジスタ270aにおいて、オフ電流Ioffを抑制することができる。なお、同様の理由により、スイッチングトランジスタ270aのオン電流Ionも抑制されるが、スイッチングトランジスタ270aではオフ電流Ioffの抑制が特に求められるため、オン電流Ionが抑制されることの影響は小さいと考えられる。
 一方、駆動トランジスタ270bでは、オン電流Ionの向上が求められる。つまり、駆動トランジスタ270bでは、オン電流Ionが大きいことが好ましい。したがって、図21Bに示すように、オン電流Ionを増大するために、駆動トランジスタ270bのチャネル方向が、結晶性シリコン薄膜に形成された第1領域51と平行するように、ソース電極217S及びドレイン電極217Dを形成する。これにより、大粒径で結晶粒界が少ない第1領域51において、ソース-ドレイン電極間の電子移動経路290上に存在する結晶粒界は少なくなる。したがって、結晶粒界にキャリアが捕獲される確率は低くなる。よって、ソース-ドレイン電極間に電流が流れ易くなり、駆動トランジスタ270bにおいて、オン電流Ionを増大することができる。
 次に、本発明の実施の形態2に係る薄膜トランジスタの製造方法について説明する。ここで、薄膜トランジスタとは、画素に形成されるスイッチングトランジスタ270a及び駆動トランジスタ270bをいう。
 本発明の実施の形態3に係る薄膜トランジスタの製造方法は、実施の形態1と同様に、基板を準備する工程(基板準備工程)と、基板の上方にゲート電極を形成する工程(ゲート電極形成工程)と、基板の上方にゲート絶縁膜を形成する工程(ゲート絶縁膜形成工程)と、基板の上方にシリコン薄膜を形成する工程(シリコン薄膜形成工程)と、レーザー光を照射することにより基板に形成されたシリコン薄膜を結晶化して結晶性シリコン薄膜を形成する工程(シリコン薄膜結晶化工程)と、基板の上方にソース電極及びドレイン電極を形成する工程(ソースドレイン電極形成工程)とを含む。
 本実施の形態においても、シリコン薄膜結晶化工程は、上述の実施の形態1に係る薄膜形成基板の製造方法における結晶化工程と同様の方法によって行うことができ、シリコン薄膜結晶化工程によって得られる結晶性シリコン薄膜は、薄膜トランジスタのチャネル層となる。
 以下、図22を用いて、スイッチングトランジスタ270aの一例として、ボトムゲート型の薄膜トランジスタの製造方法について説明する。図22は、本発明の実施の形態2に係るボトムゲート型の薄膜トランジスタの製造方法における各工程を模式的に示す断面図である。なお、図22において、スイッチングトランジスタ270aについては、図19に示すX方向に沿って切断した断面をY方向に見た断面図を示しており、また、駆動トランジスタ270bについては、Y方向に切断した断面を図19に示すX方向に見た断面図を示している。
 まず、図22の(a)に示すように、図9の(a)と同様にして、基板210を準備する(基板準備工程)。
 次に、図22の(b)に示すように、図9の(b)と同様にして、基板210の上方に、ゲート電極211a、211bをパターン形成する(ゲート電極形成工程)。
 次に、図22の(c)に示すように、図9の(c)と同様にして、基板210の上方に、ゲート絶縁膜212を形成する(ゲート絶縁膜形成工程)。
 次に、図22の(d)に示すように、図9の(d)と同様にして、基板210の上方に、非結晶のシリコン薄膜213を形成する(シリコン薄膜形成工程)。
 次に、図22の(e)に示すように、非結晶のシリコン薄膜213に対してレーザー光を所定の走査方向40で相対走査させつつ、レーザー光をシリコン薄膜213の所定領域(スイッチングトランジスタ270a及び駆動トランジスタ270bが形成される領域)に照射することにより、非結晶のシリコン薄膜213を結晶化して結晶性シリコン薄膜215a及び315bを形成する(シリコン薄膜結晶化工程)。この工程は、上述の薄膜形成基板の製造方法における結晶化工程と同様の方法によって行う。
 具体的には、図4の領域C又は領域Dに示されるレーザー光の照射条件にて、非結晶のシリコン薄膜213に対して走査方向40にレーザー光を走査させてレーザー照射を行う。ここで、レーザー照射の条件としては、例えば、ビーム短軸幅W1(半値幅)を32.0μmで固定とし、レーザー光の照射パワー密度を70.0kW/cmとし、基板保持部110の走査速度を400~580mm/sの範囲とすることができる。
 また、この工程において、スイッチングトランジスタ270aが形成される領域では、走査方向40がY軸方向(紙面の左から右に向かう方向)となるようにレーザー光が照射される。また、駆動トランジスタ270bが形成される領域では、走査方向40がX軸方向(紙面の手前から奥に向かう方向)となるようにレーザー光が照射される。これにより、図17A及び図17Bに示したように、結晶性シリコン薄膜215a及び215bには、走査方向40と略直交する方向に帯形状の第1領域51及び第2領域52が生じる。また、本実施の形態において、結晶性シリコン薄膜215aにおける帯形状の第1領域51の長手方向と結晶性シリコン薄膜215bにおける帯形状の第1領域51の長手方向とは略直交する。
 なお、図22の(e)では、非結晶のシリコン薄膜213の一部の領域、つまり、スイッチングトランジスタ270a及び駆動トランジスタ270bが形成される領域を結晶化させているが、非結晶のシリコン薄膜213の全領域を結晶化させても構わない。
 次に、図22の(f)に示すように、フォトリソグラフィ及びウェットエッチングを施すことにより、レーザー未照射の未結晶化領域であるシリコン薄膜213及びレーザー照射によって結晶化された結晶性シリコン薄膜215a及び215bを選択的にパターニングすることにより、非結晶のシリコン薄膜213を除去するとともに結晶性シリコン薄膜215a及び215bをそれぞれ島状にパターン形成する。
 なお、同図に示すように、結晶性シリコン薄膜215a及び215bを島状にパターン形成した後に、必要に応じて、ゲート絶縁膜212にコンタクトホールを形成してもよい。
 次に、図22(g)に示すように、図9の(f)と同様にして、コンタクト層216となる不純物ドープのn層を形成し、その後、コンタクト層216の上に、ソースドレイン金属膜217を成膜する。
 次に、フォトリソグラフィ及びウェットエッチングを施すことにより、図22の(h)に示すように、図9の(g)と同様にして、基板210の上方に、スイッチングトランジスタ270aのソース電極217S及びドレイン電極217D、駆動トランジスタ270bのソース電極217S及びドレイン電極217Dをパターン形成する(ソースドレイン電極形成工程)。
 その後、ドライエッチングを施すことにより、コンタクト層216を分離して、対向する一対のコンタクト層216を形成する。これにより、図22の(h)に示すように、ボトムゲート型の薄膜トランジスタ(スイッチングトランジスタ270a及び駆動トランジスタ270b)を製造することができる。
 なお、その後、図22の(i)に示すように、全体を覆うようにして、シリコン窒化膜からなるパッシベーション膜220を成膜してもよい。
 ここで、本実施の形態における薄膜トランジスタのId-Vg特性について、図23及び図24を用いて説明する。図23は、本発明の実施の形態2に係るスイッチングトランジスタと駆動トランジスタのId-Vg特性を示す図である。図24は、本発明の実施の形態2に係るスイッチングトランジスタと駆動トランジスタのIon及びIoffを示す図である。なお、図23及び図24に示すId-Vg特性は、レーザー照射条件が短軸半値幅32μm、パワー密度:70.0kW/cm、ステージの走査速度:580mm/sで形成され、チャネル幅:20μm、チャネル長:13μmであるボトムゲート構造のスイッチングトランジスタ及び駆動トランジスタについて、ソース-ドレイン間に印加する電圧が10.0Vのときの特性を示している。
 図23に示すように、チャネル方向が走査方向40と略直交するように形成された駆動トランジスタは、チャネル方向が走査方向40と平行するように形成されたスイッチトランジスタよりも、ゲート電圧Vgが同じ場合の電流値Idが高いことが分かる。
 詳細には、図24に示すように、ゲート電圧Vgが10.0Vのときの駆動トランジスタにおけるオン電流Ionは、3.48×10-4Aであり、スイッチングトランジスタにおけるオン電流Ionは、1.09×10-5Aである。したがって、駆動トランジスタにおいては、オン電流特性が向上していることが分かる。
 また、図24に示すように、駆動トランジスタにおける電流の最小値、つまり、オフ電流Ioffは、9.34×10-11Aであり、スイッチングトランジスタにおける電流の最小値、つまり、オフ電流Ioffは、1.53×10-11Aである。したがって、スイッチングトランジスタにおいては、オフ電流特性が向上していることが分かる。
 以上、本実施の形態に係る薄膜素子によれば、スイッチングトランジスタ270aは、結晶性シリコン薄膜215aにおいて、帯形状の第1領域の長手方向に略直交する方向がチャネル方向となるようにソース電極とドレイン電極とが形成されている。また、駆動トランジスタ270bは、結晶性シリコン薄膜215bにおいて、帯形状の第1領域の長手方向に平行する方向がチャネル方向となるようにソース電極とドレイン電極とが形成されている。このようにスイッチングトランジスタと駆動トランジスタとを配置することにより、上記したように、スイッチングトランジスタのオフ電流Ioffを抑制しつつ、駆動トランジスタのオン電流Ionを向上することができる。
 なお、結晶性シリコン薄膜215a、215bは、図4に示す領域Dの範囲のレーザーの照射条件にて形成することがより好ましい。領域Dの範囲の条件によって非結晶のシリコン薄膜313を結晶化させて結晶性シリコン薄膜215a、215bを形成することにより、帯形状の第1領域51の間隔を均一化することができる。
 また、レーザー照射条件としては、例えば、パワー密度:70.0kW/cm、ステージの走査速度:580mm/s、照射時間:49.0μsec、投入エネルギー密度:3.5J/cmとしてもよい。本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜215a、215bでは、帯形状の第1領域51と第2領域52との混在を確認することができる。また、本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜におけるラマンシフトのピークスペクトルの半値幅の範囲は、4.8~5.5cm-1である。すなわち、結晶性シリコン薄膜におけるラマン半値幅の範囲を、4.8~5.5cm-1とすることにより、結晶粒径が大きく帯形状の第1領域51を含む結晶組織を有する結晶性シリコン薄膜とすることができる。
 一例として、結晶性シリコン薄膜215a、215bの第1領域51におけるシリコン結晶粒の平均結晶粒径は440nm、また、第2領域52におけるシリコン結晶粒の平均結晶粒径は80nmである。また、第1領域51のピッチは、例えば1.8μmであり、2.0μm以下の均一ピッチが得られる。これにより、面内均一性に優れたTFT特性を有する複数の薄膜トランジスタからなる薄膜トランジスタアレイを製造することができる。
 以上、ボトムゲート型の薄膜トランジスタを例にして説明したが、トップゲート型の薄膜トランジスタにも適用することができる。すなわち、図19におけるスイッチングトランジスタ270a及び駆動トランジスタ270bをトップゲート型の薄膜トランジスタとすることができる。
 以下、本発明の実施の形態2に係るトップゲート型の薄膜トランジスタの製造方法について、図25を用いて説明する。図25は、本発明の実施の形態2に係るトップゲート型の薄膜トランジスタの製造方法における各工程を模式的に示す断面図である。なお、図25において、スイッチングトランジスタについては、図19に示すX方向に沿って切断した断面をY方向に見たときの断面図に対応しており、また、駆動トランジスタについては、図19に示すY方向に沿って切断した断面をX方向に見たときの断面図に対応している。
 まず、図25の(a)に示すように、図10の(a)と同様にして、基板210を準備する(基板準備工程)。
 次に、図25の(b)に示すように、図10の(b)と同様にして、基板210上に、シリコン酸化膜又はシリコン窒化膜等の絶縁膜からなるアンダーコート膜218を形成し、その後、非結晶のシリコン薄膜213を形成する(シリコン薄膜形成工程)。
 次に、図25の(c)に示すように、図10の(c)と同様にして、非結晶のシリコン薄膜213に対してレーザー光を所定の走査方向40で相対走査させつつ、レーザー光を非結晶のシリコン薄膜213の所定領域に照射することにより、非結晶のシリコン薄膜213を結晶化して結晶性シリコン薄膜215a、215bを形成する(シリコン薄膜結晶化工程)。この工程は、上述の実施の形態1における薄膜形成基板の製造方法における結晶化工程と同様の方法によって行う。
 具体的には、図4の領域C又は領域Dに示されるレーザー光の照射条件にて、非結晶のシリコン薄膜213に対して走査方向40(X軸方向)にレーザー光を走査させてレーザー照射を行う。ここで、レーザー照射の条件としては、例えば、ビーム短軸幅W1(半値幅)を32.0μmで固定とし、レーザーの照射パワー密度を70.0kW/cmとし、基板保持部110の走査速度を400~580mm/sの範囲とすることができる。
 また、この工程において、スイッチングトランジスタが形成される領域では、走査方向40がY軸方向(紙面の左から右に向かう方向)となるようにレーザー光が照射される。また、駆動トランジスタが形成される領域では、走査方向40がX軸方向(紙面の手前から奥に向かう方向)となるようにレーザー光が照射される。これにより、図20A及び図20Bに示したように、結晶性シリコン薄膜215a及び215bには、走査方向40と略直交する方向に帯形状の第1領域51及び第2領域52が生じる。また、本実施の形態において、結晶性シリコン薄膜215aにおける帯形状の第1領域51の長手方向と結晶性シリコン薄膜215bにおける帯形状の第1領域51の長手方向とは略直交する。
 なお、図25の(c)では、非結晶のシリコン薄膜213の一部の領域を結晶化させているが、非結晶のシリコン薄膜213の全領域を結晶化させても構わない。
 次に、図25の(d)に示すように、図10の(d)と同様にして、フォトリソグラフィ及びウェットエッチングを施すことにより、レーザー未照射の未結晶化領域であるシリコン薄膜213及びレーザー照射によって結晶化された結晶性シリコン薄膜215a、215bを選択的にパターニングすることにより、非結晶のシリコン薄膜213を除去するとともに島状の結晶性シリコン薄膜215a、215bを形成する。
 その後、図25の(e)に示すように、基板210の上方に、ゲート絶縁膜212を形成する(ゲート絶縁膜形成工程)。例えば、島状の結晶性シリコン薄膜215a、215bを覆うようにして、基板210の上方の全面に、二酸化シリコン等の絶縁膜からなるゲート絶縁膜212をプラズマCVD等によって成膜する。
 次に、図25の(f)に示すように、図10の(e)と同様にして、基板210の上方に、ゲート電極211a、211bをパターン形成する(ゲート電極形成工程)。
 次に、図25の(g)に示すように、図10の(f)と同様にして、ゲート電極211a、211bをマスクとして結晶性シリコン薄膜215a、215bの両端部に不純物をライトドープすることにより、LDD(Lightly Doped Drain)領域219を形成する。
 次に、図25の(h)に示すように、図10の(g)と同様にして、基板210の上方に、層間絶縁膜221を形成するとともに、LDD領域219を露出させるように層間絶縁膜221にコンタクトホールを形成する。
 次に、図25の(i)に示すように、図10の(h)と同様にして、層間絶縁膜221のコンタクトホールを埋めるように、層間絶縁膜221上に一対のソース電極217S及びドレイン電極217Dを形成する。これにより、同図に示すように、トップゲート型の薄膜トランジスタ(スイッチングトランジスタ270a及び駆動トランジスタ270b)を製造することができる。
 以上、本実施の形態によれば、スイッチングトランジスタ270aは、結晶性シリコン薄膜215aにおいて、帯形状の第1領域の長手方向に略直交する方向がチャネル方向となるようにソース電極とドレイン電極とが形成されている。また、駆動トランジスタ270bは、結晶性シリコン薄膜215bにおいて、帯形状の第1領域の長手方向に平行する方向がチャネル方向となるようにソース電極とドレイン電極とが形成されている。このようにスイッチングトランジスタと駆動トランジスタとを配置することにより、上記したように、スイッチングトランジスタのオフ電流Ioffを抑制しつつ、駆動トランジスタのオン電流Ionを向上することができる。
 (実施の形態3)
 次に、本発明の実施の形態3に係る薄膜素子及び薄膜素子アレイ基板並びにこれらの製造方法について説明する。本実施の形態における薄膜素子及び薄膜素子アレイ基板は、実施の形態1における結晶性シリコン薄膜15を用いたものである。
 まず、本実施の形態に係る薄膜素子により構成される薄膜素子アレイ基板の構成について、図26Aを用いて説明する。図26Aは、本発明の実施の形態3に係る薄膜素子アレイ基板の概略構成を示す平面図である。
 図26Aに示すように、本実施の形態に係る薄膜素子アレイ基板300は、平面領域が内部領域310aと周辺領域310bとで区分された基板310と、ゲートドライバ回路321と、ソースドライバ回路322とを備える。図26Aにおいて、破線で囲まれる領域の内部は内部領域310aを表し、破線で囲まれる領域の外部は周辺領域310bを表している。
 本実施の形態において、内部領域310aは、基板310上における複数の画素がマトリクス状(行列状)に配列された画素領域(表示領域)に対応する矩形状の領域であって、周辺領域310bの内部の領域である。一方、周辺領域310bは、基板310上における画素領域(内部領域310a)の周辺の領域であって、額縁状(枠状)の領域である。なお、内部領域310aにおける複数の画素のそれぞれには、スイッチングトランジスタ等の薄膜トランジスタが設けられている。
 ゲートドライバ回路321は、基板310上における画素の行配列方向に沿って形成された複数のゲート線(不図示)に接続されており、内部領域310aにおける各画素にゲート信号を供給してスイッチングトランジスタを駆動する。ゲートドライバ回路321は、CMOSやPMOS等の薄膜トランジスタからなる駆動トランジスタと、その他の回路素子とによって構成されている。
 ソースドライバ回路322は、基板310上における画素の列配列方向に沿って形成された複数のソース線(不図示)に接続されており、内部領域310aにおける各画素に映像信号を供給する。ソースドライバ回路322も、CMOSやPMOS等の薄膜トランジスタからなる駆動トランジスタと、その他の回路素子とによって構成されている。
 本実施の形態における薄膜素子アレイ基板300において、画素内の薄膜トランジスタ及びゲートドライバ回路321やソースドライバ回路322の薄膜トランジスタは、低温ポリシリコン(LTPS:Low Temperature Poly Silicon)技術を用いて薄膜形成されている。従って、ゲートドライバ回路321及びソースドライバ回路322については、COG(Chip On Glass)技術等を用いて基板310に直接作りこんでも構わない。
 図26Bは、本実施の形態に係る薄膜素子アレイ基板におけるマザー基板を示したものである。図26Bでは、六枚取りの例を示しており、このマザー基板を切断することによって、6つの薄膜素子アレイ基板300を得ることができる。
 内部領域310aに配置された複数の画素のそれぞれは、画素を選択するための画素トランジスタ(スイッチングトランジスタ)を備えている。
 また、周辺領域310bに配置されたゲートドライバ回路321及びソースドライバ回路322には、内部領域310aに行列状に配置された複数の画素の行または列の各々に対応して、複数の周辺トランジスタ(駆動トランジスタ)が設けられている。
 周辺領域310bに配置された周辺トランジスタは、オン電流特性の向上が求められ、内部領域310aに配置された画素トランジスタは、オフ電流特性の向上が求められる。
 次に、本実施の形態における薄膜トランジスタ(画素トランジスタおよび周辺トランジスタ)の構成について、図27A及び図27Bを用いて説明する。図27Aは、本発明の実施の形態3における画素トランジスタの概略構成図、図27Bは、本発明の実施の形態3における周辺トランジスタの概略構成図である。図27A及び図27Bに示す画素トランジスタ及び周辺トランジスタでは、一例としてボトムゲート型の薄膜トランジスタを示している。
 図27Aに示すように、本実施の形態における画素トランジスタ370aは、図2に示した結晶化領域50を有する結晶性シリコン薄膜をチャネル層とするものであり、帯形状の第1領域51の長手方向に略直交する方向がチャネル方向となるようにソース電極317Sとドレイン電極317Dとが形成されている。画素トランジスタ370aにおいて、帯形状の第1領域51は、チャネル領域の長さ内では連続していることが好ましい。これにより、電子移動度を小さくしてオフ電流特性を向上させることができるとともに、均一性に優れた結晶性シリコン薄膜を実現することができる。
 また、図27Bに示すように、本実施の形態における周辺トランジスタ370b、図2に示した結晶化領域50を有する結晶性シリコン薄膜をチャネル層とするものであり、帯形状の第1領域51の長手方向に平行する方向がチャネル方向となるようにソース電極317Sとドレイン電極317Dとが形成されている。周辺トランジスタ370bにおいて、帯形状の第1領域51は、チャネル領域の長さ内では連続していることが好ましい。これにより、電子移動度が高くなりオン電流特性を向上させることができるともに、均一性に優れた結晶性シリコン薄膜を実現することができる。
 ここで、上記した画素トランジスタ370a及び周辺トランジスタ370bにおける電子の移動度について、図28A及び図28Bを用いて説明する。図28Aは、本発明の実施の形態3に係る画素トランジスタにおける電子の移動度を説明するための図である。また、図28Bは、本発明の実施の形態3に係る周辺トランジスタにおける電子の移動度を説明するための図である。
 画素トランジスタ370aでは、オフ電流Ioff特性の向上が求められる。つまり、画素トランジスタ370aでは、オフ電流Ioffが小さいことが好ましい。したがって、図28Aに示すように、オフ電流Ioffを抑制するために、画素トランジスタ370aのチャネル方向が、結晶性シリコン薄膜に形成された帯形状の第1領域51の長さ方向と略直交するように、ソース電極317S及びドレイン電極317Dを形成する。これにより、小粒径である帯形状の第2領域52において、ソース-ドレイン電極間の電子移動経路390上に存在する結晶粒界は多くなる。したがって、結晶粒界にキャリアが捕獲される確率が高くなる。よって、ソース-ドレイン電極間に電流が流れにくくなり、画素トランジスタ370aにおいて、オフ電流Ioffを抑制することができる。なお、同様の理由により、画素トランジスタ370aのオン電流Ionも抑制されるが、画素トランジスタ370aではオフ電流Ioffの抑制が特に求められるため、オン電流Ionが抑制されることの影響は小さいと考えられる。
 一方、周辺トランジスタ370bでは、オン電流Ionの向上が求められる。つまり、周辺トランジスタ370bでは、オン電流Ionが大きいことが好ましい。したがって、図28Bに示すように、オン電流Ionを増大するために、周辺トランジスタ370bのチャネル方向が、結晶性シリコン薄膜に形成された第1領域51の長さ方向と平行するように、ソース電極317S及びドレイン電極317Dを形成する。これにより、大粒径で結晶粒界が少ない第1領域51において、ソース-ドレイン電極間の電子移動経路390上に存在する結晶粒界は少なくなる。したがって、結晶粒界にキャリアが捕獲される確率は低くなる。よって、ソース-ドレイン電極間に電流が流れ易くなり、周辺トランジスタ370bにおいて、オン電流Ionを増大することができる。
 次に、本発明の実施の形態3に係る薄膜トランジスタ(周辺領域における駆動ドライバおよび内部領域における画素トランジスタ)の製造方法について説明する。
 本発明の実施の形態3に係る薄膜トランジスタの製造方法は、実施の形態1、2と同様に、基板を準備する工程(基板準備工程)と、基板の上方にゲート電極を形成する工程(ゲート電極形成工程)と、基板の上方にゲート絶縁膜を形成する工程(ゲート絶縁膜形成工程)と、基板の上方にシリコン薄膜を形成する工程(シリコン薄膜形成工程)と、レーザー光を照射することにより基板に形成されたシリコン薄膜を結晶化して結晶性シリコン薄膜を形成する工程(シリコン薄膜結晶化工程)と、基板の上方にソース電極及びドレイン電極を形成する工程(ソースドレイン電極形成工程)とを含む。
 本実施の形態においても、シリコン薄膜結晶化工程は、上述の実施の形態12係る薄膜形成基板の製造方法における結晶化工程と同様の方法によって行うことができ、シリコン薄膜結晶化工程によって得られる結晶性シリコン薄膜は、薄膜トランジスタのチャネル層となる。
 以下、図29を用いて、画素トランジスタ370aの一例として、ボトムゲート型の薄膜トランジスタの製造方法について説明する。図29は、本発明の実施の形態3に係るボトムゲート型の薄膜トランジスタ(画素トランジスタ)の製造方法における各工程を模式的に示す断面図である。
 まず、図29の(a)に示すように、図9の(a)と同様にして、基板310を準備する(基板準備工程)。
 次に、図29の(b)に示すように、図9の(b)と同様にして、基板310の上方に、ゲート電極311aをパターン形成する(ゲート電極形成工程)。
 次に、図29の(c)に示すように、図9の(c)と同様にして、基板310の上方に、ゲート絶縁膜312を形成する(ゲート絶縁膜形成工程)。
 次に、図29の(d)に示すように、図9の(d)と同様にして、基板310の上方に、非結晶のシリコン薄膜313を形成する(シリコン薄膜形成工程)。
 次に、図29の(e)に示すように、非結晶のシリコン薄膜313に対してレーザー光を所定の走査方向40で相対走査させつつ、レーザー光をシリコン薄膜313の所定領域(画素トランジスタ370aが形成される領域)に照射することにより、非結晶のシリコン薄膜313を結晶化して結晶性シリコン薄膜315aを形成する(シリコン薄膜結晶化工程)。この工程は、上述の薄膜形成基板の製造方法における結晶化工程と同様の方法によって行う。
 具体的には、図4の領域C又は領域Dに示されるレーザー光の照射条件にて、非結晶のシリコン薄膜313に対して走査方向40(Y軸方向)にレーザー光を走査させてレーザー照射を行う。ここで、レーザー照射の条件としては、例えば、ビーム短軸幅W1(半値幅)を32.0μmで固定とし、レーザー光の照射パワー密度を70.0kW/cmとし、基板保持部110の走査速度を400~580mm/sの範囲とすることができる。
 これにより、図27Aに示したように、結晶性シリコン薄膜315aには走査方向40と略直交する方向に帯形状の第1領域及び第2領域が生じる。
 なお、図29の(e)では、非結晶のシリコン薄膜313の一部の領域、つまり、画素トランジスタ370aが形成される領域を結晶化させているが、非結晶のシリコン薄膜313の全領域を結晶化させても構わない。
 次に、図29の(f)に示すように、フォトリソグラフィ及びウェットエッチングを施すことにより、レーザー未照射の未結晶化領域であるシリコン薄膜313及びレーザー照射によって結晶化された結晶性シリコン薄膜315aを選択的にパターニングすることにより、非結晶のシリコン薄膜313を除去するとともに結晶性シリコン薄膜315aを島状にパターン形成する。
 次に、図29の(g)に示すように、図9の(f)と同様にして、コンタクト層316となる不純物ドープのn層を形成し、その後、コンタクト層316の上に、ソースドレイン金属膜317を成膜する。
 次に、フォトリソグラフィ及びウェットウェッチングを施すことにより、図29の(h)に示すように、図9の(g)と同様にして、基板310の上方に、画素トランジスタ370aのソース電極317S及びドレイン電極317Dを形成する(ソースドレイン電極形成工程)。
 その後、ドライエッチングを施すことにより、コンタクト層316を分離して、対向する一対のコンタクト層316を形成する。これにより、図29の(h)に示すように、ボトムゲート型の画素トランジスタ370aを製造することができる。
 なお、その後、図29の(i)に示すように、全体を覆うようにして、シリコン窒化膜からなるパッシベーション膜320を成膜してもよい。
 次に、図30を用いて、周辺トランジスタ370bの一例として、本発明の実施の形態に係るボトムゲート型の薄膜トランジスタの製造方法について説明する。図30は、本発明の実施の形態3に係るボトムゲート型の薄膜トランジスタ(周辺トランジスタ)の製造方法における各工程を模式的に示す断面図である。
 まず、図30の(a)に示すように、図9の(a)と同様にして、基板310を準備する(基板準備工程)。
 次に、図30の(b)に示すように、図9の(b)と同様にして、基板310の上方に、ゲート電極311bをパターン形成する(ゲート電極形成工程)。
 次に、図30の(c)に示すように、図9の(c)と同様にして、基板310の上方に、ゲート絶縁膜312を形成する(ゲート絶縁膜形成工程)。
 次に、図30の(d)に示すように、図9の(d)と同様にして、基板310の上方に、非結晶のシリコン薄膜313を形成する(シリコン薄膜形成工程)。
 次に、図30の(e)に示すように、非結晶のシリコン薄膜313に対してレーザー光を所定の走査方向40で相対走査させつつ、レーザー光をシリコン薄膜313の所定領域(周辺トランジスタ370bが形成される領域)に照射することにより、非結晶のシリコン薄膜313を結晶化して結晶性シリコン薄膜315bを形成する(シリコン薄膜結晶化工程)。この工程は、上述の薄膜形成基板の製造方法における結晶化工程と同様の方法によって行う。
 具体的には、図4の領域Cまたは領域Dに示されるレーザー光の照射条件にて、非結晶のシリコン薄膜313に対して走査方向40(X軸方向)にレーザー光を走査させてレーザー照射を行う。ここで、レーザー照射の条件としては、例えば、ビーム短軸幅W1(半値幅)を32.0μmで固定とし、レーザー光の照射パワー密度を70.0kW/cmとし、基板保持部110の走査速度を400~580mm/sの範囲とすることができる。
 れにより、図27Bに示したように、結晶性シリコン薄膜315bには走査方向40と平行な方向に帯形状の第1領域及び第2領域が生じる。
 なお、図30の(e)では、非結晶のシリコン薄膜313の一部の領域、つまり、周辺トランジスタ370bが形成される領域を結晶化させているが、非結晶のシリコン薄膜313の全領域を結晶化させても構わない。
 次に、図30の(f)に示すように、フォトリソグラフィ及びウェットエッチングを施すことにより、レーザー未照射の未結晶化領域であるシリコン薄膜313及びレーザー照射によって結晶化された結晶性シリコン薄膜315bを選択的にパターニングすることにより、非結晶のシリコン薄膜313を除去するとともに結晶性シリコン薄膜315bを島状にパターン形成する。
 次に、図30の(g)に示すように、図9の(f)と同様にして、コンタクト層316となる不純物ドープのn層を形成し、その後、コンタクト層316の上に、ソースドレイン金属膜317を成膜する。
 次に、フォトリソグラフィ及びウェットウェッチングを施すことにより、図30の(h)に示すように、図9の(g)と同様にして、基板310の上方に、周辺トランジスタ370bのソース電極317S及びドレイン電極317Dを形成する(ソースドレイン電極形成工程)。
 その後、ドライエッチングを施すことにより、コンタクト層316を分離して、対向する一対のコンタクト層316を形成する。これにより、図30の(h)に示すように、ボトムゲート型の周辺トランジスタ370bを製造することができる。
 なお、その後、図30の(i)に示すように、全体を覆うようにして、シリコン窒化膜からなるパッシベーション膜320を成膜してもよい。
 ここで、本実施の形態における薄膜トランジスタのId-Vg特性について、図31及び図32を用いて説明する。図31は、本発明の実施の形態3に係る画素トランジスタと周辺トランジスタのId-Vg特性を示す図である。図32は、本発明の実施の形態3に係る画素トランジスタと周辺トランジスタのIon及びIoffを示す図である。なお、図31及び図32に示すId-Vg特性は、レーザー照射条件が短軸半値幅32μm、パワー密度:70.0kW/cm、ステージの走査速度:580mm/sで形成され、チャネル幅:20μm、チャネル長:13μmであるボトムゲート構造の画素トランジスタ及び周辺トランジスタについて、ソース-ドレイン間に印加する電圧が10.0Vのときの特性を示している。
 図31に示すように、チャネル方向が走査方向40と略直交するように形成された周辺トランジスタは、チャネル方向が走査方向40と平行するように形成されたスイッチトランジスタよりも、ゲート電圧Vgが同じ場合の電流値Idが高いことが分かる。
 詳細には、図32に示すように、ゲート電圧Vgが10.0Vのときの周辺トランジスタにおけるオン電流Ionは、3.48×10-4Aであり、画素トランジスタにおけるオン電流Ionは、1.09×10-5Aである。したがって、周辺トランジスタにおいては、オン電流特性が向上していることが分かる。
 また、図32に示すように、周辺トランジスタにおける電流の最小値、つまり、オフ電流Ioffは、9.34×10-11Aであり、画素トランジスタにおける電流の最小値、つまり、オフ電流Ioffは、1.53×10-11Aである。したがって、画素トランジスタにおいては、オフ電流特性が向上していることが分かる。
 以上、本実施の形態に係る薄膜素子によれば、画素トランジスタは、結晶性シリコン薄膜において、帯形状の第1領域の長さ方向に略直交する方向にチャネル領域を有するように、ソース電極とドレイン電極とが形成されている。また、周辺トランジスタは、結晶性シリコン薄膜において、帯形状の第1領域の長さ方向に平行する方向にチャネル領域を有するように、ソース電極とドレイン電極とが形成されている。このように画素トランジスタと周辺トランジスタとを配置することにより、上記したように、画素トランジスタのオフ電流Ioffを抑制しつつ、周辺トランジスタのオン電流Ionを向上することができる。
 なお、結晶性シリコン薄膜315a、315bは、図4に示す領域Dの範囲のレーザーの照射条件にて形成することがより好ましい。領域Dの範囲の条件によって非結晶のシリコン薄膜313を結晶化させて結晶性シリコン薄膜315a、315bを形成することにより、帯形状の第1領域の間隔を均一化することができる。
 また、レーザー照射条件としては、例えば、パワー密度:70.0kW/cm、ステージの走査速度:580mm/s、照射時間:49.0μsec、投入エネルギー密度:3.5J/cmとしてもよい。本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜315a、315bでは、帯形状の第1領域と第2領域との混在を確認することができる。また、本実施の形態におけるレーザー照射条件によって形成された結晶性シリコン薄膜におけるラマンシフトのピークスペクトルの半値幅の範囲は、4.8~5.5cm-1である。すなわち、結晶性シリコン薄膜におけるラマン半値幅の範囲を、4.8~5.5cm-1とすることにより、結晶粒径が大きく帯形状の第1領域を含む結晶組織を有する結晶性シリコン薄膜とすることができる。
 一例として、結晶性シリコン薄膜315a、315bの第1領域におけるシリコン結晶粒の平均結晶粒径は440nm、第2領域におけるシリコン結晶粒の平均結晶粒径は80nmである。また、第1領域のピッチは、例えば1.8μmであり、2.0μm以下の均一ピッチが得られる。これにより、面内均一性に優れたTFT特性を有する複数の薄膜トランジスタからなる薄膜トランジスタアレイ(薄膜素子アレイ基板)を製造することができる。
 なお、このように得られた薄膜素子アレイ基板は、液晶パネル用の薄膜素子アレイ基板等として利用することができる。
 また、本実施の形態では、ボトムゲート型の薄膜トランジスタを例にして説明したが、画素トランジスタ370a及び周辺トランジスタ370bとしては、トップゲート型の薄膜トランジスタとしてもよい。この場合、図25と同様にして製造することができる。
 以上、本実施の形態に係る薄膜トランジスタ(画素トランジスタおよび周辺トランジスタ)の製造方法によれば、画素トランジスタ370aは、結晶性シリコン薄膜315aにおいて、帯形状の第1領域の長手方向に略直交する方向がチャネル方向となるようにソース電極とドレイン電極とが形成されている。また、周辺トランジスタ370bは、結晶性シリコン薄膜315bにおいて、帯形状の第1領域の長手方向に平行する方向がチャネル方向となるようにソース電極とドレイン電極とが形成されている。このように画素トランジスタ370aと周辺トランジスタ370bとを配置することにより、画素トランジスタのオフ電流Ioffを抑制しつつ、周辺トランジスタのオン電流Ionを向上することができる。
 (実施の形態4)
 次に、本発明に係る実施の形態4について説明する。本実施の形態では、実施の形態3に示した薄膜素子アレイ基板を備えた表示パネルについて説明する。以下、図33Aおよび図33Bを参照しながら説明する。図33Aは、本発明の実施の形態4に係る表示パネルの平面図である。また、図33Bは、本発明の実施の形態4に係る表示パネルの断面図である。
 図33Aに示すように、本実施の形態に係る表示パネルは、薄膜素子アレイ基板465上に、表示素子466を備えている。薄膜素子アレイ基板465は、実施の形態3で説明したように、画素トランジスタが配置された内部領域と、周辺トランジスタが配置された周辺領域とを有する。表示素子466は、薄膜素子アレイ基板465における内部領域を覆うように、内部領域の上方に配置されている。表示素子466は、例えば、液晶パネル、又は発光素子を備えた有機ELパネル等である。
 図33Bは、図33Aに示した表示パネルのY-Y線における断面図である。図33Bに示すように、薄膜素子アレイ基板465において表示素子466が配置されていない周辺領域には、ゲートドライバ回路領域461またはソースドライバ回路領域(図示せず)が設けられている。ゲートドライバ回路領域461またはソースドライバ回路領域に形成される周辺トランジスタは、オン電流特性の向上が求められるため、結晶性シリコン薄膜にレーザー光を照射することにより形成された帯形状の第1領域及び第2領域に対して平行な方向にチャネル方向を有するように形成される。また、内部領域に形成される画素トランジスタは、オフ電流特性の向上が求められるため、結晶性シリコン薄膜にレーザー光を照射することにより形成された帯形状の第1領域及び第2領域に対して交差する方向にチャネル方向を有するように形成される。
 この構成によれば、内部領域における画素トランジスタのオフ電流を抑制し、周辺領域における周辺トランジスタのオン電流を向上することができる。
 以上、本発明に係る薄膜形成基板の製造方法、薄膜素子の製造方法、薄膜基板、薄膜素子並びに薄膜トランジスタの製造方法及び薄膜トランジスタについて、実施の形態及び実施例に基づいて説明したが、本発明は上記の実施の形態及び実施例に限定されるものではない。
 例えば、上記の実施の形態では、半導体薄膜としてシリコン薄膜を用いたが、シリコン薄膜以外の半導体薄膜を用いることができる。例えば、ゲルマニウム(Ge)又はSiGeからなる半導体薄膜を結晶化させて結晶性半導体薄膜を形成することもできる。
 また、上記の実施の形態では、レーザー光は、ビーム短軸幅W1がビーム長軸幅W2よりも小さくなるように構成したが、ビーム短軸幅W1がビーム長軸幅W2よりも大きくなるように構成しても構わない。なお、この場合であっても、本実施の形態と同様にレーザー光の走査方向は変わらず、レーザー光の短軸と走査方向とが一致するようにレーザー光の走査を行う。
 また、上記の実施の形態において、シリコン薄膜に照射されたときのレーザー光の照射形状(強度分布形状)は長軸及び短軸を有する矩形状としたが、これに限らない。例えば、シリコン薄膜に照射されたときのレーザー光の照射形状(強度分布形状)は、楕円形状等のその他の長軸及び短軸を有する形状、あるいは、円形や正方形とすることもできる。
 また、本実施の形態によって製造される薄膜トランジスタ又は薄膜トランジスタアレイ基板は、有機EL表示装置又は液晶表示装置等の表示装置に用いることができる。また、当該表示装置については、フラットパネルディスプレイとして利用することができ、テレビジョンセット、パーソナルコンピュータ又は携帯電話などの電子機器に適用することができる。
 また、本実施の形態によって形成される結晶性シリコン薄膜は、薄膜トランジスタだけではなく、太陽電池又はイメージセンサ等の光電変換素子等、各種電子デバイスにも用いることができる。
 また、本実施の形態において、結晶性シリコン薄膜は、n型半導体であっても、p半導体であっても良い。
 なお、その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本発明に係る薄膜形成基板の製造方法及び薄膜基板は、薄膜トランジスタ、太陽電池又はセンサ等の結晶性シリコン薄膜を有する電子デバイスにおいて有用である。また、本発明に係る薄膜形成基板の製造方法及び薄膜基板は、テレビジョンセット、パーソナルコンピュータ又は携帯電話などの表示装置又はその他電気機器等において広く利用することができる。
 10、210、310 基板
 10S 表面
 11、211a、211b、311a、311b ゲート電極
 12、212、312 ゲート絶縁膜
 13、213、313 シリコン薄膜(非結晶のシリコン薄膜)
 15、215a、215b、315a、315b 結晶性シリコン薄膜
 16、216、316 コンタクト層
 17、217、317 ソースドレイン金属膜
 17S、217S、317S ソース電極
 17D、217D、317D ドレイン電極
 18、218 アンダーコート膜
 19、219 LDD領域
 20、220、320 パッシベーション膜
 30 レーザー光
 40 走査方向
 41 第1方向
 50 結晶化領域
 51 第1領域
 52 第2領域
 53 SPC結晶組織
 54 アブレーション
 100 結晶性半導体薄膜形成装置
 110 基板保持部
 120 レーザー光発振部
 130 光学系部
 131 ホモジナイザー
 132 コンデンサレンズ
 133 DOEレンズ
 140 制御部
 141 走査制御部
 142 レーザー光強度分布調整部
 221 層間絶縁膜
 230 有機EL素子
 240 走査線
 250 データ線
 260 電流供給線
 270a スイッチングトランジスタ
 270b 駆動トランジスタ
 280 キャパシタンス(コンデンサ)
 290、390 電子移動経路
 300、465 薄膜素子アレイ基板
 310a 内部領域
 310b 周辺領域
 321 ゲートドライバ回路
 322 ソースドライバ回路
 370a 画素トランジスタ
 370b 周辺トランジスタ
 461 ゲートドライバ回路領域
 466 表示素子

Claims (28)

  1.  基板を準備する基板準備工程と、
     前記基板上に薄膜を形成する薄膜形成工程と、
     前記薄膜に対して、連続発振の光線を、相対走査させつつ照射し、前記薄膜の少なくとも所定領域を結晶化して結晶化領域を形成する結晶化工程と、を含み、
     前記薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、
     前記結晶化工程において、
     前記結晶化領域は、前記相対走査の方向に対して交差する方向に延びる帯形状の第1領域と、前記帯形状の第1領域に隣接する第2領域とを含むように、かつ、前記帯形状の第1領域の平均結晶粒径が前記第2領域の平均結晶粒径よりも大きくなるように形成される、
     薄膜形成基板の製造方法。
  2.  前記第2領域は、前記第1領域の両側に位置し、
     前記帯形状の第1領域は、当該帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する結晶粒を複数有する、
     請求項1に記載の薄膜形成基板の製造方法。
  3.  前記帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する前記結晶粒が当該帯形状の第1領域の長手方向において占める割合は、80%以上である、
     請求項1又は2に記載の薄膜形成基板の製造方法。
  4.  前記帯形状の第1領域は、前記長軸の長さ内で連続している、
     請求項1~3のいずれか1項に記載の薄膜形成基板の製造方法。
  5.  前記結晶化工程において、
     前記帯形状の第1領域は、平均結晶粒径が100nm以上500nm以下の結晶粒を含有するように形成され、
     前記第2領域は、平均結晶粒径が30nm以上100nm未満の結晶粒を含有するように形成される、
     請求項1~4のいずれか1項に記載の薄膜形成基板の製造方法。
  6.  前記結晶化工程において、
     前記帯形状の第1領域は、均一な間隔で複数形成される、
     請求項1~5のいずれか1項に記載の薄膜形成基板の製造方法。
  7.  前記結晶化工程において、
     複数の前記帯形状の第1領域の各々は、ラマン分光分析によるラマンシフトのピークスペクトルの半値幅が4.8cm-1以上5.5cm-1以下となるように形成される、
     請求項6に記載の薄膜形成基板の製造方法。
  8.  前記結晶化工程において、
     複数の前記帯形状の第1領域は、隣り合う前記帯形状の第1領域の間隔が2.0μm以下となるように形成される、
     請求項6に記載の薄膜形成基板の製造方法。
  9.  前記光線は、波長が405nm~632nmのレーザーである、
     請求項1~8のいずれか1項に記載の薄膜形成基板の製造方法。
  10.  前記レーザーの強度分布の短軸幅を前記薄膜に対して相対走査させる速度で除した値が、60μsec以下である、
     請求項9に記載の薄膜形成基板の製造方法。
  11.  基板を準備する工程と、
     前記基板の上に第1ゲート電極と第2ゲート電極とを離間して形成する工程と、
     前記第1ゲート電極及び前記第2ゲート電極の上にゲート絶縁膜を形成する工程と、
     前記ゲート絶縁膜の上に薄膜を形成する工程と、
     前記第1ゲート電極及び前記第2ゲート電極の上方から前記薄膜に対して連続発振の光線を相対走査させつつ照射し、前記第1ゲート電極及び前記第2ゲート電極の上方の前記薄膜を結晶化する工程と、
     前記第1ゲート電極及び前記第2ゲート電極のそれぞれの上方に位置する前記薄膜の上方にソース電極及びドレイン電極を形成する工程とを含み、
     前記薄膜における前記光線の照射形状は、前記相対走査の方向に対して交差する方向に長軸を有し、
     前記薄膜を結晶化する工程では、前記相対走査の方向に対して交差する方向に延びる帯形状の第1領域と、前記帯形状の第1領域に隣接する第2領域とを含むように、かつ、前記帯形状の第1領域の平均結晶粒径が前記第2領域の平均結晶粒径よりも大きくなるように前記薄膜を結晶化する、
     薄膜素子基板の製造方法。
  12.  前記第2領域は、前記第1領域の両側に位置し、
     前記帯形状の第1領域は、当該帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する結晶粒を複数有する、
     請求項11に記載の薄膜素子基板の製造方法。
  13.  前記帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する前記結晶粒が当該帯形状の第1領域の長手方向において占める割合は、80%以上である、
     請求項11又は12に記載の薄膜素子基板の製造方法。
  14.  基板と、
     前記基板上に位置し、帯形状の第1領域と、前記帯形状の第1領域の短手方向において当該帯形状の第1領域の両側に位置し、前記帯形状の第1領域よりも平均結晶粒径が小さい第2領域とを含む薄膜と、を含み、
     前記帯形状の第1領域は、当該帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する結晶粒を複数有する、
     薄膜基板。
  15.  前記帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する前記結晶粒が当該帯形状の第1領域の長手方向において占める割合は、80%以上である、
     請求項14に記載の薄膜基板。
  16.  前記帯形状の第1領域は、平均結晶粒径が100nm以上500nm以下の結晶粒を含有し、
     前記第2領域は、平均結晶粒径が30nm以上100nm未満の結晶粒を含有する、
     請求項14又は15に記載の薄膜基板。
  17.  前記帯形状の第1領域を複数有し、
     前記第1領域の間隔は、略均一である、
     請求項14~16のいずれか1項に記載の薄膜基板。
  18.  複数の前記帯形状の第1領域の各々は、ラマン分光分析によるラマンシフトのピークスペクトルの半値幅が4.8cm-1以上5.5cm-1以下となるように形成される、
     請求項17に記載の薄膜基板。
  19.  隣り合う前記帯形状の第1領域の間隔は、2.0μm以下である、
     請求項17又は18に記載の薄膜基板。
  20.  基板と、
     前記基板上に位置し、帯形状の第1領域と、前記帯形状の第1領域の短手方向において当該帯形状の第1領域の両側に位置し、前記帯形状の第1領域よりも平均結晶粒径が小さい第2領域とを含む薄膜と、を含み、
     前記帯形状の第1領域の長手方向に対して平行する方向をチャネル方向とし、前記帯形状の第1領域の少なくとも一部をチャネルとする第1素子と、
     前記帯形状の第1領域の長手方向と交差する方向をチャネル方向とし、前記帯形状の第1領域の少なくとも一部をチャネルとする第2素子と、を備え、
     前記帯形状の第1領域は、当該帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する結晶粒を複数有する、
     薄膜素子基板。
  21.  前記帯形状の第1領域の両側に位置する前記第2領域のそれぞれと接触する前記結晶粒が当該帯形状の第1領域の長手方向において占める割合は、80%以上である、
     請求項20に記載の薄膜素子基板。
  22.  前記第1素子は、前記基板上の周辺領域に形成され、
     前記第2素子は、前記基板上の前記周辺領域の内部である内部領域に形成される、
     請求項20又は21に記載の薄膜素子基板。
  23.  前記基板は、マトリクス状に配置された複数の画素を有し、
     前記第1素子及び前記第2素子は、前記複数の画素の各々に形成され、
     前記第1素子は、前記画素を駆動するトランジスタであり、
     前記第2素子は、前記複数の画素の中から駆動させる画素を選択的に切り替えるスイッチングトランジスタである、
     請求項20又は21に記載の薄膜素子基板。
  24.  前記基板上に形成された、前記第1素子及び前記第2素子の各々のゲート電極と、
     前記第1素子及び前記第2素子のゲート電極上の各々に対向するゲート絶縁膜と、
     前記第1素子の前記チャネルの上方及び前記第2素子の前記チャネルの上方の各々に位置する、ソース電極及びドレイン電極と、を有し、
     前記第1素子において前記ソース電極と前記ドレイン電極とが対向する領域の中心線と、前記第2素子において前記ソース電極と前記ドレイン電極とが対向する領域の中心線とが交差している、
     請求項20~23のいずれか1項に記載の薄膜素子基板。
  25.  前記帯形状の第1領域は、平均結晶粒径が100nm以上500nm以下の結晶粒を含有し、
     前記第2領域は、平均結晶粒径が30nm以上100nm未満の結晶粒を含有する、
     請求項20~24のいずれか1項に記載の薄膜素子基板。
  26.  前記帯形状の第1領域を複数有し、
     前記第1領域の間隔は、略均一である、
     請求項20~25のいずれか1項に記載の薄膜素子基板。
  27.  複数の前記帯形状の第1領域の各々は、ラマン分光分析によるラマンシフトのピークスペクトルの半値幅が4.8cm-1以上5.5cm-1以下となるように形成される、
     請求項26に記載の薄膜素子基板。
  28.  隣り合う前記帯形状の第1領域の間隔は、2.0μm以下である、
     請求項26又は27に記載の薄膜素子基板。
PCT/JP2012/005414 2011-08-30 2012-08-28 薄膜形成基板の製造方法、薄膜素子基板の製造方法、薄膜基板及び薄膜素子基板 WO2013031198A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/187,692 US9236487B2 (en) 2011-08-30 2014-02-24 Method of manufacturing substrate having thin film thereabove, method of manufacturing thin-film-device substrate, thin-film substrate, and thin-film-device substrate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JPPCT/JP2011/004841 2011-08-30
PCT/JP2011/004841 WO2013030885A1 (ja) 2011-08-30 2011-08-30 薄膜形成基板の製造方法及び薄膜基板
JP2011204264 2011-09-20
JP2011-204264 2011-09-20
JP2011-204263 2011-09-20
JP2011204263 2011-09-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/187,692 Continuation US9236487B2 (en) 2011-08-30 2014-02-24 Method of manufacturing substrate having thin film thereabove, method of manufacturing thin-film-device substrate, thin-film substrate, and thin-film-device substrate

Publications (1)

Publication Number Publication Date
WO2013031198A1 true WO2013031198A1 (ja) 2013-03-07

Family

ID=47755728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005414 WO2013031198A1 (ja) 2011-08-30 2012-08-28 薄膜形成基板の製造方法、薄膜素子基板の製造方法、薄膜基板及び薄膜素子基板

Country Status (2)

Country Link
US (1) US9236487B2 (ja)
WO (1) WO2013031198A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051221A1 (ja) * 2011-10-03 2013-04-11 パナソニック株式会社 薄膜素子、薄膜素子アレイ及び薄膜素子の製造方法
JP6040438B2 (ja) * 2011-11-09 2016-12-07 株式会社Joled 薄膜形成基板及び薄膜形成方法
US10115739B2 (en) * 2014-05-07 2018-10-30 Sony Corporation Display unit and electronic apparatus
KR102270036B1 (ko) 2015-01-02 2021-06-28 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
CN105185345B (zh) * 2015-10-23 2018-09-07 京东方科技集团股份有限公司 一种栅极驱动电路及其驱动方法、显示面板
KR20200121941A (ko) * 2019-04-16 2020-10-27 삼성디스플레이 주식회사 표시 패널 및 표시 패널의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340118A (ja) * 1995-06-09 1996-12-24 Sony Corp 薄膜半導体装置の製造方法
JPH10229202A (ja) * 1997-02-17 1998-08-25 Toshiba Corp 薄膜トランジスタ、論理ゲート装置および薄膜トランジスタアレイ
JP2003178982A (ja) * 2001-09-14 2003-06-27 Sony Corp レーザ照射装置および半導体薄膜の処理方法
JP2007035812A (ja) * 2005-07-26 2007-02-08 Mitsubishi Electric Corp 多結晶シリコン膜の製造方法および薄膜トランジスタ
JP2011165717A (ja) * 2010-02-04 2011-08-25 Hitachi Displays Ltd 表示装置及び表示装置の製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227980B2 (ja) 1994-02-23 2001-11-12 ソニー株式会社 多結晶シリコン薄膜形成方法およびmosトランジスタのチャネル形成方法
KR100299292B1 (ko) 1993-11-02 2001-12-01 이데이 노부유끼 다결정실리콘박막형성방법및그표면처리장치
JPH10189450A (ja) 1996-12-27 1998-07-21 Sony Corp 半導体装置の製造方法
US6479837B1 (en) * 1998-07-06 2002-11-12 Matsushita Electric Industrial Co., Ltd. Thin film transistor and liquid crystal display unit
JP2000260709A (ja) 1999-03-09 2000-09-22 Fujitsu Ltd 半導体薄膜の結晶化方法及びそれを用いた半導体装置
JP4744700B2 (ja) 2001-01-29 2011-08-10 株式会社日立製作所 薄膜半導体装置及び薄膜半導体装置を含む画像表示装置
US20050259709A1 (en) * 2002-05-07 2005-11-24 Cymer, Inc. Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate
TW582062B (en) 2001-09-14 2004-04-01 Sony Corp Laser irradiation apparatus and method of treating semiconductor thin film
EP1326273B1 (en) * 2001-12-28 2012-01-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7277188B2 (en) * 2003-04-29 2007-10-02 Cymer, Inc. Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate
JP4919717B2 (ja) 2006-07-07 2012-04-18 三菱電機株式会社 多結晶シリコン膜の製造方法
JP5133548B2 (ja) * 2006-09-29 2013-01-30 富士フイルム株式会社 レーザアニール方法およびそれを用いたレーザアニール装置
JP5188718B2 (ja) * 2007-01-31 2013-04-24 株式会社ジャパンディスプレイイースト 表示装置の製造方法
TW201037769A (en) * 2009-04-09 2010-10-16 Chunghwa Picture Tubes Ltd Thin film transistor and manufacturing method thereof
US8440581B2 (en) * 2009-11-24 2013-05-14 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral solidification
JPWO2011141949A1 (ja) 2010-05-10 2013-07-22 パナソニック株式会社 結晶性半導体膜の製造方法、結晶性半導体膜付き基板、薄膜トランジスタ
JPWO2011161715A1 (ja) 2010-06-21 2013-08-19 パナソニック株式会社 薄膜トランジスタアレイ装置、有機el表示装置、及び、薄膜トランジスタアレイ装置の製造方法
JPWO2011161714A1 (ja) 2010-06-21 2013-08-19 パナソニック株式会社 シリコン薄膜の結晶化方法およびシリコンtft装置の製造方法
KR20140018081A (ko) 2011-06-02 2014-02-12 파나소닉 주식회사 박막 반도체 장치의 제조 방법, 박막 반도체 어레이 기판의 제조 방법, 결정성 실리콘 박막의 형성 방법, 및 결정성 실리콘 박막의 형성 장치
WO2013051221A1 (ja) * 2011-10-03 2013-04-11 パナソニック株式会社 薄膜素子、薄膜素子アレイ及び薄膜素子の製造方法
JP5998397B2 (ja) 2011-10-25 2016-09-28 株式会社Joled 薄膜半導体装置及びその製造方法
JP6040438B2 (ja) * 2011-11-09 2016-12-07 株式会社Joled 薄膜形成基板及び薄膜形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08340118A (ja) * 1995-06-09 1996-12-24 Sony Corp 薄膜半導体装置の製造方法
JPH10229202A (ja) * 1997-02-17 1998-08-25 Toshiba Corp 薄膜トランジスタ、論理ゲート装置および薄膜トランジスタアレイ
JP2003178982A (ja) * 2001-09-14 2003-06-27 Sony Corp レーザ照射装置および半導体薄膜の処理方法
JP2007035812A (ja) * 2005-07-26 2007-02-08 Mitsubishi Electric Corp 多結晶シリコン膜の製造方法および薄膜トランジスタ
JP2011165717A (ja) * 2010-02-04 2011-08-25 Hitachi Displays Ltd 表示装置及び表示装置の製造方法

Also Published As

Publication number Publication date
US9236487B2 (en) 2016-01-12
US20140167049A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
US9111803B2 (en) Thin-film device, thin-film device array, and method of manufacturing thin-film device
US8421080B2 (en) Thin-film transistor array device, organic EL display device, and method of manufacturing thin-film transistor array device
WO2013031198A1 (ja) 薄膜形成基板の製造方法、薄膜素子基板の製造方法、薄膜基板及び薄膜素子基板
WO2012164626A1 (ja) 薄膜半導体装置の製造方法、薄膜半導体アレイ基板の製造方法、結晶性シリコン薄膜の形成方法、及び結晶性シリコン薄膜の形成装置
JP4169073B2 (ja) 薄膜半導体装置および薄膜半導体装置の製造方法
US7651928B2 (en) Method for crystallizing a semiconductor thin film
US20030227038A1 (en) Display device with active-matrix transistor and method for manufacturing the same
US7723167B2 (en) Process and system for laser annealing and laser-annealed semiconductor film
US8535994B2 (en) Thin-film transistor array device manufacturing method
US20070212860A1 (en) Method for crystallizing a semiconductor thin film
US7541615B2 (en) Display device including thin film transistors
WO2013030885A1 (ja) 薄膜形成基板の製造方法及び薄膜基板
JP2003243304A (ja) 半導体装置の作製方法
US9343306B2 (en) Method of fabricating thin film transistor array substrate having polysilicon with different grain sizes
TW200307903A (en) Active-matrix type display device and method for manufacturing the same
US20060172469A1 (en) Method of fabricating a polycrystalline silicon thin film transistor
KR102034136B1 (ko) 박막 트랜지스터 기판의 제조방법
JP2007281465A (ja) 多結晶膜の形成方法
CN102543997B (zh) 薄膜晶体管阵列基板
JP2007208174A (ja) レーザアニール技術、半導体膜、半導体装置、及び電気光学装置
JPH10107291A (ja) 半導体装置およびその製造方法
WO2013080246A1 (ja) 結晶性基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828165

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP