WO2011136042A1 - 積層フィルムおよび成型体 - Google Patents

積層フィルムおよび成型体 Download PDF

Info

Publication number
WO2011136042A1
WO2011136042A1 PCT/JP2011/059368 JP2011059368W WO2011136042A1 WO 2011136042 A1 WO2011136042 A1 WO 2011136042A1 JP 2011059368 W JP2011059368 W JP 2011059368W WO 2011136042 A1 WO2011136042 A1 WO 2011136042A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
mass
segment
film
laminated film
Prior art date
Application number
PCT/JP2011/059368
Other languages
English (en)
French (fr)
Inventor
園田 和衛
長田 俊一
三村 尚
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020127028047A priority Critical patent/KR101788895B1/ko
Priority to US13/643,450 priority patent/US8980432B2/en
Priority to CN201180019480.0A priority patent/CN102844182B/zh
Priority to EP11774826.9A priority patent/EP2565029B1/en
Priority to JP2011521032A priority patent/JP5799806B2/ja
Publication of WO2011136042A1 publication Critical patent/WO2011136042A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/02Polysilicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31565Next to polyester [polyethylene terephthalate, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31616Next to polyester [e.g., alkyd]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a laminated film.
  • the present invention particularly relates to a laminated film which is excellent in molding followability and scratch resistance as a molding material and is advantageous in terms of productivity and cost.
  • a molding material such as decorative molding is provided with a surface hardness layer to prevent scratches during molding and to prevent scratches in the process of using the article after molding.
  • the surface-hardened layer does not have enough elongation to follow the molding, and therefore cracks occur during molding. In extreme cases, the film breaks and the surface hardened layer peels off. For this reason, means such as forming a surface hardness layer after molding, or completely curing by molding after being molded in a semi-cured state, by heating, actinic radiation, or the like is applied.
  • the molded article is processed three-dimensionally, it is very difficult to provide a surface hardened layer by post-processing. Further, when molding in a semi-cured state, the mold may be soiled depending on molding conditions. Therefore, as a scratch-resistant material that follows molding, a “self-healing material” that self-repairs minor scratches from the prevention of scratches due to increased hardness has recently attracted attention.
  • Self-healing materials are capable of self-healing deformation in their own elastic recovery range, and two types are widely known: thermosetting type and active energy ray curable type using ultraviolet rays or electron beams.
  • the active energy ray-curable self-healing materials described in Patent Documents 1 and 2 have high surface hardness but low elongation and are not suitable for molding applications with a high molding magnification.
  • thermosetting self-healing materials described in Patent Documents 3 to 4 are inferior in self-healing properties at low temperatures, and scratches may remain depending on the environmental temperature.
  • the self-healing material layer self-healing layer
  • the self-healing performance is lowered. It was sought after.
  • An object of the present invention is to provide a laminated film having a self-healing layer that is excellent in followability during molding, self-healing property, and self-healing property at low temperatures, can be thinned, and is advantageous in terms of cost.
  • the first laminated film of the present invention is a laminated film having an A layer on at least one side of the substrate film, and the A layer is composed of (1) a polycaprolactone segment, (2) a polysiloxane segment and / or polydimethyl. It is a laminated film having a siloxane segment, (3) a urethane bond, and the glass transition point of layer A is ⁇ 30 to 0 ° C.
  • the second laminated film of the present invention is a laminated film having an A layer on at least one side of the base film, and the A layer is composed of (1) a polycaprolactone segment, (2) a polysiloxane segment and / or polydimethyl. It is a laminated film having a siloxane segment, (3) a urethane bond, and having a scratch recovery time of 3 seconds or less at a temperature of 10 ° C. of the A layer.
  • the third laminated film of the present invention is a laminated film having a B layer on at least one side of the base film, the B layer having a polycaprolactone segment and a urethane bond, and the B layer at 80 ° C. to 150 ° C. Is a laminated film having an average breaking elongation of 65% or more.
  • the laminated film of the present invention has excellent followability in the warm molding process and has a surface flaw repair function (self-healing).
  • the laminated film of the present invention is particularly effective for a resin film that is particularly susceptible to surface flaws.
  • the resin constituting the base film may be either a thermoplastic resin or a thermosetting resin, may be a homo resin, or may be a copolymer or a blend of two or more. More preferably, the resin constituting the base film is a thermoplastic resin because of good moldability.
  • thermoplastic resins examples include polyolefin resins such as polyethylene, polypropylene, polystyrene, and polymethylpentene, alicyclic polyolefin resins, polyamide resins such as nylon 6 and nylon 66, aramid resins, polyester resins, polycarbonate resins, and polyarylate resins.
  • Fluorine resins such as polyacetal resin, polyphenylene sulfide resin, tetrafluoroethylene resin, trifluoroethylene resin, trifluoroethylene chloride resin, tetrafluoroethylene-6 fluoropropylene copolymer, vinylidene fluoride resin, acrylic Resins, methacrylic resins, polyacetal resins, polyglycolic acid resins, polylactic acid resins, and the like can be used.
  • the thermoplastic resin is preferably a resin having sufficient stretchability and followability.
  • the thermoplastic resin is more preferably a polyester resin from the viewpoint of strength, heat resistance, and transparency.
  • the polyester resin in the present invention is a general term for polymers having an ester bond as a main bond chain, and is obtained by polycondensation of an acid component and its ester with a diol component.
  • Specific examples include polyethylene terephthalate, polypropylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, and the like. These may be copolymerized with other dicarboxylic acids and their esters or diol components as acid components or diol components.
  • polyethylene terephthalate and polyethylene-2,6-naphthalate are particularly preferable in terms of transparency, dimensional stability, heat resistance and the like.
  • additives such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, thermal stabilizers, lubricants, infrared absorbers, ultraviolet absorbers, refractive indices
  • a doping agent or the like for adjustment may be added.
  • the base film may be either a single-layer base film or a laminated base film.
  • polyester base film when resin which comprises a base film makes 100 mass% of all the components of a base film, when a polyester resin is contained 50 mass% or more and 100 mass% or less, a base film is called polyester base film.
  • the polyester resin constituting the polyester base film has an intrinsic viscosity (measured in o-chlorophenol at 25 ° C. according to JIS K7367 (2000)) of 0.4 to 1.2 dl / g. 0.5 to 0.8 dl / g is particularly preferable.
  • the polyester base film can be any of an unstretched (unoriented) film, a uniaxially stretched (uniaxially oriented) film, and a biaxially stretched (biaxially oriented) film, but is biaxially stretched with excellent dimensional stability and heat resistance. It is preferable to use a film.
  • the biaxially stretched film is preferably highly crystallized.
  • the biaxial orientation refers to a material that exhibits a biaxial orientation pattern by wide-angle X-ray diffraction.
  • the polyester base film may be a polyester film having fine cavities inside.
  • the polyester base film may have a single layer structure or a laminated structure.
  • polyester resins preferably a layer (C layer) containing 50% by mass to 100% by mass of polyester resin C and 50% by mass to 100% by mass of polyester resin D are included.
  • the layer (D layer) to include is laminated
  • the different polyester resin means a polyester resin having a different molecular structure or a case where some components of the copolymer polyester resin are different.
  • polyester base film has a laminated structure
  • a layer (C layer) containing 50% by mass or more and 100% by mass or less of polyester resin C and 50% by mass or more and 100% by mass of polyester resin D different from polyester resin C are used.
  • % Layer (D layer) is laminated.
  • Each having 50 or more layers alternately.
  • the number of stacked layers is more preferably 200 layers or more.
  • the upper limit of the number of layers is preferably 1500 layers or less in consideration of a decrease in wavelength selectivity accompanying a decrease in stacking accuracy due to an increase in the size of the device or an increase in the number of layers.
  • a polyester base film having a multilayer laminated structure is preferable because it has an interference color or further a metal color.
  • the polyester resin C is preferably polyethylene terephthalate or polyethylene naphthalate
  • the polyester resin D is preferably a polyester containing spiroglycol.
  • the polyester containing spiroglycol is a copolyester copolymerized with spiroglycol (polyester whose glycol component is partly spiroglycol), or a homopolyester (a homopolyester whose glycol component is all spiroglycol), or those Refers to blended polyester. Polyesters containing spiroglycol are preferred because they have a small glass transition temperature difference from polyethylene terephthalate and polyethylene naphthalate, and are therefore difficult to be overstretched during molding and are difficult to delaminate.
  • the polyester resin C is polyethylene terephthalate or polyethylene naphthalate
  • the polyester resin D is a polyester containing spiroglycol and cyclohexanedicarboxylic acid.
  • the polyester in which the polyester resin D contains spiroglycol and cyclohexanedicarboxylic acid is a polyester copolymerized with spiroglycol and cyclohexanedicarboxylic acid (or an ester derivative of cyclohexanedicarboxylic acid), or a homopolyester (the glycol component is all spiroglycol, A homopolyester in which all carboxylic acid components are cyclohexanedicarboxylic acid) or a polyester blended with this.
  • the polyester resin D is a polyester containing spiroglycol and cyclohexanedicarboxylic acid
  • a difference in in-plane refractive index from polyethylene terephthalate or polyethylene naphthalate is increased, and thus high reflectance is easily obtained.
  • the glass transition temperature difference with polyethylene terephthalate or polyethylene naphthalate is small, it is difficult to be over-stretched during molding, and delamination is difficult.
  • the polyester resin C is preferably polyethylene terephthalate or polyethylene naphthalate
  • the polyester resin D is preferably a polyester containing cyclohexanedimethanol.
  • the polyester containing cyclohexanedimethanol refers to a copolyester obtained by copolymerizing cyclohexanedimethanol, or a homopolyester (a homopolyester in which all glycol components are cyclohexanedimethanol), or a polyester obtained by blending them.
  • Polyesters containing cyclohexanedimethanol are preferred because they have a small glass transition temperature difference from polyethylene terephthalate or polyethylene naphthalate, and are therefore less likely to be overstretched during molding and are also difficult to delaminate.
  • the polyester resin D is more preferably an ethylene terephthalate polycondensate having a copolymerization amount of cyclohexanedimethanol of 15 mol% or more and 60 mol% or less.
  • the polyester resin D is an ethylene terephthalate polycondensate having a copolymerization amount of cyclohexanedimethanol of 15 mol% or more and 60 mol% or less, a change in optical characteristics due to heating or aging is particularly small while having high reflection performance, Peeling does not easily occur between layers.
  • the cyclohexanedimethanol group has a cis or trans isomer as a geometric isomer, and a chair type or a boat type as a conformational isomer. The optical characteristics change little due to thermal history, and it is difficult to shake during film formation.
  • the in-plane average refractive index of the polyester resin C layer is preferably relatively higher than the in-plane average refractive index of the polyester resin D layer.
  • the difference between the in-plane average refractive index of the polyester resin C layer and the in-plane average refractive index of the D layer is 0.01 or more, and the thickness of one layer is 0.03 ⁇ m or more and 0.5 ⁇ m or less. preferable. More preferably, the difference between the in-plane average refractive index of the polyester resin C layer and the in-plane average refractive index of the D layer is 0.05 or more, and more preferably 0.1 or more.
  • the film When the difference between the in-plane average refractive index of the polyester resin C layer and the in-plane average refractive index of the D layer is 0.01 or more, the film exhibits excellent metal toning due to interference reflection. Further, when the difference between the in-plane average refractive index and the thickness direction refractive index of the C layer is 0.01 or more, and the difference between the in-plane average refractive index and the thickness direction refractive index of the D layer is 0.01 or less, the incident angle Even if becomes large, the reflectance in the reflection band does not decrease, which is more preferable.
  • the glass transition temperature difference between the polyester resin C and the polyester resin D is preferably 20 ° C. or less.
  • the glass transition temperature difference is as large as 20 ° C. or less, the thickness when the laminated film is formed becomes uniform, and no problem occurs when the laminated film is formed.
  • the absolute value of the difference in SP value between the polyester resin C and the polyester resin D is preferably 1.0 or less.
  • the absolute value of the difference in SP value is 1.0 or less, delamination hardly occurs.
  • the first laminated film of the present invention is a laminated film having an A layer on at least one side of the substrate film, and the A layer is composed of (1) a polycaprolactone segment, (2) a polysiloxane segment and / or polydimethyl. It is a laminated film having a siloxane segment, (3) a urethane bond, and the glass transition point of layer A is ⁇ 30 to 0 ° C.
  • the second laminated film of the present invention is a laminated film having an A layer on at least one side of the base film, wherein the A layer comprises (1) a polycaprolactone segment, (2) a polysiloxane segment, and / or It is a laminated film having a polydimethylsiloxane segment, (3) urethane bond, and having a scratch recovery time of 3 seconds or less at a temperature of 10 ° C. of the A layer.
  • the A layer has (1) a polycaprolactone segment, (2) a polysiloxane segment and / or a polydimethylsiloxane segment, and (3) a urethane bond.
  • the A layer has a polycaprolactone segment.
  • elastic recovery self-healing
  • polycaprolactone segment refers to a segment represented by the following chemical formula.
  • N is an integer from 1 to 35.
  • the A layer can have a polycaprolactone segment by forming the A layer using a composition containing a resin containing a polycaprolactone segment.
  • the resin containing the polycaprolactone segment preferably has at least one hydroxyl group (hydroxyl group).
  • the hydroxyl group is preferably at the end of the resin containing the polycaprolactone segment.
  • the layer A When the layer A has a component having a polycaprolactone segment, the layer A can have a self-healing property. That is, even if the surface of the A layer is scratched, the scratch can be extinguished (self-healed) in a short time of several seconds.
  • polycaprolactone having a bi- to trifunctional hydroxyl group is particularly preferable.
  • R is —C 2 H 4 —, —C 2 H 4 OC 2 H 4 —, -C (CH 3 ) 2 (CH 2 ) 2- ) Polycaprolactone triol,
  • Radical polymerizable polycaprolactone such as can be used.
  • the resin containing the polycaprolactone segment may contain (or copolymerize) other segments and monomers in addition to the polycaprolactone segment.
  • a polydimethylsiloxane segment or a polysiloxane segment may be contained (or copolymerized).
  • the weight average molecular weight of the polycaprolactone segment in the resin containing the polycaprolactone segment is preferably 500 to 2500, and more preferably 1000 to 1500.
  • the weight average molecular weight of the polycaprolactone segment is 500 to 2500, the self-healing effect is further exhibited and the scratch resistance is further improved.
  • the amount of the polycaprolactone segment is 5 to 50 in 100% by mass of all the components of the composition used to form the A layer.
  • the mass% is preferable in terms of scratch repairability and stain resistance.
  • 100% by mass of all the components of the composition does not include a solvent that does not participate in the reaction.
  • the monomer component involved in the reaction is included.
  • the A layer has a polysiloxane segment and / or a polydimethylsiloxane segment.
  • the polysiloxane segment refers to a segment represented by the following chemical formula.
  • R is OH or an alkyl group having 1 to 8 carbon atoms, and n is an integer of 3 to 100).
  • the composition used for forming the A layer can include a resin containing a polysiloxane segment.
  • a partial hydrolyzate of a silane compound containing a hydrolyzable silyl group, an organosilica sol, or a composition obtained by adding a hydrolyzable silane compound having a radical polymer to the organosilica sol contains a polysiloxane segment. It can be used as a resin.
  • Resins containing polysiloxane segments are tetraalkoxysilane, methyltrialkoxysilane, dimethyldialkoxysilane, ⁇ -glycidoxypropyltrialkoxysilane, ⁇ -glycidoxypropylalkyldialkoxysilane, ⁇ -methacryloxypropyltri
  • the resin containing a polysiloxane segment may contain (copolymerize) other segments in addition to the polysiloxane segment.
  • a monomer component having a polycaprolactone segment and a polydimethylsiloxane segment may be contained (copolymerized).
  • a monomer having a hydroxyl group that reacts with an isocyanate group is copolymerized as a resin containing a polysiloxane segment.
  • a resin having a hydroxyl group that reacts with an isocyanate group is copolymerized with a resin containing a polysiloxane segment, the toughness of the A layer is improved.
  • the efficiency is improved when the A layer is formed using a composition containing a resin containing the hydroxyl group-containing polysiloxane segment and a compound containing an isocyanate group.
  • the layer A can have a polysiloxane segment and a urethane bond.
  • the A layer has a polysiloxane segment and / or a polydimethylsiloxane segment.
  • the polydimethylsiloxane segment refers to a segment represented by the following formula.
  • the polydimethylsiloxane segment is coordinated to the surface of the A layer.
  • the lubricity of the surface of the A layer is improved, and the frictional resistance can be reduced. As a result, scratchability can be suppressed.
  • the composition used to form the A layer can include a resin containing the polydimethylsiloxane segment.
  • the resin containing a polydimethylsiloxane segment it is preferable to use a copolymer obtained by copolymerizing a vinyl monomer with a polydimethylsiloxane segment.
  • the resin containing a polydimethylsiloxane segment is preferably copolymerized with a monomer having a hydroxyl group that reacts with an isocyanate group.
  • the layer A is formed using a composition containing a resin containing a hydroxyl group-containing polydimethylsiloxane segment and a compound containing an isocyanate group. The layer A having a polydimethylsiloxane segment and a urethane bond can be efficiently formed.
  • the resin containing the polydimethylsiloxane segment When the resin containing the polydimethylsiloxane segment is a copolymer with a vinyl monomer, it may be a block copolymer, a graft copolymer, or a random copolymer. When the resin containing the polydimethylsiloxane segment is a copolymer with a vinyl monomer, this is referred to as a polydimethylsiloxane copolymer.
  • Polydimethylsiloxane copolymers can be produced by the living polymerization method, polymer initiator method, polymer chain transfer method, etc., but considering the productivity, the polymer initiator method, polymer chain transfer method can be used. It is preferable to use it.
  • n is an integer from 1 to 50
  • M is an integer from 10 to 300
  • n is an integer from 1 to 50
  • a two-stage polymerization is carried out by synthesizing a prepolymer in which a peroxide group is introduced into the side chain by copolymerizing a peroxy monomer and polydimethylsiloxane having an unsaturated group at a low temperature, and then copolymerizing the prepolymer with a vinyl monomer. Can also be done.
  • a graft copolymer can be easily obtained by copolymerizing a compound shown in the following, that is, a methacrylic ester of polydimethylsiloxane and a vinyl monomer.
  • vinyl monomers used in the copolymer with polydimethylsiloxane include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, octyl acrylate, cyclohexyl acrylate, tetrahydrofurfuryl acrylate, methyl methacrylate, ethyl methacrylate, n -Butyl methacrylate, isobutyl methacrylate, 2-ethylhexyl methacrylate, stearyl methacrylate, lauryl methacrylate, methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, styrene, ⁇ -methyl styrene, acrylonitrile, methacrylonitrile, vinyl acetate, vinyl chloride, vinylidene chloride , Vinyl fluoride, vinylidene fluoride, glycidyl accelerator
  • Polydimethylsiloxane copolymers include aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, ester solvents such as ethyl acetate and butyl acetate, ethanol, isopropyl alcohol, etc. It is preferable that the alcoholic solvent is produced by a solution polymerization method alone or in a mixed solvent.
  • a polymerization initiator such as benzoyl peroxide or azobisisobutylnitrile is used in combination.
  • the polymerization reaction is preferably carried out at 50 to 150 ° C. for 3 to 12 hours.
  • the amount of the polydimethylsiloxane segment in the polydimethylsiloxane copolymer in the present invention is 1 to 30 in 100% by mass of all the components of the polydimethylsiloxane copolymer from the viewpoint of lubricity and contamination resistance of the A layer. It is preferable that it is mass%.
  • the weight average molecular weight of the polydimethylsiloxane segment is preferably 1000-30000.
  • a resin containing a polydimethylsiloxane segment when used as the composition used to form the A layer, other segments are contained (copolymerized) in addition to the polydimethylsiloxane segment. Also good. For example, a polycaprolactone segment or a polysiloxane segment may be contained (copolymerized).
  • the polysiloxane segment is copolymerized or added separately, the polysiloxane segment is used in an amount of 1 to 20% by mass in 100% by mass of the total component of the composition used to constitute the layer A. % Is preferable in terms of scratch repairability, stain resistance, weather resistance, and heat resistance. 100% by mass of the total components of the composition does not include a solvent that does not participate in the reaction. The monomer component involved in the reaction is included.
  • the composition used to form layer A includes a copolymer of polycaprolactone segment and polydimethylsiloxane segment, a copolymer of polycaprolactone segment and polysiloxane segment, polycaprolactone segment, polydimethylsiloxane segment, and polysiloxane. It is possible to use a copolymer with a segment.
  • the A layer obtained using such a composition can have a polycaprolactone segment and a polydimethylsiloxane segment and / or a polysiloxane segment.
  • Reaction of polydimethylsiloxane copolymer, polycaprolactone, and polysiloxane in the composition for obtaining layer A having polycaprolactone segment, polysiloxane segment, and polydimethylsiloxane segment is a polydimethylsiloxane copolymer.
  • a polycaprolactone segment and a polysiloxane segment can be appropriately added and copolymerized.
  • the A layer has a urethane bond.
  • the A layer can have a urethane bond. Further, when forming the A layer, the A layer can also have a urethane bond by reacting an isocyanate group and a hydroxyl group to form a urethane bond.
  • the A layer preferably has a urethane bond by reacting an isocyanate group with a hydroxyl group to form a urethane bond.
  • the toughness of the A layer can be improved and the elastic recovery property (self-healing property) can be improved.
  • the compound containing an isocyanate group means a resin containing an isocyanate group, or a monomer or oligomer containing an isocyanate group.
  • the compound containing an isocyanate group include methylene bis-4-cyclohexyl isocyanate, trimethylolpropane adduct of tolylene diisocyanate, trimethylolpropane adduct of hexamethylene diisocyanate, trimethylolpropane adduct of isophorone diisocyanate, and tolylene diisocyanate.
  • Polyisocyanates such as isocyanurate bodies, isocyanurate bodies of hexamethylene diisocyanate, burette bodies of hexamethylene isocyanate, and block bodies of the above isocyanates can be mentioned.
  • aliphatic isocyanates are preferred because of their high self-healing properties compared to alicyclic and aromatic isocyanates.
  • the compound containing an isocyanate group is more preferably hexamethylene diisocyanate.
  • the isocyanate group-containing compound is particularly preferably an isocyanate having an isocyanurate ring from the viewpoint of heat resistance, and most preferably an isocyanurate of hexamethylene diisocyanate.
  • An isocyanate having an isocyanurate ring forms a layer A having both self-healing properties and heat resistance.
  • the A layer of the present invention is preferably formed by a heat reaction that generates a urethane bond with an isocyanate group and a hydroxyl group. If the isocyanate functional group of the compound containing an isocyanate group is 2 or more, it is preferable that the compound is more connected to the compound having a hydroxyl group to improve physical properties.
  • the A layer in order to form the A layer, it is preferable that 11% by mass or more and 22% by mass or less of a compound containing an isocyanate group is contained in 100% by mass of all components of the composition. However, 100% by mass of all the components of the composition does not include a solvent that does not participate in the reaction. The monomer component involved in the reaction is included.
  • composition forming the A layer there are other melamine crosslinking agents such as alkoxymethylol melamine, acid anhydride crosslinking agents such as 3-methyl-hexahydrophthalic anhydride, and amine crosslinking agents such as diethylaminopropylamine. It is also possible to include a crosslinking agent. If necessary, a crosslinking catalyst such as dibutyltin dilaurate or dibutyltin diethylhexoate may be used to promote the urethane bond formation reaction.
  • a crosslinking catalyst such as dibutyltin dilaurate or dibutyltin diethylhexoate may be used to promote the urethane bond formation reaction.
  • the A layer preferably contains a resin having all of the polycaprolactone segment, the polysiloxane segment and / or the polydimethylsiloxane segment, and the urethane bond. Since all of the polycaprolactone segment, the polysiloxane segment and / or the polydimethylsiloxane segment, and the urethane bond are contained in one resin that is a polymer, the A layer is preferable because it becomes a tougher layer.
  • a composition containing at least three components of a polydimethylsiloxane copolymer having a hydroxyl group, a polycaprolactone, and an isocyanate group-containing compound is applied onto a base film and reacted by heating, whereby a polycaprolactone segment, a poly A layer having a resin having all of dimethylsiloxane segments and urethane bonds can be obtained.
  • the A layer occupies 80% by mass or more and 100% by mass or less of the resin having all of the polycaprolactone segment, the polysiloxane segment and / or the polydimethylsiloxane segment, and the urethane bond. More preferably.
  • the resin having all of polycaprolactone segment, polysiloxane segment and / or polydimethylsiloxane segment, and urethane bond in 100% by mass of all components constituting layer A occupies 80% by mass or more and 100% by mass or less. Increases curability.
  • the A layer of the present invention may contain other components such as an acrylic segment, a polyolefin segment, and a polyester segment.
  • the polyolefin segment is a polymer composed of repeating units derived from an olefin having 2 to 20 carbon atoms having a structure equivalent to that of a polyolefin resin.
  • the acrylic segment is a polymer containing an acrylic unit as a constituent component, and preferably contains 50 mol% or more of the acrylic unit.
  • Preferable examples include methyl methacrylate unit, acrylmethyl unit, acrylethyl unit and acrylbutyl unit.
  • diol component of the polyester segment in addition to butanediol and / or hexanediol, ethylene glycol, 1,3-propanediol, neopentyl glycol, 2-methyl 1,3-propanediol, 1,4-cyclohexanedimethanol, Polytetramethylene glycol, polyethylene glycol, polypropylene glycol, dimer diol, and hydrogenated dimer diol can be used.
  • terephthalic acid naphthalenedicarboxylic acid, isophthalic acid, sebacic acid, adipic acid, azelaic acid, succinic acid, hexahydroterephthalic acid, etc.
  • terephthalic acid naphthalenedicarboxylic acid
  • isophthalic acid sebacic acid
  • adipic acid azelaic acid
  • succinic acid hexahydroterephthalic acid, etc.
  • succinic acid hexahydroterephthalic acid, etc.
  • a heat-resistant agent for example, a heat-resistant agent, an ultraviolet absorber, a light stabilizer, organic and inorganic particles, a pigment, a dye, a release agent, and an antistatic agent can be added to the A layer.
  • the glass transition temperature (Tg) of the A layer is ⁇ 30 to 0 ° C.
  • the glass transition temperature (Tg) of the A layer is more preferably ⁇ 15 to ⁇ 7 ° C.
  • the glass transition temperature of layer A When the glass transition temperature of layer A is ⁇ 30 to 0 ° C., the self-healing rate is greatly improved, and a laminated film that maintains self-healing even in a low temperature region is obtained.
  • the glass transition temperature of the A layer exceeds 0 ° C., self-healing at an ambient temperature of 10 ° C. or less is extremely slow, and when the glass transition temperature of the A layer is less than ⁇ 30 ° C., the slip property decreases. This causes problems such as winding failure on the roll, blocking, and molding defects.
  • the glass transition temperature of the A layer When the glass transition temperature of the A layer is ⁇ 15 to ⁇ 7 ° C., the self-healing property at the ambient temperature of 5 ° C. is good and the chemical resistance is good.
  • the compound containing an isocyanate group In order to set the glass transition temperature of the A layer to ⁇ 30 to 0 ° C., the compound containing an isocyanate group should be 11 to 22% by mass in 100% by mass of all the components of the composition forming the A layer. preferable.
  • the A layer preferably has a low glass transition temperature component.
  • the A layer preferably has an acrylic segment having a low glass transition temperature component.
  • the acrylic segment having a low glass transition temperature component is a segment composed of a polymer of monomers such as n-butyl acrylate, isobutyl acrylate, n-butyl methacrylate, and isobutyl methacrylate.
  • the wound recovery time at a temperature of 10 ° C. of the A layer is 3 seconds or less.
  • the wound recovery time at a temperature of 10 ° C. of the A layer is 2 seconds or less.
  • the recovery time is 3 seconds or less, the self-healing rate is greatly improved, and a self-healing property can be obtained even in a low temperature region.
  • a recovery time of 2 seconds or less is preferable because even if the molding magnification is increased, there is little decrease in self-healing property.
  • the glass transition temperature of the A layer is preferably ⁇ 30 to 0 ° C., and more preferably the glass transition temperature of the A layer is ⁇ 15 to ⁇ 7 ° C.
  • the first laminated film of the present invention that is, a laminated film in which the glass transition temperature (Tg) of the A layer is ⁇ 30 to 0 ° C., preferably, the recovery time of scratches at the temperature of the A layer of 10 ° C. is 3 seconds or less, and more preferably 2 seconds or less.
  • Tg glass transition temperature
  • the contact angle of the A layer with water is preferably 95 ° or more and 104 ° or less at a temperature of 25 ° C. and a humidity of 65%.
  • cosmetic resistance is improved.
  • Cosmetic resistance is resistance to a cream having a skin beautifying effect and an ultraviolet cut effect.
  • the first and second laminated films of the present invention have high-performance self-healing, and when the contact angle of the A layer with water is 95 ° to 104 °, The surface is not whitened and has good cosmetic resistance.
  • the surface of the A layer is subjected to ultraviolet treatment, plasma treatment, corona treatment, flame treatment, etc. after a week or more at 20 to 80 ° C.
  • a method of performing the treatment is preferred.
  • the thickness of the A layer is preferably 15 to 19 ⁇ m.
  • the thickness of the A layer is reduced by molding. Therefore, it is effective to increase the thickness of the A layer in accordance with the molding magnification.
  • the preferred thickness of the A layer in molding at a molding magnification of 1.1 times is 16.5 to 21 ⁇ m, and the preferred thickness of the A layer in molding at a molding magnification of 1.6 times is 24 to 30 ⁇ m.
  • the minimum breaking elongation of layer A of the laminated film of the present invention is preferably such that the minimum breaking elongation at 80 to 150 ° C. is 65% or more and less than 100%.
  • the minimum breaking elongation at 80 to 150 ° C. is 65% or more, sufficient elongation can be maintained, and when it is less than 100%, the followability with the substrate film is good.
  • the A layer of the first and second laminated films of the present invention can be manufactured, for example, through the following steps in that order. Since the average fracture elongation at 80 to 150 ° C. of the A layer can be 65% or more, it is particularly preferable that an aging process is performed after the laminating process and the heating process.
  • the layer (A layer) which has a polycaprolactone segment, a polysiloxane segment and / or a polydimethylsiloxane segment, and a urethane bond is laminated on at least one side of the base film.
  • the layer A can be laminated on the base film by, for example, a method of applying the material for forming the layer A and, if necessary, a coating solution containing a solvent) to at least one side of the base film.
  • a known coating method such as a gravure coating method, a micro gravure coating method, a die coating method, a reverse coating method, a knife coating method, or a bar coating method can be applied.
  • Heating step By heating, the solvent in the layer volatilizes, and the crosslinking reaction between the isocyanate group in the composition forming the A layer and other segments can be promoted.
  • the remaining amount of isocyanate groups in the A layer before the aging step is preferably 10% or less, more preferably 5% or less, based on the amount of isocyanate groups before the heating step. More preferably, it is substantially 0%. Substantially 0% means that an isocyanate group is not detected even when infrared spectrophotometric analysis is performed.
  • the isocyanate group in the A layer reacts with moisture in the air to form a urea bond, and the A layer after the aging process becomes hard. This causes the average fracture elongation of the A layer to decrease. Therefore, it is desirable that the isocyanate group reaction is allowed to proceed as much as possible (more preferably) before the aging step. When the reaction is insufficient, tackiness remains in the A layer, and when it is wound into a roll, blocking with the opposite surface occurs, and it may be difficult to peel off after aging.
  • the heating temperature in the heating step is preferably 150 ° C. or higher, more preferably 160 ° C. or higher, and further preferably 170 ° C. or higher. Considering generation of wrinkles due to thermal shrinkage of the base film, the heating temperature is preferably 180 ° C. or lower.
  • the heating temperature is 150 ° C. or higher, the crosslinking reaction between the isocyanate group in the A layer and the hydroxyl group in the other segment is promoted.
  • the heating time is 1 minute or longer, preferably 2 minutes or longer, more preferably 3 minutes or longer. In view of maintaining productivity, dimensional stability of the base film, and transparency, the heating time is desirably 5 minutes or less.
  • the heating temperature is preferably 150 ° C. or higher and the heating time is preferably 1 to 5 minutes. More preferably, the heating temperature is 160 ° C. or more and the heating time is 1 to 3 minutes, and further preferably, the heating temperature is 170 ° C. or more and the heating time is 1 to 2 minutes.
  • the heating method in the heating step is preferably performed with hot air from the viewpoint of heating efficiency, and a known hot air dryer or a hot air furnace capable of continuous conveyance such as roll conveyance or floating can be applied.
  • the heated laminated film is preferably subjected to an aging treatment thereafter.
  • the aging temperature is preferably 20 to 80 ° C, more preferably 40 to 80 ° C, and further preferably 60 to 80 ° C.
  • the aging time is preferably 3 days or more, more preferably 7 days or more, and still more preferably 20 days or more. Since the urethane bond is increased by the aging treatment, the average fracture elongation of the A layer can be 65% or more.
  • the aging treatment is preferably carried out by a single wafer or roll in a temperature-controlled room where a predetermined temperature can be set.
  • the preferred use of the laminated film of the present invention is a molding application, particularly a decorative molding application applied to a housing such as a personal computer or a mobile phone.
  • the laminated film of the present invention can be formed into a molded body by applying a molding method such as injection molding, pressure molding, vacuum molding, thermoforming, press molding or the like.
  • the present invention can be particularly suitably applied to uses that are heated to 80 ° C. to 180 ° C. during molding.
  • the molding magnification of the laminated film of the present invention is preferably 1.1 to 1.6 times.
  • the molding ratio is particularly likely to be high at the bent portion and the curved portion, and it is preferable that the molding ratio at the bent portion and the curved portion is 1.1 to 1.6 times because it can be used for deep drawing. .
  • the third laminated film of the present invention is a laminated film having a B layer on at least one side of the base film, the B layer having a polycaprolactone segment and a urethane bond, and the B layer at 80 ° C. to 150 ° C. Is a laminated film having an average breaking elongation of 65% or more.
  • the third laminated film of the present invention is excellent in followability in warm molding and has a repair function (self-healing) such as a scratch (surface flaw). When the surface of the B layer is damaged, the third laminated film of the present invention can eliminate the scratch (self-healing) in a short time of several seconds to several tens of seconds.
  • Polycaprolactone segment refers to a segment represented by the following chemical formula.
  • N is an integer from 1 to 35.
  • B layer can have a polycaprolactone segment by forming B layer using the composition containing resin containing a polycaprolactone segment.
  • the resin containing the polycaprolactone segment preferably has at least one hydroxyl group (hydroxyl group).
  • the hydroxyl group is preferably at the end of the resin containing the polycaprolactone segment.
  • the layer B can have a self-healing property because the layer B has a component having a polycaprolactone segment. That is, even if the B layer surface is scratched, the scratch can be extinguished (self-healed) in a short time of several seconds.
  • polycaprolactone having a bi- to trifunctional hydroxyl group is particularly preferable.
  • R is —C 2 H 4 —, —C 2 H 4 OC 2 H 4 —, -C (CH 3 ) 2 (CH 2 ) 2- ) Polycaprolactone triol,
  • Radical polymerizable polycaprolactone such as can be used.
  • the resin containing the polycaprolactone segment may contain (or copolymerize) other segments and monomers in addition to the polycaprolactone segment.
  • a polydimethylsiloxane segment or a polysiloxane segment may be contained (or copolymerized).
  • the weight average molecular weight of the polycaprolactone segment in the resin containing the polycaprolactone segment is preferably 500 to 2500, and more preferably 1000 to 1500.
  • the weight average molecular weight of the polycaprolactone segment is 500 to 2500, the self-healing effect is further exhibited and the scratch resistance is further improved.
  • the amount of the polycaprolactone segment is 5 to 50 in 100% by mass of the total components of the composition used to form the B layer.
  • the mass% is preferable in terms of scratch repairability and stain resistance.
  • 100% by mass of all the components of the composition does not include a solvent that does not participate in the reaction.
  • the monomer component involved in the reaction is included.
  • the B layer has a urethane bond.
  • the B layer can have a urethane bond.
  • B layer can also have a urethane bond by making an isocyanate group and a hydroxyl group react and producing
  • the B layer preferably has a urethane bond by reacting an isocyanate group with a hydroxyl group to form a urethane bond.
  • the toughness of the B layer can be improved and the elastic recovery property (self-healing property) can be improved.
  • the compound containing an isocyanate group means a resin containing an isocyanate group, or a monomer or oligomer containing an isocyanate group.
  • the compound containing an isocyanate group include methylene bis-4-cyclohexyl isocyanate, trimethylolpropane adduct of tolylene diisocyanate, trimethylolpropane adduct of hexamethylene diisocyanate, trimethylolpropane adduct of isophorone diisocyanate, and tolylene diisocyanate.
  • Polyisocyanates such as isocyanurate bodies, isocyanurate bodies of hexamethylene diisocyanate, burette bodies of hexamethylene isocyanate, and block bodies of the above isocyanates can be mentioned.
  • aliphatic isocyanates are preferred because of their high self-healing properties compared to alicyclic and aromatic isocyanates.
  • the compound containing an isocyanate group is more preferably hexamethylene diisocyanate.
  • the isocyanate group-containing compound is particularly preferably an isocyanate having an isocyanurate ring from the viewpoint of heat resistance, and most preferably an isocyanurate of hexamethylene diisocyanate.
  • An isocyanate having an isocyanurate ring forms a layer A having both self-healing properties and heat resistance.
  • the B layer of the present invention is preferably formed by a reaction by heat that generates a urethane bond with an isocyanate group and a hydroxyl group. If the isocyanate functional group of the compound containing an isocyanate group is 2 or more, it is preferable that the compound is more connected to the compound having a hydroxyl group to improve physical properties.
  • the B layer in order to form the B layer, it is preferable that 11% by mass or more and 22% by mass or less of a compound containing an isocyanate group is contained in 100% by mass of all components of the composition. However, 100% by mass of all the components of the composition does not include a solvent that does not participate in the reaction. The monomer component involved in the reaction is included.
  • composition forming the B layer there are other melamine crosslinking agents such as alkoxymethylol melamine, acid anhydride crosslinking agents such as 3-methyl-hexahydrophthalic anhydride, and amine crosslinking agents such as diethylaminopropylamine. It is also possible to include a crosslinking agent. If necessary, a crosslinking catalyst such as dibutyltin dilaurate or dibutyltin diethylhexoate may be used to promote the urethane bond formation reaction.
  • a crosslinking catalyst such as dibutyltin dilaurate or dibutyltin diethylhexoate may be used to promote the urethane bond formation reaction.
  • the B layer preferably contains a polysiloxane segment and / or a polydimethylsiloxane segment.
  • Polysiloxane segment refers to a segment represented by the following chemical formula.
  • R is OH or an alkyl group having 1 to 8 carbon atoms, and n is an integer of 3 to 100).
  • the composition used for forming the B layer can include a resin containing a polysiloxane segment.
  • a partial hydrolyzate of a silane compound containing a hydrolyzable silyl group, an organosilica sol, or a composition obtained by adding a hydrolyzable silane compound having a radical polymer to the organosilica sol contains a polysiloxane segment. It can be used as a resin.
  • Resins containing polysiloxane segments are tetraalkoxysilane, methyltrialkoxysilane, dimethyldialkoxysilane, ⁇ -glycidoxypropyltrialkoxysilane, ⁇ -glycidoxypropylalkyldialkoxysilane, ⁇ -methacryloxypropyltri
  • the resin containing a polysiloxane segment may contain (copolymerize) other segments in addition to the polysiloxane segment.
  • a monomer component having a polycaprolactone segment and a polydimethylsiloxane segment may be contained (copolymerized).
  • a monomer having a hydroxyl group that reacts with an isocyanate group is copolymerized as a resin containing a polysiloxane segment.
  • the toughness of the B layer is improved.
  • the efficiency is improved when the B layer is formed using a composition containing a resin containing a hydroxyl group-containing polysiloxane segment and a compound containing an isocyanate group. Specifically, it can be set as B layer which has a polysiloxane segment and a urethane bond.
  • the polydimethylsiloxane segment refers to a segment represented by the following formula.
  • the polydimethylsiloxane segment is coordinated to the surface of the B layer.
  • the lubricity of the surface of the B layer can be improved and the frictional resistance can be reduced. As a result, scratchability can be suppressed.
  • the composition used to form the B layer can include a resin containing a polydimethylsiloxane segment.
  • the resin containing a polydimethylsiloxane segment it is preferable to use a copolymer obtained by copolymerizing a vinyl monomer with a polydimethylsiloxane segment.
  • the B layer accounts for 80% by mass or more and 100% by mass or less of the resin having all of the polycaprolactone segment, the polysiloxane segment and / or the polydimethylsiloxane segment, and the urethane bond. More preferably.
  • the resin having all of the polycaprolactone segment, the polysiloxane segment and / or the polydimethylsiloxane segment and the urethane bond in 100% by mass of all the components constituting the B layer occupies 80% by mass or more and 100% by mass or less. Increases curability.
  • the third laminated film of the present invention is a laminated film having a B layer on at least one side of the base film, wherein the average breaking elongation of the B layer at 80 ° C. to 150 ° C. is 65% or more. is there.
  • the average breaking elongation of the B layer at 80 ° C. to 150 ° C. is preferably 80% or more, more preferably 100% or more. It is preferable that it is less than 150% from the point of the average fracture elongation of B layer, and the followable
  • the B layer will break or peel off during molding such as advanced molding (high-magnification molding) or deep drawing, resulting in uneven elongation during molding. In part, significant interference fringes are generated.
  • the minimum breaking elongation of the B layer at 80 to 150 ° C. is 65% or more. Further, when the minimum breaking elongation of the B layer (self-healing layer) at 80 to 150 ° C. is 65% or more, sufficient elongation can be maintained even at a molding temperature of 150 ° C. or more. Further, the minimum breaking elongation of the B layer at 80 to 150 ° C. is preferably less than 100% from the viewpoint of followability with the base film.
  • the coefficient of static friction between the surface of the B layer and the glass mirror surface is preferably 0.2 to 0.8. Thereby, the frictional resistance with the metal mold
  • the static friction coefficient 0.2 to 0.8 it is particularly effective to use a resin containing a polydimethylsiloxane segment having an effect of imparting slipperiness in the composition for forming the B layer. is there.
  • the surface of the B layer is extremely flat, it is effective to include organic and inorganic particles in the B layer and transfer a fine shape to the surface of the B layer by nanoimprinting or the like.
  • inorganic oxide particles such as silica, alumina, zirconia oxide, and titanium oxide having an average particle diameter of 10 to 200 nm.
  • the content of the inorganic oxide particles is preferably 5 parts by weight or more and 30 parts by weight or less, and more preferably 10 parts by weight or more and 20 parts by weight or less in 100 parts by weight of the B layer.
  • the inorganic oxide particles are preferably organosols dispersed in an organic solvent.
  • the B layer is preferably produced by the following lamination process, heating process, and aging process.
  • stacking method of B layer to a base film is the base film, for example, the material which forms B layer, and the coating liquid (composition used in order to form B layer) containing a solvent as needed.
  • coating to the at least one side of can be mentioned.
  • a known coating method such as a gravure coating method, a micro gravure coating method, a die coating method, a reverse coating method, a knife coating method, or a bar coating method can be applied.
  • the preferred thickness of the B layer is 15 to 19 ⁇ m. When it is 15 to 19 ⁇ m, it can be particularly excellent in all of self-healing property, elongation and cosmetic resistance.
  • the B layer thickness preferred for molding at a molding magnification of 1.1 times is 16.5 to 21 ⁇ m, and the B layer thickness preferred for molding at a molding magnification of 1.6 times is 24 to 30 ⁇ m.
  • the residual amount of isocyanate groups in the B layer after the heating step and before the aging step is preferably 10% or less, more preferably 5% or less, with respect to the amount of isocyanate groups before the heating step. More preferably, it is substantially 0%. Substantially 0% means that an isocyanate group is not detected even when infrared spectrophotometric analysis is performed.
  • the isocyanate groups in the B layer react with moisture in the air to form urea bonds, and the B layer after the aging process becomes hard, It causes the average fracture elongation of the B layer to decrease. Therefore, it is desirable that the isocyanate group reaction is allowed to proceed as much as possible (more preferably) before the aging step.
  • the isocyanate group reaction is insufficient due to low temperature drying or the like, tackiness remains in the B layer, and when it is rolled up, blocking with the opposite surface occurs, making it difficult to peel off after aging. There is a case. Therefore, it is necessary to introduce a release film coated with silicone or the like as a separator, which is disadvantageous in terms of cost.
  • the heating temperature in the heating step is 150 ° C. or higher. It is preferably 160 ° C or higher, more preferably 170 ° C or higher. Considering the generation of wrinkles due to heat shrinkage of the base film, the upper limit of the heating temperature is preferably 180 ° C. or less.
  • the heating time is 1 minute or longer, preferably 2 minutes or longer, more preferably 3 minutes or longer. In view of maintaining productivity, dimensional stability of the base film, and transparency, the heating time is desirably 5 minutes or less. Specifically, in the present invention, it is preferable that the heating temperature is 150 ° C. or higher and the heating time is 1 to 5 minutes. More preferably, the heating temperature is set to 160 ° C. or higher and the heating time is set to 1 to 3 minutes. More preferably, the heating temperature is set to 170 ° C. or higher and the heating time is set to 1 to 2 minutes.
  • the heating method in the heating step is preferably performed with hot air from the viewpoint of heating efficiency, and a known hot air dryer or a hot air furnace capable of continuous conveyance such as roll conveyance or floating can be applied.
  • the laminated film heated at a high temperature in a short time is then set to an aging temperature of 20 to 80 ° C., and the aging time is 3 days or more, preferably 7 days or more, more preferably 20 days or more. It is preferable to go through an aging treatment. Since the urethane bond is increased by the aging treatment, the average fracture elongation of the B layer is improved, and the average fracture elongation of the B layer can be 65% or more.
  • the aging temperature in the aging step is preferably 20 to 80 ° C, more preferably 40 to 80 ° C, and further preferably 60 to 80 ° C.
  • the aging time is preferably 3 to 15 days.
  • the aging treatment is preferably carried out with a single wafer or a roll in a temperature-controlled room where a predetermined temperature can be set.
  • the preferred use of the laminated film of the present invention is a molding application, particularly a decorative molding application applied to a housing such as a personal computer or a mobile phone.
  • the laminated film of the present invention can be formed into a molded body by applying a molding method such as injection molding, pressure molding, vacuum molding, thermoforming, press molding or the like.
  • the present invention can be particularly suitably applied to uses that are heated to 80 ° C. to 180 ° C. during molding.
  • the molding magnification of the laminated film of the present invention is preferably 1.1 to 1.6 times.
  • the molding ratio is particularly likely to be high at the bent portion and the curved portion, and it is preferable that the molding ratio at the bent portion and the curved portion is 1.1 to 1.6 times because it can be used for deep drawing. .
  • the characteristic measurement method and effect evaluation method in the present invention are as follows.
  • the B layer at 80 ° C., 100 ° C., 125 ° C. and 150 ° C. was measured in the same manner as in the case where the measurement atmospheric temperature was 25 ° C. except that the measurement atmosphere temperature was 80 ° C., 100 ° C., 125 ° C. and 150 ° C.
  • the average breaking elongation was determined.
  • the average value of the average breaking elongation of the B layer at 80 ° C., 100 ° C., 125 ° C., and 150 ° C. thus obtained was defined as the average breaking elongation of the B layer at 80 to 150 ° C.
  • the minimum value of the average breaking elongation of the B layer at 80 ° C., 100 ° C., 125 ° C., and 150 ° C. obtained was defined as the minimum breaking elongation of the B layer at 80 to 150 ° C.
  • the average breaking elongation of the A layer at 25 ° C., the average breaking elongation of the A layer at 80 to 150 ° C., and the minimum breaking elongation of the A layer at 80 to 150 ° C. are the average breaking elongation of the B layer at 25 ° C., 80
  • the average breaking elongation at ⁇ 150 ° C. and the minimum breaking elongation at 80 to 150 ° C. were measured by the same method.
  • Scratching device Pencil scratch testing machine (KT-VF2391)
  • Pencil HB pencil ("Uni” made by Mitsubishi pencil)
  • Load 750g Scratching speed: 10 mm / s.
  • a high speed camera was installed directly above the sample, and the time from scratching until it disappeared was measured and used as the recovery time. The faster the recovery time, the higher the self-healing property.
  • the measurement was performed 3 times and the average value was taken. Moreover, the measurement was performed in a temperature-controlled acrylic box, and the A layer was measured at temperatures of 5 ° C., 10 ° C., and 20 ° C. Further, the layer B was performed at a temperature of 25 ° C. Moreover, the measurement part of the molded film cut out the center part 50mm square of the film, and measured three places in it.
  • the shooting conditions of the camera are as follows.
  • Light source LuminalAce LA-150UX ring light installed at the camera tip
  • Camera VW-6000 (Keyence Corporation) sample rate: 10pps exposure time: 20000 ⁇ s.
  • Tackiness The tackiness (adhesiveness) of the surface of the layer A or B layer of the laminated film heated in the heating process was observed with a finger, and judged by the following evaluation. Good: Does not stick at all (film does not stick to fingers) Slightly poor: Slightly sticks (Slightly sticks but the film does not stick to fingers) Bad: Adheres (film sticks to fingers).
  • Adhesiveness A cross cut test described in JIS K 5600 (established in 1999) was performed. Specifically, 11 cuts were made vertically and horizontally at intervals of 1 mm on the surface of the layer A, and 100 1 mm square grids were made. Cellophane tape (manufactured by Sekisui) was affixed on this, peeled off quickly at an angle of 90 degrees, and the state of the grids remaining without peeling was visually observed, and the adhesion was evaluated according to the following criteria. Good: No peeling is observed, and the adhesion is very good. Bad: The peeling is conspicuous and has a practical problem.
  • X peak intensity of 2280 cm ⁇ 1 (isocyanate group absorption)
  • Y peak intensity at 2950 cm ⁇ 1 (absorption of acrylate group)
  • Z peak intensity at 1701 cm ⁇ 1 or 1719 cm ⁇ 1 (absorption of urethane bonds)
  • One-time reflection ATR device Thermo Spectra-Tech IRE: Ge Incident angle: 45 ° Resolution: 8cm -1 Integration count: 128 times.
  • Tg of layer A It was measured and calculated according to JIS-K-7122 (1987) using differential calorimetry (DSC). The sample of layer A that was cut out with a blade knife was packed in an aluminum pan and heated from -100 ° C. to 100 ° C. at a rate of 20 ° C./min. Equipment: “Robot DSC-RDC220” manufactured by Seiko Electronics Industry Co., Ltd. Data analysis "Disc Session SSC / 5200" Sample mass: 5 mg.
  • Film size 100mm x
  • 100mm Clip pressure 5MPa
  • Preheating / stretching temperature 100 ° C
  • Fan air volume 50%
  • Preheating time 40 seconds
  • Stretching speed 20% / sec.
  • a raw material A1 having a partial concentration of 40% by mass was prepared.
  • Example 1 The raw material A1 was applied on a polyester base film having a thickness of 100 ⁇ m (“Lumirror” U46, manufactured by Toray Industries, Inc.) using a wire bar so that the A layer thickness after the aging process was 30 ⁇ m. After the application, it was heated with a hot air dryer at 160 ° C. for 2 minutes (heating step). Thereafter, heating (aging) was performed at 20 ° C. for 14 days (aging process) to obtain a laminated polyester film. Next, the obtained film was molded. At this time, only preheating was performed without stretching. The obtained results are shown in Table 1.
  • Table 1 shows the evaluation results of the obtained film (described as film) and the molded film. Excellent self-healing property even at low temperatures.
  • Example 2 A laminated polyester film and a molded film were obtained in the same manner as in Example 1 except that the count of the wire bar was changed and the thickness of the A layer was changed to 20 ⁇ m. The obtained results are shown in Table 1. Excellent self-healing property was exhibited even when the thickness of the A layer was reduced.
  • Example 3 stretching during molding was performed at a magnification of 1.2 times in the vertical direction and 1.2 times in the horizontal direction.
  • Example 4 stretching during molding was performed at a magnification of 1.3 times in the vertical direction and 1.3 times in the horizontal direction. Otherwise, a laminated polyester film and a molded film were obtained in the same manner as in Example 1. The obtained results are shown in Table 1. Even when the thickness of the A layer was reduced, excellent self-healing property was exhibited, and no molding defect was observed.
  • Example 5 A laminated polyester film and a molded film were obtained using the raw material A2 in the same manner as in Example 3.
  • the draw ratio during molding was 1.2 times in the longitudinal direction and 1.2 times in the transverse direction.
  • the obtained results are shown in Table 1. Even when the thickness of the A layer was reduced, excellent self-healing property was exhibited, and no molding defect was observed.
  • Example 6 A laminated polyester film and a molded film were obtained using the raw material A3 in the same manner as in Example 3.
  • the draw ratio during molding was 1.2 times in the longitudinal direction and 1.2 times in the transverse direction.
  • the obtained results are shown in Table 1. Even when the thickness of the A layer was reduced, excellent self-healing property was exhibited, and no molding defect was observed.
  • methyl methacrylate 20 parts by mass of methyl methacrylate, 32 parts by mass of caprolactone methacrylic ester (Placcel FM-5 manufactured by Daicel Chemical Industries, Ltd.), 17 parts by mass of 2-hydroxyethyl methacrylate, 10 parts by mass of polysiloxane (b), methacrylic group at one end 20 parts by mass of polydimethylsiloxane (manufactured by Toagosei Chemical Industry Co., Ltd., AK-32), 1 part by mass of methacrylic acid, and 2 parts by mass of 1,1-azobiscyclohexane-1-carbonitrile were mixed.
  • This mixed monomer was added dropwise to the above-mentioned mixed solution of toluene and butyl acetate over 2 hours. Thereafter, the mixture was reacted at 110 ° C. for 8 hours to obtain a polydimethylsiloxane-polycaprolactone-based graft copolymer (b) having a hydroxyl group with a solid concentration of 50% by mass.
  • the obtained block copolymer had a solid content of 50% by mass.
  • Example 7 A raw material A4 was used in the same manner as in Example 3 to obtain a laminated polyester film and a molded film.
  • the draw ratio during molding was 1.2 times in the longitudinal direction and 1.2 times in the transverse direction.
  • the obtained results are shown in Table 1. Even when the thickness of the A layer was reduced, excellent self-healing property was exhibited, and no molding defect was observed.
  • Example 8 A laminated polyester film and a molded film were obtained using the raw material A5 in the same manner as in Example 1. Further, the thickness of the A layer after the aging process was set to 18 ⁇ m. The obtained results are shown in Table 1. Excellent self-healing property was exhibited even when the thickness of the A layer was reduced.
  • Example 9 A laminated polyester film and a molded body were obtained in the same manner as in Example 8 except that the thickness of the A layer and the molding magnification were changed.
  • stretching during molding was performed at a magnification of 1.2 times in the vertical direction and 1.2 times in the horizontal direction.
  • Example 10 stretching during molding was performed at a magnification of 1.3 times in the vertical direction and 1.3 times in the horizontal direction.
  • Table 2 Even when the thickness of the A layer was reduced, excellent self-healing property was exhibited, and no molding defect was observed.
  • a raw material A6 having a solid content concentration of 40% by mass was prepared.
  • Example 11 A laminated polyester film and a molded film were obtained using the raw material A6 in the same manner as in Example 1. In addition, the thickness of the A layer after the aging process was set to 15 ⁇ m. The obtained results are shown in Table 2. Excellent self-healing property was exhibited even when the thickness of the A layer was reduced.
  • Example 12 A laminated polyester film and a molded film were obtained in the same manner as in Example 11 except that the thickness of the A layer and the ratio of molding stretching were changed.
  • Example 12 stretching at the time of molding was performed at a magnification of 1.2 times in the vertical direction and 1.2 times in the horizontal direction so that the thickness of the A layer after the aging process was 23 ⁇ m.
  • Example 13 stretching at the time of molding was performed at a magnification of 1.3 times in the vertical direction and 1.3 times in the horizontal direction so that the thickness of the A layer after the aging process was 19 ⁇ m.
  • Table 2 Even when the thickness of the A layer was reduced, excellent self-healing property was exhibited, and no molding defect was observed.
  • Example 14 Plasma treatment was performed on the surface of the molded film obtained in the same manner as in Example 13 with “AiPlasma AS” (manufactured by Matsushita Electric Works) at an output of 100 W, a speed of 10 m / min, and a distance between the film and the nozzle of 5 mm. went. The obtained results are shown in Table 2. Cosmetic resistance was improved by surface treatment.
  • PET Polyethylene terephthalate
  • PET Polyethylene terephthalate
  • cyclohexane polyethylene terephthalate copolymer having an intrinsic viscosity of 0.72
  • PET obtained by copolymerizing 30 mol% of dicarboxylic acid and 20 mol% of spiroglycol component with 0.1 wt% of “Adekastab” AS36 (manufactured by ADEKA) as an antioxidant was used.
  • the polyester resin A has 400 layers and the polyester resin B has 401 layers. It was set as the structure laminated
  • the slit shape was designed so that the layer thicknesses of the adjacent C layer and D layer were substantially the same. In this design, a reflection band exists between 350 nm and 1200 nm.
  • the obtained cast film was heated with a roll group set at 75 ° C., and then stretched 3.0 times in the longitudinal direction while rapidly heating from both sides of the film with a radiation heater between 100 mm in the stretch section length. Cooled down. Next, this uniaxially stretched film was guided to a tenter, preheated with hot air at 100 ° C., and then stretched 3.3 times in the transverse direction at a temperature of 110 ° C. The stretched film was directly heat-treated in a tenter with hot air of 235 ° C., then subjected to a relaxation treatment of 5% in the width direction at the same temperature, and then gradually cooled to room temperature and wound up. The thickness of the obtained film was 100 ⁇ m. The obtained laminated film did not have delamination and had an excellent gloss tone.
  • a layer A was formed on this laminated film in the same manner as in Example 13 to obtain a laminated polyester film and a molded film.
  • the obtained results are shown in Table 2.
  • the resulting film and molded film had excellent metallic appearance and self-healing properties.
  • Example 16 Copolymerized polyester (Eastster PETG6763 manufactured by Eastman Chemical Co., Ltd.) in which 1,4-cyclohexanedimethanol component is 33 mol% copolymerized with glycol component, PET with intrinsic viscosity of 0.65 and melting point of 255 ° C. F20S] was mixed at a mass ratio of 76:24. The mixture was melt kneaded at 280 ° C. using a vented twin screw extruder.
  • 1,4-cyclohexanedimethanol 25 mol% copolymerized polyethylene terephthalate resin in which 2 mol% of the by-produced diethylene glycol was copolymerized with respect to the glycol component in the resin was obtained.
  • PET [Toray F20S] having an intrinsic viscosity of 0.65 and a melting point of 255 ° C. and 1,4-cyclohexanedimethanol 25 mol% copolymerized polyethylene terephthalate resin (diethylene glycol copolymerization rate 2 mol%) were mixed at a mass ratio of 70:30. .
  • the mixture was dried at 180 ° C. for 4 hours in a vacuum dryer, and after sufficiently removing moisture, supplied to a single screw extruder, melted at 275 ° C., removed foreign matter, and leveled the amount of extrusion,
  • the sheet was discharged from a T-die onto a cooling drum whose temperature was controlled at 25 ° C. At that time, a wire-like electrode having a diameter of 0.1 mm was applied electrostatically and adhered to the cooling drum to obtain an unstretched film.
  • the film temperature was raised with a heating roll, the preheating temperature was 90 ° C., the stretching temperature was 95 ° C., and the film was stretched 3.2 times in the longitudinal direction and immediately controlled to 40 ° C. Cooled with a roll.
  • the film was stretched 3.5 times in the width direction at a preheating temperature of 90 ° C. and a stretching temperature of 100 ° C. with a tenter-type transverse stretching machine, and the temperature was maintained at 210 ° C. for 5 seconds while relaxing 4% in the width direction.
  • Heat treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 188 ⁇ m.
  • the obtained biaxially oriented polyester film was very excellent in transparency and moldability although it was somewhat weak in scratch resistance.
  • a layer A was formed on this biaxially oriented polyester film in the same manner as in Example 13 to obtain a laminated polyester film and a molded film.
  • the obtained results are shown in Table 2.
  • the obtained film and molded film were excellent in self-healing properties.
  • Reference Example 7 Preparation of Raw Material A7 ⁇ Preparation of Raw Material A7> 15 parts by mass of polydimethylsiloxane block copolymer (a) 75 parts by mass, polysiloxane (a) 10 parts by mass and polycaprolactone triol having a hydroxyl group (Placcel 308, weight average molecular weight 850, manufactured by Daicel Chemical Industries, Ltd.) 15 parts by mass of a biuret of hexamethylene diisocyanate (manufactured by Bayer Co., Ltd., Desmodur N3200) is added to 100 parts by mass of the blended (mixed) mixture, further diluted with methyl ethyl ketone, and a solid content concentration of 40 masses % Of raw material A7 was prepared.
  • Placcel 308, weight average molecular weight 850 manufactured by Daicel Chemical Industries, Ltd.
  • a biuret of hexamethylene diisocyanate manufactured by Bayer Co., Ltd., Desmodur N
  • Example 17 A laminated polyester film was obtained using the raw material A7 under the same conditions as in Example 1. Next, the obtained film was molded in the same manner as in Example 1. Table 2 shows the evaluation results of the obtained film and molded film. Excellent self-healing property even at low temperatures.
  • Reference Example 8 Preparation of Raw Material A8 ⁇ Preparation of Raw Material A8> 15 parts by mass of polydimethylsiloxane block copolymer (a) 75 parts by mass, polysiloxane (a) 10 parts by mass and polycaprolactone triol having a hydroxyl group (Placcel 308, weight average molecular weight 850, manufactured by Daicel Chemical Industries, Ltd.) 36 parts by mass of isocyanurate of hexamethylene diisocyanate (Takeda Pharmaceutical Co., Ltd., Takenate D-170N) is added to 100 parts by mass of the blended (mixed) mixture, and further diluted with methyl ethyl ketone to obtain a solid.
  • a raw material A8 having a partial concentration of 40 mass% was prepared.
  • Example 1 A raw material A8 was obtained in the same manner as in Example 3 to obtain a laminated polyester film and a molded film. Stretching at the time of molding was performed at a magnification of 1.2 times in the vertical direction and 1.2 times in the horizontal direction. The obtained results are shown in Table 3. The glass transition point of the A layer was 11 ° C., and the recovery time of scratches at the temperature of the A layer of 10 ° C. was 167 seconds.
  • Example 2 A raw material A9 was obtained in the same manner as in Example 3 to obtain a laminated polyester film and a molded film. Stretching at the time of molding was performed at a magnification of 1.2 times in the vertical direction and 1.2 times in the horizontal direction. The obtained results are shown in Table 3. The glass transition point of the A layer was 6.1 ° C., and the recovery time of the scratch when the temperature of the A layer was 10 ° C. was 145 seconds.
  • Reference Example 10 Preparation of Raw Material A10 ⁇ Preparation of Raw Material A10> 15 parts by mass of polydimethylsiloxane block copolymer (a) 75 parts by mass, polysiloxane (a) 10 parts by mass and hydroxyl group-containing polycaprolactone triol (manufactured by Daicel Chemical Industries, Plaxel 308, weight average molecular weight 850) 7 parts by mass of hexamethylene diisocyanate isocyanurate (Takeda Pharmaceutical Co., Ltd., Takenate D-170N) is added to 100 parts by mass of the mixture (mixed), and further diluted with methyl ethyl ketone. A raw material A10 having a solid content concentration of 40% by mass was prepared.
  • Comparative Example 3 A laminated polyester film and a molded film were obtained using the raw material A10 in the same manner as in Example 3. Stretching at the time of molding was performed at a magnification of 1.2 times in the vertical direction and 1.2 times in the horizontal direction. The obtained results are shown in Table 3. The glass transition point of layer A was ⁇ 31.2 ° C., and the recovery time of scratches at a temperature of layer A of 10 ° C. was 4.5 seconds. Comparative Example 3 was insufficiently cured and had poor tackiness, adhesion and steel resistance, and could not withstand practical use.
  • the monomer composition is 20 parts by weight of methyl methacrylate, 26 parts by weight of butyl methacrylate, 23 parts by weight of 2-hydroxyethyl methacrylate, 10 parts by weight of polysiloxane (a), 1 part by weight of methacrylic acid, and methacrylic modified polydimethylsiloxane (Shin-Etsu).
  • a polydimethylsiloxane graft copolymer (d) was synthesized in the same manner as in Reference Example 3 except that 20 parts by mass of X-22-174DX) manufactured by Chemical Industry Co., Ltd. was used.
  • the obtained graft copolymer G had a solid content of 50%.
  • d polydimethylsiloxane block copolymer
  • trimethylolpropane adduct of hexamethylene diisocyanate as a crosslinking agent
  • Example 4 A laminated polyester film and a molded film were obtained in the same manner as in Example 3 except that the raw material B1 was used instead of the raw material A1.
  • the raw material B1 does not contain a caprolactone segment. Stretching at the time of molding was performed at a magnification of 1.2 times in the vertical direction and 1.2 times in the horizontal direction. The obtained results are shown in Table 3.
  • the glass transition point of the A layer was ⁇ 11 ° C., and the recovery time of scratches at the temperature of the A layer of 10 ° C. was 500 seconds or more.
  • methyl methacrylate 30 parts by mass of methyl methacrylate, 26 parts by mass of butyl methacrylate, 23 parts by mass of 2-hydroxyethyl methacrylate, 1 part by mass of methacrylic acid and methacrylic modified polydimethylsiloxane (Shin-Etsu Chemical Co., Ltd., X-22 174DX) and 20 parts by mass of azobis-2-methylbutyronitrile (manufactured by Nippon Hydrazine Kogyo Co., Ltd., ABN-E) were mixed. The mixed monomer was dropped into a mixed solution of toluene and methyl isobutyl ketone over 3 hours. Thereafter, reaction was performed for 6 hours to obtain a polydimethylsiloxane graft copolymer (e). The obtained graft copolymer (e) had a solid content of 50% by mass.
  • a polycaprolactone triol having a hydroxyl group Placcel 308, molecular weight 850, manufactured by Daicel Chemical Industries, Ltd.
  • isocyanurate Takenate D-170N, manufactured by Takeda Pharmaceutical Co., Ltd.
  • Example 5 A laminated polyester film and a molded film were obtained in the same manner as in Example 3 except that the raw material B2 was used instead of the raw material A1. Stretching at the time of molding was performed at a magnification of 1.2 times in the vertical direction and 1.2 times in the horizontal direction. The obtained results are shown in Table 3. The glass transition point of the A layer was 4 ° C., and the wound recovery time at the temperature of the A layer of 10 ° C. was 4 seconds.
  • Example 6 A laminated polyester film and a molded film were obtained in the same manner as in Example 3 except that the raw material A11 was used instead of the raw material A1. Stretching at the time of molding was performed at a magnification of 1.2 times in the vertical direction and 1.2 times in the horizontal direction. The obtained results are shown in Table 3. The glass transition point of the A layer was 10.4 ° C., and the recovery time of scratches at the temperature of the A layer of 10 ° C. was 58 seconds.
  • the raw material B3 having a solid content of 50% by mass was prepared.
  • the raw material B3 was applied on a polyester substrate film having a thickness of 100 ⁇ m (manufactured by Toray Industries, Inc., “Lumirror” U46) using a wire bar so that the A layer thickness after ultraviolet irradiation was 30 ⁇ m. After the application, it was heated with a hot air dryer at 60 ° C. for 1 minute, and then irradiated with ultraviolet rays with a high-pressure mercury lamp at an irradiation amount of 300 mJ / cm 2 to obtain a laminated polyester film. Further, stretching during molding was performed at a magnification of 1.2 times in the vertical direction and 1.2 times in the horizontal direction to obtain a molded film. Table 4 shows the obtained results.
  • the layer A was excellent in steel wool resistance but low in self-healing properties, and cracks occurred at the ends after molding.
  • a raw material B4 having a solid content of 50% by mass was prepared by blending 3 parts by mass of -hydroxy-cyclohexyl-phenyl-ketone.
  • Comparative Example 8 A laminated polyester film and a molded film were obtained in the same manner as in Comparative Example 7, except that the raw material B4 was used instead of the raw material B3. Table 4 shows the obtained results.
  • the layer A was excellent in steel wool resistance but low in self-healing properties, and cracks occurred at the ends after molding.
  • the raw material A1 was applied to a 100 ⁇ m thick polyester base film (“Lumirror” U46, manufactured by Toray Industries, Inc.) using a wire bar so that the A layer thickness after the aging process was 30 ⁇ m. After the application, it was heated with a hot air dryer at 160 ° C. for 2 minutes (heating step). Thereafter, heating (aging) was performed at 20 ° C. for 14 days (aging process) to obtain a laminated polyester film. Next, the obtained film was molded. At this time, only preheating was performed without stretching. The obtained results are shown in Table 1.
  • Example 9 A polyester base film having a thickness of 100 ⁇ m (“Lumirror” U46 manufactured by Toray Industries, Inc.) was heated under the same conditions as in Example 1 (160 ° C. for 2 minutes with a hot air dryer, then heated at 20 ° C. for 14 days (aging) )) Heating was performed. However, unlike Example 1, the raw material A1 was not applied on a 100 ⁇ m thick polyester base film (“Lumirror” U46, manufactured by Toray Industries, Inc.). The results are shown in Table 4. The obtained film was not self-healing and surface flaws were very likely to occur.
  • Example 10 A laminated film made of polyester resin C and polyester resin D was produced under the same conditions as in Example 15. However, unlike Example 15, the raw material A6 was not applied onto the laminated film composed of the polyester resin C and the polyester resin D. The results are shown in Table 4. The obtained film was not self-healing and surface flaws were very likely to occur.
  • Reference Example 16 Preparation of Raw Material A12 ⁇ Preparation of Raw Material A12> 15 parts by mass of polydimethylsiloxane block copolymer (a) 75 parts by mass, polysiloxane (a) 10 parts by mass and hydroxyl group-containing polycaprolactone triol (manufactured by Daicel Chemical Industries, Plaxel 308, weight average molecular weight 850) 15 parts by mass of adduct of tolylene diisocyanate (Takeda Pharmaceutical Co., Ltd., Takenate D-103H) is added to 100 parts by mass of the mixture containing (mixed) and further diluted with methyl ethyl ketone to obtain a solid.
  • a raw material A12 having a partial concentration of 40 mass% was prepared.
  • Example 11 A laminated polyester film and a molded film were obtained under the same conditions as in Example 1 except that the raw material A12 was used instead of the raw material A1.
  • Table 4 shows the evaluation results of the obtained film and molded film.
  • the glass transition point of the A layer was 63 ° C., and the recovery time of scratches at the temperature of the A layer of 10 ° C. was 500 or more.
  • Example 12 A laminated polyester film and a molded film were obtained under the same conditions as in Example 1 except that the raw material A13 was used instead of the raw material A1.
  • Table 4 shows the evaluation results of the obtained film and molded film.
  • the glass transition point of the A layer was 56 ° C., and the recovery time of scratches at the temperature of the A layer of 10 ° C. was 500 or more.
  • Example 18 The raw material A9 was applied on a polyester base film having a thickness of 100 ⁇ m (“Lumirror” U46, manufactured by Toray Industries, Inc.) using a wire bar so that the B layer thickness after the aging step was 20 ⁇ m. After the application, it was heated with a hot air dryer at 150 ° C. for 1 minute (heating step). Thereafter, heating (aging) was performed at 40 ° C. for 14 days (aging process) to obtain a laminated polyester film. The average breaking elongation of the B layer at 80 ° C. to 150 ° C. of the laminated polyester film was 82.5%. Even when the obtained laminated polyester film was used as a film for molding processing, the B layer did not crack and maintained good self-healing properties.
  • a polyester base film having a thickness of 100 ⁇ m (“Lumirror” U46, manufactured by Toray Industries, Inc.) using a wire bar so that the B layer thickness after the aging step was 20 ⁇ m. After the application, it
  • Examples 23 to 30, Comparative Examples 18 to 22 A laminated polyester film was produced in the same manner as in Example 18 except that the aging temperature and aging time in the aging step were changed to the values shown in Table 5. When the aging temperature was low or the time was short, the average breaking elongation of the layer B at 80 ° C. to 150 ° C. of the laminated polyester film was less than 65%. Even when the films of Examples 23 to 30 were used as molding films, the B layer did not crack and maintained good self-healing properties.
  • Example 31 The raw material A11 was applied on a 100 ⁇ m thick polyester base film (“Lumirror” U46, manufactured by Toray Industries, Inc.) using a wire bar so that the B layer thickness after the aging process was 20 ⁇ m. After the application, it was heated at 160 ° C. for 2 minutes (heating step). Thereafter, heating (aging) was performed at 40 ° C. for 14 days (aging process) to obtain a laminated polyester film. Even when the obtained laminated polyester film was used as a film for molding processing, the B layer did not crack and maintained good self-healing properties.
  • a 100 ⁇ m thick polyester base film (“Lumirror” U46, manufactured by Toray Industries, Inc.) using a wire bar so that the B layer thickness after the aging process was 20 ⁇ m. After the application, it was heated at 160 ° C. for 2 minutes (heating step). Thereafter, heating (aging) was performed at 40 ° C. for 14 days (aging process) to obtain a laminated polyester film. Even when
  • Example 32 A laminated film was prepared in the same manner as in Example 31 except that the thickness of the B layer after the aging step was 10 ⁇ m. Even when the obtained laminated polyester film was used as a film for molding processing, the B layer did not crack and maintained good self-healing properties.
  • Example 33 A laminated film was prepared in the same manner as in Example 31 except that the thickness of the B layer after the aging step was 50 ⁇ m. Even when the obtained laminated polyester film was used as a film for molding processing, the B layer did not crack and maintained good self-healing properties.
  • a raw material having a partial concentration of 40% by mass was prepared.
  • Example 34 A laminated polyester film was obtained in the same manner as in Example 19 except that the raw material A14 was used instead of the raw material A9. Even when the obtained laminated polyester film was used as a film for molding processing, the B layer did not crack and maintained good self-healing properties.
  • Raw material A15 was obtained in the same manner as raw material A14, except that 15 parts by mass of organosilica sol MEK-ST-ZL was used.
  • Example 35 A laminated polyester film was obtained in the same manner as in Example 19 except that the raw material A15 was used instead of the raw material A9. Even when the obtained laminated polyester film was used as a film for molding processing, the B layer did not crack and maintained good self-healing properties.
  • Raw material A16 was obtained in the same manner as raw material A14 except that 30 parts by mass of organosilica sol MEK-ST-ZL was used.
  • Example 37 A laminated polyester film was obtained in the same manner as in Example 19 except that the raw material A16 was used instead of the raw material A9. Even when the obtained laminated polyester film was used as a film for molding processing, the B layer did not crack and maintained good self-healing properties.
  • the laminated film of the present invention can be used for applications where moldability and self-healing properties are required at the same time.
  • it can be suitably used as a film for decorative molding applied particularly to a housing of a personal computer or a mobile phone.
  • the laminated film of the present invention can be formed into a molded body by applying a molding method such as injection molding, pressure molding, vacuum molding, thermoforming, press molding or the like.
  • the laminated film of the present invention can cope with deep drawing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

 第1の発明は、基材フィルムの少なくとも片側に、A層を有する積層フィルムであって、A層が、(1)ポリカプロラクトンセグメント、(2)ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、(3)ウレタン結合を有し、A層のガラス転移点が-30~0℃である積層フィルムである。 第2の発明は、基材フィルムの少なくとも片側に、A層を有する積層フィルムであって、A層が、前記(1)~(3)を有し、A層の温度10℃での傷の回復時間が3秒以下である積層フィルムである。 第3の発明は、基材フィルムの少なくとも片側に、B層を有する積層フィルムであって、B層が、前記(1)、(3)を有し、80℃~150℃におけるB層の平均破壊伸度が65%以上である積層フィルムである。 本発明の積層フィルムは、成型時の追従性や自己治癒性、低温時の自己治癒性に優れ、成型性と自己治癒性が同時に求められる用途に使用可能である。

Description

積層フィルムおよび成型体
 本発明は、積層フィルムに関する。本発明は、特に、成型材料として成型追従性、耐傷性に優れ、かつ生産性、コスト面で有利な積層フィルムに関する。
 加飾成型などの成型材料は、成型時の傷防止や成型後の物品使用過程での傷を防止するために表面硬度化層が設けられる。しかし、表面硬度化層は、成型に追従する伸びが不足するため、成型時にクラックが発生する。極端な場合には、フィルムが破断し、表面硬度化層が剥離する。このため、成型後に表面硬度化層を形成する、あるいは、セミ硬化状態で成型した後、加熱や活性線照射などで完全硬化させるなどの手段が適用されている。
 成型後の物品は3次元に加工されているため、後加工で表面硬度化層を設けるのは非常に困難である。また、セミ硬化状態で成型する場合には、成型条件によっては金型の汚れを誘発する場合がある。そのため、成型に追従する耐擦傷性材料として、近年硬度アップによる傷防止から軽度の傷を自己修復する「自己治癒材料」が注目されている。自己治癒材料は、自身の弾性回復範囲の変形を自己修復できるもので、大きく熱硬化型と紫外線や電子線を用いた活性エネルギー線硬化型の2種類が知られている。
 特許文献1~2に記載された活性エネルギー線硬化型の自己治癒材料は、表面硬度が高いものの伸びが小さく、成形倍率の高い成形用途には適していない。
 特許文献3~4に記載の熱硬化型の自己治癒材料は、低温時の自己治癒性に劣り、環境温度によっては、傷が残存する場合があった。また、成型倍率の大きい場合は、自己治癒材料からなる層(自己治癒層)が薄膜化して自己治癒性能が低下することから、層厚みを薄くても高い自己治癒性を維持する自己治癒材料が求められていた。
特開2006-137780号公報 特開2006-119772号公報 特開平11-228905号公報 特開2007-2260号公報
 本発明の目的は、成型時の追従性や自己治癒性、低温時の自己治癒性に優れ、薄膜が可能でコスト面で有利な自己治癒層を有する積層フィルムを提供することにある。
 本発明の第1の積層フィルムは、基材フィルムの少なくとも片側に、A層を有する積層フィルムであって、A層が、(1)ポリカプロラクトンセグメント、(2)ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、(3)ウレタン結合を有し、A層のガラス転移点が-30~0℃である積層フィルムである。
 本発明の第2の積層フィルムは、基材フィルムの少なくとも片側に、A層を有する積層フィルムであって、A層が、(1)ポリカプロラクトンセグメント、(2)ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、(3)ウレタン結合、を有し、A層の温度10℃での傷の回復時間が3秒以下である積層フィルムである。
 本発明の第3の積層フィルムは、基材フィルムの少なくとも片側に、B層を有する積層フィルムであって、B層が、ポリカプロラクトンセグメントとウレタン結合を有し、80℃~150℃におけるB層の平均破壊伸度が65%以上である積層フィルムである。
 本発明の積層フィルムは、加温成型加工における追従性に優れ、表面傷の補修機能(自己治癒性)を有する。本発明の積層フィルムは、特に、特に表面傷の発生しやすい樹脂フィルムに有効である。
 以下、本発明をさらに詳細に説明する。
 <基材フィルム(base film)>
 本発明において基材フィルムを構成する樹脂は、熱可塑性樹脂、熱硬化性樹脂のいずれでもよく、ホモ樹脂であってもよく、共重合または2種類以上のブレンドであってもよい。より好ましくは、基材フィルムを構成する樹脂は、成形性が良好であるため、熱可塑性樹脂である。
 熱可塑性樹脂の例としては、ポリエチレン・ポリプロピレン・ポリスチレン・ポリメチルペンテンなどのポリオレフィン樹脂、脂環族ポリオレフィン樹脂、ナイロン6・ナイロン66などのポリアミド樹脂、アラミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、4フッ化エチレン樹脂・3フッ化エチレン樹脂・3フッ化塩化エチレン樹脂・4フッ化エチレン-6フッ化プロピレン共重合体・フッ化ビニリデン樹脂などのフッ素樹脂、アクリル樹脂、メタクリル樹脂、ポリアセタール樹脂、ポリグリコール酸樹脂、ポリ乳酸樹脂などを用いることができる。熱可塑性樹脂は、十分な延伸性と追従性を備える樹脂が好ましい。熱可塑性樹脂は、強度・耐熱性・透明性の観点から、特に、ポリエステル樹脂であることがより好ましい。
 本発明におけるポリエステル樹脂とは、エステル結合を主鎖の主要な結合鎖とする高分子の総称であって、酸成分及びそのエステルとジオール成分の重縮合によって得られる。具体例としてはポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレートなどを挙げることができる。またこれらに酸成分やジオール成分として他のジカルボン酸およびそのエステルやジオール成分を共重合したものであっても良い。これらの中で透明性、寸法安定性、耐熱性などの点でポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレートが特に好ましい。
 また、樹脂には、各種添加剤、例えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子、有機粒子、減粘剤、熱安定剤、滑剤、赤外線吸収剤、紫外線吸収剤、屈折率調整のためのドープ剤などが添加されていてもよい。
 基材フィルムは、単層構成の基材フィルムや積層構成の基材フィルムのいずれであってもよい。
 <ポリエステル基材フィルム(polyester base film)>
 本発明では、基材フィルムを構成する樹脂が、基材フィルムの全成分100質量%としたとき、ポリエステル樹脂を50質量%以上100質量%以下含む場合、基材フィルムをポリエステル基材フィルムという。
 本発明では、ポリエステル基材フィルムを構成するポリエステル樹脂は、用いるポリエステルの極限粘度(JIS K7367(2000)に従って25℃のo-クロロフェノール中で測定)が、0.4~1.2dl/gが好ましく、0.5~0.8dl/gが特に好ましい。
 ポリエステル基材フィルムは、未延伸(未配向)フィルム、一軸延伸(一軸配向)フィルム、二軸延伸(二軸配向)フィルムのいずれも使用しうるが、寸法安定性や耐熱性に優れる二軸延伸フィルムを用いるのが好ましい。二軸延伸フィルムは、高度に結晶配向されたものが好ましい。本発明では、二軸配向とは広角X線回折で二軸配向パターンを示すものをいう。
 ポリエステル基材フィルムは、内部に微細な空洞を有するポリエステルフィルムであっても良い。
 ポリエステル基材フィルムは、単層構成であっても積層構成であっても良い。
 ポリエステル基材フィルムが積層構成の場合には、異なるポリエステル樹脂、好ましくは、ポリエステル樹脂Cを50質量%以上100質量%以下含む層(C層)とポリエステル樹脂Dを50質量%以上100質量%以下含む層(D層)を積層させる。ポリエステル基材フィルムが積層構成の場合、本発明では、異なるポリエステル樹脂とは、分子構造が異なるポリエステル樹脂である場合も、共重合ポリエステル樹脂の一部の成分が異なる場合も意味する。
 ポリエステル基材フィルムが積層構成の場合、より好ましくは、ポリエステル樹脂Cを50質量%以上100質量%以下含む層(C層)と、ポリエステル樹脂Cとは異なるポリエステル樹脂Dを50質量%以上100質量%以下含む層(D層)を積層する。さらにより好ましくは、ポリエステル樹脂Cを50質量%以上100質量%以下含む層(C層)と、ポリエステル樹脂Cとは異なるポリエステル樹脂Dを50質量%以上100質量%以下含む層(D層)を、交互にそれぞれ50層以上有する。積層数は、さらに、より好ましくは、200層以上である。積層数の上限値は、装置の大型化や層数が多くなりすぎることによる積層精度の低下に伴う波長選択性の低下を考慮すると、1500層以下であることが好ましい。本発明では、多層積層構成のポリエステル基材フィルムとすることにより、干渉色ないし更には金属調色を有するために好ましい。
 ポリエステル樹脂Cは、ポリエチレンテレフタレートまたはポリエチレンナフタレートであり、ポリエステル樹脂Dが、スピログリコールを含むポリエステルであることが好ましい。スピログリコールを含むポリエステルとは、スピログリコールを共重合したコポリエステル(ポリエステルのグリコール成分を一部スピログリコールとしたもの)、またはホモポリエステル(グリコール成分が全てスピログリコールであるホモポリエステル)、またはそれらをブレンドしたポリエステルのことを言う。スピログリコールを含むポリエステルは、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度差が小さいため、成形時に過延伸になりにくく、かつ層間剥離しにくいために好ましい。
 ポリエステル樹脂Cがポリエチレンテレフタレートまたはポリエチレンナフタレートであり、ポリエステル樹脂Dがスピログリコールおよびシクロヘキサンジカルボン酸を含むポリエステルであることが、より好ましい。ポリエステル樹脂Dがスピログリコールおよびシクロヘキサンジカルボン酸を含むポリエステルとは、スピログリコールおよびシクロヘキサンジカルボン酸(またはシクロヘキサンジカルボン酸のエステル誘導体)を共重合したポリエステル、またホモポリエステル(グリコール成分が全てスピログリコールであり、カルボン酸成分が全てシクロヘキサンジカルボン酸であるホモポリエステル)、またはこれをブレンドしたポリエステルのことを言う。ポリエステル樹脂Dがスピログリコールおよびシクロヘキサンジカルボン酸を含むポリエステルであると、ポリエチレンテレフタレートやポリエチレンナフタレートとの面内屈折率差が大きくなるため、高い反射率が得られやすくなる。また、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度差が小さいため、成形時に過延伸になりにくく、かつ層間剥離しにくい。
 ポリエステル樹脂Cがポリエチレンテレフタレートまたはポリエチレンナフタレートであり、ポリエステル樹脂Dがシクロヘキサンジメタノールを含むポリエステルであることが好ましい。シクロヘキサンジメタノールを含むポリエステルとは、シクロヘキサンジメタノールを共重合したコポリエステル、またはホモポリエステル(グリコール成分が全てシクロヘキサンジメタノールであるホモポリエステル)、またはそれらをブレンドしたポリエステルのことを言う。シクロヘキサンジメタノールを含むポリエステルは、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度差が小さいため、成形時に過延伸になることがなりにくく、かつ層間剥離もしにくいために好ましい。
 本発明では、より好ましくは、ポリエステル樹脂Dがシクロヘキサンジメタノールの共重合量が15mol%以上60mol%以下であるエチレンテレフタレート重縮合体である。ポリエステル樹脂Dがシクロヘキサンジメタノールの共重合量が15mol%以上60mol%以下であるエチレンテレフタレート重縮合体であると、高い反射性能を有しながら、特に加熱や経時による光学的特性の変化が小さく、層間での剥離が生じにくい。シクロヘキサンジメタノールの共重合量が15mol%以上60mol%以下であるエチレンテレフタレート重縮合体は、ポリエチレンテレフタレートと非常に強く接着する。また、そのシクロヘキサンジメタノール基は幾何異性体としてシス体あるいはトランス体があり、また配座異性体としてイス型あるいはボート型もあるので、ポリエチレンテレフタレートと共延伸しても配向結晶化しにくく、高反射率で、熱履歴による光学特性の変化が少なく、製膜時、やぶれにくい。
 ポリエステル樹脂C層の面内平均屈折率は、ポリエステル樹脂D層の面内平均屈折率より相対的に高いことが好ましい。また、ポリエステル樹脂C層の面内平均屈折率とD層の面内平均屈折率の差が、0.01以上であり、さらに1層の厚みが0.03μm以上0.5μm以下であることが好ましい。より好ましくはポリエステル樹脂C層の面内平均屈折率とD層の面内平均屈折率の差が、0.05以上であり、さらに好ましくは0.1以上である。ポリエステル樹脂C層の面内平均屈折率とD層の面内平均屈折率の差が、0.01以上であると、干渉反射によりフィルムは優れた金属調色を示すようになる。また、C層の面内平均屈折率と厚み方向屈折率の差が0.01以上であり、D層の面内平均屈折率と厚み方向屈折率差が0.01以下であると、入射角が大きくなっても、反射帯域の反射率低下が起きないため、より好ましい。
 本発明では、ポリエステル樹脂Cとポリエステル樹脂Dのガラス転移温度差が20℃以下であることが好ましい。ガラス転移温度差が20℃以下である大きい場合は積層フィルムを製膜する際の厚みが均一となり、積層フィルムを成形する際にも、問題が生じない。
 本発明では、ポリエステル樹脂Cとポリエステル樹脂DのSP値の差の絶対値が、1.0以下であることが好ましい。SP値の差の絶対値が1.0以下であると層間剥離が生じにくくなる。
 <A層を有する積層フィルム>
 以下、基材フィルムの少なくとも片側に、A層を有する積層フィルムについて説明する。
 本発明の第1の積層フィルムは、基材フィルムの少なくとも片側に、A層を有する積層フィルムであって、A層が、(1)ポリカプロラクトンセグメント、(2)ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、(3)ウレタン結合を有し、A層のガラス転移点が-30~0℃である積層フィルムである。
 さらに、本発明の第2の積層フィルムは、基材フィルムの少なくとも片側に、A層を有する積層フィルムであって、A層が、(1)ポリカプロラクトンセグメント、(2)ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、(3)ウレタン結合、を有し、A層の温度10℃での傷の回復時間が3秒以下である積層フィルムである。
 本発明の第1、第2の積層フィルムにおいて、A層は、(1)ポリカプロラクトンセグメント、(2)ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、(3)ウレタン結合を有する。
 以下、A層に含まれる成分について、説明する。
 <ポリカプロラクトンセグメント>
 本発明では、A層が、ポリカプロラクトンセグメントを有する。A層がポリカプロラクトンセグメントを有することで、A層に弾性回復性(自己治癒性)を賦与することができる。
 本発明において、ポリカプロラクトンセグメントとは、下記の化学式で示されるセグメントを指す。
Figure JPOXMLDOC01-appb-C000001
(nは1~35の整数)。
 ポリカプロラクトンセグメントを含有する樹脂を含む組成物を用いてA層を形成することにより、A層は、ポリカプロラクトンセグメントを有することができる。ポリカプロラクトンセグメントを含有する樹脂は、少なくとも1以上の水酸基(ヒドロキシル基)を有することが好ましい。水酸基は、ポリカプロラクトンセグメントを含有する樹脂の末端にあることが好ましい。
 ポリカプロラクトンセグメントを有する成分をA層が有することにより、A層は自己治癒性を持つことができる。すなわち、A層表面に傷が付されたとしても、数秒の短時間で傷を消滅させる(自己治癒させる)ことができる。
 ポリカプロラクトンセグメントを含有する樹脂としては、特に、2~3官能の水酸基を有するポリカプロラクトンが好ましい。具体的には、ポリカプロラクトンジオール
Figure JPOXMLDOC01-appb-C000002
(mは1~34の整数、nは1~34の整数、ただし、m+nは4~35の整数である。Rは、-C-、-COC-、-C(CH(CH-である)、
ポリカプロラクトントリオール、
Figure JPOXMLDOC01-appb-C000003
(lは1~28の整数、mは1~28の整数、nは1~28の整数、ただし、l+m+nは3~30の整数である)
ラクトン変性ヒドロキシエチル(メタ)アクリレート
Figure JPOXMLDOC01-appb-C000004
(Rは、HまたはCH、nは1~25の整数)
などのラジカル重合性ポリカプロラクトンを用いることができる。
 また、本発明において、ポリカプロラクトンセグメントを含有する樹脂は、ポリカプロラクトンセグメント以外に、他のセグメントやモノマーが含有(あるいは、共重合)されていても良い。たとえば、ポリジメチルシロキサンセグメントやポリシロキサンセグメントが含有(あるいは、共重合)されていても良い。
 また、本発明において、ポリカプロラクトンセグメントを含有する樹脂中の、ポリカプロラクトンセグメントの重量平均分子量は500~2500であることが好ましく、より好ましい重量平均分子量は1000~1500である。ポリカプロラクトンセグメントの重量平均分子量は500~2500であると、自己治癒性の効果がより発現し、また耐傷性がより向上する。
 ポリカプロラクトンセグメントが共重合される場合であっても、別途添加される場合であっても、A層を形成するために用いる組成物の全成分100質量%においてポリカプロラクトンセグメントの量が5~50質量%であると、傷修復性、耐汚染性の点で好ましい。ここで、組成物の全成分100質量%には、反応に関与しない溶媒は含まない。反応に関与するモノマー成分は含む。
 <ポリシロキサンセグメント>
 本発明では、A層がポリシロキサンセグメント及び/又はポリジメチルシロキサンセグメントを有する。本発明において、ポリシロキサンセグメントとは、以下の化学式で示されるセグメントを指す。
Figure JPOXMLDOC01-appb-C000005
(Rは、OHまたは炭素数1~8のアルキル基、nは3~100の整数)。
 A層がポリシロキサンセグメント及び/又はポリジメチルシロキサンセグメントを有するためには、A層を形成するために用いる組成物が、ポリシロキサンセグメントを含有する樹脂を含むことで可能となる。
 本発明では、加水分解性シリル基を含有するシラン化合物の部分加水分解物、オルガノシリカゾルまたは該オルガノシリカゾルにラジカル重合体を有する加水分解性シラン化合物を付加させた組成物を、ポリシロキサンセグメントを含有する樹脂として用いることができる。
 ポリシロキサンセグメントを含有する樹脂は、テトラアルコキシシラン、メチルトリアルコキシシラン、ジメチルジアルコキシシラン、γ-グリシドキシプロピルトリアルコキシシラン、γ-グリシドキシプロピルアルキルジアルコキシシラン、γ-メタクリロキシプロピルトリアルコキシシラン、γ-メタクリロキシプロピルアルキルジアルコキシシランなどの加水分解性シリル基を有するシラン化合物の完全もしくは部分加水分解物や有機溶媒に分散させたオルガノシリカゾル、オルガノシリカゾルの表面に加水分解性シリル基の加水分解シラン化合物を付加させたものなどを例示することができる。
 また、本発明において、ポリシロキサンセグメントを含有する樹脂は、ポリシロキサンセグメント以外に、他のセグメント等が含有(共重合)されていても良い。たとえば、ポリカプロラクトンセグメント、ポリジメチルシロキサンセグメントを有するモノマー成分が含有(共重合)されていても良い。
 本発明においては、ポリシロキサンセグメントを含有する樹脂として、イソシアネート基と反応する水酸基を有するモノマー等が共重合されていることが好ましい。ポリシロキサンセグメントを含有する樹脂に、イソシアネート基と反応する水酸基を有するモノマー等が共重合すると、A層の強靱性を向上する。
 ポリシロキサンセグメントを含有する樹脂が水酸基を有する共重合体である場合、水酸基を有するポリシロキサンセグメントを含有する樹脂とイソシアネート基を含有する化合物とを含む組成物を用いてA層を形成すると、効率的に、ポリシロキサンセグメントとウレタン結合とを有するA層とすることができる。
 <ポリジメチルシロキサンセグメント>
 本発明では、A層がポリシロキサンセグメント及び/又はポリジメチルシロキサンセグメントを有する。
 本発明において、ポリジメチルシロキサンセグメントとは、下記式で示されるセグメントを指す。
Figure JPOXMLDOC01-appb-C000006
(mは10~300の整数)。
 A層が、ポリジメチルシロキサンセグメントを有すると、ポリジメチルシロキサンセグメントがA層の表面に配位することとなる。ポリジメチルシロキサンセグメントがA層の表面に配位することにより、A層表面の潤滑性が向上し、摩擦抵抗を低減することができる。この結果、傷付き性を抑制することができる。
 A層がポリシロキサンセグメント及び/又はポリジメチルシロキサンセグメントを有するためには、A層を形成するために用いる組成物が、ポリジメチルシロキサンセグ
メントを含有する樹脂を含むことで可能である。本発明においては、ポリジメチルシロキサンセグメントを含有する樹脂としては、ポリジメチルシロキサンセグメントにビニルモノマーが共重合された共重合体を用いることが好ましい。
 A層の強靱性を向上させる目的で、ポリジメチルシロキサンセグメントを含有する樹脂は、イソシアネート基と反応する水酸基を有するモノマー等が共重合されていることが好ましい。ポリジメチルシロキサンセグメントを含有する樹脂が水酸基を有する共重合体である場合、水酸基を有するポリジメチルシロキサンセグメントを含有する樹脂とイソシアネート基を含有する化合物とを含む組成物を用いてA層を形成すると、効率的にポリジメチルシロキサンセグメントとウレタン結合とを有するA層とすることができる。
 ポリジメチルシロキサンセグメントを含有する樹脂が、ビニルモノマーとの共重合体の場合は、ブロック共重合体、グラフト共重合体、ランダム共重合体のいずれであっても良い。ポリジメチルシロキサンセグメントを含有する樹脂がビニルモノマーとの共重合体の場合、これを、ポリジメチルシロキサン系共重合体という。ポリジメチルシロキサン系共重合体は、リビング重合法、高分子開始剤法、高分子連鎖移動法などに製造することができるが、生産性を考慮すると高分子開始剤法、高分子連鎖移動法を用いるのが好ましい。
 高分子開始剤法を用いる場合には下記の化学式
Figure JPOXMLDOC01-appb-C000007
(mは10~300の整数、nは1~50の整数)
で示される高分子アゾ系ラジカル重合開始剤を用いて他のビニルモノマーと共重合させることができる。またペルオキシモノマーと不飽和基を有するポリジメチルシロキサンとを低温で共重合させて過酸化物基を側鎖に導入したプレポリマーを合成し、該プレポリマーをビニルモノマーと共重合させる二段階の重合を行うこともできる。
 高分子連鎖移動法を用いる場合は、例えば、下記化学式
Figure JPOXMLDOC01-appb-C000008
(mは10~300の整数)
に示すシリコーンオイルに、HS-CH2COOHやHS-CH2CH2COOH等を付加してSH基を有する化合物とした後、SH基の連鎖移動を利用して該シリコーン化合物とビニルモノマーとを共重合させることでブロック共重合体を合成することができる。
 ポリジメチルシロキサン系グラフト共重合体を合成するには、例えば、下記化学式
Figure JPOXMLDOC01-appb-C000009
(mは10~300の整数)
に示す化合物、すなわちポリジメチルシロキサンのメタクリルエステルなどとビニルモノマーを共重合させることにより容易にグラフト共重合体を得ることができる。
 ポリジメチルシロキサンとの共重合体に用いられるビニルモノマーとしては、例えば、メチルアクリレート、エチルアクリレート,n-ブチルアクリレート、イソブチルアクリレート、オクチルアクリレート、シクロヘキシルアクリレート、テトラヒドロフルフリルアクリレート、メチルメタクリレート、エチルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、2-エチルヘキシルメタクリレート、ステアリルメタクリレート、ラウリルメタクリレート、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、スチレン、α-メチルスチレン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、マレイン酸、無水マレイン酸、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルアミノエチルメタクリレート、N,N-ジエチルアミノエチルメタクリレート、ジアセチトンアクリルアミド、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、アリルアルコールなどを挙げることができる。
 また、ポリジメチルシロキサン系共重合体は、トルエン、キシレンなどの芳香族炭化水素系溶剤、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、酢酸エチル、酢酸ブチルなどのエステル系溶剤、エタノール、イソプロピルアルコールなどのアルコール系溶剤などを単独もしくは混合溶媒中で溶液重合法によって製造されることが好ましい。
 必要に応じてベンゾイルパーオキサイド、アゾビスイソブチルニトリルなどの重合開始剤を併用する。重合反応は50~150℃で3~12時間行うのが好ましい。本発明におけるポリジメチルシロキサン系共重合体中のポリジメチルシロキサンセグメントの量は、A層の潤滑性や耐汚染性の点で、ポリジメチルシロキサン系共重合体の全成分100質量%において1~30質量%であるのが好ましい。またポリジメチルシロキサンセグメントの重量平均分子量は1000~30000とするのが好ましい。
 本発明において、A層を形成するために用いる組成物として、ポリジメチルシロキサンセグメントを含有する樹脂を使用する場合は、ポリジメチルシロキサンセグメント以外に、他のセグメント等が含有(共重合)されていても良い。たとえば、ポリカプロラクトンセグメントやポリシロキサンセグメントが含有(共重合)されていても良い。
 ポリシロキサンセグメントが、共重合される場合であっても、別途添加される場合であっても、A層を構成するために用いる組成物の全成分100質量%においてポリシロキサンセグメントが1~20質量%であると、傷修復性、耐汚染性、耐候性、耐熱性の点で好ましい。組成物の全成分100質量%には、反応に関与しない溶媒は含まない。反応に関与するモノマー成分は含む。
 A層を形成するために用いる組成物には、ポリカプロラクトンセグメントとポリジメチルシロキサンセグメントの共重合体、ポリカプロラクトンセグメントとポリシロキサンセグメントとの共重合体、ポリカプロラクトンセグメントとポリジメチルシロキサンセグメントとポリシロキサンセグメントとの共重合体などを用いることが可能である。このような組成物を用いて得られるA層は、ポリカプロラクトンセグメントとポリジメチルシロキサンセグメント及び/又はポリシロキサンセグメントとを有することが可能となる。
 ポリカプロラクトンセグメント、ポリシロキサンセグメント及びポリジメチルシロキサンセグメントを有するA層を得るための組成物中の、ポリジメチルシロキサン系共重合体、ポリカプロラクトン、およびポリシロキサンの反応は、ポリジメチルシロキサン系共重合体合成時に、適宜ポリカプロラクトンセグメント及びポリシロキサンセグメントを添加して共重合することができる。
 <ウレタン結合>
 本発明では、A層がウレタン結合を有する。
 A層を形成するために用いる組成物が、市販のウレタン変性樹脂を含むことにより、A層はウレタン結合を有することが可能となる。また、A層を形成する際に、イソシアネート基と水酸基を反応させてウレタン結合を生成させることによっても、A層はウレタン結合を有することができる。
 本発明では、好ましくは、イソシアネート基と水酸基を反応させてウレタン結合を生成させることにより、A層は、ウレタン結合を有する。イソシアネート基と水酸基を反応させてウレタン結合を生成させることにより、A層の強靱性を向上させると共に弾性回復性(自己治癒性)を向上することができる。
 また、ポリシロキサンセグメントを含有する樹脂やポリジメチルシロキサンセグメントを含有する樹脂が、水酸基を有する場合は、熱などによってこれら樹脂とイソシアネート基を有する化合物との間にウレタン結合を生成させることが可能である。イソシアネート基を有する化合物と、水酸基を有するポリシロキサンセグメントを含有する樹脂や水酸基を有するポリジメチルシロキサンセグメントを含有する樹脂を用いてA層を形成すると、A層の強靱性および弾性回復性(自己治癒性)をさらに高めることができ、好ましい。
 本発明において、イソシアネート基を含有する化合物とは、イソシアネート基を含有する樹脂や、イソシアネート基を含有するモノマーやオリゴマーを指す。イソシアネート基を含有する化合物は、例えば、メチレンビス-4-シクロヘキシルイソシアネート、トリレンジイソシアネートのトリメチロールプロパンアダクト体、ヘキサメチレンジイソシアネートのトリメチロールプロパンアダクト体、イソホロンジイソシアネートのトリメチロールプロパンアダクト体、トリレンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのイソシアヌレート体、ヘキサメチレンイソシアネートのビューレット体などのポリイソシアネート、および上記イソシアネートのブロック体などを挙げることができる。
 これらのイソシアネート基を含有する化合物の中でも、脂環族や芳香族のイソシアネートに比べて脂肪族のイソシアネートが、自己治癒性が高く好ましい。イソシアネート基を含有する化合物は、より好ましくは、ヘキサメチレンジイソシアネートである。また、イソシアネート基を含有する化合物は、イソシアヌレート環を有するイソシアネートが耐熱性の点で特に好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート体が最も好ましい。イソシアヌレート環を有するイソシアネートは、自己治癒性と耐熱特性を併せ持つA層を形成する。
 本発明のA層は、イソシアネート基と水酸基によって、ウレタン結合を生じる熱による反応によって形成されることが好ましい。イソシアネート基を含有する化合物のイソシアネート官能基が2以上であれば、水酸基を有する化合物とより多く連結して、物性を向上させることから好ましい。
 本発明において、A層を形成するには、組成物の全成分100質量%中にイソシアネート基を含有する化合物を11質量%以上22質量%以下含んでいることが好ましい。ただし、組成物の全成分100質量%には、反応に関与しない溶媒は含まない。反応に関与するモノマー成分は含む。
 A層を形成する組成物中には、アルコキシメチロールメラミンなどのメラミン架橋剤、3-メチル-ヘキサヒドロ無水フタル酸などの酸無水物系架橋剤、ジエチルアミノプロピルアミンなどのアミン系架橋剤などの他の架橋剤を含むことも可能である。必要に応じてウレタン結合の形成反応を促進させるためにジブチルスズジラウレート、ジブチルスズジエチルヘキソエートなどの架橋触媒を用いても良い。
 本発明におけるA層は、好ましくは、ポリカプロラクトンセグメント、ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、ウレタン結合の全てを有する樹脂をA層が含む。ポリカプロラクトンセグメント、ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、ウレタン結合の全てが、高分子体である一つの樹脂の中に含まれることにより、A層はより強靱な層となるため好ましい。
 水酸基を有するポリジメチルシロキサン系共重合体、ポリカプロラクトン、イソシアネート基を含有する化合物の少なくとも3成分を含む組成物を、基材フィルム上に塗布して加熱により反応させることで、ポリカプロラクトンセグメント、ポリジメチルシロキサンセグメント、ウレタン結合の全てを有する樹脂を有するA層を得ることができる。
 A層を構成する全成分100質量%において、A層が、ポリカプロラクトンセグメント、ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、ウレタン結合の全てを有する樹脂を、80質量%以上100質量%以下を占めることが、さらに好ましい。A層を構成する全成分100質量%において、ポリカプロラクトンセグメント、ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、ウレタン結合の全てを有する樹脂が、80質量%以上100質量%以下を占めることにより、自己治癒性が高まる。
 <A層のその他の成分>
 本発明のA層は、アクリルセグメント、ポリオレフィンセグメント、ポリエステルセグメントなどのその他の成分が含まれていても良い。
 ポリオレフィンセグメントは、ポリオレフィン系樹脂と同等の構造を有する炭素原子数が2~20のオレフィンから導かれる繰返し単位からなる重合体である。
 アクリルセグメントは、アクリル単位を構成成分として含む重合体であり、アクリル単位を50mol%以上含むことが好ましい。好適例として、メタクリル酸メチル単位、アクリルメチル単位、アクリルエチル単位およびアクリルブチル単位を挙げることができる。A層にアクリルセグメントを有すると、耐薬品性、強靱性に優れたA層とすることができる。
 ポリエステルセグメントのジオール成分としては、ブタンジオールおよび/またはヘキサンジオール以外に、エチレングリコール、1,3-プロパンジオール、ネオペンチルグリコール、2-メチル1,3-プロパンジオール、1,4-シクロヘキサンジメタノール、ポリテトラメチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ダイマージオール、水添ダイマージオールを用いることができる。ポリエステルセグメントの酸成分としては、テレフタル酸、ナフタレンジカルボン酸、イソフタル酸、セバシン酸、アジピン酸、アゼライン酸、コハク酸、ヘキサヒドロテレフタル酸などを用いることができ、これらの構成成分が複数含まれていてもよい。
 A層は、例えば、耐熱剤、紫外線吸収剤、光安定剤、有機、無機の粒子、顔料、染料、離型剤、帯電防止剤などを添加することができる。
 <A層のガラス転移温度(Tg)>
 本発明の第1の積層フィルムは、A層のガラス転移温度(Tg)が-30~0℃である。A層のガラス転移温度(Tg)は、より好ましくは、-15~-7℃である。
 A層のガラス転移温度が-30~0℃であると、自己治癒速度が大きく向上し、また、低温領域においても自己治癒性を維持した積層フィルムとなる。A層のガラス転移温度が0℃を超える場合は、雰囲気温度10℃以下での自己治癒性が極端に遅くなり、また、A層のガラス転移温度が-30℃未満では、すべり性が低下してロールでの巻き取り不良やブロッキング、成型不良などの問題が発生する。A層のガラス転移温度が、-15~-7℃であると、雰囲気温度5℃での自己治癒性が良く、耐薬品性がよい。
 A層のガラス転移温度を-30~0℃とするためには、A層を形成する組成物の全成分100質量%中に、イソシアネート基を含有する化合物を11~22質量%とすることが好ましい。
 A層のガラス転移温度を-30~0℃とするための別の方法としては、A層が低ガラス転移温度成分を有することが好ましい。特に、A層が低ガラス転移温度成分のアクリルセグメントを有することが好ましい。低ガラス転移温度成分のアクリルセグメントとは、例えば、n-ブチルアクリレート、イソブチルアクリレート、n-ブチルメタクリレート、イソブチルメタクリレートなどのモノマーの重合体で構成されるセグメントである。A層中に、低ガラス転移温度成分のアクリルセグメントの含有量を増やすことにより、A層のガラス転移温度を-30~0℃に制御できるため、好ましい。
 <A層の温度10℃での傷の回復時間>
 本発明の第2の積層フィルムは、A層の温度10℃での傷の回復時間が3秒以下である。好ましくは、A層の温度10℃での傷の回復時間が2秒以下である。回復時間が3秒以下であると、自己治癒速度が大きく向上し、低温領域においても自己治癒性を維持したものが得られる。また、回復時間が2秒以下であれば、成型倍率を高くしても自己治癒性の低下が少ないので、好ましい。
 A層の温度10℃での傷の回復時間を3秒以下とするには、A層のガラス転移温度を下げることが好ましく、A層の温度10℃での傷の回復時間を3秒以下とするために好ましいA層のガラス転移温度は、-30~0℃であり、さらに好ましくは、A層のガラス転移温度が、-15~-7℃である。
 さらに、本発明の第1の積層フィルム、すなわち、A層のガラス転移温度(Tg)が-30~0℃である積層フィルムでは、好ましくは、A層の温度10℃での傷の回復時間は、3秒以下であり、さらに好ましくは、2秒以下である。層のガラス転移温度(Tg)が-30~0℃である積層フィルムにおいて、A層の温度10℃での傷の回復時間が3秒以下であると、より高性能の自己治癒性を維持した積層フィルムとなる。
 <A層の性能>
 本発明の第1、第2の積層フィルムでは、温度25℃、湿度65%において、A層の水との接触角が95°以上104°以下であることが好ましい。A層の水との接触角が95°以上104°以下であると、耐化粧品性が良好となる。耐化粧品性とは、美肌効果、紫外線カット効果を有するクリーム剤に対する耐性である。本発明の第1、第2の積層フィルムは、高性能の自己治癒性を持ち、さらに、A層の水との接触角を95°以上104°以下とすることにより、化粧品と接触すると、経時で表面に白化が生じず、耐化粧品性がよい。接触角を95°以上104°以下とするためには、A層を形成後、20~80℃で1週間以上経過後に、A層表面に紫外線処理、プラズマ処理、コロナ処理、火炎処理などの表面処理を行う方法が好ましい。
 本発明の第1、第2の積層フィルムでは、耐化粧品性のよい積層フィルムを得るためには、A層の厚みを、15~19μmとすることが好ましい。A層の厚みを、15~19μmとすることにより、自己治癒効果があって、耐化粧品性のよい積層フィルムとすることができる。
 本発明の積層フィルムを成形する場合、成形によりA層の厚みは薄くなるため、成形倍率にあわせてA層の厚みを厚くしておくのが有効である。成型倍率1.1倍の成形において好ましいA層の厚みは、16.5~21μm、成型倍率1.6倍の成形において好ましいA層の厚みは24~30μmである。
 本発明の積層フィルムのA層の最低破壊伸度は、好ましくは、80~150℃での最低破壊伸度が65%以上100%未満である。80~150℃での最低破壊伸度が65%以上の場合、十分な伸度を維持でき、100%未満であると、基材フィルムとの追従性がよい。
 本発明の第1、第2の積層フィルムのA層は、例えば、以下の工程をその順に経て、製造することができる。A層の80~150℃における平均破壊伸度を65%以上にできることから、積層工程、加熱工程の後に、エージング工程を経ることが特に好ましい。
 積層工程
 基材フィルムの少なくとも片側に、ポリカプロラクトンセグメント、ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、ウレタン結合、を有する層(A層)を積層する。基材フィルムへのA層の積層は、例えば、A層を形成する材料と、必要に応じて溶媒を含む塗液)を、基材フィルムの少なくとも片側に、塗布する手法を挙げることができる。また、塗布方法としては、グラビアコート法、マイクログラビアコート法、ダイコート法、リバースコート法、ナイフコート法、バーコート法など公知の塗布方法を適用することができる。
 加熱工程
 加熱を行うことにより、層中の溶媒が揮発するとともに、A層を形成する組成物中のイソシアネート基と、他のセグメントとの架橋反応を促進することができる。本発明では、加熱工程後、エージング工程前のA層中のイソシアネート基の残量が、加熱工程前のイソシアネート基の量に対して、10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは実質的に0%である。実質的に0%とは、赤外分光光度計分析を行ってもイソシアネート基が検出されないことを言う。A層中にイソシアネート基が多量に残存すると、その後のエージング工程において、A層中のイソシネート基が、空気中の水分と反応し、ウレア結合を形成し、エージング工程後のA層が硬質化して、A層の平均破壊伸度が低下する原因となる。そのためにエージング工程前に、イソシアネート基の反応をできるだけ進行(より好ましくは完了)させておくことが望ましい。反応が不十分である場合には、A層にタック性が残り、ロール状に巻き取った場合に反対面とのブロッキングが発生し、エージング後には剥離困難となる場合がある。
 加熱工程における加熱温度は150℃以上であることが好ましく、より好ましくは160℃以上であり、さらに好ましくは170℃以上である。基材フィルムの熱収縮によるしわの発生などを考慮すると、加熱温度は180℃以下であることが好ましい。加熱温度が150℃以上であると、A層中のイソシアネート基と、他のセグメント中の水酸基との架橋反応が促進する。
 加熱時間は、1分間以上、好ましくは、2分間以上、更に好ましくは、3分間以上である。生産性、基材フィルムの寸法安定性、透明性の維持の点で、加熱時間は、5分間以下とすることが望ましい。
 本発明では、加熱温度が150℃以上、かつ、加熱時間が1~5分間であることが好ましい。より好ましくは、加熱温度は160℃以上、かつ、加熱時間は1~3分間であり、さらに好ましくは、加熱温度は170℃以上、かつ、加熱時間を1~2分間である。
 加熱工程における加熱方法は、加熱効率の点から熱風で行うのが好ましく、公知の熱風乾燥機、または、ロール搬送やフローティングなどの連続搬送が可能な熱風炉などを適用できる。
 エージング工程
 加熱工程において、加熱した積層フィルムは、その後、エージング処理を行うことが好ましい。エージング温度は、好ましくは、20~80℃であり、より好ましくは、40℃~80℃、さらに好ましくは、60℃~80℃である。エージング時間は、好ましくは、3日間以上、より好ましくは、7日間以上、更に好ましくは、20日間以上である。エージング処理により、ウレタン結合が増えるため、A層の平均破壊伸度を65%以上とすることができる。エージング処理は、所定の温度設定が可能な恒温室で枚葉もしくはロールで行うことが好ましい。
 本発明の積層フィルムの好ましい用途は、成型用途、特にパソコンや携帯電話などの筐体に適用される加飾成型用途である。本発明の積層フィルムは、射出成型、圧空成型、真空成型、熱成型、プレス成形などの成型方法を適用して、成型体とすることができる。中でも、成型時に80℃~180℃に加温される用途に特に好適に適用することができる。
 また、成型用途に用いる場合、本発明の積層フィルムの成型倍率が、1.1~1.6倍であることが好ましい。成型体は、折り曲げ部分や湾曲部分などが特に成型倍率が高くなりやすく、折り曲げ部分や湾曲部分の成型倍率が、1.1~1.6倍であれば、深絞りの成形に対応できるため好ましい。
 <B層を有する積層フィルム>
 本発明の第3の積層フィルムは、基材フィルムの少なくとも片側に、B層を有する積層フィルムであって、B層が、ポリカプロラクトンセグメントとウレタン結合を有し、80℃~150℃におけるB層の平均破壊伸度が65%以上である積層フィルムである。本発明の第3の積層フィルムは、加温成型加工における追従性に優れ、かつ擦り傷などの(表面傷の)補修機能(自己治癒性)を有する。本発明の第3の積層フィルムは、B層表面に傷がついた場合、数秒から数十秒の短時間で傷を消滅させる(自己治癒させる)ことができる。
 ポリカプロラクトンセグメントとは、下記の化学式で示されるセグメントを指す。
Figure JPOXMLDOC01-appb-C000010
(nは1~35の整数)。
 ポリカプロラクトンセグメントを含有する樹脂を含む組成物を用いてB層を形成することにより、B層は、ポリカプロラクトンセグメントを有することができる。ポリカプロラクトンセグメントを含有する樹脂は、少なくとも1以上の水酸基(ヒドロキシル基)を有することが好ましい。水酸基は、ポリカプロラクトンセグメントを含有する樹脂の末端にあることが好ましい。
 ポリカプロラクトンセグメントを有する成分をB層が有することにより、B層は自己治癒性を持つことができる。すなわち、B層表面に傷が付されたとしても、数秒の短時間で傷を消滅させる(自己治癒させる)ことができる。
 ポリカプロラクトンセグメントを含有する樹脂としては、特に、2~3官能の水酸基を有するポリカプロラクトンが好ましい。具体的には、ポリカプロラクトンジオール
Figure JPOXMLDOC01-appb-C000011
(mは1~34の整数、nは1~34の整数、ただし、m+nは4~35の整数である。Rは、-C-、-COC-、-C(CH(CH-である)、
ポリカプロラクトントリオール、
Figure JPOXMLDOC01-appb-C000012
(lは1~28の整数、mは1~28の整数、nは1~28の整数、ただし、l+m+nは3~30の整数である)
ラクトン変性ヒドロキシエチル(メタ)アクリレート
Figure JPOXMLDOC01-appb-C000013
(Rは、HまたはCH、nは1~25の整数)
などのラジカル重合性ポリカプロラクトンを用いることができる。
 また、本発明において、ポリカプロラクトンセグメントを含有する樹脂は、ポリカプロラクトンセグメント以外に、他のセグメントやモノマーが含有(あるいは、共重合)されていても良い。たとえば、ポリジメチルシロキサンセグメントやポリシロキサンセグメントが含有(あるいは、共重合)されていても良い。
 また、本発明において、ポリカプロラクトンセグメントを含有する樹脂中の、ポリカプロラクトンセグメントの重量平均分子量は500~2500であることが好ましく、より好ましい重量平均分子量は1000~1500である。ポリカプロラクトンセグメントの重量平均分子量は500~2500であると、自己治癒性の効果がより発現し、また耐傷性がより向上する。
 ポリカプロラクトンセグメントが共重合される場合であっても、別途添加される場合であっても、B層を形成するために用いる組成物の全成分100質量%においてポリカプロラクトンセグメントの量が5~50質量%であると、傷修復性、耐汚染性の点で好ましい。ここで、組成物の全成分100質量%には、反応に関与しない溶媒は含まない。反応に関与するモノマー成分は含む。
 本発明では、B層がウレタン結合を有する。
 B層を形成するために用いる組成物が、市販のウレタン変性樹脂を含むことにより、B層はウレタン結合を有することが可能となる。また、B層を形成する際に、イソシアネート基と水酸基を反応させてウレタン結合を生成させることによっても、B層はウレタン結合を有することができる。
 本発明では、好ましくは、イソシアネート基と水酸基を反応させてウレタン結合を生成させることにより、B層は、ウレタン結合を有する。イソシアネート基と水酸基を反応させてウレタン結合を生成させることにより、B層の強靱性を向上させると共に弾性回復性(自己治癒性)を向上することができる。
 また、ポリシロキサンセグメントを含有する樹脂やポリジメチルシロキサンセグメントを含有する樹脂が、水酸基を有する場合は、熱などによってこれら樹脂とイソシアネート基を有する化合物との間にウレタン結合を生成させることが可能である。イソシアネート基を有する化合物と、水酸基を有するポリシロキサンセグメントを含有する樹脂や水酸基を有するポリジメチルシロキサンセグメントを含有する樹脂を用いてB層を形成すると、B層の強靱性および弾性回復性(自己治癒性)をさらに高めることができ、好ましい。
 本発明において、イソシアネート基を含有する化合物とは、イソシアネート基を含有する樹脂や、イソシアネート基を含有するモノマーやオリゴマーを指す。イソシアネート基を含有する化合物は、例えば、メチレンビス-4-シクロヘキシルイソシアネート、トリレンジイソシアネートのトリメチロールプロパンアダクト体、ヘキサメチレンジイソシアネートのトリメチロールプロパンアダクト体、イソホロンジイソシアネートのトリメチロールプロパンアダクト体、トリレンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのイソシアヌレート体、ヘキサメチレンイソシアネートのビューレット体などのポリイソシアネート、および上記イソシアネートのブロック体などを挙げることができる。
 これらのイソシアネート基を含有する化合物の中でも、脂環族や芳香族のイソシアネートに比べて脂肪族のイソシアネートが、自己治癒性が高く好ましい。イソシアネート基を含有する化合物は、より好ましくは、ヘキサメチレンジイソシアネートである。また、イソシアネート基を含有する化合物は、イソシアヌレート環を有するイソシアネートが耐熱性の点で特に好ましく、ヘキサメチレンジイソシアネートのイソシアヌレート体が最も好ましい。イソシアヌレート環を有するイソシアネートは、自己治癒性と耐熱特性を併せ持つA層を形成する。
 本発明のB層は、イソシアネート基と水酸基によって、ウレタン結合を生じる熱による反応によって形成されることが好ましい。イソシアネート基を含有する化合物のイソシアネート官能基が2以上であれば、水酸基を有する化合物とより多く連結して、物性を向上させることから好ましい。
 本発明において、B層を形成するには、組成物の全成分100質量%中にイソシアネート基を含有する化合物を11質量%以上22質量%以下含んでいることが好ましい。ただし、組成物の全成分100質量%には、反応に関与しない溶媒は含まない。反応に関与するモノマー成分は含む。
 B層を形成する組成物中には、アルコキシメチロールメラミンなどのメラミン架橋剤、3-メチル-ヘキサヒドロ無水フタル酸などの酸無水物系架橋剤、ジエチルアミノプロピルアミンなどのアミン系架橋剤などの他の架橋剤を含むことも可能である。必要に応じてウレタン結合の形成反応を促進させるためにジブチルスズジラウレート、ジブチルスズジエチルヘキソエートなどの架橋触媒を用いても良い。
 B層は、好ましくは、ポリシロキサンセグメント、および/または、ポリジメチルシロキサンセグメントを含む。B層に、ポリシロキサンセグメント、および/または、ポリジメチルシロキサンセグメントを含むことにより、B層に易滑性を付与することができ、B層表面に傷が付きづらくなる。
 ポリシロキサンセグメントとは、以下の化学式で示されるセグメントを指す。
Figure JPOXMLDOC01-appb-C000014
(Rは、OHまたは炭素数1~8のアルキル基、nは3~100の整数)。
 B層がポリシロキサンセグメント及び/又はポリジメチルシロキサンセグメントを有するためには、B層を形成するために用いる組成物が、ポリシロキサンセグメントを含有する樹脂を含むことで可能となる。
 本発明では、加水分解性シリル基を含有するシラン化合物の部分加水分解物、オルガノシリカゾルまたは該オルガノシリカゾルにラジカル重合体を有する加水分解性シラン化合物を付加させた組成物を、ポリシロキサンセグメントを含有する樹脂として用いることができる。
 ポリシロキサンセグメントを含有する樹脂は、テトラアルコキシシラン、メチルトリアルコキシシラン、ジメチルジアルコキシシラン、γ-グリシドキシプロピルトリアルコキシシラン、γ-グリシドキシプロピルアルキルジアルコキシシラン、γ-メタクリロキシプロピルトリアルコキシシラン、γ-メタクリロキシプロピルアルキルジアルコキシシランなどの加水分解性シリル基を有するシラン化合物の完全もしくは部分加水分解物や有機溶媒に分散させたオルガノシリカゾル、オルガノシリカゾルの表面に加水分解性シリル基の加水分解シラン化合物を付加させたものなどを例示することができる。
 また、本発明において、ポリシロキサンセグメントを含有する樹脂は、ポリシロキサンセグメント以外に、他のセグメント等が含有(共重合)されていても良い。たとえば、ポリカプロラクトンセグメント、ポリジメチルシロキサンセグメントを有するモノマー成分が含有(共重合)されていても良い。
 本発明においては、ポリシロキサンセグメントを含有する樹脂として、イソシアネート基と反応する水酸基を有するモノマー等が共重合されていることが好ましい。ポリシロキサンセグメントを含有する樹脂に、イソシアネート基と反応する水酸基を有するモノマー等が共重合すると、B層の強靱性を向上する。
 ポリシロキサンセグメントを含有する樹脂が水酸基を有する共重合体である場合、水酸基を有するポリシロキサンセグメントを含有する樹脂とイソシアネート基を含有する化合物とを含む組成物を用いてB層を形成すると、効率的に、ポリシロキサンセグメントとウレタン結合とを有するB層とすることができる。
 本発明において、ポリジメチルシロキサンセグメントとは、下記式で示されるセグメントを指す。
Figure JPOXMLDOC01-appb-C000015
(mは10~300の整数)。
 B層が、ポリジメチルシロキサンセグメントを有すると、ポリジメチルシロキサンセグメントがB層の表面に配位することとなる。ポリジメチルシロキサンセグメントがB層の表面に配位することにより、B層表面の潤滑性が向上し、摩擦抵抗を低減することができる。この結果、傷付き性を抑制することができる。
 B層がポリシロキサンセグメント及び/又はポリジメチルシロキサンセグメントを有するためには、B層を形成するために用いる組成物が、ポリジメチルシロキサンセグ
メントを含有する樹脂を含むことで可能である。本発明においては、ポリジメチルシロキサンセグメントを含有する樹脂としては、ポリジメチルシロキサンセグメントにビニルモノマーが共重合された共重合体を用いることが好ましい。
 B層を構成する全成分100質量%において、B層が、ポリカプロラクトンセグメント、ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、ウレタン結合の全てを有する樹脂を、80質量%以上100質量%以下を占めることが、さらに好ましい。B層を構成する全成分100質量%において、ポリカプロラクトンセグメント、ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、ウレタン結合の全てを有する樹脂が、80質量%以上100質量%以下を占めることにより、自己治癒性が高まる。
 本発明の第3の積層フィルムは、基材フィルムの少なくとも片側に、B層を有する積層フィルムであって、80℃~150℃におけるB層の平均破壊伸度が65%以上である積層フィルムである。80℃~150℃におけるB層の平均破壊伸度は、好ましくは80%以上、更に好ましくは100%以上である。B層の平均破壊伸度、基材フィルムとの追従性の点から150%未満であることが好ましい。B層の平均破壊伸度が65%未満の場合には、高度な成型(高倍率成型)や深絞り加工などの成型時にB層の破壊や剥離が生じ、成型時の伸びが不均一になり、部分的に著しい干渉縞が発生する。
 更に、80~150℃でのB層の最低破壊伸度が65%以上である場合、さらに好ましい。また、80~150℃でのB層(自己治癒層)の最低破壊伸度を65%以上であると、150℃以上の成型温度においても、十分な伸度を維持できる。また、80~150℃でのB層の最低破壊伸度は、基材フィルムとの追従性の点から100%未満であることが好ましい。
 B層の表面と硝子鏡面との静摩擦係数は、0.2~0.8が好ましい。これにより、成型時の金型との摩擦抵抗を低減でき、フィルムのセッティングが容易になる。
 静摩擦係数を0.2~0.8とするためには、B層を形成するための組成物中に、易滑性賦与効果のあるポリジメチルシロキサンセグメントを含有する樹脂を用いることが特に有効である。B層の表面が著しくフラットな場合には、B層に有機、無機の粒子を含有させ、ナノインプリントなどによりB層表面に微細な形状を転写させることが有効である。このような手法を採用することにより、B層の表面と硝子鏡面との静摩擦係数を容易に0.2~0.8とすることができる。
 特に透明性が必要な場合には、平均粒子径が10~200nmのシリカ、アルミナ、酸化ジルコニア、酸化チタンなどの無機酸化物粒子を用いることが好ましい。無機酸化物粒子の含有量は、B層100質量部中に、5重量部以上30重量部以下が好ましく、より好ましくは、10質量部以上20質量部以下である。無機酸化物粒子は、有機溶剤に分散させたオルガノゾルが好ましい。
 B層の平均破壊伸度を65%以上とするためには、B層は、以下の積層工程、加熱工程、エージング工程により、製造することが好ましい。
 積層工程
 基材フィルムへのB層の積層手法は、例えば、B層を形成する材料と、必要に応じて溶媒を含む塗液(B層を形成するために用いる組成物)を、基材フィルムの少なくとも片側に、塗布する手法を挙げることができる。また、塗布方法としては、グラビアコート法、マイクログラビアコート法、ダイコート法、リバースコート法、ナイフコート法、バーコート法など公知の塗布方法を適用することができる。
 B層の好ましい厚みは15~19μmである。15~19μmであると、自己治癒性、伸び、耐化粧品性全てにおいて特に優れたものとすることができる。成型倍率1.1倍の成形において好ましいB層厚みは、16.5~21μm、成型倍率1.6倍の成形において好ましいB層厚みは24~30μmである。
 加熱工程
 加熱を行うことにより、層中の溶媒が揮発するとともに、B層を形成するために用いる組成物中のイソシアネート基と、他のセグメントとの架橋反応を促進することができる。本発明では、加熱工程後、エージング工程前のB層中のイソシアネート基の残量が、加熱工程前のイソシアネート基の量に対して、10%以下であることが好ましく、より好ましくは5%以下、更に好ましくは実質的に0%である。実質的に0%とは、赤外分光光度計分析を行ってもイソシアネート基が検出されないことを言う。B層中にイソシアネート基が多量に残存すると、その後のエージング工程において、B層中のイソシネート基が、空気中の水分と反応し、ウレア結合を形成し、エージング工程後のB層が硬質化し、B層の平均破壊伸度が低下する原因となる。そのためにエージング工程前に、イソシアネート基の反応をできるだけ進行(より好ましくは完了)させておくことが望ましい。低温乾燥などにより、イソシアネート基の反応が不十分である場合には、B層にタック性が残り、ロール状に巻き取った場合に反対面とのブロッキングが発生し、エージング後には剥離困難となる場合がある。そのためにシリコーンなどを塗布した離型フィルムをセパレーターとして導入する必要があり、コスト的に不利になる。
 B層を形成するために用いる組成物中のイソシアネート基を含有する化合物中のイソシアネート基と、他のセグメント中の水酸基との架橋反応を促進させるため、加熱工程における加熱温度は150℃以上であることが好ましく、より好ましくは160℃以上であり、さらに好ましくは170℃以上である。基材フィルムの熱収縮によるしわの発生などを勘案すると、加熱温度の上限は180℃以下であることが好ましい。
 加熱時間は、1分間以上、好ましくは2分間以上、更に好ましくは3分間以上である。生産性、基材フィルムの寸法安定性、透明性の維持の点で、加熱時間は、5分間以下とすることが望ましい。具体的には、本発明では、加熱温度を150℃以上としかつ加熱時間を1~5分間とすることが好ましい。より好ましくは、加熱温度を160℃以上としかつ加熱時間を1~3分間とすることであり、さらに好ましくは加熱温度を170℃以上としかつ加熱時間を1~2分間とすることである。
 加熱工程における加熱方法は、加熱効率の点から熱風で行うのが好ましく、公知の熱風乾燥機、または、ロール搬送やフローティングなどの連続搬送が可能な熱風炉などを適用できる。
 エージング工程
 加熱工程において、高温かつ短時間で加熱させた積層フィルムは、その後、エージング温度を20~80℃とし、かつエージング時間を3日間以上、好ましくは7日間以上、更に好ましくは20日間以上とするエージング処理を経ることが好ましい。エージング処理により、ウレタン結合が増えるため、B層の平均破壊伸度が向上して、B層の平均破壊伸度を65%以上とすることができる。
 エージング工程におけるエージング温度は、20~80℃であることが好ましく、より好ましくは40℃~80℃であり、さらに好ましくは60℃~80℃である。なお、60℃~80℃でエージングする場合、エージング時間は3~15日間とすることが好ましい。エージング処理は、所定の温度設定が可能な恒温室で枚葉もしくはロールで処理することが好ましい。
 本発明の積層フィルムの好ましい用途は、成型用途、特にパソコンや携帯電話などの筐体に適用される加飾成型用途である。本発明の積層フィルムは、射出成型、圧空成型、真空成型、熱成型、プレス成形などの成型方法を適用して、成型体とすることができる。中でも、成型時に80℃~180℃に加温される用途に特に好適に適用することができる。
 また、成型用途に用いる場合、本発明の積層フィルムの成型倍率が、1.1~1.6倍であることが好ましい。成型体は、折り曲げ部分や湾曲部分などが特に成型倍率が高くなりやすく、折り曲げ部分や湾曲部分の成型倍率が、1.1~1.6倍であれば、深絞りの成形に対応できるため好ましい。
 [特性の測定方法および効果の評価方法]
 本発明における特性の測定方法および効果の評価方法は以下のとおりである。
 (1)A層またはB層の厚み
 積層フィルムの超薄膜断面切片を切り出し、RuO染色あるいはOsO染色により、透過型電子顕微鏡(日立(株)製 H-7100FA)にて層厚みを測定した。測定は10サンプルの平均値とした。また、成型フィルムの測定個所は、フィルムの中心部分50mm四方を切り取り、その中の3箇所を測定した。
 (2)25℃におけるB層の平均破壊伸度、80~150℃におけるB層の平均破壊伸度、80~150℃におけるB層の最低破壊伸度
 積層フィルムを10mm幅×200mm長に切り出し、長手方向にチャックで把持してインストロン型引っ張り試験機(インストロン社製超精密材料試験機MODEL5848)にて引っ張り速度100mm/分で伸長した。測定雰囲気温度を25℃とし、伸度5%単位でサンプルを採取した。採取したサンプルの薄膜断面を切り出し、観察するB層の厚みが、透過型電子顕微鏡の観察画面上において、30mm以上になるような倍率でB層を観察し、B層平均厚みの50%以上のクラック(亀裂)が発生している場合をクラック有り(B層の破壊有り)として、当該フィルムの破壊伸度(25℃-1回目)とした。同一の測定を計3回行い、破壊伸度(25℃-1回目)、破壊伸度(25℃-2回目)および破壊伸度(25℃-3回目)を得て、それらの平均値を25℃におけるB層の平均破壊伸度とした。
 次いで、測定雰囲気温度を80℃、100℃、125℃、150℃とした以外は、測定雰囲気温度が25℃の場合と同様にして、80℃、100℃、125℃、150℃におけるB層の平均破壊伸度を求めた。得られた80℃、100℃、125℃、150℃におけるB層の平均破壊伸度の平均値を、80~150℃におけるB層の平均破壊伸度とした。
 また、得られた80℃、100℃、125℃、150℃におけるB層の平均破壊伸度の最小値を80~150℃におけるB層の最低破壊伸度とした。
 25℃におけるA層の平均破壊伸度、80~150℃におけるA層の平均破壊伸度、80~150℃におけるA層の最低破壊伸度は、B層の25℃における平均破壊伸度、80~150℃における平均破壊伸度、80~150℃における最低破壊伸度と同様の方法で測定した。
 (3)B層表面と硝子鏡面との静摩擦係数
 ヘイドン型摩擦試験器(新東科学(株)製、HEIDON-14R)を用い、ASTM-D1894(1995年制定)に準じて鏡面硝子(中心線平均粗さ5nm以下)とB層表面の静摩擦係数を測定し、5サンプルの平均値を算出した。
 (4)A層またはB層の自己治癒性
 JIS K5600(1999年制定)『引っ掻き硬度(鉛筆法)』に従って、塗膜表面に傷を形成した。条件は以下のとおり。
 引っ掻き装置:鉛筆引っ掻き試験機(KT-VF2391)
 鉛筆:HB鉛筆(“ユニ”三菱鉛筆製)
 荷重:750g
 引っ掻き速度:10mm/s 。
 サンプルの真上にハイスピードカメラを設置して、傷か入ってから見えなくなるまでの時間を計測し、回復時間とした。回復時間が速ければそれだけ自己治癒性が高いことを表す。測定は3回行い、その平均値を採った。また、測定は温調されているアクリルボックス内で行い、A層については、温度5℃、10℃、20℃の時で行った。また、B層については温度25℃の時で行った。また、成型フィルムの測定個所は、フィルムの中心部分50mm四方を切り取り、その中の3箇所を測定した。カメラの撮影条件は以下のとおりである。
 光源:LuminarAce LA-150UXのリングライトをカメラ先端に設置
 カメラ:VW-6000(キーエンス株式会社)
 sample rate:10pps
 exposhure time:20000μs 。
 (5)タック性
 加熱工程で加熱した積層フィルムのA層またはB層の表面を、触指でタック性(粘着性)を観察し、以下の評価で判定した。
良好 :全く粘着しない(フィルムが指に付かない)
やや不良 :やや粘着する(やや粘着するがフィルムは指に付かない)
不良 :粘着する(フィルムが指に付く)。
 (6)平面性
 エージング工程を行った積層フィルムを黒色紙の上に置き、30cm直上に直線棒状蛍光灯を置いて蛍光灯をフィルム面に映し出し、蛍光灯のゆがみの程度で平面性を評価した。
良好 : 蛍光灯のゆがみが全くない
不良 : はっきりとゆがんで見える。
 (7)耐スチールウール性
 2cm×2cmのスチールウール(#0000)を用い、この上に200gの荷重をかけて試料表面を擦り、傷が発生する時の往復回数を目視でカウントした。
 (8)密着性
 JIS K 5600(1999年制定)に記載の碁盤目試験を行った。具体的にはA層面上に1mm間隔で縦横に11本の切れ目を入れ、1mm角の碁盤目を100個作った。この上にセロハンテープ(セキスイ製)を貼り付け、90度の角度で素早く剥がし、剥がれずに残った碁盤目の状態を目視観察し、下記の基準に則り密着性の評価を行った。
良好:剥離が認められず、密着性が非常に優れている
不良:剥離が目立ち実用上問題がある。
 (9)イソシアネート基の残存量、ウレタン結合の有無
 エージング経過後に、FT-IR装置(Digilab製、FTS-7000e)にて、A層表面を下記方法で測定し、X/Yにて表示する。値が小さいほどイソシアネート基の残存量は少ないことを表す。また、ウレタン結合の有無は、Zの吸収ピークの有無で判断した。
X:2280cm―1のピーク強度(イソシアネート基の吸収)
Y:2950cm―1のピーク強度(アクリレート基の吸収)
Z:1701cm―1または1719cm―1のピーク強度(ウレタン結合の吸収)
1回反射ATR装置:Thermo Spectra-Tech社製
IRE:Ge
入射角:45°
分解能 : 8cm―1 
積算回数 : 128回 。
 (10)A層のTg
 示差熱量分析(DSC)を用い、JIS-K-7122(1987年)に従って測定・算出した。刃ナイフで削りだしたA層のサンプルを、アルミ製のパンに詰め、-100℃から100℃まで20℃/minで昇温した。
装置:セイコー電子工業(株)製”ロボットDSC-RDC220”
   データ解析”ディスクセッションSSC/5200”
サンプル質量:5mg。
 (11)接触角
 温度25℃、相対湿度65%の雰囲気下で試料を24時間放置後、協和界面化学(株)製接触角計CA-D型を用いて、滴下1分後における蒸留水との接触角を測定した。なお、各試料につき3回測定を行い、平均値を接触角とした。
 (12)耐化粧品性
 市販品のトリ(カプリルーカプリン酸)グリセリン、2-エチルヘキサン酸セトステアリル、メチルポリシロキサン、及びミリスチン酸イソプロピルの等量混合液を、A層表面に塗り、40℃・95%の恒温恒湿オーブン内に6時間保存した。その後、常温下で1時間乾燥させた後に、表面をガーゼできれいに拭き取った。一日後に表面を観察して、下記の基準に則り判定を行った。また、成型フィルムの測定個所は、フィルムの中心部分50mm四方の中で行った。
最良:白斑の発生なし
良好:わずかに白斑発生するが拭き取ればきれいになる
やや良好:わずかに白斑発生し拭き取ればきれいになるが、一日後にごく白斑が発生する。
不良:白斑が発生し、拭き取っても消えない。
 (13)成型
 3室ストレッチャー(KARO IV、ブルックナー製)で、フィルムの端部をクリップにて把持し、以下の条件にて同時二軸延伸を行った。この時、クリップでのサンプルの外れを防止するために、サンプルの四辺を、幅10mm、厚み100μmのポリエチレンテレフタレートフィルムで挟んで補強している。本法による延伸は、実際の成型と同じ挙動で積層フィルムが延伸されるため、得られたフィルムは成型体とみなすことができる。なお、予熱のみで延伸をしていない場合においても、成型フィルムとする。
 フィルムサイズ:100mm×100mm
 クリップ圧力:5MPa
 予熱・延伸温度:100℃
 ファン風量:50%
 予熱時間:40秒
 延伸速度:20%/sec 。
 (14)成型倍率
 積層フィルムおよび成型フィルムの断面を、ミクロトーム(日本ミクロトーム製、RMS-50)のダイヤモンドナイフにて切削し、白金で蒸着後、SEM(日立製)にて、成形前と成形後のA層の厚みを測定し、下記の式から成型倍率を求めた。測定個所は成型フィルムの中心部分50mm四方を切り取り、その中の3箇所を測定した。
 A層の厚さ(成型前)/A層の厚さ(成型後)。
 (15)成型不良
 成型後、A層の状態を目視観察し、下記の基準に則り評価を行った。また、観察部分は、成型後のフィルムの中心部分50mm四方の中で行った。
良好:クラックや剥離が発生せず、表面性に問題ない
やや不良:クラックや剥離がわずかに見られる
不良:クラックや剥離が生じて実用上問題がある。
 (参考例1)原料A1の作成
 <ポリシロキサン(a)の合成>
 攪拌機、温度計、コンデンサおよび窒素ガス導入管を備えた500ml容量のフラスコにエタノール106質量部、テトラエトキシシラン320質量部、脱イオン水21質量部、および1質量%塩酸1質量部を仕込み、85℃で2時間保持した後、昇温しながらエタノールを回収し、180℃で3時間保持した。その後、冷却し、粘調なポリシロキサン(a)を得た。
 <ポリジメチルシロキサン系グラフト共重合体(a)の合成>
 ポリシロキサン(a)の合成と同様の装置を用い、トルエン50質量部、およびメチルイソブチルケトン50質量部、ポリジメチルシロキサン系高分子重合開始剤(和光純薬株式会社製、VPS-0501)20質量部、メタクリル酸メチル30質量部、メタクリル酸ブチル26質量部、2-ヒドロキシエチルメタクリレート23質量部、メタクリル酸1質量部および1-チオグリセリン0.5質量部を仕込み、80℃で8時間反応させてポリジメチルシロキサン系ブロック共重合体(a)を得た。得られたポリジメチルシロキサン系ブロック共重合体(a)は、固形分濃度が50質量%であった。
 <原料A1の調合>
 ポリジメチルシロキサン系ブロック共重合体(a)75質量部、ポリシロキサン(a)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製 プラクセル308、重量平均分子量850)15質量部を配合(混合)した混合物、100質量部に対し、ヘキサメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)を15質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料A1を作成した。
 [実施例1]
 原料A1を、厚み100μmのポリエステル基材フィルム(東レ(株)製、“ルミラー”U46)上に、エージング工程後のA層厚みが30μmとなるようにワイヤーバーを用いて塗布した。塗布後、160℃で2分間、熱風乾燥機で加熱した(加熱工程)。その後、20℃で14日間加熱(エージング)を行い(エージング工程)、積層ポリエステルフィルムを得た。次に、この得られたフィルムの成型を行った。このとき延伸は行わずに予熱だけを行った。得られた結果を表1に示す。
 得られたフィルム(フィルムと記載した)と成型フィルムの評価結果を表1に示す。低温でも優れた自己治癒性を示した。
 [実施例2]
 ワイヤーバーの番手を変更してA層の厚みを20μmに変更した以外は、実施例1と同様にして積層ポリエステルフィルムと成型フィルムを得た。得られた結果表1に示す。A層厚みを薄くしても優れた自己治癒性を示した。
 [実施例3~4]
 実施例3は、成型時の延伸を縦方向に1.2倍、横方向に1.2倍の倍率で行った。実施例4は成型時の延伸を縦方向に1.3倍、横方向に1.3倍の倍率で行った。それ以外は、実施例1と同様にして積層ポリエステルフィルムと成型フィルムを得た。得られた結果を表1に示す。A層厚みを薄くしても優れた自己治癒性を示し、また、成形不良も見られなかった。
 (参考例2)原料A2の作成
 <原料A2の調合>
 ポリジメチルシロキサン系ブロック共重合体(a)75質量部、ポリシロキサン(a)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製、プラクセル308、重量平均分子量850)15質量部を配合(混合)した混合物、100質量部に対し、ヘキサメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)を17質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料A2を作成した。
 [実施例5]
 原料A2を、実施例3と同様にして積層ポリエステルフィルムと成型フィルムを得た。成型時の延伸倍率は、縦方向1.2倍、横方向1.2倍であった。得られた結果を表1に示す。A層厚みを薄くしても優れた自己治癒性を示し、また、成形不良も見られなかった。
 (参考例3)原料A3の作成
 <原料A3の調合>
 ポリジメチルシロキサン系ブロック共重合体(a)75質量部、ポリシロキサン(a)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製、プラクセル308、重量平均分子量850)15質量部を配合(混合)した混合物、100質量部に対し、ヘキサメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)を8質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料A3を作成した。
 [実施例6]
 原料A3を、実施例3と同様にして積層ポリエステルフィルムと成型フィルムを得た。成型時の延伸倍率は、縦方向1.2倍、横方向1.2倍であった。得られた結果を表1に示す。A層厚みを薄くしても優れた自己治癒性を示し、また、成形不良も見られなかった。
 (参考例4)原料A4の作成
 <ポリシロキサン(b)の合成>
 攪拌機、温度計、コンデンサ及び窒素ガス導入管を備えた500mlのフラスコにエタノール106質量部、メチルトリメトキシシラン270質量部、γ-メタクリロキシプロピルメチルジメトキシシラン23質量部、脱イオン水100質量部、1質量%塩酸1質量部及びハイドロキノンモノメチルエーテル0.1質量部を仕込み、80℃で3時間反応させ、ポリシロキサン(b)を合成した。これをメチルイソブチルケトンで50質量%に調整した。
 <ポリジメチルシロキサン-ポリカプロラクトン系グラフト共重合体(b)の合成>
 ポリシロキサン(b)の合成に用いた装置を用い、トルエン50質量部、酢酸イソブチル50質量部を仕込み、110℃まで昇温した。別にメタクリル酸メチル20質量部、カプロラクトンメタクリルエステル(ダイセル化学工業(株)製 プラクセルFM-5)32質量部、2-ヒドロキシエチルメタクリレート17質量部、ポリシロキサン(b)10質量部、片末端メタクリル基ポリジメチルシロキサン(東亞合成化学工業(株)製、AK-32)20質量部、およびメタクリル酸1質量部、1,1-アゾビスシクロヘキサン-1-カルボニトリル2質量部を混合した。この混合モノマを上記のトルエン、酢酸ブチルの混合液に2時間かけて滴下した。その後、110℃で8時間反応させ、固形分濃度50質量%の水酸基を有するポリジメチルシロキサン-ポリカプロラクトン系グラフト共重合体(b)を得た。得られたブロック共重合体は、固形分50質量%であった。
 <原料A4の調合>
 ポリジメチルシロキサン-ポリカプロラクトン系グラフト共重合体(b)100質量部に、架橋剤としてヘキサンメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)12質量部を添加し、更にメチルエチルケトンを用いて固形分濃度40質量%に調整した原料A4を作成した。
 [実施例7]
 原料A4を、実施例3と同様にして積層ポリエステルフィルムと成型フィルムを得た。成型時の延伸倍率は、縦方向1.2倍、横方向1.2倍であった。得られた結果を表1に示す。A層厚みを薄くしても優れた自己治癒性を示し、また、成形不良も見られなかった。
 (参考例5)原料A5の作成
 <原料A5の調合>
 ポリジメチルシロキサン系ブロック共重合体(a)75質量部、ポリシロキサン(a)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製、プラクセル312、重量平均分子量1250)15質量部を配合(混合)した混合物、100質量部に対し、ヘキサメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)を15質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料A5を作成した。
 [実施例8]
 原料A5を、実施例1と同様にして積層ポリエステルフィルムと成型フィルムを得た。また、エージング工程後のA層厚みが18μmとなるようにした。得られた結果を表1に示す。A層厚みを薄くしても優れた自己治癒性を示した。
Figure JPOXMLDOC01-appb-T000016
 [実施例9~10]
 A層の厚みと成型倍率を変更した以外は、実施例8と同様にして積層ポリエステルフィルムと成型体を得た。実施例9は、成型時の延伸を縦方向に1.2倍、横方向に1.2倍の倍率で行った。実施例10は成型時の延伸を縦方向に1.3倍、横方向に1.3倍の倍率で行った。得られた結果を表2に示す。A層厚みを薄くしても優れた自己治癒性を示し、また、成形不良も見られなかった。
 (参考例6)原料A6の作成
 <ポリジメチルシロキサン系グラフト共重合体(c)の合成>
 ポリシロキサン(a)の合成と同様の装置を用い、トルエン50質量部、およびメチルイソブチルケトン50質量部、ポリジメチルシロキサン系高分子重合開始剤(和光純薬株式会社製、VPS-0501)20質量部、メタクリル酸メチル18質量部、メタクリル酸ブチル38質量部、2-ヒドロキシエチルメタクリレート23質量部、メタクリル酸1重量部および1-チオグリセリン0.5質量部を仕込み、180℃で8時間反応させてポリジメチルシロキサン系ブロック共重合体(c)を得た。得られたブロック共重合体は、固形分50質量%であった。
 <原料A6の調合>
 ポリジメチルシロキサン系ブロック共重合体(c)75質量部、上記のポリシロキサン(c)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製、プラクセル308、分子量850)15質量部を配合(混合)した混合物、100重量部に対し、ヘキサメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)を15質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料A6を作成した。
 [実施例11]
 原料A6を、実施例1と同様にして積層ポリエステルフィルムと成型フィルムを得た。また、エージング工程後のA層厚みが15μmとなるようにした。得られた結果を表2に示す。A層厚みを薄くしても優れた自己治癒性を示した。
 [実施例12~13]
 A層の厚みと成型延伸の倍率を変更した以外は、実施例11と同様にして積層ポリエステルフィルムと成型フィルムを得た。実施例12は、成型時の延伸を縦方向に1.2倍、横方向に1.2倍の倍率で行い、エージング工程後のA層厚みが23μmとなるようにした。実施例13は、成型時の延伸を縦方向に1.3倍、横方向に1.3倍の倍率で行い、エージング工程後のA層厚みが19μmとなるようにした。得られた結果を表2に示す。A層厚みを薄くしても優れた自己治癒性を示し、また、成形不良も見られなかった。
 [実施例14]
 実施例13と同様の方法にて得た成型フィルムの表面に、「AiPlasma AS」(松下電工製)を、出力100W、速度10m/分の速度、フィルムとノズル間の距離5mmとして、プラズマ処理を行った。得られた結果を表2に示す。表面処理を行うことにより耐化粧品性が向上した。
 [実施例15]
 ポリエステル樹脂Cとして、固有粘度0.65、融点255℃のポリエチレンテレフタレート(以下、PETとも表す)[東レ製F20S]を用い、ポリエステル樹脂Dとして固有粘度0.72のポリエチレンテレフタレートの共重合体(シクロヘキサンジカルボン酸30mol%、スピログリコール成分20mol%共重合したPET)に酸化防止剤である“アデカスタブ”AS36[ADEKA製]を0.1重量%添加したものを用いた。これらポリエステル樹脂Cおよびポリエステル樹脂Dは、それぞれ乾燥した後、別々の押出機に供給した。
 ポリエステル樹脂Cおよびポリエステル樹脂Dは、それぞれ、押出機にて270℃の溶融状態とし、FSSタイプのリーフディスクフィルタを5枚介した後、ギアポンプにて吐出比がポリエステル樹脂C/ポリエステル樹脂D=1.2/1になるように計量しながら、スリット数267個のスリット板1とスリット数269個のスリット板2とスリット数267個のスリット板3によってポリエステル樹脂Cおよびポリエステル樹脂Dを交互に積層し、フィードブロックにて合流させて、801層に積層された積層体とした。合流したポリエステル樹脂Cおよびポリエステル樹脂Dは、フィードブロック内にて各層の厚みが表面側から反対表面側に向かうにつれ徐々に厚くなるように変化させ、ポリエステル樹脂Aが400層、ポリエステル樹脂Bが401層からなる厚み方向に交互に積層された構造とした。また、隣接するC層とD層の層厚みはほぼ同じになるようにスリット形状を設計した。この設計では、350nm~1200nmに反射帯域が存在するものとなる。このようにして得られた計801層からなる積層体を、マルチマニホールドダイに供給、さらにその表層に別の押出機から供給したポリエステル樹脂Aからなる層を形成し、シート状に成形した後、静電印加にて表面温度25℃に保たれたキャスティングドラム上で急冷固化した。ポリエステル樹脂Cとポリエステル樹脂Dが合流してからキャスティングドラム上で急冷固化されるまでの時間が約8分となるように流路形状および総吐出量を設定した。
 得られたキャストフィルムを、75℃に設定したロール群で加熱した後、延伸区間長100mmの間で、フィルム両面からラジエーションヒーターにより急速加熱しながら、縦方向に3.0倍延伸し、その後一旦冷却した。次に、この一軸延伸フィルムをテンターに導き、100℃の熱風で予熱後、110℃の温度で横方向に3.3倍延伸した。延伸したフィルムは、そのまま、テンター内で235℃の熱風にて熱処理を行い、続いて同温度にて幅方向に5%の弛緩処理を施し、その後、室温まで徐冷後、巻き取った。得られたフィルムの厚みは、100μmであった。得られた積層フィルムは、層間剥離がなく、優れた光沢調を有していた。
 この積層フィルムに実施例13と同様にしてA層を形成して、積層ポリエステルフィルムと成型フィルムを得た。得られた結果を表2に示す。得られたフィルムと成型フィルムは優れた金属調の外観と自己治癒性を有していた。
 [実施例16]
 1,4-シクロヘキサンジメタノール成分が、グリコール成分に対して、33mol%共重合された共重合ポリエステル(イーストマン・ケミカル社製EatsterPETG6763)と、固有粘度0.65、融点255℃のPET[東レ製F20S]を質量比76:24で混合した。混合物を、ベント式二軸押出機を用いて、280℃で溶融混練した。この結果、副生したジエチレングリコールが、樹脂中のグリコール成分に対して、2モル%共重合された、1,4-シクロヘキサンジメタノール25mol%共重合ポリエチレンテレフタレート樹脂が得られた。これを、1,4-シクロヘキサンジメタノール25mol%共重合ポリエチレンテレフタレート樹脂(ジエチレングリコール共重合率2モル%)と記載する。
 固有粘度0.65、融点255℃のPET[東レ製F20S]と、1,4-シクロヘキサンジメタノール25mol%共重合ポリエチレンテレフタレート樹脂(ジエチレングリコール共重合率2モル%)を質量比70:30で混合した。混合物を、真空乾燥機にて180℃4時間乾燥し、水分を十分に除去した後、単軸押出機に供給、275℃で溶融し、異物の除去、押出量の均整化を行った後、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸フィルムを得た。
 次いで、長手方向への延伸前に加熱ロールにてフィルム温度を上昇させ、予熱温度を90℃、延伸温度を95℃で長手方向に3.2倍延伸し、すぐに40℃に温度制御した金属ロールで冷却化した。
 次いでテンター式横延伸機にて予熱温度90℃、延伸温度100℃で幅方向に3.5倍延伸し、そのままテンター内にて幅方向に4%のリラックスを掛けながら温度210℃で5秒間の熱処理を行い、フィルム厚み188μmの二軸配向ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムは、耐傷性がやや弱いものの透明性と成形性に非常に優れていた。
 この二軸配向ポリエステフィルムに実施例13と同様にしてA層を形成して、積層ポリエステルフィルムと成型フィルムを得た。得られた結果を表2に示す。得られたフィルムと成型フィルムは、自己治癒性に優れていた。
 (参考例7)原料A7の作成
 <原料A7の調合>
 ポリジメチルシロキサン系ブロック共重合体(a)75質量部、ポリシロキサン(a)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製 プラクセル308、重量平均分子量850)15質量部を配合(混合)した混合物、100質量部に対し、ヘキサメチレンジイソシアネートのビウレット体(バイエル(株)製、デスモジュールN3200)を15質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料A7を作成した。
 [実施例17]
 原料A7を、実施例1と同様の条件で、積層ポリエステルフィルムを得た。次に、実施例1と同様して、この得られたフィルムの成型を行った。得られたフィルムと成型フィルムの評価結果を表2に示す。低温でも優れた自己治癒性を示した。
Figure JPOXMLDOC01-appb-T000017
 (参考例8)原料A8の作成
 <原料A8の調合>
 ポリジメチルシロキサン系ブロック共重合体(a)75質量部、ポリシロキサン(a)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製 プラクセル308、重量平均分子量850)15質量部を配合(混合)した混合物、100質量部に対し、ヘキサメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)を36質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料A8を作成した。
 [比較例1]
 原料A8を、実施例3と同様にして、積層ポリエステルフィルムと成型フィルムを得た。成型時の延伸を縦方向に1.2倍、横方向に1.2倍の倍率で行った。得られた結果を表3に示す。A層のガラス転移点は、11℃、A層の温度10℃での傷の回復時間が167秒であった。
 (参考例9)原料A9の作成
 <原料A9の調合>
 ポリジメチルシロキサン系ブロック共重合体(a)75質量部、ポリシロキサン(a)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製 プラクセル308、重量平均分子量850)15質量部を配合(混合)した混合物、100質量部に対し、ヘキサメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)を25質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料A9を作成した。
 [比較例2]
 原料A9を、実施例3と同様にして、積層ポリエステルフィルムと成型フィルムを得た。成型時の延伸を縦方向に1.2倍、横方向に1.2倍の倍率で行った。得られた結果を表3に示す。A層のガラス転移点は、6.1℃、A層の温度10℃での傷の回復時間が145秒であった。
 (参考例10)原料A10の作成
 <原料A10の調合>
 ポリジメチルシロキサン系ブロック共重合体(a)75質量部、ポリシロキサン(a)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製、プラクセル308、重量平均分子量850)15質量部を配合(混合)した混合物、100質量部に対し、ヘキサメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)を7質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料A10を作成した。
 [比較例3]
 原料A10を、実施例3と同様にして、積層ポリエステルフィルムと成型フィルムを得た。成型時の延伸を縦方向に1.2倍、横方向に1.2倍の倍率で行った。得られた結果を表3に示す。A層のガラス転移点は、-31.2℃、A層の温度10℃での傷の回復時間が4.5秒であった。比較例3は硬化が不十分であり、タック性、密着性、耐スチール性が悪く、実用に耐えないものであった。
 (参考例11)原料B1の作成
<ポリジメチルシロキサン系グラフト共重合体(d)の合成>
 モノマー組成をメタクリル酸メチル20質量部、メタクリル酸ブチル26質量部、2-ヒドロキシエチルメタクリレート23質量部、ポリシロキサン(a)10質量部、メタクリル酸1質量部および片末端メタクリル変性ポリジメチルシロキサン(信越化学工業株式会社製、X-22-174DX)20質量部とした以外、参考例3と同様の方法でポリジメチルシロキサン系グラフト共重合体(d)を合成した。得られたグラフト共重合体Gは、固形分50%であった。
 <原料B1の調合>
 ポリジメチルシロキサン系ブロック共重合体(d)100 質量部に、架橋剤としてヘキサメチレンジイソシアネートのトリメチロールプロパンアダクト体(大日本インキ化学工業株式会社製、バーノックDN-950,固形分:75質量%)12質量部を添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料B1を作成した。
 [比較例4]
 原料A1の替わりに原料B1を使用した以外は、実施例3と同様にして、積層ポリエステルフィルムと成型フィルムを得た。原料B1には、カプロラクトンセグメントが含まれていない。成型時の延伸を縦方向に1.2倍、横方向に1.2倍の倍率で行った。得られた結果を表3に示す。A層のガラス転移点は、-11℃、A層の温度10℃での傷の回復時間が500秒以上であった。
 (参考例12)原料B2の作成
 <ポリジメチルシロキサン系グラフト共重合体(e)の合成> 
 上記のポリシロキサン(a)の合成と同様の装置を用い、トルエン50質量部およびメチルイソブチルケトン50質量部を仕込み、80℃まで昇温した。別に、メタクリル酸メチル30質量部、メタクリル酸ブチル26質量部、2-ヒドロキシエチルメタクリレート23質量部、メタクリル酸1質量部および片末端メタクリル変性ポリジメチルシロキサン(信越化学工業株式会社製,X-22-174DX)20質量部およびアゾビス-2-メチルブチロニトリル(日本ヒドラジン工業株式会社製,ABN-E)1質量部を混合した。混合モノマーをトルエンおよびメチルイソブチルケトンの混合液に3時間かけて滴下した。その後6時間反応させて、ポリジメチルシロキサン系グラフト共重合体(e)を得た。得られたグラフト共重合体(e)は、固形分50質量%であった。
 <原料B2の調合>
 ポリジメチルシロキサン系ブロック共重合体(e)85質量部に、水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製 プラクセル308、分子量850)15質量部を配合し、架橋剤としてヘキサメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)18質量部を添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料B2を作成した。
 [比較例5]
 原料A1の替わりに原料B2を使用した以外は、実施例3と同様にして、積層ポリエステルフィルムと成型フィルムを得た。成型時の延伸を縦方向に1.2倍、横方向に1.2倍の倍率で行った。得られた結果を表3に示す。A層のガラス転移点は、4℃、A層の温度10℃での傷の回復時間が4秒であった。
 (参考例13)原料A11の作成
 <原料A11の調合>
 ポリジメチルシロキサン-ポリカプロラクトン系グラフト共重合体(b)100質量部に、架橋剤としてヘキサンメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)25質量部を添加し、更にメチルエチルケトンを用いて固形分濃度40質量%に調整した原料A11を作成した。
 [比較例6]
 原料A1の替わりに原料A11を使用した以外は、実施例3と同様にして積層ポリエステルフィルムと成型フィルムを得た。成型時の延伸を縦方向に1.2倍、横方向に1.2倍の倍率で行った。得られた結果を表3に示す。A層のガラス転移点は、10.4℃、A層の温度10℃での傷の回復時間が58秒であった。
Figure JPOXMLDOC01-appb-T000018
 (参考例14)原料B3の作成
 (参考例7)原料B3の作成
 <ウレタンアクリレート(a)の合成>
 ポリシロキサン(b)の合成に用いた装置を用い、トルエン57.7質量部、ステアリルアルコール(NAA46;日本油脂株式会社製)9.7質量部を仕込み40℃まで昇温した。その後ステアリルアルコールが完全に溶解したのを確認し、ヘキサメチレンジイソシアネート(東京化成工業株式会社製)25質量部を仕込み70℃まで昇温させた。同温度で30分反応後、ジブチルスズラウレートを0.02質量部仕込み同温度で3時間保持した。その後、ポリカプロラクトン変性ヒドロキシエチルアクリレート(プラクセルFA2D;ダイセル化学工業株式会社製)100質量部、ジブチルスズラウレート0.02部、ハイドロキノンモノメチルエーテル0.02質量部を仕込み、70℃で3時間保持して反応を終了し、トルエン77部を加え固形分50質量%のウレタンアクリレートを得た。
 <原料B3の調合>
 得られたウレタンアクリレート(a)100質量部にフタル酸モノヒドロキシエチルアクリレート(M-5400;東亞合成株式会社製)20質量部、トルエン20部及び光開始剤(イルガキュア184;チバガイギー社製)3質量部を配合し、固形分50質量%の原料B3を作成した。
 [比較例7]
 原料B3を、厚み100μmのポリエステル基材フィルム(東レ(株)製、“ルミラー”U46)上に、紫外線照射後のA層厚みが30μmとなるようにワイヤーバーを用いて塗布した。塗布後、60℃で1分間、熱風乾燥機で加熱し、その後、高圧水銀ランプにて照射量300mJ/cmで紫外線照射し積層ポリエステルフィルムを得た。また、成型時の延伸を縦方向に1.2倍、横方向に1.2倍の倍率で行い、成型フィルムを得た。得られた結果を表4に示す。A層は、耐スチールウール性に優れていたものの、自己治癒性が低く、成形後は端部にクラックが発生した。
 (参考例15)原料B4の作成
 <ウレタンアクリレート(b)の合成>
 ポリシロキサン(a)の合成に用いた装置を用い、トリエチレンジイソシアネート誘導体〔武田薬品工業(株)製、商品名:タケネートD-212〕30質量部とポリカプロラクトン変性ヒドロキシエチルアクリレート〔ダイセル化学工業製、プラクセルFA3〕70質量部とを反応させて得た。得られたブロック共重合体は、固形分50%であった。
 <ポリジメチルシロキサン系グラフト共重合体(e)の合成>
 ポリシロキサン(a)の合成と同様の装置を用い、ポリジメチルシロキサンマクロモノマー(チッソ製、FM0721)10質量部と、ブチルメタクリレート30質量部と、イソシアネートエチルメタクリレート(昭和電工製、カレンズMOI)15質量部と、ペンタエリスリトールアクリレート〔東亞合成(株)製、商品名:アロニックスM305〕20質量部と、メチルメタクリレート25部とを反応させて得た。
 <原料B4の調合>
 ウレタンアクリレート(b)72質量部と、ポリジメチルシロキサン系グラフト共重合体d20質量部と、ポリオルガノシロキサン基含有共重合体(日本油脂製、モディパーFS710)5部と、光重合開始剤である1-ヒドロキシ-シクロヘキシル-フェニル-ケトン3質量部を配合し、固形分50質量%の原料B4を作成した。
 [比較例8]
 原料B3の替わりに原料B4を使用した以外は、比較例7と同様にして積層ポリエステルフィルムと成型フィルムを得た。得られた結果を表4に示す。A層は、耐スチールウール性に優れていたものの、自己治癒性が低く、成形後は端部にクラックが発生した。
 原料A1を、厚み100μmのポリエステル基材フィルム(東レ(株)製、“ルミラー”U46)上に、エージング工程後のA層厚みが30μmとなるようにワイヤーバーを用いて塗布した。塗布後、160℃で2分間、熱風乾燥機で加熱した(加熱工程)。その後、20℃で14日間加熱(エージング)を行い(エージング工程)、積層ポリエステルフィルムを得た。次に、この得られたフィルムの成型を行った。このとき延伸は行わずに予熱だけを行った。得られた結果を表1に示す。
 [比較例9]
 厚み100μmのポリエステル基材フィルム(東レ(株)製 “ルミラー”U46)を、実施例1と同様の条件で(160℃で2分間、熱風乾燥機で加熱後、20℃で14日間加熱(エージング))加熱を行った。ただし、実施例1とは異なり、原料A1を、厚み100μmのポリエステル基材フィルム(東レ(株)製、“ルミラー”U46)上に、塗布しなかった。結果を表4に示す。得られたフィルムは自己治癒性がなく、表面傷も非常に発生しやすかった。
 [比較例10]
 実施例15と同様の条件にて、ポリエステル樹脂Cとポリエステル樹脂Dからなる積層フィルムを製造した。ただし、実施例15とは異なり、原料A6を、ポリエステル樹脂Cとポリエステル樹脂Dからなる積層フィルム上に、塗布しなかった。結果を表4に示す。得られたフィルムは自己治癒性がなく、表面傷も非常に発生しやすかった。
 (参考例16)原料A12の作成
 <原料A12の調合>
 ポリジメチルシロキサン系ブロック共重合体(a)75質量部、ポリシロキサン(a)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製、プラクセル308、重量平均分子量850)15質量部を配合(混合)した混合物、100質量部に対し、トリレンジイソシアネートのアダクト体(武田薬品工業(株)製、タケネートD-103H)を15質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料A12を作成した。
 [比較例11]
 原料A1の替わりに原料A12を使用した以外は、実施例1と同様の条件にて積層ポリエステルフィルムと成型フィルムを得た。得られたフィルムと成型フィルムの評価結果を表4に示す。A層のガラス転移点は、63℃、A層の温度10℃での傷の回復時間が500以上であった。
 (参考例17)原料A13の作成
 <原料A13の調合>
 ポリジメチルシロキサン系ブロック共重合体(a)75質量部、ポリシロキサン(a)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製、プラクセル308、重量平均分子量850)15質量部を配合(混合)した混合物、100質量部に対し、キシリレンジイソシアネートのアダクト体(武田薬品工業(株)製、タケネートD-110N)を15質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料A13を作成した。
 [比較例12]
 原料A1の替わりに原料A13使用した以外は、実施例1と同様の条件にて積層ポリエステルフィルムと成型フィルムを得た。得られたフィルムと成型フィルムの評価結果を表4に示す。A層のガラス転移点は、56℃、A層の温度10℃での傷の回復時間が500以上であった。
Figure JPOXMLDOC01-appb-T000019
 [実施例18]
 原料A9を、厚み100μmのポリエステル基材フィルム(東レ(株)製 “ルミラー”U46)上に、エージング工程後のB層厚みが20μmとなるようにワイヤーバーを用いて塗布した。塗布後、150℃で1分間、熱風乾燥機で加熱した(加熱工程)。その後、40℃で14日間加熱(エージング)を行い(エージング工程)、積層ポリエステルフィルムを得た。積層ポリエステルフィルムの80℃~150℃におけるB層の平均破壊伸度が82.5%であった。得られた積層ポリエステルフィルムを、成型加工用フィルムとして用いても、B層にクラックが入らず、かつ良好な自己治癒性を維持した。
 [比較例13~17、実施例19~22]
 加熱工程における加熱温度および加熱時間を表5に示す数値とした以外は、実施例18と同様にして積層ポリエステルフィルムを得た。加熱温度が低い場合や加熱時間の短い場合は、積層ポリエステルフィルムの80℃~150℃におけるB層の平均破壊伸度が65%未満であった。一方、実施例13~17の積層ポリエステルフィルムは、80℃~150℃におけるB層の平均破壊伸度が65%以上であった。実施例13~17の積層ポリエステルフィルムは、成型加工用フィルムとして用いても、B層にクラックが入らず、かつ良好な自己治癒性を維持した。
Figure JPOXMLDOC01-appb-T000020
 [実施例23~30、比較例18~22]
 エージング工程におけるエージング温度およびエージング時間を表5に示す数値とした以外は、実施例18と同様にして積層ポリエステルフィルムを作成した。エージング温度が低い場合や時間が短い場合は、積層ポリエステルフィルムの80℃~150℃におけるB層の平均破壊伸度が65%未満であった。実施例23~30のフィルムは、成型加工用フィルムとして用いても、B層にクラックが入らず、かつ良好な自己治癒性を維持した。
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
 [実施例31]
 原料A11を、厚み100μmのポリエステル基材フィルム(東レ(株)製、“ルミラー”U46)上に、エージング工程後のB層厚みが20μmとなるようにワイヤーバーを用いて塗布した。塗布後、160℃で2分間、加熱した(加熱工程)。その後、40℃で14日間加熱(エージング)を行い(エージング工程)、積層ポリエステルフィルムを得た。得られた積層ポリエステルフィルムを、成型加工用フィルムとして用いても、B層にクラックが入らず、かつ良好な自己治癒性を維持した。
 [実施例32]
 エージング工程後のB層厚みを10μmにした以外は実施例31と同様にして積層フィルムを作成した。得られた積層ポリエステルフィルムを、成型加工用フィルムとして用いても、B層にクラックが入らず、かつ良好な自己治癒性を維持した。
 [実施例33]
 エージング工程後のB層厚みを50μmにした以外は実施例31と同様にして積層フィルムを作成した。得られた積層ポリエステルフィルムを、成型加工用フィルムとして用いても、B層にクラックが入らず、かつ良好な自己治癒性を維持した。
 <原料A14の調合>
 ポリジメチルシロキサン系ブロック共重合体(a)75質量部、ポリシロキサン(a)10質量部および水酸基を有するポリカプロラクトントリオール(ダイセル化学工業(株)製、プラクセル308、重量平均分子量850)15質量部を配合(混合)した混合物100質量部に対し、ヘキサメチレンジイソシアネートのイソシアヌレート体(武田薬品工業(株)製、タケネートD-170N)を25質量部添加し、さらにメチルエチルケトンを用いて希釈し、固形分濃度40質量%の原料を作成した。この原料の固形分100質量部に対し、平均粒子系70~100nmのメチルエチルケトン分散体シリカゾル(日産化学工業(株)製、オルガノシリカゾルMEK-ST-ZL)を、5質量部含有させ、原料A14とした。
 [実施例34]
 原料A9の替わりに原料A14使用した以外は、実施例19と同様にして積層ポリエステルフィルムを得た。得られた積層ポリエステルフィルムを、成型加工用フィルムとして用いても、B層にクラックが入らず、かつ良好な自己治癒性を維持した。
 <原料A15の調合>
 オルガノシリカゾルMEK-ST-ZLを、15質量部使用した以外は、原料A14と同様にして、原料A15を得た。
 [実施例35]
 原料A9の替わりに原料A15使用した以外は、実施例19と同様にして積層ポリエステルフィルムを得た。得られた積層ポリエステルフィルムを、成型加工用フィルムとして用いても、B層にクラックが入らず、かつ良好な自己治癒性を維持した。
 <原料A16の調合>
 オルガノシリカゾルMEK-ST-ZLを、30質量部使用した以外は、原料A14と同様にして、原料A16を得た。
 [実施例37]
 原料A9の替わりに原料A16使用した以外は、実施例19と同様にして積層ポリエステルフィルムを得た。得られた積層ポリエステルフィルムを、成型加工用フィルムとして用いても、B層にクラックが入らず、かつ良好な自己治癒性を維持した。
Figure JPOXMLDOC01-appb-T000023
 本発明の積層フィルムは、成型性と自己治癒性が同時に求められる用途に用いることができる。特に、特にパソコンや携帯電話などの筐体に適用される加飾成型用フィルムとして好適に用いることができる。
 本発明の積層フィルムは、射出成型、圧空成型、真空成型、熱成型、プレス成形などの成型方法を適用して、成型体とすることができる。本発明の積層フィルムは、深絞りの成形に対応することができる。

Claims (19)

  1. 基材フィルムの少なくとも片側に、A層を有する積層フィルムであって、A層が、(1)ポリカプロラクトンセグメント、(2)ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、(3)ウレタン結合を有し、A層のガラス転移点が-30~0℃である積層フィルム。
  2. 基材フィルムの少なくとも片側に、A層を有する積層フィルムであって、A層が、(1)ポリカプロラクトンセグメント、(2)ポリシロキサンセグメント及び/またはポリジメチルシロキサンセグメント、(3)ウレタン結合を有し、A層の温度10℃での傷の回復時間が3秒以下である積層フィルム。
  3. A層のガラス転移点が-30~0℃であり、A層の温度10℃での傷の回復時間が3秒以下である請求項1または2に積層フィルム。
  4. A層が、イソシアネート基を含有する化合物を含む組成物により形成されてなる層である請求項1または2に記載の積層フィルム。
  5. イソシアネート基を含有する化合物を含む組成物が、全成分100質量%中にイソシアネート基を含有する化合物を11質量%以上22質量%以下含む請求項4に記載の積層フィルム。
  6. イソシアネート基を含有する化合物が、脂肪族イソシアネートである請求項4に記載の積層フィルム。
  7. イソシアネート基を含有する化合物が、ヘキサメチレンジイソシアネートである請求項4に記載の積層フィルム。
  8. A層が、熱架橋反応によって形成されてなる請求項1または2に記載の積層フィルム。
  9. A層の厚みが15~19μmである請求項1または2に記載の積層フィルム。
  10. 温度25℃、湿度65%において、A層の水との接触角が95°以上104°以下である請求項1または2に記載の積層フィルム。
  11. 基材フィルムが、ポリエステル樹脂Cを50質量%以上100質量%以下含む層(C層)とポリエステル樹脂Dを50質量%以上100質量%以下含む層(D層)とを交互にそれぞれ50層以上有する請求項1または2に記載の積層フィルム。
  12. 請求項1または2に記載の積層フィルムを用いた成型体。
  13. 積層フィルムの成型倍率が、1.1~1.6倍である請求項12に記載の成型体。
  14. 基材フィルムの少なくとも片側に、B層を有する積層フィルムであって、B層が、ポリカプロラクトンセグメントとウレタン結合を有し、80℃~150℃におけるB層の平均破壊伸度が65%以上である積層フィルム。
  15. B層が、ポリシロキサンセグメント、および/または、ポリジメチルシロキサンセグメントを含む請求項14に記載の積層フィルム。
  16. B層の80℃~150℃における最低破壊伸度が65%以上である請求項14に記載の積層フィルム。
  17. 基材フィルムが、ポリエステル樹脂Cを50質量%以上100質量%以下含む層(C層)とポリエステル樹脂Dを50質量%以上100質量%以下含む層(D層)とを交互にそれぞれ50層以上有する請求項14に記載の積層フィルム。
  18. 請求項14に記載の積層フィルムを用いた成型体。
  19. 積層フィルムの成型倍率が、1.1~1.6倍である請求項18に記載の成型体。
PCT/JP2011/059368 2010-04-27 2011-04-15 積層フィルムおよび成型体 WO2011136042A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127028047A KR101788895B1 (ko) 2010-04-27 2011-04-15 적층 필름 및 성형체
US13/643,450 US8980432B2 (en) 2010-04-27 2011-04-15 Multilayer film and molded body
CN201180019480.0A CN102844182B (zh) 2010-04-27 2011-04-15 叠层膜和成型体
EP11774826.9A EP2565029B1 (en) 2010-04-27 2011-04-15 Multilayer film and molded body
JP2011521032A JP5799806B2 (ja) 2010-04-27 2011-04-15 積層フィルムおよび成型体

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010101880 2010-04-27
JP2010-101880 2010-04-27
JP2010-251551 2010-11-10
JP2010251551 2010-11-10

Publications (1)

Publication Number Publication Date
WO2011136042A1 true WO2011136042A1 (ja) 2011-11-03

Family

ID=44861350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059368 WO2011136042A1 (ja) 2010-04-27 2011-04-15 積層フィルムおよび成型体

Country Status (7)

Country Link
US (1) US8980432B2 (ja)
EP (1) EP2565029B1 (ja)
JP (1) JP5799806B2 (ja)
KR (1) KR101788895B1 (ja)
CN (1) CN102844182B (ja)
TW (1) TWI556965B (ja)
WO (1) WO2011136042A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157500A1 (ja) 2011-05-16 2012-11-22 東レ株式会社 積層フィルムおよび成型体
JP2012236947A (ja) * 2011-05-13 2012-12-06 Riken Technos Corp ハイグロスフィルムの施与方法
WO2013094532A1 (ja) 2011-12-21 2013-06-27 東レ株式会社 積層フィルム
JP2014128921A (ja) * 2012-12-28 2014-07-10 Dainichiseika Color & Chem Mfg Co Ltd 高耐久機能性成型シート及びそれを用いて得られる加飾成型品
WO2014109177A1 (ja) * 2013-01-09 2014-07-17 東レ株式会社 積層フィルム
WO2014196516A1 (ja) * 2013-06-04 2014-12-11 東レ株式会社 装飾成形用フィルムおよび装飾成形体
WO2015046049A1 (ja) 2013-09-24 2015-04-02 東レ株式会社 積層フィルム
WO2015115227A1 (ja) * 2014-01-31 2015-08-06 東レ株式会社 積層フィルム
JP2016107409A (ja) * 2014-12-02 2016-06-20 東レフィルム加工株式会社 樹脂成型品の表面被覆用積層フィルムおよび樹脂成型品
KR20160145546A (ko) 2014-04-15 2016-12-20 도레이 카부시키가이샤 적층 필름 및 적층 필름의 제조 방법
JP2017066263A (ja) * 2015-09-30 2017-04-06 株式会社タムラ製作所 自己修復性と耐油性を備えた硬化物の得られる組成物及びその硬化皮膜を有する自己修復コートフィルム
JP2019051692A (ja) * 2016-11-29 2019-04-04 東レ株式会社 積層体
JP2022031921A (ja) * 2011-11-07 2022-02-22 凸版印刷株式会社 蓄電デバイス用外装材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014175137A1 (ja) * 2013-04-26 2014-10-30 東レ株式会社 二軸配向積層ポリエステルフィルムおよび光学用積層フィルム
CN116039378A (zh) * 2014-05-15 2023-05-02 Agc株式会社 玻璃物品以及玻璃物品的制造方法
EP3312209B1 (en) 2016-10-20 2023-09-27 Samsung Electronics Co., Ltd. Self-healing composition, self-healing film, and device including the self-healing film

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337930A (ja) * 1986-08-04 1988-02-18 旭硝子株式会社 積層体およびその製造法
JPS6475571A (en) * 1987-09-17 1989-03-22 Nippon Paint Co Ltd Coating resin composition
JPH07117202A (ja) * 1993-10-21 1995-05-09 Asahi Glass Co Ltd 透明積層体及びその製造方法
JPH11228905A (ja) 1998-02-13 1999-08-24 Natoko Kk 塗料組成物
JP2006119772A (ja) 2004-10-19 2006-05-11 Nof Corp ペン入力装置用表面材
JP2006137780A (ja) 2004-11-10 2006-06-01 Dainippon Printing Co Ltd 成形シート
JP2007002260A (ja) 2006-08-22 2007-01-11 Natoko Kk 塗料組成物
JP2007056268A (ja) * 1994-10-04 2007-03-08 3M Co 反応性二液型ポリウレタン組成物及びそれから形成される任意に自己回復可能な耐引掻性のコーティング
WO2007069765A1 (ja) * 2005-12-16 2007-06-21 Japan Advanced Institute Of Science And Technology 自己修復材料

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3923747A (en) * 1973-11-23 1975-12-02 Goodrich Co B F Poly(caprolactone)based polyurethanes having improved blocking characteristics
US4942212A (en) * 1988-01-20 1990-07-17 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Polyurethane resin and heat-sensitive recording medium
US5422189A (en) * 1992-10-01 1995-06-06 Minnesota Mining And Manufacturing Company Flexible optically uniform sign face substrate
US5932320A (en) * 1996-10-29 1999-08-03 Mitsubishi Polyester Film Corporation Polyester film for decorative plate or decorative sheet
EP0897947B2 (en) * 1997-08-12 2005-12-28 Mitsubishi Polyester Film Corporation Fine cell-containing polyester film
JP3999411B2 (ja) * 1999-07-02 2007-10-31 ナトコ株式会社 表面塗膜材料
TW200307733A (en) * 2002-02-01 2003-12-16 Natoco Co Ltd Composition curable with actinic energy ray and use thereof
JP2005334026A (ja) * 2004-05-24 2005-12-08 Bridgestone Sports Co Ltd ボール
JP5176319B2 (ja) * 2005-08-18 2013-04-03 東レ株式会社 積層フィルムおよび成形体
JP4973187B2 (ja) * 2005-09-12 2012-07-11 東レ株式会社 積層フィルムおよび積層フィルムの製造方法
US7989074B2 (en) * 2006-06-09 2011-08-02 Ndsu Research Foundation Thermoset siloxane-urethane fouling release coatings
WO2008099797A1 (ja) * 2007-02-15 2008-08-21 Toray Industries, Inc. 積層フィルムおよび成形体
WO2008105083A1 (ja) * 2007-02-28 2008-09-04 Takiron Co., Ltd. 合成樹脂成形体及びこの成形体を成形するためのラミネートフィルムまたは転写フィルム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6337930A (ja) * 1986-08-04 1988-02-18 旭硝子株式会社 積層体およびその製造法
JPS6475571A (en) * 1987-09-17 1989-03-22 Nippon Paint Co Ltd Coating resin composition
JPH07117202A (ja) * 1993-10-21 1995-05-09 Asahi Glass Co Ltd 透明積層体及びその製造方法
JP2007056268A (ja) * 1994-10-04 2007-03-08 3M Co 反応性二液型ポリウレタン組成物及びそれから形成される任意に自己回復可能な耐引掻性のコーティング
JPH11228905A (ja) 1998-02-13 1999-08-24 Natoko Kk 塗料組成物
JP2006119772A (ja) 2004-10-19 2006-05-11 Nof Corp ペン入力装置用表面材
JP2006137780A (ja) 2004-11-10 2006-06-01 Dainippon Printing Co Ltd 成形シート
WO2007069765A1 (ja) * 2005-12-16 2007-06-21 Japan Advanced Institute Of Science And Technology 自己修復材料
JP2007002260A (ja) 2006-08-22 2007-01-11 Natoko Kk 塗料組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2565029A4

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012236947A (ja) * 2011-05-13 2012-12-06 Riken Technos Corp ハイグロスフィルムの施与方法
US9080053B2 (en) 2011-05-16 2015-07-14 Toray Industries, Inc. Laminated film and molded body
WO2012157500A1 (ja) 2011-05-16 2012-11-22 東レ株式会社 積層フィルムおよび成型体
JP7396343B2 (ja) 2011-11-07 2023-12-12 Toppanホールディングス株式会社 蓄電デバイス用外装材
JP2022031921A (ja) * 2011-11-07 2022-02-22 凸版印刷株式会社 蓄電デバイス用外装材
TWI673166B (zh) * 2011-12-21 2019-10-01 日商東麗股份有限公司 積層薄膜
US9469789B2 (en) 2011-12-21 2016-10-18 Toray Industries, Inc. Laminated film
WO2013094532A1 (ja) 2011-12-21 2013-06-27 東レ株式会社 積層フィルム
KR20140103901A (ko) 2011-12-21 2014-08-27 도레이 카부시키가이샤 적층 필름
JP2014128921A (ja) * 2012-12-28 2014-07-10 Dainichiseika Color & Chem Mfg Co Ltd 高耐久機能性成型シート及びそれを用いて得られる加飾成型品
WO2014109177A1 (ja) * 2013-01-09 2014-07-17 東レ株式会社 積層フィルム
KR20150113950A (ko) 2013-01-09 2015-10-08 도레이 카부시키가이샤 적층 필름
KR102281542B1 (ko) 2013-01-09 2021-07-26 도레이 카부시키가이샤 적층 필름
JPWO2014109177A1 (ja) * 2013-01-09 2017-01-19 東レ株式会社 積層フィルム
WO2014196516A1 (ja) * 2013-06-04 2014-12-11 東レ株式会社 装飾成形用フィルムおよび装飾成形体
JPWO2014196516A1 (ja) * 2013-06-04 2017-02-23 東レ株式会社 装飾成形用フィルムおよび装飾成形体
WO2015046049A1 (ja) 2013-09-24 2015-04-02 東レ株式会社 積層フィルム
KR20160061324A (ko) 2013-09-24 2016-05-31 도레이 카부시키가이샤 적층 필름
WO2015115227A1 (ja) * 2014-01-31 2015-08-06 東レ株式会社 積層フィルム
TWI643743B (zh) * 2014-01-31 2018-12-11 東麗股份有限公司 Laminate film
KR20160118211A (ko) 2014-01-31 2016-10-11 도레이 카부시키가이샤 적층 필름
KR20160145546A (ko) 2014-04-15 2016-12-20 도레이 카부시키가이샤 적층 필름 및 적층 필름의 제조 방법
JP2016107409A (ja) * 2014-12-02 2016-06-20 東レフィルム加工株式会社 樹脂成型品の表面被覆用積層フィルムおよび樹脂成型品
JP2017066263A (ja) * 2015-09-30 2017-04-06 株式会社タムラ製作所 自己修復性と耐油性を備えた硬化物の得られる組成物及びその硬化皮膜を有する自己修復コートフィルム
JP2019051692A (ja) * 2016-11-29 2019-04-04 東レ株式会社 積層体
JP2022113785A (ja) * 2016-11-29 2022-08-04 東レ株式会社 積層体
JP7119352B2 (ja) 2016-11-29 2022-08-17 東レ株式会社 積層体
JP7468573B2 (ja) 2016-11-29 2024-04-16 東レ株式会社 積層体

Also Published As

Publication number Publication date
TW201206705A (en) 2012-02-16
US20130040133A1 (en) 2013-02-14
KR20130057988A (ko) 2013-06-03
TWI556965B (zh) 2016-11-11
EP2565029A4 (en) 2014-08-20
EP2565029A1 (en) 2013-03-06
JPWO2011136042A1 (ja) 2013-07-18
JP5799806B2 (ja) 2015-10-28
CN102844182A (zh) 2012-12-26
KR101788895B1 (ko) 2017-10-20
EP2565029B1 (en) 2018-08-15
US8980432B2 (en) 2015-03-17
CN102844182B (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
JP5799806B2 (ja) 積層フィルムおよび成型体
JP5928334B2 (ja) 積層フィルムおよび成型体
EP3050701B1 (en) Laminated film
JP2012139951A (ja) 積層フィルムおよび成型体
JP7468573B2 (ja) 積層体
JP2017170671A (ja) 積層フィルム
JP4432544B2 (ja) ハードコート多層シート、およびそれを用いてなる建材窓ガラス、フラットパネルディスプレイ
JP7200562B2 (ja) 積層体
US20150175843A1 (en) Multilayer film and molded body
WO2015141281A1 (ja) 多層コートフィルムの製造方法
JP6582862B2 (ja) 積層フィルム
EP4005789A1 (en) Method for manufacturing layered film, and method for manufacturing layered member
JP7346881B2 (ja) 積層体および樹脂フィルム
JP6280477B2 (ja) ガスバリアフィルムおよびガスバリアフィルムの製造方法
JP2012166356A (ja) 積層フィルム
TW202231486A (zh) 成形用層合樹脂薄片及使用其之成形品
TW202233392A (zh) 樹脂薄片之彎曲成形品之製造方法及彎曲成形品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019480.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011521032

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774826

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13643450

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127028047

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011774826

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 9754/CHENP/2012

Country of ref document: IN