WO2011132788A1 - 軸受装置 - Google Patents

軸受装置 Download PDF

Info

Publication number
WO2011132788A1
WO2011132788A1 PCT/JP2011/059988 JP2011059988W WO2011132788A1 WO 2011132788 A1 WO2011132788 A1 WO 2011132788A1 JP 2011059988 W JP2011059988 W JP 2011059988W WO 2011132788 A1 WO2011132788 A1 WO 2011132788A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
alloy
bearing
mass
aluminum alloy
Prior art date
Application number
PCT/JP2011/059988
Other languages
English (en)
French (fr)
Other versions
WO2011132788A9 (ja
Inventor
阪本 真一郎
淳 小山
Original Assignee
大豊工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大豊工業株式会社 filed Critical 大豊工業株式会社
Priority to AU2011243505A priority Critical patent/AU2011243505B2/en
Priority to EP11772119.1A priority patent/EP2562282B1/en
Priority to CN201180019941.4A priority patent/CN102869800B/zh
Priority to US13/642,703 priority patent/US9518603B2/en
Priority to BR112012026018A priority patent/BR112012026018A2/pt
Priority to JP2012511730A priority patent/JP5683574B2/ja
Priority to KR1020127026296A priority patent/KR101278412B1/ko
Publication of WO2011132788A1 publication Critical patent/WO2011132788A1/ja
Publication of WO2011132788A9 publication Critical patent/WO2011132788A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/003Alloys based on aluminium containing at least 2.6% of one or more of the elements: tin, lead, antimony, bismuth, cadmium, and titanium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/20Alloys based on aluminium
    • F16C2204/22Alloys based on aluminium with tin as the next major constituent

Definitions

  • the present invention relates to a bearing device comprising a rotating shaft incorporated in an automatic transmission (AT) for automobiles and various auxiliary machines and a slide bearing for supporting the rotating shaft. More specifically, the rotating steel shaft is tempered, The present invention relates to a bearing device that is hardened by a surface hardening treatment or the like and is slid under severe sliding conditions.
  • Patent Document 1 JP-A-2-102912 discloses a bearing device in which an S45C tempered shaft (hardness HRc55) and an aluminum alloy slide bearing are combined.
  • 0.1 to 5% Pb, 1 to 10% Si, Cr, Mn, Fe, Ni, Co, Ti, V, and Zr contain one or more of 0.01 to 1.0%, and Zn and Mg are combined.
  • Sn—Pb alloy particles are deposited adjacent to the Si particles. The hardness of this alloy is less than Hv40.
  • Patent Document 4 Japanese Patent No. 3472284 states that “Si containing 1.5 to 8% by mass of Si, the balance being substantially Al, and having a particle diameter of less than 4 ⁇ m with respect to the total area of Si particles present on the sliding surface.
  • the aluminum bearing alloy characterized in that the area of the particles occupies 20 to 60% and the area of the Si particles having a particle diameter of 4 to 20 ⁇ m occupies 40% or more.
  • Si particles having a particle diameter of 4 to 20 ⁇ m (Area ratio of 40% or more) contributes to wear resistance, and Si particles with a particle size of less than 4 ⁇ m (area ratio of 20 to 60%) contribute to fatigue resistance.
  • the wear resistance test is conducted under repeated start-stop conditions, and it is explained that Si particles with a particle size of 4-20 ⁇ m are subjected to the load of the mating shaft and do not sink into the Al matrix or drop off. . It shows excellent wear resistance against S55C (the tempered state is not described), which is the counterpart material in the examples.
  • Non-patent document 1 “Development of aluminum alloy bearings with improved wear resistance” published by Alco-Sn for hardened steel mating shafts (Hv720-850) -Study on wear resistance of Si alloy and consider as follows. “With the progress of wear, only the relatively soft aluminum alloy matrix is worn and Si is concentrated on the sliding surface. As the amount of Si on the sliding surface increases, the load sharing on Si increases and the wear of the bearing is reduced. Although it is suppressed, when the particle size is small or the hardness is low, wear of the surface proceeds without changing the Si concentration of the surface because the Si is repeatedly removed by sliding and the concentration of Si by the progress of wear is repeated. On the other hand, when the particle size is large and the hardness is high, since the Si is firmly held in the alloy and does not fall off, wear does not easily progress.
  • a bearing alloy with the composition Al-4.5Sn-2.7Si-1.5Cu-0.2Cr-0.15Zr was developed.
  • the characteristics of this alloy are as follows. (1) The size of Si contained as a hard material in the aluminum bearing alloy has an average particle size of 5.5 ⁇ m, The developed material with the alloy hardness set to 53HV showed wear resistance 3-4 times that of the conventional material. (2) It is considered that the mechanism for improving the wear resistance is that the load can be supported by the fact that Si enriched in the sliding surface is firmly held by the alloy. (3) Even with an average particle size of 5.5 ⁇ m, by reviewing the structure and alloy strength, fatigue resistance equivalent to that of the conventional material can be obtained under reciprocating load and superior to that of the conventional material under rotational load. Results superior to conventional materials were obtained.
  • the characteristics of the developed alloy are evaluated by using Al-12.5Sn-2.7Si-1.8Pb-1Cu-0.2Cr as a comparative alloy.
  • Patent document 5 in which the present applicant is one of the applicants:
  • the shaft is made of pearlite and proeutectoid ferrite (area fraction of 3% or less) or pearlite.
  • the crankshaft made of a non-tempered steel material having a structure as described above and not subjected to induction hardening or surface hardening treatment.
  • the surface roughness of the crankshaft is Rz 0.5 ⁇ m or less.
  • the plain bearing is made of Si or contains Si, and a hard material having a hardness of Hv 900 or more is dispersed in an Al matrix, and the size of the hard material present on the sliding surface is 6 ⁇ m or less.
  • the structure of non-tempered steel is composed of cementite with a hardness of about Hv700 and ferrite with a hardness of Hv150-300.
  • Patent Document 6 in which the present applicant is one of the inventors:
  • the shaft of the bearing device proposed by Japanese Patent Laid-Open No. 2004-28276 is the same as that of Patent Document 2, and the Al-based alloy is made of Si or A hard material containing Si and having a hardness of Hv 900 or more is dispersed in the Al matrix, and the Si content is 1 to 4% by mass.
  • the Al-based alloys of the embodiments in Patent Documents 4 and 5 are 1% to 3% Pb, 0.5 to 2% Cu, and 0.1 to 1% Cr in addition to 2 to 20% Sn in mass%. , 0.5 to 2% Mg, and 0.1 to 1% Zr, Mn, V, Ti and / or one or more selected from the group consisting of B. Since Si contained in the Al alloy is hard, the size of the Si particles smoothes the surface of the shaft of the non-heat treated steel, thereby improving the wear resistance and seizure properties.
  • Patent Documents 5 and 6 in which the counterpart material is non-heat treated steel, it is described that the Si particles of the aluminum alloy have a lapping action of the counterpart shaft because the counterpart shaft is soft.
  • Patent Documents 1, 2 and 3 it is described that Si particles in an aluminum alloy maintain a point contact state with a counter-hardened steel shaft.
  • the sliding conditions have become severe due to the low viscosity of ATF and the miniaturization of various pumps, and the demand for sliding properties such as wear resistance and seizure resistance has increased.
  • Non-Patent Document 1 which was published in almost the same age as Patent Document 4, the mating shaft was quenched S55C, and Al, Sn, etc. were preferentially scraped off the mating shaft on the sliding surface. It is thought that this is the first document that announces that chemistry will occur.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2-102912
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2-57653
  • Patent Document 3 Japanese Patent Application Laid-Open No. 6-2335038
  • Patent Document 4 Japanese Patent No. 3472284
  • Patent Document 6 Japanese Patent Laid-Open No. 2004-28276
  • Patent Document 7 US Pat. No. 4,471,029
  • Non-Patent Document 1 Japan Society for Automotive Technology Academic Lecture Preprints No. 46-99, 211 Development of wear-resistant aluminum alloy bearings
  • Non-Patent Document 1 attempts to improve wear resistance under severe sliding conditions by preventing Si particles from falling off the matrix of the aluminum alloy, but the low Sn content of 4.5% It turned out that it was not enough for an abrasion improvement. Moreover, the aluminum alloys of Patent Documents 2 and 3 that use tempered steel as a counterpart material contain Pb and have low hardness. Accordingly, an object of the present invention is to provide a bearing device of an Al—Sn—Si bearing alloy slide bearing and a hard steel shaft that exhibits excellent wear resistance under severe sliding conditions.
  • the bearing device contains at least a steel shaft having a surface hardness of Hv500 or more, 2 to 10% by mass of Si and 8 to 18% by mass of Sn, and the volume percentage of the Sn phase is Si particles—however, Its average particle size is 4-10 ⁇ m-50% or more of the volume percentage of-, and the balance is made of a combination with a plain bearing using an aluminum-based alloy whose hardness is Hv45 or more, with the balance being Al and inevitable impurities. It is characterized by becoming.
  • Mating shaft used in the present invention is hardened carbon steel or alloy steel, nitrided steel, carburized steel, etc., and has at least a surface hardness of Hv500 or more.
  • Aluminum alloy sliding bearing (a) Composition
  • the Al-Sn-Si ternary system of the aluminum alloy of the present invention is known per se, but does not contain components that reduce high-temperature strength such as Pb and Sb. .
  • the Al—Sn—Si alloy according to the present invention is in the composition range of 2 to 10% Si and 8 to 18% Sn, and preferably 3 to 10% by mass.
  • the wear resistance of the bearing is evaluated by using a bushing that has been rolled into a cylindrical shape with an outer diameter of 25 mm, an inner diameter of 22 mm, and a bearing width of 10 mm.
  • a friction tester was shown and the test pattern shown in FIG. Load: 490N Test pattern: Start / Stop (0-1000rpm) Sliding speed: 0-1.2m / s Lubricant: ATF Lubricating oil temperature: 120 °C Shaft material: SCM415 (Hardness Hv800)
  • the wear depth is very small in the range of 8 to 18% Sn.
  • at least one of Cu, Mg, Zn, which is a solid solution component of an aluminum alloy can be contained in a total amount of 3% by mass or less
  • Cr, Zr, Mn, V, Sc which is a precipitation component. At least one of them can be contained in a total amount of 0.5% by mass or less.
  • Fe, Ti, B, etc. are contained as inevitable impurities in a total amount of 0.5% by mass or less.
  • the continuous cast plate that is the first intermediate material for producing the Al—Sn—Si alloy of the present invention
  • Sn phase and eutectic Al—Si exist between the arms of Al dendrites.
  • the Sn phase and the Si particles are divided.
  • the cold-rolled sheet is pressed against a carbon steel plate as a backing metal, and the size of the Si particles is adjusted by performing annealing after pressure welding with the backing metal described in Table 1 of Patent Document 7: US Pat. No. 4,471,029.
  • the volume percentage of the Sn phase relative to the Si particles is adjusted.
  • the annealing conditions are adjusted so that the annealing temperature is 350 to 550 ° C and the annealing time is 3 to 10 hours.
  • the structure after annealing is shown in Fig. 4.
  • Sn phase (white) extending in the rolling direction (vertical direction in the drawing) and Si particles (black) dispersed and divided by rolling were detected in the Al matrix.
  • the Si equivalent particle diameter is calculated by using an image analyzer to calculate the equivalent circle diameter of each Si particle in a cross-sectional photograph as shown in FIG. did.
  • the weight of each component in the alloy was first calculated from the weight percent.
  • the volume of each component was calculated from the calculated weight in the alloy and the density of the pure substance, and the volume and volume% of each component were calculated. By the way, Sn hardly dissolves in the aluminum matrix. On the other hand, since the weight corresponding to solute Si is also included in the Si volume% by the above calculation method, the calculated Si particle volume% is larger than the actual volume of Si particles. However, as shown in FIG. 7, “Sn volume% / Si volume%” ( ⁇ 100) obtained by the above calculation method well represents a tendency of wear resistance. The volume percentage of Sn and Si in the alloy was calculated from the weight percentage of Sn and Si in the alloy and the density of Sn and Si.
  • Sn and Si do not exist only as Sn phase and Si particles, respectively, but, for example, Si exists as a solid solution in an aluminum matrix. However, the amount is negligible.
  • Sn that cannot be confirmed as the Sn phase and Si that cannot be confirmed as the Si particles exist as the Sn phase and the Si particles, and are obtained by “Sn volume% / Si volume%” ( ⁇ 100).
  • Si particles indicated by an arrow P indicate Si particles having an equivalent circle diameter of 4.5 ⁇ m.
  • the maximum Si particle size is less than 15 ⁇ m, and the minimum Si particle size is about 0.1 ⁇ m depending on the resolution of the microscope.
  • Si When the average particle size of Si is 2.5 ⁇ m, Si concentrates on the sliding surface, but wear progresses. On the other hand, when the average particle size of Si is 4.0 ⁇ m or more, the progress of wear is suppressed.
  • the present inventors have found that the Si amount, the average particle size of the Si particles, and the Sn content are affected in order for the Si particles to concentrate on the sliding surface as shown in FIGS. If the amount of Si is small, wear progresses until Si is concentrated on the sliding surface.
  • the average particle size of Si is small, Si particles fall off during operation. Furthermore, even if the average particle size of Si is large, the Sn content is high. If there is little, Si particle will fall off easily. As shown in FIG. 7, when the Sn content is 50% or more with respect to the Si volume%, the excellent wear resistance is exhibited. On the other hand, if the Sn content exceeds 18% by mass, the mechanical properties deteriorate.
  • FIG. 8 and 9 are conceptual diagrams for explaining that the Si particles concentrate on the sliding surface and then fall off, and will be described based on these drawings.
  • 1 is the aluminum alloy phase of the slide bearing
  • 2 is the Si particle
  • 3 is the Sn phase
  • 4 is the mating shaft with roughness
  • 5 is the plain bearing and the mating shaft 4
  • the contact points and arrows indicate the sliding direction. Since the aluminum alloy phase 1 shown in FIG. 8 has a small Sn content, Sn does not cover the entire sliding surface, and is easily in contact with the mating shaft 4 and the aluminum phase 1 or Si particles 2. After that, after the Si particles are concentrated, the counterpart shaft 4 and the Si particles 2 are in direct contact with each other, so that the friction is high and the Si particles are likely to fall off.
  • the aluminum alloy shown in FIG. 9 has a high Sn content, and as the Si particles 2 are concentrated, the Sn phase 3 spreads on the sliding surface and covers the concentrated Si particles 2. Low friction. Thus, since the Si particles 2 are coated (c), the friction is low even if they contact the mating shaft 4. As a result, the falling off of the Si particles 2 is prevented, the concentration is promoted, and the wear of the aluminum alloy is suppressed.
  • the aluminum alloy plain bearing can be used as a cladding material that is cold-welded to carbon steel, preferably low carbon steel such as SPCC, SPHC.
  • Table 1 shows alloy components, Si particle average particle diameter (in the table, “Si particle diameter”), and alloy hardness of typical samples.
  • the Si concentration on the sliding surface after the test is higher than that before the test.
  • the Sn phase volume% was 50% or more of the Si particle volume%, it was confirmed that the surface Si was more concentrated.
  • the bearing surface after the test was observed with an electron microscope.
  • Si particles were removed, whereas on surfaces with alloys 2 and 3 with an Sn content of 12.5% by mass, Si particles were removed. There was almost no.
  • mapping each element by EPMA to confirm the element distribution on the sliding surface it was confirmed that a large amount of Sn was distributed around the Si particles.
  • Example 2 Aluminum Alloy Composition
  • the sliding characteristics of the Al—Sn—Si alloy having the composition shown in Table 3 were examined by changing the composition and structure of the main component and additive components. The amount of wear is measured by the method described in paragraph 0021.
  • Nos. 1 to 10 in Table 3 are examples of the present invention, and the volume% of Sn phase exceeds 50% of the volume of Si particles (that is, the volume of Sn phase exceeds 1/2 of the volume of Si particles). In either case, no soot Si particles were removed from the sliding surface after the test, and the amount of wear after the test was 20 ⁇ m or less. Nos. 11 to ⁇ 13 are comparative examples, and the volume percent of the Sn phase with respect to the Si particles is less than 50%. The sliding surface of these samples after the wear test was observed to have Si particles falling off and the amount of wear increased. In Nos. 14 to 15 where the volume percentage of the Sn phase was 50% or more, the Si particles did not fall off after the wear test. However, the wear amount was low because the Si average particle size was small and the alloy hardness was low. The result was large.
  • the bearing device according to the present invention is preferably used under severe sliding conditions, and the sliding bearing has good wear resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Sliding-Contact Bearings (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

 本発明は、硬質の鋼軸を相手軸とするAl-Sn-Si系合金すべり軸受の耐摩耗性を高めた軸受装置を提供するものである。 本発明の軸受装置は、少なくとも表面の硬度がHv500以上の鋼軸と、Si:2~10質量%及びSn:10~18質量%を含有し、残部がAl及び不可避的不純物からなるアルミニウム系合金を用いたすべり軸受との組み合わせからなる軸受装置であって、当該アルミニウム系合金の組織は、Sn相の体積%がSi粒子(但し、その平均粒径は4~10μmである。)の体積%に対して50%以上のものであることを特徴とし、また、当該アルミニウム系合金の硬度は、Hv45以上のものであることを特徴とする。

Description

軸受装置
本発明は、自動車用オートマチックトランスミッション(AT)や各種補機に組みまれて
いる回転軸とこれを支えるすべり軸受からなる軸受装置に関するものであり、さらに詳
しく述べるならば、回転鋼軸が調質、表面硬化処理などで硬化されており、きびしい摺
動条件で摺動される軸受装置に関するものである。
特許文献1:特開平2-102912号では、S45C調質軸(硬度HRc55)とアルミニウム系合金すべり軸受を組合わせた軸受装置が開示されている。
特許文献2:特開平2-57653号公報は調質鋼軸(S45C、HRc=55)とアルミニウム合金すべり軸受を組合わせた軸受装置に関し、そのアルミニウム合金は、重量%で7~20%Sn、0.1~5%Pb、1~10%SiならびにCu,Mg,Znのうち1種若しくは2種以上を、合計で0.3~3.0%を含むと共に、Cr,Mn,Fe,Ni,Co,Ti,V,Zrのうち1種若しくは2種以上を合計で0.01~1.0%含有し、残余が実質的にAlから成るAl-Sn系軸受合金において、0.01~0.1%のSbを添加してAlマトリックス中にSi粒子を球状、だ円状若しくは先端が丸味をおびる形状としての分散、析出させたものである。特許文献1が提案する丸味を帯びたSi粒子は理想的な点接触状態を実現し、さらにSbの添加により基地の強化を図っている。このアルミニウム合金の硬さはHv40台である。
特許文献3:特開平6-235038号公報も、調質鋼軸(S45C、HRc=55)とアルミニウム合金すべり軸受を組合わせた軸受装置に関し、そのアルミニウム合金は、重量%で7~20%Sn、0.1~5%Pb、1~10%Si,Cr,Mn,Fe,Ni,Co,Ti,V,Zrのうち1種若しくは2種以上0.01~1.0%を含むとともに、ZnならびにMgを合量で0.3~3.0%含有し、更に0.01~0.1%Sbを含んで、残余が実質的にAlから成って、Alマトリックス中にSi粒子を球状、だ円状若しくは先端が丸味をおびた形状として分散、析出させ、このSi粒子に隣接してSn-Pb合金粒子を析出させて成るものである。この合金の硬さはHv40弱である。
特許文献4:特許第3472284号は、「1.5~8質量%のSiを含み、残部が実質的にAlからなり、摺動表面に存在するSi粒子の総面積に対し、粒子径4μm未満のSi粒子の面積が20~60%を占め、粒子径4~20μmのSi粒子の面積が40%以上を占めることを特徴とするアルミニウム系軸受合金。」に関し、粒子径が4~20μmのSi粒子(面積比40%以上)が耐摩耗性に寄与し、粒子径が4μm未満のSi粒子(面積比20~60%)が耐疲労性に寄与する。
耐摩耗性試験は起動―停止を繰り返す条件で行なわれており、粒子径が4~20μmのSi粒子は相手軸の荷重を受け、Alマトリックスに沈み込みや、脱落が起こらないと説明されている。実施例での相手材であるS55C(調質状態は記載なし)に対してすぐれた耐摩耗性を示している。
非特許文献1:「社団法人自動車技術会学術講演会前刷集No.46-99、211 耐耗性向上アルミ合金軸受の開発」は焼入鋼製相手軸(Hv720~850)に対するAl-Sn-Si合金の耐摩耗性につき研究し、次のように考察している。
「摩耗の進行とともに、比較的軟らかいアルミニウム合金マトリクスのみが摩耗して摺動面にSiの濃化がおきる。摺動表面のSi量が増えると、Siで受ける荷重分担も多くなり軸受の摩耗は抑制されるが、粒径の小さい場合や硬さが低い場合は、摺動によるSiの脱落と摩耗の進行によるSiの濃化を繰り返すため、表面のSi濃度は変化しないで摩耗が進行する。一方、粒径が大きく硬さが高い場合には、合金中にSiが強固に保持され脱落が起きないために摩耗が進行しにくい。
この考察に基づいて、Al-4.5Sn-2.7Si-1.5Cu-0.2Cr-0.15Zrの組成をもつ軸受合金が開発された。この合金の特長は次のとおりである。
(1)アルミニウム軸受合金中に硬質物として含まれるSiの大きさを平均粒径5.5μm、
合金硬さを53HVに設定した開発材は、従来材に対し3~4倍の耐摩耗性を示した。
(2)耐摩耗性向上のメカニズムは、摺動面の濃化したSiが合金に強固に保持されること
で荷重を支えることができることによると考えられる。
(3)平均粒径5.5μmでも、組織と合金強度を見直すことにより、往復動荷重下では従
来材と同等、回転荷重下では従来材より優れた耐疲労性が得られ、耐焼付性につい
ても従来材より優れた結果が得られた。
なお、上記開発合金の特性はAl-12.5Sn-2.7Si-1.8Pb-1Cu-0.2Crを比較合金として評価し
てなされている。
本出願人が出願人の一名になっている特許文献5:特開2004-28278号公報が提案する軸受装置では、軸はパーライトと初析フェライト(面積分率が3%以下)又はパーライトからなる組織を有し、高周波焼入れ又は表面硬化処理を施さない非調質型鋼材製クランク軸である。クランク軸の表面粗さがRz0.5μm以下である。すべり軸受は、Siからなるも
しくはSiを含み、Hv900以上の硬さを有する硬質物がAlマトリックスに分散され、摺動面に存在する前記硬質物の大きさが6μm以下である。非調質鋼の組織は硬度がHv700程度のセメンタイトと、硬度が Hv150~ 300のフェライトから構成される。
本出願人が発明者の一名になっている特許文献6:特開2004-28276号公報が提案する軸受装置の軸は特許文献2と同じものであり、Al系合金は、SiからなるもしくはSiを含み、Hv900以上の硬さを有する硬質物がAlマトリックスに分散されるとともに、Si含有量が1~4質量%である。
また、特許文献4及び5における実施態様のAl系合金は、質量%で、2~20%のSnに加えて、1~3%のPb, 0.5~2%のCu, 0.1~1%のCr, 0.5~2%のMg, 及び0.1~1%のZr, Mn, V, Ti及び/又はBからなる群から選ばれる1種又は2種以上を含有するものである。上記Al合金に含まれるSiは硬質であるために、そのSi粒子の大きさが非調質鋼製軸の表面を平滑化し、耐摩耗性や焼付性を良好にしている。
上記Si粒子に関する従来技術を整理すると次のような技術水準が明らかになる。
相手材が非調質鋼である特許文献5、6においては相手軸が軟らかいため、アルミニウム合金のSi粒子は相手軸のラッピング作用をもつと説明されている。特許文献1、 2及び3においては、アルミニウム合金中のSi粒子は相手軸の焼入れ鋼軸と点接触状態を保つと説明されている。近年、ATFの低粘度化や各種ポンプの小型化により、摺動条件が厳しくなり、耐摩耗性、耐焼付性等摺動特性に対する要求が高くなっている。特許文献4において採用されている始動―停止パターンの厳しい摩耗試験条件はかかる傾向に則しているが、鋼軸の調質状態には言及がなく、Si粒子は摺動中にAlマトリックスに保持されていると述べている。特許文献4とほぼ同じ年代に発表された非特許文献1は、相手軸は焼入S55Cであり、摺動面において、Al, Snなどが優先的に相手軸に削り取られ、この結果Siの濃化が起こることを発表した最初の文献であると考えられる。
特許文献1:特開平2-102912号公報
特許文献2:特開平2-57653号公報
特許文献3:特開平6-235038号公報
特許文献4:特許第3472284号明細書
特許文献5:特開2004-28278号公報
特許文献6:特開2004-28276号公報
特許文献7:米国特許第4471029号
非特許文献1:社団法人自動車技術会学術講演会前刷集No.46-99、211 耐摩耗性向上アルミ合金軸受の開発
非特許文献1ではアルミニウム合金のマトリックスからのSi粒子の脱落を防止することによりきびしい摺動条件下での耐摩耗性の向上を図っているが、Sn含有量が4.5%と低い
ことは、耐摩耗性向上には十分ではないことが分かった。また、調質鋼を相手材とする特許文献2及び3のアルミニウム合金はPbを含有し、硬度が低い。よって、本発明の目的は、厳しい摺動条件においてすぐれた耐摩耗性を発揮するAl-Sn-Si系軸受合金すべり
軸受と硬質鋼軸との軸受装置を提供することである。
本発明に係る軸受装置は、少なくとも表面の硬度がHv500以上の鋼軸と、Siを2~10質量%及びSnを8~18質量%含有し、かつSn相の体積%が、Si粒子-但しその平均粒径は4~10μmである-の体積%の50%以上であり、残部がAl及び不可避的不純物からなるとともに、硬度がHv45以上のアルミニウム系合金を用いたすべり軸受との組合わせからなることを特徴とする。ここで、Sn相の体積%とSi粒子の体積%が等しいときに、Sn相体積がSi粒子体積に対して100%(即ち、Sn相の体積/Si粒子の体積=1×100%)となる。この値は、Sn相の体積%がSi粒子の体積%を超える場合は、100%を超える。
以下、本発明の構成を詳しく説明する。
本発明のAl-Sn-Si系合金では、Sn及び、Si含有量、Si平均粒径、Sn/Si粒子体積%、及び硬度を総合的に調整することにより過酷な摺動条件において、硬質鋼軸に対する耐摩耗性を高めることができた。
摩耗試験機の図である。 スタート・ストップ試験のサイクルを示すグラフである。 Al-Sn-Si系合金のSn含有量と摩耗試験の結果を示すグラフである。 Al-Sn-Si系合金の顕微鏡組織を示す図である。 図1,2に示す試験のサイクル数の経緯とSi粒径、表面のSi量の関係を示すグラフである。 図1,2に示す試験のサイクル数の経緯とSi粒径、摩耗深さの関係を示すグラフである。 Si含有量に対する Sn含有量の比率と摩耗試験の関係を示すグラフである。 Sn含有量が低いAl-Sn-Si系合金の表面においてSiが濃縮することを説明する模式図である。 Sn含有量が高いAl-Sn-Si系合金の表面においてSiが濃縮し、かつSnが被覆することを説明する模式図である。 実施例における摩耗試験結果を示すグラフである。
1-すべり軸受のアルミニウム合金相
2-Si粒子
3-Sn相
4-相手軸
5-すべり軸受のアルミニウム合金相1と相手軸4の接触箇所
(1)相手軸
本発明で使用される相手軸は、焼入炭素鋼もしくは合金鋼、窒化鋼、浸炭鋼などであり、少なくとも表面の硬度がHv500以上のものである。
(2)アルミニウム合金すべり軸受
(イ)組成
本発明のアルミニウム合金のAl-Sn-Si三成分系はそれ自身公知であるが、Pb, Sbのような高温強度を低下させる成分は含有していない。また本発明に係
るAl-Sn-Si系合金は、質量%で、2~10%Si、8~18%Snの組成範囲内であり、好ましくは3 ~10%である。
(ロ)組織
本発明においては、Siの平均粒子径が4-10μmの範囲であり、かつSn の体積%がSiの体積%の50%以上であると、Si粒子の脱落防止に有効であり、軸受の耐摩耗性がすぐれることを見出した。
軸受の耐摩耗性評価は、発明品であるアルミニウム合金圧延板を低炭素鋼板とクラッドした後、外径25mm、内径22mm、軸受幅10mmの円筒状に成形したブシュを用い、図1は静荷重摩擦試験機を示し、図2に示す試験パターンである下記条件で行った。
    荷重:490N
     試験パタ-ン:スタート・ストップ(0-1000rpm)
        摺動速度:0-1.2m/s
       潤滑油:ATF
        潤滑油温度: 120℃
       軸材質:SCM415(硬度Hv800)
Al-Sn-5Si合金についての試験結果を図3に示す。この図より、8~18%Snの範囲で摩耗深さが非常に小さくなることが分かる。上記成分以外に、アルミニウム合金の固溶成分であるCu,Mg,Znのうち少なくとも1種を総量で3質量%以下含有することができ、また析出成分であるCr,Zr,Mn,V,Scのうち少なくとも1種を総量で0.5質量%以下含有することができる。さらに、不可避的不純物としてFe,Ti,Bなどを総量で0.5質量%以下含有する。
本発明のAl-Sn-Si系合金を製造する最初の中間素材である連続鋳造板では、Alの樹枝状結晶の腕の間にSn相と共晶Al-Siが存在している。かかる連続鋳造板を冷間圧延すると、Sn相とSi粒子がそれぞれ分断される。この冷間圧延板を裏金である炭素鋼板に圧接し、特許文献7:米国特許第4471029号の表1に記載された裏金との圧接後の焼鈍を行うことによりSi粒子の大きさを調整するとともに、Si 粒子に対するSn相の体積%を調整する。焼鈍温度は350~550℃、焼鈍時間は3~10時間の範囲内で焼鈍条件を調整する。焼鈍後の組織は図4に示されており、圧延方向(図面の上下方向)に伸びたSn相(白色)と、圧延により分散・分断されたSi粒子(黒色)がAlマトリックス中に検出される。
Si粒径は、光学顕微鏡にて撮影した、例えば図4のような断面写真中の各Si粒子の円相当径を画像解析装置を用いて算出し、円相当径の平均値をSi粒径とした。合金中のSn及びSiの体積%については、まず合金中の各成分の重量を重量%から算出した。算出した合金中の重量と純物質の密度から各成分の体積を算出し、各成分の体積及び体積%を算出した。ところで、Snはアルミニウムマトリクスにほとんど固溶しない。一方固溶Siに相当する重量も上記計算法によるSi体積%に包含されるので、計算値のSi粒子体積%は、実際のSi粒子の体積より大きくなる。しかし、図7に示されるように、上記計算法により求められる「Sn体積%/Si体積%」(×100)は耐摩耗性の傾向を良く表している。合金中のSn及びSiの体積%は、合金中のSn及びSiの重量%とSn及びSiの密度から算出した。ところで、Sn及びSiは、それぞれSn相及びSi粒子としてのみ存在しているのではなく、例えば、Siはアルミニウムマトリクスに固溶するなどして存在する。ただしその量はごくわずかである。本発明において、上記Sn相として確認できないSn及びSi粒子として確認できないSiをSn相及びSi粒子として存在しているして、「Sn体積%/Si体積%」(×100)で求めている。
図4において矢印Pで示されるSi粒子は円相当径で4.5μmになるSi粒子を示す。最大のSi粒径は15μm未満であり、最小のSi粒径は顕微鏡の解像度によるが、0.1μm程度である。Siの平均粒径が2.5μmであると、Siが摺動面に濃縮するが、摩耗は進行する。一方Siの平均粒径が4.0μm以上であると、摩耗の進行が抑制される。本発明者らは、図5,6のようにSi粒子が摺動面に濃縮するには、Si量、 Si粒子の平均粒径及び Sn含有量が影響あることを見出した。 Si量が少ないと摺動面にSiが濃縮するまでに摩耗が進行し、Siの平均粒径が小さいとSi粒子が運転中に脱落し、さらに、Siの平均粒径が大きくともSn含有量が少ないとSi粒子が脱落し易い。Sn の含有量がSi含有量、特に合金中に占める体積%が図7に示すように、Siの体積%に対して50%以上であると、すぐれた耐摩耗性を示す。一方、Sn含有量が18質量%を超えると機械的性質が低下する。
(ハ)硬度
Al-Sn-Si系軸受合金の強度は、強化成分による影響のほかに鋼板とのクラッド及びその焼鈍後に行う冷間圧延又は軸受成形時の塑性加工などで調整することが可能である。強化成分以外では、Sn含有量が多くなるほど、硬度が低下する。Al-Sn-Si系合金の前掲(イ)で述べた組成範囲及び前掲(ロ)で述べた組織においてはHv45以上、好ましくはHv50以上であれば優れた性能を示す。
(ニ)耐摩耗性
 本発明者らは非特許文献1において、回転数一定の摩耗試験条件ではなく、スタート・
 ストップを繰返す摩耗が起こり易い試験条件を行い、さらにアルミニウム合金の表面で
 Snが削り取られ、Si粒子の濃縮が起こり、次に脱落が起こって摩耗が進行することを発 表した。
図8及び9は、Si粒子が摺動面濃縮し、次に脱落することを説明する概念図であ
り、これらの図に基づいて説明する。図中、1はすべり軸受のアルミニウム合金
相、2はSi粒子、3はSn相、4は粗さをもつ相手軸、5はすべり軸受と相手軸4
の接触箇所、矢印は摺動方向である。図8に示すアルミニウム合金相1はSn含有
量が少ないために、Snが摺動面全体を覆うことがなく、相手軸4とアルミニウム
相1やSi粒子2と接触し易い。その後Si粒子が濃化した後では相手軸4とSi粒子
2が直接接触するために摩擦が高く、Si粒子の脱落が生じ易い。図9に示すアルミ
ニウム合金はSn含有量が高く、Si粒子2の濃化とともに、Sn相3が摺動面に広
がり、濃化したSi粒子2を被覆するので、相手軸4と接触しても摩擦が低い。こ
のように、Si粒子2は被覆されるので(c)、相手軸4と接触しても摩擦が低い。その
結果、Si粒子2の脱落が防止され、濃化を促進し、アルミニウム合金の摩耗を抑制
する。
(ホ)クラッド材
前記アルミニウム系合金すべり軸受が炭素鋼、好ましくはSPCC, SPHCなどの
低炭素鋼と冷間圧延で圧接されているクラッド材として使用することができる。
実施例1-Si粒子の濃縮及び Snによる被覆の測定
2-10質量%Si及び8-18質量%Snを含有するAl-Sn-Si合金を連続鋳造し、鋳造した合金を厚さ1.7mmに冷間圧延した後、裏金(SPCC)と圧接し、焼鈍を行なった。代表的な試料の合金成分、Si粒子の平均粒径(表では「Si粒子径」略記)、合金硬さを表1に示す。
Figure JPOXMLDOC01-appb-T000001
表2に示す三種類のAl-Sn-Si合金につき上記したスタート-ストップ摩耗試験を行った。摩耗試験前後の摺動表面を分析した。Al, Sn, Siの分析値(5点平均)を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
表2に示すように、何れの合金1~3においても試験後の摺動面におけるSi濃度は試験前よりも高くなっている。合金2、3のようにSn相体積%がSi粒子体積%の50%以上になると表面のSiがより濃縮していることが確認された。また、Sn量と耐摩耗性の向上の関係を検証するため、試験後の軸受表面を電子顕微鏡で観察した。合金1であるSn量が6質量%の表面では、Si粒子の脱落痕が多く観察されたのに対し、合金2、3であるSn量が12.5質量%の表面には、Si粒子の脱落痕はほとんどなかった。また、摺動面の元素分布を確認するために、EPMAによる各元素のマッピングを行ったところ、Si粒子の周囲にSnが多く分布していることが確認された。
実施例2-アルミニウム合金組成例
表3に示す組成のAl-Sn-Si系合金につき主成分及び添加成分の組成ならびに組織を変えて、摺動特性を調べた。なお、摩耗量の測定は段落0021で説明した方法による。
Figure JPOXMLDOC01-appb-T000003
 
表3のNo.1 ~10は本発明実施例であり、 Sn相体積%が Si粒子体積%に対して 50 %(即ち、Sn相体積がSi粒子の体積の1/2)を超えており、いずれも試験後摺動面からの Si粒子脱落はなく、試験後の摩耗量は20μm以下であった。  No. 11~ 13は比較例であり、Sn 相のSi粒子に対する体積%が50%未満である。これらの試料の摩耗試験後の摺動面にはSi粒子の脱落痕が観察され、摩耗量が多くなった。また、 Sn相の体積%が50%以上であるNo.14~15では、摩耗試験後 Si粒子の脱落はなかったが、  Si平均粒径が小さく、また合金硬さが低いために、摩耗量が大きいという結果になった。
本発明に係る軸受装置は厳しい摺動条件において好ましく使用され、すべり軸受の耐摩耗性が良好である。

Claims (5)

  1. 少なくとも表面の硬度がHv500以上の鋼軸と、Siを2~10質量%及びSnを8~18質量%含有し、かつSn相の体積%がSi粒子-但しその平均粒径は4~10μmである-の体積%に対して50%以上であり、残部がAl及び不可避的不純物からなるとともに、硬度がHv45以上のアルミニウム系合金を用いたすべり軸受との組合わせからなることを特徴とする軸受装置。
  2. 前記アルミニウム系合金がCu,Mg,Znのうち少なくとも1種を総量で3質量%以下、Cr,Zr,Mn,V,Scのうち少なくとも1種を総量で0.5質量%以下、さらに、不可避的不純物としてFe,Ti,Bを総量で0.5質量%以下、を含有する請求項1記載の軸受装置。
  3. 前記すべり軸受が、前記アルミニウム系合金と炭素鋼と冷間圧延で圧接されているクラッド材である請求項1又は2記載の軸受装置。
  4. 前記炭素鋼が低炭素鋼である請求項3記載の軸受装置。
  5. 前記組成をもつアルミニウム系合金を連続鋳造して得られた鋳造板を冷間圧延した後、熱処理によってSi粒子の平均粒径を調節し、さらに引続いて前記圧接を行った請求項3又は4記載の軸受装置。
     
PCT/JP2011/059988 2010-04-22 2011-04-22 軸受装置 WO2011132788A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AU2011243505A AU2011243505B2 (en) 2010-04-22 2011-04-22 Bearing Apparatus
EP11772119.1A EP2562282B1 (en) 2010-04-22 2011-04-22 Bearing device
CN201180019941.4A CN102869800B (zh) 2010-04-22 2011-04-22 轴承装置
US13/642,703 US9518603B2 (en) 2010-04-22 2011-04-22 Bearing apparatus
BR112012026018A BR112012026018A2 (pt) 2010-04-22 2011-04-22 aparelho de mancal
JP2012511730A JP5683574B2 (ja) 2010-04-22 2011-04-22 軸受装置
KR1020127026296A KR101278412B1 (ko) 2010-04-22 2011-04-22 베어링 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010099308 2010-04-22
JP2010-099308 2010-04-22

Publications (2)

Publication Number Publication Date
WO2011132788A1 true WO2011132788A1 (ja) 2011-10-27
WO2011132788A9 WO2011132788A9 (ja) 2012-08-16

Family

ID=44834302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059988 WO2011132788A1 (ja) 2010-04-22 2011-04-22 軸受装置

Country Status (8)

Country Link
US (1) US9518603B2 (ja)
EP (1) EP2562282B1 (ja)
JP (1) JP5683574B2 (ja)
KR (1) KR101278412B1 (ja)
CN (1) CN102869800B (ja)
AU (1) AU2011243505B2 (ja)
BR (1) BR112012026018A2 (ja)
WO (1) WO2011132788A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560178A (zh) * 2012-02-20 2012-07-11 西安交通大学 一种多孔材料的制备方法
CN102703769A (zh) * 2012-05-29 2012-10-03 华南理工大学 一种纳米复合铝锡硅轴承合金的制造方法
US20130323524A1 (en) * 2011-02-08 2013-12-05 Gerd Andler Sliding bearing composite material
JP2015071797A (ja) * 2013-10-02 2015-04-16 大豊工業株式会社 アルミニウム合金および摺動部材
JP2016526104A (ja) * 2013-06-07 2016-09-01 フエデラル—モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング アルミニウム軸受けメタル層を有する滑り軸受け複合材料
WO2017065176A1 (ja) * 2015-10-16 2017-04-20 Ntn株式会社 フォイル軸受
WO2019225098A1 (ja) * 2018-05-25 2019-11-28 大豊工業株式会社 摺動部材

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106399732B (zh) * 2016-09-27 2018-01-02 华南理工大学 一种粉末烧结制备Al‑Sn基轴瓦合金的方法
CN106756271B (zh) * 2016-12-13 2018-10-09 安徽省煜灿新型材料科技有限公司 一种抗磨损结合力强熨斗底板及制备方法
JP7307548B2 (ja) * 2019-02-15 2023-07-12 大豊工業株式会社 すべり軸受用アルミニウム合金およびすべり軸受
CN113088765A (zh) * 2021-03-23 2021-07-09 北京工业大学 一种铝基轴承合金及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471029A (en) 1981-10-15 1984-09-11 Taiho Kogyo Co., Ltd. Al-Si-Sn Bearing Alloy and bearing composite
JPS59193254A (ja) * 1983-04-14 1984-11-01 Taiho Kogyo Co Ltd アルミニウム系合金軸受の製造方法
JPS6036641A (ja) * 1983-07-05 1985-02-25 エイイーピーエルシー 平軸受用複合ストリップ及びその製造方法
JPH0257653A (ja) 1989-04-07 1990-02-27 Ndc Co Ltd Al―Sn系軸受合金
JPH02102912A (ja) 1988-10-07 1990-04-16 Ndc Co Ltd クランクシャフト−連接棒アセンブリに供せられるすべり軸受ならびにクランクシャフト−連接棒アセンブリにおけるクランクシャフト
JPH06235038A (ja) 1993-11-01 1994-08-23 Ndc Co Ltd Al−Sn系軸受合金
JPH0813072A (ja) * 1994-07-01 1996-01-16 Toyota Motor Corp アルミニウム合金軸受
JP2003119530A (ja) * 2001-10-10 2003-04-23 Daido Metal Co Ltd アルミニウム系軸受合金
JP2004028276A (ja) 2002-06-27 2004-01-29 Taiho Kogyo Co Ltd 内燃機関の主運動機構
JP2004028278A (ja) 2002-06-27 2004-01-29 Taiho Kogyo Co Ltd 内燃機関の主運動機構

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2080826B (en) * 1980-01-10 1984-07-25 Taiho Kogyo Co Ltd Aluminium-based alloy bearing
US4296183A (en) * 1980-04-02 1981-10-20 Taiho Kogyo Co., Ltd. Al-Sn Base bearing alloy and composite
JPS5867841A (ja) * 1981-10-15 1983-04-22 Taiho Kogyo Co Ltd アルミニウム系合金軸受
JPS5864332A (ja) * 1981-10-15 1983-04-16 Taiho Kogyo Co Ltd アルミニウム系合金軸受
JPS6263637A (ja) * 1985-09-17 1987-03-20 Taiho Kogyo Co Ltd アルミニウム軸受合金
JPS6263638A (ja) * 1985-09-17 1987-03-20 Taiho Kogyo Co Ltd アルミニウム軸受合金
JPS62256940A (ja) * 1986-04-30 1987-11-09 N D C Kk アルミニウム系軸受材料
JPH0672278B2 (ja) * 1990-08-31 1994-09-14 大同メタル工業株式会社 耐疲労性と非焼付性に優れたアルミニウム基軸受合金
JP3857503B2 (ja) * 2000-07-26 2006-12-13 大同メタル工業株式会社 アルミニウム系軸受合金
JP2002039186A (ja) * 2000-07-27 2002-02-06 Taiho Kogyo Co Ltd すべり軸受
JP2003056315A (ja) * 2001-08-22 2003-02-26 Ntn Corp ローラ付きカムフォロア
DE10315416A1 (de) * 2002-06-27 2004-01-22 Ina-Schaeffler Kg Lagefixierung eines Bolzens
JP2004028242A (ja) * 2002-06-27 2004-01-29 Daido Metal Co Ltd 内燃機関用軸受装置
JP3857628B2 (ja) * 2002-08-12 2006-12-13 大同メタル工業株式会社 アルミニウム系多層軸受
JP3636326B1 (ja) * 2004-05-10 2005-04-06 大同メタル工業株式会社 複層摺動部材
US7878777B2 (en) * 2006-08-25 2011-02-01 Denso Corporation Scroll compressor having grooved thrust bearing
JP4827680B2 (ja) * 2006-10-06 2011-11-30 大豊工業株式会社 摺動部材
JP5021536B2 (ja) 2008-03-25 2012-09-12 大同メタル工業株式会社 すべり軸受
JP5453533B2 (ja) * 2010-07-09 2014-03-26 大同メタル工業株式会社 摺動部材
DE112011102310B4 (de) * 2010-07-09 2017-01-26 Daido Metal Company Ltd. Gleitlager
JP5132806B1 (ja) * 2011-09-29 2013-01-30 大同メタル工業株式会社 すべり軸受
KR101526659B1 (ko) * 2013-05-07 2015-06-05 현대자동차주식회사 복합 미세조직을 갖는 내마모성 합금

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4471029A (en) 1981-10-15 1984-09-11 Taiho Kogyo Co., Ltd. Al-Si-Sn Bearing Alloy and bearing composite
JPS59193254A (ja) * 1983-04-14 1984-11-01 Taiho Kogyo Co Ltd アルミニウム系合金軸受の製造方法
JPS6036641A (ja) * 1983-07-05 1985-02-25 エイイーピーエルシー 平軸受用複合ストリップ及びその製造方法
JPH02102912A (ja) 1988-10-07 1990-04-16 Ndc Co Ltd クランクシャフト−連接棒アセンブリに供せられるすべり軸受ならびにクランクシャフト−連接棒アセンブリにおけるクランクシャフト
JPH0257653A (ja) 1989-04-07 1990-02-27 Ndc Co Ltd Al―Sn系軸受合金
JPH06235038A (ja) 1993-11-01 1994-08-23 Ndc Co Ltd Al−Sn系軸受合金
JPH0813072A (ja) * 1994-07-01 1996-01-16 Toyota Motor Corp アルミニウム合金軸受
JP2003119530A (ja) * 2001-10-10 2003-04-23 Daido Metal Co Ltd アルミニウム系軸受合金
JP3472284B2 (ja) 2001-10-10 2003-12-02 大同メタル工業株式会社 アルミニウム系軸受合金
JP2004028276A (ja) 2002-06-27 2004-01-29 Taiho Kogyo Co Ltd 内燃機関の主運動機構
JP2004028278A (ja) 2002-06-27 2004-01-29 Taiho Kogyo Co Ltd 内燃機関の主運動機構

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Development of Aluminum-Alloy Bearing with Improved Wear Resistance", ADVANCE PAPERS OF ACADEMIC LECTURE MEETING OF CORPORATE JURIDICAL PERSON AUTOMOBILE ENGINEERING NO., no. 46-99, pages 211

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130323524A1 (en) * 2011-02-08 2013-12-05 Gerd Andler Sliding bearing composite material
KR101906622B1 (ko) 2011-02-08 2018-10-10 페데랄-모굴 비스바덴 게엠베하 미끄럼 베어링 복합재
CN102560178A (zh) * 2012-02-20 2012-07-11 西安交通大学 一种多孔材料的制备方法
CN102703769A (zh) * 2012-05-29 2012-10-03 华南理工大学 一种纳米复合铝锡硅轴承合金的制造方法
JP2016526104A (ja) * 2013-06-07 2016-09-01 フエデラル—モーグル・ウイースバーデン・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング アルミニウム軸受けメタル層を有する滑り軸受け複合材料
JP2015071797A (ja) * 2013-10-02 2015-04-16 大豊工業株式会社 アルミニウム合金および摺動部材
WO2017065176A1 (ja) * 2015-10-16 2017-04-20 Ntn株式会社 フォイル軸受
WO2019225098A1 (ja) * 2018-05-25 2019-11-28 大豊工業株式会社 摺動部材
US10941810B2 (en) 2018-05-25 2021-03-09 Taiho Kogyo Co., Ltd. Sliding member

Also Published As

Publication number Publication date
WO2011132788A9 (ja) 2012-08-16
US9518603B2 (en) 2016-12-13
CN102869800B (zh) 2014-10-29
JP5683574B2 (ja) 2015-03-11
JPWO2011132788A1 (ja) 2013-07-18
KR101278412B1 (ko) 2013-06-24
KR20120115601A (ko) 2012-10-18
EP2562282B1 (en) 2020-03-11
BR112012026018A2 (pt) 2016-06-28
CN102869800A (zh) 2013-01-09
EP2562282A4 (en) 2014-02-26
AU2011243505B2 (en) 2014-02-27
AU2011243505A1 (en) 2012-11-29
EP2562282A1 (en) 2013-02-27
US20130108197A1 (en) 2013-05-02

Similar Documents

Publication Publication Date Title
JP5683574B2 (ja) 軸受装置
US6334914B2 (en) Copper alloy sliding material
JP7111484B2 (ja) 摺動部材
JP3249774B2 (ja) 摺動部材
JPWO2008111617A1 (ja) すべり軸受
JPWO2008140100A1 (ja) Pbフリー銅合金摺動材料、及びすべり軸受
JPH09125176A (ja) 銅系すべり軸受材料および内燃機関用すべり軸受
JP3733539B2 (ja) すべり軸受材料
GB2367070A (en) An aluminium bearing alloy
JP3472284B2 (ja) アルミニウム系軸受合金
JP2006283905A (ja) すべり軸受
WO2012147780A1 (ja) 摺動材料、軸受用合金及び軸受用複層金属材
JP2007100200A (ja) 軸受用アルミニウム合金
JP2000345258A (ja) すべり軸受
JP7389600B2 (ja) 摺動部材
JP7389601B2 (ja) 摺動部材
GB2285060A (en) Copper-head alloy bearing
JPS582578B2 (ja) アルミニウム軸受合金
EP3284839A1 (en) Aluminium alloy composition for a sliding element
JP3754353B2 (ja) 複合めっき被膜付き摺動部材
JP5073925B2 (ja) 鉛フリー銅系摺動材料
JP2020152980A (ja) 軸受合金、摺動部材、内燃機関、及び自動車。
JP2007099965A (ja) 組合せ摺動部材
WO2004076702A1 (ja) すべり軸受用鉛合金
JP2023127504A (ja) アルミニウム青銅合金および該合金を用いた摺動部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180019941.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772119

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511730

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127026296

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 8905/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1201005559

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2011772119

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011243505

Country of ref document: AU

Date of ref document: 20110422

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13642703

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012026018

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012026018

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121010