WO2011115247A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2011115247A1
WO2011115247A1 PCT/JP2011/056533 JP2011056533W WO2011115247A1 WO 2011115247 A1 WO2011115247 A1 WO 2011115247A1 JP 2011056533 W JP2011056533 W JP 2011056533W WO 2011115247 A1 WO2011115247 A1 WO 2011115247A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
graphite
lithium ion
ion secondary
secondary battery
Prior art date
Application number
PCT/JP2011/056533
Other languages
English (en)
French (fr)
Inventor
佐々木 英明
野口 健宏
Original Assignee
Necエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necエナジーデバイス株式会社 filed Critical Necエナジーデバイス株式会社
Priority to JP2012505762A priority Critical patent/JPWO2011115247A1/ja
Priority to US13/635,596 priority patent/US20130011747A1/en
Priority to CN2011800145289A priority patent/CN102792490A/zh
Priority to EP11756430.2A priority patent/EP2549569A4/en
Publication of WO2011115247A1 publication Critical patent/WO2011115247A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a lithium ion secondary battery having a high capacity and excellent cycle characteristics.
  • Lithium ion secondary batteries are smaller in volume and larger in weight capacity density than secondary batteries such as conventional alkaline storage batteries.
  • the lithium ion secondary battery is widely used as a power source for small devices and widely used as a power source for mobile devices such as mobile phones and laptop computers.
  • demand for large-capacity batteries that require large capacity and long life, such as electric vehicles (EV) and power storage has increased due to consideration for environmental issues and increased awareness of energy conservation. It is growing.
  • a lithium ion secondary battery includes a negative electrode using a carbon material capable of occluding and releasing lithium ions as a negative electrode active material, a positive electrode using a lithium composite oxide capable of occluding and releasing lithium ions as a positive electrode active material, and a negative electrode and a positive electrode. And a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent.
  • examples of the carbon material used as the negative electrode active material include amorphous carbon and highly crystalline graphite.
  • graphite is generally used.
  • Graphite materials are broadly classified into natural graphite and artificial graphite.
  • natural graphite has a large specific surface area and high reactivity with an electrolytic solution, and has a problem that it is easily deformed by pressurization and oriented. For this reason, it has been difficult for natural graphite to obtain the high cycle characteristics required for electric vehicle batteries. Therefore, attempts have been made to reduce the reactivity with the electrolyte by reducing the specific surface area by coating the particle surface with amorphous carbon. Attempts have also been made to reduce the orientation by spheroidizing natural graphite. However, no fundamental solution has been reached.
  • artificial graphite is said to be excellent in cycle characteristics because it is less reactive with an electrolyte than natural graphite and has less particle orientation.
  • artificial graphite has various particle properties such as crystallinity, particle shape, and particle hardness depending on its production method. If an electrode design suitable for the particle property is not performed, the performance of artificial graphite is fully exploited. It is not possible.
  • Patent Document 1 discloses a carbon material for battery electrodes that has low deformation and orientation of particles due to pressurization and high Coulomb efficiency.
  • the problem of the present embodiment is to provide a lithium ion secondary battery with excellent cycle characteristics by preventing a decrease in conductivity of the electrode, which becomes a problem when using a graphite material with little deformation and orientation due to pressurization It is to be.
  • the present inventors have conducted intensive studies. As a result, in a negative electrode using graphite with little deformation and orientation, the absorption amount of DBP (butyl phthalate) as a conductive additive is reduced. By using carbon black with a defined structure developed, it is possible to obtain a negative electrode that has low orientation and high lithium ion acceptance, and that sufficiently retains the conductivity of the electrode. It was found to exhibit cycle characteristics.
  • DBP butyl phthalate
  • a negative electrode capable of occluding and releasing lithium ions a positive electrode capable of occluding and releasing lithium ions, a separator separating the negative electrode and the positive electrode, and a nonaqueous electrolytic solution in which lithium salt is dissolved.
  • the negative electrode includes a negative electrode mixture composed of a negative electrode active material mainly composed of graphite, a binder, and a conductive additive, The graphite has a peak intensity ratio of (002) plane to (110) plane of 30 to 70 in an X-ray diffraction spectrum measured after forming the negative electrode mixture and pressing at a pressure of 98 MPa (1000 kgf / cm 2 ).
  • the conductive additive DBP absorption (cm 3 / 100g) is a lithium-ion secondary battery is carbon black 250 to 500.
  • the negative electrode mixture is formed on the current collector by pressing the negative electrode mixture at a pressure of 98 MPa (1000 kgf / cm 2 ) or more, and the electrode density in the negative electrode mixture after pressing is 1.3 g / cm 3 or more 1.6 g / cm 3 is in the lithium ion secondary battery is less.
  • the graphite, the lithium ion R value is the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the laser Raman spectrum is graphite 0.01-0.1 It is a secondary battery.
  • One of the embodiments is the lithium ion secondary battery in which the graphite is massive artificial graphite that is substantially amorphous carbon and the surface is not coated.
  • One embodiment of the present invention is the lithium ion secondary battery in which the graphite has a region of a graphite structure and an amorphous structure dispersed from the surface to the center of the particle.
  • One of the embodiments is the lithium ion secondary battery containing a cyclic disulfonic acid ester represented by the formula (1) as an additive of the non-aqueous electrolyte.
  • a lithium ion secondary battery has a negative electrode in which a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions is formed in a negative electrode current collector. Moreover, the lithium ion secondary battery has a positive electrode in which a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions is formed on a positive electrode current collector. Further, the negative electrode and the positive electrode are arranged to face each other with a separator interposed therebetween. Further, the lithium secondary battery has a non-aqueous electrolyte solution in which a lithium salt is dissolved.
  • the negative electrode is formed by forming, on a current collector, a negative electrode mixture composed of a negative electrode active material mainly composed of graphite, a binder, and a conductive additive.
  • the negative electrode is formed by forming a negative electrode mixture layer on at least one surface of the negative electrode current collector.
  • the negative electrode mixture layer has a composite in which a negative electrode active material, which is a main material, and a conductive additive are bound by a binder.
  • the negative electrode active material is mainly composed of graphite.
  • a carbon material such as amorphous carbon, a material that forms an alloy with Li such as Si, Sn, or Al, a Si oxide, and a metal element other than Si and Si are used.
  • a mixed Si composite oxide, Sn oxide, Sn composite oxide containing Sn and a metal element other than Sn, or Li 4 Ti 5 O 12 may be used.
  • Graphite is broadly classified into natural graphite and artificial graphite.
  • natural graphite tends to have a higher orientation due to pressurization than artificial graphite.
  • artificial graphite is superior to natural graphite in terms of lithium ion acceptability and electrolyte solution impregnation, and has low reactivity with the electrolyte solution. Therefore, in applications where a long life is required, it is preferable that graphite is mainly composed of artificial graphite.
  • graphite there are various shapes of graphite such as lump, flakes, and spheres, but lump graphite and spheroidal graphite are less oriented when pressed than flake graphite.
  • massive graphite makes contact between particles easier than spherical graphite. Accordingly, the graphite preferably has a massive form. Therefore, it is more preferable to use massive artificial graphite as the graphite.
  • the particle diameter and specific surface area of graphite affect the coatability and cycle characteristics of the slurry. Accordingly, graphite preferably has an average particle diameter of 5 to 40 ⁇ m and a specific surface area of 0.4 to 10 m 2 / g, an average particle diameter of 10 to 25 ⁇ m, and a specific surface area of 0.5 to 1.5 m 2 / g. Are more preferred.
  • the negative electrode active material massive artificial graphite having an average particle size of 10 to 25 ⁇ m and a specific surface area of 0.5 to 1.5 m 2 / g is particularly preferable.
  • the average particle diameter (d50) can be defined as the particle diameter when the cumulative weight (volume) of particles is 50% in the particle size distribution curve. This can be measured by a laser diffraction scattering method (microtrack method).
  • the specific surface area can be measured by the BET method using N 2 gas.
  • the negative electrode active material graphite having a small particle orientation with respect to pressure is used.
  • a graphite material in which an XRD diffraction intensity ratio I (002) / I (110) measured by forming a negative electrode mixture and pressing at 98 MPa (1000 kgf / cm 2 ) is 30 or more and 70 or less. Is preferred.
  • I (002) / I (110) is 70 or less, the orientation of the particles is small and the lithium ion acceptability is also good.
  • the lower limit value of I (002) / I (110) is not particularly limited as battery performance, but in actuality, the value when the particles are completely randomly oriented (non-oriented) is the lower limit value, specifically 30. That's it.
  • the negative electrode mixture layer used for XRD measurement can be formed by a general method. That is, a slurry obtained by mixing and dispersing graphite, which is an active material, a conductive additive and a binder in a solvent such as NMP, is applied to a current collector (Cu), dried, and evaporated to evaporate NMP. Can do. Usually, the ratio of graphite serving as an active material in the negative electrode mixture is 90% or more, but the strength ratio of XRD does not change so much in such a composition range.
  • the pressing can be performed by a uniaxial press, and the pressing pressure is obtained by dividing the actually applied load by the area of the negative electrode mixture.
  • the press pressure of 98 MPa (1000 kgf / cm 2 ) is a value used as a reference point for evaluating the orientation of the graphite material, and does not mean a press pressure when manufacturing a negative electrode incorporated in an actual battery. .
  • the XRD strength can be evaluated after re-pressing the electrode after the roll press with a uniaxial press.
  • the peak intensity ratio is obtained from the ratio of the peak height near 26.4 ° corresponding to the (002) plane after background removal and the peak height near 77.2 ° corresponding to the (110) plane. Background removal can be performed by drawing a baseline by linear approximation and subtracting the baseline value at that peak. The spectrum of the current collector (Cu) is also observed in the XRD spectrum, but the peak intensity ratio is not affected.
  • the negative electrode is formed on the current collector by pressing the negative electrode mixture at a pressure of 98 MPa (1000 kgf / cm 2 ) or higher, and the electrode density in the negative electrode mixture after pressing is 1.3 g / cm 3. It is preferable to use graphite that is not less than 1.6 g / cm 3 and hard and difficult to deform.
  • the electrode density can be determined by dividing the weight (g / cm 2) per unit area of the negative electrode mixture by the thickness (cm) of the negative electrode mixture. In such a negative electrode, there is little crushing of the particles when the electrode is pressed, and an increase in reactivity with the electrolytic solution due to the exposure of the new surface can be prevented.
  • the volume energy density is decreased, so that it is preferably 1.3 g / cm 3 or more. If it is 1.6 g / cm 3 or less, it can be suitably used for applications in which long life and weight energy density are important, such as batteries for electric vehicles.
  • a graphite laser R value in Raman spectrum (1580 cm -1 peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near) is 0.01-0.1, a substantially surface It is preferable to use massive artificial graphite not coated with amorphous carbon.
  • the peak intensity ratio is determined by the ratio of the height of each peak.
  • coating the surface of the active material with amorphous carbon is expected to improve cycle characteristics due to the effect of reducing the specific surface area and reducing the reactivity with the electrolyte, but charging / discharging due to the irreversible capacity of the amorphous carbon layer There is a problem that the efficiency is lowered and the battery capacity is lowered.
  • the presence or absence of the amorphous carbon layer on the surface can be determined by the R value of the Raman spectrum, and when the amorphous carbon layer is present, the R value is at least greater than 0.1.
  • the R value is 0.1 or less and the amorphous carbon layer is not substantially present on the surface, so that high charge / discharge efficiency and cycle characteristics are obtained. Can do. This is presumably because the presence of an amorphous carbon layer increases the irreversible capacity and degrades the quality of the SEI (Solid Electrolyte Interface) film that suppresses the reaction with the electrolyte.
  • SEI Solid Electrolyte Interface
  • the negative electrode active material may be graphite in which the regions of the graphite structure and the amorphous structure are dispersed from the surface of the particle to the central portion. Dispersion of minute amorphous regions in the particles makes the particles harder and hardly deforms due to pressure. As a result, the orientation can be suppressed. In addition, since the amorphous structure in the particles is less than that of the graphite structure, both structures are almost uniformly dispersed, and the charge / discharge efficiency is not impaired.
  • the graphite structure (graphite crystalline part) and amorphous structure (amorphous carbon part) of the carbonaceous particles can be discriminated by analyzing a bright field image with a transmission electron microscope.
  • SAD limited-field electron diffraction
  • the graphite crystalline region refers to, for example, one showing characteristics of a diffraction pattern in graphitized carbon treated at 2800 ° C. (in the limited field diffraction pattern, two or more spot-like diffraction patterns are shown).
  • the amorphous region refers to, for example, a characteristic of a diffraction pattern of non-graphitizable carbon treated at 1200 to 2800 ° C. (in the limited field diffraction pattern, only one spot derived from the (002) plane appears. Shows the diffraction pattern).
  • the negative electrode using graphite which is difficult to be oriented and hard to deform as described above, has the advantage of smooth movement of lithium ions and less particle breakage during pressing, but the particles in the electrode.
  • the contact area between the particles decreases to become point contact, and contact between particles becomes impossible due to expansion and contraction associated with the charge / discharge cycle, resulting in deterioration of cycle characteristics. Therefore, it has been necessary to use an appropriate conductive auxiliary agent that can sufficiently maintain the conductivity of the electrode for such graphite.
  • the conductive assistant for example, various carbon materials such as flake graphite, granular carbons, and carbon black are used.
  • carbon black having different particle sizes, specific surface areas, DBP absorption amounts and the like. The higher the DBP absorption amount, the more the structure is developed, and the carbon particles have a chain-like structure, which functions as a network of electronic conduction in the electrode.
  • this structure structure plays the role which hold
  • the use of carbon black with a developed structure as a conductive aid will improve the electron conductivity of the electrode and improve the cycle characteristics, but in the negative electrode, the active material graphite itself has a high electron conductivity. Therefore, it is considered that the improvement of the cycle characteristics by the conductive auxiliary agent is limited, and so far no attention has been paid to the DBP absorption amount of the conductive auxiliary agent in the negative electrode mixture.
  • the DBP adsorption amount can be measured according to JIS K 6217-4.
  • DBP absorption amount (cm 3 / 100g) is preferably set to 250 or more and 500 or less.
  • the content of the conductive auxiliary is preferably 0.2% by mass or more and 3.0% by mass or less, and more preferably 0.5% by mass or more and 1.5% by mass or less with respect to the negative electrode mixture.
  • the amount of the conductive auxiliary is 0.2% by mass or more, it becomes easy to sufficiently maintain the conductivity of the electrode. Further, when the amount of the conductive auxiliary is 1.5% by mass or less, the viscosity of the electrode slurry is prevented from becoming too high, the coating property is likely to be improved, and the increase in irreversible capacity is suppressed to charge and discharge. Efficiency is likely to improve.
  • the binder is not particularly limited, and examples thereof include polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), and an acrylic polymer.
  • PVDF polyvinylidene fluoride
  • SBR styrene butadiene rubber
  • acrylic polymer an acrylic polymer.
  • NMP N-methyl-2-pyrrolidone
  • CMC carboxymethyl cellulose
  • SBR and acrylic polymers have less swelling with respect to the electrolyte than PVDF, they can be suitably used as the binder of this embodiment.
  • the content of the binder is preferably 0.5% by mass or more and 10% by mass or less, and more preferably 1% by mass or more and 5% by mass or less with respect to the negative electrode mixture.
  • the content of the binder is 0.5% by mass or more, sufficient adhesion is easily obtained.
  • the content of the binder is 10% by mass or less, it becomes easy to prevent a decrease in battery capacity.
  • the negative electrode current collector is not particularly limited, and for example, copper, stainless steel, nickel, titanium, or an alloy thereof can be used.
  • the positive electrode active material is not particularly limited, and a material that can occlude and release lithium ions can be used.
  • a lithium-containing composite oxide is used. More specifically, as the lithium-containing composite oxide, for example, LiMO 2 (M is one kind selected from Mn, Fe, Co, Ni, or a mixture of two or more kinds, a part of which is Mg, Al , Ti or other cations), LiMn 2-x A x O 4 (A is at least one element other than Mn), and the like can be used.
  • the additive element (A) include Mg, Al, Co, Ni, Fe, and B.
  • An olivine type material represented by LiFePO 4 can also be used.
  • lithium manganate represented by LiMn 2-x A x O 4 in particular has a lower capacity than lithium cobaltate (LiCoO 2 ) and lithium nickelate (LiNiO 2 ), but compared with Ni and Co. Therefore, there is a merit that the material cost is low because of the large amount of Mn produced, and the thermal stability is high because of the spinel structure. Therefore, lithium manganate represented by LiMn 2-x A x O 4 is suitably used as a positive electrode material for large batteries such as electric vehicles and power storage. Therefore, the positive electrode active material preferably contains lithium manganate as a main component.
  • the negative electrode and the positive electrode can be produced as follows, for example. First, the active material and the conductive additive are dispersed and kneaded in a solvent such as NMP together with a binder such as PVDF to prepare a slurry. Next, the slurry is applied to the current collector on a hot plate using a doctor blade or the like, and then the solvent is dried to produce an electrode. The obtained electrode can be compressed to a suitable density by a method such as a roll press.
  • a nonaqueous solvent in which an electrolyte is dissolved can be used.
  • a lithium salt can be used as the electrolyte.
  • the lithium salt is not particularly limited, for example, lithium imide salt, LiPF 6, LiAsF 6, LiAlCl 4, LiClO 4, LiBF 4, etc. LiSbF 6 and the like. Among these, LiPF 6 and LiBF 4 are preferable.
  • the lithium imide salt include LiN (C k F 2k + 1 SO 2 ) (C m F 2m + 1 SO 2 ) (k and m are each independently 1 or 2). These can be used alone or in combination of two or more.
  • non-aqueous solvent is not particularly limited, but examples thereof include cyclic carbonates, chain carbonates, aliphatic carboxylic acid esters, ⁇ -lactones, cyclic ethers, chain ethers and the like. At least one organic solvent selected from organic solvents of the above fluorinated derivatives can be used.
  • the cyclic carbonates include propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and derivatives thereof.
  • chain carbonates include dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dipropyl carbonate (DPC), and derivatives thereof.
  • Examples of the aliphatic carboxylic acid esters include methyl formate, methyl acetate, ethyl propionate, and derivatives thereof.
  • Examples of ⁇ -lactones include ⁇ -butyrolactone and derivatives thereof.
  • Examples of cyclic ethers include tetrahydrofuran and 2-methyltetrahydrofuran.
  • Examples of chain ethers include 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), diethyl ether, and derivatives thereof.
  • dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylformamide, dioxolane, acetonitrile, propylnitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane , Methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, fluorinated Carboxylic acid ester etc. can be mentioned. These can be used alone or in combination of two or more.
  • an additive may be added to the electrolytic solution in order to form a high-quality SEI film on the negative electrode surface.
  • the SEI film functions to suppress the reactivity with the electrolytic solution, or to smooth the desolvation reaction accompanying the insertion / desorption of lithium ions to prevent structural deterioration of the active material.
  • Examples of such additives include propane sultone (PS), vinylene carbonate (VC), and cyclic disulfonic acid esters.
  • PS propane sultone
  • VC vinylene carbonate
  • cyclic disulfonic acid esters examples include propane sultone (PS), vinylene carbonate (VC), and cyclic disulfonic acid esters.
  • the cyclic disulfonic acid ester is particularly preferable because it can form a dense and high-quality SEI film.
  • the cyclic disulfonic acid ester is a compound represented by the following formula (1).
  • the content of the additive is preferably 0.1% by mass or more and 10% by mass or less in the electrolytic solution, and more preferably 0.5% by mass or more and 3% by mass or less.
  • the content of the additive is 0.5% by mass or more, it becomes easy to form a good film.
  • the content of the additive is 10% by mass or less, an increase in resistance can be suppressed, and a large amount of gas generation can be suppressed.
  • Q represents an oxygen atom, a methylene group or a single bond.
  • A represents a branched or unsubstituted alkylene group having 1 to 5 carbon atoms which may be branched, a carbonyl group, a sulfinyl group, a branched group.
  • a substituted or unsubstituted alkylene group having 1 to 6 carbon atoms which may be branched including an ether bond, or may be branched including a substituted or unsubstituted perfluoroalkylene group having 1 to 6 carbon atoms or an ether bond.
  • the outer package of the lithium ion secondary battery according to the present embodiment is not particularly limited, but a laminate outer package is preferable.
  • a laminate outer package made of a flexible film made of a laminate of a synthetic resin and a metal foil is preferable for reducing the weight and improving the battery energy density.
  • the laminate type battery is excellent in heat dissipation, it can be suitably used as a battery for vehicles such as an electric vehicle.
  • Example 0-1 Preparation of negative electrode
  • artificial graphite As an anode active material, artificial graphite as massive artificial graphite A; (average particle diameter D50 17 .mu.m, specific surface area of 1m 2 / g), DBP absorption as a conductive additive (cm 3/100 g) 360 Carbon black ( (Average particle diameter 40 nm, specific surface area 800 m 2 / g), SBR as a binder, and CMC as a thickener in ion-exchanged water at a mass ratio of 97.5: 0.5: 1: 1.
  • a slurry was prepared by kneading and dispersing.
  • a slurry was prepared by uniformly dispersing in NMP. The slurry was applied on an aluminum foil having a thickness of 20 ⁇ m to be a positive electrode current collector. Then, the positive electrode mixture layer was formed by evaporating NMP at 125 ° C. for 10 minutes. The amount of the positive electrode mixture per unit area after drying was set to 0.025 g / cm 2 .
  • the positive electrode and the negative electrode produced as described above were cut into 5 cm ⁇ 6.0 cm, respectively. Among these, a side of 5 cm ⁇ 1 cm is an uncoated portion for connecting the tab, and the active material layer is 5 cm ⁇ 5 cm.
  • An aluminum positive electrode tab having a width of 5 mm, a length of 3 cm, and a thickness of 0.1 mm was ultrasonically welded to the uncoated positive electrode portion at a length of 1 cm.
  • a nickel negative electrode tab having the same size as the positive electrode tab was ultrasonically welded to the negative electrode uncoated portion.
  • the negative electrode and the positive electrode were arranged on both sides of a 6 cm ⁇ 6 cm separator made of polyethylene and polypropylene so that the active material layer overlapped with the separator to obtain an electrode laminate.
  • a bag-like laminate outer package was prepared by bonding one side of the two 7 cm ⁇ 10 cm aluminum laminate films, excluding one of the long sides, to a width of 5 mm by thermal fusion.
  • the electrode laminate was inserted so as to be a distance of 1 cm from one short side of the laminate outer package. After the nonaqueous electrolyte solution was injected in an amount of 1.5 times the pore volume of the electrode laminate and vacuum impregnated, the opening was heat-sealed at a width of 5 mm under reduced pressure. By sealing, a laminate type battery was produced.
  • Example 0-2 A battery was fabricated in the same manner as in Example 0-1, except that artificial graphite C (average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g), which is flaky artificial graphite, was used as the negative electrode active material. Then, a cycle test was conducted.
  • artificial graphite C average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g
  • Example 0-2 A battery was fabricated and subjected to a cycle test in the same manner as in Example 0-1, except that 1.5% by mass of 1,3-propane sultone was further added as an additive to the electrolytic solution.
  • Example 0-3 A battery was prepared and subjected to a cycle test in the same manner as in Example 0-1 except that 1.5% by mass of vinylene carbonate as an additive was added to the electrolyte solution.
  • Table 1 shows I (002) obtained by measuring XRD diffraction spectra of negative electrodes pressed at 98 MPa (1000 kgf / cm 2 ) for Examples 0-1 to 0-3 and Comparative Examples 0-1 to 0-2. / I (110) and the capacity retention after 500 cycles at 60 ° C. (hereinafter simply referred to as capacity retention).
  • the XRD spectrum was obtained by measuring a range of 20 to 100 ° at a scan rate of 2 ° / min at intervals of 0.01 ° at an X-ray intensity of 30 kV-15 mA using CuK ⁇ rays (wavelength 0.15418 nm).
  • I (002) / I (110 ) is a DBP absorption amount of 70 or less (cm 3 / 100g) 250 or more of a high capacity retention ratio was obtained.
  • I (002) / I (110) was greater than 70, the capacity retention rate was low.
  • I (002) / I ( 110) is a DBP absorption amount of 70 or less (cm 3 / 100g) was found to be preferable 250-500.
  • Example 1 As a conductive additive, DBP absorption amount (cm 3/100 g) 250 Carbon black (average particle diameter 60 nm, specific surface area 80 m 2 / g), as an additive to the electrolyte, the additive compound 102 shown above A battery was prepared and subjected to a cycle test in the same manner as in Example 0-1, except that a mixture of 1.5% by mass further was used.
  • Example 2 As a conductive additive, DBP absorption amount (cm 3/100 g) 360 Carbon black (average particle diameter 40 nm, specific surface area 800 m 2 / g) of except for using, cycle manufactured in the same manner as the battery of Example 1 A test was conducted.
  • Example 3 As a conductive additive, DBP absorption amount (cm 3/100 g) 500 Carbon black (average particle diameter 34 nm, specific surface area 1270 m 2 / g) except for using the cycle was prepared in the same manner as the battery of Example 1 A test was conducted.
  • Example 4 A battery was fabricated and tested in the same manner as in Example 1 except that artificial graphite B (average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g), which is massive artificial graphite, was used as the negative electrode active material. Went.
  • artificial graphite B average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g
  • Example 5 A battery was produced and cycle tested in the same manner as in Example 2 except that artificial graphite B (average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g), which is massive artificial graphite, was used as the negative electrode active material. Went.
  • artificial graphite B average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g
  • Example 2 A battery was fabricated in the same manner as in Example 2 except that artificial graphite C (average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g), which is flaky artificial graphite, was used as the negative electrode active material. A cycle test was conducted.
  • artificial graphite C average particle diameter D50; 30 ⁇ m, specific surface area 1.2 m 2 / g
  • Comparative Example 4 Comparative example except that natural graphite A (average particle diameter D50; 20 ⁇ m, specific surface area 1.0 m 2 / g), which is spherical natural graphite coated with amorphous carbon, was used as the negative electrode active material. A battery was produced in the same manner as in Example 2 and a cycle test was performed.
  • natural graphite A average particle diameter D50; 20 ⁇ m, specific surface area 1.0 m 2 / g
  • Table 2 shows I (002) / I (110) obtained by measuring the XRD diffraction spectrum of the negative electrode pressed at 98 MPa (1000 kgf / cm 2 ) for Examples 1 to 5 and Comparative Examples 1 to 4, and 60
  • capacity retention ratio after 500 cycles at 0 ° C. (hereinafter simply referred to as capacity retention ratio) was shown.
  • the XRD spectrum was obtained by measuring a range of 20 to 100 ° at a scan rate of 2 ° / min at intervals of 0.01 ° at an X-ray intensity of 30 kV-15 mA using CuK ⁇ rays (wavelength 0.15418 nm).
  • I (002) / I (110 ) is a DBP absorption amount of 70 or less (cm 3 / 100g) 250 or more of a high capacity retention ratio was obtained.
  • I (002) / I (110) was greater than 70, the capacity retention rate was low.
  • I (002) / I ( 110) is a DBP absorption amount of 70 or less (cm 3 / 100g) was found to be preferable 250-500.
  • the amount of the additive can be variously changed (0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0% by weight), the same effect as described above was obtained.
  • Example 6 A battery was produced and subjected to a cycle test in the same manner as in Example 2 except that the negative electrode was pressed at 98 MPa (1000 kgf / cm 2 ) and the density was 1.33 g / cm 3.
  • Example 7 A battery was fabricated and subjected to a cycle test in the same manner as in Example 2 except that the negative electrode was pressed at 196 MPa (2000 kgf / cm 2 ) and the density was 1.52 g / cm 3.
  • Example 8 A battery was fabricated and subjected to a cycle test in the same manner as in Example 2 except that the negative electrode was pressed at 490 MPa (5000 kgf / cm 2 ) and the density was 1.57 g / cm 3.
  • Example 9 A battery was produced and subjected to a cycle test in the same manner as in Example 5 except that the negative electrode was pressed at 98 MPa (1000 kgf / cm 2 ) and the density was 1.60 g / cm 3.
  • Example 10 A battery was fabricated and subjected to a cycle test in the same manner as in Example 5 except that the negative electrode was pressed at 196 MPa (2000 kgf / cm 2 ) and the density was 1.75 g / cm 3.
  • Table 3 shows the density and capacity retention rate of the negative electrodes of Examples 6 to 10.
  • a high capacity retention ratio was obtained with artificial graphite A having an electrode density of 1.3 to 1.6 g / cm 3 when pressed at 98 MPa (1000 kgf / cm 2 ) or more. This is presumably because the artificial graphite A, which is not easily deformed by pressurization, has little deterioration due to particle crushing.
  • Example 11 The charge / discharge efficiency was determined for the secondary battery obtained in Example 2.
  • the charge / discharge efficiency was determined as the ratio of the initial discharge capacity to the initial charge capacity (initial discharge capacity / initial charge capacity ⁇ 100).
  • the laser Raman spectrum was measured for the powder of artificial graphite A, it was determined R value (1580 cm -1 peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near).
  • the Raman spectrum was measured in a macro Raman mode (beam diameter 100 ⁇ m) using an Ar + laser (wavelength 514.5 nm, beam intensity 10 mW).
  • the Raman intensity ratio was determined as the ratio of the height of each peak.
  • Example 12 For the secondary battery obtained in Example 5, the charge and discharge efficiency was determined in the same manner as in Example 11.
  • Example 13 An artificial graphite A coated with 5% by mass of amorphous carbon using a CVD method (artificial graphite A ′) was determined in the same manner as in Example 11 to obtain an R value.
  • a battery was produced in the same manner as in Example 2 except that artificial graphite A ′ was used instead of artificial graphite A. About the obtained battery, the cycle test was done and charge / discharge efficiency was calculated
  • Table 4 shows the charge / discharge efficiency (discharge capacity / charge capacity ⁇ 100%) and the capacity retention rate during the first charge / discharge of Examples 11, 12, and 13.
  • Examples 11 and 12 are the same batteries as Example 2 and Example 5, respectively, the capacity retention ratio is also the same.
  • the R value was 0.1 or less, the charge / discharge efficiency was high and the capacity retention rate was also high.
  • the amorphous carbon coating was performed and the R value was increased to 0.25, the charge / discharge efficiency and the capacity retention rate were both lowered. This is probably because the irreversible capacity of the amorphous carbon layer is large and the quality of the SEI film on the surface is lowered.
  • the artificial graphite A was cut into thin pieces, and a limited field diffraction pattern of a bright field image was observed with a transmission electron microscope. It was found that a graphite structure showing two or more spot-like diffraction patterns and an amorphous structure showing a diffraction pattern showing only one spot derived from the (002) plane were dispersed in the particles. The ratio of the graphite structure to the amorphous structure was estimated to be approximately 90:10. In artificial graphite B, a similar structure was not recognized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 加圧による変形および配向性が少ない黒鉛材料を用いた電極の導電性を向上させ、サイクル特性に優れたリチウムイオン二次電池を提供する。 少なくとも黒鉛を主体とする負極活物質と結着剤と導電助剤とからなる負極合剤を98MPa(1000kgf/cm)でプレスして測定されるX線回折スペクトルにおける(110)面に対する(002)面のピーク強度比が30以上70以下であって、導電助剤はDBP吸収量(cm/100g)が250以上500以下のカーボンブラックを含む。

Description

リチウムイオン二次電池
 本発明は、高容量でサイクル特性に優れたリチウムイオン二次電池に関する。
 リチウムイオン二次電池は、従来のアルカリ蓄電池などの二次電池に比べて、体積が小さく、重量容量密度が大きい。しかも、リチウムイオン二次電池は高電圧を取り出すことが可能であるので、小型機器用の電源として広く採用され、携帯電話やノート型パソコンなどのモバイル機器用の電源として広く用いられている。また、近年では小型のモバイル機器用途以外にも、環境問題に対する配慮と省エネルギー化に対する意識の高まりから、電気自動車(EV)や電力貯蔵分野といった大容量で長寿命が要求される大型電池に対する需要が高まっている。
 上記のような大型電池では、エネルギー密度が高いことや、充放電の繰り返しに対する放電容量の劣化が少ない、即ちサイクル特性が優れていることが求められている。
 一般に、リチウムイオン二次電池は、リチウムイオンを吸蔵放出し得る炭素材料を負極活物質とした負極と、リチウムイオンを吸蔵放出し得るリチウム複合酸化物を正極活物質とした正極と、負極と正極とを隔てるセパレータと、非水溶媒にリチウム塩を溶解させた非水電解液と、を含んで構成される。
 ここで、負極活物質として用いられる炭素材料としては非晶質炭素や結晶性の高い黒鉛などが挙げられる。特に高エネルギー密度が要求される用途では、一般に黒鉛が用いられる。
 黒鉛材料は天然黒鉛と人造黒鉛とに大きく分類される。一般に、天然黒鉛は比表面積が大きく電解液との反応性も高く、加圧により変形して容易に配向するといった問題がある。そのため、天然黒鉛では電気自動車用電池に求められるような高いサイクル特性を得るのが困難であった。そこで、粒子表面に非晶質炭素を被覆することで比表面積を小さくさせ、電解液との反応性を低減させる試みがなされていた。また、天然黒鉛を球形化させることにより配向性を減少させる試みもなされていた。しかし、根本的な解決には至っていない。
 一方、人造黒鉛は、天然黒鉛よりも電解液との反応性が低く粒子の配向性も少ないため、サイクル特性に優れていると言われている。しかしながら、人造黒鉛は、その製造方法によって、結晶性、粒子形状、粒子の固さなどの粒子性状が多様であり、その粒子性状に適した電極設計を行わないと人造黒鉛の性能を十分に引き出すことはできない。
 例えば、特許文献1では、加圧による粒子の変形および配向が少なく、クーロン効率が高い電池電極用炭素材料が開示されている。
特開2005-158718号公報
 しかしながら、特許文献1に記載の加圧により変形させて配向性が少ない材料では、電極内の粒子間の密着性が低いために粒子間の電気的接触がとりにくくなる結果、充放電サイクルに伴う膨張収縮よって電極の導電性が大きく低下し、サイクル特性が低下する場合があることがわかった。
 本実施形態の課題は、加圧による変形および配向性が少ない黒鉛材料を用いた際に問題となる電極の導電性の低下を防止することによって、サイクル特性に優れたリチウムイオン二次電池を提供することである。
 上記課題を解決するために、本発明者らは、鋭意検討を重ねた結果、加圧による変形、配向性が少ない黒鉛を用いた負極において、導電助剤としてDBP(フタル酸ブチル)吸収量で規定されるストラクチャーが発達したカーボンブラックを用いることで、配向性が少なくリチウムイオンの受け入れ性が高く、電極の導電性を十分に保持した負極を得ることができ、それを用いた電池が優れたサイクル特性を示すことを見出した。
 即ち、本実施形態の一は、リチウムイオンを吸蔵放出し得る負極と、リチウムイオンを吸蔵放出し得る正極と、前記負極と前記正極を隔てるセパレータと、リチウム塩を溶解した非水電解液とを有するリチウムイオン二次電池において、
 前記負極は、黒鉛を主体とする負極活物質と、結着剤と、導電助剤と、からなる負極合剤を含み、
 前記黒鉛は、前記負極合剤を形成して98MPa(1000kgf/cm)の圧力でプレスした後に測定されるX線回折スペクトルにおける(110)面に対する(002)面のピーク強度比が30以上70以下の値を有するものであり、
 前記導電助剤はDBP吸収量(cm/100g)が250以上500以下のカーボンブラックであるリチウムイオン二次電池である。
 本実施形態の一は、前記負極合剤を98MPa(1000kgf/cm)以上の圧力でプレスして前記集電体上に形成され、プレス後の前記負極合剤における電極密度が1.3g/cm以上1.6g/cm以下である前記リチウムイオン二次電池である。
 本実施形態の一は、前記黒鉛は、レーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるR値が0.01~0.1の黒鉛である前記リチウムイオン二次電池である。
 本実施形態の一は、前記黒鉛が実質的に非晶質炭素で表面が被覆されていない塊状人造黒鉛である前記リチウムイオン二次電池である。
 本実施形態の一は、前記黒鉛は、粒子の表面から中心部分までグラファイト組織とアモルファス組織の領域が分散している前記リチウムイオン二次電池である。
 本実施形態の一は、前記非水電解液の添加剤として、式(1)で表される環状ジスルホン酸エステルを含有する前記リチウムイオン二次電池である。
 負極合剤において98MPa(1000kgf/cm)の圧力でプレスした後に測定されるX線回折スペクトルにおける(110)面に対する(002)面のピーク強度比が30以上70以下の値を有するような配向性が少なく硬い黒鉛を用いることにより、リチウムイオンの移動がスムーズに行われ、プレス時の粒子の破壊による劣化を抑制することができる。また、DBP吸収量が250cm/100g以上のカーボンブラックを導電助剤に用いることによって、電極内に堅牢な導電ネットワークを形成することが可能となり、上記黒鉛を用いた際に課題となっていた電極導電性の低下を大幅に改善させることができる。その結果、負極性能が向上してサイクル特性に優れたリチウムイオン二次電池を提供することができる。
 以下に、本実施形態について説明する。
 (電池構成)
 リチウムイオン二次電池は、負極集電体にリチウムイオンを吸蔵放出し得る負極活物質を含有する負極合剤層が形成された負極を有する。また、リチウムイオン二次電池は、正極集電体にリチウムイオンを吸蔵放出し得る正極活物質を含有する正極合剤層が形成された正極を有する。また、負極と正極とは、セパレータを介して対向して配置される。また、リチウム二次電池は、リチウム塩を溶解した非水電解液を有する。
 (負極)
 負極は、黒鉛を主体とする負極活物質と、結着剤と、導電助剤と、からなる負極合剤を集電体に形成されてなる。また、負極は、負極集電体の少なくとも一方の面に負極合剤層が形成されてなる。負極合剤層は、主材である負極活物質と導電助剤とが結着剤によって結合された複合体を有している。
 負極活物質は、黒鉛を主体としてなる。また、負極活物質としては、黒鉛の他に、非晶質炭素などの炭素材料、Si、Sn若しくはAlなどのLiと合金を形成する材料、Si酸化物、SiとSi以外の金属元素とを含むSi複合酸化物、Sn酸化物、SnとSn以外の金属元素とを含むSn複合酸化物、又はLiTi12などを混合して用いてもよい。
 黒鉛は天然黒鉛と人造黒鉛に大きく分類されるが、一般に、天然黒鉛は、人造黒鉛に比べて加圧による配向性が大きい傾向がある。そのため、人造黒鉛の方が天然黒鉛よりも、リチウムイオンの受け入れ性や電解液含浸性の点で優れており、電解液に対する反応性も低い。したがって、長寿命が要求される用途では、黒鉛としては人造黒鉛を主体とすることが好ましい。
 黒鉛の形状は、塊状、燐片状、球状など様々な形状があるが、塊状黒鉛や球状黒鉛の方が燐片状黒鉛よりも加圧時の配向性が小さい。また、塊状黒鉛の方が球状黒鉛よりも粒子間の接触がとり易い。したがって、黒鉛は塊状の形態を有することが好ましい。したがって、黒鉛としては、塊状の人造黒鉛を用いることがより好ましい。
 黒鉛の粒子径および比表面積はスラリーの塗工性やサイクル特性に影響を及ぼす。したがって、黒鉛は、平均粒子径が5~40μm、比表面積が0.4~10m/gのものが好ましく、平均粒子径が10~25μm、比表面積が0.5~1.5m/gのものがより好ましい。また、負極活物質としては、平均粒子径が10~25μm、比表面積が0.5~1.5m/gの塊状人造黒鉛が特に好ましい。平均粒子径(d50)は粒度分布曲線において、粒子の累積重量(体積)が50%になるときの粒子径として定義できる。これはレーザー回折散乱法(マイクロトラック法)により測定できる。比表面積はNガスを用いてBET法測定することができる。
 本実施形態においては、負極活物質は、加圧に対する粒子の配向が少ない黒鉛を用いる。具体的には、負極合剤を形成して98MPa(1000kgf/cm)でプレスして測定されるXRD回折強度比I(002)/I(110)が30以上70以下で規定される黒鉛材料が好ましい。I(002)/I(110)が70以下であれば、粒子の配向性が少なく、リチウムイオンの受け入れ性も良好である。電池性能としてI(002)/I(110)の下限値は、特に限定されないが、実際には粒子が完全にランダムに配向(無配向)した場合の値が下限値となり、具体的には30以上である。
 XRD測定に用いられる負極合剤層は一般的な方法で形成することができる。すなわち、活物質となる黒鉛と導電助剤とバインダーなどをNMPなどの溶媒中で混合分散させたスラリーを作り、集電体(Cu)に塗布して乾燥させてNMPを蒸発させることによって得ることができる。通常、負極合剤中の活物質となる黒鉛の割合は90%以上であるが、このような組成範囲においてはXRDの強度比はあまり変化しない。
 プレスは一軸プレスで行うことができ、プレス圧は実際に加えた加重を負極合剤の面積で割ることによって求められる。98MPa(1000kgf/cm)というプレス圧は黒鉛材料の配向性を評価するための基準点とした値であって、実際の電池に組み込まれる負極を製造する際のプレス圧を意味するものではない。実際の量産工程で使用されるロールプレスではプレス圧を直接算出するのが困難な場合があるが、例えば、ロールプレス後の電極を一軸プレスで再プレスした後にXRD強度を評価することができる。ピーク強度比は、バックグラウンド除去後の(002)面に相当する26.4°付近のピークの高さと(110)面に相当する77.2°付近のピークの高さの比から求められる。バックグラウンドの除去は線形近似によりベースラインを引き、そのピークでのベースラインの値を差し引いて行うことができる。XRDスペクトルには集電体(Cu)のスペクトルも観測されるが、ピーク強度比には影響は与えない。
 本実施形態において、負極は、負極合剤を98MPa(1000kgf/cm)以上の圧力でプレスして集電体上に形成され、プレス後の負極合剤における電極密度が1.3g/cm以上1.6g/cm以下であるような固く変形しにくい黒鉛を用いることが好ましい。電極密度は負極合剤の単位面積当りの重量(g/cm2)を負極合剤の厚み(cm)で割ることによって求めることができる。このような負極では電極をプレスした際の粒子の圧壊が少なく、新生面の露出に起因した電解液との反応性の増大を防止することができる。負極密度が低いと体積エネルギー密度が減少してしまうため1.3g/cm以上あることが好ましい。1.6g/cm以下では電気自動車用電池のような長寿命と重量エネルギー密度が重視される用途には好適に用いることができる。
 本実施形態によれば、レーザーラマンスペクトルにおけるR値(1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比)が0.01~0.1の黒鉛であって、実質的に表面を非晶質炭素で被覆していない塊状人造黒鉛を用いることが好ましい。ピーク強度比は各ピークの高さの比率で求められる。一般に、活物質表面を非晶質炭素で被覆すると低比表面積化および電解液との反応性の低減の効果によりサイクル特性の向上が期待される反面、非晶質炭素層の不可逆容量により充放電効率が低下して電池容量が低下してしまうという問題がある。表面の非晶質炭素層の有無はラマンスペクトルのR値によって判別でき、非晶質炭素層がある場合にはR値は少なくとも0.1より大きい値を示す。本実施形態に好適な塊状人造黒鉛では、R値が0.1以下であって実質的に表面に非晶質炭素層が存在しないものである方が、高い充放電効率とサイクル特性を得ることができる。これは、表面に非晶質炭素層があると不可逆容量が増えるとともに電解液との反応を抑制する働きをするSEI(Solid Electrolyte Interface)皮膜の品質が低下してしまうためと考えられる。
 本実施形態によれば、負極活物質は粒子の表面から中心部分までグラファイト組織とアモルファス組織の領域が分散した黒鉛であってもよい。粒子内に微小なアモルファス領域が分散していることで粒子が固くなり加圧に対して変形しにくくなる。その結果、配向性を抑えることができる。また、粒子内でのアモルファス組織はグラファイト組織に比べて少なく両組織がほぼ均一に分散しているので、充放電効率を損ねることもない。
 炭素質粒子の、グラファイト組織(黒鉛結晶性部分)とアモルファス組織(非晶質炭素部分)は透過型電子顕微鏡における明視野像の解析で判別することができる。
 具体的には、明視野画像において制限視野電子回折(SAD)を行い、そのパターンから判別を行うことができる。詳細については、炭素材料学会編「最新の炭素材料実験技術(分析・解析編)」,(サイペック(株)),2001年11月30日18-26頁,44-50頁に記載されている。
 ここで、黒鉛結晶質の領域とは、例えば易黒鉛化炭素の2800℃処理における回折パターンの特徴を示すものを指す(制限視野回折パターンにおいて、二つ以上のスポット状の回折パターンを示す)。また、非晶質の領域とは、例えば難黒鉛化炭素の1200~2800℃処理における回折パターンの特徴を示すものを指す(制限視野回折パターンにおいて、(002)面に由来する一つのスポットのみ現れる回折パターンを示す)。
 一方、上述のような配向しにくく粒子が固く変形しにくい黒鉛を用いた負極はリチウムイオンの移動がスムーズに行われるとともにプレス時の粒子の破壊が少ないためというメリットがある反面、電極内の粒子間の接触面積が減少して点接触になってしまい、充放電サイクルに伴う膨張収縮によって粒子間の接触がとれなくなってしまいサイクル特性が低下する場合があった。したがって、このような黒鉛に対しては電極の導電性を十分に保持するような適切な導電助剤を用いる必要があった。
 一般に、導電助剤としては、例えば、燐片状黒鉛や粒状炭素類、カーボンブラックなどの種々の炭素材料が用いられる。カーボンブラックは、粒子サイズ、比表面積、DBP吸収量などが異なる種々のものがある。DBP吸収量が高いほどストラクチャーが発達しており、カーボン粒子が鎖状につながった構造を有し、これが電極内の電子導電のネットワークとして機能する。また、このストラクチャー構造が電解液を保持する役割をしており電極内のイオン導電性の向上に寄与している。一般に導電助剤としてストラクチャーが発達したカーボンブラックを用いた方が電極の電子伝導性が向上してサイクル特性が改善することは予想されるものの、負極においては活物質である黒鉛自体が高い電子伝導性を有するため導電助剤によるサイクル特性の改善は限定的であると考えられ、これまで負極合剤中の導電助剤のDBP吸収量については着目されていなかった。なお、DBP吸着量はJIS K 6217-4に準じて測定することができる。
 本実施形態によれば、導電助剤として、DBP吸収量が250cm/100g以上のカーボンブラックを用いることによって、配向が少なく変形が少ない黒鉛を用いた場合に課題となる粒子間の電気的接触を大幅に改善することができる。一方、DBP吸収量が500cm/100gを超えると、電極スラリーの分散媒の大部分がカーボンブラックに吸収されて粘度が著しく増大してハンドリング性が低下したり、電極の塗工性が低化してしまう場合がある。したがって、DBP吸収量(cm/100g)は250以上500以下とすることが好ましい。
 導電助剤の含有量は、負極合剤に対して0.2質量%以上3.0質量%以下が好ましく、0.5質量%以上1.5質量%以下がさらに好ましい。導電助剤の量が0.2質量%以上の場合、電極の導電性を十分に維持し易くなる。また、導電助剤の量が1.5質量%以下の場合、電極スラリーの粘度が高くなりすぎるのを防いで塗工性が良好となり易くなり、また、不可逆容量の増大を抑制して充放電効率が向上し易くなる。
 結着剤としては、特に限定はされないが、例えば、ポリフッ化ビニリデン(PVDF)や、スチレンブタジエンゴム(SBR)、アクリル系ポリマーなどが挙げられる。有機系の結着剤では、スラリーの溶媒としてN-メチル-2-ピロリドン(NMP)が一般に用いられる。また、SBR系エマルジョンのような水系の結着剤では、カルボキシメチルセルロース(CMC)などの増粘剤を用いることができる。SBR系やアクリル系ポリマーはPVDFよりも電解液に対する膨潤が小さいため、本実施形態の結着剤として好適に用いることができる。結着剤の含有量は、負極合剤に対して0.5質量%以上10質量%以下であることが好ましく、1質量%以上5質量%以下であることがより好ましい。結着剤の含有量が0.5質量%以上の場合、十分な密着性が得られ易くなる。また、結着剤の含有量が10質量%以下の場合、電池容量の低下を防ぎ易くなる。
 (集電体)
 正極集電体としては、特に制限されるものではないが、例えば、アルミニウム、ステンレス鋼、ニッケル、チタンまたはこれらの合金などを用いることができる。また、負極集電体としては、特に制限されるものではないが、例えば、銅、ステンレス鋼、ニッケル、チタンまたはこれらの合金を用いることができる。
 (セパレータ)
 セパレータとしては、特に制限されるものではないが、例えば、ポリプロピレン、ポリエチレンなどのポリオレフィン、フッ素樹脂などの多孔性フィルムが用いられる。
 (正極)
 正極活物質としては、特に制限されるものではなく、リチウムイオンを吸蔵放出し得るものを用いることができる。正極活物質としては、例えば、リチウム含有複合酸化物が用いられる。リチウム含有複合酸化物としては、より具体的には、例えば、LiMO(MはMn、Fe、Co、Niより選ばれる1種のみ、または2種以上の混合物であり、一部をMg、Al、Tiなどその他カチオンで置換してもよい)、LiMn2-x(AはMn以外の少なくとも一種の元素。)などの材料を用いることができる。添加元素(A)としては、例えば、Mg、Al、Co、Ni、Fe、Bなどが挙げられる。また、LiFePOで表されるオリビン型材料を用いることもできる。これらは、例えばLi過剰組成など非化学量論組成であっても良い。これらの中で、特にLiMn2-xで表されるマンガン酸リチウムは、コバルト酸リチウム(LiCoO)やニッケル酸リチウム(LiNiO)より容量は低いものの、NiやCoと比較してMnの産出量が多いため材料コストが低く、スピネル構造を有するため熱的安定性が高いといったメリットがある。そのため、LiMn2-xで表されるマンガン酸リチウムは、電気自動車や電力貯蔵用などの大型電池向けの正極材料として好適に用いられる。したがって、正極活物質は、マンガン酸リチウムを主体として含むことが好ましい。
 負極および正極は、例えば、以下のように作製することができる。まず、上記活物質と導電助剤とを、PVDFなどの結着剤とともにNMPなどの溶剤中に分散混練してスラリーを調製する。次に、このスラリーをホットプレート上にてドクターブレードなどを用いて上記集電体に塗布後、溶媒を乾燥させることにより電極を作製する。得られた電極は、ロールプレスなどの方法により圧縮して適当な密度に調整することができる。
 (電解液)
 電解液は、電解質が溶解された非水溶媒を用いることができる。電解質は、リチウム二次電池の場合にはリチウム塩を用いることができる。リチウム塩としては、特に制限されるものではないが、例えば、リチウムイミド塩、LiPF、LiAsF、LiAlCl、LiClO、LiBF、LiSbFなどが挙げられる。これらの中でもLiPF、LiBFが好ましい。リチウムイミド塩としては、例えば、LiN(C2k+1SO)(C2m+1SO)(k、mはそれぞれ独立して1または2である)が挙げられる。これらは単独で、または複数種を組み合わせて用いることができる。
 また、非水溶媒としては、特に制限されるものではないが、例えば、環状カーボネート類、鎖状カーボネート類、脂肪族カルボン酸エステル類、γ-ラクトン類、環状エーテル類、鎖状エーテル類およびそれらのフッ化誘導体の有機溶媒から選ばれた少なくとも1種類の有機溶媒を用いることができる。環状カーボネート類としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、およびこれらの誘導体等をあげることができる。鎖状カーボネート類としては、例えば、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)、およびこれらの誘導体等を挙げることができる。脂肪族カルボン酸エステル類としては、例えば、ギ酸メチル、酢酸メチル、プロピオン酸エチル、およびこれらの誘導体等をあげることができる。γ-ラクトン類としては、例えば、γ-ブチロラクトン、およびこれらの誘導体等を挙げることができる。環状エーテル類としては、例えば、テトラヒドロフラン、2-メチルテトラヒドロフラン等を挙げることができる。鎖状エーテル類としては、例えば、1、2-ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)、ジエチルエーテル、およびこれらの誘導体等を挙げることができる。また、その他にも、例えば、ジメチルスルホキシド、1、3-ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1、3-ジメチル-2-イミダゾリジノン、3-メチル-2-オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1、3-プロパンスルトン、アニソール、N-メチルピロリドン、フッ素化カルボン酸エステル等を挙げることができる。これらは1種または2種以上を混合して使用することができる。
 また、電解液には、負極表面に良質なSEI皮膜を形成させるために添加剤を加えても良い。SEI皮膜には、電解液との反応性を抑制したり、リチウムイオンの挿入脱離に伴う脱溶媒和反応を円滑にして活物質の構造劣化を防止したりする働きがある。このような添加剤としては、例えば、プロパンスルトン(PS)、ビニレンカーボネート(VC)、環状ジスルホン酸エステルなどが挙げられる。環状ジスルホン酸エステルは緻密で良質なSEI皮膜を形成することができるため、特に好ましい。ここで、環状ジスルホン酸エステルとは、下記式(1)で表される化合物のことである。添加剤の含有量は、例えば、電解液中0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上3質量%以下であることがより好ましい。添加剤の含有量が0.5質量%以上の場合、良質な皮膜を形成し易くなる。添加剤の含有量が10質量%以下の場合、抵抗の増大を抑制し、また、多量のガス発生を抑制することができる。
Figure JPOXMLDOC01-appb-C000002
 
 (式(1)において、Qは酸素原子、メチレン基または単結合を表す。Aは、分岐していても良い置換もしくは無置換の炭素数1~5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1~5のパーフルオロアルキレン基、分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のパーフルオロアルキレン基またはエーテル結合を含み分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基を示す。Bは置換もしくは無置換のアルキレン基、置換若しくは無置換のフルオロアルキレン基、または酸素原子を示す)
 式(1)で示される化合物の具体例を表1に例示する。これらの化合物は1種のみをもちいてもよく、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
 本実施形態に係るリチウムイオン二次電池の外装体としては、特に制限されるものではないが、ラミネート外装体が好ましい。合成樹脂と金属箔との積層体からなる可撓性フィルムなどよりなるラミネート外装体が、軽量化が可能であり電池エネルギー密度の向上を図る上で好ましい。また、ラミネート型電池は放熱性にも優れるため、電気自動車などの車載用電池として好適に用いることができる。
 以下に本発明の実施例について詳細に説明するが、本発明は以下の実施例のみに限定されるものではない。
 (実施例0-1)
 (負極の作製)
 負極活物質として、塊状人造黒鉛である人造黒鉛A(平均粒径D50;17μm、比表面積が1m/g)と、導電助剤としてDBP吸収量(cm/100g)が360のカーボンブラック(平均粒子径40nm、比表面積800m/g)と、結着剤としてSBRと、増粘剤としてCMCと、を質量比で97.5:0.5:1:1の割合でイオン交換水中に混練・分散させてスラリーを調製した。このスラリーを負極集電体となる厚み15μmの銅箔上に塗布後、50℃にて10分間水分を蒸発させた。その後、さらに110℃で30分乾燥させることにより負極合剤層を形成した。その後、負極合剤層をプレスして、負極密度が1.40g/cmの片面塗布した負極を作製した。乾燥後の単位面積当たりの負極合剤量は0.008g/cmとした。
 (正極の作製)
 正極活物質として平均粒径D50;10μmのLi1.1Mn1.9粉末と、結着剤としてPVDFと、導電助剤として炭素質粉末と、を質量比を92:4:4でNMP中に均一に分散させてスラリーを調製した。そのスラリーを正極集電体となる厚み20μmのアルミ箔上に塗布した。その後、125℃にて10分間NMPを蒸発させることにより正極合剤層を形成した。乾燥後の単位面積当たりの正極合剤量は0.025g/cmとした。
 (電解液)
 電解液は、溶媒としてEC:DEC=30:70(体積%)に、電解質として1mol/LのLiPFを溶解したものを用いた。
 (ラミネート型電池の作製)
 上記のように作製した正極と負極を各々5cm×6.0cmに切り出した。このうち、一辺5cm×1cmはタブを接続するための未塗布部であって、活物質層は5cm×5cmである。幅5mm、長さ3cm、厚み0.1mmのアルミ製の正極タブを正極未塗布部に長さ1cmで超音波溶接した。同様に、正極タブと同サイズのニッケル製の負極タブを負極未塗布部に超音波溶接した。6cm×6cmのポリエチレンおよびポリプロピレンからなるセパレータの両面に上記負極と正極を活物質層がセパレータを隔てて重なるように配置して電極積層体を得た。2枚の7cm×10cmのアルミラミネートフィルムの長辺の一方を除いて三辺を熱融着により幅5mmにて接着して袋状のラミネート外装体を作製した。ラミネート外装体の一方の短辺より1cmの距離となるように上記電極積層体を挿入した。上記非水電解液を上記電極積層体が有する空孔体積に対して1.5倍となる量を注液して真空含浸させた後、減圧下にて開口部を熱融着により幅5mmで封止することで、ラミネート型電池を作製した。
 (サイクル試験)
 上記のように作製したラミネート型電池のサイクル試験を行った。具体的には、60mAの定電流で4.2Vまで充電した後合計で2.5時間の4.2V定電圧充電を行ってから、60mAで3.0Vまで定電流放電するという充放電サイクルを500回繰り返した。初回放電容量に対する500サイクル後の放電容量の比率を容量維持率(%)として求めた。試験温度は、高温環境下での劣化試験および加速試験を目的として、60℃とした。
 (比較例0-1)
 導電助剤として、DBP吸収量(cm/100g)が175のカーボンブラック(平均粒子径35nm、比表面積68m/g)を用いた以外は、実施例0-1と同様に電池を作製してサイクル試験を行った。
 (比較例0-2)
 負極活物質として、燐片状人造黒鉛である人造黒鉛C(平均粒径D50;30μm、比表面積が1.2m/g)を用いた以外は、実施例0-1と同様に電池を作製してサイクル試験を行った。
 (実施例0-2)
 電解液に添加剤として、1、3-プロパンスルトンを1.5質量%さらに混合したものを用いた以外は、実施例0-1と同様に電池を作製してサイクル試験を行った。
 (実施例0-3)
 電解液に添加剤として、ビニレンカーボネートを1.5質量%さらに混合したものを用いた以外は、実施例0-1と同様に電池を作製してサイクル試験を行った。
 表1に、実施例0-1~0-3と比較例0-1~0-2について、98MPa(1000kgf/cm)でプレスした負極のXRD回折スペクトルを測定して求めたI(002)/I(110)と、60℃における500サイクル後容量維持率(以下、単に容量維持率と記す)を示した。XRDスペクトルは、CuKα線(波長0.15418nm)を用いて30kV-15mAのX線強度において、20~100°の範囲を0.01°間隔で2°/分のスキャン速度で測定して得た。I(002)/I(110)が70以下でDBP吸収量(cm/100g)が250以上のものは高い容量維持率が得られた。一方、I(002)/I(110)が70より大きいものは容量維持率が低かった。なお、DBP吸収量(cm/100g)が600のカーボンブラックでは、電極スラリーの粘性が著しく増大して塗工が困難であり、集電体からの活物質層の剥離が認められたため、電池評価は出来なかった。このことから、I(002)/I(110)が70以下でDBP吸収量(cm/100g)が250~500が好ましいことがわかった。
Figure JPOXMLDOC01-appb-T000005
 
 (実施例1)
 導電助剤として、DBP吸収量(cm/100g)が250のカーボンブラック(平均粒子径60nm、比表面積80m/g)、電解液に添加剤として、上記で示した化合物102の添加剤を1.5質量%さらに混合したものを用いた以外は、実施例0-1と同様に電池を作製してサイクル試験を行った。
 (実施例2)
 導電助剤として、DBP吸収量(cm/100g)が360のカーボンブラック(平均粒子径40nm、比表面積800m/g)を用いた以外は、実施例1と同様に電池を作製してサイクル試験を行った。
 (実施例3)
 導電助剤として、DBP吸収量(cm/100g)が500のカーボンブラック(平均粒子径34nm、比表面積1270m/g)を用いた以外は、実施例1と同様に電池を作製してサイクル試験を行った。
 (実施例4)
 負極活物質として、塊状人造黒鉛である人造黒鉛B(平均粒径D50;30μm、比表面積が1.2m/g)を用いた以外は、実施例1と同様に電池を作製してサイクル試験を行った。
 (実施例5)
 負極活物質として、塊状人造黒鉛である人造黒鉛B(平均粒径D50;30μm、比表面積が1.2m/g)を用いた以外は、実施例2と同様に電池を作製してサイクル試験を行った。
 (比較例1)
 導電助剤として、DBP吸収量(cm/100g)が175のカーボンブラック(平均粒子径35nm、比表面積68m/g)を用いた以外は、実施例1と同様に電池を作製してサイクル試験を行った。
 (比較例2)
 負極活物質として、燐片状人造黒鉛である人造黒鉛C(平均粒径D50;30μm、比表面積が1.2m/g)を用いた以外は、実施例2と同様に電池を作製してサイクル試験を行った。
 (比較例3)
 導電助剤として、DBP吸収量(cm/100g)が175のカーボンブラック(平均粒子径35nm、比表面積68m/g)を用いた以外は、比較例2と同様に電池を作製してサイクル試験を行った。
 (比較例4)
 負極活物質として、非晶質炭素で被覆された球状天然黒鉛である天然黒鉛A(平均粒径D50;20μm、比表面積が1.0m/g)を用いた以外を用いた以外は、比較例2と同様に電池を作製してサイクル試験を行った。
 表2に、実施例1~5と比較例1~4について、98MPa(1000kgf/cm)でプレスした負極のXRD回折スペクトルを測定して求めたI(002)/I(110)と、60℃における500サイクル後容量維持率(以下、単に容量維持率と記す)を示した。XRDスペクトルは、CuKα線(波長0.15418nm)を用いて30kV-15mAのX線強度において、20~100°の範囲を0.01°間隔で2°/分のスキャン速度で測定して得た。I(002)/I(110)が70以下でDBP吸収量(cm/100g)が250以上のものは高い容量維持率が得られた。一方、I(002)/I(110)が70より大きいものは容量維持率が低かった。なお、DBP吸収量(cm/100g)が600のカーボンブラックでは、電極スラリーの粘性が著しく増大して塗工が困難であり、集電体からの活物質層の剥離が認められたため、電池評価は出来なかった。このことから、I(002)/I(110)が70以下でDBP吸収量(cm/100g)が250~500が好ましいことがわかった。
 また、添加剤の量については、種々変化させて(0.1、1.0、2.0,3.0,4.0、5.0,6.0,7.0,8.0,9.0重量%)行ったが上記と同様の効果を得た。
Figure JPOXMLDOC01-appb-T000006
 
 (実施例6)
 負極を98MPa(1000kgf/cm)でプレスして、密度を1.33g/cm3としたものを用いた以外は、実施例2と同様にして電池を作製してサイクル試験を行った。
 (実施例7)
 負極を196MPa(2000kgf/cm)でプレスして、密度を1.52g/cm3としたものを用いた以外は、実施例2と同様にして電池を作製してサイクル試験を行った。
 (実施例8)
 負極を490MPa(5000kgf/cm)でプレスして、密度を1.57g/cm3としたものを用いた以外は、実施例2と同様にして電池を作製してサイクル試験を行った。
 (実施例9)
 負極を98MPa(1000kgf/cm)でプレスして、密度を1.60g/cm3としたものを用いた以外は、実施例5と同様にして電池を作製してサイクル試験を行った。
 (実施例10)
 負極を196MPa(2000kgf/cm)でプレスして、密度を1.75g/cm3としたものを用いた以外は、実施例5と同様にして電池を作製してサイクル試験を行った。
 表3に実施例6~10の負極の密度と容量維持率を示した。98MPa(1000kgf/cm)以上でプレスした際の電極密度が1.3~1.6g/cmの人造黒鉛Aでは高い容量維持率が得られた。これは加圧に対して変形しにくい人造黒鉛Aは粒子の圧壊による劣化が少ないためと考えられる。
Figure JPOXMLDOC01-appb-T000007
 
 (実施例11)
 実施例2で得られた二次電池について、充放電効率を求めた。
 充放電効率は、初回充電容量に対する初回放電容量の比率(初回放電容量/初回充電容量×100)として求めた。
 また、人造黒鉛Aの粉末に対してレーザーラマンスペクトルを測定し、R値(1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比)を求めた。ラマンスペクトルはArレーザー(波長514.5nm、ビーム強度10mW)を用いたマクロラマンモード(ビーム径100μm)で測定した。ラマン強度比は各ピークの高さの比として求めた。
 (実施例12)
 実施例5で得られた二次電池について、実施例11と同様の方法で充放電効率を求めた。
 また、人造黒鉛Bの粉末に対して実施例11と同様にしてR値を求めた。
 (実施例13)
 人造黒鉛Aに対してCVD法を用いて5質量%の非晶質炭素を被覆したもの(人造黒鉛A’)を実施例11と同様にしてR値を求めた。
 また、人造黒鉛Aの代わりに人造黒鉛A’を用いた以外は実施例2と同様にして電池を作製した。得られた電池について、サイクル試験を行い、また充放電効率を求めた。
 表4に実施例11、12,13の初回充放電時の充放電効率(放電容量/充電容量×100%)と容量維持率を示した。ここで、実施例11と12はそれぞれ実施例2と実施例5と同じ電池であるため容量維持率も同じである。R値が0.1以下では充放電効率が高く、容量維持率も高かった。一方、非晶質炭素被覆を行ってR値が0.25と増大したものは充放電効率も容量維持率も低下した。これは、非晶質炭素層の不可逆容量が大きいことと表面のSEI皮膜の品質が低下したことが考えられる。
 人造黒鉛Aを薄片に切断し断面の透過型電子顕微鏡における明視野像の制限視野回折パターンを観察した。二つ以上のスポット状の回折パターンを示すグラファイト組織と、(002)面に由来する一つのスポットのみ現れる回折パターンを示すアモルファス組織とが粒子内に分散して存在していることがわかった。グラファイト組織とアモルファス組織の比率はおよそ90:10と推定された。人造黒鉛Bでは同様な構造は認められなかった。
Figure JPOXMLDOC01-appb-T000008
 
 この出願は、2010年3月18日に出願された日本出願特願2010-063030を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態及び実施例を参照して本願発明を説明したが、本願発明は上記実施形態及び実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 

Claims (6)

  1.  リチウムイオンを吸蔵放出し得る負極と、リチウムイオンを吸蔵放出し得る正極と、前記負極と前記正極を隔てるセパレータと、リチウム塩を溶解した非水電解液と、を有するリチウムイオン二次電池において、
     前記負極は、黒鉛を主体とする負極活物質と、結着剤と、導電助剤と、からなる負極合剤を集電体に形成されてなり、
     前記黒鉛は、前記負極合剤を形成して98MPa(1000kgf/cm)の圧力でプレスした後に測定されるX線回折スペクトルにおける(110)面に対する(002)面のピーク強度比が30以上70以下の値を有するものであり、
     前記導電助剤はDBP吸収量(cm/100g)が250以上500以下のカーボンブラックであることを特徴とするリチウムイオン二次電池。
  2.  前記負極は、前記負極合剤をプレスして前記集電体上に形成され、プレス後の前記負極合剤における電極密度が1.3g/cm以上1.6g/cm以下である請求項1に記載のリチウムイオン二次電池。
  3.  前記黒鉛は、レーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度比であるR値が0.01以上0.1以下である黒鉛である請求項1または2に記載のリチウムイオン二次電池。
  4.  前記黒鉛は、実質的に非晶質炭素で表面が被覆されていない塊状人造黒鉛である請求項3に記載のリチウムイオン二次電池。
  5.  前記黒鉛は、粒子の表面から中心部分までグラファイト組織とアモルファス組織の領域が分散している請求項4に記載のリチウムイオン二次電池。
  6.  前記非水電解液の添加剤として、下記式(1)で表される環状ジスルホン酸エステルを含有する請求項1乃至5のいずれかに記載のリチウムイオン二次電池。
    Figure JPOXMLDOC01-appb-C000001
     
     (式(1)において、Qは酸素原子、メチレン基または単結合を表す。Aは、分岐していても良い置換もしくは無置換の炭素数1~5のアルキレン基、カルボニル基、スルフィニル基、分岐していても良い置換もしくは無置換の炭素数1~5のパーフルオロアルキレン基、分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のアルキレン基、エーテル結合を含み分岐していても良い置換もしくは無置換の炭素数1~6のパーフルオロアルキレン基またはエーテル結合を含み分岐していても良い炭素数2~6の置換もしくは無置換のフルオロアルキレン基を示す。Bは置換もしくは無置換のアルキレン基、置換若しくは無置換のフルオロアルキレン基、または酸素原子を示す)
     
PCT/JP2011/056533 2010-03-18 2011-03-18 リチウムイオン二次電池 WO2011115247A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012505762A JPWO2011115247A1 (ja) 2010-03-18 2011-03-18 リチウムイオン二次電池
US13/635,596 US20130011747A1 (en) 2010-03-18 2011-03-18 Lithium ion secondary battery
CN2011800145289A CN102792490A (zh) 2010-03-18 2011-03-18 锂离子二次电池
EP11756430.2A EP2549569A4 (en) 2010-03-18 2011-03-18 Lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010063030 2010-03-18
JP2010-063030 2010-03-18

Publications (1)

Publication Number Publication Date
WO2011115247A1 true WO2011115247A1 (ja) 2011-09-22

Family

ID=44649326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056533 WO2011115247A1 (ja) 2010-03-18 2011-03-18 リチウムイオン二次電池

Country Status (5)

Country Link
US (1) US20130011747A1 (ja)
EP (1) EP2549569A4 (ja)
JP (1) JPWO2011115247A1 (ja)
CN (1) CN102792490A (ja)
WO (1) WO2011115247A1 (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196177A1 (ja) * 2013-06-06 2014-12-11 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2015037367A1 (ja) * 2013-09-13 2015-03-19 日本電気株式会社 非水電解液二次電池
US20150104711A1 (en) * 2012-06-04 2015-04-16 Nec Energy Devices, Ltd. Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery
CN104756288A (zh) * 2012-10-30 2015-07-01 日本电气株式会社 锂二次电池
JP2015122236A (ja) * 2013-12-24 2015-07-02 日産自動車株式会社 非水電解質二次電池の製造方法
US20160020492A1 (en) * 2013-03-01 2016-01-21 Nec Corporation Lithium ion secondary battery
US20160028118A1 (en) * 2013-03-01 2016-01-28 Nec Corporation Electrolyte solution for secondary batteries, and secondary battery using same
KR20170002302A (ko) 2015-06-29 2017-01-06 신닛테츠 수미킨 가가쿠 가부시키가이샤 리튬이온 이차전지용 부극 및 이차전지
US9780411B2 (en) 2013-03-01 2017-10-03 Nec Corporation Nonaqueous electrolyte solution secondary battery
JP2018156931A (ja) * 2017-03-17 2018-10-04 Tdk株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2019029158A (ja) * 2017-07-28 2019-02-21 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池用負極
US10615406B2 (en) 2017-03-17 2020-04-07 Tdk Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20200127785A (ko) * 2019-05-03 2020-11-11 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
JP2021048132A (ja) * 2016-05-05 2021-03-25 キャボット コーポレイションCabot Corporation 高構造カーボンブラックを有する電極、組成物、及びデバイス
US11515523B2 (en) 2019-05-03 2022-11-29 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11522185B2 (en) 2019-05-03 2022-12-06 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11522183B2 (en) 2019-05-03 2022-12-06 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11658287B2 (en) 2019-05-03 2023-05-23 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11705585B2 (en) 2018-07-03 2023-07-18 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11710820B2 (en) 2019-05-03 2023-07-25 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11728522B2 (en) 2018-07-03 2023-08-15 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery, and rechargeable lithium battery including the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936406B2 (ja) * 2012-03-26 2016-06-22 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池
JP2014011076A (ja) * 2012-06-29 2014-01-20 Toyota Motor Corp 非水電解質二次電池およびその製造方法
US9893350B2 (en) * 2013-03-05 2018-02-13 Nec Corporation Lithium secondary battery
JP6722703B2 (ja) * 2015-08-25 2020-07-15 エルジー・ケム・リミテッド 二次電池用の負極及びこれを含む二次電池
KR102606317B1 (ko) * 2016-06-02 2023-11-23 에스케이온 주식회사 리튬 이차 전지용 음극 활물질, 이를 포함하는 음극 및 리튬 이차 전지
CN109802088B (zh) * 2019-03-20 2020-10-09 江西理工大学 一种可快充锂离子电池及其制作方法
CN109921088A (zh) * 2019-03-20 2019-06-21 江西理工大学 一种圆柱形锂离子电池及其制作方法
CN116114083A (zh) * 2020-07-14 2023-05-12 纳诺格拉夫公司 包括氧化硅和单壁碳纳米管的电极材料
CN112542587A (zh) * 2020-12-04 2021-03-23 宁德新能源科技有限公司 石墨材料、二次电池和电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297327A (ja) * 1998-04-06 1999-10-29 Mitsubishi Chemical Corp リチウム二次電池
JP2003197182A (ja) * 2001-12-21 2003-07-11 Samsung Sdi Co Ltd 黒鉛含有組成物並びにリチウム二次電池用の負極及びリチウム二次電池
JP2004281368A (ja) * 2002-08-29 2004-10-07 Nec Corp 二次電池用電解液およびそれを用いた二次電池
JP2010063030A (ja) 2008-09-05 2010-03-18 Fujitsu Ten Ltd 受信装置および受信方法
JP2011023221A (ja) * 2009-07-16 2011-02-03 Nec Energy Devices Ltd リチウムイオン二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69409936T2 (de) * 1993-12-29 1998-12-10 Tdk Corp Lithiumsekundärzelle
JP4507284B2 (ja) * 1997-03-11 2010-07-21 パナソニック株式会社 非水電解液二次電池
JPH11265716A (ja) * 1998-03-16 1999-09-28 Denso Corp リチウム二次電池用負極活物質及びその製造方法
JP5430063B2 (ja) * 2000-09-26 2014-02-26 三菱化学株式会社 リチウム二次電池及び負極
JP4499498B2 (ja) * 2003-07-16 2010-07-07 関西熱化学株式会社 リチウムイオン二次電池用負極材料およびその製造方法、並びに、該負極材料を使用したリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP4109184B2 (ja) * 2003-11-20 2008-07-02 Tdk株式会社 リチウムイオン二次電池
KR20110092359A (ko) * 2004-01-16 2011-08-17 히다치 가세고교 가부시끼가이샤 리튬 이차전지용 음극 및 리튬 이차전지
JP4513385B2 (ja) * 2004-03-31 2010-07-28 日本電気株式会社 二次電池用負極及び二次電池
WO2007055087A1 (ja) * 2005-10-20 2007-05-18 Mitsubishi Chemical Corporation リチウム二次電池及びそれに用いる非水系電解液
JP5110380B2 (ja) * 2008-06-13 2012-12-26 株式会社デンソー 集電体、電極および蓄電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297327A (ja) * 1998-04-06 1999-10-29 Mitsubishi Chemical Corp リチウム二次電池
JP2003197182A (ja) * 2001-12-21 2003-07-11 Samsung Sdi Co Ltd 黒鉛含有組成物並びにリチウム二次電池用の負極及びリチウム二次電池
JP2004281368A (ja) * 2002-08-29 2004-10-07 Nec Corp 二次電池用電解液およびそれを用いた二次電池
JP2010063030A (ja) 2008-09-05 2010-03-18 Fujitsu Ten Ltd 受信装置および受信方法
JP2011023221A (ja) * 2009-07-16 2011-02-03 Nec Energy Devices Ltd リチウムイオン二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Saishin no Tanso Zairyo Jikken Gijutsu (Bunseki/Kaiseki Hen) (Newest Carbon Material Experimental Technique (Assay/Analysis Section", 30 November 2001, SIPEC CORPORATION, pages: 18 - 26,44-50
See also references of EP2549569A4 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150104711A1 (en) * 2012-06-04 2015-04-16 Nec Energy Devices, Ltd. Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery
EP2916374A4 (en) * 2012-10-30 2016-05-18 Nec Corp LITHIUM SECONDARY BATTERY
US9831526B2 (en) 2012-10-30 2017-11-28 Nec Corporation Lithium secondary battery
CN104756288A (zh) * 2012-10-30 2015-07-01 日本电气株式会社 锂二次电池
JPWO2014069460A1 (ja) * 2012-10-30 2016-09-08 日本電気株式会社 リチウム二次電池
US9941545B2 (en) * 2013-03-01 2018-04-10 Nec Corporation Electrolyte solution for secondary batteries, and secondary battery using same
US9711825B2 (en) * 2013-03-01 2017-07-18 Nec Corporation Lithium ion secondary battery
US20160020492A1 (en) * 2013-03-01 2016-01-21 Nec Corporation Lithium ion secondary battery
US20160028118A1 (en) * 2013-03-01 2016-01-28 Nec Corporation Electrolyte solution for secondary batteries, and secondary battery using same
US9780411B2 (en) 2013-03-01 2017-10-03 Nec Corporation Nonaqueous electrolyte solution secondary battery
JPWO2014196177A1 (ja) * 2013-06-06 2017-02-23 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2014196177A1 (ja) * 2013-06-06 2014-12-11 株式会社Gsユアサ 非水電解質二次電池及び非水電解質二次電池の製造方法
WO2015037367A1 (ja) * 2013-09-13 2015-03-19 日本電気株式会社 非水電解液二次電池
JP2015122236A (ja) * 2013-12-24 2015-07-02 日産自動車株式会社 非水電解質二次電池の製造方法
KR20170002302A (ko) 2015-06-29 2017-01-06 신닛테츠 수미킨 가가쿠 가부시키가이샤 리튬이온 이차전지용 부극 및 이차전지
JP2021048132A (ja) * 2016-05-05 2021-03-25 キャボット コーポレイションCabot Corporation 高構造カーボンブラックを有する電極、組成物、及びデバイス
JP7116768B2 (ja) 2016-05-05 2022-08-10 キャボット コーポレイション 高構造カーボンブラックを有する電極、組成物、及びデバイス
JP2018156931A (ja) * 2017-03-17 2018-10-04 Tdk株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池
US10615406B2 (en) 2017-03-17 2020-04-07 Tdk Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7024439B2 (ja) 2017-03-17 2022-02-24 Tdk株式会社 リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2019029158A (ja) * 2017-07-28 2019-02-21 オートモーティブエナジーサプライ株式会社 リチウムイオン二次電池用負極
US11705585B2 (en) 2018-07-03 2023-07-18 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11728522B2 (en) 2018-07-03 2023-08-15 Samsung Sdi Co., Ltd. Electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
KR20200127785A (ko) * 2019-05-03 2020-11-11 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
US11522183B2 (en) 2019-05-03 2022-12-06 Samsung Sdi Co., Ltd. Rechargeable lithium battery
KR102487627B1 (ko) 2019-05-03 2023-01-12 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
US11658287B2 (en) 2019-05-03 2023-05-23 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11522185B2 (en) 2019-05-03 2022-12-06 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11710820B2 (en) 2019-05-03 2023-07-25 Samsung Sdi Co., Ltd. Rechargeable lithium battery
US11515523B2 (en) 2019-05-03 2022-11-29 Samsung Sdi Co., Ltd. Rechargeable lithium battery

Also Published As

Publication number Publication date
CN102792490A (zh) 2012-11-21
EP2549569A4 (en) 2014-08-06
EP2549569A1 (en) 2013-01-23
JPWO2011115247A1 (ja) 2013-07-04
US20130011747A1 (en) 2013-01-10

Similar Documents

Publication Publication Date Title
WO2011115247A1 (ja) リチウムイオン二次電池
JP5574404B2 (ja) リチウムイオン二次電池
US9034521B2 (en) Anode material of excellent conductivity and high power secondary battery employed with the same
JP5582587B2 (ja) リチウムイオン二次電池
WO2015152113A1 (ja) 黒鉛系負極活物質材料、負極及びリチウムイオン二次電池
JP6398985B2 (ja) リチウムイオン二次電池
JP6685940B2 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7028164B2 (ja) リチウムイオン二次電池
WO2014109406A1 (ja) リチウムイオン二次電池
WO2017057123A1 (ja) リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2012081348A1 (ja) 二次電池用正極活物質
US10135095B2 (en) Lithium secondary battery
WO2013008524A1 (ja) リチウムイオン電池用負極及びリチウムイオン電池
WO2017217407A1 (ja) リチウムイオン二次電池
US9853288B2 (en) Lithium secondary battery
JP5855737B2 (ja) リチウムイオン電池
WO2015152115A1 (ja) リチウムイオン二次電池
JP4513385B2 (ja) 二次電池用負極及び二次電池
JP5213011B2 (ja) リチウム二次電池用負極、およびそれを用いたリチウム二次電池
KR101093242B1 (ko) 리튬 이차전지용 혼합 음극재 및 이를 포함하는 고출력리튬 이차전지
KR101115390B1 (ko) 리튬 이차전지용 혼합 음극재 및 이를 포함하는 고출력 리튬 이차전지
WO2020137403A1 (ja) 二次電池電極用炭素材料分散液、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2014115322A1 (ja) リチウムイオン二次電池用負極活物質及びそれらを用いたリチウムイオン二次電池
JP2020140895A (ja) リチウムイオン二次電池用電極及びリチウムイオン二次電池
WO2023281960A1 (ja) 正極、蓄電素子及び蓄電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014528.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11756430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012505762

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13635596

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011756430

Country of ref document: EP