WO2011108516A1 - オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物 - Google Patents

オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物 Download PDF

Info

Publication number
WO2011108516A1
WO2011108516A1 PCT/JP2011/054574 JP2011054574W WO2011108516A1 WO 2011108516 A1 WO2011108516 A1 WO 2011108516A1 JP 2011054574 W JP2011054574 W JP 2011054574W WO 2011108516 A1 WO2011108516 A1 WO 2011108516A1
Authority
WO
WIPO (PCT)
Prior art keywords
organopolysiloxane
group
reaction
epoxy resin
silicone oil
Prior art date
Application number
PCT/JP2011/054574
Other languages
English (en)
French (fr)
Inventor
直房 宮川
政隆 中西
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2012503174A priority Critical patent/JP5730852B2/ja
Priority to KR1020127022756A priority patent/KR20130018670A/ko
Priority to CN2011800121443A priority patent/CN102782014A/zh
Publication of WO2011108516A1 publication Critical patent/WO2011108516A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3281Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a method for producing an organopolysiloxane containing an epoxy group suitable for use in electrical and electronic materials, particularly for an optical semiconductor, an organopolysiloxane obtained by the production method, and a composition containing the organopolysiloxane.
  • an epoxy resin composition has been employed as a sealing material for optical semiconductor elements such as LED products in terms of a balance between performance and economy.
  • glycidyl ether type epoxy resin compositions typified by bisphenol A type epoxy resins having excellent balance of heat resistance, transparency and mechanical properties have been widely used.
  • the sealing material is colored on the LED chip due to the influence of light of short wavelengths.
  • the illuminance will eventually decrease as an LED product.
  • an alicyclic epoxy resin represented by 3,4-epoxycyclohexylmethyl-3 ′, 4′-epoxycyclohexyl carboxylate is more transparent than a glycidyl ether type epoxy resin composition having an aromatic ring. Since it is excellent in terms, it has been actively studied as an LED sealing material (Patent Documents 1 and 2).
  • Patent Document 3 a resin having a siloxane skeleton (specifically, a skeleton having a Si—O bond) introduced as a silicone resin or silicone-modified epoxy resin is used as a sealing material.
  • Patent Document 4 Such a compound containing a siloxane skeleton has been reported to have problems such as poor thermal stability of the resin itself and gelation during long-term storage as compared with ordinary epoxy resins (Patent Document 4). This is due to the reaction between the remaining alkoxy groups and silanol groups, and when left at a high temperature, the molecular weight increases, eventually resulting in gelation or increased viscosity. Considering safety and stability, it is urgent to solve this problem.
  • Step 1 A step of reacting a silicone having a silanol structure at the terminal having a weight average molecular weight of 1000 to 3000 with an alkoxysilane compound to obtain a modified silicone oil
  • Step 2 In the method for producing an organopolysiloxane (A) including a step of polymerizing modified silicone oils and / or an alkoxysilane compound by hydrolysis reaction, (A) At least one of the alkoxysilane compounds to be used has a glycidyl group and / or an epoxycyclohexyl group in the molecule, (B) The epoxy group obtained by reacting in the presence of 2 to 100% by weight of an alcohol having 1 to 10 carbon atoms with respect to the total weight of the silicone oil having a silanol structure and the alkoxysilane compound in Step 1.
  • Step 1 A step of reacting a silicone oil having a silanol structure at the terminal having a weight average molecular weight of 1000 to 3000 with an alkoxysilane compound to obtain a modified silicone oil
  • Step 2 In the method for producing an organopolysiloxane (A) including a step of polymerizing modified silicone oils and / or an alkoxysilane compound by hydrolysis reaction, (A) At least one of the alkoxysilane compounds to be used has a glycidyl group and / or an epoxycyclohexyl group in the molecule, (B) an epoxy group that is reacted in the presence of 2 to 100% by weight of an alcohol having 1 to 10 carbon atoms with respect to the total amount of silicone oil having a silanol structure and an alkoxysilane compound in Step 1; A method for producing an organopolysiloxane.
  • the resulting organopolysiloxane (A) has an epoxy equivalent of 300 to 1500 g / eq.
  • the organopolysiloxane according to any one of (3) to (6) which is characterized in that (8)
  • An epoxy resin composition comprising the organopolysiloxane (A) according to any one of (3) to (7) and an acid anhydride (B).
  • An epoxy resin composition comprising (C).
  • the epoxy resin composition containing the epoxy resin (organopolysiloxane containing an epoxy group) which has the siloxane structure excellent in thermal stability can be provided, and hardening containing this epoxy resin composition
  • the resin composition is useful in a wide range of applications such as electrical / electronic materials, molding materials, casting materials, laminated materials, paints, adhesives, resists, etc., and particularly for materials that require optical properties, such as for optical semiconductors. It is extremely useful as an adhesive or sealing material for LED products and the like.
  • Process 1 A process of obtaining a modified silicone oil by reacting a silicone oil having a silanol structure at the terminal with an alkoxysilane compound
  • process 2 Step of polymerizing by hydrolysis reaction between modified silicone oils and / or alkoxysilane compound
  • the reaction is carried out in two steps (feature 1), and particularly in step 1, the reaction is carried out in the presence of alcohol.
  • feature 2 is characteristic. In the feature 1, by dividing the reaction into two stages, it is possible to form a structure in which as many functional groups as possible are introduced into the molecular chain of the modified silicone oil.
  • a block-type oligosiloxane structure having a structure in which a silicone oil segment in which silicone oil is incorporated and a polymer of an alkoxysilane compound enters each in order is performed by performing a reaction in two steps.
  • a chain silicone oil having a silanol group at the terminal having a structure represented by the formula can be used.
  • a plurality of R 1 may be the same or different from each other, and may be an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 14 carbon atoms, or 2 to 10 carbon atoms.
  • alkenyl group of Examples of the alkyl group having 1 to 10 carbon atoms include linear, branched or cyclic alkyl groups having 1 to 10 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-pentyl group, i-pentyl group, amyl group, n-hexyl group, cyclopentyl group, cyclohexyl group, octyl group, 2-ethylhexyl Group, nonyl group, decyl group and the like.
  • a methyl group, an ethyl group, and a cyclohexyl group are preferable.
  • the aryl group having 6 to 14 carbon atoms include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, and a xylyl group.
  • the alkenyl group having 2 to 10 carbon atoms include alkenyl groups such as vinyl group, 1-methylvinyl group, allyl group, propenyl group, butenyl group, pentenyl group and hexenyl group.
  • R 1 is preferably a methyl group, a phenyl group, a cyclohexyl group or an n-propyl group from the viewpoint of light resistance and heat resistance, and particularly preferably a methyl group or a phenyl group.
  • m represents an average value of 3 to 200, preferably 3 to 100, more preferably 3 to 50.
  • m represents an average value of 3 to 200, preferably 3 to 100, more preferably 3 to 50.
  • the silicone oil having a silanol structure at the terminal preferably has a weight average molecular weight (Mw) in the range of 1000 to 3000 (GPC).
  • Mw weight average molecular weight
  • the molecular weight of the silicone oil having a silanol structure at the terminal is a weight average molecular weight (Mw) calculated in terms of polystyrene based on a value measured under the following conditions using GPC (gel permeation chromatography). Means.
  • preferable silicone oil having a silanol structure at the terminal include the following product names.
  • PRX413, BY16-873 manufactured by Toray Dow Corning Co., Ltd. X-21-5841, KF-9701 manufactured by Shin-Etsu Chemical Co., Ltd., XC96-723, TSR160, YR3370, YF3800, manufactured by Momentive Co., Ltd.
  • PRX413, BY16-873, X-21-5841, KF-9701, XC96-723, YF3800, YF3804, DMS-S12, DMS-S14, DMS-S15, DMS-S21 PDS-1615 is preferred.
  • X-21-5841, XC96-723, YF3800, YF3804, DMS-S14, and PDS-1615 are particularly preferable from the viewpoint of molecular weight in order to give the silicone segment flexibility characteristics.
  • These silicone oils having a silanol structure at their ends may be used alone or in combination of two or more.
  • the alkoxysilane compound is a compound represented by the following formula (2) or a mixture of a plurality of types of alkoxysilane compounds containing a compound represented by the following formula (2) as an essential component.
  • X in the general formula (2) is not particularly limited as long as it is an organic group having an epoxy group.
  • an alkyl group having 1 to 4 carbon atoms substituted with a glycidoxy group such as ⁇ -glycidoxyethyl, ⁇ -glycidoxypropyl, ⁇ -glycidoxybutyl, glycidyl group, ⁇ - (3,4-epoxy Cyclohexyl) ethyl, ⁇ - (3,4-epoxycyclohexyl) propyl, ⁇ - (3,4-epoxycycloheptyl) ethyl, 4- (3,4-epoxycyclohexyl) butyl, 5- (3 And an alkyl group having 1 to 5 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an oxirane group such as 4-epoxycyclohexyl) pentyl group.
  • an alkyl group having 1 to 3 carbon atoms substituted with a glycidoxy group an alkyl group having 1 to 3 carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an epoxy group, for example, ⁇ -Glycidoxyethyl group, ⁇ -glycidoxypropyl group and ⁇ - (3,4-epoxycyclohexyl) ethyl group are preferable, and ⁇ - (3,4-epoxycyclohexyl) ethyl group is particularly preferable.
  • R 2 in the general formula (2) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
  • R 2 is preferably a methyl group or an ethyl group, particularly preferably a methyl group, from the viewpoint of reaction conditions such as compatibility and reactivity.
  • alkoxysilane compound examples include ⁇ -glycidoxyethyltrimethoxysilane, ⁇ -glycidoxyethyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like, particularly ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane. preferable.
  • These alkoxysilane compounds may be used alone or in combination of two or more kinds, and may be used in combination with the alkoxysilane compound shown below.
  • the alkoxysilane compound that can be used in the present invention has the structure of the following formula (3).
  • R 3 in the general formula (3) represents a methyl group, a cyclohexyl group, or a phenyl group.
  • R 4 in the general formula (3) represents a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms.
  • R 4 is preferably a methyl group or an ethyl group from the viewpoint of reaction conditions such as compatibility and reactivity.
  • preferable alkoxysilane compounds that can be used in combination include methyltrimethoxysilane, phenyltrimethoxysilane, cyclohexyltrimethoxysilane, methyltriethoxysilane, and phenyltriethoxysilane. Of these, methyltrimethoxysilane and phenyltrimethoxysilane are preferred.
  • the present invention it is possible to increase the refractive index and reduce the gas permeability by using a compound having an aromatic skeleton for at least one of the silicone oil having a silanol structure and the alkoxysilane compound at the terminal to be used. From the viewpoint, it is preferable to use a compound having a phenyl group. In particular, it is preferable that the silicone oil having a silanol structure at the terminal has a phenyl group.
  • step 1 when 1 alkoxyl silanol group having a silanol structure at the terminal is reacted with an alkoxy group in an amount smaller than 1.5 equivalents, two or more alkoxy groups in the alkoxysilane compound are converted to silanol at the terminal. It will react with the silanol group of the silicone oil having the structure, and at the end of Step 1, it becomes too high in polymer and gelation occurs. For this reason, it is necessary to make an alkoxy group react with 1.5 equivalent or more with respect to 1 equivalent of silanol groups. From the viewpoint of reaction control, 2.0 equivalents or more are preferable.
  • This reaction is characterized in that the reaction is carried out in the presence of an alcohol in Step 1.
  • alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol.
  • Etc In the present invention, primary alcohols and secondary alcohols are preferable, and it is particularly preferable to use primary alcohols or a mixture of primary alcohols and secondary alcohols.
  • Examples of primary alcohols include methanol, ethanol, propanol, butanol, hexanol, octanol, nonane alcohol, decane alcohol, propylene glycol, and the like.
  • Examples of secondary alcohols include isopropanol, cyclohexanol, propylene glycol. Etc.
  • a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture.
  • the amount of primary alcohol is preferably 5% by weight or more, more preferably 10% by weight or more of the total alcohol amount.
  • the amount of alcohol used is preferably 2% by weight or more based on the total weight of the silicone oil having a silanol structure at the terminal and the alkoxysilane compound. It is more preferably 2 to 100% by weight, further preferably 3 to 50% by weight, particularly preferably 4 to 40% by weight.
  • the amount exceeds 100% by weight, the progress of the reaction becomes extremely slow.
  • the amount is less than 2% by weight, the reaction other than the target reaction proceeds, the molecular weight increases, gelation, increase in viscosity, and use as a cured product. As a result, there arises a problem that the elastic modulus increases so that it becomes difficult. In this reaction, other solvents may be used in combination as necessary.
  • solvents examples include ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate, and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene, and xylene.
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone
  • esters such as ethyl acetate, butyl acetate, ethyl lactate, and isopropyl butanoate
  • hydrocarbons such as hexane, cyclohexane, toluene, and xylene.
  • the addition of these solvents is not preferred in this reaction.
  • the production of the organopolysiloxane (A) containing an epoxy group of the present invention can be carried out without a catalyst, the reaction proceeds slowly with no catalyst. Therefore, it is preferably carried out in the presence of a catalyst from the viewpoint of shortening the reaction time.
  • a catalyst any compound that exhibits acidity or basicity can be used.
  • the acidic catalyst include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid.
  • Examples of basic catalysts include sodium hydroxide, potassium hydroxide, lithium hydroxide, alkali metal hydroxides such as cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, etc.
  • Inorganic bases such as alkali metal carbonates and organic bases such as ammonia, triethylamine, diethylenetriamine, n-butylamine, dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used.
  • a basic catalyst is particularly preferable, and an inorganic base is preferable in terms of easy catalyst removal from the product.
  • alkali metal salts such as sodium hydroxide, potassium hydroxide and calcium hydroxide, or alkaline earth metal salts, particularly hydroxides are preferable.
  • the addition amount of the catalyst is usually 0.001 to 5% by weight, preferably 0.01 to 2% by weight, based on the total weight of the silicone oil having a silanol structure at the terminal and the alkoxysilane compound.
  • a method for adding the catalyst it is added directly or used in a state dissolved in a soluble solvent or the like. Among them, it is preferable to add the catalyst in a state in which the catalyst is dissolved in advance in alcohols such as methanol, ethanol, propanol and butanol.
  • the allowable range of moisture at this time is 0.5% by weight or less, more preferably 0.3% by weight or less, based on the total weight of the silicone oil having a silanol structure at the terminal and the alkoxysilane compound, and there is no water as much as possible. Is more preferable.
  • the reaction temperature in Step 1 is usually 20 to 160 ° C., preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used.
  • the reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
  • the modified silicone oil obtained in step 1 is considered to have a structure as shown in the following formula (4) as a main component (the structure is difficult to confirm and can be accurately identified. Can not.).
  • process 2 it describes in detail about the manufacturing method (process 2) of the epoxy resin of this invention.
  • water is added, and polymerization (sol-gel reaction) of the remaining alkoxy groups of the modified silicone oil obtained in Step 1 is performed.
  • the above-mentioned alkoxysilane compound and catalyst may be added within the range of the above-mentioned amounts.
  • This reaction can be performed by (1) modified silicone oils and / or (2) modified silicone oils and alkoxysilane compounds, and / or (3) alkoxysilane compounds, and (4) alkoxysilanes.
  • a polymerization reaction is performed between a partially polymerized compound and a modified silicone oil.
  • the polymerization reactions (1) to (4) are considered to proceed simultaneously in parallel.
  • the basic inorganic catalyst is preferable as the catalyst, and a necessary amount may be added in the step 1 in advance.
  • step 2 it is preferable to add a solvent.
  • alcohol is preferably used as the solvent in Step 2.
  • examples of alcohols that can be used include alcohols having 1 to 10 carbon atoms, such as methanol, ethanol, propanol, isopropanol, butanol, t-butanol, hexanol, octanol, nonane alcohol, decane alcohol, cyclohexanol, and cyclopentanol. Etc.
  • primary alcohols and secondary alcohols are particularly preferred, and primary alcohols are particularly preferred.
  • a low molecular weight alcohol having 1 to 4 carbon atoms such as methanol, ethanol, propanol, isopropanol, butanol and t-butanol is preferred. These alcohols may be used as a mixture. The presence of these alcohols contributes to molecular weight control and stability.
  • the amount of alcohol added is 20 to 200% by weight, preferably 20 to 150% by weight, particularly preferably 30 to 120% by weight based on the total weight of the silicone oil having a silanol structure at the terminal and the alkoxysilane compound charged in Step 1. %.
  • step 2 water is added.
  • the amount of water used is 0.5 to 8.0 equivalents, more preferably 0.6 to 5.0 equivalents, particularly preferably 0.65 to 2.0 equivalents, relative to the amount of remaining alkoxy groups.
  • the amount of water is less than 0.5 equivalent, the progress of the reaction slows down, causing problems such as the alkoxysilane compound remaining unreacted, or a sufficient network cannot be formed. There is a possibility of causing poor curing even after curing.
  • it exceeds 8.0 equivalents the molecular weight control is not effective and the molecular weight becomes higher than necessary. Furthermore, there is a possibility of inhibiting the stability of the epoxy resin.
  • the reaction temperature in Step 2 is usually 20 to 160 ° C., preferably 40 to 100 ° C., particularly preferably 50 to 95 ° C., although it depends on the amount of catalyst and the solvent used.
  • the reaction time is usually 1 to 20 hours, preferably 3 to 12 hours.
  • the catalyst is removed by quenching and / or washing with water as necessary.
  • a solvent that can be separated from water.
  • Preferred solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclopentanone, esters such as ethyl acetate, butyl acetate, ethyl lactate and isopropyl butanoate, hydrocarbons such as hexane, cyclohexane, toluene and xylene. Can be illustrated.
  • the catalyst may be removed only by washing with water.
  • the washing is carried out after quenching by a neutralization reaction, or the adsorbent. It is preferable to remove the adsorbent by filtration after adsorbing the catalyst using Any compound that is acidic or basic can be used for the neutralization reaction.
  • the compound exhibiting acidity include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as formic acid, acetic acid and oxalic acid.
  • Examples of compounds showing basicity include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, lithium hydroxide and cesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate.
  • Inorganic bases such as alkali metal carbonates, phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, phosphates such as polyphosphoric acid, sodium tripolyphosphate, ammonia, triethylamine, diethylenetriamine, n-butylamine, Organic bases such as dimethylaminoethanol, triethanolamine, and tetramethylammonium hydroxide can be used.
  • inorganic bases or inorganic acids are preferable because they can be easily removed from the product, and phosphates that can more easily adjust the pH to near neutral are more preferable.
  • adsorbent examples include activated clay, activated carbon, zeolite, inorganic / organic synthetic adsorbent, ion exchange resin, and the like, and specific examples include the following products.
  • activated clay for example, Toshin Kasei Co., Ltd., activated clay SA35, SA1, T, R-15, E, Nikkanite G-36, G-153, G-168 are manufactured by Mizusawa Chemical Co., Ltd. Galeon Earth, Mizuka Ace, etc. are listed.
  • activated carbon for example, CL-H, Y-10S, Y-10SF manufactured by Ajinomoto Fine Techno Co., Ltd., S, Y, FC, DP, SA1000, K, A, KA, M, CW130BR manufactured by Phutamura Chemical Co., Ltd. , CW130AR, GM130A, and the like.
  • zeolite include, for example, molecular sieves 3A, 4A, 5A, and 13X, manufactured by Union Showa.
  • a synthetic adsorbent for example, Kyoward 100, 200, 300, 400, 500, 600, 700, 1000, 2000 manufactured by Kyowa Chemical Co., Ltd., Amberlist 15JWET, 15DRY, manufactured by Rohm and Haas Co., Ltd. 16WET, 31WET, A21, Amberlite IRA400JCl, IRA403BLCl, IRA404JCl, manufactured by Dow Chemical Company, Dowex 66, HCR-S, HCR-W2, MAC-3, etc. may be mentioned.
  • the adsorbent is added to the reaction solution, followed by treatment such as stirring and heating to adsorb the catalyst, and then the adsorbent is filtered and the residue is washed with water to remove the catalyst and adsorbent.
  • the reaction After completion of the reaction or after quenching, it can be purified by conventional separation and purification means other than water washing and filtration.
  • the purification means include column chromatography, vacuum concentration, distillation, extraction and the like. These purification means may be performed singly or in combination.
  • reaction solvent mixed with water is removed from the system by distillation or vacuum concentration after quenching, and then washed with a solvent that can be separated from water. It is preferable.
  • the epoxy resin of the present invention can be obtained by removing the solvent by vacuum concentration or the like.
  • the appearance of the organopolysiloxane containing the epoxy group of the present invention thus obtained (hereinafter also referred to as “the epoxy resin of the present invention”) is usually a colorless and transparent liquid having a fluidity at 25 ° C.
  • the molecular weight is preferably 800 to 3000, more preferably 1000 to 3000, and particularly preferably 1500 to 2800 as the weight average molecular weight measured by GPC. When the weight average molecular weight is less than 800, the heat resistance may be lowered. When the weight average molecular weight is more than 3000, the encapsulant may be peeled from the substrate at the time of solder reflow of the LED element encapsulated using the weight average molecular weight.
  • the weight average molecular weight is a polystyrene equivalent weight average molecular weight (Mw) measured using GPC (gel permeation chromatography) under the following conditions.
  • Mw polystyrene equivalent weight average molecular weight
  • GPC Manufacturer Shimadzu Corporation
  • Column Guard column SHODEX GPC LF-G LF-804
  • Flow rate 1.0 ml / min.
  • Solvent THF (tetrahydrofuran)
  • Detector RI (differential refraction detector)
  • the epoxy equivalent of the produced epoxy resin of the present invention is 300 to 1500 g / eq.
  • the epoxy equivalent is less than 300 g / eq, the cured product is hard and the elastic modulus tends to be too high, and when it exceeds 1500 g / eq, the mechanical properties of the cured product tend to deteriorate.
  • the viscosity of the epoxy resin of the present invention is preferably 50 to 20,000 mPa ⁇ s, more preferably 500 to 10,000 mPa ⁇ s, particularly 800 to 5,000 mPa ⁇ s. -The thing of s is preferable. If the viscosity is less than 50 mPa ⁇ s, the viscosity may be too low to be suitable for use as an optical semiconductor encapsulant, and if it exceeds 20,000 mPa ⁇ s, the viscosity may be too high and workability may be poor. is there.
  • the ratio of silicon atoms to which three oxygen atoms are bonded to the total silicon atoms is preferably 3 to 50 mol%, more preferably 5 to 30 mol%, and particularly preferably 6 to 15 mol%.
  • the ratio of silicon atoms bonded to three oxygen atoms derived from silsesquioxane with respect to all silicon atoms is less than 3 mol%, the cured product tends to be too soft as a characteristic of the chain silicone segment, and the surface There are concerns about tack and scratches.
  • it exceeds 50 mol% the properties of the silicone oil are liable to be impaired, and the cured product becomes too hard.
  • the proportion of silicon atoms present can be determined by 1 H NMR, 29 Si NMR, elemental analysis, etc. of the epoxy resin.
  • the epoxy resin composition of the present invention contains the epoxy resin of the present invention and a curing agent as essential components.
  • a curing agent as the curing agent, acid anhydride (B) and polyvalent carboxylic acid (C) are particularly preferable from the viewpoints of hardness and workability.
  • the acid anhydride (B) include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, nadic anhydride, Hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] heptane-2 , 3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, and the like.
  • methyltetrahydrophthalic anhydride methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic acid Acid anhydrides, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride, and the like. It is preferable from the viewpoint of workability.
  • the polyvalent carboxylic acid (C) is a compound having at least two carboxyl groups.
  • the polyvalent carboxylic acid (C) is preferably a bi- to hexa-functional carboxylic acid, and more preferably a compound obtained by reacting a bi- to hexa-functional polyhydric alcohol with an acid anhydride.
  • the polyhydric carboxylic acid whose said acid anhydride is a saturated aliphatic cyclic acid anhydride is preferable.
  • the bi- to hexafunctional polyhydric alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol.
  • Preferred polyhydric alcohols are alcohols having 5 or more carbon atoms, such as 1,6-hexanediol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, 2,4 Compounds such as diethylpentanediol, 2-ethyl-2-butyl-1,3-propanediol, neopentyl glycol, tricyclodecane dimethanol, norbornene diol are preferred, and 2-ethyl-2-butyl-1,3 is particularly preferred Alcohols having a branched chain structure or a cyclic structure such as propanediol, neopentyl glycol, 2,4-diethylpentanediol, 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, norbornenediol, From the viewpoint of transparency, In particular, tricyclodecane
  • Examples of acid anhydrides to be reacted with polyhydric alcohols include methyltetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2, 2,1] heptane-2,3-dicarboxylic acid anhydride, methylbicyclo [2,2,1] heptane-2,3-dicarboxylic acid anhydride, cyclohexane-1,3,4-tricarboxylic acid-3,4- Anhydrides and the like are preferable, and methylhexahydrophthalic anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride are particularly preferable from the viewpoints of heat resistance, transparency, and workability.
  • the conditions for the addition reaction can be used without any particular limitation as long as they are known methods. Specific reaction conditions include, for example, acid anhydrides and polyhydric alcohols in the absence of a catalyst and in the absence of a solvent. A method of reacting at 150 ° C. and heating, and taking out as it is after completion of the reaction can be mentioned.
  • the polyvalent carboxylic acid (C) of the present invention a compound produced by a reaction between the silicone compound (a) and the acid anhydride (b) can also be used.
  • a silicone compound (a) following formula (5)
  • R 6 represents an alkylene group having 1 to 10 carbon atoms
  • R 5 represents a methyl group or a phenyl group
  • n represents an average value of 1 to 100.
  • R 6 examples include methylene, ethylene, propylene, isopropylene, butylene, isobutylene, pentylene, isopentylene, hexylene, heptylene, octylene and other alkylene groups, ethoxyethylene group, propoxyethylene group propoxy A propylene group, an ethoxypropylene group, etc. are mentioned. Particularly preferred are propoxyethylene group and ethoxypropylene group.
  • R 5 represents a methyl group or a phenyl group, which may be the same or different, and an addition reaction between the silicone compound (a) and a compound (b) having one or more carboxylic anhydride groups in the molecule.
  • a methyl group is preferable compared with a phenyl group.
  • p is an average value of 1 to 100, preferably 2 to 80, more preferably 5 to 30.
  • silicone compound (a) represented by the formula (5) examples include silicone compounds having alcoholic hydroxyl groups at both ends.
  • X-22-160AS, KF6001, KF6002, KF6003 (all manufactured by Shin-Etsu Chemical Co., Ltd.) BY16-201, BY16-004, SF8427 (all manufactured by Toray Industries, Inc.) are carbinol-modified silicone oils at both ends.
  • -Dow Corning Co., Ltd.) XF42-B0970, XF42-C3294 (both manufactured by Momentive Performance Materials Japan GK) and the like are all available from the market.
  • These modified silicone oils having alcoholic hydroxyl groups at both ends can be used alone or in combination of two or more.
  • X-22-160AS, KF6001, KF6002, BY16-201, and XF42-B0970 are preferable.
  • the compound (b) having one or more carboxylic anhydride groups in the molecule includes, for example, succinic anhydride, methyl succinic anhydride, ethyl succinic anhydride, 2,3-butanedicarboxylic anhydride, , 4-pentanedicarboxylic acid anhydride, 3,5-heptanedicarboxylic acid anhydride, 1,2,3,4-butanetetracarboxylic dianhydride and other saturated aliphatic carboxylic acid anhydrides, maleic acid anhydride, dodecyl Unsaturated aliphatic carboxylic anhydrides such as succinic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, 1,3-cyclohexanedicarboxylic anhydride, norbornane-2,3-dicarboxylic anhydride Methylnorbornane-2,3-dicarboxylic acid anhydride, n
  • the compound (b) having one or more carboxylic acid anhydride groups in the molecule can be used alone or in combination.
  • the carboxylic acid compound (C) is liquid at room temperature and the transparency of the cured product obtained by curing the carboxylic acid compound (C) and the epoxy resin is excellent.
  • hexahydrophthalic anhydride, methylhexahydro Phthalic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2,3-dicarboxylic anhydride, 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, 1,2,3 1,4-butanetetracarboxylic dianhydride is preferred. More preferred are methylhexahydrophthalic anhydride and 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, and particularly preferred is methylhexahydrophthalic anhydride.
  • the reaction between the silicone compound (a) and the compound (b) having one or more carboxylic anhydride groups in the molecule can be carried out either in a solvent or without a solvent.
  • Any solvent that does not react with the silicone compound (a) represented by the formula (5) and the compound (b) having one or more carboxylic acid anhydride groups in the molecule can be used without particular limitation.
  • solvents that can be used include aprotic polar solvents such as dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrofuran and acetonitrile, ketones such as methyl ethyl ketone, cyclopentanone and methyl isobutyl ketone, toluene and xylene.
  • An aromatic hydrocarbon etc. are mentioned, Among these, an aromatic hydrocarbon and ketones are preferable.
  • These solvents may be used alone or in combination of two or more.
  • the amount of the solvent used is not particularly limited, but is generally 0.1 to 300 with respect to 100 parts by weight of the total weight of the silicone compound (a) and the compound (b) having one or more carboxylic anhydride groups. It is preferable to use parts by weight.
  • a catalyst may be used for the reaction.
  • usable catalysts include hydrochloric acid, sulfuric acid, methanesulfonic acid, trifluoromethanesulfonic acid, paratoluenesulfonic acid, nitric acid, trifluoroacetic acid, trichloroacetic acid and other acidic compounds, water Metal hydroxides such as sodium oxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, amine compounds such as triethylamine, tripropylamine, tributylamine, pyridine, dimethylaminopyridine, 1,8-diazabicyclo [5.4.
  • heterocyclic compounds such as undec-7-ene, imidazole, triazole, tetrazole, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, Methyl ethylammonium hydroxide, trimethylpropylammonium hydroxide, trimethylbutylammonium hydroxide, trimethylcetylammonium hydroxide, trioctylmethylammonium hydroxide, tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, tetramethylammonium Examples include quaternary ammonium salts such as acetate and trioctylmethylammonium acetate. These catalysts may be used alone or in combination of two or more. Of these, triethylamine, pyridine
  • the amount of the catalyst used is not particularly limited, but the total weight of the silicone compound (a) represented by the formula (5) and the compound (b) having one or more carboxylic anhydride groups in the molecule is 100 wt. It is preferable to use 0.1 to 100 parts by weight with respect to parts.
  • two or more acid anhydrides (B) and polyvalent carboxylic acids (C) can be used in combination.
  • solid polycarboxylic acid (C) when solid polycarboxylic acid (C) is used in applications where liquid is required at room temperature (25 ° C) such as sealing of optical semiconductors, liquid acid anhydride (B) is used in combination and used as a liquid mixture It is desirable to do.
  • the acid anhydride (B) when used in combination, can be used in a proportion of 0.5 to 99.5% by weight of the total of the acid anhydride (B) and the polyvalent carboxylic acid (C).
  • the epoxy resin composition of the present invention contains an organopolysiloxane (A) containing the epoxy group of the present invention as an epoxy resin, and a curing agent as essential components, but further contains other epoxy resins and other curing agents. It can also be made.
  • A organopolysiloxane
  • the proportion of the organopolysiloxane (A) containing an epoxy group of the present invention in the total epoxy resin is preferably 60% by weight or more, particularly preferably 70% by weight or more.
  • epoxy resins examples include novolac type epoxy resins, bisphenol A type epoxy resins, biphenyl type epoxy resins, triphenylmethane type epoxy resins, and phenol aralkyl type epoxy resins.
  • bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4,4′-biphenol, 2,2′-biphenol, 3,3 ′, 5,5′-tetramethyl- [ 1,1′-biphenyl] -4,4′-diol, hydroquinone, resorcin, naphthalenediol, tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol (Phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc
  • the epoxy resin composition of the present invention is mainly used for optical applications.
  • the combined use of alicyclic epoxy resins is preferred.
  • an alicyclic epoxy resin a compound having an epoxycyclohexane structure in the skeleton is preferable, and an epoxy resin obtained by an oxidation reaction of a compound having a cyclohexene structure is particularly preferable.
  • epoxy resins include esterification reaction of cyclohexene carboxylic acid and alcohols or esterification reaction of cyclohexene methanol and carboxylic acids (Tetrahedron vol.36 p.2409 (1980), Tetrahedron Letter p.4475 (1980), etc.) Described), or Tyschenko reaction of cyclohexene aldehyde (method described in Japanese Patent Application Laid-Open No. 2003-170059, Japanese Patent Application Laid-Open No.
  • the alcohol is not particularly limited as long as it is a compound having an alcoholic hydroxyl group, but ethylene glycol, propylene glycol, 1,3-propanediol, 1,2-butanediol, 1,4-butanediol, 1,5-pentane.
  • Examples of carboxylic acids include, but are not limited to, oxalic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid, adipic acid, and cyclohexanedicarboxylic acid.
  • epoxy resins include ERL-4221, UVR-6105, ERL-4299 (all trade names, all manufactured by Dow Chemical), Celoxide 2021P, Epolide GT401, EHPE3150, EHPE3150CE (all trade names, all Daicel) (Chemical Industry) and dicyclopentadiene diepoxide, and the like, but are not limited thereto (Reference: Review Epoxy Resin Basic Edition I p76-85, the entire contents of which are incorporated herein by reference). These may be used alone or in combination of two or more.
  • the proportion of the total amount of the above-mentioned acid anhydride (B) and / or polyvalent carboxylic acid (C) in the total curing agent is preferably 30% by weight or more, In particular, 40% by weight or more is preferable.
  • the curing agent that can be used in combination include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds.
  • curing agents that can be used include amines and polyamide compounds (such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and polyamide resins synthesized from linolenic acid dimer and ethylenediamine).
  • amines and polyamide compounds such as diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophoronediamine, dicyandiamide, and polyamide resins synthesized from linolenic acid dimer and ethylenediamine).
  • Reaction product of acid anhydride and silicone alcohol (phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, anhydrous Nadic acid, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, butanetetracarboxylic anhydride, bicyclo [2,2,1] heptane-2,3-dicarboxylic anhydride, methylbicyclo [2,2,1] Hep Reaction products of acid anhydrides such as N-2,3-dicarboxylic acid anhydride and cyclohexane-1,3,4-tricarboxylic acid-3,4-anhydride with silicone alcohols such as carbinol-modified silicone ), Polyhydric phenols (bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, ter
  • halogenated bisphenols such as tetrabromobisphenol A, condensates of terpenes and phenols, and others (imidazole, trifluoroborane-amine complexes, guanidine derivatives, etc.) This It is not limited to these. These may be used alone or in combination of two or more.
  • the blending ratio of the epoxy resin and the curing agent is preferably 0.5 to 1.2 equivalents of the curing agent with respect to 1 equivalent of the epoxy groups of all epoxy resins.
  • curing may be incomplete and good cured properties may not be obtained.
  • a curing catalyst can be used together with a curing agent.
  • the curing accelerator that can be used include 2-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2-phenylimidazole.
  • the curing catalyst is usually used in the range of 0.001 to 15 parts by weight with respect to 100 parts by weight of the epoxy resin.
  • the epoxy resin composition of the present invention may contain a phosphorus-containing compound as a flame retardant imparting component.
  • the phosphorus-containing compound may be a reactive type or an additive type.
  • Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresyl phosphate, trixylylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-dixylylenyl phosphate, 1,3-phenylenebis ( Phosphoric esters such as dixylylenyl phosphate), 1,4-phenylenebis (dixylylenyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate); 9,10-dihydro-9-oxa Phosphanes such as -10-phosphaphenanthrene-10-oxide, 10 (2,5-dihydroxyphenyl) -10H-9-oxa-10-
  • Phosphate esters, phosphanes or phosphorus-containing epoxy compounds are preferable, and 1,3-phenylenebis (dixylylenyl phosphate), 1,4-phenylenebis (dixylylene). Nyl phosphate), 4,4′-biphenyl (dixylylenyl phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
  • the epoxy resin composition of the present invention can be blended with a binder resin as necessary.
  • the binder resin include butyral resins, acetal resins, acrylic resins, epoxy-nylon resins, NBR-phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins, and silicone resins. However, it is not limited to these.
  • the blending amount of the binder resin is preferably within a range that does not impair the flame retardancy and heat resistance of the cured product, and is usually 0.05 to 50 parts by weight, preferably 100 parts by weight in total of the epoxy resin and the curing agent. 0.05 to 20 parts by weight is used as necessary.
  • An inorganic filler can be added to the epoxy resin composition of the present invention as necessary.
  • inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zirconia, fosterite, steatite, spinel, titania, talc, and the like.
  • the present invention is not limited to these.
  • These fillers may be used alone or in combination of two or more. The content of these inorganic fillers is 0 to 95% by weight in the epoxy resin composition of the present invention.
  • a silane coupling agent a release agent such as stearic acid, palmitic acid, zinc stearate, and calcium stearate, various compounding agents such as pigments, and various thermosetting resins are added to the epoxy resin composition of the present invention. be able to.
  • the transparency can be improved by using a nano-order level filler. It is possible to supplement mechanical strength without hindering.
  • a phosphor can be added as necessary.
  • the phosphor has a function of forming white light by absorbing part of blue light emitted from a blue LED element and emitting wavelength-converted yellow light.
  • the optical semiconductor is sealed.
  • fluorescent substance A conventionally well-known fluorescent substance can be used, For example, rare earth element aluminate, thio gallate, orthosilicate, etc. are illustrated.
  • phosphors such as a YAG phosphor, a TAG phosphor, an orthosilicate phosphor, a thiogallate phosphor, and a sulfide phosphor can be mentioned, and YAlO 3 : Ce, Y 3 Al 5 O 12 : Ce, Y 4 Al 2 O 9 : Ce, Y 2 O 2 S: Eu, Sr 5 (PO 4 ) 3 Cl: Eu, (SrEu) O.Al 2 O 3 and the like are exemplified.
  • the particle size of the phosphor those having a particle size known in this field are used, and the average particle size is preferably 1 to 250 ⁇ m, particularly preferably 2 to 50 ⁇ m. When these phosphors are used, the amount added is 1 to 80 parts by weight, preferably 5 to 60 parts by weight, based on 100 parts by weight of the resin component.
  • thixo including silica fine powder also called Aerosil or Aerosol
  • a tropicity-imparting agent can be added.
  • silica fine powder examples include Aerosil® 50, Aerosil® 90, Aerosil® 130, Aerosil® 200, Aerosil® 300, Aerosil® 380, Aerosil® OX50, Aerosil® TT600, Aerosil® R972, Aerosil® R202, Aerosil® R202, Aerosil® R202, Aerosil® R202, Aerosil® R202, Aerosil® R805, RY200, RX200 (manufactured by Nippon Aerosil Co., Ltd.) and the like can be mentioned.
  • the epoxy resin composition of the present invention contains an optical material, particularly an optical semiconductor encapsulant, which contains an amine compound as a light stabilizer or a phosphorus compound and a phenol compound as an antioxidant for the purpose of preventing coloring.
  • an optical material particularly an optical semiconductor encapsulant, which contains an amine compound as a light stabilizer or a phosphorus compound and a phenol compound as an antioxidant for the purpose of preventing coloring.
  • the amine compound include tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, tetrakis (2,2,6,6- Totramethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, 1,2,3,4-butanetetracarboxylic acid and 1,2,2,6,6-pentamethyl-4-piperidinol and 3 , 9-Bis (2-hydroxy-1,1-dimethylethyl) -2,
  • the following commercially available products can be used as the amine compound that is the light stabilizer.
  • the commercially available amine compound is not particularly limited.
  • the phosphorus compound is not particularly limited, and for example, 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5-tert-butylphenyl) butane, distearyl pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, bis (2,6-di-tert-butyl-4-methylphenyl) pentaerythritol diphosphite, phenylbisphenol A pentaerythritol diphosphite, Dicyclohexylpentaerythritol diphosphite, tris (diethylphenyl) phosphite, tris (di-isopropylphenyl) phosphite, tris (di-n-butylphenyl) phosphite, tris (2,4-
  • the commercially available phosphorus compounds are not particularly limited. For example, as Adeka, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-24G, ADK STAB PEP-36, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260 Adeka tab 522A, Adekas tab 1178, Adekas tab 1500, Adekas tab C, Adekas tab 135A, Adekas tab 3010, Adekas tab TPP and the like.
  • the phenol compound is not particularly limited, and examples thereof include 2,6-di-tert-butyl-4-methylphenol and n-octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate.
  • the commercially available phenolic compounds are not particularly limited. , ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-70, ADK STAB AO-80, ADK STAB AO-90, ADK STAB AO-330, Sumitizer GA-80 manufactured by Sumitomo Chemical Co., Ltd. , Sumilizer MDP-S, Sumil izer BBM-S, SumizerzGM, SumizerilGS (F), SumizerzGP, and the like.
  • THINUVIN 328, THINUVIN 234, THINUVIN 326, THINUVIN 120, THINUVIN 477, THINUVIN 479, CHIMASSORB 2020FDL, CHIMASSORB 119FL and the like are manufactured by Ciba Specialty Chemicals.
  • the amount of the compound is not particularly limited, but is 0 with respect to the total weight of the epoxy resin composition of the present invention.
  • the range is 0.005 to 5.0% by weight.
  • the epoxy resin composition of the present invention can be obtained by uniformly mixing each component.
  • the epoxy resin composition of the present invention can be easily made into a cured product by a method similar to a conventionally known method.
  • an epoxy resin component, a curing agent component and, if necessary, a curing accelerator, a phosphorus-containing compound, a binder resin, an inorganic filler, a compounding agent, etc. are uniformly used using an extruder, a kneader, a roll, a planetary mixer, etc. Mix thoroughly until the epoxy resin composition is obtained. If the resulting epoxy resin composition is liquid, impregnate the composition into the substrate by potting or casting, or pour into a mold and cast. Or cured by heating.
  • the obtained epoxy resin composition is solid, it is molded using a cast after casting or a transfer molding machine, and further cured by heating.
  • the curing temperature and time are 80 to 200 ° C. and 2 to 10 hours.
  • curing can be performed at a high temperature at a stretch, but it is preferable to increase the temperature stepwise to advance the curing reaction. Specifically, initial curing is performed at 80 to 150 ° C., and post-curing is performed at 100 to 200 ° C.
  • the temperature is preferably increased in 2 to 8 stages, more preferably 2 to 4 stages.
  • the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc. to obtain a curable resin composition varnish, which contains glass fiber, -A prepreg obtained by impregnating a base material such as bon fiber, polyester fiber, polyamide fiber, alumina fiber or paper and drying by heating is subjected to hot press molding to obtain a cured product of the epoxy resin composition of the present invention. Can do.
  • a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, etc.
  • the solvent used here is usually 10 to 70% by weight, preferably 15 to 70% by weight, based on the total weight of the mixture of the epoxy resin composition of the present invention and the solvent. Moreover, the epoxy resin hardened
  • the epoxy resin composition of this invention can also be used as a film type sealing composition.
  • the curable resin composition of the present invention is coated on the release film with the varnish, the solvent is removed under heating, and a B-stage adhesive is formed. Get.
  • This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like, and a batch film sealing of an optical semiconductor.
  • the epoxy resin composition of the present invention is used as an optical semiconductor sealing material or die bonding material will be described in detail.
  • the epoxy resin composition of the present invention is used as a sealing material or die bond material for an optical semiconductor such as a high-intensity white LED, an addition of an epoxy resin, a curing agent, a coupling agent, an antioxidant, a light stabilizer, etc.
  • An epoxy resin composition is prepared by thoroughly mixing the materials, and is used as a sealing material or as both a die bond material and a sealing material.
  • a mixing method a kneader, a three-roll, a universal mixer, a planetary mixer, a homomixer, a homodisper, a bead mill or the like is used to mix at room temperature or warm.
  • Optical semiconductor elements such as high-intensity white LEDs are generally GaAs, GaP, GaAlAs, GaAsP, AlGa, InP, GaN, InN, AlN, InGaN laminated on a substrate of sapphire, spinel, SiC, Si, ZnO or the like.
  • Such a semiconductor chip is bonded to a lead frame, a heat sink, or a package using an adhesive (die bond material).
  • a wire such as a gold wire is connected to pass an electric current.
  • the semiconductor chip is sealed with a sealing material such as an epoxy resin in order to protect it from heat and moisture and play a role of a lens.
  • the epoxy resin composition of the present invention can be used as this sealing material or die bond material. From the viewpoint of the process, it is advantageous to use the epoxy resin composition of the present invention for both the die bond material and the sealing material.
  • the epoxy resin composition of the present invention is applied by a dispenser, potting, or screen printing, and then the semiconductor chip is placed and heat-cured. Yes, the semiconductor chip can be bonded.
  • the heating methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating condition is preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • a compression molding method or the like in which a semiconductor chip fixed on a substrate is immersed therein and heat-cured and then released from a mold is used.
  • the injection method include dispenser, transfer molding, injection molding and the like.
  • methods such as hot air circulation, infrared rays and high frequency can be used.
  • the heating conditions are preferably 80 to 230 ° C. for about 1 minute to 24 hours.
  • post-curing is performed at 120 to 180 ° C. for 30 minutes to 10 hours. it can.
  • a curable resin such as an epoxy resin
  • adhesives paints, coating agents, molding materials (including sheets, films, FRP, etc.), insulating materials (printed boards, electric wires).
  • the encapsulating material a cyanate resin composition for the substrate, an acrylic ester resin as a curing agent for the resist, an additive to other resins, and the like.
  • adhesives examples include civil engineering, architectural, automotive, general office and medical adhesives, as well as electronic material adhesives.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF) and an adhesive for mounting such as anisotropic conductive paste (ACP).
  • sealing agents potting, dipping, transfer mold sealing for capacitors, transistors, diodes, light-emitting diodes, ICs, LSIs, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip
  • underfill for QFP, BGA, CSP, etc., and sealing can be used.
  • the cured product obtained in the present invention can be used for various applications including optical component materials.
  • the optical material refers to general materials used for applications that allow light such as visible light, infrared light, ultraviolet light, X-rays, and lasers to pass through the material. More specifically, in addition to LED sealing materials such as lamp type and SMD type, the following may be mentioned. It is a peripheral material for liquid crystal display devices such as a substrate material, a light guide plate, a prism sheet, a deflection plate, a retardation plate, a viewing angle correction film, an adhesive, and a film for a liquid crystal such as a polarizer protective film in the liquid crystal display field.
  • color PDP plasma display
  • antireflection films antireflection films
  • optical correction films housing materials
  • front glass protective films front glass replacement materials
  • adhesives and LED displays that are expected as next-generation flat panel displays
  • LED molding materials LED sealing materials, front glass protective films, front glass substitute materials, adhesives, and substrate materials for plasma addressed liquid crystal (PALC) displays, light guide plates, prism sheets, deflection plates , Phase difference plate, viewing angle correction film, adhesive, polarizer protective film, front glass protective film in organic EL (electroluminescence) display, front glass substitute material, adhesive, and various in field emission display (FED) Film substrate
  • PLC plasma addressed liquid crystal
  • VD video disc
  • CD / CD-ROM CD-R / RW
  • DVD-R / DVD-RAM MO / MD
  • PD phase change disc
  • disc substrate materials for optical cards Pickup lenses, protective films, sealing materials, adhesives and the like.
  • optical equipment field they are still camera lens materials, finder prisms, target prisms, finder covers, and light receiving sensor sections. It is also a photographic lens and viewfinder for video cameras.
  • optical components they are fiber materials, lenses, waveguides, element sealing materials, adhesives and the like around optical switches in optical communication systems.
  • optical passive components and optical circuit components there are lenses, waveguides, LED sealing materials, CCD sealing materials, adhesives, and the like.
  • OEIC optoelectronic integrated circuit
  • automotive lamp reflectors In the field of automobiles and transport equipment, automotive lamp reflectors, bearing retainers, gear parts, corrosion-resistant coatings, switch parts, headlamps, engine internal parts, electrical parts, various interior and exterior products, drive engines, brake oil tanks, and automobile protection Rusted steel plates, interior panels, interior materials, protective / bundling wireness, fuel hoses, automobile lamps, glass replacements.
  • it is a multilayer glass for railway vehicles.
  • it In the construction field, it is interior / processing materials, electrical covers, sheets, glass interlayers, glass substitutes, and solar cell peripheral materials. For agriculture, it is a house covering film.
  • Next generation optical / electronic functional organic materials include peripheral materials for organic EL elements, organic photorefractive elements, optical amplification elements that are light-to-light conversion devices, optical computing elements, substrate materials around organic solar cells, fiber materials, elements Sealing material, adhesive and the like.
  • ratios, percentages, parts and the like are based on weight unless otherwise specified.
  • the expression “X to Y” indicates a range from X to Y, and the range includes X and Y.
  • Viscosity Measured at 25 ° C. using an E-type viscometer (TV-20) manufactured by Toki Sangyo Co., Ltd.
  • Transmittance A light transmittance of 400 nm was measured using U-3300 manufactured by Hitachi, Ltd.
  • Example 1 As Step 1, 158 parts of ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 546 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (measured GPC value) (silanol equivalent of 850, measured using GPC) Calculated as half the weight average molecular weight.), 40 parts of 0.5% potassium hydroxide (KOH) methanol solution was charged into a reaction vessel (a glass four-necked flask equipped with a stirrer, Dimroth condenser, thermometer), The reaction was carried out for 8 hours under reflux. The weight average molecular weight at this time was 2230.
  • KOH potassium hydroxide
  • Step 2 after adding 598 parts of methanol, 69.2 parts of a 50% distilled water methanol solution was added dropwise over 60 minutes and reacted for 8 hours under reflux. After completion of the reaction, the mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and about 90% of methanol was recovered by distillation. Next, 700 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. By removing the solvent from the obtained organic phase at 100 ° C. under reduced pressure, 634 parts of organopolysiloxane (S-1) of the present invention were obtained. The epoxy equivalent of the obtained compound was 1015 g / eq, the weight average molecular weight was 2290, and the appearance was a colorless and transparent liquid resin.
  • MIBK methyl isobutyl ketone
  • Example 2 In Step 1, 139.4 parts of ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 136.6 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (measured by GPC) (silanol equivalent 850, GPC) Calculated as half of the weight average molecular weight measured by using a 10% solution of 0.5% potassium hydroxide (KOH) in methanol and 140 parts of methanol in a reaction vessel (stirrer, Dimroth condenser, thermometer equipped with glass) 4 necked flask) and allowed to react for 8 hours under reflux. The weight average molecular weight at this time was 1770.
  • KOH potassium hydroxide
  • Step 2 17.3 parts of a 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was reacted for 8 hours under reflux. After completion of the reaction, the mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and about 90% of methanol was recovered by distillation. Next, 160 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. By removing the solvent from the obtained organic phase at 100 ° C. under reduced pressure, 151 parts of the organopolysiloxane (S-2) of the present invention were obtained. The epoxy equivalent of the obtained compound was 1042 g / eq, the weight average molecular weight was 2050, and the appearance was a colorless and transparent liquid resin.
  • MIBK methyl isobutyl ketone
  • Example 3 As Step 1, it was measured using 59 parts of ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 131 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (GPC measurement value) (silanol equivalent 850, GPC). Calculated as half of the weight average molecular weight.), 10 parts of 0.5% potassium hydroxide (KOH) methanol solution (0.05 parts as KOH parts) was placed in a reaction vessel (stirrer, Dimroth condenser, thermometer) Glass 4-neck flask), the bath temperature was set to 75 ° C., and the temperature was raised.
  • KOH potassium hydroxide
  • Step 2 After raising the temperature, the reaction was carried out under reflux for 8 hours. The weight average molecular weight at this time was 1540.
  • Step 2 after adding 135 parts of methanol, 25.9 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was reacted at 75 ° C. under reflux for 8 hours. After completion of the reaction, the reaction mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. 170 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. Next, the organic phase was removed under reduced pressure at 100 ° C.
  • MIBK methyl isobutyl ketone
  • organopolysiloxane (S-3) of the present invention was obtained 162 parts of organopolysiloxane (S-3) of the present invention.
  • the obtained compound was a liquid resin having an epoxy equivalent of 729 g / eq, a weight average molecular weight of 2200, and an appearance having a colorless and transparent appearance.
  • Example 4 As Step 1, 296 parts of ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 505 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (measured GPC value) (silanol equivalent 850, measured using GPC) Calculated as half of the weight average molecular weight.), 40 parts of 0.5% potassium hydroxide (KOH) methanol solution (0.2 parts as KOH parts) were placed in a reaction vessel (stirrer, Dimroth condenser, thermometer). Glass 4-neck flask), the bath temperature was set to 75 ° C., and the temperature was raised.
  • KOH potassium hydroxide
  • Step 2 After raising the temperature, the reaction was carried out under reflux for 8 hours. The weight average molecular weight at this time was 1380.
  • Step 2 after adding 510 parts of methanol, 129.6 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and reacted at 75 ° C. under reflux for 8 hours. After completion of the reaction, the reaction mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. 704 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. Next, the organic phase was removed under reduced pressure at 100 ° C.
  • MIBK methyl isobutyl ketone
  • the epoxy equivalent of the obtained compound was 611 g / eq, the weight average molecular weight was 2120, and the appearance was a colorless and transparent liquid resin.
  • Example 5 As Step 1, 355 parts of ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 487 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (measured GPC value) (silanol equivalent: 850, measured using GPC) Calculated as half the weight average molecular weight.), 40 parts of 0.5% potassium hydroxide (KOH) methanol solution was charged into a reaction vessel (a glass four-necked flask equipped with a stirrer, Dimroth condenser, thermometer), The reaction was carried out for 10 hours under reflux. The weight average molecular weight at this time was 1130.
  • KOH potassium hydroxide
  • Step 2 after adding 640 parts of methanol, 155.6 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was reacted for 8 hours under reflux. After completion of the reaction, the mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and about 90% of methanol was recovered by distillation. Next, 757 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. By removing the solvent from the obtained organic phase at 100 ° C. under reduced pressure, 724 parts of the organopolysiloxane (S-5) of the present invention were obtained. The resulting compound was a liquid resin having an epoxy equivalent of 526 g / eq, a weight average molecular weight of 2200, and an appearance having a colorless and transparent appearance.
  • MIBK methyl isobutyl ketone
  • Example 6 As Step 1, 394 parts of ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 475 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (measured by GPC) (silanol equivalent 850, GPC was used) Calculated as half of the weight average molecular weight measured in the above) and 40 parts of 0.5% potassium hydroxide (KOH) methanol solution in a reaction vessel (a glass four-necked flask equipped with a stirrer, Dimroth condenser, thermometer). And reacted under reflux for 10 hours. The weight average molecular weight at this time was 960.
  • GPC silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (measured by GPC) (silanol equivalent 850, GPC was used) Calculated as half of the weight average molecular weight measured in the above)
  • Step 2 after adding 656 parts of methanol, 172.8 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was reacted for 8 hours under reflux. After completion of the reaction, the mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and about 90% of methanol was recovered by distillation. Next, 782 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. The obtained organic phase was removed at 100 ° C. under reduced pressure to obtain 741 parts of the organopolysiloxane (S-6) of the present invention.
  • the epoxy equivalent of the obtained compound was 487 g / eq, the weight average molecular weight was 2250, and the appearance was a colorless and transparent liquid resin.
  • Example 7 As Step 1, 394 parts of ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 475 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (measured by GPC) (silanol equivalent: 850, measured using GPC) Calculated as half the weight average molecular weight.), 4 parts of 0.5% potassium hydroxide (KOH) methanol solution and 36 parts of isopropyl alcohol were added to a reaction vessel (agitator, Dimroth condenser, thermometer equipped with four necks) Flask) and reacted under reflux for 4 hours. The weight average molecular weight at this time was 840.
  • KOH potassium hydroxide
  • step 2 After adding 656 parts of methanol, 172.8 parts of 50% distilled water methanol solution was added dropwise over 60 minutes and reacted for 10 hours under reflux. After completion of the reaction, the mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and about 90% of methanol was recovered by distillation. Next, 782 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. The organic phase obtained was removed at 100 ° C. under reduced pressure to obtain 731 parts of the organopolysiloxane (S-10) of the present invention.
  • the obtained compound was a liquid resin having an epoxy equivalent of 491 g / eq, a weight average molecular weight of 2090, and a colorless and transparent appearance.
  • Example 8 As Step 1, 197 parts of ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 534 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (measured by GPC) (silanol equivalent 850, GPC was used) Calculated as half the weight average molecular weight measured in the above), 4 parts of 0.5% potassium hydroxide (KOH) methanol solution and 36 parts of isopropyl alcohol were made into a reaction vessel (stirrer, Dimroth condenser, thermometer equipped with glass). A four-necked flask) and reacted under reflux for 4 hours.
  • KOH potassium hydroxide
  • the weight average molecular weight at this time was 1570. Thereafter, the mixture was further reacted under reflux for 6 hours (total 10 hours). The weight average molecular weight at this time was 1520.
  • step 2 after adding 576 parts of methanol, 86.4 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was reacted for 10 hours under reflux. After completion of the reaction, the mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and about 90% of methanol was recovered by distillation. Next, 660 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. By removing the solvent from the obtained organic phase at 100 ° C.
  • MIBK methyl isobutyl ketone
  • Step 2 After raising the temperature, the reaction was carried out under reflux for 8 hours. The weight average molecular weight at this time was 2140.
  • Step 2 after adding 170 parts of methanol, 51.8 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and reacted at 75 ° C. under reflux for 8 hours. After completion of the reaction, the reaction mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C. 340 parts of methyl isobutyl ketone (MIBK) was added, and washing with water was repeated three times. Next, the organic phase was removed under reduced pressure at 100 ° C. to obtain 320 parts of organopolysiloxane (S-7). The epoxy equivalent of the obtained compound was 710 g / eq, the weight average molecular weight was 3100, and the appearance was a colorless and transparent liquid resin.
  • MIBK methyl isobutyl ketone
  • Step 2 After adding 135 parts of methanol, 25.9 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was reacted at 75 ° C. under reflux for 8 hours. After completion of the reaction, the reaction mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C.
  • Step 1 139.4 parts of ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 136.6 parts of silanol-terminated methylphenyl silicone oil having a weight average molecular weight of 1700 (measured by GPC) (silanol equivalent 850, GPC) Calculated as half of the weight average molecular weight measured using the above), 10 parts of 0.5% potassium hydroxide (KOH) methanol solution in a reaction vessel (stirrer, Dimroth condenser, thermometer, Dean-Stark apparatus) In a four-necked flask), the bath temperature was set to 75 ° C., and the temperature was raised.
  • KOH potassium hydroxide
  • Step 2 After adding 140 parts of methanol, 17.3 parts of 50% distilled water methanol solution was added dropwise over 60 minutes, and the mixture was reacted at 75 ° C. under reflux for 8 hours. After completion of the reaction, the reaction mixture was neutralized with 5% aqueous sodium dihydrogen phosphate solution, and methanol was recovered by distillation at 80 ° C.
  • Table 1 summarizes the properties of the resins S-1 to S11 obtained in Examples 1 to 6 and Comparative Examples 1 to 3. * 1) Ratio of silicon atoms bonded to three oxygen atoms in the compound to all silicon atoms (mol%) * 2) Since the methanol produced by the reaction in Step 1 was removed from the system together with the added methanol, the final alcohol amount (% by weight) in Step 1
  • Examples 1 to 8 (compounds S-1 to S-6, S-10, S-11) has a weight average molecular weight of less than 3000
  • Comparative Examples 1 to 3 (compounds S-7 to S-9) having an alcohol content of less than 2% by weight have a weight average molecular weight of more than 3000. Therefore, the cured product may be peeled off from the substrate during reflow.
  • Synthesis Example 1 Synthesis of polyvalent carboxylic acid (C) having polysiloxane as main skeleton 50 parts of hydroxydimethyl-modified polydimethylsiloxane (X22-160AS manufactured by Shin-Etsu Chemical Co., Ltd.) and 15.4 parts of methylhexahydrophthalic acid (Licacid MH manufactured by Shin Nippon Chemical Co., Ltd.) were added to a reaction vessel (stirrer, Dimroth, temperature When the GPC was measured after 4 hours, the methyl hexahydrophthalic acid peak disappeared. Thereafter, the reaction was further continued for 2 hours.
  • Synthesis Example 2 (Preparation of mixture of acid anhydride (B) and polycarboxylic acid (C)) 12 parts tricyclodecane dimethanol (TCD-AL, manufactured by Oxea), 73 parts methylhexahydrophthalic acid (Licacid MH, manufactured by Shin Nippon Chemical Co., Ltd.), 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride ( H-TMAn (manufactured by Mitsubishi Gas Chemical Company, Inc.) was charged into a reaction vessel (a glass four-necked flask equipped with a stirrer, Dimroth, and thermometer), heated to 40 ° C. for 1 hour and then at 60 ° C.
  • TCD-AL tricyclodecane dimethanol
  • H-TMAn 1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride
  • a curing agent (H-1) which is a mixture of a polyvalent carboxylic acid (C-2) having a cyclic aliphatic hydrocarbon group (tricyclodecanedimethyl) as a main skeleton and an acid anhydride (B) 100 parts were obtained.
  • the functional group equivalent of the obtained curing agent (H-1) was 171 g / eq. (The carboxylic acid and acid anhydride groups are each considered as one functional group).
  • the appearance was a colorless and transparent liquid.
  • Example 9 100 parts of the organopolysiloxane (S-10) containing an epoxy group obtained in Example 7 and 128 parts of the polyvalent carboxylic acid (C-1) obtained in Synthesis Example 1 were mixed and degassed for 20 minutes. An epoxy resin composition was obtained.
  • Example 10 50 parts of an organopolysiloxane (S-10) containing an epoxy group obtained in Example 7, 50 parts of an organopolysiloxane (S-11) containing an epoxy group obtained in Example 8, 19 parts of the resulting curing agent (H-1) was mixed and defoamed for 20 minutes to obtain an epoxy resin composition.
  • Table 2 shows the blending ratio of the epoxy resin compositions obtained in Examples 9 and 10, the transmittance of the cured product, and the results of the reflow test.
  • the test in Table 2 was performed as follows.
  • the epoxy resin composition containing the epoxy resin (organopolysiloxane containing an epoxy group) which has the siloxane structure excellent in thermal stability can be provided, and hardening containing this epoxy resin composition
  • the resin composition is useful in a wide range of applications such as electrical / electronic materials, molding materials, casting materials, laminated materials, paints, adhesives, resists, etc., and particularly for materials that require optical properties, such as for optical semiconductors. It is extremely useful as an adhesive or sealing material for LED products and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 熱安定性に優れるシロキサン構造を有するエポキシ樹脂(オルガノポリシロキサン)を含有したエポキシ樹脂組成物であり、該エポキシ樹脂組成物を含有する硬化性樹脂組成物は、電気・電子材料、成形材料、注型材料、積層材料、塗料、接着剤、レジスト等の広範囲の用途で有用であり、特に光学特性が必要な材料、例えば、光半導体用(LED製品など)の接着材、封止材としてきわめて有用な樹脂組成物を提供すること。 アルコール存在下で重量平均分子量が1000~3000である末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物を反応させ、変性シリコーンオイルを得る工程、変性シリコーンオイル同士、および/またはアルコキシシラン化合物との加水分解反応により重合させる工程を経由することにより得られたオルガノポリシロキサン。

Description

オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物
 本発明は電気電子材料用途、特に光半導体用途に好適なエポキシ基を含有するオルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物に関する。
 従来からLED製品などの光半導体素子の封止材料として、エポキシ樹脂組成物が性能と経済性のバランスの点で採用されてきた。特に耐熱性、透明性、機械特性のバランスに優れたビスフェノールA型エポキシ樹脂に代表されるグリシジルエーテルタイプのエポキシ樹脂組成物が広く使用されてきた。
 ところが、LED製品の発光波長の短波長化(主に青色発光をするLED製品で480nm以下の場合を示す)が進んだ結果、短波長の光の影響で前記封止材料がLEDチップ上で着色し最終的にはLED製品として、照度が低下してしまうという指摘がされている。
 そこで、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレートに代表される脂環式エポキシ樹脂は、芳香環を有するグリシジルエーテルタイプのエポキシ樹脂組成物と比較して透明性の点で優れていることから、LED封止材として積極的に検討がなされてきた(特許文献1、2)。
 また、近年のLED製品は、照明やTVのバックライト等向けに一層高輝度化が進み、LED点灯時は多くの発熱を伴うようになってきたため、該脂環式エポキシ樹脂を使用した樹脂組成物でもLEDチップ上で着色を起こし、最終的にLED製品として照度が低下してしまい、耐久性の面でも課題を残している(特許文献3)。
日本国特開平9-213997号 日本国特許3618238号 日本国特再2005-100445号 日本国特許4205368号公報
 前記エポキシ樹脂の耐久性の問題から、シリコーン樹脂やシリコーン変性エポキシ樹脂などに代表されるようなシロキサン骨格(具体的にはSi-O結合を有した骨格)を導入した樹脂を封止材として使用する検討が行われている(特許文献3)。
 このようなシロキサン骨格を含有する化合物は通常のエポキシ樹脂と比較し、樹脂そのものの熱安定性が悪く、長期保管の中でゲル化してしまうなどの問題も報告されている(特許文献4)。このことは、残存するアルコキシ基とシラノール基の反応に起因し、高温で放置した際に、分子量が伸び、最終的にはゲル化してしまう、又は粘度が上がるなどの問題も生じていることから、安全性・安定性の面を考え、本問題を解決することは急務である。
 本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
すなわち本発明は、
(1)
 工程1:
 重量平均分子量が1000~3000である末端にシラノール構造を有するシリコーンとアルコキシシラン化合物を反応させ、変性シリコーンオイルを得る工程、及び、
 工程2:
 加水分解反応により、変性シリコーンオイル同士、および/または、アルコキシシラン化合物とを重合させる工程
を含むオルガノポリシロキサン(A)の製造方法において、
(イ)使用するアルコキシシラン化合物の少なくとも1種がその分子中にグルシジル基および/またはエポキシシクロヘキシル基を有し、
(ロ)工程1において末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物の総重量に対し、2~100重量%の炭素数1~10のアルコール存在下で反応を行う
ことにより得られたエポキシ基を含有するオルガノポリシロキサン(A)。
(2)
 工程1:
 重量平均分子量が1000~3000である末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物を反応させ、変性シリコーンオイルを得る工程
 工程2:
 加水分解反応により、変性シリコーンオイル同士、および/または、アルコキシシラン化合物とを重合させる工程
を含むオルガノポリシロキサン(A)の製造方法において、
(イ)使用するアルコキシシラン化合物の少なくとも1種がその分子中にグルシジル基および/またはエポキシシクロヘキシル基を有し、
(ロ)工程1において末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物の総量に対し、2~100重量%の炭素数1~10のアルコール存在下で反応を行う
ことを特徴とするエポキシ基を含有するオルガノポリシロキサンの製造方法。
(3)
 工程2において炭素数1~10のアルコール存在下、反応を行うことを特徴として得られた(1)に記載のオルガノポリシロキサン。
(4)
 炭素数1~10のアルコールが1級のアルコールであることを特徴として得られた(1)または(3)に記載のオルガノポリシロキサン。
(5)
 炭素数1~10のアルコールが1級のアルコールと2級のアルコールの混合物であることを特徴として得られた(1)または(3)に記載のオルガノポリシロキサン。
(6)
 末端にシラノール構造を有するシリコーンオイル、アルコキシシラン化合物の少なくとも1種がフェニル基を有することを特徴として得られた(1)、(3)~(5)のいずれか一項に記載のオルガノポリシロキサン。
(7)
 得られるオルガノポリシロキサン(A)のエポキシ当量が300~1500g/eq.であることを特徴とする(1)、(3)~(6)のいずれか一項に記載のオルガノポリシロキサン。
(8)
 (1)、(3)~(7)のいずれか一項に記載のオルガノポリシロキサン(A)と酸無水物(B)を含むエポキシ樹脂組成物。
(9)
 (1)、(3)~(7)のいずれか一項に記載のオルガノポリシロキサン(A)と2つ以上のカルボキシル基を有し、脂肪族炭化水素基を主骨格とする多価カルボン酸(C)を含むエポキシ樹脂組成物。
(10)
 (8)または(9)に記載のエポキシ樹脂組成物を硬化してなる硬化物。
 本発明によれば、熱安定性に優れるシロキサン構造を有するエポキシ樹脂(エポキシ基を含有するオルガノポリシロキサン)を含有したエポキシ樹脂組成物を提供することができ、該エポキシ樹脂組成物を含有する硬化性樹脂組成物は、電気・電子材料、成形材料、注型材料、積層材料、塗料、接着剤、レジスト等の広範囲の用途で有用であり、特に光学特性が必要な材料、例えば、光半導体用(LED製品など)の接着材、封止材としてきわめて有用である。
 本発明のエポキシ基を含有するオルガノポリシロキサン(A)の製造方法においては以下の工程1、工程2を経由する。
(工程1)
末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物を反応させ、変性シリコーンオイルを得る工程
(工程2)
 変性シリコーンオイル同士、および/またはアルコキシシラン化合物との加水分解反応により重合させる工程
 本発明においては2工程に分けて反応を行うこと(特徴1)、また特に工程1においてアルコール存在下で反応を行うこと(特徴2)が特徴的である。
 特徴1においては反応を二段階に分けることで、変性シリコーンオイルの分子鎖に官能基ができるだけ多く導入されるという構造を形成することが可能になった。本反応は一段階でも可能ではあるが、シラノールとアルコキシ基との反応とアルコキシシラン同士の重合反応が競争反応となり、お互いの反応速度の差、生成物の相溶性の差により、不均一な化合物が得られたり、官能基を有さないシリコーンオイルが残存することにより製品に悪影響を及ぼしたりする。本発明によれば、二段階での反応を行い、シリコーンオイルを中に取り込んだシリコーンオイルセグメントとアルコキシシラン化合物の重合物とがそれぞれ順番に入った構造を有するブロック型オリゴシロキサン構造を形成させることで、これらの問題を回避できる。
 また特徴2において、シラノールとアルコキシシラン化合物との反応は脱アルコール反応であるため、アルコールの存在は反応を抑制する働きを有し、好ましくないものである。
 しかしながら本発明においては、あえてアルコールを添加することで脱アルコール反応の過度な進行を制御し、過度な分子量の増大を抑制させることができるという効果を有する。このような反応の制御は品質の安定化という観点で工業的に有用である。こうして得たエポキシ基を含有するオルガノポリシロキサンを用いることで非常にフレキシビリティーに富んだ硬化物を得ることに成功した。さらに、分子量が大きくなり過ぎる事を抑制することにより、リフロー時の基板からの剥離しにくい硬化物を得ることができた。
 以下、本発明のエポキシ樹脂の製造法(工程1)について詳細に記載する。
 末端にシラノール構造を有するシリコーンオイルとしては下記式(1)
Figure JPOXMLDOC01-appb-C000001
で表される構造を有する末端にシラノール基を有する鎖状シリコーンオイルが使用できる。
 一般式(1)の式中、複数存在するRは互いに同一であっても異なっていてもよく、炭素数1~10のアルキル基、炭素数6~14のアリール基、炭素数2~10のアルケニル基を示す。
 炭素数1~10のアルキル基としては、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基が挙げられ、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、i-ペンチル基、アミル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基、オクチル基、2-エチルヘキシル基、ノニル基、デシル基等を挙げることができる。これらの中で、耐光性を考慮すると、メチル基、エチル基、シクロヘキシル基が好ましい。
 炭素数6~14のアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、キシリル基等を挙げることができる。
 炭素数2~10のアルケニル基としては、ビニル基、1-メチルビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基等を挙げることができる。
 Rは耐光性、耐熱性の観点から、メチル基、フェニル基、シクロヘキシル基、n-プロピル基が好ましく、特にメチル基、フェニル基が好ましい。
 一般式(1)の化合物のmは平均値で3~200を示し、好ましくは3~100、より好ましくは3~50である。mが3を下回ると硬化物が硬くなりすぎ、低弾性率特性が低下する。mが200を上回ると硬化物の機械特性が悪化する傾向にあり好ましくない。
 末端にシラノール構造を有するシリコーンオイルの重量平均分子量(Mw)は1000~3000(GPC)の範囲のものが好ましい。重量平均分子量が1000を下回る場合、特性セグメントの鎖状シリコーン部分の特性が出にくく、3000を超えると激しい層分離構造を持つ事で、光学材料に使用するには透過性が悪くなり、使用することが困難となる。
本発明において末端にシラノール構造を有するシリコーンオイルの分子量としては、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、下記条件下で測定された値に基づき、ポリスチレン換算で算出した重量平均分子量(Mw)を意味する。
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
 末端にシラノール構造を有するシリコーンオイルとして好ましい具体例としては、以下の製品名を挙げることができる。例えば、東レダウコーニング社製としては、PRX413、BY16-873、信越化学工業社製としては、X-21-5841、KF-9701、モメンティブ社製としては、XC96-723、TSR160、YR3370、YF3800、XF3905、YF3057、YF3807、YF3802、YF3897,YF3804、XF3905、Gelest社製としては、DMS-S12、DMS-S14、DMS-S15、DMS-S21、DMS-S27、DMS-S31、DMS-S32、DMS-S33、DMS-S35、DMS-S42、DMS-S45、DMS-S51、PDS-0332、PDS-1615、PDS-9931などが挙げられる。上記の中でも、分子量、動粘度の観点からPRX413、BY16-873、X-21-5841、KF-9701、XC96-723,YF3800、YF3804、DMS-S12、DMS-S14、DMS-S15、DMS-S21、PDS-1615が好ましい。これらの中でもシリコーンセグメントの柔軟性の特徴を持たせるため、分子量の観点から、X-21-5841,XC96-723,YF3800,YF3804、DMS-S14、PDS-1615が特に好ましい。これら末端にシラノール構造を有するシリコーンオイルは、単独で用いてもよく、2種以上を併用して用いてもよい。
 アルコキシシラン化合物は下記式(2)で表される化合物であるか、あるいは、下記式(2)で表わされる化合物を必須成分として含有する複数の種類のアルコキシシラン化合物の混合物である。
Figure JPOXMLDOC01-appb-C000002
 一般式(2)中のXとしては、エポキシ基を有する有機基であれば特に制限はない。例えば、β-グリシドキシエチル、γ-グリシドキシプロピル、γ-グリシドキシブチル等のグリシドオキシ基で置換された炭素数1~4のアルキル基、グリシジル基、β-(3,4-エポキシシクロヘキシル)エチル基、γ-(3,4-エポキシシクロヘキシル)プロピル基、β-(3,4-エポキシシクロヘプチル)エチル基、4-(3,4-エポキシシクロヘキシル)ブチル基、5-(3,4-エポキシシクロヘキシル)ペンチル基等のオキシラン基を持った炭素数5~8のシクロアルキル基で置換された炭素数1~5のアルキル基が挙げられる。これらの中で、グリシドオキシ基で置換された炭素数1~3のアルキル基、エポキシ基を有する炭素数5~8のシクロアルキル基で置換された炭素数1~3のアルキル基として、例えば、β-グリシドキシエチル基、γ-グリシドキシプロピル基、β-(3,4-エポキシシクロヘキシル)エチル基が好ましく、特にβ-(3,4-エポキシシクロヘキシル)エチル基が好ましい。
 一般式(2)中のRとしては、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を示す。例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらRは、相溶性、反応性等の反応条件の観点から、メチル基又はエチル基が好ましく、特にメチル基が好ましい。
 アルコキシシラン化合物として好ましい具体例としては、β-グリシドキシエチルトリメトキシシラン、β-グリシドキシエチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等が挙げられ、特にβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランが好ましい。これらアルコキシシラン化合物は、単独又は2種以上で用いてもよく、以下に示すアルコキシシラン化合物と併用することもできる。
本発明において併用できるアルコキシシラン化合物は下記式(3)の構造を有する。
Figure JPOXMLDOC01-appb-C000003
 
一般式(3)中のRは、メチル基、シクロヘキシル基、フェニル基を示す。
一般式(3)中のRとしては、炭素数1~10の直鎖状、分岐状もしくは環状のアルキル基を示す。例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基、シクロペンチル基、シクロヘキシル基等が挙げられる。これらRは、相溶性、反応性等の反応条件の観点から、メチル基又はエチル基であることが好ましい。
 併用できるアルコキシシラン化合物として好ましい具体例としては、メチルトリメトキシシラン、フェニルトリメトキシシラン、シクロヘキシルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン等が挙げられる。上記の中でもメチルトリメトキシシラン、フェニルトリメトキシシランが好ましい。
 本発明において、使用する末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物のうち、少なくともいずれか1種には芳香族骨格を有する化合物を使用することが屈折率の上昇、ガス透過率の低減の観点から好ましく、特にフェニル基を有する化合物を使用することが好ましい。特に、末端にシラノール構造を有するシリコーンオイルがフェニル基を有することが好ましい。これは、フェニル基が導入されたシリコーンオイルを用いることで、オルガノポリシロキサンの過度な粘度上昇を抑えることができる一方、フェニル基のついたアルコキシシラン化合物を用いると、粘度上昇が大きくなって、作業性が劣る場合があるからである。
 工程1において、末端にシラノール構造を有するシリコーンオイルのシラノール基1当量に対して、アルコキシ基を1.5当量より小さい量で反応させるとアルコキシシラン化合物中の2つ以上のアルコキシ基が末端にシラノール構造を有するシリコーンオイルのシラノール基と反応することになり、工程1終了時に高分子になりすぎてゲル化がおきてしまう。このため、シラノール基1当量に対して、アルコキシ基を1.5当量以上で反応させる必要がある。反応制御の観点からは2.0当量以上が好ましい。
 本反応においては工程1においてアルコール存在下で反応を行うことを特徴とする。使用できるアルコールとしては炭素数1~10のアルコールが挙げられ、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、シクロヘキサノール、シクロペンタノール等が挙げられる。本発明においては1級アルコール、2級アルコールが好ましく、特に1級アルコール、もしくは1級アルコールと2級アルコールを混合して用いることが好ましい。1級アルコールの例としては、メタノール、エタノール、プロパノール、ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、プロピレングリコール等が挙げられ、また、2級アルコールの例としては、イソプロパノール、シクロヘキサノール、プロピレングリコール等が挙げられる。また、後の除去性能の問題から、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール等の炭素数1~4の低分子量アルコールが好ましい。これらアルコールは混合して用いても構わず、混合する場合、1級アルコール、2級アルコールから選択される二種以上であることが好ましく、少なくとも1成分に1級アルコールが含有されることが、後述する触媒の溶解性に優れることから好ましい。好ましい1級アルコールの量は全アルコール量の5重量%以上、より好ましくは10重量%以上である。
 本反応に2級アルコールを併用することで工程1の反応系の単位時間あたりの重量平均分子量の変化量が、1級アルコールのみを用いた場合よりも小さくなるため、反応の制御がより容易である。一般的に工業生産など大スケールの反応の際には、反応時間、反応温度の厳密な制御が困難になるため、2級アルコールの併用は反応制御の観点から特に工業生産など大スケール反応の際に有用である。
 工程1においてアルコールの使用量は、末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物の総重量に対し、2重量%以上含有することが好ましい。より好ましくは2~100重量%、さらに好ましくは3~50重量%、特に好ましくは4~40重量%である。
 100重量%を越えると反応の進みが極度に遅くなり、2重量%未満の場合、目的とする反応以外の反応が進行し、高分子量化が進み、ゲル化、粘度の上昇、硬化物として使用が困難となるほどの弾性率の増加、といった問題が生じてしまう。
 本反応においては必要に応じて他の溶剤を併用しても構わない。
 併用できる溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できるが本反応においてはあまりこれらの溶剤の添加は好ましくない。
 本発明のエポキシ基を含有するオルガノポリシロキサン(A)の製造は無触媒でも行なえるが、無触媒だと反応進行が遅いので、反応時間短縮の観点から触媒存在下で行なうことが好ましい。用い得る触媒としては、酸性または塩基性を示す化合物であれば使用する事ができる。酸性触媒の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。また、塩基性触媒の例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムのようなアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸塩等の無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n-ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の有機塩基を使用することができる。
 これらの中でも、特に塩基性触媒が好ましく、生成物からの触媒除去が容易である点で無機塩基が好ましい。具体的には、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属塩、あるいはアルカリ土類金属塩、特に水酸化物が好ましい。
 触媒の添加量は、末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物の総重量に対し、通常0.001~5重量%、好ましくは0.01~2重量%である。
 触媒の添加方法は、直接添加するか、可溶性の溶剤等に溶解させた状態で使用する。その中でもメタノール、エタノール、プロパノール、ブタノール等のアルコール類に触媒をあらかじめ溶解させた状態で添加するのが好ましい。この際に、水などを用いた水溶液として添加することは、目的とする反応以外のゾルーゲル反応が競争的に進行してしまい、アルコキシシラン化合物の重縮合を一方的に進行させ、それにより生成した反応物と、シリコーンオイルとが相溶せず白濁する可能性があるので注意が必要である。
 この際の水分の許容範囲は末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物の総重量に対し0.5重量%以下、より好ましくは0.3重量%以下であり、水分が可能な限り無いほうがより好ましい。
 工程1の反応温度は、触媒量、使用溶剤にもよるが、通常20~160℃、好ましくは40~100℃、特に好ましくは50~95℃である。又、反応時間は通常1~20時間、好ましくは3~12時間である。
 このようにして工程1で得られる変性シリコーンオイルは下記式(4)で示されるような構造を主たる成分として有していると考えられる(構造の確認が困難であり正確には同定することができない。)。
Figure JPOXMLDOC01-appb-C000004
 一般式R、R、Xは前記と同様の置換基を表す。
 以下、本発明のエポキシ樹脂の製造法(工程2)について詳細に記載する。
 工程1の反応終了後、水を添加し、工程1で得られた変性シリコーンオイルの残存するアルコキシ基同士の重合(ゾルーゲル反応)を行なう。この際、必要に応じて前述のアルコキシシラン化合物、触媒を前述の量の範囲内で添加しても構わない。この反応は、(1)変性シリコーンオイル同士、および/または、(2)変性シリコーンオイル同士とアルコキシシラン化合物との間、および/または、(3)アルコキシシラン化合物同士、および、(4)アルコキシシラン化合物の部分重合物と変性シリコーンオイルとの間で重合反応を行う工程である。上記(1)~(4)の重合反応は、同時に平行して進行していると考えられる。
 特に工程2においても先と同様、触媒としては塩基性無機触媒が好ましいことは代わりがなく、工程1の段階で必要な量を先に添加しておいても構わない。ただし、工程1で好ましい態様として記載した範囲を越えることは好ましくない。
 工程2においては溶剤を添加することが好ましい。
 工程2において溶剤として、工程1と同様にアルコールを用いることが好ましい。使用できるアルコールとしては炭素数1~10のアルコールが挙げられ、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、ヘキサノール、オクタノール、ノナンアルコール、デカンアルコール、シクロヘキサノール、シクロペンタノール等が挙げられる。本発明においては特に1級アルコール、2級アルコールが好ましく、特に1級アルコールが好ましい。また、後の除去性能の問題から、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール等の炭素数1~4の低分子量アルコールが好ましい。これらアルコールは混合して用いても構わない。これらアルコールの存在が分子量制御、およびその安定性に寄与する。
 アルコールの添加量としては工程1において仕込んだ末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物の総重量に対し、20~200重量%、好ましくは20~150重量%、特に好ましくは30~120重量%である。
 工程2においては水を加える。(イオン交換水、蒸留水、上水、何れも使用できる)
 水の使用量としては、残存するアルコキシ基量に対し、0.5~8.0当量、より好ましくは0.6~5.0当量、特に好ましくは0.65~2.0当量である。
 水の量が0.5当量を切る場合、反応の進行が遅くなり、アルコキシシラン化合物が反応せずに残存する等の問題が生じたり、十分なネットワークを組めず、後のエポキシ樹脂組成物とした後の硬化後も硬化不良を起こしたりする可能性がある。また8.0当量を越える場合、分子量制御が効かず、必要以上に高分子量となる。さらに、エポキシ樹脂の安定性を阻害する可能性がある。
 工程2の反応温度は、触媒量、使用溶剤にもよるが、通常20~160℃、好ましくは40~100℃、特に好ましくは50~95℃である。又、反応時間は通常1~20時間、好ましくは3~12時間である。
 反応終了後、必要に応じてクエンチ、および/又は水洗によって触媒を除去する。水洗を行う場合、使用している溶剤の種類によっては水と分離可能な溶剤を加えることが好ましい。好ましい溶剤としては例えばメチルエチルケトン、メチルイソブチルケトン、シクロペンタノンのようなケトン類、酢酸エチル、酢酸ブチル、乳酸エチル、ブタン酸イソプロピルなどのエステル類、ヘキサン、シクロヘキサン、トルエン、キシレンのような炭化水素等が例示できる。
 本反応は水洗のみで触媒の除去を行っても構わないが、酸性、塩基性条件、いずれかの条件で反応を行うことから、中和反応によりクエンチを行った後に水洗を行うか、吸着剤を用いて触媒を吸着した後にろ過により吸着剤を除くことが好ましい。
 中和反応には酸性または塩基性を示す化合物であれば使用する事ができる。酸性を示す化合物の例としては、塩酸、硫酸、硝酸等の無機酸や蟻酸、酢酸、蓚酸等の有機酸が挙げられる。また、塩基性を示す化合物の例としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化セシウムのようなアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウムのようなアルカリ金属炭酸塩、燐酸、燐酸二水素ナトリウム、燐酸水素二ナトリウム、燐酸トリナトリウム、ポリ燐酸、トリポリ燐酸ナトリウムのようなリン酸塩類等の無機塩基、アンモニア、トリエチルアミン、ジエチレントリアミン、n-ブチルアミン、ジメチルアミノエタノール、トリエタノールアミン、テトラメチルアンモニウムハイドロオキサイド等の有機塩基を使用することができる。これらの中でも、特に生成物からの除去が容易である点で無機塩基もしくは無機酸が好ましく、さらに好ましくは中性付近へのpHの調整がより容易である燐酸塩類などである。
 吸着剤としては活性白土、活性炭、ゼオライト、無機・有機系の合成吸着剤、イオン交換樹脂等が例示でき、具体例としては下記の製品が挙げられる。
 活性白土としては、例えば、東新化成社製として、活性白土SA35、SA1、T、R-15、E、ニッカナイトG-36、G-153、G-168が、水沢化学工業社製として、ガレオンアース、ミズカエースなどが挙げられる。活性炭としては、例えば、味の素ファインテクノ社製として、CL-H、Y-10S、Y-10SFがフタムラ化学社製として、S、Y、FC、DP、SA1000、K、A、KA、M、CW130BR、CW130AR、GM130Aなどが挙げられる。ゼオライトとしては、例えば、ユニオン昭和社製として、モレキュラーシーブ3A、4A、5A、13Xなどが挙げられる。合成吸着剤としては、例えば、協和化学社製として、キョーワード100、200、300、400、500、600、700、1000、2000や、ローム・アンド・ハース社製として、アンバーリスト15JWET、15DRY、16WET、31WET、A21、アンバーライトIRA400JCl、IRA403BLCl、IRA404JCl、ダウケミカル社製として、ダウエックス66、HCR-S、HCR-W2、MAC-3などが挙げられる。
 吸着剤を反応液に加え、攪拌、加熱等の処理を行い、触媒を吸着した後に、吸着剤をろ過、さらには残渣を水洗することによって、触媒、吸着剤を除くことができる。
 反応終了後またはクエンチ後は水洗、ろ過の他慣用の分離精製手段によって精製することができる。精製手段としては例えば、カラムクロマトグラフィー、減圧濃縮、蒸留、抽出等が挙げられる。これらの精製手段は単独で行なってもよいし、複数を組み合わせて行なってもかまわない。
 反応溶媒として水と混合する溶媒を用いて反応した場合には、クエンチ後に蒸留または減圧濃縮によって水と混合する反応溶媒を系中から除いた後に、水と分離可能な溶剤を用いて水洗を行なうことが好ましい。
 水洗後は減圧濃縮等により溶剤を除去することで、本発明のエポキシ樹脂を得ることができる。
 このようにして得られる本発明のエポキシ基を含有するオルガノポリシロキサン(以下、「本発明のエポキシ樹脂」とも呼ぶ)の外観は、通常無色透明で25℃において流動性を有する液状である。また、その分子量はGPCで測定した重量平均分子量として800~3000のものが好ましく、1000~3000のものがより好ましく、特に1500~2800のものが好ましい。重量平均分子量が800より下回る場合は耐熱性が低下する恐れがあり、3000を上回る場合は、これを用いて封止したLED素子のはんだリフロー時に基板から封止材が剥離する恐れがある。
 重量平均分子量はGPC(ゲルパーミエーションクロマトグラフィー)を用いて下記条件下測定されたポリスチレン換算の重量平均分子量(Mw)である。
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
 製造された本発明のエポキシ樹脂のエポキシ当量(JIS K-7236に記載の方法で測定)は300~1500g/eq.のものが好ましく、400~1400g/eqのものがより好ましく、特に400~1200g/eqのものが好ましい。エポキシ当量が300g/eqを下回る場合はその硬化物が硬く、弾性率が高くなりすぎる傾向があり、1500g/eqを上回る場合は硬化物の機械特性が悪化する傾向にあり好ましくない。
 本発明のエポキシ樹脂の粘度(E型粘度計、25℃で測定)は50~20,000mPa・sのものが好ましく、500~10,000mPa・sのものがより好ましく、特に800~5,000mPa・sのものが好ましい。粘度が50mPa・sを下回る場合は、粘度が低すぎて光半導体封止材用途としては適さない恐れがあり、20,000mPa・sを上回る場合は、粘度が高すぎて作業性に劣る場合がある。
 本発明のエポキシ樹脂において3つの酸素原子が結合しているケイ素原子の全ケイ素原子に対する割合は3~50モル%が好ましく、5~30モル%がより好ましく、特に6~15モル%が好ましい。シルセスキオキサン由来の、3つの酸素原子に結合しているケイ素原子の全ケイ素原子に対する割合が3モル%を下回ると、鎖状シリコーンセグメントの特徴として硬化物がやわらかくなりすぎる傾向にあり、表面タックや傷つきの懸念がある。また50モル%を上回るとシリコーンオイルの特性が損なわれやすくなり、硬化物が硬くなりすぎてしまうため、好ましくない。
 存在するケイ素原子の割合は、エポキシ樹脂のH NMR、29Si NMR、元素分析等によって求めることができる。
 以下、本発明のエポキシ樹脂組成物について記載する。
 本発明のエポキシ樹脂組成物は本発明のエポキシ樹脂と硬化剤を必須成分とする。
 本発明において硬化剤としては硬度、作業性という観点から特に酸無水物(B)、多価カルボン酸(C)が好ましい。
 酸無水物(B)としては具体的には無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、などの酸無水物が挙げられる。
 特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物などが、耐光性、透明性、作業性の観点から好ましい。
 多価カルボン酸(C)は少なくとも2つのカルボキシル基を有することを特徴とする化合物である。
 多価カルボン酸(C)としては、2~6官能のカルボン酸が好ましく、2~6官能の多価アルコールと酸無水物との反応により得られた化合物がより好ましい。さらには上記酸無水物が飽和脂肪族環状酸無水物である多価カルボン酸が好ましい。
 2~6官能の多価アルコールとしてはアルコール性水酸基を有する化合物であれば特に限定されないが、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類、ジペンタエリスリトールなどのヘキサオール類などが挙げられる。
 好ましい多価アルコールとしては炭素数が5以上のアルコールであり、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどの化合物が好ましく、中でも2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、2,4-ジエチルペンタンジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、ノルボルネンジオールなどの分岐鎖状構造や環状構造を有するアルコール類が、耐熱性、透明性の観点から好ましく、特に、トリシクロデカンジメタノールが好ましい。
 多価アルコールと反応させる酸無水物としては特にメチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物などが好ましく、中でもメチルヘキサヒドロ無水フタル酸、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物が、耐熱性、透明性、作業性の観点から好ましい。
 付加反応の条件としては公知の方法であれば特に限定なく用いることができるが、具体的な反応条件としては、例えば、酸無水物、多価アルコールを無触媒、無溶剤の条件下、40~150℃で反応させ加熱し、反応終了後、そのまま取り出す手法が挙げられる。
 本発明の多価カルボン酸(C)としては、シリコーン化合物(a)と酸無水物(b)との反応により製造される化合物も使用することができる。
 シリコーン化合物(a)としては下記式(5)
Figure JPOXMLDOC01-appb-C000005
(式(5)において、Rは炭素総数1~10のアルキレン基を、Rはメチル基又はフェニル基を、nは平均値で1~100をそれぞれ表す。)
に示される化合物が好ましい。
 式(5)において、Rの具体例としては、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、ペンチレン、イソペンチレン、へキシレン、ヘプチレン、オクチレン等のアルキレン基、エトキシエチレン基、プロポキシエチレン基プロポキシプロピレン基、エトキシプロピレン基などが挙げられる。特に好ましいものとしては、プロポキシエチレン基、エトキシプロピレン基である。
 次に、Rはメチル基又はフェニル基を表し同一又は異種のいずれでもよいが、シリコーン化合物(a)と分子内に1個以上のカルボン酸無水物基をもつ化合物(b)とを付加反応させることにより得られるカルボン酸化合物(C)が室温で液状であるためにはフェニル基と比較し、メチル基が好ましい。
 式(5)においてpは平均値で1~100であるが、好ましくは2~80、より好ましくは5~30である。
 式(5)で示されるシリコーン化合物(a)は、例えば、両末端にアルコール性水酸基をもつシリコーン系化合物が挙げられる。その具体例としては両末端カルビノール変性シリコーンオイルである、X-22-160AS、KF6001、KF6002、KF6003(いずれも信越化学工業(株)製)BY16-201、BY16-004、SF8427(いずれも東レ・ダウコーニング(株)製)XF42-B0970、XF42-C3294(いずれもモメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製)等が挙げられ、いずれも市場から入手できる。これら両末端にアルコール性水酸基を持つ変性シリコーンオイルは1種又は2種以上を混合して用いることが出来る。これらの中でもX-22-160AS、KF6001、KF6002、BY16-201、XF42-B0970が好ましい。
 次に分子内に1個以上のカルボン酸無水物基をもつ化合物(b)は、例えば、コハク酸無水物、メチルコハク酸無水物、エチルコハク酸無水物、2,3-ブタンジカルボン酸無水物、2,4-ペンタンジカルボン酸無水物、3,5-ヘプタンジカルボン酸無水物、1,2,3,4-ブタンテトラカルボン酸二無水物等の飽和脂肪族カルボン酸無水物、マレイン酸無水物、ドデシルコハク酸無水物等の不飽和脂肪族カルボン酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、1,3-シクロヘキサンジカルボン酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物、ナジック酸無水物、メチルナジック酸無水物、ビシクロ[2,2,2]オクタン-2,3-ジカルボン酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物等の環状飽和脂肪族カルボン酸無水物、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、ナジック酸無水物、メチルナジック酸無水物、4,5-ジメチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、ビシクロ[2.2.2]-5-オクテン-2,3-ジカルボン酸無水物等の環状不飽和脂肪族カルボン酸無水物、フタル酸無水物、イソフタル酸無水物、テレフタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物等の芳香族カルボン酸無水物等が挙げられ、その他、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物等の同一化合物内に飽和脂肪族カルボン酸無水物、環状飽和カルボン酸無水物、環状不飽和カルボン酸無水物を持つポリカルボン酸化合物等も挙げられる。
 分子内にカルボン酸無水物基を1個以上もつ化合物(b)は1種又は2種以上混合して用いることができる。この中でも、カルボン酸化合物(C)が室温で液状であり、カルボン酸化合物(C)とエポキシ樹脂とを硬化してなる硬化物の透明性が優れるため、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物、1,2,3,4-ブタンテトラカルボン酸二無水物が好ましい。より好ましくはメチルヘキサヒドロフタル酸無水物、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物であり、特に好ましくはメチルヘキサヒドロフタル酸無水物である。
 シリコーン化合物(a)と分子内に1個以上のカルボン酸無水物基をもつ化合物(b)との反応は、溶剤中でも無溶剤でも行うことができる。溶剤としては、式(5)で表されるシリコーン化合物(a)と分子内に1個以上のカルボン酸無水物基をもつ化合物(b)と反応しない溶剤であれば特に制限なく使用できる。使用しうる溶剤としては、例えばジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、アセトニトリルの様な非プロトン性極性溶媒、メチルエチルケトン、シクロペンタノン、メチルイソブチルケトンのようなケトン類、トルエン、キシレンのような芳香族炭化水素等が挙げられ、これらの中で、芳香族炭化水素やケトン類が好ましい。これらの溶剤は1種又は2種以上を混合して用いても良い。溶剤の使用量には、特に制限はないが、前記シリコーン化合物(a)及びカルボン酸無水物基を1個以上もつ化合物(b)の合計重量100重量部に対して、通常0.1~300重量部使用するのが好ましい。
 反応には触媒を使用してもよく、使用できる触媒としては、例えば塩酸、硫酸、メタンスルホン酸、トリフルオロメタンスルホン酸、パラトルエンスルホン酸、硝酸、トリフルオロ酢酸、トリクロロ酢酸等の酸性化合物、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物、トリエチルアミン、トリプロピルアミン、トリブチルアミン等のアミン化合物、ピリジン、ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、イミダゾール、トリアゾール、テトラゾール等の複素環式化合物、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、トリメチルエチルアンモニウムヒドロキシド、トリメチルプロピルアンモニウムヒドロキシド、トリメチルブチルアンモニウムヒドロキシド、トリメチルセチルアンモニウムヒドロキシド、トリオクチルメチルアンモニウムヒドロキシド、テトラメチルアンモニウムクロリド、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムヨージド、テトラメチルアンモニウムアセテート、トリオクチルメチルアンモニウムアセテート等の4級アンモニウム塩等が挙げられる。これらの触媒は1種又は2種以上を混合して用いても良い。これらの中で、トリエチルアミン、ピリジン、ジメチルアミノピリジンが好ましい。
 触媒の使用量には、特に制限はないが、式(5)で表されるシリコーン化合物(a)および分子内に1個以上のカルボン酸無水物基をもつ化合物(b)の合計重量100重量部に対して、通常0.1~100重量部必要により使用するのが好ましい。
 本発明のエポキシ樹脂組成物において、酸無水物(B)と多価カルボン酸(C)を、それぞれ、2種以上併用することもできる。特に光半導体の封止など室温(25℃)にて液状が求められる用途において固体の多価カルボン酸(C)を用いる場合、液状の酸無水物(B)を併用し、液状の混合物として使用することが望ましい。併用する場合、酸無水物(B)は、酸無水物(B)と多価カルボン酸(C)の合計の0.5~99.5重量%の割合で使用できる。
 本発明のエポキシ樹脂組成物は、エポキシ樹脂として本発明のエポキシ基を含有するオルガノポリシロキサン(A)、及び、硬化剤を必須成分とするが、更に他のエポキシ樹脂や他の硬化剤を含有させることもできる。
 他のエポキシ樹脂を併用する場合、本発明のエポキシ基を含有するオルガノポリシロキサン(A)の全エポキシ樹脂中に占める割合は60重量%以上が好ましく、特に70重量%以上が好ましい。
 使用できる他のエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロルメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4-ビス(クロロメチル)ベンゼン、1,4-ビス(メトキシメチル)ベンゼン等との重縮合物およびこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上併用してもよい。
 特に本発明のエポキシ樹脂組成物は光学用途に用いることを主たる目的とする。光学用途に用いる場合、脂環式エポキシ樹脂の併用は好ましい。脂環式エポキシ樹脂の場合、骨格にエポキシシクロヘキサン構造を有する化合物が好ましく、シクロヘキセン構造を有する化合物の酸化反応により得られるエポキシ樹脂が特に好ましい。
 これらエポキシ樹脂としては、シクロヘキセンカルボン酸とアルコール類とのエステル化反応あるいはシクロヘキセンメタノールとカルボン酸類とのエステル化反応(Tetrahedron vol.36 p.2409 (1980)、Tetrahedron Letter p.4475 (1980)等に記載の手法)、あるいはシクロヘキセンアルデヒドのティシェンコ反応(日本国特開2003-170059号公報、日本国特開2004-262871号公報等に記載の手法)、さらにはシクロヘキセンカルボン酸エステルのエステル交換反応(日本国特開2006-052187号公報等に記載の手法)によって製造できる化合物を酸化した物などが挙げられる(これらの引例の全内容はここに参照として取り込まれる)。
 アルコール類としては、アルコール性水酸基を有する化合物であれば特に限定されないがエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、シクロヘキサンジメタノール、2,4-ジエチルペンタンジオール、2-エチル-2-ブチル-1,3-プロパンジオール、ネオペンチルグリコール、トリシクロデカンジメタノール、ノルボルネンジオールなどのジオール類、グリセリン、トリメチロールエタン、トリメチロールプロパン、トリメチロールブタン、2-ヒドロキシメチル-1,4-ブタンジオールなどのトリオール類、ペンタエリスリトール、ジトリメチロールプロパンなどのテトラオール類などが挙げられる。またカルボン酸類としてはシュウ酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、アジピン酸、シクロヘキサンジカルボン酸などが挙げられるがこれに限らない。
 さらには、シクロヘキセンアルデヒド誘導体と、アルコール体とのアセタール反応によるアセタール化合物が挙げられる。
 これらエポキシ樹脂の具体例としては、ERL-4221、UVR-6105、ERL-4299(全て商品名、いずれもダウ・ケミカル製)、セロキサイド2021P、エポリードGT401、EHPE3150、EHPE3150CE(全て商品名、いずれもダイセル化学工業製)およびジシクロペンタジエンジエポキシドなどが挙げられるがこれらに限定されるものではない(参考文献:総説エポキシ樹脂 基礎編I p76-85、その全内容はここに参照として取り込まれる))。
 これらは単独で用いてもよく、2種以上併用してもよい。
 硬化剤として、他の硬化剤を併用する場合、前述の酸無水物(B)および/または多価カルボン酸(C)の総量が、全硬化剤中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。
 併用できる硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。使用できる硬化剤の具体例としては、アミン類やポリアミド化合物(ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂など)、酸無水物とシリコーン系のアルコール類との反応物(無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン-2,3-ジカルボン酸無水物、シクロヘキサン-1,3,4-トリカルボン酸-3,4-無水物、などの酸無水物とカルビノール変性シリコーンなどのシリコーン系アルコール類との反応物など)、多価フェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4’-ビフェノール、2,2’-ビフェノール、3,3’,5,5’-テトラメチル-[1,1’-ビフェニル]-4,4’-ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p-ヒドロキシベンズアルデヒド、o-ヒドロキシベンズアルデヒド、p-ヒドロキシアセトフェノン、o-ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4’-ビス(クロロメチル)-1,1’-ビフェニル、4,4’-ビス(メトキシメチル)-1,1’-ビフェニル、1,4’-ビス(クロロメチル)ベンゼン、1,4’-ビス(メトキシメチル)ベンゼン等との重縮合物およびこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、テルペンとフェノール類の縮合物、その他(イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体、など)などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
 本発明のエポキシ樹脂組成物においてエポキシ樹脂と硬化剤の配合比率は、全エポキシ樹脂のエポキシ基1当量に対して0.5~1.2当量の硬化剤を使用することが好ましい。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.2当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
 本発明のエポキシ樹脂組成物においては、硬化剤とともに硬化触媒を使用することができる。使用できる硬化促進剤の具体例としては、2-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-ウンデシルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-エチル-4’-メチルイミダゾール(1'))エチル-s-トリアジン、2,4-ジアミノ-6(2'-メチルイミダゾール(1'))エチル-s-トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-3,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-ヒドロキシメチル-5-メチルイミダゾール、1-シアノエチル-2-フェニル-3,5-ジシアノエトキシメチルイミダゾールの各種イミダゾール類、および、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8-ジアザ-ビシクロ(5.4.0)ウンデセン-7等のジアザ化合物およびそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニュウムブロマイド、セチルトリメチルアンモニュウムブロマイド、トリオクチルメチルアンモニュウムブロマイド等のアンモニュウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6-トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ等の金属化合物等、およびこれら硬化触媒をマイクロカプセルにしたマイクロカプセル型硬化触媒等が挙げられる。これら硬化触媒のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。硬化触媒は、エポキシ樹脂100重量部に対し通常0.001~15重量部の範囲で使用される。
 本発明のエポキシ樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-ジキシリレニルホスフェート、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナントレン-10-オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3-フェニレンビス(ジキシリレニルホスフェート)、1,4-フェニレンビス(ジキシリレニルホスフェート)、4,4’-ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/全エポキシ樹脂=0.1~0.6(重量比)が好ましい。0.1以下では難燃性が不十分であり、0.6以上では硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
 さらに本発明のエポキシ樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ-ナイロン系樹脂、NBR-フェノール系樹脂、エポキシ-NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、エポキシ樹脂と硬化剤の合計100重量部に対して通常0.05~50重量部、好ましくは0.05~20重量部が必要に応じて用いられる。
 本発明のエポキシ樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら充填材は、単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明のエポキシ樹脂組成物中において0~95重量%を占める量が用いられる。更に本発明のエポキシ樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。
 本発明のエポキシ樹脂組成物を光学材料、特に光半導体封止剤に使用する場合には、前記使用する無機充填材の粒径として、ナノオーダーレベルの充填材を使用することで、透明性を阻害せずに機械強度などを補完することが可能である。ナノオーダーレベルとしての目安は、平均粒径が500nm以下、特に平均粒径が200nm以下の充填材を使用することが透明性の観点では好ましい。
 本発明のエポキシ樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1~250μm、特に2~50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分に対して100重量部に対して、1~80重量部、好ましくは5~60重量部である。
 本発明のエポキシ樹脂組成物を光学材料、特に光半導体封止剤に使用する場合、各種蛍光体の硬化時沈降を防止する目的で、シリカ微粉末(アエロジルまたはアエロゾルとも呼ばれる)をはじめとするチクソトロピック性付与剤を添加することができる。このようなシリカ微粉末としては、例えば、Aerosil  50、Aerosil  90、Aerosil  130、Aerosil  200、Aerosil  300、Aerosil  380、Aerosil  OX50、Aerosil  TT600、Aerosil  R972、Aerosil  R974、Aerosil  R202、Aerosil  R812、Aerosil  R812S、Aerosil  R805、RY200、RX200(日本アエロジル社製)等が挙げられる。
 本発明のエポキシ樹脂組成物を光学材料、特に光半導体封止剤は、着色防止目的のため、光安定剤としてのアミン化合物又は、酸化防止材としてのリン系化合物およびフェノール系化合物を含有することができる。
 前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、テトラキス(2,2,6,6-トトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシラート、1,2,3,4-ブタンテトラカルボン酸と1,2,2,6,6-ペンタメチル-4-ピペリジノールおよび3,9-ビス(2-ヒドロキシ-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1-ウンデカンオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)カーボネート、2,2,6,6,-テトラメチル-4-ピペリジルメタクリレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、4-ベンゾイルオキシ-2,2,6,6-テトラメチルピペリジン、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタアクリレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)〔〔3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル,1,1-ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N’,N″,N″′-テトラキス-(4,6-ビス-(ブチル-(N-メチル-2,2,6,6-テトラメチルピペリジン-4-イル)アミノ)-トリアジン-2-イル)-4,7-ジアザデカン-1,10-ジアミン、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル-1,6-ヘキサメチレンジアミンとN-(2,2,6,6-テトラメチル-4-ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル〕〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6-テトラメチル-4-ピペリジル)イミノ〕〕、コハク酸ジメチルと4-ヒドロキシ-2,2,6,6-テトラメチル-1-ピペリジンエタノールの重合物、2,2,4,4-テトラメチル-20-(β-ラウリルオキシカルボニル)エチル-7-オキサ-3,20-ジアザジスピロ〔5・1・11・2〕ヘネイコサン-21-オン、β-アラニン,N,-(2,2,6,6-テトラメチル-4-ピペリジニル)-ドデシルエステル/テトラデシルエステル、N-アセチル-3-ドデシル-1-(2,2,6,6-テトラメチル-4-ピペリジニル)ピロリジン-2,5-ジオン、2,2,4,4-テトラメチル-7-オキサ-3,20-ジアザジスピロ〔5,1,11,2〕ヘネイコサン-21-オン、2,2,4,4-テトラメチル-21-オキサ-3,20-ジアザジシクロ-〔5,1,11,2〕-ヘネイコサン-20-プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4-メトキシフェニル)-メチレン〕-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジニル)エステル、2,2,6,6-テトラメチル-4-ピペリジノールの高級脂肪酸エステル、1,3-ベンゼンジカルボキシアミド,N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル〕ベンゾトリアゾール、2-(3-tert-ブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)ベンゾトリアゾール、メチル3-(3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2-(2H-ベンゾトリアゾール-2-イル)-6-ドデシル-4-メチルフェノール等のベンゾトリアゾール系化合物、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート等のベンゾエート系、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
 前記光安定材であるアミン化合物として、次に示す市販品を使用することができる。
 市販されているアミン系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製として、TINUVIN765、TINUVIN770DF、TINUVIN144、TINUVIN123、TINUVIN622LD、TINUVIN152、CHIMASSORB944、アデカ製として、LA-52、LA-57、LA-62、LA-63P、LA-77Y、LA-81、LA-82、LA-87などが挙げられる。
 前記リン系化合物としては特に限定されず、例えば、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-tert-ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ-イソプロピルフェニル)ホスファイト、トリス(ジ-n-ブチルフェニル)ホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、トリス(2,6-ジ-tert-ブチルフェニル)ホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2,4-ジ-tert-ブチルフェニル)ホスファイト、2,2'-メチレンビス(4,6-ジ-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、2,2'-エチリデンビス(4-メチル-6-tert-ブチルフェニル)(2-tert-ブチル-4-メチルフェニル)ホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-4,3'-ビフェニレンジホスホナイト、テトラキス(2,4-ジ-tert-ブチルフェニル)-3,3'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,4’-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-4,3'-ビフェニレンジホスホナイト、テトラキス(2,6-ジ-tert-ブチルフェニル)-3,3'-ビフェニレンジホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,4-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-n-ブチルフェニル)-3-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-4-フェニル-フェニルホスホナイト、ビス(2,6-ジ-tert-ブチルフェニル)-3-フェニル-フェニルホスホナイト、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられる。
 上記リン系化合物は、市販品を用いることもできる。市販されているリン系化合物としては特に限定されず、例えば、アデカ製として、アデカスタブPEP-4C、アデカスタブPEP-8、アデカスタブPEP-24G、アデカスタブPEP-36、アデカスタブHP-10、アデカスタブ2112、アデカスタブ260、アデカスタブ522A、アデカスタブ1178、アデカスタブ1500、アデカスタブC、アデカスタブ135A、アデカスタブ3010、アデカスタブTPP等が挙げられる。
 フェノール化合物としては特に限定はされず、例えば、2,6-ジ-tert-ブチル-4-メチルフェノール、n-オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、テトラキス[メチレン-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、2,4-ジ-tert-ブチル-6-メチルフェノール、1,6-ヘキサンジオール-ビス-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)ベンゼン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,9-ビス-〔2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニルオキシ]-1,1-ジメチルエチル〕-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、2,2'-ブチリデンビス(4,6-ジ-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-エチル-6-tert-ブチルフェノール)、2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェノールアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2-tert-ブチル-4-メチルフェノール、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、4,4’-チオビス(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、ビス-[3,3-ビス-(4’-ヒドロキシ-3'-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル、2,4-ジ-tert-ブチルフェノール、2,4-ジ-tert-ペンチルフェノール、2-[1-(2-ヒドロキシ-3,5-ジ-tert-ペンチルフェニル)エチル]-4,6-ジ-tert-ペンチルフェニルアクリレート、ビス-[3,3-ビス-(4’-ヒドロキシ-3'-tert-ブチルフェニル)-ブタノイックアシッド]-グリコールエステル等が挙げられる。
 上記フェノール系化合物は、市販品を用いることもできる。市販されているフェノール系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製としてIRGANOX1010、IRGANOX1035、IRGANOX1076、IRGANOX1135、IRGANOX245、IRGANOX259、IRGANOX295、IRGANOX3114、IRGANOX1098、IRGANOX1520L、アデカ製としては、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-90、アデカスタブAO-330、住友化学工業製として、SumilizerGA-80、Sumilizer  MDP-S、Sumilizer  BBM-S、Sumilizer  GM、Sumilizer  GS(F)、Sumilizer GPなどが挙げられる。
 このほか、樹脂の着色防止剤として市販されている添加材を使用することができる。例えば、チバスペシャリティケミカルズ製として、THINUVIN328、THINUVIN234、THINUVIN326、THINUVIN120、THINUVIN477、THINUVIN479、CHIMASSORB2020FDL、CHIMASSORB119FLなどが挙げられる。
 上記リン系化合物、アミン化合物、フェノール系化合物の中から少なくとも1種以上を含有することが好ましく、その配合量としては特に限定されないが、本発明のエポキシ樹脂組成物の全重量に対して、0.005~5.0重量%の範囲である。
 本発明のエポキシ樹脂組成物は、各成分を均一に混合することにより得られる。本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えばエポキシ樹脂成分と硬化剤成分並びに必要により硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材および配合剤等とを必要に応じて押出機、ニーダー、ロール、プラネタリーミキサー等を用いて均一になるまで充分に混合してエポキシ樹脂組成物を得、得られたエポキシ樹脂組成物が液状である場合はポッティングやキャスティングにより該組成物を基材に含浸したり、金型に流し込み注型したりして、加熱により硬化させる。また得られたエポキシ樹脂組成物が固形の場合、溶融後注型、あるいはトランスファー成型機などを用いて成型し、さらに加熱により硬化させる。硬化温度、時間としては80~200℃で2~10時間である。硬化方法としては高温で一気に硬化させることもできるが、ステップワイズに昇温し硬化反応を進めることが好ましい。具体的には80~150℃の間で初期硬化を行い、100℃~200℃の間で後硬化を行う。硬化の段階としては2~8段階に分けて昇温するのが好ましく、より好ましくは2~4段階である。
 また本発明のエポキシ樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ-ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明のエポキシ樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明のエポキシ樹脂組成物と該溶剤の混合物の全重量に対して、通常10~70重量%、好ましくは15~70重量%を占める量を用いる。また液状組成物のままRTM方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。
 また本発明のエポキシ樹脂組成物をフィルム型封止用組成物として使用することもできる。このようなフィルム型樹脂組成物を得る場合は、本発明の硬化性樹脂組成物を剥離フィルム上に前記ワニスを塗布し加熱下で溶剤を除去、Bステージ化を行うことによりシート状の接着剤を得る。このシート状接着剤は、多層基板などにおける層間絶縁層、光半導体の一括フィルム封止として使用することが出来る。
次に本発明のエポキシ樹脂組成物を光半導体の封止材又はダイボンド材として用いる場合について詳細に説明する。
 本発明のエポキシ樹脂組成物が高輝度白色LED等の光半導体の封止材、またはダイボンド材として用いる場合には、エポキシ樹脂、硬化剤、カップリング剤、酸化防止剤、光安定剤等の添加物を充分に混合することによりエポキシ樹脂組成物を調製し、封止材として、またはダイボンド材と封止材の両方に使用される。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合する。 
 高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。その半導体チップを、熱や湿気から守り、かつレンズ機能の役割を果たすためにエポキシ樹脂等の封止材で封止されている。本発明のエポキシ樹脂組成物はこの封止材やダイボンド材として用いる事ができる。工程上からは本発明のエポキシ樹脂組成物をダイボンド材と封止材の両方に使用するのが好都合である。
 半導体チップを、本発明のエポキシ樹脂組成物を用いて、基板に接着する方法としては、本発明のエポキシ樹脂組成物をディスペンサー、ポッティング、スクリーン印刷により塗布した後、半導体チップをのせて加熱硬化を行い、半導体チップを接着させることができる。加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。
 加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
 封止材の成形方式としては上記のように半導体チップが固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された半導体チップを浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
 注入方法としては、ディスペンサー、トランスファー成形、射出成形等が挙げられる。
 加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。加熱条件は例えば80~230℃で1分~24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80~120℃、30分~5時間予備硬化させた後に、120~180℃、30分~10時間の条件で後硬化させることができる。
 更に、エポキシ樹脂等の硬化性樹脂が使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、封止材、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。
 接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
 封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。
 本発明で得られる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD-ROM、CD-R/RW、DVD-R/DVD-RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。
 光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光-光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。
 本明細書において、比率、パーセント、部などは、特に断りのない限り、重量に基づくものである。本明細書において、「X~Y」という表現は、XからYまでの範囲を示し、その範囲はX、Yを含む。
 以下、本発明を合成例、実施例により更に詳細に説明する。尚、本発明はこれら合成例、実施例に限定されるものではない。なお、実施例中の各物性値は以下の方法で測定した。
(1)分子量:GPC法により、下記条件下測定されたポリスチレン換算、重量平均分子量を算出した。
GPCの各種条件
メーカー:島津製作所
カラム:ガードカラム SHODEX GPC LF-G LF-804(3本)
流速:1.0ml/min.
カラム温度:40℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
(2)エポキシ当量:JIS K-7236に記載の方法で測定。
(3)粘度:東機産業株式会社製E型粘度計(TV-20)を用いて25℃で測定。
(4)透過率:日立製作所社製U-3300を用い、400nmの光線透過率測定を行った。
実施例1 
 工程1として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン158部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル546部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液40部を反応容器(攪拌装置、ジムロートコンデンサ、温度計を設置したガラス製4つ口フラスコ)に仕込み、還流下にて8時間反応させた。この時の重量平均分子量は2230であった。
 工程2として、メタノールを598部追加後、50%蒸留水メタノール溶液69.2部を60分かけて滴下し、還流下、8時間反応させた。反応終了後、5%リン酸二水素ナトリウム水溶液で中和後、メタノールの約90%を蒸留回収した。次いで、メチルイソブチルケトン(MIBK)700部を添加し、水洗を3回繰り返した。得られた有機相を減圧下、100℃で溶媒を除去することにより本発明のオルガノポリシロキサン(S-1)634部を得た。得られた化合物のエポキシ当量は1015g/eq、重量平均分子量は2290、外観は無色透明の液状樹脂であった。
実施例2 
 工程1として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン39.4部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル136.6部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液10部、メタノール140部を反応容器(攪拌装置、ジムロートコンデンサ、温度計を設置したガラス製4つ口フラスコ)に仕込み、還流下にて8時間反応させた。この時の重量平均分子量は1770であった。
 工程2として、50%蒸留水メタノール溶液17.3部を60分かけて滴下し、還流下、8時間反応させた。反応終了後、5%リン酸二水素ナトリウム水溶液で中和後、メタノールの約90%を蒸留回収した。次いで、メチルイソブチルケトン(MIBK)160部を添加し、水洗を3回繰り返した。得られた有機相を減圧下、100℃で溶媒を除去することにより本発明のオルガノポリシロキサン(S-2)151部を得た。得られた化合物のエポキシ当量は1042g/eq、重量平均分子量は2050、外観は無色透明の液状樹脂であった。
実施例3 
 工程1として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン59部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル131部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液10部(KOH部数としては、0.05部)を反応容器(攪拌装置、ジムロートコンデンサ、温度計を設置したガラス製4つ口フラスコ)に仕込み、バス温度を75℃に設定し、昇温した。昇温後、還流下にて8時間反応させた。この時の重量平均分子量は1540であった。
 工程2として、メタノールを135部追加後、50%蒸留水メタノール溶液25.9部を60分かけて滴下し、還流下75℃にて8時間反応させた。反応終了後、5%リン酸二水素ナトリウム水溶液で中和後、80℃でメタノールの蒸留回収を行った。メチルイソブチルケトン(MIBK)170部を添加し、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することにより本発明のオルガノポリシロキサン(S-3)162部を得た。得られた化合物のエポキシ当量は729g/eq、重量平均分子量は2200、外観は無色透明の液状樹脂であった。
実施例4 
 工程1として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン296部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル505部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液40部(KOH部数としては、0.2部)を反応容器(攪拌装置、ジムロートコンデンサ、温度計を設置したガラス製4つ口フラスコ)に仕込み、バス温度を75℃に設定し、昇温した。昇温後、還流下にて8時間反応させた。この時の重量平均分子量は1380であった。
 工程2として、メタノールを510部追加後、50%蒸留水メタノール溶液129.6部を60分かけて滴下し、還流下75℃にて8時間反応させた。反応終了後、5%リン酸二水素ナトリウム水溶液で中和後、80℃でメタノールの蒸留回収を行った。メチルイソブチルケトン(MIBK)704部を添加し、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することにより本発明のオルガノポリシロキサン(S-4)692部を得た。得られた化合物のエポキシ当量は611g/eq、重量平均分子量は2120、外観は無色透明の液状樹脂であった。
実施例5 
 工程1として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン355部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル487部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液40部を反応容器(攪拌装置、ジムロートコンデンサ、温度計を設置したガラス製4つ口フラスコ)に仕込み、還流下にて10時間反応させた。この時の重量平均分子量は1130であった。
 工程2として、メタノールを640部追加後、50%蒸留水メタノール溶液155.6部を60分かけて滴下し、還流下、8時間反応させた。反応終了後、5%リン酸二水素ナトリウム水溶液で中和後、メタノールの約90%を蒸留回収した。次いで、メチルイソブチルケトン(MIBK)757部を添加し、水洗を3回繰り返した。得られた有機相を減圧下、100℃で溶媒を除去することにより本発明のオルガノポリシロキサン(S-5)724部を得た。得られた化合物のエポキシ当量は526g/eq、重量平均分子量は2200、外観は無色透明の液状樹脂であった。
実施例6  工程1として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン394部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル475部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液40部を反応容器(攪拌装置、ジムロートコンデンサ、温度計を設置したガラス製4つ口フラスコ)に仕込み、還流下にて10時間反応させた。この時の重量平均分子量は960であった。
 工程2として、メタノールを656部追加後、50%蒸留水メタノール溶液172.8部を60分かけて滴下し、還流下、8時間反応させた。反応終了後、5%リン酸二水素ナトリウム水溶液で中和後、メタノールの約90%を蒸留回収した。次いで、メチルイソブチルケトン(MIBK)782部を添加し、水洗を3回繰り返した。得られた有機相を減圧下、100℃で溶媒を除去することにより本発明のオルガノポリシロキサン(S-6)741部を得た。得られた化合物のエポキシ当量は487g/eq、重量平均分子量は2250、外観は無色透明の液状樹脂であった。
 実施例7 
 工程1として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン394部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル475部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液4部、イソプロピルアルコール36部を反応容器(攪拌装置、ジムロートコンデンサ、温度計を設置したガラス製4つ口フラスコ)に仕込み、還流下にて4時間反応させた。この時の重量平均分子量は840であった。その後さらに還流下にて6時間反応(合計10時間)させた。この時の重量平均分子量は940であった。
 工程2として、メタノールを656部追加後、50%蒸留水メタノール溶液172.8部を60分かけて滴下し、還流下、10時間反応させた。反応終了後、5%リン酸二水素ナトリウム水溶液で中和後、メタノールの約90%を蒸留回収した。次いで、メチルイソブチルケトン(MIBK)782部を添加し、水洗を3回繰り返した。得られた有機相を減圧下、100℃で溶媒を除去することにより本発明のオルガノポリシロキサン(S-10)731部を得た。得られた化合物のエポキシ当量は491g/eq、重量平均分子量は2090、外観は無色透明の液状樹脂であった。
 実施例8  工程1として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン197部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル534部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液4部、イソプロピルアルコール36部を反応容器(攪拌装置、ジムロートコンデンサ、温度計を設置したガラス製4つ口フラスコ)に仕込み、還流下にて4時間反応させた。この時の重量平均分子量は1570であった。その後さらに還流下にて6時間反応(合計10時間)させた。この時の重量平均分子量は1520であった。
 工程2として、メタノールを576部追加後、50%蒸留水メタノール溶液86.4部を60分かけて滴下し、還流下、10時間反応させた。反応終了後、5%リン酸二水素ナトリウム水溶液で中和後、メタノールの約90%を蒸留回収した。次いで、メチルイソブチルケトン(MIBK)660部を添加し、水洗を3回繰り返した。得られた有機相を減圧下、100℃で溶媒を除去することにより本発明のオルガノポリシロキサン(S-11)648部を得た。得られた化合物のエポキシ当量は857g/eq、重量平均分子量は1860、外観は無色透明の液状樹脂であった。
比較例1 
 工程1として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン118部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル262部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、水酸化カリウム(KOH、固体のまま添加)0.1部を反応容器(攪拌装置、ジムロートコンデンサ、温度計を設置したガラス製4つ口フラスコ)に仕込み、バス温度を75℃に設定し、昇温した。昇温後、還流下にて8時間反応させた。この時の重量平均分子量は2140であった。
 工程2として、メタノールを170部追加後、50%蒸留水メタノール溶液51.8部を60分かけて滴下し、還流下75℃にて8時間反応させた。反応終了後、5%リン酸二水素ナトリウム水溶液で中和後、80℃でメタノールの蒸留回収を行った。メチルイソブチルケトン(MIBK)340部を添加し、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することによりオルガノポリシロキサン(S-7)320部を得た。得られた化合物のエポキシ当量は710g/eq、重量平均分子量は3100、外観は無色透明の液状樹脂であった。
比較例2 
 工程1として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン59.7部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル130.6部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液10部を反応容器(攪拌装置、ジムロートコンデンサ、温度計、ディーンスターク装置を設置したガラス製4つ口フラスコ)に仕込み、バス温度を75℃に設定し昇温した。昇温後1時間までに、ディーンスタークからメタノールを9.8g反応系から抜き出した。更には昇温後3時間30分までに、メタノールを6.1g反応系から抜き出した。そのまま昇温後から8時間反応させた。この時の重量平均分子量は2740であった。
 工程2として、メタノールを135部追加後、50%蒸留水メタノール溶液25.9部を60分かけて滴下し、還流下75℃にて8時間反応させた。反応終了後、5%リン酸二水素ナトリウム水溶液で中和後、80℃でメタノールの蒸留回収を行った。メチルイソブチルケトン(MIBK)170部を添加し、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することによりオルガノポリシロキサン(S-8)158部を得た。得られた化合物のエポキシ当量は715g/eq、重量平均分子量は3600、外観は無色透明の液状樹脂であった。
比較例3 
 工程1として、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン39.4部、重量平均分子量1700(GPC測定値)のシラノール末端メチルフェニルシリコーンオイル136.6部(シラノール当量850、GPCを用いて測定した重量平均分子量の半分として算出した。)、0.5%水酸化カリウム(KOH)メタノール溶液10部を反応容器(攪拌装置、ジムロートコンデンサ、温度計、ディーンスターク装置を設置したガラス製4つ口フラスコ)に仕込み、バス温度を75℃に設定し昇温した。昇温後1時間までに、ディーンスタークからメタノールを5.8g反応系から抜き出した。更には昇温後2時間までに、メタノールを4.0g反応系から抜き出した。そのまま昇温後から8時間反応させた。この時の重量平均分子量は3460であった。
 工程2として、メタノールを140部追加後、50%蒸留水メタノール溶液17.3部を60分かけて滴下し、還流下75℃にて8時間反応させた。反応終了後、5%リン酸二水素ナトリウム水溶液で中和後、80℃でメタノールの蒸留回収を行った。メチルイソブチルケトン(MIBK)158部を添加し、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することによりオルガノポリシロキサン(S-9)152部を得た。得られた化合物のエポキシ当量は1045g/eq、重量平均分子量は3660、外観は無色透明の液状樹脂であった。
 
 実施例1~6、比較例1~3で得られた樹脂S-1~S11についての性状を表1にまとめた。
Figure JPOXMLDOC01-appb-T000006
*1)化合物中の、3つの酸素原子に結合しているケイ素原子の全ケイ素原子に対する割合(モル%)
*2)添加したメタノールと共に、工程1の反応により生成したメタノールも系中から除いたため、工程1時の最終的なアルコール量(重量%)
 表1より明らかなように、工程1の際に系中に存在するアルコールが添加したアルコール量が2重量%以上である実施例1~8(化合物S-1~S-6、S-10、S-11)は重量平均分子量が3000未満であるのに対し、アルコール量が2重量%未満である比較例1~3(化合物S-7~S-9)は重量平均分子量が3000を上回り、そのため、リフロー時に基板から硬化物が剥離する恐れがある。
 合成例1 (ポリシロキサンを主骨格とする多価カルボン酸(C)の合成)
 両末端ヒドロキシエトキシプロピル変性ポリジメチルシロキサン(信越化学工業社製 X22-160AS)50部、メチルヘキサヒドロフタル酸(新日本理化社製 リカシッドMH)15.4部を反応容器(撹拌装置、ジムロート、温度計を設置したガラス製セパラブルフラスコ)に仕込み、60℃に昇温し、4時間後にGPCを測定したところ、メチルヘキサヒドロフタル酸のピークが消失していた。その後さらに2時間反応させた。反応終了後、ポリシロキサンを主骨格とする多価カルボン酸(C-1)65.4部を得た。得られた化合物の重量平均分子量は1700、官能基当量は700g/eq.、外観は無色透明の液状樹脂であった。
 合成例2 (酸無水物(B)と多価カルボン酸(C)の混合物の調整)
 トリシクロデカンジメタノール(オクセア社製 TCD-AL)12部、メチルヘキサヒドロフタル酸(新日本理化社製 リカシッドMH)73部、1,2,4-シクロヘキサントリカルボン酸-1,2-無水物(三菱瓦斯化学社製 H-TMAn)を反応容器(撹拌装置、ジムロート、温度計を設置したガラス製4つ口フラスコ)に仕込み、40℃に昇温し1時間、次いで60℃で1時間反応後にGPCを測定したところトリシクロデカンジメタノールのピークが消失していた。反応終了後、環状脂肪族炭化水素基(トリシクロデカンジメチル)を主骨格とする多価カルボン酸(C-2)と、酸無水物(B)との混合物である硬化剤(H-1)を100部得た。得られた硬化剤(H-1)の官能基当量は171g/eq.であった(カルボン酸、酸無水物基をそれぞれ1官能基として考える)。外観は無色透明の液状であった。
 実施例9
 実施例7で得られたエポキシ基を含有するオルガノポリシロキサン(S-10)100部、合成例1で得られた多価カルボン酸(C-1)128部を混合、20分間脱泡を行い、エポキシ樹脂組成物を得た。
 実施例10
 実施例7で得られたエポキシ基を含有するオルガノポリシロキサン(S-10)50部、実施例8で得られたエポキシ基を含有するオルガノポリシロキサン(S-11)50部、合成例2で得られた硬化剤(H-1)19部を混合、20分間脱泡を行い、エポキシ樹脂組成物を得た。
 実施例9、10で得られたエポキシ樹脂組成物の配合比とその硬化物の透過率、リフロー試験の結果を表2に示す。表2における試験は以下のように行った。
 (1)硬化物透過率
 実施例9、10で得られたエポキシ樹脂組成物を、30mm×20mm×高さ0.8mmになるように耐熱テープでダムを作成したガラス基板上に静かに注型した。その注型物を、120℃×1時間の予備硬化の後150℃×3時間で硬化させ、厚さ0.8mmの透過率用試験片を得た。
 (2)リフロー試験
 実施例9、10で得られたエポキシ樹脂組成物を、シリンジに充填し精密吐出装置を使用して、発行波長465nmを持つ発光素子を搭載した表面実装型LED(外形5mm角、内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を、120℃×1時間の予備校化の後150℃×3時間で硬化させ、表面実装型LEDを封止した。このように封止したLEDを、IR型リフロー装置を用いて下記プロファイルにて半田リフローを行い、アルミ基板に固定した際の外観変化を観察した。表中、○;リフロー後に封止材とLEDとに剥離が生じていない、×;リフロー後に封止材とLEDとに剥離が生じている。
 リフロープロファイル;
 室温(30℃以下)から180℃まで2℃/秒で昇温し、180℃で2分間保持する(プレヒート)。その後2℃/秒で260℃まで昇温し、260℃で10秒保持した後、40℃以下になるまで空冷する。
Figure JPOXMLDOC01-appb-T000007
 表2より明らかなように、実施例9、10では硬化物の透過率にすぐれ、リフロー時に封止材がLED基板から剥離していないものであった。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2010年3月2日付で出願された日本特許出願(特願2010-045891)に基づいており、その全体がここに参照として取り込まれる。また、本明細書に引用した文献は全体として取り込まれる。
 本発明によれば、熱安定性に優れるシロキサン構造を有するエポキシ樹脂(エポキシ基を含有するオルガノポリシロキサン)を含有したエポキシ樹脂組成物を提供することができ、該エポキシ樹脂組成物を含有する硬化性樹脂組成物は、電気・電子材料、成形材料、注型材料、積層材料、塗料、接着剤、レジスト等の広範囲の用途で有用であり、特に光学特性が必要な材料、例えば、光半導体用(LED製品など)の接着材、封止材としてきわめて有用である。

Claims (10)

  1. 工程1:
     重量平均分子量が1000~3000である末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物を反応させ、変性シリコーンオイルを得る工程、及び、
     工程2:
     加水分解反応により、変性シリコーンオイル同士、および/または、アルコキシシラン化合物とを重合させる工程
    を含むオルガノポリシロキサン(A)の製造方法において、
    (イ)使用するアルコキシシラン化合物の少なくとも1種がその分子中にグルシジル基および/またはエポキシシクロヘキシル基を有し、
    (ロ)工程1において末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物の総重量に対し、2~100重量%の炭素数1~10のアルコール存在下で反応を行う
    ことにより得られたエポキシ基を含有するオルガノポリシロキサン(A)。
  2.  工程1:
     重量平均分子量が1000~3000である末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物を反応させ、変性シリコーンオイルを得る工程
     工程2:
     加水分解反応により、変性シリコーンオイル同士、および/または、アルコキシシラン化合物とを重合させる工程
    を含むオルガノポリシロキサン(A)の製造方法において、
    (イ)使用するアルコキシシラン化合物の少なくとも1種がその分子中にグルシジル基および/またはエポキシシクロヘキシル基を有し、
    (ロ)工程1において末端にシラノール構造を有するシリコーンオイルとアルコキシシラン化合物の総重量に対し、2~100重量%の炭素数1~10のアルコール存在下で反応を行う
    ことを特徴とするエポキシ基を含有するオルガノポリシロキサンの製造方法。
  3.  工程2において炭素数1~10のアルコール存在下、反応を行うことを特徴として得られた請求項1に記載のオルガノポリシロキサン。
  4.  炭素数1~10のアルコールが1級のアルコールであることを特徴として得られた請求項1または請求項3に記載のオルガノポリシロキサン。
  5.  炭素数1~10のアルコールが1級のアルコールと2級のアルコールの混合物であることを特徴として得られた請求項1または請求項3に記載のオルガノポリシロキサン。
  6.  末端にシラノール構造を有するシリコーンオイル、アルコキシシラン化合物の少なくとも1種がフェニル基を有することを特徴として得られた請求項1、請求項3~5のいずれか一項に記載のオルガノポリシロキサン。
  7.  得られるオルガノポリシロキサン(A)のエポキシ当量が300~1500g/eq.であることを特徴とする請求項1、請求項3~6のいずれか1項に記載のオルガノポリシロキサン。
  8.  請求項1、請求項3~7のいずれか1項に記載のオルガノポリシロキサン(A)と酸無水物(B)を含むエポキシ樹脂組成物。
  9.  請求項1、請求項3~7のいずれか1項に記載のオルガノポリシロキサン(A)と2つ以上のカルボキシル基を有し、脂肪族炭化水素基を主骨格とする多価カルボン酸(C)を含むエポキシ樹脂組成物。
  10.  請求項8または請求項9に記載のエポキシ樹脂組成物を硬化してなる硬化物。
PCT/JP2011/054574 2010-03-02 2011-03-01 オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物 WO2011108516A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012503174A JP5730852B2 (ja) 2010-03-02 2011-03-01 オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物
KR1020127022756A KR20130018670A (ko) 2010-03-02 2011-03-01 오가노폴리실록산의 제조 방법, 상기 제조 방법에 의해 얻어지는 오가노폴리실록산, 상기 오가노폴리실록산을 함유하는 조성물
CN2011800121443A CN102782014A (zh) 2010-03-02 2011-03-01 有机聚硅氧烷的制造方法、通过该制造方法得到的有机聚硅氧烷、含有该有机聚硅氧烷的组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-045891 2010-03-02
JP2010045891 2010-03-02

Publications (1)

Publication Number Publication Date
WO2011108516A1 true WO2011108516A1 (ja) 2011-09-09

Family

ID=44542168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054574 WO2011108516A1 (ja) 2010-03-02 2011-03-01 オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物

Country Status (5)

Country Link
JP (1) JP5730852B2 (ja)
KR (1) KR20130018670A (ja)
CN (1) CN102782014A (ja)
TW (1) TW201139490A (ja)
WO (1) WO2011108516A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001570A (ja) * 2010-06-14 2012-01-05 Nippon Steel Chem Co Ltd エポキシシリコーン樹脂含有硬化性樹脂組成物
WO2013047620A1 (ja) * 2011-09-27 2013-04-04 日本化薬株式会社 光半導体素子封止用硬化性樹脂組成物およびその硬化物
JP2014095053A (ja) * 2012-11-12 2014-05-22 Nippon Kayaku Co Ltd 硬化性樹脂組成物およびその硬化物
CN103897644A (zh) * 2014-03-27 2014-07-02 中科院广州化学有限公司南雄材料生产基地 一种有机硅改性环氧树脂封装胶的制备方法
JP2019014858A (ja) * 2017-07-11 2019-01-31 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201326245A (zh) * 2011-12-26 2013-07-01 kai-xiong Cai 高穿透率的封裝發光二極體
CN104684960B (zh) * 2012-09-27 2017-05-10 日本化药株式会社 多元羧酸树脂及环氧树脂组合物
CN105199103B (zh) * 2015-11-06 2017-08-22 苏州太湖电工新材料股份有限公司 一种含硅改性耐高温氰酸酯树脂、其制备方法及应用
CN106674521B (zh) * 2017-01-17 2019-11-26 荆州市江汉精细化工有限公司 一种环氧硅烷低聚物的制备方法
CN107828057B (zh) * 2017-11-13 2021-01-29 唐山三友硅业有限责任公司 Led封装用硅氧烷改性环氧树脂制备方法及其应用
CN109599538A (zh) * 2018-10-25 2019-04-09 北京化工大学 一种Si/C复合材料的制备方法及其储能应用
US20220227944A1 (en) * 2019-05-06 2022-07-21 Wacker Chemie Ag A method for preparing polyorganosiloxanes

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797433A (ja) * 1993-08-24 1995-04-11 Siemens Ag シロキサン含有注型樹脂系、その製造法およびオプトエレクトリック構成素子のための被覆
JPH07126391A (ja) * 1993-09-07 1995-05-16 Shin Etsu Chem Co Ltd エポキシ基含有オルガノポリシロキサン
JPH09501964A (ja) * 1993-08-24 1997-02-25 シーメンス アクチエンゲゼルシヤフト エポキシシロキサンの製造方法
JP2000500811A (ja) * 1996-07-26 2000-01-25 シーメンス アクチエンゲゼルシヤフト 変性エポキシシロキサン縮合体、その製造方法および電子技術および電気技術のための低ストレス注型樹脂としてのその利用
JP2006508216A (ja) * 2002-12-02 2006-03-09 アールピーオー・ピーティワイ・リミテッド ポリシロキサンの製造方法およびその使用
WO2008090971A1 (ja) * 2007-01-25 2008-07-31 Jsr Corporation エポキシ基末端ポリジメチルシロキサンおよびその製造方法、ならびに硬化性ポリシロキサン組成物
WO2009072632A1 (ja) * 2007-12-07 2009-06-11 Jsr Corporation 硬化性組成物、光学素子コーティング用組成物、およびled封止用材料ならびにその製造方法
WO2010026714A1 (ja) * 2008-09-03 2010-03-11 日本化薬株式会社 シロキサン化合物、硬化性樹脂組成物、その硬化物及び光半導体素子

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0797433A (ja) * 1993-08-24 1995-04-11 Siemens Ag シロキサン含有注型樹脂系、その製造法およびオプトエレクトリック構成素子のための被覆
JPH09501964A (ja) * 1993-08-24 1997-02-25 シーメンス アクチエンゲゼルシヤフト エポキシシロキサンの製造方法
JPH07126391A (ja) * 1993-09-07 1995-05-16 Shin Etsu Chem Co Ltd エポキシ基含有オルガノポリシロキサン
JP2000500811A (ja) * 1996-07-26 2000-01-25 シーメンス アクチエンゲゼルシヤフト 変性エポキシシロキサン縮合体、その製造方法および電子技術および電気技術のための低ストレス注型樹脂としてのその利用
JP2006508216A (ja) * 2002-12-02 2006-03-09 アールピーオー・ピーティワイ・リミテッド ポリシロキサンの製造方法およびその使用
WO2008090971A1 (ja) * 2007-01-25 2008-07-31 Jsr Corporation エポキシ基末端ポリジメチルシロキサンおよびその製造方法、ならびに硬化性ポリシロキサン組成物
WO2009072632A1 (ja) * 2007-12-07 2009-06-11 Jsr Corporation 硬化性組成物、光学素子コーティング用組成物、およびled封止用材料ならびにその製造方法
WO2010026714A1 (ja) * 2008-09-03 2010-03-11 日本化薬株式会社 シロキサン化合物、硬化性樹脂組成物、その硬化物及び光半導体素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012001570A (ja) * 2010-06-14 2012-01-05 Nippon Steel Chem Co Ltd エポキシシリコーン樹脂含有硬化性樹脂組成物
WO2013047620A1 (ja) * 2011-09-27 2013-04-04 日本化薬株式会社 光半導体素子封止用硬化性樹脂組成物およびその硬化物
JP2013071950A (ja) * 2011-09-27 2013-04-22 Nippon Kayaku Co Ltd 硬化性樹脂組成物およびその硬化物
JP2014095053A (ja) * 2012-11-12 2014-05-22 Nippon Kayaku Co Ltd 硬化性樹脂組成物およびその硬化物
CN103897644A (zh) * 2014-03-27 2014-07-02 中科院广州化学有限公司南雄材料生产基地 一种有机硅改性环氧树脂封装胶的制备方法
JP2019014858A (ja) * 2017-07-11 2019-01-31 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板

Also Published As

Publication number Publication date
TW201139490A (en) 2011-11-16
JPWO2011108516A1 (ja) 2013-06-27
CN102782014A (zh) 2012-11-14
JP5730852B2 (ja) 2015-06-10
KR20130018670A (ko) 2013-02-25

Similar Documents

Publication Publication Date Title
JP5878862B2 (ja) 硬化性樹脂組成物、及びその硬化物
JP5730852B2 (ja) オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物
JP5348764B2 (ja) 光半導体封止用硬化性樹脂組成物、及びその硬化物
JP5626856B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5698453B2 (ja) エポキシ樹脂組成物
JP5433705B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5768047B2 (ja) 硬化性樹脂組成物およびその硬化物
WO2012137837A1 (ja) 多価カルボン酸樹脂およびその組成物
JP5300148B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物
JP6143359B2 (ja) シリコーン変性エポキシ樹脂およびその組成物
JP5561778B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5472924B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5700618B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物
JP2014237861A (ja) エポキシ樹脂組成物、硬化性樹脂組成物
JP5519685B2 (ja) 硬化性樹脂組成物、及びその硬化物
JP5832601B2 (ja) 硬化性樹脂組成物およびその硬化物
JP6016697B2 (ja) 発光半導体被覆保護材用硬化性樹脂組成物
JP2016222546A (ja) 多価カルボン酸およびそれを含有する多価カルボン酸組成物、エポキシ樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012144.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750626

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012503174

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127022756

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750626

Country of ref document: EP

Kind code of ref document: A1