JP5348764B2 - 光半導体封止用硬化性樹脂組成物、及びその硬化物 - Google Patents

光半導体封止用硬化性樹脂組成物、及びその硬化物 Download PDF

Info

Publication number
JP5348764B2
JP5348764B2 JP2009161089A JP2009161089A JP5348764B2 JP 5348764 B2 JP5348764 B2 JP 5348764B2 JP 2009161089 A JP2009161089 A JP 2009161089A JP 2009161089 A JP2009161089 A JP 2009161089A JP 5348764 B2 JP5348764 B2 JP 5348764B2
Authority
JP
Japan
Prior art keywords
resin composition
epoxy resin
curable resin
formula
optical semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009161089A
Other languages
English (en)
Other versions
JP2011016880A (ja
Inventor
義浩 川田
政隆 中西
健一 窪木
直房 宮川
智江 佐々木
静 青木
瑞観 鈴木
敬夫 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2009161089A priority Critical patent/JP5348764B2/ja
Priority to CN201010224842.7A priority patent/CN101942073B/zh
Priority to TW099122299A priority patent/TWI500650B/zh
Priority to KR1020100065290A priority patent/KR20110004334A/ko
Publication of JP2011016880A publication Critical patent/JP2011016880A/ja
Application granted granted Critical
Publication of JP5348764B2 publication Critical patent/JP5348764B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Epoxy Resins (AREA)
  • Led Device Packages (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

本発明は電気電子材料用途、特に光半導体用途に好適な硬化性樹脂組成物、及び硬化物に関する。
従来からLED製品などの光半導体素子の封止材料として、エポキシ樹脂組成物が性能と経済性のバランスの点で採用されてきた。特に耐熱性、透明性、機械特性のバランスに優れたビスフェノールA型エポキシ樹脂に代表されるグリシジルエーテルタイプのエポキシ樹脂組成物が広く使用されてきた。
ところが、LED製品の発光波長の短波長化(主に青色発光をするLED製品で480nm以下の場合を示す)が進んだ結果、短波長の光の影響で前記封止材料がLEDチップ上で着色し最終的にはLED製品として、照度が低下してしまうという指摘がされている。
そこで、3,4エポキシシクロヘキシルメチル−3′,4′エポキシシクロヘキシルカルボキシレートに代表される脂環式エポキシ樹脂は、芳香環を有するグリシジルエーテルタイプのエポキシ樹脂組成物と比較し透明性の点で優れていることから、LED封止材として積極的に検討がなされてきた。(特許文献1、2)
一方で該脂環式エポキシ樹脂は、粘度が低いため、熱硬化反応させる際に揮発しやすいという問題が指摘されている。LED製品の中でも表面実装式のパッケージの場合には、注型する樹脂量が極少量(例えば10mg程度)なため、該脂環式エポキシ樹脂のような揮発性の原料を使用すると、加熱硬化時に揮発が起こる。その結果、表面実装式LED製品の封止部に凹みが生じ、不具合が起きる場合がある。さらにその凹みの程度によっては、LEDチップに電流を供給しているワイヤー部が露出する場合があり、その際にはもはや封止材としての機能を果たすことができなくなる。このように該脂環式エポキシ樹脂においては、加熱硬化時の揮発についてまだ課題を残している。
また、近年のLED製品は、照明やTVのバックライト等向けに一層高輝度化が進み、LED点灯時は多くの発熱を伴うようになってきたため、該脂環式エポキシ樹脂を使用した樹脂組成物でもLEDチップ上で着色を起こし、最終的にLED製品として照度が低下してしまい、耐久性の面でも課題を残している。(特許文献3)
特開平9−213997号 特許3618238号 特再2005−100445
前記エポキシ樹脂の耐久性の問題から、シリコーン樹脂やシリコーン変性エポキシ樹脂などに代表されるようなシロキサン骨格(具体的にはSi−O結合を有した骨格)を導入した樹脂を封止材として使用する検討が行われている。(特許文献3)
一般に該シロキサン骨格を導入した樹脂はエポキシ樹脂よりも熱と光に対して安定であることが知られている。そのため、LED製品の封止材に適用した場合、LEDチップ上の着色という観点では、エポキシ樹脂よりも耐久性に優れると言われていた。しかし、該シロキサン骨格を導入した樹脂類はエポキシ樹脂に比べ、耐ガス透過性に劣る。そのため、LED封止材としてシリコーン樹脂やシリコーン変性エポキシ樹脂を使用した場合には、LEDチップ上での着色は問題にならないものの、LEDパッケージ内の構成部材である金属リードフレーム上にメッキされた銀成分(反射率を高めるために銀メッキが施されている)を変色または黒化させてしまい、最終的にLED製品としての性能を低下させるという課題を抱えている。
市場では、前記耐ガス透過性で問題のないエポキシ樹脂組成物であって、且つ、該従来脂環式エポキシ樹脂よりも、加熱時の揮発による凹みを抑制し、さらにLED製品として耐久性の高い封止材が求められている。
本発明者らは前記したような実状に鑑み、鋭意検討した結果、本発明を完成させるに至った。
すなわち本発明は、
(1)下記式(1)で表されるエポキシ樹脂、前記エポキシ樹脂と熱硬化反応することが可能な硬化剤および/又は硬化促進剤を含有することを特徴とする光半導体封止用硬化性樹脂組成物。
Figure 0005348764
(式中、複数存在するRはそれぞれ独立して存在し、水素原子、もしくはメチル基を表す。)
(2)
前記式(1)において全てのRが水素原子であるエポキシ樹脂を使用する上記(1)に記載の光半導体封止用硬化性樹脂組成物。
(3)
エポキシ樹脂と反応することが可能な硬化剤が、下記式(2)で表される化合物および/又は下記式(3)で表される化合物であることを特徴とする上記(1)又は(2)に記載の光半導体封止用硬化性樹脂組成物。
Figure 0005348764
Figure 0005348764
(式中、複数存在するRは、水素原子、もしくはメチル基を表す。)
(4)
硬化剤が式(2)の化合物と式(3)の化合物の両者を含み、その使用比率が下記範囲である上記(3)に記載の光半導体封止用硬化性樹脂組成物。

W2/(W2+W3)=0.2〜0.9
(ただし、W2は式(2)の化合物の配合重量部、W3は式(3)の化合物の配合重量部を示す。)

(5)上記(1)ないし(4)のいずれか1項に記載の光半導体封止用硬化性樹脂組成物を硬化して得られる光半導体用硬化物。
(6)上記(5)に記載の光半導体用硬化物によって封止された光半導体装置。
に関する。
本発明の光半導体封止用硬化性樹脂組成物は、加熱硬化後の凹み防止、耐腐食ガス性に優れ、且つ耐着色性にも優れることから、光学材料のなかでも特に光半導体用(LED製品など)の接着材、封止材としてきわめて有用である。
以下、本発明の硬化性樹脂組成物について記載する。
本発明の硬化性樹脂組成物は、式(1)のエポキシ樹脂を必須成分として含有する。
式(1)で表されるエポキシ樹脂は、原料となる下記式(a)で表されるジオレフィン化合物を酸化することで合成することができる。
Figure 0005348764
(式中、複数存在するRはそれぞれ独立して存在し、水素原子、もしくはメチル基を表す。)
前記ジオレフィン化合物としては、たとえばが水素原子である化合物であれば特表2007−510772号公報にその構造、および製造方法が記載されており、置換基を有する構造についても同様の手法で製造できる。
酸化の手法としては過酢酸等の過酸で酸化する方法、過酸化水素水で酸化する方法、空気(酸素)で酸化する方法などが挙げられるが、これらに限らない。
過酸によるエポキシ化の手法としては具体的には特表2007−510772号公報、特開2006−52187号公報に記載の手法などが挙げられる。
過酸化水素水によるエポキシ化の手法においては種々の手法が適応できるが、具体的には、特開昭59−108793号公報、特開昭62−234550号公報、特開平5−213919号公報、特開平11−349579号公報、特公平1―33471号公報、特開2001−17864号公報、特公平3−57102号公報等に挙げられるような手法が適応できる。
本発明においてはその生成物の低粘度性から過酸化水素の使用がより好ましい。
以下に過酸化水素を用いるエポキシ化の手法の一例を記載する。本発明使用する式(1)に示されるエポキシ樹脂はいかなる手法を用いて製造しても構わず、以下の手法に限定されるものではない。
過酸化水素を用いるエポキシ化の具体的な手法としてはタングステン酸類を触媒として用いてエポキシ化するというものである。
タングステン酸類としては、タングステン酸、タングスト燐酸、ケイタングステン酸などのタングステン系の酸、およびその塩が挙げられる。これらの塩のカウンターカチオンとしては4級アンモニウムイオン、アルカリ土類金属イオン、アルカリ金属イオンなどが挙げられる。
具体的には、テトラメチルアンモニウムイオン、ベンジルトリエチルアンモニウムイオン、トリデカニルメチルアンモニウムイオン、ジラウリルジメチルアンモニウムイオン、トリオクチルメチルアンモニウムイオン、トリアルキルメチル(オクチル基とデカニル基の混合タイプ)アンモニウムイオン、トリヘキサデシルメチルアンモニウムイオン、トリメチルステアリルアンモニウムイオン、テトラペンチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、ベンジルトリブチルアンモニウムイオン、トリカプリルメチルアンモニウムイオン、ジセチルジメチルアンモニウムイオンなどの4級アンモニウムイオン、カルシウムイオンマグネシウムイオン等のアルカリ土類金属イオン、ナトリウム、カリウム、セシウム等のアルカリ金属イオンなどが挙げられるがこれらに限定されない。
本発明においては前記カウンターカチオンとして、特に4級アンモニウムイオンが好ましい。特に、エポキシ樹脂に相溶性させるため、長鎖のアルキル基を有する4級アンモニウムイオンをカウンターカチオンとして有するものが好ましい。
長鎖のアルキル基を有する4級アンモニウムイオンをカウンターカチオンとして有するタングステン酸類の具体的な製造方法としては、タングステン酸類と4級アンモニウム塩をカチオン交換反応させる方法が挙げられる。
この際、使用する4級アンモニウム塩としては、先述べたように長鎖のアルキル基を有するものが好ましく、総炭素数が10以上、好ましくは25〜100の4級アンモニウム塩が使用でき、特にそのアルキル鎖が全て脂肪族鎖であるものが好ましい。
タングステン酸類と4級アンモニウム塩との反応は水、もしくは水−有機層の2層系で行うことが好ましい。また特にタングステン酸類はそのpHによって構造が変化することが知られており、水層のpHを2〜6の間に調整することが好ましい。水槽のpHを調整する方法としては緩衝液が使用できる、燐酸系や酒石酸系など種々のものが使用できるがpHの調整ができればよく、一般的に使用されるような緩衝液が利用できる。本製法では特にそのpH調整の簡便さ、リン原子の金属塩への相性の良さから燐酸系の緩衝液を使用することが好ましい。
具体的にはタングステン酸類を溶解した水溶液を攪拌しながら、4級アンモニウム塩を添加する。反応の進行が遅い場合は加熱(40〜90℃)すると反応は進行しやすい。生成する有機化されたタングステン系の触媒は水層より析出する。析出した塩をろ過、あるいは有機溶剤で抽出、分液することで目的とするタングステン系の触媒が得られる。その形状としては結晶状の物もあれば樹脂状のものもあり、様々である。
またこの際、工程の簡略化のために、得られる触媒を単離せずそのまま原料のジオレフィン化合物を加え、エポキシ化反応を行っても構わない。
ここで得られるタングステン系触媒の構造は明確ではないが、タングステン酸類のカウンターカチオンがプロトン、4級アンモニウムカチオン、pH調整に使用した緩衝液の金属イオンが関与するような骨格となる。
本反応は過酸化水素を用いてエポキシ化を行う。特にその反応系中において過酸化水素濃度が40重量%以下であることが好ましい。この濃度が40重量%を超える場合、生成するエポキシ化合物の分解反応も進行しやすくなることから好ましくない。
本反応においてはpH調整用に燐酸−燐酸塩水溶液を用いる。そのpHとしては反応に使用する過酸化水素が混合された段階でpH2〜7の間に調整されることが好ましく、より好ましくはpH3〜7である。pH2以下の場合、エポキシ基の加水分解反応、重合反応が進行しやすくなる。またpH6以上である場合、反応が極度に遅くなり、反応時間が長すぎるという問題が生じる。
通常燐酸−燐酸塩の水溶液といえば緩衝液としての働きを有すると考えられがちであるが、本反応においては過剰の酸(過酸化水素水)の中に燐酸−燐酸塩が添加されるため、その緩衝作用は無いものと考えられることから緩衝液とは表現しない。
使用する燐酸−燐酸塩水溶液は使用する過酸化水素に対し、0.1〜10モル当量の燐酸(あるいは燐酸二水素ナトリウム等の燐酸塩)を使用し、塩基性化合物(たとえば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム等)でpH調整を行うという方法が挙げられるがこれに限らない。ここでpHは過酸化水素を添加した際に前述のpHになるように添加することが好ましい。特に好ましいpHの範囲は3.5〜6.5、さらに好ましくは4.0〜6.0である。また燐酸塩の濃度は0.1〜20重量%、好ましくは0.1〜10重量%である。
本反応は有機溶剤を使用しても構わない。使用する有機溶剤の量としては、反応基質であるジオレフィン化合物1に対し、重量比で0.3〜10であり、好ましくは0.3〜5、より好ましくは0.5〜2.5である。重量比で10を超える場合、反応の進行が極度に遅くなることから好ましくない。使用できる有機溶剤の具体的な例としてはヘキサン、シクロヘキサン、ヘプタン等のアルカン類、トルエン、キシレン等の芳香族炭化水素化合物、メタノール、エタノール、イソプロパノール、ブタノール、ヘキサノール、シクロヘキサノール等のアルコール類が使用できる。また、場合によっては、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、アノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル、蟻酸メチルなどのエステル化合物、アセトニトリル等の二トリル化合物なども使用可能である。
具体的な反応操作方法としては、例えばバッチ式の反応釜で反応を行う際は、原料となるジオレフィン化合物、過酸化水素、タングステン系の触媒、pH調整溶液、必要に応じて溶剤を加え、二層で撹拌する。撹拌速度に特に指定は無いが、系がエマルジョン化する程度以上の撹拌速度で撹拌することが好ましい。
また、過酸化水素は添加時に発熱する場合が多いことから、各成分を添加した後に徐々に添加する方法でも構わない。あるいは先に過酸化水素、タングステン系の触媒、pH調整溶液、必要に応じて溶剤を加え、後にジオレフィン化合物を徐々に添加する方法でも構わない。
またタングステン系の触媒は予め作成したものを添加しても、反応系中で作成した後、そのまま反応に使用することもできる。
反応温度は特に限定されないが0〜90℃が好ましく、さらに好ましくは0〜75℃、特に15℃〜75℃が好ましい。水溶液中の酸性度が高い場合、具体的にはpHが4.0以下、さらに3.0以下である場合、反応温度は60℃以下であることが好ましい。
また反応時間は反応温度、触媒量等にもよるが、工業生産という観点から、長時間の反応は多大なエネルギーを消費することになるため好ましくはない。好ましい範囲としては1〜100時間、好ましくは3〜72時間、さらに好ましくは5〜48時間である。
反応終了後、過剰な過酸化水素のクエンチ処理を行う。過酸化水素のクエンチの手法としては、還元剤の使用ができる他、塩基性化合物によりクエンチを行っても構わない。本発明においては特にその両方で行うことが好ましい。
還元剤としては亜硫酸ナトリウム、チオ硫酸ナトリウム、ヒドラジン、シュウ酸などが挙げられる。還元剤の使用量としては過剰分の過酸化水素もモル数に対し、通常0.01〜20倍モル、より好ましくは0.05〜10倍モル、さらに好ましくは0.05〜3倍モルである。
塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、水酸化カルシウム等の金属水酸化物、炭酸ナトリウム、炭酸カリウム等の金属炭酸塩、リン酸ナトリウム、リン酸水素ナトリウムなどのリン酸塩、協和化学工業製キョーワード500のような複合金属塩、イオン交換樹脂、アルミナ等の塩基性固体が挙げられる。
その使用量としては水、あるいは有機溶剤(例えば、トルエン、キシレン等の芳香族炭化水素、メチルイソブチルケトン、メチルエチルケトン等のケトン類、シクロヘキサン、ヘプタン、オクタン等の炭化水素、メタノール、エタノール、イソプロピルアルコール等のアルコール類など、各種溶剤)に溶解するものであれば、その使用量は過剰分の過酸化水素のモル数に対し、通常0.01〜20倍モル、より好ましくは0.05〜10倍モル、さらに好ましくは0.05〜3倍モルである。これらは水、あるいは有機溶剤(前述)の溶液として添加しても単体で添加しても構わない。
水や有機溶剤に溶解しない固体塩基を使用する場合、系中に残存する過酸化水素の量に対し、重量比で1〜1000倍の量を使用することが好ましい。より好ましくは10〜500倍、さらに好ましくは10〜300倍である。水や有機溶剤に溶解しない固体塩基を使用する場合は、後に記載する水層と有機層の分離の後、処理を行っても構わない。
過酸化水素のクエンチ後(もしくはクエンチを行う前に)、有機層と水層を分離する。この際、有機層と水層が分離しない、もしくは有機溶剤を使用していない場合は前述の有機溶剤を添加して水洗を行う。この際使用する有機溶剤は得られる原料ジオレフィン化合物に対し、重量比で0.5〜10倍、好ましくは0.5〜5倍である。この操作を必要により数回繰り返した後分離した有機層を、必要に応じて水洗して精製する。
得られた有機層は必要に応じてイオン交換樹脂や金属酸化物、活性炭、モンモリロナイト、酸性白土、活性白土、ケイソウ土などが挙げられる。
これらは天然または合成のいずれでも良く、一種で、または複数種を混合して使用することができる。本処理は有機溶剤中に残存する触媒の量を低減するのに効果がある。得られた有機層より必要に応じて水洗を行った後、溶剤を留去することで目的とするエポキシ化合物を得ることができる。得られた有機層より溶剤を留去することで目的とするエポキシ化合物を得ることができる。
このようにして得られるエポキシ樹脂は式(1)
Figure 0005348764
で表される構造をメイン構造とするが、式(4)
Figure 0005348764
(式中、A〜Dの組み合わせはどのような組み合わせでも構わない。)
に示すような各種の構造の化合物が混在する混合物である。
本発明の硬化性樹脂組成物においては、前記エポキシ樹脂を単独でまたは他のエポキシ樹脂と併用して使用することが出来る。併用する場合、前記エポキシ樹脂の全エポキシ樹脂中に占める割合は30重量%以上が好ましく、特に40重量%以上が好ましい。ただし、本発明のエポキシ樹脂を硬化性樹脂組成物の改質剤として使用する場合は、1〜30重量%の割合で添加する。
本発明の硬化性樹脂組成物において使用できるエポキシ樹脂としては、ノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂などが挙げられる。具体的には、ビスフェノールA、ビスフェノールS、チオジフェノール、フルオレンビスフェノール、テルペンジフェノール、4,4'−ビフェノール、2,2'−ビフェノール、3,3',5,5'−テトラメチル−[1,1'−ビフェニル]−4,4'−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4'−ビス(クロルメチル)−1,1'−ビフェニル、4,4'−ビス(メトキシメチル)−1,1'−ビフェニル、1,4−ビス(クロロメチル)ベンゼン、1,4−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、アルコール類から誘導されるグリシジルエーテル化物、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂が挙げられるが、これらに限定されるものではない。
このなかでも、脂環式エポキシ樹脂やシルセスキオキサン系のエポキシ樹脂が好ましい。脂環式エポキシ樹脂としては、具体的には3,4エポキシシクロヘキシルメチル−3′,4′エポキシシクロヘキシルカルボキシレートなどが挙げられ、全エポキシ樹脂中に占める割合は60重量%以下が好ましく、特に40重量%以下が好ましい。60重量%以上で併用すると揮発などの不具合が発生するおそれがある。また、シルセスキオキサン系のエポキシ樹脂(鎖状、環状、ラダー状、あるいはそれら少なくとも2種以上の混合構造のシロキサン構造にグリシジル基、および/またはエポキシシクロヘキサン構造を有するエポキシ樹脂)等の固形または液状エポキシ樹脂は、耐腐食ガス性に影響を与えない範囲で使用するのが好ましい。該シルセスキオキサン系のエポキシ樹脂を併用する場合、全エポキシ樹脂中に占める割合は70重量%以下が好ましく、特に40重量%以下が好ましい。該シルセスキオキサン系のエポキシ樹脂を多く併用すると、耐腐食ガス性を低下させることになる。
本発明の硬化性樹脂組成物は、前記エポキシ樹脂と反応性を有する硬化剤を含有する。
該硬化剤としては、例えばアミン系化合物、酸無水物系化合物、アミド系化合物、フェノール系化合物、カルボン酸系化合物などが挙げられる。使用できる硬化剤の具体例としては、ジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンより合成されるポリアミド樹脂、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、テルペンジフェノール、4,4'−ビフェノール、2,2'−ビフェノール、3,3',5,5'−テトラメチル−[1,1'−ビフェニル]−4,4'−ジオール、ハイドロキノン、レゾルシン、ナフタレンジオール、トリス−(4−ヒドロキシフェニル)メタン、1,1,2,2−テトラキス(4−ヒドロキシフェニル)エタン、フェノール類(フェノール、アルキル置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、p−ヒドロキシベンズアルデヒド、o−ヒドロキシベンズアルデヒド、p−ヒドロキシアセトフェノン、o−ヒドロキシアセトフェノン、ジシクロペンタジエン、フルフラール、4,4'−ビス(クロロメチル)−1,1'−ビフェニル、4,4'−ビス(メトキシメチル)−1,1'−ビフェニル、1,4'−ビス(クロロメチル)ベンゼン、1,4'−ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物、テトラブロモビスフェノールA等のハロゲン化ビスフェノール類、イミダゾール、トリフルオロボラン−アミン錯体、グアニジン誘導体、テルペンとフェノール類の縮合物などが挙げられるが、これらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。
また、LEDをはじめ透明封止用途の場合には、硬化後に透明性にすぐれた酸無水物を使用することが望ましく、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、無水ナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ブタンテトラカルボン酸無水物、ビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、メチルビシクロ[2,2,1]ヘプタン−2,3−ジカルボン酸無水物、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物(式(2)の化合物)などの脂環骨格を有する酸無水物が好ましい。これら脂環式骨格を有する酸無水物は、市販品を使用することが可能であり、例えば三菱瓦斯化学社などからH−TMAシリーズとして、固形品または液状品(ただし液状品となっているが室温においては半固形状態であり、作業性が非常に劣る)を入手することができる。
また、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物を使用する場合、単独の使用では、固形または粘度が高い半固形状態のため作業性が極端に悪くなる場合がある。そのため、他の硬化剤、好ましくは脂環式骨格を有する酸無水物と併用して使用することが望ましい。この場合に併用することができる硬化剤としては液状で、粘度が低い物であれば特に限定されるものではないが、例えば市販されている硬化剤としては、無水メチルナジック酸、無水ナジック酸を含有したHNA−100(新日本理化(株)製)や、ヘキサヒドロ無水フタル酸(式(3)の化合物;Rが水素原子)、メチルヘキサヒドロ無水フタル酸(式(3)の化合物;Rがメチル基)を含有したリカシッドMH700(新日本理化(株)製)などの硬化剤が挙げられる。併用して使用する際には、あらかじめ固体または半固形状のシクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物と粘度の低い硬化剤を室温または加温(加温条件としては、硬化剤の揮発を防ぐために好ましくは150℃以下、より好ましくは120℃である)条件下で均一になるまで混合することで作業性のよい状態にすることが可能である。また、取り扱い作業性と硬化後における封止材の凹みの観点から、シクロヘキサン−1,3,4−トリカルボン酸−3,4−無水物の全硬化剤中における使用比率としては、20〜90重量%、より好ましくは、30〜80重量%以下の範囲である。混合割合が90重量%を超えると、極端に硬化剤としての作業性に劣る。また20重量%を下回ると封止材の凹みの点で改善効果が薄くなるおそれがある。
本発明の硬化性樹脂組成物において硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.5〜1.5当量が好ましい。好ましくは、0.7〜1.2当量である。エポキシ基1当量に対して、0.5当量に満たない場合、あるいは1.5当量を超える場合、いずれも硬化が不完全となり良好な硬化物性が得られない恐れがある。
本発明の硬化性樹脂組成物においては、硬化剤とともに硬化触媒を併用、又は硬化剤を使用せず硬化触媒単独で使用することができる。用い得る硬化促進剤の具体例としては、2−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、2,4−ジアミノ−6(2'−メチルイミダゾール(1'))エチル−s−トリアジン、2,4−ジアミノ−6(2'−ウンデシルイミダゾール(1'))エチル−s−トリアジン、2,4−ジアミノ−6(2'−エチル,4−メチルイミダゾール(1'))エチル−s−トリアジン、2,4−ジアミノ−6(2'−メチルイミダゾール(1'))エチル−s−トリアジン・イソシアヌル酸付加物、2-メチルイミダゾールイソシアヌル酸の2:3付加物、2−フェニルイミダゾールイソシアヌル酸付加物、2−フェニル−3,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−ヒドロキシメチル−5−メチルイミダゾール、1−シアノエチル−2−フェニル−3,5−ジシアノエトキシメチルイミダゾールの各種イミダゾール類、及び、それらイミダゾール類とフタル酸、イソフタル酸、テレフタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、マレイン酸、蓚酸等の多価カルボン酸との塩類、ジシアンジアミド等のアミド類、1,8−ジアザ−ビシクロ(5.4.0)ウンデセン−7等のジアザ化合物及びそれらのテトラフェニルボレート、フェノールノボラック等の塩類、前記多価カルボン酸類、又はホスフィン酸類との塩類、テトラブチルアンモニュウムブロマイド、セチルトリメチルアンモニュウムブロマイド、トリオクチルメチルアンモニュウムブロマイド等のアンモニュウム塩、トリフェニルホスフィン、トリ(トルイル)ホスフィン、テトラフェニルホスホニウムブロマイド、テトラフェニルホスホニウムテトラフェニルボレート等のホスフィン類やホスホニウム化合物、2,4,6−トリスアミノメチルフェノール等のフェノール類、アミンアダクト、オクチル酸スズ等の金属化合物等、及びこれら硬化促進剤をマイクロカプセルにしたマイクロカプセル型硬化促進剤等が挙げられる。これら硬化促進剤のどれを用いるかは、例えば透明性、硬化速度、作業条件といった得られる透明樹脂組成物に要求される特性によって適宜選択される。硬化促進剤は、エポキシ樹脂100重量部に対し通常0.001〜15重量部の範囲で使用される。
本発明の硬化性樹脂組成物には、リン含有化合物を難燃性付与成分として含有させることもできる。リン含有化合物としては反応型のものでも添加型のものでもよい。リン含有化合物の具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、トリキシリレニルホスフェート、クレジルジフェニルホスフェート、クレジル−2,6−ジキシリレニルホスフェート、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4'−ビフェニル(ジキシリレニルホスフェート)等のリン酸エステル類;9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド、10(2,5−ジヒドロキシフェニル)−10H−9−オキサ−10−ホスファフェナントレン−10−オキサイド等のホスファン類;エポキシ樹脂と前記ホスファン類の活性水素とを反応させて得られるリン含有エポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン含有エポキシ化合物が好ましく、1,3−フェニレンビス(ジキシリレニルホスフェート)、1,4−フェニレンビス(ジキシリレニルホスフェート)、4,4'−ビフェニル(ジキシリレニルホスフェート)またはリン含有エポキシ化合物が特に好ましい。リン含有化合物の含有量はリン含有化合物/エポキシ樹脂=0.1〜0.6(重量比)が好ましい。0.1以下では難燃性が不十分であり、0.6以上では硬化物の吸湿性、誘電特性に悪影響を及ぼす懸念がある。
さらに本発明の硬化性樹脂組成物には、必要に応じてバインダー樹脂を配合することも出来る。バインダー樹脂としてはブチラール系樹脂、アセタール系樹脂、アクリル系樹脂、エポキシ−ナイロン系樹脂、NBR−フェノール系樹脂、エポキシ−NBR系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、シリコーン系樹脂などが挙げられるが、これらに限定されるものではない。バインダー樹脂の配合量は、硬化物の難燃性、耐熱性を損なわない範囲であることが好ましく、樹脂成分100重量部に対して通常0.05〜50重量部、好ましくは0.05〜20重量部が必要に応じて用いられる。
本発明の硬化性樹脂組成物には、必要に応じて無機充填剤を添加することができる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化ケイ素、窒化ケイ素、窒化ホウ素、ジルコニア、フォステライト、ステアタイト、スピネル、チタニア、タルク等の粉体またはこれらを球形化したビーズ等が挙げられるが、これらに限定されるものではない。これら充填材は、単独で用いてもよく、2種以上を用いてもよい。これら無機充填剤の含有量は、本発明の硬化性樹脂組成物中において0〜95重量%を占める量が用いられる。更に本発明の硬化性樹脂組成物には、シランカップリング剤、ステアリン酸、パルミチン酸、ステアリン酸亜鉛、ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性樹脂を添加することができる。
本発明の硬化性樹脂組成物を光半導体封止剤に使用する場合には、前記使用する無機充填材の粒径として、ナノオーダーレベルの充填材を使用することで、透明性を阻害せずに機械強度などを補完することが可能である。ナノオーダーレベルとしての目安は、平均粒径が500nm以下、特に平均粒径が200nm以下の充填材を使用することが透明性の観点では好ましい。
本発明の硬化性樹脂組成物を光半導体封止剤に使用する場合、必要に応じて、蛍光体を添加することができる。蛍光体は、例えば、青色LED素子から発せられた青色光の一部を吸収し、波長変換された黄色光を発することにより、白色光を形成する作用を有するものである。蛍光体を、硬化性樹脂組成物に予め分散させておいてから、光半導体を封止する。蛍光体としては特に制限がなく、従来公知の蛍光体を使用することができ、例えば、希土類元素のアルミン酸塩、チオ没食子酸塩、オルトケイ酸塩等が例示される。より具体的には、YAG蛍光体、TAG蛍光体、オルトシリケート蛍光体、チオガレート蛍光体、硫化物蛍光体等の蛍光体が挙げられ、YAlO:Ce、YAl12:Ce、YAl:Ce、YS:Eu、Sr(POCl:Eu、(SrEu)O・Alなどが例示される。係る蛍光体の粒径としては、この分野で公知の粒径のものが使用されるが、平均粒径としては、1〜250μm、特に2〜50μmが好ましい。これらの蛍光体を使用する場合、その添加量は、その樹脂成分に対して100重量部に対して、1〜80重量部、好ましくは、5〜60重量部が好ましい。
本発明の硬化性樹脂組成物を光半導体封止剤に使用する場合、各種蛍光体の硬化時沈降を防止する目的で、シリカ微粉末(アエロジルまたはアエロゾルとも呼ばれる)をはじめとするチクソトロピック性付与剤を添加することができる。このようなシリカ微粉末としては、例えば、Aerosil 50、Aerosil 90、Aerosil 130、Aerosil 200、Aerosil 300、Aerosil 380、Aerosil OX50、Aerosil TT600、Aerosil R972、Aerosil R974、Aerosil R202、Aerosil R812、Aerosil R812S、Aerosil R805、RY200、RX200(日本アエロジル社製)等が挙げられる。
本発明の硬化性樹脂組成物は、着色防止目的のため、光安定剤としてのアミン化合物又は、酸化防止材としてのリン系化合物及びフェノール系化合物を含有することができる。
前記アミン化合物としては、例えば、テトラキス(1,2,2,6,6−ペンタメチル−4−ピペリジル)=1,2,3,4−ブタンテトラカルボキシラート、テトラキス(2,2,6,6−トトラメチル−4−ピペリジル)=1,2,3,4−ブタンテトラカルボキシラート、1,2,3,4−ブタンテトラカルボン酸と1,2,2,6,6−ペンタメチル−4−ピペリジノール及び3,9−ビス(2−ヒドロキシ−1,1−ジメチルエチル)−2,4,8,10−テトラオキサスピロ[5.5]ウンデカンとの混合エステル化物、デカン二酸ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1−ウンデカンオキシ−2,2,6,6−テトラメチルピペリジン−4−イル)カーボネート、2,2,6,6,−テトラメチル−4−ピペリジルメタクリレート、

ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、1−〔2−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕エチル〕−4−〔3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕−2,2,6,6−テトラメチルピペリジン、1,2,2,6,6−ペンタメチル−4−ピペリジニル−メタアクリレート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)〔〔3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル〕メチル〕ブチルマロネート、デカン二酸ビス(2,2,6,6−テトラメチル−1(オクチルオキシ)−4−ピペリジニル)エステル,1,1−ジメチルエチルヒドロペルオキシドとオクタンの反応生成物、N,N′,N″,N″′−テトラキス−(4,6−ビス−(ブチル−(N−メチル−2,2,6,6−テトラメチルピペリジン−4−イル)アミノ)−トリアジン−2−イル)−4,7−ジアザデカン−1,10−ジアミン、ジブチルアミン・1,3,5−トリアジン・N,N′−ビス(2,2,6,6−テトラメチル−4−ピペリジル−1,6−ヘキサメチレンジアミンとN−(2,2,6,6−テトラメチル−4−ピペリジル)ブチルアミンの重縮合物、ポリ〔〔6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル〕〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕ヘキサメチレン〔(2,2,6,6−テトラメチル−4−ピペリジル)イミノ〕〕、コハク酸ジメチルと4−ヒドロキシ−2,2,6,6−テトラメチル−1−ピペリジンエタノールの重合物、2,2,4,4−テトラメチル−20−(β−ラウリルオキシカルボニル)エチル−7−オキサ−3,20−ジアザジスピロ〔5・1・11・2〕ヘネイコサン−21−オン、β−アラニン,N,−(2,2,6,6−テトラメチル−4−ピペリジニル)−ドデシルエステル/テトラデシルエステル、N−アセチル−3−ドデシル−1−(2,2,6,6−テトラメチル−4−ピペリジニル)ピロリジン−2,5−ジオン、2,2,4,4−テトラメチル−7−オキサ−3,20−ジアザジスピロ〔5,1,11,2〕ヘネイコサン−21−オン、2,2,4,4−テトラメチル−21−オキサ−3,20−ジアザジシクロ−〔5,1,11,2〕−ヘネイコサン−20−プロパン酸ドデシルエステル/テトラデシルエステル、プロパンジオイックアシッド,〔(4−メトキシフェニル)−メチレン〕−ビス(1,2,2,6,6−ペンタメチル−4−ピペリジニル)エステル、2,2,6,6−テトラメチル−4−ピペリジノールの高級脂肪酸エステル、1,3−ベンゼンジカルボキシアミド,N,N′−ビス(2,2,6,6−テトラメチル−4−ピペリジニル)等のヒンダートアミン系、オクタベンゾン等のベンゾフェノン系化合物、2−(2H−ベンゾトリアゾール−2−イル)−4−(1,1,3,3−テトラメチルブチル)フェノール、2−(2−ヒドロキシ−5−メチルフェニル)ベンゾトリアゾール、2−〔2−ヒドロキシ−3−(3,4,5,6−テトラヒドロフタルイミド−メチル)−5−メチルフェニル〕ベンゾトリアゾール、2−(3−tert−ブチル−2−ヒドロキシ−5−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)ベンゾトリアゾール、メチル3−(3−(2H−ベンゾトリアゾール−2−イル)−5−tert−ブチル−4−ヒドロキシフェニル)プロピオネートとポリエチレングリコールの反応生成物、2−(2H−ベンゾトリアゾール−2−イル)−6−ドデシル−4−メチルフェノール等のベンゾトリアゾール系化合物、2,4−ジ−tert−ブチルフェニル−3,5−ジ−tert−ブチル−4−ヒドロキシベンゾエート等のベンゾエート系、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−〔(ヘキシル)オキシ〕フェノール等のトリアジン系化合物等が挙げられるが、特に好ましくは、ヒンダートアミン系化合物である。
前記光安定材であるアミン化合物として、次に示す市販品を使用することができる。
市販されているアミン系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製として、THINUVIN765、THINUVIN770DF、THINUVIN144、THINUVIN123、THINUVIN622LD、THINUVIN152、CHIMASSORB944、アデカ製として、LA−52、LA−57、LA−62、LA−63P、LA−77Y、LA−81、LA−82、LA−87などが挙げられる。
前記リン系化合物としては特に限定されず、例えば、1,1,3−トリス(2−メチル−4−ジトリデシルホスファイト−5−tert−ブチルフェニル)ブタン、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−イソプロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、2,2'−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2,4−ジ−tert−ブチルフェニル)ホスファイト、2,2'−メチレンビス(4,6−ジ−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2'−メチレンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、2,2'−エチリデンビス(4−メチル−6−tert−ブチルフェニル)(2−tert−ブチル−4−メチルフェニル)ホスファイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4'−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3'−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3'−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4'−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3'−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3'−ビフェニレンジホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト、テトラキス(2,4−ジ−tert−ブチル−5−メチルフェニル)−4,4'−ビフェニレンジホスホナイト、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどが挙げられる。
上記リン系化合物は、市販品を用いることもできる。市販されているリン系化合物としては特に限定されず、例えば、アデカ製として、アデアスタブPEP−4C、アデアスタブPEP−8、アデアスタブPEP−24G、アデアスタブPEP−36、アデアスタブHP−10、アデアスタブ2112、アデアスタブ260、アデアスタブ522A、アデアスタブ1178、アデアスタブ1500、アデアスタブC、アデアスタブ135A、アデアスタブ3010、アデアスタブTPPが挙げられる。
フェノール化合物としては特に限定はされず、例えば、2,6−ジ−tert−ブチル−4−メチルフェノール、n−オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、テトラキス[メチレン−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタン、2,4−ジ−tert−ブチル−6−メチルフェノール、1,6−ヘキサンジオール−ビス−[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、ペンタエリスリチル−テトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、3,9−ビス−〔2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)−プロピオニルオキシ]−1,1−ジメチルエチル〕−2,4,8,10−テトラオキサスピロ〔5,5〕ウンデカン、トリエチレングリコール−ビス[3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート]、2,2'−ブチリデンビス(4,6−ジ−tert−ブチルフェノール)、4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、2,2'−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2'−メチレンビス(4−エチル−6−tert−ブチルフェノール)、2−tert−ブチル−6−(3−tert−ブチル−2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノールアクリレート、2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート、4,4'−チオビス(3−メチル−6−tert−ブチルフェノール)、4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、2−tert−ブチル−4−メチルフェノール、2,4−ジ−tert−ブチルフェノール、2,4−ジ−tert−ペンチルフェノール、4,4'−チオビス(3−メチル−6−tert−ブチルフェノール)、4,4'−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、ビス−[3,3−ビス−(4'−ヒドロキシ−3'−tert−ブチルフェニル)−ブタノイックアシッド]−グリコールエステル、2,4−ジ−tert−ブチルフェノール、2,4−ジ−tert−ペンチルフェノール、2−[1−(2−ヒドロキシ−3,5−ジ−tert−ペンチルフェニル)エチル]−4,6−ジ−tert−ペンチルフェニルアクリレート、ビス−[3,3−ビス−(4'−ヒドロキシ−3'−tert−ブチルフェニル)−ブタノイックアシッド]−グリコールエステル等が挙げられる。
上記フェノール系化合物は、市販品を用いることもできる。市販されているフェノール系化合物としては特に限定されず、例えば、チバスペシャリティケミカルズ製としてIRGANOX1010、IRGANOX1035、IRGANOX1076、IRGANOX1135、IRGANOX245、IRGANOX259、IRGANOX295、IRGANOX3114IRGANOX1098、IRGANOX1520L、アデカ製としては、アデカスタブAO−20、アデカスタブAO−30、アデカスタブAO−40、アデカスタブAO−50、アデカスタブAO−60、アデカスタブAO−70、アデカスタブAO−80、アデカスタブAO−90、アデカスタブAO−330、住友化学工業製として、SumilizerGA−80、Sumilizer MDP−S、Sumilizer BBM−S、Sumilizer GM、Sumilizer GS(F)、Sumilizer GPなどが挙げられる。
このほか、樹脂の着色防止剤として市販されている添加材を使用することができる。例えば、チバスペシャリティケミカルズ製として、THINUVIN328、THINUVIN234、THINUVIN326、THINUVIN120、THINUVIN477、THINUVIN479、CHIMASSORB2020FDL、CHIMASSORB119FLなどが挙げられる。
上記リン系化合物、アミン化合物、フェノール系化合物の中から少なくとも1種以上を含有することが好ましく、その配合量としては特に限定されないが、該硬化性樹脂組成物に対して、0.005〜5.0重量%の範囲である。
本発明の硬化性樹脂組成物は、各成分を均一に混合することにより得られる。本発明の硬化性樹脂組成物は従来知られている方法と同様の方法で容易にその硬化物とすることができる。例えばエポキシ樹脂と硬化剤並びに必要により硬化促進剤、リン含有化合物、バインダー樹脂、無機充填材及び配合剤とを必要に応じて押出機、ニーダー、ロール、プラネタリーミキサー等を用いて均一になるまで充分に混合して硬化性樹脂組成物を得、その硬化性樹脂組成物を液状である場合はポッティングやキャスティング、基材に含浸、金型に硬化性樹脂組成物を流し込み注型し、加熱により硬化、また固形の場合、溶融後注型、あるいはトランスファー成型機などを用いて成型し、さらに加熱により硬化するという手法が挙げられる。硬化温度、時間としては80〜200℃で2〜10時間である。硬化方法としては高温で一気に固めることもできるが、ステップワイズに昇温し硬化反応を進めることが好ましい。具体的には80〜150℃の間で初期硬化を行い、100℃〜200℃の間で後硬化を行う。硬化の段階としては2〜8段階に分けて昇温するのが好ましく、より好ましくは2〜4段階である。
また本発明の硬化性樹脂組成物をトルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の溶剤に溶解させ、硬化性樹脂組成物ワニスとし、ガラス繊維、カ−ボン繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて加熱乾燥して得たプリプレグを熱プレス成形することにより、本発明の硬化性樹脂組成物の硬化物とすることができる。この際の溶剤は、本発明の硬化性樹脂組成物と該溶剤の混合物中で通常10〜70重量%、好ましくは15〜70重量%を占める量を用いる。また液状組成物のままRTM方式でカーボン繊維を含有するエポキシ樹脂硬化物を得ることもできる。
また本発明の硬化性樹脂組成物をフィルム型封止用組成物として使用することもできる。このようなフィルム型樹脂組成物を得る場合は、本発明の硬化性樹脂組成物を剥離フィルム上に前記ワニスを塗布し加熱下で溶剤を除去、Bステージ化を行うことによりシート状の接着剤を得る。このシート状接着剤は、多層基板などにおける層間絶縁層、光半導体の一括フィルム封止として使用することが出来る。
次に本発明のエポキシ樹脂組成物を光半導体の封止材又はダイボンド材として用いる場合について詳細に説明する。
本発明のエポキシ樹脂組成物が高輝度白色LED等の光半導体の封止材、またはダイボンド材として用いる場合には、本発明の多価カルボン酸を含有する硬化剤(硬化剤組成物)と、エポキシ樹脂の他、硬化促進剤、カップリング材、酸化防止剤、光安定剤等の添加物を充分に混合することによりエポキシ樹脂組成物を調製し、封止材として、またはダイボンド材と封止材の両方に使用される。混合方法としては、ニーダー、三本ロール、万能ミキサー、プラネタリーミキサー、ホモミキサー、ホモディスパー、ビーズミル等を用いて常温または加温して混合する。
高輝度白色LED等の光半導体素子は、一般的にサファイア、スピネル、SiC、Si、ZnO等の基板上に積層させたGaAs、GaP、GaAlAs,GaAsP、AlGa、InP、GaN、InN、AlN、InGaN等の半導体チップを、接着剤(ダイボンド材)を用いてリードフレームや放熱板、パッケージに接着させてなる。電流を流すために金ワイヤー等のワイヤーが接続されているタイプもある。その半導体チップを、熱や湿気から守り、かつレンズ機能の役割を果たすためにエポキシ樹脂等の封止材で封止されている。本発明のエポキシ樹脂組成物はこの封止材やダイボンド材として用いる事ができる。工程上からは本発明の硬化性樹脂組成物をダイボンド材と封止材の両方に使用するのが好都合である。
半導体チップを、本発明の硬化性樹脂組成物を用いて、基板に接着する方法としては、本発明のエポキシ樹脂組成物をディスペンサー、ポッティング、スクリーン印刷により塗布した後、半導体チップをのせて加熱硬化を行い、半導体チップを接着させることができる。加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。
加熱条件は例えば80〜230℃で1分〜24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80〜120℃、30分〜5時間予備硬化させた後に、120〜180℃、30分〜10時間の条件で後硬化させることができる。
封止材の成形方式としては上記のように半導体チップが固定された基板を挿入した型枠内に封止材を注入した後に加熱硬化を行い成形する注入方式、金型上に封止材をあらかじめ注入し、そこに基板上に固定された半導体チップを浸漬させて加熱硬化をした後に金型から離形する圧縮成形方式等が用いられている。
注入方法としては、ディスペンサー、トランスファー成形、射出成形等が挙げられる。
加熱は、熱風循環式、赤外線、高周波等の方法が使用できる。 加熱条件は例えば80〜230℃で1分〜24時間程度が好ましい。加熱硬化の際に発生する内部応力を低減する目的で、例えば80〜120℃、30分〜5時間予備硬化させた後に、120〜180℃、30分〜10時間の条件で後硬化させることができる。
更に、エポキシ樹脂等の硬化性樹脂が使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止材の他、封止材、基板用のシアネート樹脂組成物や、レジスト用硬化剤としてアクリル酸エステル系樹脂等、他樹脂等への添加剤等が挙げられる。
接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、QFP、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィルを含む)などを挙げることができる。
本発明で得られる硬化物は光学部品材料をはじめ各種用途に使用できる。光学用材料とは、可視光、赤外線、紫外線、X線、レーザーなどの光をその材料中を通過させる用途に用いる材料一般を示す。より具体的には、ランプタイプ、SMDタイプ等のLED用封止材の他、以下のようなものが挙げられる。液晶ディスプレイ分野における基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルムなどの液晶用フィルムなどの液晶表示装置周辺材料である。また、次世代フラットパネルディスプレイとして期待されるカラーPDP(プラズマディスプレイ)の封止材、反射防止フィルム、光学補正フィルム、ハウジング材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またLED表示装置に使用されるLEDのモールド材、LEDの封止材、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またプラズマアドレス液晶(PALC)ディスプレイにおける基板材料、導光板、プリズムシート、偏向板、位相差板、視野角補正フィルム、接着剤、偏光子保護フィルム、また有機EL(エレクトロルミネッセンス)ディスプレイにおける前面ガラスの保護フィルム、前面ガラス代替材料、接着剤、またフィールドエミッションディスプレイ(FED)における各種フィルム基板、前面ガラスの保護フィルム、前面ガラス代替材料、接着剤である。光記録分野では、VD(ビデオディスク)、CD/CD−ROM、CD−R/RW、DVD−R/DVD−RAM、MO/MD、PD(相変化ディスク)、光カード用のディスク基板材料、ピックアップレンズ、保護フィルム、封止材、接着剤などである。
光学機器分野では、スチールカメラのレンズ用材料、ファインダプリズム、ターゲットプリズム、ファインダーカバー、受光センサー部である。また、ビデオカメラの撮影レンズ、ファインダーである。またプロジェクションテレビの投射レンズ、保護フィルム、封止材、接着剤などである。光センシング機器のレンズ用材料、封止材、接着剤、フィルムなどである。光部品分野では、光通信システムでの光スイッチ周辺のファイバー材料、レンズ、導波路、素子の封止材、接着剤などである。光コネクタ周辺の光ファイバー材料、フェルール、封止材、接着剤などである。光受動部品、光回路部品ではレンズ、導波路、LEDの封止材、CCDの封止材、接着剤などである。光電子集積回路(OEIC)周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。光ファイバー分野では、装飾ディスプレイ用照明・ライトガイドなど、工業用途のセンサー類、表示・標識類など、また通信インフラ用および家庭内のデジタル機器接続用の光ファイバーである。半導体集積回路周辺材料では、LSI、超LSI材料用のマイクロリソグラフィー用のレジスト材料である。自動車・輸送機分野では、自動車用のランプリフレクタ、ベアリングリテーナー、ギア部分、耐蝕コート、スイッチ部分、ヘッドランプ、エンジン内部品、電装部品、各種内外装品、駆動エンジン、ブレーキオイルタンク、自動車用防錆鋼板、インテリアパネル、内装材、保護・結束用ワイヤーネス、燃料ホース、自動車ランプ、ガラス代替品である。また、鉄道車輌用の複層ガラスである。また、航空機の構造材の靭性付与剤、エンジン周辺部材、保護・結束用ワイヤーネス、耐蝕コートである。建築分野では、内装・加工用材料、電気カバー、シート、ガラス中間膜、ガラス代替品、太陽電池周辺材料である。農業用では、ハウス被覆用フィルムである。次世代の光・電子機能有機材料としては、有機EL素子周辺材料、有機フォトリフラクティブ素子、光−光変換デバイスである光増幅素子、光演算素子、有機太陽電池周辺の基板材料、ファイバー材料、素子の封止材、接着剤などである。
封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、IC、LSIなど用のポッティング、ディッピング、トランスファーモールド封止、IC、LSI類のCOB、COF、TABなど用のといったポッティング封止、フリップチップなどの用のアンダーフィル、BGA、CSPなどのICパッケージ類実装時の封止(補強用アンダーフィル)などを挙げることができる。
光学用材料の他の用途としては、硬化性樹脂組成物Aが使用される一般の用途が挙げられ、例えば、接着剤、塗料、コーティング剤、成形材料(シート、フィルム、FRP等を含む)、絶縁材料(プリント基板、電線被覆等を含む)、封止剤の他、他樹脂等への添加剤等が挙げられる。接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビルドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の半導体用接着剤、BGA補強用アンダーフィル、異方性導電性フィルム(ACF)、異方性導電性ペースト(ACP)等の実装用接着剤等が挙げられる。
次に本発明を実施例により更に具体的に説明するが、以下において部は特に断わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない。また実施例において、エポキシ当量はJIS K−7236、粘度は25℃においてE型粘度計を使用して測定を行った。またガスクロマトグラフィー(以下、GC)における分析条件は分離カラムにHP5−MS(0.25mm I.D.x 15m, 膜厚0.25μm)を用いて、カラムオーブン温度を初期温度100℃に設定し、毎分 15℃の速度で昇温させ300℃で25分間保持した。またヘリウムをキャリヤーガスとした。さらにゲルパーミエーションクロマトグラフィー(以下、GPC)の測定においては以下の通りである。カラムは、Shodex SYSTEM−21カラム(KF−803L、KF−802.5(×2本)、KF−802)、連結溶離液はテトラヒドロフラン、流速は1ml/min.カラム温度は40℃、また検出はUV(254nm)で行い、検量線はShodex製標準ポリスチレンを使用した。
合成例1
ジオレフィン化合物の合成
撹拌機、還流冷却管、撹拌装置、ディーンスターク管を備えたフラスコに、窒素パージを施しながら、1,4−シクロヘキサンジカルボン酸172部、3−シクロヘキセン−1−メタノール448部、トルエン600部、p−トルエンスルホン酸4部を加え、45℃で還流するように系内の減圧度を調整して生成する水を除きながら12時間反応を行った。反応終了後、反応溶液を10重量%水酸化ナトリウム水溶液120部で3回洗浄し、さらに水70部/回で廃水が中性になるまで水洗を繰り返し、ロータリーエバポレータで加熱減圧下、トルエンと未反応の3−シクロヘキセン−1−メタノールを留去することにより常温で液状のジオレフィン化合物が343部得られた。
エポキシ樹脂の合成
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながら水15部、12−タングストリン酸0.95部、燐酸水素2ナトリウム0.78、ジ牛脂アルキルジメチルアンモニウムアセテート2.7部(ライオンアクゾ製 50重量%ヘキサン溶液、アカード2HTアセテート)を加え、タングステン酸系触媒を生成させた後、トルエン180部、前記で得られたジオレフィン化合物を118部加え、さらに再度攪拌することでエマルジョン状態の液とした。この溶液を50℃に昇温し、激しく攪拌しながら、35重量%過酸化水素水70部を1時間で加え、そのまま50℃で13時間攪拌した。GCにて反応の進行を確認したところ、原料ピークは消失していた。
ついで1重量%水酸化ナトリウム水溶液で中和した後、20重量%チオ硫酸ナトリウム水溶液25部を加え30分攪拌を行い、静置した。2層に分離した有機層を取り出し、ここにシリカゲル(ワコーゲル C−300)10部、活性炭(NORIT製 CAP SUPER)20部、ベントナイト(ホージュン製 ベンゲルSH)20部を加え、室温で1時間攪拌後、ろ過した。得られたろ液を水100部で3回水洗を行い、得られた有機層より、トルエンを留去することで、常温で液状の下記式(1)のエポキシ樹脂(EP−1)119部を得た。得られたエポキシ樹脂のエポキシ当量は217g/eq.であった。
Figure 0005348764
(式中全てのRは水素原子である。)
実施例1
合成例1で得られたエポキシ樹脂(EP−1)について、硬化剤として、メチルヘキサヒドロフタル酸無水物(新日本理化(株)製、リカシッドMH700、以下、H1と称す。酸無水物当量168)、硬化促進剤としてヘキサデシルトリメチルアンモニウムヒドロキシド(東京化成工業(株)製 25重量%メタノール溶液、C1と称す)を使用し、下記表1に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。
比較例1
3,4エポキシシクロヘキシルメチル−3′,4′エポキシシクロヘキシルカルボキシレート(EP−2;エポキシ当量133)、について、硬化剤として、H1、硬化促進剤としてC1を使用し、下記表1に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の比較用の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。
(LEDパッケージによる硬化後凹み性試験)
実施例及び比較例で得られた硬化性樹脂組成物シリンジに充填し精密吐出装置を用いて、外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、120℃、1時間さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。凹みについては、深さゲージを用いて、外壁高さを基準として、硬化後の樹脂の凹み深さを測定した。実施例1と比較例1の結果については、表1に示した。
測定条件
深さゲージ:NIKON製、DIGIMICRO STAND MS−11C
凹み深さとしては、3ヶ分のパッケージにおける平均値を採用した。
Figure 0005348764
上記結果より、合成例1で得られたエポキシ樹脂を使用した硬化性樹脂組成物は、比較例1に比べ硬化後の凹みを65%も改善することができることが判明した。さらに比較例1は、LEDチップとの導通させるためのワイヤが一部浮き出ていることが判明した。
実施例2〜4
合成例1で得られたエポキシ樹脂(EP−1)、について、硬化剤として、H1及びシクロヘキサン−1,2,4−トリカルボン酸−1,2−無水物(三菱瓦斯化学株式会社製 H−TMAn(半固形状) 以下、H2と称す、酸無水物当量64)を使用し、下記表2に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。
ただし、H2は半固形状であるため硬化剤H1とあらかじめ表2に示す配合比率で混合し、100℃に加温して均一な混合物としてから使用した。(以降硬化剤H2を使用する場合には、同様にして事前調整を行って使用した。)
比較例2
3,4エポキシシクロヘキシルメチル−3′,4′エポキシシクロヘキシルカルボキシレート(EP−2)について、硬化剤として、H1及びH2を使用し、下記表2に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の比較用の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。
(LEDパッケージによる硬化後凹み性試験)
実施例及び比較例で得られた硬化性樹脂組成物をシリンジに充填し精密吐出装置を用いて、外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、120℃、1時間さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。凹みについては、深さゲージを用いて、外壁高さを基準として、硬化後の樹脂の凹み深さを測定した。実施例2〜4及び比較例2の結果については、表2に示した。
測定条件
深さゲージ:NIKON製、DIGIMICRO STAND MS−11C
凹み深さとしては、3パッケージ分の平均値を採用した。
Figure 0005348764
上記結果より、合成例1で得られたエポキシ樹脂と硬化剤H1、硬化剤H2を同時に使用した実施例2は、比較例2に比べ硬化後の凹みに対して顕著な効果を示しており、さらにH2/(H1+H2)の比率が0.3以上の実施例3、実施例4においては、硬化後の凹みがほぼないことが判明した。
比較例3
3,4エポキシシクロヘキシルメチル−3′,4′エポキシシクロヘキシルカルボキシレート(EP−2)、について、硬化剤として、H1及びH2を使用し、下記表3に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の比較用の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。
(LED点灯試験)
実施例4及び比較例2で得られた硬化性樹脂組成物を、シリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、120℃、1時間さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。下記条件でLEDを点灯させて200時間後の照度保持率を測定した。実施例4、比較例3の結果については、表3に示した。
測定条件
LEDチップ:中心発光波長、465nm
LED点灯条件:順電流60mA、直列で3ヶ同時に点灯させた
LED点灯環境:85℃85%湿熱機内での点灯
照度保持率:(200時間点灯後の照度/初期照度)×100(単位%)
Figure 0005348764
上記結果より、合成例1で得られたエポキシ樹脂を使用した硬化性樹脂組成物は、比較例3にくらべ、LED点灯試験後の照度保持率にすぐれていることが明らかになった。このことより、合成例1で得られたエポキシ樹脂を用いた硬化性樹脂組成物は、従来の脂環式エポキシ樹脂を代表とする3,4エポキシシクロヘキシルメチル−3′,4′エポキシシクロヘキシルカルボキシレートを用いた樹脂組成物よりもLED封止材として、耐久性が優れていることが判明した。
合成例2
特許文献3に記載されている方法に準じてシリコーン変性エポキシ樹脂を得た。すなわち、2−(3,4エポキシシクロヘキシル)エチルトリメトキシシラン26.6部(アルコキシ基当量82.1)、ジメチルジメトキシシラン73.4部(アルコキシ当量60.1)、トリエチルアミン10.0部、メチルイソブチルケトン500部を反応容器に仕込み、室温で撹拌下、蒸留水100部を30分かけて滴下し、80度に昇温後6時間反応させた。反応終了後、20%リン酸2水素ナトリウム水溶液で中和後、水洗を3回繰り返した。次いで有機相を減圧下、100℃で溶媒を除去することにより反応性官能基を有するシリコーン変性エポキシ樹脂(EP−3)60部を得た。得られた化合物のエポキシ当量は561g/eq、外観は無色透明であった。
比較例4
合成例2で得られたシリコーン変性エポキシ樹脂(EP−3)、について、硬化剤として、H1及びH2を使用し、下記表4に示す配合比(重量部)で配合し、20分間脱泡を行い、本発明の硬化性樹脂組成物を得た。なお、硬化剤の使用量は、エポキシ樹脂のエポキシ基1当量に対して1当量で計算した。
(腐食ガス透過性試験)
実施例4及び比較例4で得られた硬化性樹脂組成物を、シリンジに充填し精密吐出装置を用いて、中心発光波465nmのチップを搭載した外径5mm角表面実装型LEDパッケージ(内径4.4mm、外壁高さ1.25mm)に注型した。その注型物を加熱炉に投入して、120℃、1時間さらに150℃、3時間の硬化処理をしてLEDパッケージを作成した。下記条件でLEDパッケージを腐食性ガス中に放置し、封止内部の銀メッキされたリードフレーム部の色の変化を観察した。実施例4,比較例3の結果については、表4に示した。
測定条件
腐食ガス:硫化アンモニウム20%水溶液(硫黄成分が銀と反応した場合に黒く変色する)
接触方法:広口ガラス瓶の中に、硫化アンモニウム水溶液の容器と前記LEDパッケージを混在させ、広口ガラス瓶の蓋をして密閉状況下、揮発した硫化アンモニウムガスとLEDパッケージを接触させた。
腐食の判定:LEDパッケージ内部のリードフレームが黒く変色(黒化という)した時間を観察し、その変色時間が長い物ほど、耐腐食ガス性にすぐれていると判断した。
Figure 0005348764
上記結果より、合成例1で得られたエポキシ樹脂を使用した本発明の硬化性樹脂組成物は、比較例4(1時間で変色)のシリコーン変性エポキシ樹脂を使用した硬化性樹脂組成物にくらべ、リードフレームの銀メッキが変色しないことが明らかになり、耐腐食ガス性に優れていることが判明した。
前記結果より、本発明の硬化性樹脂組成物は、シリコーン樹脂に比べ耐腐食ガス性に優れ、且つ、3,4エポキシシクロヘキシルメチル−3′,4′エポキシシクロヘキシルカルボキシレートで代表される従来脂環式エポキシ樹脂よりもLED封止材として耐久性に優れていることが判明した。

Claims (6)

  1. 下記式(1)で表されるエポキシ樹脂、前記エポキシ樹脂と熱硬化反応することが可能な、エポキシ樹脂と反応性を有する硬化剤を含有することを特徴とする光半導体封止用熱硬化性樹脂組成物であって、エポキシ樹脂のエポキシ基1当量に対して0.5〜1.5当量の硬化剤を含有する熱硬化性樹脂組成物。
    Figure 0005348764
    (式中、複数存在するRはそれぞれ独立して存在し、水素原子、もしくはメチル基を表す。)
  2. 前記式(1)において全てのRが水素原子であるエポキシ樹脂を使用する請求項1に記載の光半導体封止用硬化性熱樹脂組成物。
  3. エポキシ樹脂と反応することが可能な硬化剤が、下記式(2)で表される化合物および/又は下記式(3)で表される化合物であることを特徴とする請求項1又は2に記載の光半導体封止用硬化性樹脂組成物。
    Figure 0005348764

    Figure 0005348764

    (式中、複数存在するRは、水素原子、もしくはメチル基を表す。)
  4. 硬化剤が式(2)の化合物2と

    式(3)の化合物3の両者を含み、その使用比率が下記範囲である請求項3に記載の光半導体封止用硬化性樹脂組成物。

    W2/(W2+W3)=0.2〜0.9

    (ただし、W2は式(2)の配合重量部、W3は式(3)の化合物の配合重量部を示す)
  5. 請求項1ないし4のいずれか1項に記載の光半導体封止用熱硬化性樹脂組成物を硬化して得られる光半導体用硬化物。
  6. 請求項5に記載の光半導体用硬化物によって封止された光半導体装置。
JP2009161089A 2009-07-07 2009-07-07 光半導体封止用硬化性樹脂組成物、及びその硬化物 Expired - Fee Related JP5348764B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009161089A JP5348764B2 (ja) 2009-07-07 2009-07-07 光半導体封止用硬化性樹脂組成物、及びその硬化物
CN201010224842.7A CN101942073B (zh) 2009-07-07 2010-07-07 光半导体密封用固化性树脂组合物及其固化物
TW099122299A TWI500650B (zh) 2009-07-07 2010-07-07 用於封裝光半導體用硬化性樹脂組成物,及其硬化物
KR1020100065290A KR20110004334A (ko) 2009-07-07 2010-07-07 광반도체 봉지용 경화성 수지 조성물, 그의 경화물 및 이를 포함하는 광반도체 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161089A JP5348764B2 (ja) 2009-07-07 2009-07-07 光半導体封止用硬化性樹脂組成物、及びその硬化物

Publications (2)

Publication Number Publication Date
JP2011016880A JP2011016880A (ja) 2011-01-27
JP5348764B2 true JP5348764B2 (ja) 2013-11-20

Family

ID=43434296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161089A Expired - Fee Related JP5348764B2 (ja) 2009-07-07 2009-07-07 光半導体封止用硬化性樹脂組成物、及びその硬化物

Country Status (4)

Country Link
JP (1) JP5348764B2 (ja)
KR (1) KR20110004334A (ja)
CN (1) CN101942073B (ja)
TW (1) TWI500650B (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304959A (zh) * 2012-03-13 2013-09-18 东莞市宝涵轻工科技有限公司 不黄变的白色环氧树脂电子灌封胶及制备方法
JP2014018109A (ja) * 2012-07-13 2014-02-03 Mitsubishi Plastics Inc 農業用多層フィルム
US20150175811A1 (en) * 2012-07-20 2015-06-25 Hitachi Chemical Company, Ltd. Silver-sulfidation-preventing material and method for forming silver-sulfidation-preventing film, and method for producing light-emitting device and light-emitting device
JP6162557B2 (ja) * 2012-09-21 2017-07-12 日本化薬株式会社 透明接着材料
CN102881838B (zh) * 2012-09-28 2016-08-10 京东方科技集团股份有限公司 发光器件的封装结构及封装方法、显示装置
US9988559B2 (en) 2013-12-20 2018-06-05 3M Innovative Properties Company Quantum dot article with improved edge ingress
JP6331758B2 (ja) * 2014-06-25 2018-05-30 味の素株式会社 樹脂組成物
CN106471421B (zh) * 2014-07-03 2019-07-09 3M创新有限公司 具有减小的边缘侵入和改善的颜色稳定性的量子点制品
CN104559060A (zh) * 2014-12-31 2015-04-29 东莞市赛恩思实业有限公司 无卤阻燃led封装环氧树脂组合物及其制备方法
CN105199079B (zh) * 2015-10-30 2019-01-29 江苏华海诚科新材料有限公司 一种led支架用高强度白色反光环氧树脂组合物
CN105602503A (zh) * 2016-01-26 2016-05-25 陕西工业职业技术学院 一种室温储存型led固晶胶组合物及其制备方法
CN106634750A (zh) * 2016-12-11 2017-05-10 雷笑天 一种高韧性耐高温环氧胶黏剂的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0415812A (pt) * 2003-11-03 2006-12-26 Union Carbide Chem Plastic método para intensificar a resistência de um revestimento sobre um artigo, composição fotocurável e composição de formulação de encapsulante de led curável termicamente
JP2008081596A (ja) * 2006-09-27 2008-04-10 Mitsubishi Gas Chem Co Inc 透明樹脂組成物

Also Published As

Publication number Publication date
TW201111407A (en) 2011-04-01
TWI500650B (zh) 2015-09-21
CN101942073A (zh) 2011-01-12
KR20110004334A (ko) 2011-01-13
CN101942073B (zh) 2015-03-18
JP2011016880A (ja) 2011-01-27

Similar Documents

Publication Publication Date Title
JP5348764B2 (ja) 光半導体封止用硬化性樹脂組成物、及びその硬化物
JP5878862B2 (ja) 硬化性樹脂組成物、及びその硬化物
JP5574447B2 (ja) 多価カルボン酸組成物およびその製造方法、ならびに該多価カルボン酸組成物を含有してなる硬化性樹脂組成物
JP5730852B2 (ja) オルガノポリシロキサンの製造方法、該製造方法により得られるオルガノポリシロキサン、該オルガノポリシロキサンを含有する組成物
JP5626856B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5768047B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5433705B2 (ja) 硬化性樹脂組成物およびその硬化物
KR101763192B1 (ko) 경화성 수지 조성물 및 그 경화물
JP5698453B2 (ja) エポキシ樹脂組成物
JP2012087248A (ja) 硬化性樹脂組成物およびその硬化物
JP5472924B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5300148B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物
JP5615847B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物、およびその硬化物
JP5700618B2 (ja) エポキシ樹脂組成物、硬化性樹脂組成物
JP5519685B2 (ja) 硬化性樹脂組成物、及びその硬化物
JP5995238B2 (ja) エポキシ樹脂、およびエポキシ樹脂組成物
KR20110135917A (ko) 디올레핀 화합물, 에폭시 수지 및 그 조성물
JP2014237861A (ja) エポキシ樹脂組成物、硬化性樹脂組成物
JP5832601B2 (ja) 硬化性樹脂組成物およびその硬化物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5348764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees