WO2011105284A1 - 防振ゴム組成物およびそれを用いた防振ゴム - Google Patents

防振ゴム組成物およびそれを用いた防振ゴム Download PDF

Info

Publication number
WO2011105284A1
WO2011105284A1 PCT/JP2011/053409 JP2011053409W WO2011105284A1 WO 2011105284 A1 WO2011105284 A1 WO 2011105284A1 JP 2011053409 W JP2011053409 W JP 2011053409W WO 2011105284 A1 WO2011105284 A1 WO 2011105284A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
component
vibration
amount
coupling agent
Prior art date
Application number
PCT/JP2011/053409
Other languages
English (en)
French (fr)
Inventor
雄介 西川
憲仁 木村
Original Assignee
東海ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海ゴム工業株式会社 filed Critical 東海ゴム工業株式会社
Priority to EP11747248.0A priority Critical patent/EP2540771B1/en
Priority to CN201180010605.3A priority patent/CN102770485B/zh
Priority to JP2012501757A priority patent/JP5465317B2/ja
Publication of WO2011105284A1 publication Critical patent/WO2011105284A1/ja
Priority to US13/561,487 priority patent/US8674002B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber

Definitions

  • the present invention relates to an anti-vibration rubber composition and an anti-vibration rubber using the same, and more particularly to an anti-vibration rubber composition used for vehicle suspension parts and the like and an anti-vibration rubber using the same.
  • an anti-vibration rubber interposed between two members constituting a vibration transmission system and anti-vibrating and connecting the two members has been widely used in various fields.
  • an engine mount is used.
  • an anti-vibration rubber composition used for such an anti-vibration rubber a composition containing a diene rubber, a small particle size silica, and a silane coupling agent has been used (Patent Document 1). .
  • pretreated silica obtained by surface-treating silica with a silane coupling agent has been used in recent years.
  • the rubber composition using such pretreated silica include silica fine particles containing at least one diene rubber as a main rubber component and having a BET specific surface area of 40 to 170 m 2 / g in advance.
  • Patent Document 2 Engine mount rubber composition containing a surface treated with a coupling agent, 100 parts by weight of a rubber component containing at least one diene rubber, and 2 to 15% by weight of silane coupling
  • Patent Document 3 A rubber composition containing 20 to 120 parts by weight of silica pretreated with an agent and 2 to 10% by weight alkoxylane of silica before pretreatment has been proposed (Patent Document 3).
  • the present invention has been made in view of such circumstances, and an object thereof is to provide a vibration-proof rubber composition excellent in both durability and compression set characteristics and a vibration-proof rubber using the same.
  • the present invention contains the following components (A) to (C), the reaction amount of the silane coupling agent in the component (B) is 6.5% by weight or more, and
  • the first gist is a vibration-insulating rubber composition in which the unreacted amount of the silane coupling agent is in the range of 0.5 to 2.5% by weight.
  • C Sulfur.
  • the second gist of the present invention is an anti-vibration rubber using the anti-vibration rubber composition.
  • the present inventors have made extensive studies in order to obtain a vibration-proof rubber composition excellent in both durability and compression set characteristics.
  • conventional pretreated silica it was thought that the unreacted portion of the silane coupling agent after the surface treatment had an adverse effect on the properties of the rubber, so for safety, etc., it was washed with alcohol, acetone, etc. after the surface treatment. It was common knowledge to perform work and remove unreacted silane couplings that were not chemically bonded to silica. The inventors of the present invention have continued research on this pretreated silica. Contrary to the above-mentioned technical common sense, after the surface treatment, the unreacted portion of the silane coupling agent remains intentionally without washing with alcohol or the like.
  • the durability of the vibration-proof rubber is improved when the pretreated silica is used. That is, when the reaction amount of the silane coupling agent is set to 6.5% by weight or more, durability is improved, and when the unreacted amount of the silane coupling agent is set to a range of 0.5 to 2.5% by weight. The inventors have found that the durability is further improved and that the compression set characteristics are compatible, and the present invention has been achieved.
  • reaction amount refers to the amount (% by weight) of the silane coupling agent chemically bonded to silica by the surface treatment
  • unreacted amount refers to the amount of the silane coupling agent not chemically bonded to silica ( % By weight).
  • the amount of reaction and the amount of unreacted can be measured by, for example, a differential thermal analyzer (TG-DTA).
  • the anti-vibration rubber composition of the present invention comprises a diene rubber and pretreated silica obtained by surface-treating silica having a BET specific surface area of 180 to 230 m 2 / g with a silane coupling agent. Contains sulfur. And since the reaction amount of the silane coupling agent of the pretreated silica is set to 6.5% by weight or more, the durability is improved and the unreacted amount of the silane coupling agent is 0.5-2. Since it is set in the range of 5% by weight, it is possible to achieve both compression set characteristics.
  • silica used for the pretreatment silica is a small particle size silica having a BET specific surface area in the range of 180 to 230 m 2 / g, workability is also improved.
  • the blending amount of the pretreated silica of the component (B) is in the range of 20 to 60 parts by weight with respect to 100 parts by weight of the diene rubber of the component (A), durability and compression set characteristics The balance becomes better.
  • the charged amount of the silane coupling agent is in the range of 8 to 18% by weight with respect to 100% by weight of silica before the surface treatment, the balance between durability and compression set characteristics becomes better.
  • the pre-treated silica of the component (B) is not washed, it is possible to omit the conventional washing step with alcohol after the surface treatment, so that the cost can be reduced.
  • the compounding amount of sulfur as the component (C) is 1.5 parts by weight or more with respect to 100 parts by weight of the diene rubber as the component (A) (for example, vehicle) It can be used for suspension parts and the like.
  • the anti-vibration rubber composition of the present invention can be obtained using a diene rubber (A component), specific pretreated silica (B component), and sulfur (C component).
  • a component diene rubber
  • B component specific pretreated silica
  • C component sulfur
  • the reaction amount of the silane coupling agent of the specific pretreated silica (component B) is 6.5% by weight or more, and the unreacted amount of the silane coupling agent is 0.5 to 0.5%.
  • the greatest feature is that it is set in a range of 2.5 wt% (hereinafter, sometimes simply referred to as “%”).
  • ⁇ Diene rubber (component A) examples include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), and butyl rubber (IIR). Can be given. These may be used alone or in combination of two or more. Among these, natural rubber is preferable from the viewpoint of durability.
  • Specific pretreatment silica (component B) is obtained by surface-treating silica having a BET specific surface area of 180 to 230 m 2 / g with a silane coupling agent (surface treatment agent).
  • the BET specific surface area of the silica before the treatment is in the range of 180 to 230 m 2 / g. That is, if the BET specific surface area is too small, the particle size is too large, so the durability is deteriorated. Conversely, if the particle size is too large, the particle size is too small, and it is difficult to disperse in the diene rubber (component A). This is because the sex becomes worse.
  • the BET specific surface area can be measured according to, for example, ISO 5794/1.
  • silica examples include crystalline silica and amorphous silica. Further, it is preferable to use a silica having an average particle size (secondary particle size) in the range of 5 to 30 ⁇ m. The average particle diameter of the silica can be measured using, for example, a laser diffraction / scattering particle size distribution measuring apparatus.
  • the reaction amount of the silane coupling agent is 6.5% or more, and the unreacted amount of the silane coupling agent is 0.5 to 2.5. % Range is set.
  • the reaction amount and the unreacted amount can be measured using, for example, a differential thermal analyzer (TG-DTA).
  • TG-DTA thermogravimetric analyzer
  • DTA differential thermal analyzer
  • the pretreated silica (component B) is measured with a differential thermal analyzer (TG-DTA), whereby the weight of the silica component and the weight of the silane coupling agent are measured. Are calculated respectively.
  • TG-DTA differential thermal analyzer
  • the pretreated silica (component B) is washed with alcohol or acetone to remove the unreacted silane coupling agent, and measured with a differential thermal analyzer (TG-DTA).
  • the reaction amount is calculated from the difference in the weight of the coupling agent.
  • reaction amount of the specific pretreated silica (component B) is 6.5% or more, preferably 7.5% or more. That is, if the reaction amount is too low, the durability is poor.
  • the unreacted amount of the specific pretreated silica (component B) is set in the range of 0.5 to 2.5%, and preferably in the range of 0.8 to 1.5%. That is, if the unreacted amount is too low, the durability is inferior. Conversely, if the unreacted amount is too high, the compression set characteristics deteriorate.
  • the total amount of the reaction amount and the unreacted amount is preferably in the range of 7.8 to 10.0%.
  • the specific pretreated silica (component B) can be obtained by adjusting the amount of silane coupling agent (surface treatment agent) charged, reaction time, reaction temperature, and the like.
  • the specific pretreated silica (component B) can be produced, for example, as follows. That is, it is carried out by mixing silica having a BET specific surface area of 180 to 230 m 2 / g and a predetermined amount of silane coupling agent.
  • the charged amount of the silane coupling agent is preferably in the range of 8 to 18%, particularly preferably in the range of 11 to 15% with respect to 100% of the silica before the surface treatment.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfane, thiocyanatepropyltriethoxysilane, and ⁇ -mercaptopropyltrimethoxysilane. These may be used alone or in combination of two or more.
  • silane coupling agent for the use (for example, engine mount etc.) by which high heat resistance is requested
  • the amount of sulfur (S) atoms in the pretreated silica (component B) surface-treated with a silane coupling agent can be measured, for example, by a transmission electron microscope (TEM) combined with electron energy loss spectroscopy (EELS). It can be detected by elemental analysis of the silica surface using EELS.
  • TEM transmission electron microscope
  • EELS electron energy loss spectroscopy
  • the surface treatment conditions are such that the temperature is preferably in the range of 80 to 120 ° C., particularly preferably in the range of 100 to 120 ° C., and the reaction time is preferably in the range of 15 to 60 minutes, particularly preferably in the range of 15 to 30 minutes. It is a range.
  • the amount of the specific pretreated silica (component B) thus obtained is preferably in the range of 20 to 60 parts, particularly preferably 100 parts by weight (hereinafter abbreviated as “parts”) of the diene rubber. Is in the range of 25 to 45 parts. That is, if the blending amount of the B component is too small, the reinforcing property is insufficient and the durability deteriorates. Conversely, if the blending amount of the B component is too large, the viscosity of the unvulcanized rubber increases and the workability deteriorates. Because it does.
  • the compounding amount of the sulfur (C component) varies depending on whether the anti-vibration rubber composition has heat resistance.
  • the amount of sulfur (C component) when used in applications where high heat resistance is not required (for example, vehicle suspension parts), is 1.5 parts or more with respect to 100 parts of the diene rubber. It is preferably in the range of 1.5 to 4.0 parts, and most preferably in the range of 2.0 to 3.0 parts.
  • the amount of sulfur (C component) is less than 1.5 parts relative to 100 parts of the diene rubber.
  • the amount is particularly preferably 1.0 part or less, and most preferably 0.7 part or less.
  • the vibration-insulating rubber composition of the present invention contains a vulcanization accelerator, a vulcanization aid, an anti-aging agent, a process oil, carbon black, a processing aid and the like as necessary. It doesn't matter. These may be used alone or in combination of two or more.
  • vulcanization accelerator examples include vulcanization accelerators such as thiazole, sulfenamide, thiuram, aldehyde ammonia, aldehyde amine, guanidine, and thiourea. These may be used alone or in combination of two or more. Of these, sulfenamide-based vulcanization accelerators are preferred because they are excellent in vulcanization reactivity.
  • the blending amount of the vulcanization accelerator is preferably in the range of 0.1 to 10 parts, particularly preferably in the range of 0.5 to 3 parts with respect to 100 parts of the diene rubber (component A).
  • Examples of the thiazole vulcanization accelerator include dibenzothiazyl disulfide (MBTS), 2-mercaptobenzothiazole (MBT), 2-mercaptobenzothiazole sodium salt (NaMBT), and 2-mercaptobenzothiazole zinc salt (ZnMBT). Etc. These may be used alone or in combination of two or more. Among these, dibenzothiazyl disulfide (MBTS) and 2-mercaptobenzothiazole (MBT) are preferable in terms of excellent vulcanization reactivity.
  • sulfenamide vulcanization accelerator examples include N-oxydiethylene-2-benzothiazolylsulfenamide (NOBS), N-cyclohexyl-2-benzothiazolylsulfenamide (CBS), Nt -Butyl-2-benzothiazoylsulfenamide (BBS), N, N'-dicyclohexyl-2-benzothiazoylsulfenamide and the like. These may be used alone or in combination of two or more.
  • thiuram vulcanization accelerator examples include tetramethylthiuram disulfide (TMTD), tetraethylthiuram disulfide (TETD), tetrabutylthiuram disulfide (TBTD), tetrakis (2-ethylhexyl) thiuram disulfide (TOT), tetrabenzylthiuram.
  • TMTD tetramethylthiuram disulfide
  • TETD tetraethylthiuram disulfide
  • TBTD tetrabutylthiuram disulfide
  • TOT tetrakis (2-ethylhexyl) thiuram disulfide
  • TOT tetrabenzylthiuram.
  • examples thereof include disulfide (TBzTD). These may be used alone or in combination of two or more.
  • vulcanization aid examples include zinc white (ZnO), stearic acid, magnesium oxide and the like. These may be used alone or in combination of two or more.
  • the blending amount of the vulcanization aid is preferably in the range of 1 to 25 parts, particularly preferably in the range of 3 to 10 parts with respect to 100 parts of the diene rubber (component A).
  • Anti-aging agent examples include carbamate-based anti-aging agents, phenylenediamine-based anti-aging agents, phenol-based anti-aging agents, diphenylamine-based anti-aging agents, quinoline-based anti-aging agents, imidazole-based anti-aging agents, and waxes. can give. These may be used alone or in combination of two or more.
  • the blending amount of the anti-aging agent is preferably in the range of 1 to 10 parts, particularly preferably in the range of 2 to 5 parts with respect to 100 parts of the diene rubber (component A).
  • Process oil examples include naphthenic oil, paraffinic oil, and aroma oil. These may be used alone or in combination of two or more.
  • the blending amount of the process oil is preferably in the range of 1 to 50 parts, particularly preferably in the range of 3 to 30 parts with respect to 100 parts of the diene rubber (component A).
  • Carbon black examples include various grades of carbon black such as SAF class, ISAF class, HAF class, MAF class, FEF class, GPF class, SRF class, FT class, and MT class. These may be used alone or in combination of two or more.
  • the blending amount of the carbon black is preferably in the range of 1 to 80 parts, particularly preferably in the range of 1 to 30 parts with respect to 100 parts of the diene rubber from the viewpoint of kneading processability.
  • Processing aid examples include fatty acid metal-based, fatty acid metal salt-based, fatty acid ester-based, and the like. These may be used alone or in combination of two or more.
  • the blending amount of the processing aid is preferably in the range of 0.5 to 10 parts, particularly preferably in the range of 1 to 5 parts with respect to 100 parts of the diene rubber (component A).
  • the anti-vibration rubber composition of the present invention can be prepared, for example, as follows. That is, the diene rubber (component A), the specific pretreated silica (component B), and a vulcanization aid, anti-aging agent, process oil, etc., as appropriate, are blended appropriately, and these are banbury mixers, etc. Kneading is started at a temperature of about 50 ° C., and kneading is performed at 100 to 160 ° C. for about 3 to 5 minutes. Next, sulfur (C component), a vulcanization accelerator, and the like are appropriately blended therein, and kneaded under a predetermined condition (for example, 50 ° C. ⁇ 4 minutes) using an open roll, whereby a vibration-proof rubber composition. Product can be prepared. Thereafter, the obtained anti-vibration rubber composition can be vulcanized at a high temperature (150 to 170 ° C.) for 5 to 30 minutes to produce an anti-vibration rubber.
  • component A diene rubber
  • the anti-vibration rubber composition of the present invention usually has the following vulcanizate characteristics.
  • compression set The anti-vibration rubber composition is press vulcanized and molded at 160 ° C. for 30 minutes to produce a test piece. Next, according to JIS K6262, the compression set (%) after 85 ° C. ⁇ 72 hours is measured while the test piece is compressed by 25%.
  • the compression set is preferably 45% or less, particularly preferably 40% or less.
  • Pretreated silica (component B) ⁇ Pretreated Silica A to E (for Examples), Pretreated Silica b and c (for Comparative Examples)>
  • Each pretreated silica was prepared as follows. That is, silica (manufactured by Tosoh Silica Co., Ltd., VN3, BET specific surface area: 180 to 230 m 2 / g) was surface-treated with a silane coupling agent (Evonik Degussa Co., Ltd., Si69), and the reaction amount of the silane coupling agent and A pretreated silica having a controlled unreacted amount was prepared.
  • the amount of silane coupling agent (%), pretreatment temperature (° C), pretreatment time (min), reaction amount (%) of silane coupling agent, and unreacted amount (%) of each silica are shown in the table below. As shown in Table 1 and Table 2.
  • the reaction amount and unreacted amount of the silane coupling agent were determined by using a differential thermal analyzer (TG-DTA) (manufactured by SII Nanotechnology) in a nitrogen atmosphere at a temperature of RT (20 ° C. ) ⁇ 600 ° C. (20 ° C./min), measurement was performed under the condition that the sample amount was about 5 mg.
  • TG-DTA differential thermal analyzer
  • Sulfur (C component) Sulfur (vulcanizing agent) (Tsurumi Chemical Co., Ltd., powdered sulfur)
  • Example 1 As shown in Table 1 below, 100 parts of natural rubber that is a diene rubber (component A), 35 parts of pretreated silica A, 5 parts of zinc oxide, 1 part of stearic acid, 3 parts of an antioxidant, 2 parts of wax and 5 parts of naphthenic oil were blended, and these were kneaded from a temperature of about 50 ° C. using a Banbury mixer, and kneaded for 4 minutes at the maximum temperature (150 ° C.). Next, 1 part of a vulcanization accelerator and 2.5 parts of sulfur (vulcanizing agent) are blended in this, and the rubber composition is kneaded at about 50 ° C. for 4 minutes using an open roll. Prepared.
  • Examples 2 to 7, Comparative Examples 1 to 4 A rubber composition was produced in the same manner as in Example 1 except that the types and blending ratios of the components were changed to those shown in Tables 1 and 2 below.
  • compression set Each rubber composition was press-vulcanized under the conditions of 160 ° C. ⁇ 30 minutes to prepare a test piece. Next, according to JIS K6262, the compression set (%) after 85 ° C. ⁇ 72 hours was measured while the test piece was compressed by 25%. In the evaluation, those having a compression set of 45 or less were evaluated as ⁇ , and those exceeding 45 were evaluated as ⁇ .
  • the product of Comparative Example 1 was inferior in durability because the untreated amount of pretreated silica a was too small.
  • the product of Comparative Example 2 was inferior in durability because pretreated silica b having a reaction amount that was too small was used.
  • the product of Comparative Example 3 was inferior in compression set characteristics because it used pretreated silica c in which the unreacted amount was too high.
  • the comparative example 4 product is simply using a silane coupling agent and silica in combination, and is merely using ordinary silica that has not been pretreated with the silane coupling agent, resulting in poor compression set characteristics. It was.
  • the said Example although it showed about the specific form in this invention, the said Example is only a mere illustration and is not interpreted limitedly. Further, all modifications belonging to the equivalent scope of the claims are within the scope of the present invention.
  • the anti-vibration rubber composition of the present invention can be used for applications where high heat resistance is not required (for example, vehicle suspension parts, side engine mounts, member mounts, etc.), and applications where high heat resistance is required (for example, , Engine mounts, torque rods, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 耐久性と圧縮永久歪み特性の双方の特性に優れた防振ゴム組成物の提供を目的とする。 下記の(A)~(C)成分を含有し、上記(B)成分中のシランカップリング剤の反応量が6.5重量%以上で、かつ、シランカップリング剤の未反応量が0.5~2.5重量%の範囲である防振ゴム組成物である。 (A)ジエン系ゴム。 (B)BET比表面積が180~230m2/gの範囲のシリカを、シランカップリング剤で表面処理してなる前処理シリカ。 (C)硫黄。

Description

防振ゴム組成物およびそれを用いた防振ゴム
 本発明は、防振ゴム組成物およびそれを用いた防振ゴムに関し、詳しくは車両サスペンション部品等に用いられる防振ゴム組成物およびそれを用いた防振ゴムに関するものである。
 従来より、振動伝達系を構成する2つの部材間に介装されて、両部材を防振連結する防振ゴムは、各種の分野において広く用いられており、例えば、自動車分野においては、エンジンマウント、ボデーマウント、メンバマウント、サスペンションブッシュ等として用いられている。
 このような防振ゴムに使用される防振ゴム組成物としては、通常、ジエン系ゴムと、小粒径シリカと、シランカップリング剤とを含有するものが使用されていた(特許文献1)。しかしながら、小粒径シリカと、シランカップリング剤とをゴムに練り込むと、シリカの再凝集により、未加硫状態で粘度が上昇し、圧縮永久歪みおよび貯蔵安定性が劣る。
 そのため、これを改良するため、近年、シランカップリング剤でシリカを表面処理した前処理シリカが使用されている。このような前処理シリカを用いたゴム組成物としては、例えば、ジエン系ゴムの1種以上を主たるゴム成分として含有するとともに、BET比表面積が40~170m2/gのシリカ微粒子を、予めシランカップリング剤によって表面処理されたものを含有するエンジンマウント用ゴム組成物(特許文献2)や、少なくとも1種のジエン系ゴムを含むゴム成分100重量部と、2~15重量%のシランカップリング剤で前処理されたシリカ20~120重量部と、前処理される前におけるシリカの2~10重量%のアルコキシランとを含むゴム組成物(特許文献3)等が提案されている。
特開平11-255964号公報 特開平11-193338号公報 特開2002-3652号公報
 しかしながら、上記特許文献2,3に記載のように前処理シリカを使用すると、シリカとシランカップリング剤との反応(化学結合)が不安定なため、前処理シリカの物性にばらつきが生じる等の難点がある。そのため、前処理シリカを用いた防振ゴム組成物の、耐久性や圧縮永久歪み特性等が劣っていた。
 本発明は、このような事情に鑑みなされたもので、耐久性と圧縮永久歪み特性の双方の特性に優れた防振ゴム組成物およびそれを用いた防振ゴムの提供をその目的とする。
 上記の目的を達成するため、本発明は、下記の(A)~(C)成分を含有し、上記(B)成分中のシランカップリング剤の反応量が6.5重量%以上で、かつ、シランカップリング剤の未反応量が0.5~2.5重量%の範囲である防振ゴム組成物を第1の要旨とする。
(A)ジエン系ゴム。
(B)BET比表面積が180~230m2/gの範囲のシリカを、シランカップリング剤で表面処理してなる前処理シリカ。
(C)硫黄。
 また、本発明は、上記防振ゴム組成物を用いた防振ゴムを第2の要旨とする。
 すなわち、本発明者らは、耐久性と圧縮永久歪み特性の双方の特性に優れた防振ゴム組成物を得るため、鋭意研究を重ねた。従来の前処理シリカにおいては、表面処理後のシランカップリング剤の未反応分が、ゴムの特性に悪影響を及ぼすと考えていたため、安全等のために、表面処理後に、アルコールやアセトン等により洗浄作業を行い、シリカに化学結合していない未反応のシランカップリングを除去するのが技術常識であった。本発明者らは、この前処理シリカについて研究を続けたところ、上記技術常識に反して、表面処理後に、アルコール等の洗浄を行わずに、シランカップリング剤の未反応分を意図的に残存させた前処理シリカを用いた場合には、防振ゴムの耐久性が向上することを突き止めた。すなわち、シランカップリング剤の反応量を6.5重量%以上に設定すると耐久性が向上し、かつ、シランカップリング剤の未反応量を0.5~2.5重量%の範囲に設定すると、耐久性がさらに向上し、圧縮永久歪み特性も両立させられることを見いだし、本発明に到達した。
 ここで、反応量とは、表面処理により、シリカと化学結合したシランカップリング剤の量(重量%)をいい、未反応量とは、シリカと化学結合していないシランカップリング剤の量(重量%)をいう。
 上記反応量および未反応量は、例えば、示差熱分析計(TG-DTA)により測定することができる。
 以上のように、本発明の防振ゴム組成物は、ジエン系ゴムと、BET比表面積が180~230m2/gの範囲のシリカを、シランカップリング剤により表面処理してなる前処理シリカと、硫黄とを含有している。そして、上記前処理シリカのシランカップリング剤の反応量が6.5重量%以上に設定されているため、耐久性が向上するとともに、シランカップリング剤の未反応量が0.5~2.5重量%の範囲に設定されているため、圧縮永久歪み特性も両立することができる。また、前処理シリカを使用しているため、シリカの再凝集が抑制され、未加硫ゴムの粘度上昇による貯蔵安定性の悪化を改善することができる。さらに、上記前処理シリカに用いるシリカは、BET比表面積が180~230m2/gの範囲の小粒径シリカであるため、作業性も向上する。
 また、上記(B)成分の前処理シリカの配合量が、上記(A)成分のジエン系ゴム100重量部に対して、20~60重量部の範囲であると、耐久性と圧縮永久歪み特性のバランスが良好となる。
 上記シランカップリング剤の仕込み量が、表面処理前のシリカ100重量%に対して8~18重量%の範囲であると、耐久性と圧縮永久歪み特性のバランスがより良好となる。
 上記(B)成分の前処理シリカが、洗浄されていないものであると、従来のような、表面処理後のアルコール等による洗浄工程を省略することができるため、コストダウンを図ることもできる。
 上記(C)成分の硫黄の配合量が、上記(A)成分のジエン系ゴム100重量部に対して、1.5重量部以上であると、それほど高い耐熱性が要求されない用途(例えば、車両サスペンション部品等)に用いることができる。
 つぎに、本発明の実施の形態について詳しく説明する。ただし、本発明は、この実施の形態に限られるものではない。
 本発明の防振ゴム組成物は、ジエン系ゴム(A成分)と、特定の前処理シリカ(B成分)と、硫黄(C成分)とを用いて得ることができる。
 ここで、本発明においては、上記特定の前処理シリカ(B成分)のシランカップリング剤の反応量が6.5重量%以上で、かつ、シランカップリング剤の未反応量が0.5~2.5重量%(以下、単に「%」と略す場合もある)の範囲に設定されていることが最大の特徴である。
《ジエン系ゴム(A成分)》
 上記ジエン系ゴム(A成分)としては、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、ブチルゴム(IIR)等があげられる。これらは単独でもしくは二種以上併せて用いられる。これらのなかでも、耐久性の点で、天然ゴムが好ましい。
《特定の前処理シリカ(B成分)》
 上記特定の前処理シリカ(B成分)は、BET比表面積が180~230m2/gの範囲のシリカを、シランカップリング剤(表面処理剤)により表面処理してなるものである。
 上記処理前のシリカのBET比表面積は、180~230m2/gの範囲である。すなわち、BET比表面積が小さすぎると、粒径が大きすぎるため、耐久性が悪化し、逆に大きすぎると、粒径が小さすぎるため、ジエン系ゴム(A成分)中に分散しにくく、作業性が悪くなるからである。ここで、上記BET比表面積は、例えば、ISO 5794/1に準じて測定することができる。
 上記シリカとしては、例えば、結晶性シリカ、無定形シリカ等が用いられる。また、上記シリカの平均粒子径(二次粒子径)は、5~30μmの範囲のものを用いることが好ましい。上記シリカの平均粒子径は、例えば、レーザー回折散乱式粒度分布測定装置を用いて測定することができる。
 そして、上記特定の前処理シリカ(B成分)は、前述のように、シランカップリング剤の反応量が6.5%以上で、シランカップリング剤の未反応量が0.5~2.5%の範囲に設定されている。
 なお、上記反応量および未反応量は、例えば、示差熱分析計(TG-DTA)等を用いて測定することができる。熱重量分析計(TG)は、試料の温度を変化させていった時に生じる重量変化を連続的に検出記録する装置で、示差熱分析計(DTA)は、試料と基準物質の温度差を温度の関数として測定する装置であり、TGとDTAとを組み合わせて使うことで、重量変化を測定することができる。
 上記反応量の算出方法を具体的に説明すると、まず、前処理シリカ(B成分)を示差熱分析計(TG-DTA)で測定することにより、シリカ成分の重量と、シランカップリング剤の重量をそれぞれ算出する。つぎに、前処理シリカ(B成分)を、アルコールやアセトンでシランカップリング剤の未反応分を洗浄し、示差熱分析計(TG-DTA)で測定することにより、洗浄前と洗浄後のシランカップリング剤の重量の差から、反応量を算出する。
〈反応量〉
 上記特定の前処理シリカ(B成分)の反応量は6.5%以上であり、好ましくは7.5%以上である。すなわち、反応量が低すぎると、耐久性が劣るからである。
〈未反応量〉
 上記特定の前処理シリカ(B成分)の未反応量は0.5~2.5%の範囲に設定されており、好ましくは0.8~1.5%の範囲である。すなわち、未反応量が低すぎると、耐久性が劣るからであり、逆に未反応量が高すぎると、圧縮永久歪み特性が悪化するからである。
 ここで、上記反応量と、未反応量との合計量は、好ましくは7.8~10.0%の範囲である。
 また、上記反応量と、未反応量との重量比は、反応量/未反応量=5/1~10/1の範囲が好ましい。
 そして、上記特定の前処理シリカ(B成分)は、シランカップリング剤(表面処理剤)の仕込み量や、反応時間、反応温度等を調整することにより得ることができる。
 上記特定の前処理シリカ(B成分)は、例えば、つぎのようにして作製することができる。すなわち、BET比表面積が180~230m2/gの範囲のシリカと、所定量のシランカップリング剤とを混合することにより行われる。
 より具体的には、上記シランカップリング剤の仕込み量は、表面処理前のシリカ100%に対して8~18%の範囲が好ましく、特に好ましくは11~15%の範囲である。
 上記シランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルファン、チオシアネートプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 なお、上記シランカップリング剤は、高耐熱性が要求される用途(例えば、エンジンマウント等)に用いる場合は、分子中に硫黄(S)原子の含有量が少ない(例えば、S原子が0個または1個)ものが用いられ、それほど高い耐熱性が要求されない用途(例えば、車両サスペンション部品等)に用いる場合は、分子中に硫黄(S)原子の含有量が多い(例えば、S原子が2個以上)ものでも使用することができる。
 そして、シランカップリング剤により表面処理された前処理シリカ(B成分)の硫黄(S)原子の量は、例えば、透過電子顕微鏡(TEM)に電子エネルギー損失分光法(EELS)を組み合わせたTEM-EELSを用いて、上記シリカ表面を元素分析すること等により検出することができる。
 上記表面処理の条件は、温度が80~120℃の範囲が好ましく、特に好ましくは100~120℃の範囲であり、反応時間は15~60分の範囲が好ましく、特に好ましくは15~30分の範囲である。
 このようにして得られる特定の前処理シリカ(B成分)の配合量は、上記ジエン系ゴム100重量部(以下「部」と略す)に対して、20~60部の範囲が好ましく、特に好ましくは25~45部の範囲である。すなわち、B成分の配合量が少なすぎると、補強性が不充分で耐久性が悪化し、逆にB成分の配合量が多すぎると、未加硫ゴムの粘度が高くなり、加工性が悪化するからである。
《硫黄(C成分)》
 上記硫黄(C成分)の配合量は、防振ゴム組成物の耐熱性の有無によって異なる。例えば、それほど高い耐熱性が要求されない用途(例えば、車両サスペンション部品等)に用いる場合は、上記硫黄(C成分)の配合量は、上記ジエン系ゴム100部に対して、1.5部以上配合することが好ましく、特に好ましくは1.5~4.0部の範囲、最も好ましくは2.0~3.0部の範囲である。
 一方、高耐熱性が要求される用途(例えば、エンジンマウント等)に用いる場合は、上記硫黄(C成分)の配合量は、上記ジエン系ゴム100部に対して、1.5部未満であることが好ましく、特に好ましくは1.0部以下、最も好ましくは0.7部以下である。
 本発明の防振ゴム組成物には、上記A~C成分以外に、加硫促進剤、加硫助剤、老化防止剤、プロセスオイル、カーボンブラック、加工助剤等を必要に応じて適宜配合しても差し支えない。これらは単独でもしくは二種以上併せて用いられる。
《加硫促進剤》
 上記加硫促進剤としては、例えば、チアゾール系,スルフェンアミド系,チウラム系,アルデヒドアンモニア系,アルデヒドアミン系,グアニジン系,チオウレア系等の加硫促進剤があげられる。これらは単独でもしくは二種以上併せて用いられる。これらのなかでも、加硫反応性に優れる点で、スルフェンアミド系加硫促進剤が好ましい。
 上記加硫促進剤の配合量は、上記ジエン系ゴム(A成分)100部に対して、0.1~10部の範囲が好ましく、特に好ましくは0.5~3部の範囲である。
 上記チアゾール系加硫促進剤としては、例えば、ジベンゾチアジルジスルフィド(MBTS)、2-メルカプトベンゾチアゾール(MBT)、2-メルカプトベンゾチアゾールナトリウム塩(NaMBT)、2-メルカプトベンゾチアゾール亜鉛塩(ZnMBT)等があげられる。これらは単独でもしくは二種以上併せて用いられる。これらのなかでも、加硫反応性に優れる点で、ジベンゾチアジルジスルフィド(MBTS)、2-メルカプトベンゾチアゾール(MBT)が好ましい。
 上記スルフェンアミド系加硫促進剤としては、例えば、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド(NOBS)、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N-t-ブチル-2-ベンゾチアゾイルスルフェンアミド(BBS)、N,N′-ジシクロヘキシル-2-ベンゾチアゾイルスルフェンアミド等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記チウラム系加硫促進剤としては、例えば、テトラメチルチウラムジスルフィド(TMTD)、テトラエチルチウラムジスルフィド(TETD)、テトラブチルチウラムジスルフィド(TBTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT)、テトラベンジルチウラムジスルフィド(TBzTD)等があげられる。これらは単独でもしくは二種以上併せて用いられる。
《加硫助剤》
 上記加硫助剤としては、例えば、亜鉛華(ZnO)、ステアリン酸、酸化マグネシウム等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記加硫助剤の配合量は、上記ジエン系ゴム(A成分)100部に対して、1~25部の範囲が好ましく、特に好ましくは3~10部の範囲である。
《老化防止剤》
 上記老化防止剤としては、例えば、カルバメート系老化防止剤、フェニレンジアミン系老化防止剤、フェノール系老化防止剤、ジフェニルアミン系老化防止剤、キノリン系老化防止剤、イミダゾール系老化防止剤、ワックス類等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記老化防止剤の配合量は、上記ジエン系ゴム(A成分)100部に対して、1~10部の範囲が好ましく、特に好ましくは2~5部の範囲である。
《プロセスオイル》
 上記プロセスオイルとしては、例えば、ナフテン系オイル、パラフィン系オイル、アロマ系オイル等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記プロセスオイルの配合量は、上記ジエン系ゴム(A成分)100部に対して、1~50部の範囲が好ましく、特に好ましくは3~30部の範囲である。
《カーボンブラック》
 上記カーボンブラックとしては、例えば、SAF級,ISAF級,HAF級,MAF級,FEF級,GPF級,SRF級,FT級,MT級等の種々のグレードのカーボンブラックがあげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記カーボンブラックの配合量は、練り加工性の点から、上記ジエン系ゴム100部に対して1~80部の範囲が好ましく、特に好ましくは1~30部の範囲である。
《加工助剤》
 上記加工助剤としては、例えば、脂肪酸金属系、脂肪酸金属塩系、脂肪酸エステル系、等があげられる。これらは単独でもしくは二種以上併せて用いられる。
 上記加工助剤の配合量は、上記ジエン系ゴム(A成分)100部に対して0.5~10部の範囲が好ましく、特に好ましくは1~5部の範囲である。
 本発明の防振ゴム組成物は、例えば、つぎのようにして調製することができる。すなわち、上記ジエン系ゴム(A成分)と、特定の前処理シリカ(B成分)と、必要に応じて加硫助剤,老化防止剤,プロセスオイル等を適宜に配合し、これらをバンバリーミキサー等を用いて、約50℃の温度から混練りを開始し、100~160℃で、3~5分間程度混練を行う。つぎに、これに、硫黄(C成分),加硫促進剤等を適宜に配合し、オープンロールを用いて、所定条件(例えば、50℃×4分間)で混練することにより、防振ゴム組成物を調製することができる。その後、得られた防振ゴム組成物を、高温(150~170℃)で5~30分間、加硫することにより防振ゴムを作製することができる。
 本発明の防振ゴム組成物は、通常、下記の加硫物特性を備えている。
〔圧縮永久歪み〕
 防振ゴム組成物を、160℃×30分の条件でプレス加硫成形し、テストピースを作製する。つぎに、JIS K6262に従い、上記テストピースを25%圧縮させたまま、85℃×72時間後の圧縮永久歪み(%)を測定する。
 圧縮永久歪みは、45%以下が好ましく、特に好ましくは40%以下である。
 つぎに、実施例について比較例と併せて説明する。ただし、本発明はこれら実施例に限定されるものではない。
 まず、実施例および比較例に先立ち、下記に示す材料を準備した。
〔ジエン系ゴム(A成分)〕
 天然ゴム(RSS♯3)
〔前処理シリカ(B成分)〕
〈前処理シリカA~E(実施例用)、前処理シリカb,c(比較例用)〉
 以下のようにして、各前処理シリカを調製した。すなわち、シリカ(東ソーシリカ社製、VN3、BET比表面積:180~230m2/g)を、シランカップリング剤(エボニックデグサ社製、Si69)で表面処理して、シランカップリング剤の反応量および未反応量を制御した前処理シリカを調製した。
 各シリカのシランカップリング剤の仕込み量(%)、前処理温度(℃)、前処理時間(分)、シランカップリング剤の反応量(%)、未反応量(%)は、下記の表1および表2に示す通りである。
 なお、上記シランカップリング剤の反応量および未反応量は、示差熱分析計(TG-DTA)(エスアイアイ・ナノテクノロジー社製)を用いて、窒素雰囲気中にて、温度がRT(20℃)→600℃(20℃/min)、試料量が約5mgの条件で測定した。
〈前処理シリカa(比較例用)〉
 エボニックデグサ社製、カプシール8113
〔シリカ〕
 東ソーシリカ社製、VN3(BET比表面積:180~230m2/g)
〔シランカップリング剤〕
 エボニックデグサ社製、Si69
〔酸化亜鉛〕
 堺化学工業社製、酸化亜鉛2種
〔ステアリン酸〕
 花王社製、ルーナックS30
〔老化防止剤〕
 大内新興化学社製、ノクラック6C
〔ワックス〕
 大内新興化学社製、サンノック
〔ナフテン系オイル〕
 富士興産社製、フツコールFLEX♯1150
〔加硫促進剤〕
 大内新興化学社製、ノクセラーCZ-G
〔硫黄(C成分)〕
 硫黄(加硫剤)(鶴見化学工業社製、粉末硫黄)
〔実施例1〕
 下記の表1に示すように、ジエン系ゴム(A成分)である天然ゴム100部と、前処理シリカA35部と、酸化亜鉛5部と、ステアリン酸1部と、老化防止剤3部と、ワックス2部と、ナフテン系オイル5部とを配合し、これらをバンバリーミキサーを用いて、約50℃の温度から混練りを開始し、最高温度(150℃)で4分間混練を行った。つぎに、これに、加硫促進剤1部と、硫黄(加硫剤)2.5部とを配合し、オープンロールを用いて、約50℃で4分間混練することにより、ゴム組成物を調製した。
〔実施例2~7、比較例1~4〕
 各成分の種類および配合割合を、下記の表1および表2に示すものに変更する以外は、実施例1と同様にしてゴム組成物を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 このようにして得られた実施例および比較例の各ゴム組成物を用いて、下記の基準に従って、各特性の評価を行った。その結果を、上記表1および表2に併せて示した。
〔圧縮永久歪み〕
 各ゴム組成物を、160℃×30分の条件でプレス加硫成形し、テストピースを作製した。つぎに、JIS K6262に従い、上記テストピースを25%圧縮させたまま、85℃×72時間後の圧縮永久歪み(%)を測定した。
 評価は、圧縮永久歪みが45以下のものを○、45を超えるものを×とした。
〔耐久性評価〕
 各ゴム組成物を用いて、150℃×20分間でプレス加硫し、120mm×120mm×厚み2mmのゴム試験片を作製した。そして、このゴム試験片を用いて、JIS-3号ダンベルに打ち抜き、0~100%の伸張を破断するまで繰り返し、その耐久性を評価した。
 耐久性評価は、下記の数式(1)で示す値(X)を超えるものを○、数式(1)で示す値(X)以下のものを×とした。
 なお、数式(1)中の静的ばね定数(Ks)は、以下のようにして測定した。
〈静的ばね定数(Ks)〉
 各ゴム組成物を用い、円板状金具(直径60mm、厚み6mm)をゴム片( 直径50mm、高さ25mm)の上下面に170℃×30分の加硫条件でプレスして、加硫接着させたテストピースを作製した。つぎに、上記テストピースを円柱軸方向に7mm圧縮させ、2回目の往きの荷重たわみ曲線から1.5mmと3.5mmのたわみ時の荷重を読み取って、静的ばね定数(Ks)(N/mm)を算出した。
Figure JPOXMLDOC01-appb-M000003
 上記表1および表2の結果から、実施例品は、反応量および未反応量が特定の範囲に調整された前処理シリカを使用しているため、耐久性と圧縮永久歪み特性を両立させることができた。
 これに対して、比較例1品は、未反応量が小さすぎる前処理シリカaを使用しているため、耐久性が劣っていた。
 比較例2品は、反応量が小さすぎる前処理シリカbを使用しているため、耐久性が劣っていた。
 比較例3品は、未反応量が高すぎる前処理シリカcを使用しているため、圧縮永久歪み特性が劣っていた。
 比較例4品は、シランカップリング剤とシリカを単に併用しているだけで、シランカップリング剤で前処理していない通常のシリカを使用しているにすぎないため、圧縮永久歪み特性が劣っていた。
 なお、上記実施例においては、本発明における具体的な形態について示したが、上記実施例は単なる例示にすぎず、限定的に解釈されるものではない。また、請求の範囲の均等範囲に属する変更は、全て本発明の範囲内である。
 本発明の防振ゴム組成物は、それほど高い耐熱性が要求されない用途(例えば、車両サスペンション部品、サイドエンジンマウント、メンバーマウント等)に用いることができる他、高耐熱性が要求される用途(例えば、エンジンマウント、トルクロッド等)に用いることもできる。

Claims (7)

  1.  下記の(A)~(C)成分を含有し、上記(B)成分中のシランカップリング剤の反応量が6.5重量%以上で、かつ、シランカップリング剤の未反応量が0.5~2.5重量%の範囲であることを特徴とする防振ゴム組成物。
    (A)ジエン系ゴム。
    (B)BET比表面積が180~230m2/gの範囲のシリカを、シランカップリング剤で表面処理してなる前処理シリカ。
    (C)硫黄。
  2.  上記(B)成分の前処理シリカの配合量が、上記(A)成分のジエン系ゴム100重量部に対して、20~60重量部の範囲である請求項1記載の防振ゴム組成物。
  3.  上記シランカップリング剤の仕込み量が、表面処理前のシリカ100重量%に対して8~18重量%の範囲である請求項1または2記載の防振ゴム組成物。
  4.  上記(B)成分の前処理シリカが、洗浄されていないものである請求項1~3のいずれか一項に記載の防振ゴム組成物。
  5.  上記(C)成分の硫黄の配合量が、上記(A)成分のジエン系ゴム100重量部に対して、1.5重量部以上である請求項1~4のいずれか一項に記載の防振ゴム組成物。
  6.  車両サスペンション部品に用いられる請求項1~5のいずれか一項に記載の防振ゴム組成物。
  7.  請求項1~6のいずれか一項に記載の防振ゴム組成物を用いたことを特徴とする防振ゴム。
PCT/JP2011/053409 2010-02-24 2011-02-17 防振ゴム組成物およびそれを用いた防振ゴム WO2011105284A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11747248.0A EP2540771B1 (en) 2010-02-24 2011-02-17 Vibration-isolating rubber composition and rubber vibration isolator using same
CN201180010605.3A CN102770485B (zh) 2010-02-24 2011-02-17 防振橡胶组合物及使用其的防振橡胶
JP2012501757A JP5465317B2 (ja) 2010-02-24 2011-02-17 防振ゴム組成物およびそれを用いた防振ゴム
US13/561,487 US8674002B2 (en) 2010-02-24 2012-07-30 Vibration-proof rubber composition and vibration-proof rubber using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-039432 2010-02-24
JP2010039432 2010-02-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/561,487 Continuation US8674002B2 (en) 2010-02-24 2012-07-30 Vibration-proof rubber composition and vibration-proof rubber using the same

Publications (1)

Publication Number Publication Date
WO2011105284A1 true WO2011105284A1 (ja) 2011-09-01

Family

ID=44506696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053409 WO2011105284A1 (ja) 2010-02-24 2011-02-17 防振ゴム組成物およびそれを用いた防振ゴム

Country Status (5)

Country Link
US (1) US8674002B2 (ja)
EP (1) EP2540771B1 (ja)
JP (1) JP5465317B2 (ja)
CN (1) CN102770485B (ja)
WO (1) WO2011105284A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731858A (zh) * 2012-07-04 2012-10-17 长春市建邦汽车零部件有限公司 异戊胶在制造推力杆橡胶减震接头中的应用
JP2016124880A (ja) * 2014-12-26 2016-07-11 住友理工株式会社 防振ゴム組成物
JP2020143229A (ja) * 2019-03-07 2020-09-10 住友ゴム工業株式会社 シリカとシランカップリング剤を含むゴム組成物のシランカップリング剤の反応率の算出方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019213185A1 (en) 2018-05-04 2019-11-07 Bridgestone Americas Tire Operations, Llc Tire tread rubber composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193338A (ja) 1997-12-26 1999-07-21 Toyo Tire & Rubber Co Ltd エンジンマウント用ゴム組成物
JPH11255964A (ja) 1998-03-06 1999-09-21 Bridgestone Corp ゴム組成物
JP2002003652A (ja) 2000-06-20 2002-01-09 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2004108932A (ja) * 2002-09-18 2004-04-08 Sumitomo Electric Ind Ltd 無機系充填剤に表面処理したシランカップリング剤の反応率評価方法
JP2006052105A (ja) * 2004-08-11 2006-02-23 Dow Corning Toray Co Ltd シランカップリング剤処理シリカおよびその調製方法、防振・免振用のゴム組成物およびその製造方法、並びに、防振・免振用ゴム製品およびその成形方法
JP2006337342A (ja) * 2005-06-06 2006-12-14 Yokohama Rubber Co Ltd:The シリカの反応量測定方法及びその方法を用いて反応量を規定したゴム組成物
JP2007023155A (ja) * 2005-07-15 2007-02-01 Sumitomo Rubber Ind Ltd ゴム組成物
JP2009215338A (ja) * 2008-03-07 2009-09-24 Daiso Co Ltd シリカ配合ゴム組成物とその架橋物、及びその製造方法。
JP2009256580A (ja) * 2008-03-27 2009-11-05 Tokai Rubber Ind Ltd 防振ゴム組成物の製法およびそれによって得られた防振ゴム組成物ならびに防振ゴム
JP2010216952A (ja) * 2009-03-16 2010-09-30 Toyo Tire & Rubber Co Ltd シリカ配合におけるシランカップリング剤の反応量測定方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4322319A (en) * 1979-08-29 1982-03-30 Japan Synthetic Rubber Co., Ltd. Rubber composition containing crosslinkable processing aid
JPH0650134B2 (ja) * 1988-11-25 1994-06-29 鬼怒川ゴム工業株式会社 防振ゴムブッシュ
US6344518B1 (en) * 1998-11-10 2002-02-05 Jsr Corporation Conjugated diolefin copolymer rubber and rubber composition
JP4304791B2 (ja) * 1998-11-10 2009-07-29 Jsr株式会社 共役ジオレフィン系共重合ゴム及びゴム組成物
JP2001164051A (ja) * 1999-12-06 2001-06-19 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物およびそれをタイヤトレッドに用いた空気入タイヤ
US6465581B1 (en) * 2001-01-24 2002-10-15 The Goodyear Tire & Rubber Company Silica reinforced rubber composition which contains stabilized unsymmetrical coupling agents and article of manufacture, including a tire, having at least one component comprised of such rubber composition
JP2004106932A (ja) * 2002-09-20 2004-04-08 Pieras Co Ltd 商品容器
JP2005052105A (ja) * 2003-08-06 2005-03-03 Paiteku Osaka Kk 光源装置および植物の栽培方法
JP4088259B2 (ja) * 2004-02-19 2008-05-21 住友ゴム工業株式会社 ゴム組成物
US20090143538A1 (en) 2004-08-11 2009-06-04 Dow Corning Toray Co., Ltd. Silane-Coupling-Agent-Treated Silica, Preparation Method Thereof, And Vibration-Damping And Vibration-Isolating Rubber Composition Containing The Same
JP2007217562A (ja) * 2006-02-16 2007-08-30 Bridgestone Corp ゴム組成物及びこれを用いたタイヤ
JP5436820B2 (ja) * 2008-09-02 2014-03-05 東洋ゴム工業株式会社 表面処理無機酸化物、並びにそれを用いたゴム組成物及び空気入りタイヤ
JP2011162720A (ja) * 2010-02-12 2011-08-25 Yamashita Rubber Co Ltd 防振ゴム組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193338A (ja) 1997-12-26 1999-07-21 Toyo Tire & Rubber Co Ltd エンジンマウント用ゴム組成物
JPH11255964A (ja) 1998-03-06 1999-09-21 Bridgestone Corp ゴム組成物
JP2002003652A (ja) 2000-06-20 2002-01-09 Bridgestone Corp ゴム組成物及びそれを用いた空気入りタイヤ
JP2004108932A (ja) * 2002-09-18 2004-04-08 Sumitomo Electric Ind Ltd 無機系充填剤に表面処理したシランカップリング剤の反応率評価方法
JP2006052105A (ja) * 2004-08-11 2006-02-23 Dow Corning Toray Co Ltd シランカップリング剤処理シリカおよびその調製方法、防振・免振用のゴム組成物およびその製造方法、並びに、防振・免振用ゴム製品およびその成形方法
JP2006337342A (ja) * 2005-06-06 2006-12-14 Yokohama Rubber Co Ltd:The シリカの反応量測定方法及びその方法を用いて反応量を規定したゴム組成物
JP2007023155A (ja) * 2005-07-15 2007-02-01 Sumitomo Rubber Ind Ltd ゴム組成物
JP2009215338A (ja) * 2008-03-07 2009-09-24 Daiso Co Ltd シリカ配合ゴム組成物とその架橋物、及びその製造方法。
JP2009256580A (ja) * 2008-03-27 2009-11-05 Tokai Rubber Ind Ltd 防振ゴム組成物の製法およびそれによって得られた防振ゴム組成物ならびに防振ゴム
JP2010216952A (ja) * 2009-03-16 2010-09-30 Toyo Tire & Rubber Co Ltd シリカ配合におけるシランカップリング剤の反応量測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2540771A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102731858A (zh) * 2012-07-04 2012-10-17 长春市建邦汽车零部件有限公司 异戊胶在制造推力杆橡胶减震接头中的应用
JP2016124880A (ja) * 2014-12-26 2016-07-11 住友理工株式会社 防振ゴム組成物
JP2020143229A (ja) * 2019-03-07 2020-09-10 住友ゴム工業株式会社 シリカとシランカップリング剤を含むゴム組成物のシランカップリング剤の反応率の算出方法

Also Published As

Publication number Publication date
EP2540771A1 (en) 2013-01-02
CN102770485B (zh) 2014-04-23
JP5465317B2 (ja) 2014-04-09
CN102770485A (zh) 2012-11-07
EP2540771A4 (en) 2013-09-25
US20120302692A1 (en) 2012-11-29
US8674002B2 (en) 2014-03-18
EP2540771B1 (en) 2014-04-30
JPWO2011105284A1 (ja) 2013-06-20

Similar Documents

Publication Publication Date Title
JP5420224B2 (ja) 防振ゴム用ゴム組成物、防振ゴムおよびその製造方法
JP2006199792A (ja) 防振ゴム用ゴム組成物及び防振ゴム
JP5465317B2 (ja) 防振ゴム組成物およびそれを用いた防振ゴム
JP6408905B2 (ja) 防振ゴム組成物
JP7037986B2 (ja) 電気自動車用防振ゴム組成物および電気自動車用防振ゴム部材
JP2014105236A (ja) 防振ゴム用ゴム組成物および防振ゴム
JP2014077050A (ja) 防振ゴム用ゴム組成物および防振ゴム
JP7543051B2 (ja) ゴム組成物およびゴム組成物を加硫成形してなる防振ゴム
JP6860338B2 (ja) 防振ゴム用ゴム組成物
JP2007314697A (ja) 防振ゴム組成物及び防振ゴム
JP2013151584A (ja) 防振ゴム用ゴム組成物
JP5968191B2 (ja) 防振ゴム組成物
JP2011162585A (ja) 防振ゴム用ゴム組成物および防振ゴム
JP7405593B2 (ja) 防振ゴム用ゴム組成物および防振ゴム
JP2020090665A (ja) 防振ゴム用ゴム組成物および防振ゴム
JP2010209285A (ja) 防振ゴム用ゴム組成物および防振ゴム
JP5248174B2 (ja) 防振ゴム用ゴム組成物及び防振ゴム
JP2018095809A (ja) 防振ゴム用ゴム組成物
JP2004292679A (ja) 防振ゴム組成物およびそれを用いた自動車用防振ゴム
JP7288749B2 (ja) 防振ゴム用ゴム組成物および防振ゴム
JP2008208204A (ja) 防振ゴム組成物およびそれを用いた防振ゴム
JP4581760B2 (ja) 車両防振ゴム用防振ゴム組成物およびそれを用いた車両防振ゴム
JP6803219B2 (ja) 防振ゴム用ゴム組成物
WO2023127786A1 (ja) 防振ゴム組成物および防振ゴム部材
JP2018083880A (ja) 防振ゴム用ゴム組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010605.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501757

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011747248

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE