WO2011105278A1 - 複合半透膜およびその製造方法 - Google Patents
複合半透膜およびその製造方法 Download PDFInfo
- Publication number
- WO2011105278A1 WO2011105278A1 PCT/JP2011/053375 JP2011053375W WO2011105278A1 WO 2011105278 A1 WO2011105278 A1 WO 2011105278A1 JP 2011053375 W JP2011053375 W JP 2011053375W WO 2011105278 A1 WO2011105278 A1 WO 2011105278A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- functional layer
- separation functional
- membrane
- composite semipermeable
- microporous support
- Prior art date
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 270
- 239000002131 composite material Substances 0.000 title claims abstract description 116
- 238000000034 method Methods 0.000 title claims description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 230000008569 process Effects 0.000 title description 6
- 238000000926 separation method Methods 0.000 claims abstract description 134
- 239000002346 layers by function Substances 0.000 claims abstract description 118
- 239000004952 Polyamide Substances 0.000 claims abstract description 93
- 229920002647 polyamide Polymers 0.000 claims abstract description 93
- 150000001412 amines Chemical class 0.000 claims abstract description 61
- 150000004820 halides Chemical class 0.000 claims abstract description 53
- 239000002253 acid Substances 0.000 claims abstract description 51
- 238000012696 Interfacial polycondensation Methods 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract description 15
- 238000006068 polycondensation reaction Methods 0.000 claims abstract description 6
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 61
- 239000000243 solution Substances 0.000 claims description 59
- 239000007864 aqueous solution Substances 0.000 claims description 58
- 150000001875 compounds Chemical class 0.000 claims description 57
- 239000000835 fiber Substances 0.000 claims description 43
- 239000003153 chemical reaction reagent Substances 0.000 claims description 34
- 239000012954 diazonium Substances 0.000 claims description 32
- 150000001989 diazonium salts Chemical class 0.000 claims description 32
- 239000004745 nonwoven fabric Substances 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 13
- 230000010933 acylation Effects 0.000 claims description 12
- 238000005917 acylation reaction Methods 0.000 claims description 12
- 229920000728 polyester Polymers 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 63
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 abstract description 31
- 229910052796 boron Inorganic materials 0.000 abstract description 31
- 230000035699 permeability Effects 0.000 abstract description 20
- -1 aliphatic amines Chemical class 0.000 description 18
- 239000003960 organic solvent Substances 0.000 description 17
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 14
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 13
- 230000004907 flux Effects 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000007654 immersion Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 10
- 239000013535 sea water Substances 0.000 description 10
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 125000003118 aryl group Chemical group 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- LPXPTNMVRIOKMN-UHFFFAOYSA-M sodium nitrite Chemical compound [Na+].[O-]N=O LPXPTNMVRIOKMN-UHFFFAOYSA-M 0.000 description 8
- 150000004982 aromatic amines Chemical class 0.000 description 7
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 125000003277 amino group Chemical group 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920002492 poly(sulfone) Polymers 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012695 Interfacial polymerization Methods 0.000 description 4
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000012267 brine Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000010612 desalination reaction Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 4
- 235000010288 sodium nitrite Nutrition 0.000 description 4
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 230000021615 conjugation Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 2
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 150000001491 aromatic compounds Chemical class 0.000 description 2
- RPHKINMPYFJSCF-UHFFFAOYSA-N benzene-1,3,5-triamine Chemical compound NC1=CC(N)=CC(N)=C1 RPHKINMPYFJSCF-UHFFFAOYSA-N 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 125000006575 electron-withdrawing group Chemical group 0.000 description 2
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 229940018564 m-phenylenediamine Drugs 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 150000002989 phenols Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- IREVRWRNACELSM-UHFFFAOYSA-J ruthenium(4+);tetrachloride Chemical compound Cl[Ru](Cl)(Cl)Cl IREVRWRNACELSM-UHFFFAOYSA-J 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- AMBFNDRKYCJLNH-UHFFFAOYSA-N 1-(3-piperidin-1-ylpropyl)piperidine Chemical compound C1CCCCN1CCCN1CCCCC1 AMBFNDRKYCJLNH-UHFFFAOYSA-N 0.000 description 1
- RILZRCJGXSFXNE-UHFFFAOYSA-N 2-[4-(trifluoromethoxy)phenyl]ethanol Chemical compound OCCC1=CC=C(OC(F)(F)F)C=C1 RILZRCJGXSFXNE-UHFFFAOYSA-N 0.000 description 1
- UENRXLSRMCSUSN-UHFFFAOYSA-N 3,5-diaminobenzoic acid Chemical compound NC1=CC(N)=CC(C(O)=O)=C1 UENRXLSRMCSUSN-UHFFFAOYSA-N 0.000 description 1
- ZDBWYUOUYNQZBM-UHFFFAOYSA-N 3-(aminomethyl)aniline Chemical compound NCC1=CC=CC(N)=C1 ZDBWYUOUYNQZBM-UHFFFAOYSA-N 0.000 description 1
- GNIZQCLFRCBEGE-UHFFFAOYSA-N 3-phenylbenzene-1,2-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C=2C=CC=CC=2)=C1C(Cl)=O GNIZQCLFRCBEGE-UHFFFAOYSA-N 0.000 description 1
- BFWYZZPDZZGSLJ-UHFFFAOYSA-N 4-(aminomethyl)aniline Chemical compound NCC1=CC=C(N)C=C1 BFWYZZPDZZGSLJ-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- SUAKHGWARZSWIH-UHFFFAOYSA-N N,N‐diethylformamide Chemical compound CCN(CC)C=O SUAKHGWARZSWIH-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical group ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N [2-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC=C1CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PWAXUOGZOSVGBO-UHFFFAOYSA-N adipoyl chloride Chemical compound ClC(=O)CCCCC(Cl)=O PWAXUOGZOSVGBO-UHFFFAOYSA-N 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- 238000006149 azo coupling reaction Methods 0.000 description 1
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical compound C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 description 1
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- AKXTUELRIVKQSN-UHFFFAOYSA-N cyclobutane-1,2,3-tricarbonyl chloride Chemical compound ClC(=O)C1CC(C(Cl)=O)C1C(Cl)=O AKXTUELRIVKQSN-UHFFFAOYSA-N 0.000 description 1
- YMHQVDAATAEZLO-UHFFFAOYSA-N cyclohexane-1,1-diamine Chemical compound NC1(N)CCCCC1 YMHQVDAATAEZLO-UHFFFAOYSA-N 0.000 description 1
- MLCGVCXKDYTMRG-UHFFFAOYSA-N cyclohexane-1,1-dicarbonyl chloride Chemical compound ClC(=O)C1(C(Cl)=O)CCCCC1 MLCGVCXKDYTMRG-UHFFFAOYSA-N 0.000 description 1
- HIZMBMVNMBMUEE-UHFFFAOYSA-N cyclohexane-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1CC(C(Cl)=O)CC(C(Cl)=O)C1 HIZMBMVNMBMUEE-UHFFFAOYSA-N 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
- YYLFLXVROAGUFH-UHFFFAOYSA-N cyclopentane-1,1-dicarbonyl chloride Chemical compound ClC(=O)C1(C(Cl)=O)CCCC1 YYLFLXVROAGUFH-UHFFFAOYSA-N 0.000 description 1
- WMPOZLHMGVKUEJ-UHFFFAOYSA-N decanedioyl dichloride Chemical compound ClC(=O)CCCCCCCCC(Cl)=O WMPOZLHMGVKUEJ-UHFFFAOYSA-N 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 1
- 125000005677 ethinylene group Chemical group [*:2]C#C[*:1] 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 230000009036 growth inhibition Effects 0.000 description 1
- 125000005549 heteroarylene group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 229940006461 iodide ion Drugs 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- AJFDBNQQDYLMJN-UHFFFAOYSA-N n,n-diethylacetamide Chemical compound CCN(CC)C(C)=O AJFDBNQQDYLMJN-UHFFFAOYSA-N 0.000 description 1
- WUQGUKHJXFDUQF-UHFFFAOYSA-N naphthalene-1,2-dicarbonyl chloride Chemical compound C1=CC=CC2=C(C(Cl)=O)C(C(=O)Cl)=CC=C21 WUQGUKHJXFDUQF-UHFFFAOYSA-N 0.000 description 1
- 201000001119 neuropathy Diseases 0.000 description 1
- 230000007823 neuropathy Effects 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000000018 nitroso group Chemical group N(=O)* 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- LSHSZIMRIAJWRM-UHFFFAOYSA-N oxolane-2,3-dicarbonyl chloride Chemical compound ClC(=O)C1CCOC1C(Cl)=O LSHSZIMRIAJWRM-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- BCIIMDOZSUCSEN-UHFFFAOYSA-N piperidin-4-amine Chemical compound NC1CCNCC1 BCIIMDOZSUCSEN-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 125000004585 polycyclic heterocycle group Chemical group 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0083—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0093—Chemical modification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0081—After-treatment of organic or inorganic membranes
- B01D67/0093—Chemical modification
- B01D67/00931—Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
- B01D69/107—Organic support material
- B01D69/1071—Woven, non-woven or net mesh
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/28—Preparatory processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/08—Specific temperatures applied
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/08—Specific temperatures applied
- B01D2323/081—Heating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/36—Introduction of specific chemical groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/06—Surface irregularities
Definitions
- the present invention relates to a composite semipermeable membrane useful for selective separation of a liquid mixture and a method for producing the same.
- the composite semipermeable membrane obtained by the present invention can be suitably used for desalination of seawater and brine, for example.
- Membranes used in membrane separation methods include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, and reverse osmosis membranes. These membranes can be used for beverages such as seawater, brine, and water containing harmful substances. It is used to obtain water, to manufacture industrial ultrapure water, to treat wastewater, to recover valuable materials.
- composite semipermeable membranes which have an active layer in which a gel layer and a polymer are crosslinked on a porous support membrane, and monomers on the porous support membrane.
- composite semipermeable membranes obtained by coating a porous support membrane with a separation functional layer made of a crosslinked polyamide obtained by polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide have permeability and selective separation. It is widely used as a highly reliable separation membrane.
- Patent Documents 1 and 2 various means for improving the boron removal performance of the composite semipermeable membrane have been proposed.
- Patent Document 1 discloses a method for improving the performance by heat-treating a composite semipermeable membrane formed by interfacial polymerization.
- Patent Document 2 discloses a method in which a composite semipermeable membrane formed by interfacial polymerization is brought into contact with a bromine-containing free chlorine aqueous solution.
- Patent Document 3 can improve the water permeability while maintaining the boron removal rate before the treatment, but further high boron removal rate and high water permeability are desired.
- An object of the present invention is to solve these conventional drawbacks and to provide a composite semipermeable membrane having high boron removal performance and high water permeability.
- the composite semipermeable membrane of the present invention has the following configuration [1] or [2]. That is, [1] A polyamide separation functional layer having a polyamide separation functional layer on a microporous support membrane, the yellowness of the polyamide separation functional layer being 10 or more and 40 or less, and a polyamide separation functional layer per 1 ⁇ m length of the microporous support membrane A composite semipermeable membrane having an actual length of 2 ⁇ m to 5 ⁇ m, or [2] having a polyamide separation functional layer formed by polycondensation of a polyfunctional amine and a polyfunctional acid halide on a microporous support membrane, and the polyamide separation functional layer is (A) a polyfunctional amine and a polyfunctional It is a composite semipermeable membrane formed by the steps of interfacial polycondensation in which an acid halide is brought into contact at 40 ° C. to 70 ° C., and then (B) heat treatment at 70 ° C. to 150 °
- the substrate of the microporous support membrane is preferably made of polyester, and the substrate is preferably a long fiber nonwoven fabric.
- the base material is made of a long-fiber non-woven fabric
- the fibers of the long-fiber non-woven fabric arranged on the side opposite to the microporous support are made of fibers arranged on the microporous support side.
- the film is vertically oriented with respect to the film forming direction.
- the base material composed of the long-fiber nonwoven fabric has a fiber orientation degree of 0 ° to 25 ° of the fiber disposed on the side opposite to the microporous support, and the microporous support side It is preferable that the difference in the degree of orientation with respect to the fibers disposed in is 10 ° to 90 °.
- the method for producing a composite semipermeable membrane [1] of the present invention has the following configuration [3] or [4]. That is, [3] A polyamide separation functional layer is formed by bringing a polyfunctional amine aqueous solution and a polyfunctional acid halide-containing solution into contact with each other on a microporous support membrane, and then the polyamide separation functional layer has a primary amino group.
- Production of a composite semipermeable membrane comprising a step of contacting a compound, a step of contacting with a reagent that reacts with a primary amino group to form a diazonium salt or a derivative thereof, and a step of contacting with a reagent that reacts with a diazonium salt or a derivative thereof.
- the temperature of the membrane surface immediately after contacting the polyfunctional amine aqueous solution and the polyfunctional acid halide-containing solution is in the range of 25 to 60 ° C., and the polyamide separation functional layer has a primary grade.
- the concentration of the compound having primary amino groups in the mixture of the polyamide separation functional layer and the microporous support membrane after contacting the compound having amino groups is 30 ⁇ 10 ⁇ 6 to 160 ⁇ 10 ⁇ .
- a polyamide separation functional layer is formed by bringing a polyfunctional amine aqueous solution and a polyfunctional acid halide-containing solution into contact with each other on a microporous support membrane, and then the polyamide separation functional layer has a primary amino group.
- Production of a composite semipermeable membrane comprising a step of contacting a compound, a step of contacting with a reagent that reacts with a primary amino group to form a diazonium salt or a derivative thereof, and a step of contacting with a reagent that reacts with a diazonium salt or a derivative thereof.
- the polyfunctional amine aqueous solution and / or the polyfunctional acid halide-containing solution contains an acylation catalyst, and the polyamide separation functional layer is contacted with a compound having a primary amino group
- concentration of the compound having a primary amino group in the mixture of the polyamide separation functional layer and the microporous support membrane is in the range of 30 ⁇ 10 ⁇ 6 to 160 ⁇ 10 ⁇ 6 mol / g. This is a method for producing a composite semipermeable membrane.
- a composite semipermeable membrane having high boron removal performance and high water permeability can be obtained.
- energy saving and quality of permeated water can be achieved.
- the composite semipermeable membrane of the present invention has a polyamide separation functional layer on a [1] microporous support membrane, and the polyamide separation functional layer has a yellowness of 10 to 40 and a microporous support membrane of 1 ⁇ m.
- a polyamide separation functional layer formed by the process, and the polyamide separation functional layer comprises (A) interfacial polycondensation in which a polyfunctional amine and a polyfunctional acid halide are brought into contact at 40 ° C. to 70 ° C., followed by (B) 70 It is a composite semipermeable membrane formed by a process of heat treatment at from 150 ° C. to 150 ° C.
- the microporous support membrane is intended to give strength to the separation functional layer that has substantially no separation performance such as ions and substantially has separation performance.
- the size and distribution of the pores are not particularly limited.
- the pores have uniform and fine pores, or gradually have large fine pores from the surface on the side where the separation functional layer is formed to the other surface, and the separation functional layer has A microporous support membrane having a micropore size of 0.1 nm or more and 100 nm or less on the surface to be formed is preferable.
- the material used for the microporous support membrane and the shape thereof are not particularly limited, and examples thereof include a membrane in which a porous support is formed on a base material.
- the base material examples include a fabric mainly composed of at least one selected from polyester or aromatic polyamide. It is particularly preferable to use a polyester having high mechanical and thermal stability.
- a fabric used for the substrate a long fiber nonwoven fabric or a short fiber nonwoven fabric can be preferably used, but when the polymer polymer solution is cast on the substrate, it penetrates through excessive penetration, Because the microporous support membrane is peeled off, and further, excellent film forming properties such as non-uniformity of the membrane and pinholes due to fluffing of the substrate are required, Among these, a long fiber nonwoven fabric can be more preferably used.
- the base material By making the base material a long fiber nonwoven fabric composed of thermoplastic continuous filaments, it is possible to suppress non-uniformity and membrane defects when casting polymer solutions caused by fuzz, which occurs when using a short fiber nonwoven fabric. it can. Further, in the continuous film formation of the composite semipermeable membrane, it is preferable to use a long-fiber non-woven fabric that is more excellent in dimensional stability because the tension is applied in the film forming direction. Since the fibers arranged on the side opposite to the support are longitudinally oriented with respect to the film forming direction, strength can be maintained and film breakage and the like can be prevented.
- the degree of fiber orientation of the fibers arranged on the side opposite to the microporous support of the substrate is preferably in the range of 0 ° to 25 °.
- the degree of fiber orientation is an index indicating the direction of fibers of the nonwoven fabric substrate constituting the microporous support membrane, and the direction of film formation during continuous film formation is 0 °, and the direction perpendicular to the film formation direction. That is, it means the average angle of the fibers constituting the nonwoven fabric substrate when the width direction of the nonwoven fabric substrate is 90 °. Accordingly, the closer to 0 ° the fiber orientation, the longer the orientation, and the closer to 90 °, the lateral orientation.
- the manufacturing process of the composite semipermeable membrane and the manufacturing process of the element include a heating step
- a phenomenon occurs in which the microporous support membrane or the composite semipermeable membrane contracts due to heating. This is particularly noticeable in the width direction where no tension is applied in continuous film formation. Since shrinkage causes problems in dimensional stability and the like, a substrate having a small rate of thermal dimensional change is desired.
- the orientation degree difference between the fiber disposed on the side opposite to the microporous support and the fiber disposed on the microporous support side is 10 ° to 90 °
- a change in the width direction due to heat is caused. This is preferable because it can be suppressed.
- polysulfone As the material for the porous support, polysulfone, cellulose acetate, polyvinyl chloride, or a mixture thereof is preferably used, and it is particularly preferable to use polysulfone having high chemical, mechanical and thermal stability. .
- polysulfone composed of repeating units represented by the following chemical formula because the pore diameter is easy to control and the dimensional stability is high.
- an N, N-dimethylformamide (hereinafter referred to as DMF) solution of the above polysulfone is cast on a substrate to a certain thickness and wet-coagulated in water, so that most of the surface has a diameter of several tens of nm.
- a microporous support membrane having the following fine pores can be obtained.
- the thickness of the above-mentioned microporous support membrane affects the strength of the composite semipermeable membrane and the packing density when it is used as a membrane element. In order to obtain sufficient mechanical strength and packing density, it is preferably in the range of 30 to 300 ⁇ m, more preferably in the range of 50 to 250 ⁇ m.
- the thickness of the porous support is preferably in the range of 10 to 200 ⁇ m, more preferably in the range of 20 to 100 ⁇ m.
- the form of the microporous support membrane can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope.
- a scanning electron microscope after peeling off the microporous support from the base material, it is cut by a freeze cleaving method to obtain a sample for cross-sectional observation.
- the sample is thinly coated with platinum, platinum-palladium or ruthenium tetrachloride, preferably ruthenium tetrachloride, and observed with a high resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 6 kV.
- UHR-FE-SEM high resolution field emission scanning electron microscope
- Hitachi's S-900 electron microscope can be used as the high-resolution field emission scanning electron microscope.
- the film thickness and surface pore diameter of the microporous support membrane are determined from the obtained electron micrograph.
- the thickness and the hole diameter in this invention mean an average value.
- the average represents an arithmetic average
- the thickness of the support film is an average value of 20 points measured by cross-sectional observation in a direction orthogonal to the thickness direction at intervals of 20 ⁇ m.
- the hole diameter is an average value of the diameters corresponding to the projected area circles by counting 200 holes.
- microporous support membrane used in the present invention can be selected from various commercially available materials such as “Millipore Filter VSWP” manufactured by Millipore and “Ultra Filter UK10” manufactured by Toyo Roshi Kaisha, Ltd. Saline Water Research and Development Progress Report (Office of saline Water Research and Development Progress Report) ”No. 359 (1968).
- the polyamide constituting the separation functional layer can be formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide.
- a polyfunctional amine and a polyfunctional acid halide it is preferable that at least one of the polyfunctional amine or the polyfunctional acid halide contains a trifunctional or higher functional compound.
- the thickness of the polyamide separation functional layer is usually preferably in the range of 0.01 to 1 ⁇ m and more preferably in the range of 0.1 to 0.5 ⁇ m in order to obtain sufficient separation performance and permeated water amount.
- the polyfunctional amine has at least two primary amino groups and / or secondary amino groups in one molecule, and at least one of the amino groups is a primary amino group.
- An amine for example, phenylenediamine, xylylenediamine, 1,3,5-triaminobenzene, in which two amino groups are bonded to a benzene ring in any of the ortho, meta, and para positions.
- aromatic polyfunctional amines such as 4-aminobenzylamine, aliphatic amines such as ethylenediamine and propylenediamine, 1,2- Alicyclic polyfunctional amines such as diaminocyclohexane, 1,4-diaminocyclohexane, 4-aminopiperidine, 4-aminoethylpiperazine, etc.
- Rukoto can. Among them, in view of the selective separation property, permeability, and heat resistance of the membrane, it may be an aromatic polyfunctional amine having 2 to 4 primary amino groups and / or secondary amino groups in one molecule.
- m-phenylenediamine, p-phenylenediamine, and 1,3,5-triaminobenzene are suitably used as such polyfunctional aromatic amine.
- m-phenylenediamine hereinafter referred to as m-PDA
- m-PDA m-phenylenediamine
- these polyfunctional amines may be used alone or in combination of two or more. When using 2 or more types simultaneously, the said amines may be combined and the said amine and the amine which has at least 2 secondary amino group in 1 molecule may be combined. Examples of the amine having at least two secondary amino groups in one molecule include piperazine and 1,3-bispiperidylpropane.
- the polyfunctional acid halide refers to an acid halide having at least two carbonyl halide groups in one molecule.
- examples of the trifunctional acid halide include trimesic acid chloride, 1,3,5-cyclohexanetricarboxylic acid trichloride, 1,2,4-cyclobutanetricarboxylic acid trichloride, and the like.
- Aromatic difunctional acid halides such as biphenyl dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, naphthalenedicarboxylic acid chloride, aliphatic bifunctional acid halides such as adipoyl chloride, sebacoyl chloride, Mention may be made of alicyclic bifunctional acid halides such as cyclopentanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
- the polyfunctional acid halide is preferably a polyfunctional acid chloride.
- the polyfunctional acid chloride is more preferably a polyfunctional aromatic acid chloride having 2 to 4 carbonyl chloride groups in one molecule.
- trimesic acid chloride from the viewpoint of easy availability and easy handling.
- These polyfunctional acid halides may be used alone or in combination of two or more.
- the composite semipermeable membrane [1] of the present invention has a yellowness of 10 to 40 in the separation functional layer in the composite semipermeable membrane.
- the yellowness of the separation functional layer By setting the yellowness of the separation functional layer to 10 or more, the boron removal performance can be sufficiently exhibited, and by setting it to 40 or less, a semipermeable membrane with high water permeability can be obtained.
- ⁇ Yellowness is the degree to which the hue of a polymer leaves colorless or white in the yellow direction, as defined in Japanese Industrial Standard JIS K 7737, and is expressed as a positive amount.
- the yellowness of the separation function layer is measured with a color meter. Place the composite semipermeable membrane on the glass plate with the separation functional layer side down, and then dissolve and remove the microporous support membrane with a solvent that dissolves only the microporous support membrane, leaving the separation on the glass plate It can be measured by transmission measurement of the functional layer sample.
- the fabric for reinforcing the below-mentioned microporous support membrane is peeled off in advance.
- SM color computer SM-7 manufactured by Suga Test Instruments Co., Ltd. can be used.
- the polyamide separation functional layer having a yellowness of 10 or more is a polyamide separation functional layer having a structure having an electron donating group and an electron withdrawing group in an aromatic ring and / or a structure extending the conjugation in the polyamide separation functional layer.
- the electron donating group include a hydroxyl group, an amino group, and an alkoxy group.
- the electron withdrawing group include a carboxyl group, a sulfonic acid group, an aldehyde group, an acyl group, an aminocarbonyl group, an aminosulfonyl group, a cyano group, a nitro group, and a nitroso group.
- Examples of the structure extending the conjugation include polycyclic aromatic rings, polycyclic heterocycles, ethenylene groups, ethynylene groups, azo groups, imino groups, arylene groups, heteroarylene groups, and combinations of these structures.
- the polyamide separation functional layer exhibits a yellowness of 10 or more.
- the yellowness is greater than 40.
- the structure part becomes large, it exhibits red, and yellowness becomes larger than 40.
- the yellowness is larger than 40, the amount of the structure is increased and the structure portion is enlarged.
- the surface of the polyamide separation functional layer is blocked and the boron removal rate is increased, but the water permeability is greatly reduced. End up. If the yellowness is 10 or more and 40 or less, the boron removal rate can be increased without excessively reducing the water permeability.
- a reagent that forms a diazonium salt or a derivative thereof by reacting a composite semipermeable membrane having a primary amino group in a polyamide separation functional layer with a primary amino group The method of making it contact is mentioned.
- the produced diazonium salt or derivative thereof reacts with an aromatic compound to form an azo group.
- the conjugation is extended by this azo group, and the polyamide separation functional layer is colored yellow to orange, and has a yellowness of 10 or more.
- the composite semipermeable membrane having a primary amino group in the polyamide separation functional layer is a composite semipermeable membrane having a primary amino group as a partial structure or terminal functional group of the polyamide that forms the separation functional layer.
- a composite semipermeable membrane in which a compound having a primary amino group is held in a separation functional layer of a partial semipermeable membrane having a primary amino group as a terminal functional group or a partial structure of polyamide forming the functional layer may be used. In order to obtain a higher boron removal rate, it is preferable to retain a compound having a primary amino group in the separation functional layer.
- Examples of the compound having a primary amino group include aliphatic amines, cycloaliphatic amines, aromatic amines, and heteroaromatic amines. From the viewpoint of the stability of the diazonium salt or derivative thereof produced, aromatic amines and heteroaromatic amines are preferred.
- Examples of the reagent that reacts with a primary amino group to produce a diazonium salt or a derivative thereof include aqueous solutions of nitrous acid and salts thereof, nitrosyl compounds, and the like. Since an aqueous solution of nitrous acid or a nitrosyl compound easily generates gas and decomposes, it is preferable to sequentially generate nitrous acid by, for example, a reaction between nitrite and an acidic solution.
- the actual length of the separation functional layer per 1 ⁇ m length of the microporous support membrane refers to a value measured by the method described below.
- a sample is embedded with a water-soluble polymer in order to prepare an ultrathin section for a transmission electron microscope (TEM). Any water-soluble polymer may be used as long as it can maintain the shape of the sample. For example, PVA can be used.
- TEM transmission electron microscope
- OsO 4 an ultramicrotome
- a cross-sectional photograph is taken of the obtained ultrathin section using TEM. What is necessary is just to determine observation magnification suitably with the film thickness of a separation function layer.
- a cross-sectional photograph can be read into image analysis software and analyzed.
- the actual length of the separation functional layer surface refers to the actual length of the surface of the separation functional layer corresponding to the length of 1 ⁇ m of the microporous support membrane, and the length of the portion represented by the solid line M in FIG. Say.
- the actual length of the polyamide separation functional layer per 1 ⁇ m length of the microporous support membrane is 2 ⁇ m or more and 5 ⁇ m or less.
- the membrane surface area is small and the permeation flux cannot be secured. If the permeation flux is greatly improved by post-treatment, the removal rate decreases.
- the actual length is larger than 5 ⁇ m, the pleat structure is crushed during operation and the permeation flux is lowered.
- the temperature of the interfacial polycondensation step (A) needs to be within the range of 40 ° C. to 70 ° C. It is preferable to be within the range. If the temperature during interfacial polycondensation is less than 40 ° C., the pleats are not increased, and there is a problem that the permeation flux is lowered. On the other hand, if the temperature exceeds 70 ° C., the removal rate is lowered.
- the temperature means for the interfacial polycondensation may be heating the microporous support membrane in contact with the polyfunctional amine aqueous solution, or contacting the warmed organic solvent solution of the polyfunctional acid halide.
- the temperature at the time of interfacial polycondensation can be known by measuring with a non-contact type thermometer such as a radiation thermometer or by bringing a thermocouple thermometer into contact with the membrane surface.
- the heat treatment step (B) is performed subsequent to the above-mentioned interfacial polycondensation step (A) to further promote the formation of crosslinked polyamide.
- the temperature of this heat treatment needs to be in the range of 70 to 150 ° C., preferably in the range of 80 to 120 ° C.
- the temperature of the heat treatment is less than 70 ° C., there is a problem that it takes a long time to sufficiently promote the formation of the crosslinked polyamide on the support film, or the formation of the crosslinked polyamide cannot be promoted sufficiently even if heated for a long time.
- the temperature of the heat treatment exceeds 150 ° C., there is a problem that the composite semipermeable membrane is dried and the amount of permeated water is reduced.
- the composite semipermeable membrane after interfacial polycondensation is allowed to stand in a heated oven, heated by applying hot air, or heated polyfunctional acid halide.
- the organic solvent solution may be brought into contact again.
- the time for performing the heat treatment is preferably 5 seconds to 3 minutes, more preferably 10 seconds to 1 minute.
- the interfacial polycondensation time is preferably 5 seconds to 3 minutes, more preferably 10 seconds to 1 minute.
- the composite semipermeable membrane [2] obtained by the above-mentioned method is preferably in the range of 40 to 100 ° C., more preferably in the range of 60 to 100 ° C., preferably 1 to 10 minutes, more preferably 2 to
- the solute blocking performance and water permeability of the composite semipermeable membrane can be further improved.
- the obtained composite semipermeable membrane can be used as it is, but can also be changed to different performances by performing any chemical post-treatment and coating. For example, a step of bringing a compound having a primary amino group into contact with the polyamide separation functional layer of the composite semipermeable membrane [2], and then a reagent that reacts with the primary amino group to produce a diazonium salt or a derivative thereof. It is preferable to perform the step of bringing the reagent into contact with a reagent that reacts with the diazonium salt or derivative thereof in this order.
- the production method for obtaining the composite semipermeable membrane [1] of the present invention has the following configuration [3] or [4]. That is, [3] A polyamide separation functional layer is formed by bringing a polyfunctional amine aqueous solution and a polyfunctional acid halide-containing solution into contact with each other on a microporous support membrane, and then the polyamide separation functional layer has a primary amino group.
- Production of a composite semipermeable membrane comprising a step of contacting a compound, a step of contacting with a reagent that reacts with a primary amino group to form a diazonium salt or a derivative thereof, and a step of contacting with a reagent that reacts with a diazonium salt or a derivative thereof.
- the temperature of the membrane surface immediately after contacting the polyfunctional amine aqueous solution and the polyfunctional acid halide-containing solution is in the range of 25 to 60 ° C., and the polyamide separation functional layer has a primary grade.
- the concentration of the compound having primary amino groups in the mixture of the polyamide separation functional layer and the microporous support membrane after contacting the compound having amino groups is 30 ⁇ 10 ⁇ 6 to 160 ⁇ 10 ⁇ .
- a polyamide separation functional layer is formed by bringing a polyfunctional amine aqueous solution and a polyfunctional acid halide-containing solution into contact with each other on a microporous support membrane, and then the polyamide separation functional layer has a primary amino group.
- Production of a composite semipermeable membrane comprising a step of contacting a compound, a step of contacting with a reagent that reacts with a primary amino group to form a diazonium salt or a derivative thereof, and a step of contacting with a reagent that reacts with a diazonium salt or a derivative thereof.
- the polyfunctional amine aqueous solution and / or the polyfunctional acid halide-containing solution contains an acylation catalyst, and the polyamide separation functional layer is contacted with a compound having a primary amino group
- concentration of the compound having a primary amino group in the mixture of the polyamide separation functional layer and the microporous support membrane is in the range of 30 ⁇ 10 ⁇ 6 to 160 ⁇ 10 ⁇ 6 mol / g.
- the separation functional layer in the composite semipermeable membrane [1] is, for example, an aqueous solution containing the aforementioned polyfunctional amine and an aqueous solution containing a polyfunctional acid halide that is immiscible with water.
- the skeleton can be formed by performing interfacial polycondensation on the surface of the microporous support membrane using an organic solvent solution.
- the concentration of the polyfunctional amine in the polyfunctional amine aqueous solution is preferably in the range of 0.1 to 20% by weight, and more preferably in the range of 0.5 to 15% by weight. In this range, sufficient salt removal performance and water permeability can be obtained.
- a surfactant, an organic solvent, an alkaline compound, an antioxidant, or the like may be contained.
- the surfactant has the effect of improving the wettability of the microporous support membrane surface and reducing the interfacial tension between the aqueous amine solution and the nonpolar solvent.
- the organic solvent may act as a catalyst for the interfacial polycondensation reaction, and when added, the interfacial polycondensation reaction may be efficiently performed.
- the above-mentioned polyfunctional amine aqueous solution is brought into contact with the microporous support membrane.
- the contact is preferably performed uniformly and continuously on the surface of the microporous support membrane.
- Specific examples include a method of coating a polyfunctional amine aqueous solution on a microporous support membrane and a method of immersing the microporous support membrane in a polyfunctional amine aqueous solution.
- the contact time between the microporous support membrane and the polyfunctional amine aqueous solution is preferably in the range of 1 to 10 minutes, and more preferably in the range of 1 to 3 minutes.
- the solution After the polyfunctional amine aqueous solution is brought into contact with the microporous support membrane, the solution is sufficiently drained so that no droplets remain on the membrane. By sufficiently draining the liquid, it is possible to prevent the remaining portion of the liquid droplet from becoming a film defect after the film is formed and deteriorating the film performance.
- a method of draining for example, as described in JP-A-2-78428, the microporous support membrane after contact with the polyfunctional amine aqueous solution is vertically gripped to allow the excess aqueous solution to flow down naturally.
- a method or a method of forcibly draining an air stream such as nitrogen from an air nozzle can be used.
- the membrane surface after draining, the membrane surface can be dried to partially remove water from the aqueous solution.
- an organic solvent solution containing a polyfunctional acid halide is brought into contact with the microporous support membrane after contact with the polyfunctional amine aqueous solution, and a skeleton of the crosslinked polyamide separation functional layer is formed by interfacial polycondensation.
- the concentration of the polyfunctional acid halide in the organic solvent solution is preferably in the range of 0.01 to 10% by weight, more preferably in the range of 0.02 to 2.0% by weight.
- the content is 0.01% by weight or more, a sufficient reaction rate can be obtained, and when the content is 10% by weight or less, the occurrence of side reactions can be suppressed.
- this organic solvent solution contains an acylation catalyst such as DMF, interfacial polycondensation is promoted, which is preferable.
- the organic solvent is preferably immiscible with water and dissolves the polyfunctional acid halide and does not break the microporous support membrane, and is inert to the polyfunctional amine compound and the polyfunctional acid halide. If there is something.
- Preferable examples include hydrocarbon compounds such as n-hexane, n-octane, and n-decane.
- the method of bringing the organic solvent solution of the polyfunctional acid halide into contact with the aqueous solution phase of the polyfunctional amine compound may be performed in the same manner as the coating method or the dipping method of the polyfunctional amine aqueous solution on the microporous support membrane.
- the temperature of the film surface immediately after contacting the polyfunctional amine aqueous solution and the polyfunctional acid halide-containing solution is in the range of 25 to 60 ° C.
- the temperature of the film surface is preferably in the range of 30 to 50 ° C. If the temperature is 25 ° C. or lower, the pleats are not increased, leading to a decrease in permeation flux. On the other hand, if the temperature is higher than 60 ° C., the removal rate tends to decrease.
- the separation functional layer per 1 ⁇ m length of the microporous support membrane The actual length can be 2 ⁇ m or more and 5 ⁇ m or less, and a high permeation flux and boron removal rate can be obtained.
- the microporous support membrane may be heated, or a heated organic solvent solution of a polyfunctional acid halide may be contacted.
- the temperature of the film surface immediately after contacting the polyfunctional amine aqueous solution and the polyfunctional acid halide-containing solution can be measured with a non-contact type thermometer such as a radiation thermometer.
- the acylation catalyst may be dissolved in a polyfunctional amine aqueous solution or a polyfunctional acid halide organic solvent, either a polyfunctional amine aqueous solution, a polyfunctional acid halide organic solvent, or both. It may be added to.
- Examples of the acylation catalyst include compounds containing an amide group.
- Examples of the compound containing an amide group include a chain amide compound and a cyclic amide compound.
- Examples of the chain amide compound include N-methylformamide, N, N-dimethylformamide, N, N, -dimethylacetamide, N, N-diethylformamide, and N, N-diethylacetamide.
- Examples of the cyclic amide compound include N-methylpyrrolidinone, ⁇ -butyrolactam, and ⁇ -caprolactam.
- the acylation catalyst When the acylation catalyst is added to the polyfunctional amine aqueous solution, the range of 0.1 to 10% by weight is preferable, and the range of 0.1 to 5% by weight is more preferable in consideration of the balance of membrane performance. Further, when an acylation catalyst is added to an organic solvent containing a polyfunctional acid halide, the range of 10 to 1,000 ppm is preferable, and the range of 10 to 500 ppm is more preferable in consideration of the balance of film performance. When the concentration of the acylation catalyst is within the above range, an effect of increasing the actual length of the separation functional layer is obtained, and the salt and boron removal performance is excellent. Depending on the type and concentration of the acylation catalyst, the reaction between the polyfunctional amine and the polyfunctional acid halide can be controlled, and the actual length of the separation functional layer can be controlled.
- interfacial polycondensation is carried out by contacting an organic solvent solution of a polyfunctional acid halide to provide a microporous support.
- excess solvent may be removed by removing the excess solvent.
- a method for draining for example, a method in which a film is held in a vertical direction and excess organic solvent is allowed to flow down and removed can be used.
- the time for gripping in the vertical direction is preferably between 1 and 5 minutes, more preferably between 1 and 3 minutes. In this preferable gripping time range, the separation functional layer is completely formed, while the organic solvent is not dried too much to cause a defect, so that the performance is not deteriorated.
- the composite semipermeable membrane having a polyamide separation functional layer obtained by the above method is preferably within a range of 40 to 100 ° C., more preferably within a range of 60 to 100 ° C., preferably 1 to 10 minutes, and more preferably.
- the composite semipermeable membrane having the polyamide separation functional layer obtained as described above is brought into contact with a compound having a primary amino group.
- the primary amino group reacts with a reagent that forms a diazonium salt or a derivative thereof, and further reacts with an aromatic compound to form an azo group, thereby improving the boron removal rate.
- the concentration and time for contact can be adjusted as appropriate to obtain the desired effect.
- Examples of the compound having a primary amino group include aliphatic amines, cycloaliphatic amines, aromatic amines, and heteroaromatic amines. From the viewpoint of the stability of the diazonium salt or derivative thereof produced, aromatic amines and heteroaromatic amines are preferred. However, in order for the yellowness to be 10 or more and 40 or less, the molecular weight of the carbon skeleton excluding the functional group of the compound having a primary amino group is preferably 500 or less.
- the method for bringing the compound having a primary amino group into contact with the separation functional layer is not particularly limited. Even if a solution of a compound having a primary amino group is applied, the above-described solution is added to the solution of the compound having a primary amino group.
- the composite semipermeable membrane may be immersed, and it is preferable to carry out uniformly and continuously.
- the solvent for dissolving the compound having a primary amine any solvent may be used as long as the compound is dissolved and the composite semipermeable membrane is not eroded.
- the solution contains a surfactant, an acidic compound, an alkaline compound, an antioxidant, or the like as long as it does not interfere with the reaction between the primary amino group and the reagent that forms the diazonium salt or derivative thereof. May be.
- the concentration of the compound having a primary amino group in the mixture of the polyamide separation functional layer and the microporous support membrane is a value measured by the method described below. After contacting the compound having a primary amino group with the polyamide separation functional layer, the droplet is removed, the composite semipermeable membrane is cut out, the substrate is peeled off, and the mixture of the polyamide separation functional layer and the microporous support membrane Get. The compound having the primary amino group is dissolved, and the polyamide separation functional layer and the microporous support membrane are immersed in a solvent that does not dissolve, and the compound having the primary amino group is extracted into the solvent.
- the extracted components are measured with an ultraviolet-visible spectrophotometer, high-performance liquid chromatography, gas chromatography, or the like obtained in advance with a calibration curve, and the weight of the compound in the mixture of the polyamide separation functional layer and the microporous support membrane is calculated.
- the mixture of the polyamide separation functional layer and the microporous support membrane is taken out from the solvent, heated and dried, cooled to room temperature in a desiccator, and then weighed. From the following formula, the polyamide separation function The concentration of the compound having a primary amino group in the mixture of the layer and the microporous support membrane is determined.
- Compound concentration (mol / g) 100 ⁇ (compound weight / compound molecular weight) / dry membrane weight
- the polyamide separation The concentration of the compound having primary amino groups in the mixture of the polyamide separation functional layer and the microporous support membrane after contacting the functional layer with a compound having primary amino groups is 30 ⁇ 10 ⁇ 6 to 160 ⁇ . It must be within the range of 10 ⁇ 6 mol / g.
- the concentration of the compound having a primary amino group is less than 30 ⁇ 10 ⁇ 6 mol / g, the effect of improving the removal rate due to azo group formation is small, and if it exceeds 160 ⁇ 10 ⁇ 6 mol / g, azo There is a problem that the base formation is large and the amount of permeated water decreases.
- the composite semipermeable membrane having a primary amino group in the separation functional layer is reacted with the primary amino group to form a diazonium salt or Contact with a reagent that produces the derivative.
- a reagent that reacts with the primary amino group to be contacted to produce a diazonium salt or a derivative thereof include aqueous solutions of nitrous acid and salts thereof, nitrosyl compounds, and the like. Since an aqueous solution of nitrous acid or a nitrosyl compound easily generates gas and decomposes, it is preferable to sequentially generate nitrous acid by, for example, a reaction between nitrite and an acidic solution.
- nitrite reacts with hydrogen ions to produce nitrous acid (HNO 2 ), but it is efficiently produced when the pH of the aqueous solution is 7 or less, preferably 5 or less, more preferably 4 or less.
- an aqueous solution of sodium nitrite reacted with hydrochloric acid or sulfuric acid in an aqueous solution is particularly preferable because of easy handling.
- the concentration of nitrous acid or nitrite in the reagent that reacts with the primary amino group to produce a diazonium salt or a derivative thereof is preferably in the range of 0.01 to 1% by weight. Within this range, the effect of producing a sufficient diazonium salt or derivative thereof is obtained, and the handling of the solution is easy.
- the temperature of the nitrous acid aqueous solution is preferably 15 ° C to 45 ° C. Within this range, the reaction does not take too much time, and nitrous acid is not decomposed too quickly and is difficult to handle.
- the contact time with the nitrous acid aqueous solution may be a time for forming a diazonium salt and / or a derivative thereof, and can be processed in a short time at a high concentration, but a long time is required at a low concentration. For this reason, the solution having the above concentration is preferably within 10 minutes, more preferably within 3 minutes.
- the contacting method is not particularly limited, and the composite semipermeable membrane may be immersed in the reagent solution even when the reagent solution is applied (coated).
- the solvent for dissolving the reagent any solvent may be used as long as the reagent is dissolved and the composite semipermeable membrane is not eroded.
- the solution may contain a surfactant, an acidic compound, an alkaline compound, or the like as long as it does not interfere with the reaction between the primary amino group and the reagent.
- a part of the diazonium salt produced by contact or a derivative thereof is converted into a phenolic hydroxyl group by reacting with water. Further, it reacts with an aromatic ring having a structure forming a microporous support membrane or a separation functional layer, or an aromatic ring of a compound having a primary amino group held in the separation functional layer to form an azo group. Thereby, improvement of boron removal rate can be expected.
- the composite semipermeable membrane formed with the diazonium salt or derivative thereof is brought into contact with a reagent that reacts with the diazonium salt or derivative thereof.
- the reagent that reacts with a diazonium salt or a derivative thereof includes chloride ion, bromide ion, cyanide ion, iodide ion, fluoroboric acid, hypophosphorous acid, sodium bisulfite, sulfite ion, aromatic amine, Examples include phenols, hydrogen sulfide, and thiocyanic acid.
- a substitution reaction occurs instantaneously, and the amino group is substituted with a sulfo group.
- a diazo coupling reaction occurs by making it contact with an aromatic amine and phenols, and it becomes possible to introduce
- These reagents may be used singly or may be used by mixing a plurality of them, or may be brought into contact with different reagents a plurality of times.
- the reagent to be contacted is preferably sodium hydrogen sulfite and sulfite ion.
- the concentration and time of contact with the reagent that reacts with the diazonium salt or derivative thereof can be appropriately adjusted in order to obtain the desired effect.
- the temperature for contacting with the reagent that reacts with the diazonium salt or derivative thereof is preferably 10 to 90 ° C. Within this temperature range, the reaction easily proceeds, while the permeated water amount does not decrease due to the shrinkage of the polymer.
- the composite semipermeable membranes [1] and [2] of the present invention produced in this way are used to increase the pressure resistance of raw water flow path materials such as plastic nets, permeate flow path materials such as tricot, and if necessary.
- raw water flow path materials such as plastic nets, permeate flow path materials such as tricot, and if necessary.
- it is wound around a cylindrical water collecting pipe having a large number of holes, and is suitably used as a spiral composite semipermeable membrane element.
- a composite semipermeable membrane module in which these elements are connected in series or in parallel and accommodated in a pressure vessel can be obtained.
- the above-described composite semipermeable membrane, its elements, and modules can be combined with a pump for supplying raw water to them, a device for pretreating the raw water, and the like to constitute a fluid separation device.
- a separation device By using this separation device, raw water can be separated into permeated water such as drinking water and concentrated water that has not permeated through the membrane, and water suitable for the purpose can be obtained.
- the operating pressure at the time of permeation is preferably 1.0 MPa or more and 10 MPa or less.
- the feed water temperature is preferably 5 ° C. or higher and 45 ° C. or lower.
- scales such as magnesium may be generated in the case of feed water with a high salt concentration such as seawater, and there is a concern about deterioration of the membrane due to high pH operation. Is preferred.
- the raw water treated by the composite semipermeable membrane according to the present invention includes seawater, brine, drainage, etc., 500 mg / L to 100 g / L TDS (Total Dissolved) Solids: total dissolved solids).
- TDS refers to the total dissolved solid content, and is expressed as “mass ⁇ volume” or “weight ratio”.
- the solution filtered with a 0.45 micron filter can be calculated from the weight of the residue by evaporating at a temperature of 39.5 to 40.5 ° C, but more simply converted from practical salt (S) To do.
- the yellowness and actual length of the separation functional layers in the comparative examples and examples were measured as follows. (Temperature of the film surface immediately after contacting the polyfunctional amine aqueous solution with the polyfunctional acid halide solution) The membrane surface temperature immediately after the polyfunctional acid halide solution was applied to the microporous support membrane in contact with the polyfunctional amine aqueous solution was measured with a radiation thermometer (TA-0510F manufactured by MINOLTA). The emissivity ⁇ was 0.95.
- the mixture of the polyamide separation functional layer and the microporous support membrane is taken out from ethanol, dried by heating at 120 ° C. for 2 hours, cooled to room temperature in a desiccator, and then weighed.
- concentration of the compound having a primary amino group in the mixture of the polyamide separation functional layer and the microporous support membrane was determined.
- a cross-sectional photograph is taken of the obtained ultrathin section using TEM.
- a cross-sectional photograph taken by TEM is converted into image analysis software Image Incorporated into Pro and analyzed, the actual length of the separation functional layer per 1 ⁇ m length of the microporous support membrane was determined.
- TDS removal rate 100 ⁇ ⁇ 1 ⁇ (TDS concentration in permeated water / TDS concentration in feed water) ⁇ (Membrane permeation flux)
- Membrane permeation flux (m 3 / m 2 / day) was expressed in terms of the permeation amount of the feed water (seawater) per square meter of the membrane surface with the permeation amount per day (cubic meter).
- Boron removal rate The boron concentration in the feed water and the permeated water was analyzed with an ICP emission analyzer (P-4010, manufactured by Hitachi, Ltd.), and determined by the following formula.
- Boron removal rate (%) 100 ⁇ ⁇ 1 ⁇ (boron concentration in permeated water / boron concentration in feed water) ⁇ (Fiber orientation of the substrate)
- Ten small sample samples are taken at random from the nonwoven fabric, taken with a scanning electron microscope at a magnification of 100 to 1000 times, and the longitudinal direction (longitudinal direction) of the nonwoven fabric is measured for a total of 100 fibers, 10 from each sample.
- Thermal dimensional change rate ((length of wire before immersion) ⁇ (length of wire after immersion)) / (length of wire before immersion) ⁇ 100 (Reference Example 1)
- a polyester short fiber non-woven fabric air permeability 0.5-1 cc / cm 2 / sec, fiber orientation: front 28 °, back 28 °
- a 15.7 wt% DMF solution of polysulfone on the front surface of the non-woven fabric.
- Reference Example 4 The microporous support membrane obtained in Reference Example 1 is immersed in a 4.5 wt% aqueous solution of m-PDA for 2 minutes, the support membrane is slowly pulled up in the vertical direction, and nitrogen is blown from an air nozzle to support the membrane. After removing the excess aqueous solution from the surface, an n-decane solution at 25 ° C. containing 0.175% by weight of trimesic acid chloride was applied so that the surface was completely wetted and allowed to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute and drained. Then, it wash
- the temperature of the film surface immediately after applying the decane solution of trimesic acid chloride was 23 ° C.
- a composite semipermeable membrane was prepared in the same manner as in Reference Example 2 except that the temperature of the microporous support membrane used and the temperature of the decane solution of trimesic acid chloride to be applied were changed to the temperatures shown in Table 2.
- the temperature of the film surface immediately after applying the decane solution of trimesic acid chloride was the value shown in Table 2.
- Reference Example 10 The microporous support membrane obtained in Reference Example 1 is immersed in an aqueous solution of 5.0% by weight of m-PDA and 0.5% by weight of DMF for 2 minutes, and the support membrane is slowly pulled up in the vertical direction. Then, nitrogen was blown from the air nozzle to remove the excess aqueous solution from the surface of the support film, and then an n-decane solution containing 0.175% by weight of trimesic acid chloride was applied so that the surface was completely wetted and allowed to stand for 1 minute. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute and drained. Then, it wash
- Example 1 The composite semipermeable membrane obtained in Reference Example 5 was immersed in an aqueous solution of 500 ppm of m-PDA for 60 minutes, and treated with 0.3 wt% sodium nitrite aqueous solution adjusted to pH 3 with sulfuric acid at room temperature (35 ° C.) for 1 minute. did.
- the composite semipermeable membrane was removed from the aqueous nitrous acid solution, washed with water, and immersed in a 0.1% by weight aqueous sodium sulfite solution for 2 minutes.
- the composite semipermeable membrane thus obtained was evaluated, and the membrane permeation flux, TDS removal rate, and boron removal rate were the values shown in Table 4, respectively.
- the yellowness and actual length of the separation functional layer of this composite semipermeable membrane were the values shown in Table 4. Further, the m-PDA concentration in the mixture of the polyamide separation functional layer and the microporous support membrane after immersion in the m-PDA solution was the value shown in Table 5. The molecular weight of the carbon skeleton excluding the functional group of m-PDA is 76.
- Examples 2 to 11, Comparative Examples 1 to 6 The treatment was carried out in the same manner as in Example 1 except that the composite semipermeable membrane to be treated, m-PDA concentration, immersion time, and sodium nitrite concentration were changed to the conditions described in Table 5.
- the membrane permeation flux, TDS removal rate, and boron removal rate were the values shown in Table 4, respectively.
- Table 4 shows the yellowness and actual length of the separation functional layer of the composite semipermeable membrane of each Example and Comparative Example.
- Table 5 shows the m-PDA concentration in the mixture of the polyamide separation functional layer and the microporous support membrane after immersion in the m-PDA solution of each Example and Comparative Example.
- the fiber orientation degree and the thermal dimensional change rate of the base materials used in Example 10, Example 11, and Comparative Example 1 are the values shown in Table 6, and are long fibers arranged on the opposite side to the microporous support.
- the thermal dimensional change rate was small and the dimensional stability was high.
- the composite semipermeable membrane obtained by the configuration [1] of the present invention has high boron removal performance and high water permeability.
- Examples 12 to 17 and Comparative Examples 7 to 13 The microporous support membrane obtained in Reference Example 1 was immersed in a 3.8% by weight aqueous solution of m-PDA for 2 minutes, the support membrane was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle to make the microporous After removing the excess aqueous solution from the surface of the conductive support membrane, an n-decane solution having an interfacial polycondensation temperature shown in Table 1 containing 0.165% by weight of trimesic acid chloride was applied so that the surface was completely wetted for 10 seconds.
- Example 18 The treatment was performed in the same manner as in Example 1 except that the composite semipermeable membrane to be treated, m-PDA concentration, immersion time, and sodium nitrite concentration were changed to the conditions described in Table 9.
- the membrane permeation flux, TDS removal rate, and boron removal rate were the values shown in Table 7, respectively.
- Table 8 shows the m-PDA concentration in the mixture of the polyamide separation functional layer and the microporous support membrane after immersion in the m-PDA solution of each example.
- the composite semipermeable membrane obtained by the configuration [2] of the present invention has high salt and boron removal performance and high water permeability.
- the composite semipermeable membrane of the present invention can be suitably used particularly for brine or seawater desalination.
- Microporous support membrane M Actual length of the separation functional layer surface corresponding to the length of 1 ⁇ m of the microporous support membrane
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Transplantation (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Polyamides (AREA)
- Laminated Bodies (AREA)
Abstract
Description
[1]微多孔性支持膜上にポリアミド分離機能層を有し、該ポリアミド分離機能層の黄色度が10以上40以下であり、かつ微多孔性支持膜1μm長さあたりのポリアミド分離機能層の実長さが2μm以上5μm以下である複合半透膜、または、
[2]微多孔性支持膜上に、多官能アミンと多官能酸ハロゲン化物とを重縮合させてなるポリアミド分離機能層を有し、該ポリアミド分離機能層が(A)多官能アミンと多官能酸ハロゲン化物とを40℃~70℃で接触させる界面重縮合と、続いて(B)70℃~150℃の加熱処理、の工程によって形成される複合半透膜である。
[3]微多孔性支持膜上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させてポリアミド分離機能層を形成した後、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させる工程、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬に接触させる工程、ジアゾニウム塩またはその誘導体と反応する試薬と接触させる工程を行う複合半透膜の製造方法であって、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させた直後の膜面の温度が25~60℃の範囲内であり、かつ、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させた後の該ポリアミド分離機能層と微多孔性支持膜の混合物内の第一級アミノ基を有する化合物濃度が30×10-6~160×10-6mol/gの範囲内である複合半透膜の製造方法、または、
[4]微多孔性支持膜上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させてポリアミド分離機能層を形成した後、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させる工程、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬に接触させる工程、ジアゾニウム塩またはその誘導体と反応する試薬と接触させる工程を行う複合半透膜の製造方法であって、多官能アミン水溶液および/または多官能酸ハロゲン化物含有溶液にアシル化触媒を含有しており、かつ、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させた後の該ポリアミド分離機能層と微多孔性支持膜の混合物内の第一級アミノ基を有する化合物濃度が30×10-6~160×10-6mol/gの範囲内である複合半透膜の製造方法である。
of saline Water Research and Development Progress Report)」No.359(1968)に記載された方法に従って製造することができる。
[3]微多孔性支持膜上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させてポリアミド分離機能層を形成した後、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させる工程、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬に接触させる工程、ジアゾニウム塩またはその誘導体と反応する試薬と接触させる工程を行う複合半透膜の製造方法であって、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させた直後の膜面の温度が25~60℃の範囲内であり、かつ、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させた後の該ポリアミド分離機能層と微多孔性支持膜の混合物内の第一級アミノ基を有する化合物濃度が30×10-6~160×10-6mol/gの範囲内である複合半透膜の製造方法、または、
[4]微多孔性支持膜上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させてポリアミド分離機能層を形成した後、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させる工程、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬に接触させる工程、ジアゾニウム塩またはその誘導体と反応する試薬と接触させる工程を行う複合半透膜の製造方法であって、多官能アミン水溶液および/または多官能酸ハロゲン化物含有溶液にアシル化触媒を含有しており、かつ、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させた後の該ポリアミド分離機能層と微多孔性支持膜の混合物内の第一級アミノ基を有する化合物濃度が30×10-6~160×10-6mol/gの範囲内である複合半透膜の製造方法、である。以下、各製造工程を詳細に説明する。
本発明の複合半透膜[1]において、黄色度を10以上40以下とするためには、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させた後の該ポリアミド分離機能層と微多孔性支持膜の混合物内の第一級アミノ基を有する化合物濃度が30×10-6~160×10-6mol/gの範囲内である必要がある。第一級アミノ基を有する化合物濃度が30×10-6mol/gに満たないと、アゾ基形成による除去率向上の効果が小さく、160×10-6mol/gを越える場合には、アゾ基形成が多く、透過水量が低下する問題がある。
Solids:総溶解固形分)を含有する液状混合物が挙げられる。一般に、TDSは総溶解固形分量を指し、「質量÷体積」あるいは「重量比」で表される。定義によれば、0.45ミクロンのフィルターで濾過した溶液を39.5~40.5℃の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分(S)から換算する。
(多官能アミン水溶液と多官能酸ハライド溶液とを接触させた直後の膜面の温度)
多官能アミン水溶液と接触した微多孔性支持膜に多官能酸ハライド溶液を塗布した直後の膜面温度を、放射温度計(MINOLTA製 TA-0510F)により測定した。放射率εは0.95とした。
(ポリアミド分離機能層と微多孔性支持膜の混合物内の第一級アミノ基を有する化合物濃度)
ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させた後、液滴を除き、複合半透膜を10×10cm切り出して、基材を剥離し、ポリアミド分離機能層と微多孔性支持膜の混合物を得た。これを、エタノール50gに8時間浸漬し、エタノールに抽出された成分をあらかじめ検量線を得た紫外可視分光光度計(島津製作所製 UV-2450)で測定し、ポリアミド分離機能層と微多孔性支持膜の混合物内の化合物重量を算出した。次いで、エタノール中から、ポリアミド分離機能層と微多孔性支持膜の混合物を取り出し、120℃で2時間加熱して乾燥させ、デシケータ内で室温まで冷却させた後、重量測定を行い、次の式により、ポリアミド分離機能層と微多孔性支持膜の混合物内の第一級アミノ基を有する化合物濃度を求めた。
(黄色度)
複合半透膜を室温で8時間乾燥したのち基材を剥離し、分離機能層面が下になるようにガラス板に乗せてから、ジクロロメタンにて微多孔性支持膜を溶解・除去し、ガラス板上に残る分離機能層を、スガ試験器株式会社製SMカラーコンピュータSM-7により測定した。
(微多孔性支持膜1μm長さあたりのポリアミド分離機能層の実長さ)
複合半透膜をPVAで包埋し、OsO4で染色し、これをウルトラミクロトームで切断して超薄切片を作製する。得られた超薄切片を、TEMを用いて断面写真を撮影する。TEMにより撮影した断面写真を、画像解析ソフトImage
Proに取り込み、解析を行い、微多孔性支持膜1μm長さあたりの分離機能層の実長さを求めた。
(脱塩率(TDS除去率))
次の式により脱塩率すなわちTDS除去率を求めた。
(膜透過流束)
供給水(海水)の膜透過水量を、膜面1平方メートルあたり、1日あたりの透水量(立方メートル)でもって膜透過流束(m3/m2/日)を表した。
(ホウ素除去率)
供給水と透過水中のホウ素濃度をICP発光分析装置(日立製作所製 P-4010)で分析し、次の式により求めた。
(基材の繊維配向度)
不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡で100~1000倍の写真を撮影し、各サンプルから10本ずつ、計100本の繊維について、不織布の長手方向(縦方向)を0°とし、不織布の幅方向(横方向)を90°としたときの角度を測定し、それらの平均値を小数点以下第一位を四捨五入して繊維配向度を求めた。
(基材の熱寸法変化率)
基材を製膜方向と並行に縦25cm横25cmのサンプルを3枚切り出し、それぞれに製膜方向と並行に20cmの長さを示す印を3箇所、製膜方向と直角に20cmの長さを示す印を3箇所つける。100°の熱水に10分間浸漬した後、取り出し自然乾燥する。3枚のサンプルについて、印を付けた3カ所の長さを0.01cm単位まで測定し、次式より求める。3枚のサンプルの縦(9ヶ所)、横(9ヶ所)それぞれ平均を取り算出する。浸漬後の線の長さが浸漬前の線の長さより短い場合、すなわち収縮している場合はプラス、浸漬後の線の長さが浸漬前の線の長さより長い場合はマイナスでそれぞれ表される。
(参考例1)
基材としてポリエステル短繊維不織布(通気度0.5~1cc/cm2/sec、繊維配向度:表28°、裏28°)を用い、不織布の表上にポリスルホンの15.7重量%DMF溶液を200μmの厚みで室温(25℃)でキャストし、ただちに純水中に5分以上浸漬して、連続的に微多孔性支持膜(厚さ210~215μm)を作製した。
基材として表1に示す長繊維不織布を用いた以外は、参考例1と同様にして、微多孔性支持膜を作製した。
参考例1で得られた微多孔性支持膜を、m-PDAの4.5重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.175重量%を含む25℃のn-デカン溶液を表面が完全に濡れるように塗布して1分間静置した。次に、膜から余分な溶液を除去するために膜を1分間垂直に保持して液切りした。その後、90℃の熱水で2分間洗浄して複合半透膜を得た。トリメシン酸クロライドのデカン溶液を塗布した直後の膜面の温度は23℃であった。
(参考例5~9)
使用する微多孔性支持膜、塗布するトリメシン酸クロライドのデカン溶液の温度を表2に記載した温度に変更した以外は参考例2と同様にして複合半透膜を作製した。トリメシン酸クロライドのデカン溶液を塗布した直後の膜面の温度は表2に示す値であった。
参考例1で得られた微多孔性支持膜を、m-PDAの5.0重量%、DMFの0.5重量%の水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド0.175重量%を含むn-デカン溶液を表面が完全に濡れるように塗布して1分間静置した。次に、膜から余分な溶液を除去するために膜を1分間垂直に保持して液切りした。その後、90℃の熱水で2分間洗浄して複合半透膜を得た。
(参考例11~15)
アシル化触媒を表3に記載した量を添加した以外は参考例6と同様にして複合半透膜を作製した。
参考例5で得られた複合半透膜を、m-PDA500ppmの水溶液に60分間浸漬し、硫酸によりpH3に調整した0.3重量%の亜硝酸ナトリウム水溶液により室温(35℃)で1分間処理した。複合半透膜を亜硝酸水溶液から取り除いた後、水洗し0.1重量%の亜硫酸ナトリウム水溶液に2分間浸漬した。このようにして得られた複合半透膜を評価したところ、膜透過流束、TDS除去率、ホウ素除去率はそれぞれ表4に示す値であった。また、この複合半透膜の分離機能層の黄色度と実長さは表4に示す値であった。さらに、m-PDA溶液浸漬後のポリアミド分離機能層と微多孔性支持膜の混合物内のm-PDA濃度は表5に示す値であった。また、m-PDAの官能基を除く炭素骨格の分子量は76である。
処理する複合半透膜、m-PDA濃度、浸漬時間、亜硝酸ナトリウム濃度を表5に記載した条件に変更した以外は実施例1と同様にして処理した。各実施例、比較例の複合半透膜を評価したところ、膜透過流束、TDS除去率、ホウ素除去率はそれぞれ表4に示す値であった。各実施例、比較例の複合半透膜の分離機能層の黄色度と実長さは表4に記載した。また、各実施例、比較例のm-PDA溶液浸漬後のポリアミド分離機能層と微多孔性支持膜の混合物内のm-PDA濃度を表5に記載した。
(実施例12~17および比較例7~13)
参考例1で得られた微多孔性支持膜を、m-PDAの3.8重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け微多孔性支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロライド0.165重量%を含む表1に記載する界面重縮合温度のn-デカン溶液を表面が完全に濡れるように塗布して10秒間静置した。続いて、表7に記載する加熱処理温度に熱したオーブン中に、表7に記載する加熱処理時間静置した。その後、90℃の熱水で2分間洗浄して複合半透膜を得た。このようにして得られた複合半透膜を評価したところ、TDS除去率、膜透過流速、ホウ素除去率はそれぞれ表7に示す通りであった。
処理する複合半透膜、m-PDA濃度、浸漬時間、亜硝酸ナトリウム濃度を表9に記載した条件に変更した以外は実施例1と同様にして処理した。各実施例の複合半透膜を評価したところ、膜透過流束、TDS除去率、ホウ素除去率はそれぞれ表7に示す値であった。各実施例の複合半透膜の分離機能層の黄色度と実長さは表8に記載した。また、各実施例のm-PDA溶液浸漬後のポリアミド分離機能層と微多孔性支持膜の混合物内のm-PDA濃度を表9に記載した。
参考例1で得られた微多孔性支持膜を、m-PDAの3.8重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け微多孔性支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロライド0.165重量%を含む表7に記載する界面重縮合温度のn-デカン溶液を表面が完全に濡れるように塗布して10秒間静置した。次に膜から余分な溶液を除去するために、膜を1分間垂直に保持して液切りし、送風機で20℃の気体を吹きつけて膜面から溶液を除去した。続いて、120℃に熱したオーブン中に、15秒間静置した。その後、90℃の熱水で2分間洗浄して複合半透膜を得た。このようにして得られた複合半透膜を評価したところ、TDS除去率、膜透過流速、ホウ素除去率はそれぞれ表7に示す通りであった。
M:微多孔性支持膜の長さ1μmに対応する部分の分離機能層表面の実長さ
Claims (7)
- 微多孔性支持膜上にポリアミド分離機能層を有し、該ポリアミド分離機能層の黄色度が10以上40以下であり、かつ微多孔性支持膜1μm長さあたりのポリアミド分離機能層の実長さが2μm以上5μm以下である複合半透膜。
- 微多孔性支持膜の基材がポリエステルにより形成されており、該基材が長繊維不織布である請求項1記載の複合半透膜。
- 基材が長繊維不織布からなり、長繊維不織布の微多孔性支持膜側に配置される繊維が、微多孔性支持膜の非製膜面側に配置される繊維よりも縦配向である請求項2記載の複合半透膜。
- 長繊維不織布からなる基材が、微多孔性支持体と反対側に配置される繊維の繊維配向度が0°~25°であり、微多孔性支持体側に配置される繊維との配向度差が10°~90°である請求項3記載の複合半透膜。
- 微多孔性支持膜上に、多官能アミンと多官能ハロゲン化物とを重縮合させてなるポリアミド分離機能層を有する複合半透膜であって、該ポリアミド分離機能層が、(A)多官能アミンと多官能酸ハロゲン化物とを40℃~70℃で接触させる界面重縮合と、続いて(B)70℃~150℃の加熱処理、の工程によって形成される複合半透膜。
- 微多孔性支持膜上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させてポリアミド分離機能層を形成した後、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させる工程、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬に接触させる工程、ジアゾニウム塩またはその誘導体と反応する試薬と接触させる工程を行う複合半透膜の製造方法であって、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させた直後の膜面の温度が25~60℃の範囲内であり、かつ、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させた後の該ポリアミド分離機能層と微多孔性支持膜の混合物内の第一級アミノ基を有する化合物濃度が30×10-6~160×10-6mol/gの範囲内である複合半透膜の製造方法。
- 微多孔性支持膜上で、多官能アミン水溶液と多官能酸ハロゲン化物含有溶液とを接触させてポリアミド分離機能層を形成した後、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させる工程、第一級アミノ基と反応してジアゾニウム塩またはその誘導体を生成する試薬に接触させる工程、ジアゾニウム塩またはその誘導体と反応する試薬と接触させる工程を行う複合半透膜の製造方法であって、多官能アミン水溶液および/または多官能酸ハロゲン化物含有溶液にアシル化触媒を含有しており、かつ、該ポリアミド分離機能層に第一級アミノ基を有する化合物を接触させた後の該ポリアミド分離機能層と微多孔性支持膜の混合物内の第一級アミノ基を有する化合物濃度が30×10-6~160×10-6mol/gの範囲内である複合半透膜の製造方法。
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/522,217 US20120305473A1 (en) | 2010-02-23 | 2011-02-17 | Composite semipermeable membrane and method of producing the same |
EP11747242.3A EP2540385B1 (en) | 2010-02-23 | 2011-02-17 | Composite semipermeable membrane and process for production thereof |
BR112012017644A BR112012017644A2 (pt) | 2010-02-23 | 2011-02-17 | membrana semipermeável compósita e método de produção de uma membrana semipermeável compósita |
JP2011514956A JP5741431B2 (ja) | 2010-02-23 | 2011-02-17 | 複合半透膜およびその製造方法 |
CN201180010676.3A CN102781560B (zh) | 2010-02-23 | 2011-02-17 | 复合半透膜及其制造方法 |
KR1020187012550A KR101928256B1 (ko) | 2010-02-23 | 2011-02-17 | 복합 반투막 및 그의 제조 방법 |
AU2011219151A AU2011219151A1 (en) | 2010-02-23 | 2011-02-17 | Composite semipermeable membrane and process for production thereof |
KR1020127021908A KR20120131165A (ko) | 2010-02-23 | 2011-02-17 | 복합 반투막 및 그의 제조 방법 |
SG2012061404A SG183398A1 (en) | 2010-02-23 | 2011-02-17 | Composite semipermeable membrane and process for production thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010036952 | 2010-02-23 | ||
JP2010-036952 | 2010-02-23 | ||
JP2010-060296 | 2010-03-17 | ||
JP2010060296 | 2010-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011105278A1 true WO2011105278A1 (ja) | 2011-09-01 |
Family
ID=44506690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/053375 WO2011105278A1 (ja) | 2010-02-23 | 2011-02-17 | 複合半透膜およびその製造方法 |
Country Status (10)
Country | Link |
---|---|
US (1) | US20120305473A1 (ja) |
EP (1) | EP2540385B1 (ja) |
JP (1) | JP5741431B2 (ja) |
KR (2) | KR101928256B1 (ja) |
CN (1) | CN102781560B (ja) |
AU (1) | AU2011219151A1 (ja) |
BR (1) | BR112012017644A2 (ja) |
CL (1) | CL2012002255A1 (ja) |
SG (1) | SG183398A1 (ja) |
WO (1) | WO2011105278A1 (ja) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012135757A (ja) * | 2010-12-09 | 2012-07-19 | Toray Ind Inc | 複合半透膜、複合半透膜エレメントおよび複合半透膜の製造方法 |
WO2013047744A1 (ja) * | 2011-09-29 | 2013-04-04 | 東レ株式会社 | 分離膜および分離膜エレメント |
WO2013047746A1 (ja) * | 2011-09-29 | 2013-04-04 | 東レ株式会社 | 分離膜、分離膜エレメントおよび分離膜の製造方法 |
WO2014133130A1 (ja) * | 2013-02-28 | 2014-09-04 | 東レ株式会社 | 複合半透膜およびその製造方法 |
US8968828B2 (en) | 2011-01-24 | 2015-03-03 | Dow Global Technologies Llc | Composite polyamide membrane |
US9051417B2 (en) | 2013-03-16 | 2015-06-09 | Dow Global Technologies Llc | Method for solubilizing carboxylic acid-containing compound in hydrocarbon solvent |
US9051227B2 (en) | 2013-03-16 | 2015-06-09 | Dow Global Technologies Llc | In-situ method for preparing hydrolyzed acyl halide compound |
WO2016002821A1 (ja) * | 2014-06-30 | 2016-01-07 | 東レ株式会社 | 複合半透膜 |
US9289729B2 (en) | 2013-03-16 | 2016-03-22 | Dow Global Technologies Llc | Composite polyamide membrane derived from carboxylic acid containing acyl halide monomer |
WO2016136966A1 (ja) * | 2015-02-27 | 2016-09-01 | 東レ株式会社 | 複合半透膜 |
EP2604333A4 (en) * | 2010-08-11 | 2017-04-12 | Toray Industries, Inc. | Separation membrane element and method for producing composite semipermeable membrane |
WO2017111140A1 (ja) | 2015-12-25 | 2017-06-29 | 東レ株式会社 | 複合半透膜 |
JPWO2016104781A1 (ja) * | 2014-12-26 | 2017-11-30 | 東レ株式会社 | 複合半透膜 |
US10137418B2 (en) | 2013-01-14 | 2018-11-27 | Dow Global Technologies Llc | Composite polyamide membrane made via interfacial polymerization using a blend of non-polar solvents |
WO2018221684A1 (ja) | 2017-06-01 | 2018-12-06 | 東レ株式会社 | ガス分離膜、ガス分離膜エレメント、ガス分離装置及びガス分離方法 |
WO2020218571A1 (ja) | 2019-04-26 | 2020-10-29 | 東レ株式会社 | 透析液再生方法 |
WO2021085600A1 (ja) * | 2019-10-31 | 2021-05-06 | 東レ株式会社 | 複合半透膜およびその製造方法 |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5807547B2 (ja) * | 2009-12-22 | 2015-11-10 | 東レ株式会社 | 半透膜およびその製造方法 |
US9399196B2 (en) | 2011-08-31 | 2016-07-26 | Dow Global Technologies Llc | Composite polyamide membrane derived from monomer including amine-reactive and phosphorous-containing functional groups |
WO2013048764A1 (en) | 2011-09-29 | 2013-04-04 | Dow Global Technologies Llc | Method for preparing high purity mono-hydrolyzed acyl halide compound |
ES2806675T3 (es) | 2012-01-06 | 2021-02-18 | Ddp Specialty Electronic Mat Us Inc | Método de preparación de una membrana de poliamida de material compuesto |
CN102756447A (zh) * | 2012-07-12 | 2012-10-31 | 芜湖市琦翔机械有限公司 | 注塑件手动冲切机 |
US9630149B2 (en) | 2012-07-19 | 2017-04-25 | Dow Global Technologies Llc | Composite polyamide membrane with improved structure |
WO2014109947A1 (en) | 2013-01-14 | 2014-07-17 | Dow Global Technologies Llc | Composite polyamide membrane comprising substituted benzamide monomer |
US9387442B2 (en) | 2013-05-03 | 2016-07-12 | Dow Global Technologies Llc | Composite polyamide membrane derived from an aliphatic acyclic tertiary amine compound |
WO2015084512A1 (en) | 2013-12-02 | 2015-06-11 | Dow Global Technologies Llc | Composite polyamide membrane treated with dihyroxyaryl compounds and nitrous acid |
EP3077088B1 (en) | 2013-12-02 | 2017-12-27 | Dow Global Technologies LLC | Method for forming a composite polyamide membrane post treated with nitrious acid |
KR102273550B1 (ko) | 2014-01-09 | 2021-07-07 | 다우 글로벌 테크놀로지스 엘엘씨 | 아조 함량 및 높은 산 함량을 갖는 복합 폴리아미드 막 |
ES2677994T3 (es) * | 2014-01-09 | 2018-08-08 | Dow Global Technologies Llc | Membrana de poliamida de material compuesto con contenido azoico preferido |
US9616392B2 (en) | 2014-01-09 | 2017-04-11 | Dow Global Technologies Llc | Composite polyamide membrane having high acid content and low azo content |
CN106257977B (zh) * | 2014-04-28 | 2019-10-29 | 陶氏环球技术有限责任公司 | 用亚硝酸后处理的复合聚酰胺膜 |
WO2015175254A1 (en) | 2014-05-14 | 2015-11-19 | Dow Global Technologies Llc | Composite polyamide membrane post-treated with nitrous acid |
CN106232216B (zh) | 2014-05-14 | 2019-10-11 | 陶氏环球技术有限责任公司 | 用亚硝酸后处理的复合聚酰胺膜 |
WO2015175256A1 (en) | 2014-05-14 | 2015-11-19 | Dow Global Technologies Llc | Composite polyamide membrane post treated with nitrous acid |
JPWO2016002819A1 (ja) * | 2014-06-30 | 2017-04-27 | 東レ株式会社 | 複合半透膜 |
JP2016068019A (ja) * | 2014-09-30 | 2016-05-09 | 日東電工株式会社 | 複合半透膜及びその製造方法、スパイラル型分離膜エレメント |
CN104607074B (zh) * | 2015-01-13 | 2017-03-15 | 广东工业大学 | 一种含偶氮苯聚酰胺反渗透复合膜的制备方法 |
EP3329986A4 (en) * | 2015-07-31 | 2019-04-03 | Toray Industries, Inc. | Separating membrane, separating membrane element, water purifier and method for producing the separation membrane |
CN106422809B (zh) * | 2016-06-19 | 2019-06-07 | 贵州省材料产业技术研究院 | 脱硼中空纤维复合膜及其制备方法 |
US20190388844A1 (en) * | 2017-01-31 | 2019-12-26 | Toray Industries, Inc. | Semipermeable composite membrane and method for manufacturing semipermeable composite membrane |
WO2018224906A1 (en) * | 2017-06-05 | 2018-12-13 | King Abdullah University Of Science And Technology | Thin film composite membranes for fluid separations |
JP7173406B1 (ja) * | 2021-04-22 | 2022-11-16 | 東レ株式会社 | 複合半透膜 |
US20240198293A1 (en) * | 2021-04-22 | 2024-06-20 | Toray Industries, Inc. | Composite semipermeable membrane |
US20240278184A1 (en) * | 2021-04-22 | 2024-08-22 | Toray Industries, Inc. | Composite semipermeable membrane |
CN114749029B (zh) * | 2022-03-28 | 2023-01-03 | 浙江理工大学 | 一种聚酰胺复合反渗透膜修复方法 |
CN115722083A (zh) * | 2022-11-25 | 2023-03-03 | 北京化工大学 | 一种高通量超薄聚酰胺纳滤膜及其制备方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0278428A (ja) | 1988-06-07 | 1990-03-19 | Toray Ind Inc | 複合半透膜およびその製造方法 |
JPH08224452A (ja) * | 1994-12-22 | 1996-09-03 | Nitto Denko Corp | 高透過性複合逆浸透膜の製造方法 |
JPH0919630A (ja) | 1995-07-05 | 1997-01-21 | Nitto Denko Corp | 高透過性複合逆浸透膜 |
JPH1119493A (ja) | 1997-07-03 | 1999-01-26 | Nitto Denko Corp | 逆浸透膜モジュ−ル及び海水の処理方法 |
JP2001179061A (ja) * | 1999-12-22 | 2001-07-03 | Toray Ind Inc | 複合半透膜およびその製造方法 |
JP2001259388A (ja) | 2000-03-23 | 2001-09-25 | Nitto Denko Corp | 複合逆浸透膜およびその製造方法 |
JP2002095938A (ja) * | 2000-09-21 | 2002-04-02 | Toyobo Co Ltd | 複合半透膜およびその製造方法ならびにこれを内蔵する複合半透膜分離素子 |
JP2002177749A (ja) * | 2000-12-13 | 2002-06-25 | Toray Ind Inc | 複合分離膜およびその製造方法 |
JP2005177741A (ja) * | 2003-11-26 | 2005-07-07 | Toray Ind Inc | 半透膜の処理方法ならびに改質半透膜およびその製造方法 |
JP2005186059A (ja) * | 2003-12-03 | 2005-07-14 | Toray Ind Inc | 半透膜の処理方法ならびに改質半透膜およびその製造方法 |
JP2006021094A (ja) * | 2004-07-07 | 2006-01-26 | Toray Ind Inc | 複合半透膜及びその製造方法 |
JP2007090192A (ja) | 2005-09-28 | 2007-04-12 | Toray Ind Inc | 複合半透膜の処理方法および製造方法 |
JP2009057654A (ja) * | 2007-08-31 | 2009-03-19 | Toray Ind Inc | 耐圧シートおよびそれを用いた流体分離素子 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4812238A (en) * | 1987-01-15 | 1989-03-14 | The Dow Chemical Company | Membranes prepared via reaction of diazonium compounds or precursors |
DE3903098A1 (de) * | 1989-02-02 | 1990-08-16 | Hoechst Ag | Semipermeable membran aus einer homogen mischbaren polymerlegierung |
DE4420811A1 (de) * | 1994-06-16 | 1995-12-21 | Akzo Nobel Nv | Filamentverstärkte Vliesstoffbahn |
US20030136727A1 (en) * | 1999-05-27 | 2003-07-24 | Hideki Yamada | Composite semipermeable membrane |
US7279097B2 (en) * | 2003-06-18 | 2007-10-09 | Toray Industries, Inc. | Composite semipermeable membrane, and production process thereof |
JP2006102594A (ja) * | 2004-10-01 | 2006-04-20 | Nitto Denko Corp | 複合半透膜の製造方法 |
NL1030288C2 (nl) * | 2004-10-29 | 2006-10-09 | Toray Industries | Semipermeabel composietmembraan, productiewerkwijze daarvan, en element, fluïdumscheidingsinstallatie en werkwijze voor behandeling van water onder toepassing van hetzelfde. |
NL1030346C2 (nl) * | 2004-11-15 | 2006-09-20 | Toray Industries | Semipermeabel composietmembraan, productiewerkwijze daarvan, en element, fluïdumscheidingsinstallatie en werkwijze voor behandeling van water onder toepassing van hetzelfde. |
CN101325998B (zh) * | 2005-12-16 | 2011-12-21 | 东丽株式会社 | 复合半透膜、其制造方法及其用途 |
-
2011
- 2011-02-17 KR KR1020187012550A patent/KR101928256B1/ko active IP Right Grant
- 2011-02-17 SG SG2012061404A patent/SG183398A1/en unknown
- 2011-02-17 BR BR112012017644A patent/BR112012017644A2/pt not_active Application Discontinuation
- 2011-02-17 AU AU2011219151A patent/AU2011219151A1/en not_active Abandoned
- 2011-02-17 CN CN201180010676.3A patent/CN102781560B/zh active Active
- 2011-02-17 EP EP11747242.3A patent/EP2540385B1/en active Active
- 2011-02-17 JP JP2011514956A patent/JP5741431B2/ja active Active
- 2011-02-17 WO PCT/JP2011/053375 patent/WO2011105278A1/ja active Application Filing
- 2011-02-17 US US13/522,217 patent/US20120305473A1/en not_active Abandoned
- 2011-02-17 KR KR1020127021908A patent/KR20120131165A/ko active Application Filing
-
2012
- 2012-08-16 CL CL2012002255A patent/CL2012002255A1/es unknown
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0278428A (ja) | 1988-06-07 | 1990-03-19 | Toray Ind Inc | 複合半透膜およびその製造方法 |
JPH08224452A (ja) * | 1994-12-22 | 1996-09-03 | Nitto Denko Corp | 高透過性複合逆浸透膜の製造方法 |
JPH0919630A (ja) | 1995-07-05 | 1997-01-21 | Nitto Denko Corp | 高透過性複合逆浸透膜 |
JPH1119493A (ja) | 1997-07-03 | 1999-01-26 | Nitto Denko Corp | 逆浸透膜モジュ−ル及び海水の処理方法 |
JP2001179061A (ja) * | 1999-12-22 | 2001-07-03 | Toray Ind Inc | 複合半透膜およびその製造方法 |
JP2001259388A (ja) | 2000-03-23 | 2001-09-25 | Nitto Denko Corp | 複合逆浸透膜およびその製造方法 |
JP2002095938A (ja) * | 2000-09-21 | 2002-04-02 | Toyobo Co Ltd | 複合半透膜およびその製造方法ならびにこれを内蔵する複合半透膜分離素子 |
JP2002177749A (ja) * | 2000-12-13 | 2002-06-25 | Toray Ind Inc | 複合分離膜およびその製造方法 |
JP2005177741A (ja) * | 2003-11-26 | 2005-07-07 | Toray Ind Inc | 半透膜の処理方法ならびに改質半透膜およびその製造方法 |
JP2005186059A (ja) * | 2003-12-03 | 2005-07-14 | Toray Ind Inc | 半透膜の処理方法ならびに改質半透膜およびその製造方法 |
JP2006021094A (ja) * | 2004-07-07 | 2006-01-26 | Toray Ind Inc | 複合半透膜及びその製造方法 |
JP2007090192A (ja) | 2005-09-28 | 2007-04-12 | Toray Ind Inc | 複合半透膜の処理方法および製造方法 |
JP2009057654A (ja) * | 2007-08-31 | 2009-03-19 | Toray Ind Inc | 耐圧シートおよびそれを用いた流体分離素子 |
Non-Patent Citations (2)
Title |
---|
OFFICE OF SALINE WATER RESEARCH AND DEVELOPMENT PROGRESS REPORT, no. 359, 1968 |
See also references of EP2540385A4 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2604333A4 (en) * | 2010-08-11 | 2017-04-12 | Toray Industries, Inc. | Separation membrane element and method for producing composite semipermeable membrane |
JP2012135757A (ja) * | 2010-12-09 | 2012-07-19 | Toray Ind Inc | 複合半透膜、複合半透膜エレメントおよび複合半透膜の製造方法 |
US8968828B2 (en) | 2011-01-24 | 2015-03-03 | Dow Global Technologies Llc | Composite polyamide membrane |
JPWO2013047746A1 (ja) * | 2011-09-29 | 2015-03-26 | 東レ株式会社 | 分離膜、分離膜エレメントおよび分離膜の製造方法 |
CN103842055A (zh) * | 2011-09-29 | 2014-06-04 | 东丽株式会社 | 分离膜、分离膜元件及分离膜的制造方法 |
CN103842054A (zh) * | 2011-09-29 | 2014-06-04 | 东丽株式会社 | 分离膜及分离膜元件 |
JPWO2013047744A1 (ja) * | 2011-09-29 | 2015-03-26 | 東レ株式会社 | 分離膜および分離膜エレメント |
CN103842054B (zh) * | 2011-09-29 | 2016-01-20 | 东丽株式会社 | 分离膜及分离膜元件 |
WO2013047746A1 (ja) * | 2011-09-29 | 2013-04-04 | 東レ株式会社 | 分離膜、分離膜エレメントおよび分離膜の製造方法 |
WO2013047744A1 (ja) * | 2011-09-29 | 2013-04-04 | 東レ株式会社 | 分離膜および分離膜エレメント |
US10137418B2 (en) | 2013-01-14 | 2018-11-27 | Dow Global Technologies Llc | Composite polyamide membrane made via interfacial polymerization using a blend of non-polar solvents |
WO2014133130A1 (ja) * | 2013-02-28 | 2014-09-04 | 東レ株式会社 | 複合半透膜およびその製造方法 |
JPWO2014133130A1 (ja) * | 2013-02-28 | 2017-02-02 | 東レ株式会社 | 複合半透膜およびその製造方法 |
KR102155533B1 (ko) | 2013-02-28 | 2020-09-14 | 도레이 카부시키가이샤 | 복합 반투막 및 그 제조 방법 |
US10427109B2 (en) | 2013-02-28 | 2019-10-01 | Toray Industries, Inc. | Composite semipermeable membrane and production thereof |
KR20150121006A (ko) * | 2013-02-28 | 2015-10-28 | 도레이 카부시키가이샤 | 복합 반투막 및 그 제조 방법 |
US9289729B2 (en) | 2013-03-16 | 2016-03-22 | Dow Global Technologies Llc | Composite polyamide membrane derived from carboxylic acid containing acyl halide monomer |
US9051227B2 (en) | 2013-03-16 | 2015-06-09 | Dow Global Technologies Llc | In-situ method for preparing hydrolyzed acyl halide compound |
US9051417B2 (en) | 2013-03-16 | 2015-06-09 | Dow Global Technologies Llc | Method for solubilizing carboxylic acid-containing compound in hydrocarbon solvent |
EP3162431A4 (en) * | 2014-06-30 | 2018-02-28 | Toray Industries, Inc. | Composite semipermeable membrane |
WO2016002821A1 (ja) * | 2014-06-30 | 2016-01-07 | 東レ株式会社 | 複合半透膜 |
JPWO2016104781A1 (ja) * | 2014-12-26 | 2017-11-30 | 東レ株式会社 | 複合半透膜 |
WO2016136966A1 (ja) * | 2015-02-27 | 2016-09-01 | 東レ株式会社 | 複合半透膜 |
JPWO2016136966A1 (ja) * | 2015-02-27 | 2017-11-30 | 東レ株式会社 | 複合半透膜 |
WO2017111140A1 (ja) | 2015-12-25 | 2017-06-29 | 東レ株式会社 | 複合半透膜 |
WO2018221684A1 (ja) | 2017-06-01 | 2018-12-06 | 東レ株式会社 | ガス分離膜、ガス分離膜エレメント、ガス分離装置及びガス分離方法 |
WO2020218571A1 (ja) | 2019-04-26 | 2020-10-29 | 東レ株式会社 | 透析液再生方法 |
WO2021085600A1 (ja) * | 2019-10-31 | 2021-05-06 | 東レ株式会社 | 複合半透膜およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2011219151A1 (en) | 2012-08-30 |
CN102781560A (zh) | 2012-11-14 |
CN102781560B (zh) | 2015-05-20 |
KR20120131165A (ko) | 2012-12-04 |
JP5741431B2 (ja) | 2015-07-01 |
CL2012002255A1 (es) | 2013-01-11 |
EP2540385A1 (en) | 2013-01-02 |
EP2540385B1 (en) | 2020-08-12 |
US20120305473A1 (en) | 2012-12-06 |
BR112012017644A2 (pt) | 2016-03-29 |
KR20180049250A (ko) | 2018-05-10 |
EP2540385A4 (en) | 2015-05-27 |
SG183398A1 (en) | 2012-09-27 |
KR101928256B1 (ko) | 2018-12-11 |
JPWO2011105278A1 (ja) | 2013-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5741431B2 (ja) | 複合半透膜およびその製造方法 | |
JP5895838B2 (ja) | 分離膜エレメントおよび複合半透膜の製造方法 | |
JP5807547B2 (ja) | 半透膜およびその製造方法 | |
WO2013047398A1 (ja) | 複合半透膜 | |
KR20140005885A (ko) | 복합 반투막 | |
KR20110089254A (ko) | 복합 반투막 및 그의 제조 방법 | |
WO2014133133A1 (ja) | 複合半透膜 | |
WO2016136966A1 (ja) | 複合半透膜 | |
JP2013223861A (ja) | 複合半透膜 | |
JP5120006B2 (ja) | 複合半透膜の製造方法 | |
JP2012143750A (ja) | 複合半透膜の製造方法 | |
JP2021035658A (ja) | 複合半透膜および複合半透膜の製造方法 | |
JP2016010771A (ja) | 複合半透膜 | |
JP2009262089A (ja) | 複合半透膜の製造方法 | |
JP2009011891A (ja) | 複合半透膜の製造方法 | |
JP5130967B2 (ja) | 複合半透膜の製造方法 | |
JP6511808B2 (ja) | 複合半透膜 | |
JP2009220023A (ja) | 複合半透膜の製造方法 | |
JP2024007836A (ja) | 複合半透膜 | |
JP2009034669A (ja) | 複合半透膜の製造方法 | |
US20240100487A1 (en) | Composite semipermeable membrane | |
JP5263104B2 (ja) | 複合半透膜の製造方法 | |
JP2021003683A (ja) | 複合半透膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180010676.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011514956 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11747242 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011747242 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13522217 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011219151 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012002255 Country of ref document: CL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7250/CHENP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20127021908 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2011219151 Country of ref document: AU Date of ref document: 20110217 Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012017644 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012017644 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120717 |