WO2017111140A1 - 複合半透膜 - Google Patents

複合半透膜 Download PDF

Info

Publication number
WO2017111140A1
WO2017111140A1 PCT/JP2016/088584 JP2016088584W WO2017111140A1 WO 2017111140 A1 WO2017111140 A1 WO 2017111140A1 JP 2016088584 W JP2016088584 W JP 2016088584W WO 2017111140 A1 WO2017111140 A1 WO 2017111140A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite semipermeable
membrane
semipermeable membrane
group
functional layer
Prior art date
Application number
PCT/JP2016/088584
Other languages
English (en)
French (fr)
Inventor
久美子 小川
晴季 志村
佐々木 崇夫
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201680076376.8A priority Critical patent/CN108472600B/zh
Priority to KR1020187017609A priority patent/KR102497473B1/ko
Priority to EP16879026.9A priority patent/EP3395434B1/en
Priority to JP2016575981A priority patent/JP6197969B1/ja
Priority to US16/065,563 priority patent/US20190247800A1/en
Priority to ES16879026T priority patent/ES2881098T3/es
Publication of WO2017111140A1 publication Critical patent/WO2017111140A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/007Separation by stereostructure, steric separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/36Introduction of specific chemical groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/06Surface irregularities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2340/00Filter material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a composite semipermeable membrane useful for selective separation of a liquid mixture.
  • the composite semipermeable membrane obtained by the present invention can be suitably used for brine or seawater desalination.
  • the membrane separation method is expanding as a method for removing substances (for example, salts) dissolved in the solvent from the solvent (for example, water).
  • Membrane separation is attracting attention as an energy-saving and resource-saving method.
  • membranes used for membrane separation include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, and reverse osmosis membranes. These membranes are used, for example, for the production of drinking water and industrial ultrapure water from seawater, brackish water, water containing harmful substances, etc., as well as wastewater treatment and recovery of valuable materials (Patent Literature). 1, 2).
  • the composite semipermeable membrane has an active layer formed by crosslinking a gel layer and a polymer on a porous support layer, an active layer formed by polycondensation of monomers on the porous support layer and the porous support layer.
  • the composite semipermeable membrane having a separation functional layer containing a crosslinked polyamide obtained by polycondensation reaction between a polyfunctional amine and a polyfunctional aromatic acid halide is permeable and selectively separated. It is widely used as a highly reliable separation membrane.
  • Patent Document 4 a method of bringing a composite semipermeable membrane into contact with a solution having a pH of 1 or less and water at 40 ° C. or more and 65 ° C. or less for a composite semipermeable membrane provided with a crosslinked polyamide polymer as a separation active layer (Patent Document) 3) and a method of contact treatment with an aqueous solution containing nitrous acid is known (Patent Document 4).
  • An object of the present invention is to provide a composite semipermeable membrane having high water permeability and solute removal performance and high acid resistance.
  • a composite semipermeable membrane comprising a support membrane and a separation functional layer provided on the support membrane,
  • the separation functional layer contains a cross-linked aromatic polyamide and has a pleated structure having convex portions and concave portions, and the ratio of the number of convex portions having a height of 100 nm or more in the convex portions of the pleated structure is 80.
  • the separation functional layer contains an amino group, a carboxy group, and an amide group, and y / x ⁇ 0.81
  • a composite semipermeable membrane characterized by being: x: molar ratio of carboxy group to amide group measured by 13 C solid state NMR (carboxy group / amide group) y: molar ratio of amino group to amide group measured by 13 C solid state NMR (amino group / amide group) 2.
  • x + y is 0.50 or more.
  • a composite semipermeable membrane having high water permeability and solute removal performance and high acid resistance can be obtained.
  • FIG. 1 is a drawing schematically showing a pleat structure on the surface of a separation functional layer.
  • FIG. 2 is a drawing schematically showing a method for measuring the height of the convex portion of the separation functional layer.
  • FIG. 3 is a drawing schematically showing a method of measuring the deformation amount of the convex portion of the separation functional layer.
  • the composite semipermeable membrane according to the present invention includes a support membrane and a separation functional layer formed on the porous support layer.
  • the separation functional layer has substantially separation performance, and the support membrane permeates water but does not substantially have separation performance of ions or the like, and can give strength to the separation functional layer.
  • a support film is provided with a base material and a porous support layer, for example.
  • the present invention is not limited to this configuration.
  • the support film may have only a porous support layer without having a base material.
  • Substrates of the substrate include polyester polymers, polyamide polymers, polyolefin polymers, and mixtures or copolymers thereof. Among them, a polyester polymer fabric having high mechanical and thermal stability is particularly preferable. As the form of the fabric, a long fiber nonwoven fabric, a short fiber nonwoven fabric, or a woven or knitted fabric can be preferably used.
  • the polymer film When the polymer solution is cast on the base material, the polymer film may be penetrated by excessive permeation, the microporous support film may be peeled off, Since excellent film forming properties that do not cause defects such as pinholes are required, among these, long fiber nonwoven fabrics can be more preferably used.
  • a long-fiber non-woven fabric composed of thermoplastic continuous filaments As a base material, it is possible to suppress non-uniformity and membrane defects when casting a polymer solution caused by fuzz, which occurs when a short-fiber non-woven fabric is used. it can.
  • tensile_strength is applied with respect to the film forming direction, it is preferable to use the long-fiber nonwoven fabric which is more excellent in dimensional stability for a base material.
  • the fibers arranged on the side opposite to the microporous support layer are longitudinally oriented with respect to the film forming direction, so that the strength can be maintained and film breakage or the like can be prevented.
  • the fiber orientation degree of the fibers arranged on the side opposite to the porous support layer in the substrate is preferably in the range of 0 ° to 25 °.
  • the fiber orientation degree is an index indicating the fiber orientation of the nonwoven fabric base material constituting the support film, and the film forming direction when performing continuous film formation is 0 °, that is, the direction perpendicular to the film forming direction, that is, It means the average angle of the fibers constituting the nonwoven fabric substrate when the width direction of the nonwoven fabric substrate is 90 °. Therefore, the closer to 0 °, the longer the orientation, and the closer to 90 °, the lateral orientation.
  • a heating step is included, but a phenomenon occurs in which the support membrane or the composite semipermeable membrane contracts due to heating. This is particularly remarkable in the width direction where no tension is applied in continuous film formation. Since shrinkage causes problems in dimensional stability and the like, a substrate having a small rate of thermal dimensional change is desired.
  • the orientation degree difference between the fiber arranged on the opposite side of the porous support layer and the fiber arranged on the porous support layer side is 10 ° to 90 °, the change in the width direction due to heat is suppressed. This is preferable.
  • the base material preferably has an air flow rate of 0.5 cc / cm 2 / sec or more and 5.0 cc / cm 2 / sec or less.
  • the air permeability of the base material is within the above range, the base material is impregnated with the polymer solution that becomes the porous support layer, so that the adhesion of the porous support layer to the base material is improved, and the physical properties of the support film are increased. Stability can be improved.
  • the thickness of the substrate is preferably in the range of 10 to 200 ⁇ m, more preferably in the range of 30 to 120 ⁇ m.
  • the thickness means an average value.
  • the average value represents an arithmetic average value. That is, the thickness of a base material and a porous support layer is calculated
  • the porous support layer has substantially no separation performance for ions and the like, and is for imparting strength to the separation functional layer having substantially the separation performance.
  • the size and distribution of the pores of the porous support layer are not particularly limited.
  • a porous support layer having a thickness of 0.1 nm to 100 nm is preferable.
  • the material used for the support layer and its shape are not particularly limited.
  • polysulfone, polyethersulfone, polyamide, polyester, cellulosic polymer, vinyl polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, and homopolymer or copolymer such as polyphenylene oxide are used alone. Or can be used in combination.
  • cellulose acetate and cellulose nitrate can be used as the cellulose polymer
  • polyethylene, polypropylene, polyvinyl chloride, polyacrylonitrile and the like can be used as the vinyl polymer.
  • homopolymers or copolymers such as polysulfone, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, and polyphenylene sulfide sulfone are preferable. More preferred is cellulose acetate, polysulfone, polyphenylene sulfide sulfone, or polyphenylene sulfone. Furthermore, among these materials, polysulfone is generally used because of its high chemical, mechanical and thermal stability and easy molding.
  • polysulfone composed of repeating units represented by the following chemical formula because the pore diameter of the porous support layer can be easily controlled and the dimensional stability is high.
  • the polysulfone preferably has a mass average molecular weight (Mw) of 10,000 or more and 200,000 or less when measured by gel permeation chromatography (GPC) using N-methylpyrrolidone as a solvent and polystyrene as a standard substance. 15000 or more and 100000 or less.
  • Mw mass average molecular weight
  • the Mw of polysulfone is 10,000 or more, it is possible to obtain mechanical strength and heat resistance preferable as a porous support layer. Moreover, when Mw is 200000 or less, the viscosity of the solution falls within an appropriate range, and good moldability can be realized.
  • an N, N-dimethylformamide (hereinafter referred to as DMF) solution of the above polysulfone is cast on a densely woven polyester cloth or nonwoven fabric to a certain thickness, and wet coagulated in water.
  • a porous support layer having most of the surface having fine pores with a diameter of several tens of nm or less can be obtained.
  • the thickness of the substrate and the porous support layer affects the strength of the composite semipermeable membrane and the packing density when it is used as an element.
  • the total thickness of the substrate and the porous support layer is preferably 30 ⁇ m or more and 300 ⁇ m or less, and more preferably 100 ⁇ m or more and 220 ⁇ m or less.
  • the thickness of the porous support layer is preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the porous support layer used in the present invention is selected from various commercially available materials such as “Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha, Ltd. You can also. Also, “Office of Saleen Water Research and Development Progress Report” No. 359 (1968).
  • the separation functional layer contains a crosslinked aromatic polyamide.
  • the separation functional layer preferably contains a crosslinked aromatic polyamide as a main component.
  • the main component refers to a component occupying 50% by weight or more of the components of the separation functional layer.
  • the separation functional layer can exhibit high removal performance by containing 50% by weight or more of the crosslinked aromatic polyamide.
  • the content of the crosslinked aromatic polyamide in the separation functional layer is preferably 80% by weight or more, more preferably 90% by weight or more, and the separation functional layer is substantially formed only of the aromatic polyamide. More preferably.
  • the fact that the separation functional layer is substantially formed only of the crosslinked aromatic polyamide means that the crosslinked aromatic polyamide occupies 99% by weight or more of the separation functional layer.
  • cross-linked aromatic polyamide examples include an aramid compound, but the molecular structure may contain a portion other than aromatic.
  • a cross-linked wholly aromatic polyamide is more preferable from the viewpoints of rigidity and chemical stability.
  • the crosslinked aromatic polyamide can be formed by interfacial polycondensation of a polyfunctional aromatic amine and a polyfunctional aromatic acid halide.
  • the separation functional layer in the present invention may be referred to as a polyamide separation functional layer.
  • the polyfunctional aromatic amine has two or more amino groups of at least one of a primary amino group and a secondary amino group in one molecule, and at least one of the amino groups is a primary amino group.
  • An aromatic amine that is an amino group is meant.
  • polyfunctional aromatic amine examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, o-xylylenediamine, m-xylylenediamine, p-xylylenediamine, o-diaminopyridine, m- 1,3,5-triamino, a polyfunctional aromatic amine in which two amino groups such as diaminopyridine and p-diaminopyridine are bonded to an aromatic ring in any of the ortho, meta and para positions
  • polyfunctional aromatic amines such as benzene, 1,2,4-triaminobenzene, 3,5-diaminobenzoic acid, 3-aminobenzylamine, and 4-aminobenzylamine.
  • m-phenylenediamine, p-phenylenediamine, and 1,3,5-triaminobenzene are preferably used in consideration of the selective separation property, permeability, and heat resistance of the membrane.
  • m-phenylenediamine hereinafter also referred to as m-PDA
  • m-PDA polyfunctional aromatic amines may be used alone or in combination of two or more.
  • the polyfunctional aromatic acid halide refers to an aromatic acid halide having at least two carbonyl halide groups in one molecule.
  • trifunctional acid halides include trimesic acid chloride
  • bifunctional acid halides include biphenyl dicarboxylic acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, and naphthalenedicarboxylic acid chloride. Can be mentioned.
  • the polyfunctional aromatic acid halide is preferably a polyfunctional aromatic acid chloride, and in consideration of selective separation of the membrane and heat resistance, one molecule A polyfunctional aromatic acid chloride having 2 to 4 carbonyl chloride groups therein is preferred.
  • the polyamide separation functional layer has an amide group derived from polymerization of a polyfunctional aromatic amine and a polyfunctional aromatic acid halide, an amino group derived from an unreacted functional group, and a carboxy group.
  • the thin film forms a pleated structure having a concave portion and a convex portion. More specifically, in the pleated structure, the concave portion and the convex portion are repeated.
  • the concave portion of the fold structure of the separation functional layer is sometimes referred to as a pleated concave portion or simply a concave portion
  • the convex portion of the pleated structure is sometimes referred to as a pleated convex portion or simply a convex portion.
  • the present inventors have found that when the ratio of the number of projections having a height of 100 nm or more in the fold projections of the fold structure of the separation functional layer is 80% or more, the separation function layer has high water permeability. I found it.
  • the height of a convex part is measured in the following procedures.
  • (I) A cross section of the pleated structure is photographed with a transmission electron microscope (TEM).
  • (Ii) A roughness curve is obtained in the obtained image.
  • (Iii) Draw an average line of the roughness curve, and extract 10 cross-sectional images with a width of 2.0 ⁇ m in the direction of the average line.
  • (Iv) The 10-point average surface roughness is calculated for each of the 10 cross-sectional images.
  • V In each of the 10 cross-sectional images, the height of the convex portion having a height of 1/5 or more of the 10-point average surface roughness of (iv) is measured.
  • the shooting procedure of (i) above is as follows. First, the composite semipermeable membrane is embedded with a water-soluble polymer. Any water-soluble polymer may be used as long as it can maintain the shape of the sample. For example, PVA can be used. Next, in order to facilitate cross-sectional observation, staining is performed with OsO 4 . The stained sample is cut with an ultramicrotome in a direction perpendicular to the membrane surface to produce an ultrathin section. A cross section of the obtained ultrathin section is photographed using TEM. The number of photographing locations is one per film, and the magnification is 100,000 times.
  • the average line of the roughness curve is a straight line defined based on ISO4287: 1997. Specifically, the average line of the roughness curve is the area surrounded by the average line and the roughness curve over the width of the area where the surface roughness is measured (2.0 ⁇ m in the case of this measurement). Is a straight line drawn so that the sum of the two is equal above and below the average line. Since FIG. 2 is a schematic diagram, unlike the actually obtained image, the area surrounded by the average line (reference line: dotted line in the figure) and the roughness curve is exactly the same above and below the average line. is not.
  • the 10-point average surface roughness is calculated for each of the 10 screens obtained in (iii) above. Specifically, as shown in FIG. 2, in the extracted image having a width of 2.0 ⁇ m, the height of the convex portion and the depth of the concave portion in the separation functional layer are measured using the average line as a reference line. The average value is calculated for the absolute values of the heights H1 to H5 of the five convex parts from the highest convex part to the fifth height, and the depth gradually decreases from the deepest concave part. The average value is calculated for the absolute values of the depths D1 to D5 of the five recesses up to the fifth depth, and the sum of the absolute values of the two average values obtained is calculated. The sum thus obtained is the 10-point average surface roughness. That is, ten 10-point average surface roughnesses can be obtained from one composite semipermeable membrane.
  • the height of the convex portion is measured using the 10 images obtained in (iii) above. At this time, the height of the convex portion having a height of 1/5 or more of the 10-point average surface roughness calculated in each image is measured. With the above procedure, the height values of the plurality of convex portions are obtained in each of the ten cross-sectional images.
  • the ratio of the number of convex portions having a height of 100 nm or more at the convex portions is calculated as follows. In each of the above-mentioned 10 cross-sectional images, the convex portions having a height of 1/5 or more of the 10-point average surface roughness are counted. That is, since 10 images can obtain a total of 10 values of a1, a2,..., A10 as the number of convex portions having a height of 1/5 or more of the 10-point average surface roughness. The total value A is calculated.
  • the convex part which has a height of 100 nm or more (and 1/5 or more of 10-point average surface roughness) is counted. That is, from ten images, a total of ten values of the number of convex portions b1, b2,..., B10 having a height of 100 nm or more (and more than one fifth of the average surface roughness of 10 points) are obtained. Therefore, the total value B is calculated.
  • the ratio of the number B to the number A (B / A) is the above-described ratio.
  • the molar ratio of the carboxy group to the amide group (carboxy group / amide group) in the separation function layer is x and the molar ratio of the amino group to amide group (amino group / amide group) is y, y / x ⁇ 0 It was found to have high water permeability and high acid resistance when .81. More preferably, y / x ⁇ 0.71.
  • the molar ratio of the carboxy group, amino group, and amide group of the separation functional layer can be obtained from 13 C solid state NMR measurement of the separation functional layer. Specifically, after peeling the base material from the composite semipermeable membrane 5m 2 to obtain a polyamide separation functional layer and a porous support layer, the porous support layer is dissolved and removed to obtain a polyamide separation functional layer. The obtained polyamide separation functional layer was measured by DD / MAS- 13C solid state NMR method, and each ratio was calculated by comparing the integrated value of the carbon peak of each functional group or the carbon peak to which each functional group was bonded. can do.
  • the water permeability of the membrane increases as the functional group of the membrane becomes hydrophilic.
  • the degree of hydrophilicity is so large that the polarity of the functional group is large and hydrogen bonding is possible.
  • the carboxy group has a larger dipole moment and a higher degree of hydrophilicity.
  • x + y correlates with water permeability and acid resistance.
  • X + y is preferably 0.50 or more. X + y is preferably 0.98 or less. If x + y is 0.50 or more, it can have water permeability that can withstand practical use. On the other hand, when x + y is small, since the polymer forms a dense structure, the structure hardly changes even under strongly acidic conditions, and the solute removal rate is unlikely to decrease. When x + y is 0.98 or less, a solute removal rate that can withstand practical use can be maintained even if the treatment is performed under strongly acidic conditions.
  • the polyamide separation functional layer has an amide group derived from polymerization of a polyfunctional aromatic amine and a polyfunctional aromatic acid halide, an amino group derived from an unreacted functional group, and a carboxy group.
  • a polyfunctional aromatic amine or polyfunctional aromatic acid halide there are other functional groups that the polyfunctional aromatic amine or polyfunctional aromatic acid halide had.
  • new functional groups can be introduced by chemical treatment. By performing the chemical treatment, functional groups can be introduced into the polyamide separation functional layer, and the performance of the composite semipermeable membrane can be improved.
  • new functional groups include alkyl groups, alkenyl groups, alkynyl groups, halogeno groups, hydroxyl groups, ether groups, thioether groups, ester groups, aldehyde groups, nitro groups, nitroso groups, nitrile groups, and azo groups. It is done.
  • chlorine groups can be introduced by treatment with an aqueous sodium hypochlorite solution.
  • a halogeno group can also be introduced by a Sandmeyer reaction via formation of a diazonium salt.
  • an azo group can be introduced by carrying out an azo coupling reaction via diazonium salt formation, and a phenolic hydroxyl group can also be introduced by hydrolyzing the diazonium salt.
  • the number of convex portions that have a deformation amount of 2.5 nm or less when the convex portions are pushed in with pure water at 25 ° C. with a force of 5 nN account for 40% or more.
  • the surface of the separation functional layer is observed in pure water with an atomic force microscope (AFM), and arbitrary three regions in a 2 ⁇ m square range are selected. Ten points, that is, 30 points in total, are selected for the convex portions included in these three regions. Further, when a point in a circular region having a diameter of 100 nm centered on the apex of the selected convex portion is pressed with a force of 5 nN, the number X of convex portions showing a deformation amount of 2.5 nm or less is counted, and the ratio (X / 30). When the ratio (X / 30) is 40% or more (0.4 or more), deformation during operation can be suppressed, and the ratio (X / 30) is 50% or more (0.5 or more). It is preferable that it is 60% or more (0.6 or more).
  • the deformation amount (deformation) of the convex portion can be measured in a tapping mode of an atomic force microscope (AFM). Specifically, as shown in FIG. 3, on the force curve with the tip-sample distance on the horizontal axis and the load on the vertical axis, the point before the cantilever is brought close to the sample is point A, and the load is The distance between the CDs was defined as the amount of deformation when point B was the moment of rising, point C was the point where the load was 90% of the maximum load, and point D was the maximum load point. The force curve used when the cantilever is moved closer to the sample is used.
  • AFM atomic force microscope
  • the shape of the cantilever probe to be used is a cone (pyramid).
  • Calibration is performed before using the cantilever. First, a warp sensitivity (Definition Sensitivity) of a cantilever is measured with a substance having sufficient hardness. As the substance having sufficient hardness, a silicon wafer or sapphire can be used. Next, the spring constant of the cantilever is measured by thermal vibration. Calibration improves measurement accuracy.
  • the composite semipermeable membrane includes a step of forming a porous support layer on the substrate and a step of forming a separation functional layer on the porous support layer.
  • porous support layer examples include “Millipore Filter VSWP” (trade name) manufactured by Millipore and “Ultra Filter UK10” (trade name) manufactured by Toyo Roshi Kaisha, Ltd. Appropriate membranes can also be selected from various commercially available membranes.
  • the formation process of the separation functional layer is as follows: (A) a step of bringing an aqueous solution containing a polyfunctional aromatic amine into contact with the porous support layer; and (b) a polyfunctional aromatic acid in contact with the porous support layer in contact with the aqueous solution containing the polyfunctional aromatic amine. A step of contacting a solution A in which a halide is dissolved; (c) a step of contacting and heating a solution B in which a polyfunctional aromatic acid halide is further dissolved; and (d) a solution of an organic solvent solution after the reaction. Cutting.
  • the support membrane has a base material and a porous support layer is taken as an example.
  • the term “porous support layer” is read as “support membrane”. Just do it.
  • the concentration of the polyfunctional aromatic amine in the polyfunctional aromatic amine aqueous solution is preferably in the range of 0.1 wt% to 20 wt%, more preferably 0.5 wt% to 15 wt%. Within the range of% by weight or less. When the concentration of the polyfunctional aromatic amine is within this range, sufficient solute removal performance and water permeability can be obtained.
  • the polyfunctional aromatic amine aqueous solution includes surfactants, organic solvents, alkaline compounds, and antioxidants as long as they do not interfere with the reaction between the polyfunctional aromatic amine and the polyfunctional aromatic acid halide. It may be.
  • the surfactant has the effect of improving the wettability of the support membrane surface and reducing the interfacial tension between the polyfunctional aromatic amine aqueous solution and the nonpolar solvent.
  • the organic solvent may act as a catalyst for the interfacial polycondensation reaction, and when added, the interfacial polycondensation reaction may be efficiently performed.
  • the contact of the polyfunctional aromatic amine aqueous solution is preferably performed uniformly and continuously on the porous support layer.
  • Specific examples include a method of coating a porous support layer with a polyfunctional aromatic amine aqueous solution and a method of immersing the porous support layer in a polyfunctional aromatic amine aqueous solution.
  • the contact time between the porous support layer and the polyfunctional amine aqueous solution is preferably 1 second or longer and 10 minutes or shorter, and more preferably 10 seconds or longer and 3 minutes or shorter.
  • the liquid After the polyfunctional amine aqueous solution is brought into contact with the porous support layer, the liquid is sufficiently drained so that no droplets remain on the membrane. By sufficiently draining the liquid, it is possible to prevent the remaining portion of the liquid droplet from becoming a membrane defect after the formation of the porous support layer and the removal performance from being deteriorated.
  • a method of draining for example, as described in Japanese Patent Application Laid-Open No. 2-78428, a method of allowing an excess aqueous solution to flow down naturally by gripping a support membrane after contacting a polyfunctional amine aqueous solution in a vertical direction.
  • a method of forcibly removing liquid by blowing an air stream such as nitrogen from an air nozzle.
  • the membrane surface can be dried to partially remove water from the aqueous solution.
  • the concentration of the polyfunctional aromatic acid halide in the organic solvent solution is preferably in the range of 0.01 wt% or more and 10 wt% or less, and 0.02 wt% or more and 2.0 wt%. More preferably, it is in the range of% by weight or less. This is because a sufficient reaction rate can be obtained when the content is 0.01% by weight or more, and the occurrence of side reactions can be suppressed when the content is 10% by weight or less. Furthermore, when an acylation catalyst is contained in the organic solvent solution, interfacial polycondensation is promoted, which is more preferable.
  • the temperature at which the porous support layer in contact with the aqueous solution containing the polyfunctional aromatic amine and the solution A in which the polyfunctional aromatic acid halide is dissolved is preferably 25 to 60 ° C. If the temperature is less than 25 ° C, the pleat height cannot be sufficiently obtained. If the temperature exceeds 60 ° C, the reaction is too fast and the thickness is increased without obtaining the pleat height, and in any case, sufficient water permeability cannot be obtained.
  • polyfunctional aromatic acid halides are susceptible to hydrolysis by water, it is possible to synthesize or repurify polyfunctional aromatic halides immediately before making an organic solvent solution containing polyfunctional aromatic halides. preferable. Recrystallization can be used for purification. Since the reaction in steps (b) and (c) can be promoted by purification, acid resistance is improved.
  • the organic solvent is preferably immiscible with water and dissolves the polyfunctional aromatic acid halide and does not break the support membrane, and is inert to the polyfunctional amine compound and polyfunctional aromatic acid halide. If it is what is. Further, it is preferable that the boiling point or initial boiling point of the organic solvent is 100 ° C. or higher because the residual rate of the organic solvent can be easily controlled.
  • Preferable examples include hydrocarbon compounds such as n-nonane, n-decane, n-undecane, n-dodecane, isodecane, and isododecane.
  • the method of contacting the porous support layer in contact with the polyfunctional aromatic amine compound aqueous solution in the organic solvent solution of the polyfunctional aromatic acid halide is a method of coating the porous support layer with the polyfunctional aromatic amine aqueous solution. The same may be done.
  • step (c) the solution B in which the polyfunctional aromatic acid halide is dissolved is brought into contact and heated.
  • the polyamide separation functional layer produced in the step (b) has an amide group derived from polymerization, an amino group derived from an unreacted functional group, and a carboxy group.
  • the unreacted amino groups react further.
  • the ratio of the pleat height is increased to 100 nm or more, and the molar ratio y of amino group / amide group is decreased, and the molar ratio x of carboxy group / amide group is not changed or increased. Becomes smaller.
  • the temperature for the heat treatment is 50 ° C. or higher and 180 ° C. or lower, preferably 60 ° C. or higher and 160 ° C. or lower.
  • the residual ratio of the organic solvent on the porous support layer after the heat treatment is preferably 30% or more and 85% or less before the heat treatment.
  • the remaining rate of the organic solvent was determined by the following formula from the film weight immediately before the step (b) and the film weight immediately after the step (c).
  • Organic solvent residual ratio (%) ⁇ (film weight immediately after step (c) ⁇ film weight immediately before step (b)) / (weight of solution A + weight of solution B) ⁇ ⁇ 100
  • the residual rate of the organic solvent it can be controlled by the oven temperature, the film surface wind speed, and the heating time.
  • the heat treatment temperature is 50 ° C. or more and the residual ratio of the organic solvent is 85% or less
  • the interfacial polymerization reaction is accelerated by heat and the polyfunctional aromatic acid halide is concentrated during the interfacial polymerization.
  • the amount of amide groups is increased, and x + y is 0.98 or less.
  • the residual ratio of the organic solvent is 30% or more, the mobility of the oligomer molecules generated by the interfacial polymerization can be secured, the decrease in the interfacial polymerization reaction rate is suppressed, and x + y becomes 0.98 or less.
  • step (d) the organic solvent is removed by a step of draining the organic solvent solution after the reaction.
  • the organic solvent can be removed by, for example, a method in which the membrane is vertically held and the excess organic solvent is allowed to flow down and removed, a method in which the organic solvent is dried and removed by blowing air with a blower, and a mixed fluid of water and air. The method of removing excess organic solvent can be used.
  • the time required for removing the organic solvent is preferably within 1 minute.
  • the reaction proceeds for a long time, a thick crosslinked polyamide layer is formed, and x + y is less than 0.50, and a film with low water permeability is formed.
  • the solvent is evaporated only by increasing the ambient temperature, the water in the film tends to evaporate and the water permeability tends to decrease before the evaporation of the solvent is completed.
  • the composite semipermeable membrane of the present invention comprises a plurality of pores together with a feed water channel material such as a plastic net, a permeate channel material such as tricot, and a film for increasing pressure resistance as required. Is wound around a cylindrical water collecting pipe and is suitably used as a spiral composite semipermeable membrane element. Furthermore, a composite semipermeable membrane module in which these elements are connected in series or in parallel and accommodated in a pressure vessel can be obtained.
  • the above-described composite semipermeable membrane, its elements, and modules can be combined with a pump for supplying supply water to them, a device for pretreating the supply water, and the like to constitute a fluid separation device.
  • a separation device it is possible to separate the supplied water into permeated water such as drinking water and concentrated water that has not permeated through the membrane, thereby obtaining water that meets the purpose.
  • the feed water treated by the composite semipermeable membrane according to the present invention includes, for example, a liquid containing 500 mg / L or more and 100 g / L or less of TDS (Total Dissolved Solids) such as seawater, brine, and drainage. A mixture is mentioned.
  • TDS Total Dissolved Solids
  • mass ⁇ volume or “weight ratio”.
  • the solution filtered through a 0.45 micron filter can be calculated from the weight of the residue by evaporating at a temperature of 39.5 ° C. or higher and 40.5 ° C. or lower. Convert from.
  • the operating pressure at the time of permeation is preferably 0.5 MPa or more and 10 MPa or less.
  • the solute removal rate decreases, but as the supply water temperature decreases, the membrane permeation flux also decreases. Therefore, it is preferably 5 ° C. or higher and 45 ° C. or lower.
  • scales such as magnesium may be generated in the case of feed water having a high solute concentration such as seawater, and there is a concern about deterioration of the membrane due to high pH operation. Is preferred.
  • the base material was physically peeled from the composite semipermeable membrane 5 m 2 to recover the porous support layer and the separation functional layer. After being allowed to stand for 24 hours to dry, it was added little by little in a beaker containing dichloromethane and stirred to dissolve the polymer constituting the porous support layer. Insoluble matter in the beaker was collected with filter paper. This insoluble matter was placed in a beaker containing dichloromethane and stirred to collect the insoluble matter in the beaker. This operation was repeated until no elution of the polymer forming the porous support layer in the dichloromethane solution could be detected.
  • the collected separation functional layer was dried with a vacuum dryer to remove the remaining dichloromethane.
  • the obtained separation functional layer was made into a powdery sample by freeze pulverization, sealed in a sample tube used for solid NMR measurement, and subjected to 13 C solid NMR measurement by CP / MAS method and DD / MAS method.
  • 13 C solid state NMR measurement for example, CMX-300 manufactured by Chemicals can be used. An example of measurement conditions is shown below.
  • the composite semipermeable membrane was embedded with PVA, stained with OsO 4 , and cut with an ultramicrotome to prepare an ultrathin section.
  • a cross-sectional photograph of the obtained ultrathin slice was taken using a transmission electron microscope.
  • a cross-sectional photograph taken with a transmission electron microscope was read into image analysis software, and the height of the pleats and the depth of the pleats at a distance of 2.0 ⁇ m were measured, and the 10-point average surface roughness was calculated as described above. . Based on this 10-point average surface roughness, the height of the protrusion was measured for a protrusion having a height of 1/5 or more of the 10-point average surface roughness. Further, an intermediate value of the height of the fold convex portion was calculated.
  • the amount of deformation was measured by the method described above.
  • the surface of the separation functional layer was observed in pure water with an atomic force microscope (AFM), and arbitrary three regions in a 2 ⁇ m square range were selected. Ten points of protrusions included in these three regions were selected in each region, that is, 30 points in total. Further, when a point in a circular region having a diameter of 100 nm centered on the apex of the selected convex portion is pressed with a force of 5 nN, the number X of convex portions showing a deformation amount of 2.5 nm or less is counted, and the ratio (X / 30).
  • the deformation amount (deformation) of the convex portion was measured in the tapping mode of the atomic force microscope (AFM) as described above.
  • AFM atomic force microscope
  • a Dimension FastScan manufactured by Bruker AXS was used as the atomic force microscope.
  • the shape of the cantilever probe was conical (pyramid).
  • Organic solvent residual ratio was determined by the following formula from the film weight immediately before the step (b) and the film weight immediately after the step (c).
  • Organic solvent residual ratio (%) ⁇ (film weight immediately after step (c) ⁇ film weight immediately before step (b)) / (weight of solution A + weight of solution B) ⁇ ⁇ 100
  • the various characteristics of the composite semipermeable membrane are as follows. Seawater (TDS concentration 3.5%, boron concentration about 5 ppm) adjusted to pH 6.5 is supplied to the composite semipermeable membrane at an operating pressure of 5.5 MPa, and membrane filtration treatment is performed 24 times. It was determined by measuring the quality of the permeated water and the feed water after that time.
  • Membrane permeation flux (m 3 / m 2 / day) was expressed in terms of the permeation amount of the feed water (seawater) per square meter of the membrane surface with the permeation amount per day (cubic meter).
  • Example 1 A composite semipermeable membrane was formed according to the method described in International Publication No. 2011/105278.
  • the porous support membrane obtained in Reference Example 1 was immersed in an aqueous solution containing 6% by weight of m-phenylenediamine (m-PDA) for 2 minutes, and the support membrane was slowly pulled up in the vertical direction. Nitrogen was blown from the air nozzle to remove excess aqueous solution from the surface of the support film, and then a 40 ° C decane solution (solution A) containing 0.16% by weight trimesic acid chloride (TMC) was applied so that the surface was completely wetted. After that, it was placed in an oven at 120 ° C.
  • solution A a 40 ° C decane solution containing 0.16% by weight trimesic acid chloride (TMC) was applied so that the surface was completely wetted. After that, it was placed in an oven at 120 ° C.
  • solution B a decane solution containing 0.32% by weight of TMC
  • the mixture was heated until the residual ratio of the organic solvent reached 60%. Thereafter, in order to remove excess solution from the membrane, the membrane was vertically drained for 60 seconds, and air was blown at 20 ° C. for 30 seconds to dry using a blower to obtain a composite semipermeable membrane.
  • Examples 2 to 5 The composite semipermeable membranes of Examples 2 to 5 were obtained in the same manner as in Example 1 except that the contact temperature of the solution A and the residual ratio of the organic solvent after the contact with the solution B were changed to the values shown in Table 1.
  • Example 6 A composite semipermeable membrane in Example 6 was obtained in the same manner as in Example 1 except that TMC was used without purification and the residual ratio of the organic solvent was 58%.
  • Example 7 A composite semipermeable membrane in Example 7 was obtained in the same manner as in Example 1, except that the liquid was drained for 180 seconds with the membrane vertical.
  • Comparative Example 1 The composite half of Comparative Example 1 was prepared in the same manner as in Example 1 except that the solution A contact temperature, the concentration of solution B, the residual ratio of the organic solvent after contact with solution B, and the time required for draining were changed to the values shown in Table 1. A permeable membrane was obtained.
  • Comparative Example 4 The step of bringing the solution B into contact and the step of putting it in an oven at 120 ° C. are omitted, and the solution A contact temperature, the organic solvent remaining rate, and the time required for draining are changed to the values shown in Table 1 as in Example 1. Thus, a composite semipermeable membrane of Comparative Example 4 was obtained.
  • Comparative Example 5 The step of placing in an oven at 120 ° C. was omitted, and the same procedure as in Example 1 was performed except that the solution A contact temperature, the organic solvent remaining rate after contact with solution B, and the time required for draining were changed to the values shown in Table 1. A composite semipermeable membrane of Comparative Example 5 was obtained.
  • Example 6 Comparative Example 6 except that isooctane was used as the solvent, and the solution A contact temperature, the concentration of solution B, the residual ratio of the organic solvent after contact with solution B, and the time required for draining were changed to the values shown in Table 1. A composite semipermeable membrane of Comparative Example 6 was obtained.
  • Comparative Example 7 The porous support membrane obtained in Reference Example 1 was immersed in an aqueous solution containing 4% by weight of m-PDA for 2 minutes, and the support membrane was slowly pulled up in the vertical direction. Nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support film, and then 0.16% by weight of TMC was dissolved in a decane solution at 40 ° C. and applied so that the surface of the support film was completely wetted. Then, in order to remove excess solution from the membrane, the membrane was vertically drained for 60 seconds, and air at 20 ° C. was blown and dried using a blower. Next, the composite semipermeable membrane of Comparative Example 7 was obtained by immersing the membrane in 90 ° C. hot water adjusted to pH 1 with sulfuric acid for 2 minutes and subsequently immersing in 40 ° C. water for 2 minutes.
  • the membrane was immersed in a 35 ° C. aqueous solution containing 0.3% by weight of sodium nitrite adjusted to pH 3 with sulfuric acid for 1 minute, followed by washing with water. Finally, the composite semipermeable membrane of Comparative Example 8 was obtained by immersing in a 0.1 wt% aqueous sodium sulfite solution for 2 minutes.
  • the obtained composite semipermeable membrane was immersed in a 0.4% by weight aqueous solution of sodium nitrite adjusted to pH 3 and 35 ° C. for 1 minute.
  • the pH of sodium nitrite was adjusted with sulfuric acid.
  • it was immersed in a 0.3 wt% m-PDA aqueous solution at 35 ° C. for 1 minute to carry out a diazo coupling reaction.
  • the composite semipermeable membrane of Comparative Example 9 was obtained by immersing in a 0.1 wt% sodium sulfite aqueous solution at 35 ° C. for 2 minutes.
  • Example 11 A support membrane obtained in the same manner as in Reference Example 1 except that the concentration of polysulfone was 18.0% by weight was obtained by using 2.0% m-PDA, 1% triethylamine, and 2.3% camphorsulfonic acid. After being put in an aqueous solution containing 2 minutes and then taken out, excess aqueous solution on the support membrane was removed using a 25 psi roller and dried for 1 minute. Next, an organic solution containing 0.10% by volume of TMC in ISOPAR C (manufactured by Exxon Mobil) is moved to the upper part of the supporting film, and the supporting film is moved at a linear velocity of 1 m / min, and 100 ml per 1 m 2 of the supporting film.
  • ISOPAR C manufactured by Exxon Mobil
  • Example 12 A support membrane obtained by the same method as in Reference Example 1 except that the concentration of polysulfone was 16.5% by weight was immersed in a 3.5% by weight aqueous solution of m-PDA for 2 minutes. Then, nitrogen was blown from the air nozzle to remove excess aqueous solution from the surface of the support membrane, and then TMC was 0.14% by weight, TMC monohydrolyzate was 0.06% by weight, and 1.1% relative to TMC. A 25 ° C. ISOPAR L solution (manufactured by Exxon Mobil) containing an equivalent amount of tributyl phosphate was applied so that the surface was completely wetted and allowed to stand for 1 minute.
  • ISOPAR L solution manufactured by Exxon Mobil
  • the membrane was held vertically for 1 minute to drain, and then washed with hot water at 50 ° C. for 2 minutes to obtain a composite semipermeable membrane. Finally, it was immersed in pure water at 25 ° C. for 24 hours.
  • the ratio of the ridge convex part height of the composite semipermeable membrane obtained in the above examples and comparative examples being 100 nm or more, and the convex part having a deformation amount of 2.5 nm or less when the convex part is pressed with a force of 5 nN
  • Table 2 shows the ratio, the terminal functional group, and the membrane performance before and after the acid resistance test.
  • the composite semipermeable membrane of the present invention has high water permeability and removal performance and high acid resistance.
  • the composite semipermeable membrane of the present invention can be suitably used for brine or seawater desalination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、実用性のある透水性能を有し、耐酸性の高い複合半透膜を提供することを課題とする。本発明は、支持膜と、前記支持膜上に設けられた分離機能層とを備える複合半透膜であって、前記分離機能層が架橋芳香族ポリアミドを含有すると共に、凸部と凹部とを備えるひだ構造を有し、前記ひだ構造の凸部において高さが100nm以上である凸部の数の割合が80%以上であり、かつ前記分離機能層がアミノ基、カルボキシ基、及びアミド基を含み、カルボキシ基/アミド基のモル比をx、アミノ基/アミド基のモル比をyとしたとき、y/x≦0.81であることを特徴とする複合半透膜に関する。

Description

複合半透膜
 本発明は、液状混合物の選択的分離に有用な複合半透膜に関する。本発明によって得られる複合半透膜は、かん水や海水の淡水化に好適に用いることができる。
 膜分離法は、溶媒(例えば水)からその溶媒に溶解した物質(例えば塩類)を除去する方法として拡大しつつある。膜分離法は、省エネルギーかつ省資源な方法として注目されている。
 膜分離法に使用される膜としては、精密ろ過膜、限外ろ過膜、ナノろ過膜、及び逆浸透膜などがある。これらの膜は、例えば、海水、かん水、有害物を含んだ水などからの飲料水の製造および工業用超純水の製造、ならびに排水処理および有価物の回収などに用いられている(特許文献1、2)。
 現在市販されている逆浸透膜およびナノろ過膜の大部分は複合半透膜である。複合半透膜としては、多孔性支持層上にゲル層とポリマーを架橋した活性層を有するものと、多孔性支持層と、多孔性支持層上でモノマーが重縮合することで形成された活性層と、を有するものとの2種類がある。後者の複合半透膜のなかでも、多官能アミンと多官能芳香族酸ハロゲン化物との重縮合反応によって得られる架橋ポリアミドを含有する分離機能層を有する複合半透膜が、透過性および選択分離性の高い分離膜として広く用いられている。
 逆浸透膜を用いる造水プラントではランニングコストの一層の低減を図るため、より高い透水性能が求められている。このような要求に対し、分離活性層として架橋ポリアミド重合体を設けた複合半透膜について、複合半透膜をpH1以下の溶液、及び40℃以上65℃以下の水に接触させる方法(特許文献3)や亜硝酸を含む水溶液に接触処理させる方法が知られている(特許文献4)。
日本国特開昭55-14706号公報 日本国特開平5-76740号公報 日本国特開2012-143750号公報 日本国特開2007-90192号公報
 特許文献3では透水性能を高めることができるが、溶質除去性能が低くなる課題があった。また、特許文献4では透水性能および除去性能を向上させることができるが、耐薬品性が低下してしまう課題があった。
 本発明の目的は、高い透水性能と溶質除去性能を持ち、かつ高い耐酸性を持つ複合半透膜を提供することである。
 したがって本発明は、以下の通りである。
1.支持膜と、前記支持膜上に設けられた分離機能層とを備える複合半透膜であって、
 前記分離機能層が、架橋芳香族ポリアミドを含有すると共に、凸部と凹部とを備えるひだ構造を有し、前記ひだ構造の凸部において高さが100nm以上である凸部の数の割合が80%以上であり、
 かつ、前記分離機能層が、アミノ基、カルボキシ基、及びアミド基を含み、y/x≦0.81
 であることを特徴とする複合半透膜。
 x:13C固体NMRにより測定したカルボキシ基とアミド基のモル比(カルボキシ基/アミド基)
 y:13C固体NMRにより測定したアミノ基とアミド基のモル比(アミノ基/アミド基)
2.x+yが0.50以上である前記1に記載の複合半透膜。
3.x+yが0.98以下である前記1または2に記載の複合半透膜。
4.凸部を5nNの力で押し込んだ際の変形量が2.5nm以下となる凸部が40%以上を占める前記1~3のいずれか1に記載の複合半透膜。
5.前記分離機能層が架橋全芳香族ポリアミドからなる、前記1~4のいずれか1に記載の複合半透膜。
 本発明によって、高い透水性能と溶質除去性能を持ち、かつ高い耐酸性を持つ複合半透膜が得られる。
図1は、分離機能層の表面のひだ構造を模式的に示す図面である。 図2は、分離機能層の凸部高さの測定方法を模式的に示す図面である。 図3は、分離機能層の凸部の変形量の測定方法を模式的に示す図面である。
1.複合半透膜
 本発明に係る複合半透膜は、支持膜と、前記多孔性支持層上に形成される分離機能層とを備える。前記分離機能層は実質的に分離性能を有するものであり、前記支持膜は水を透過するものの実質的にイオン等の分離性能を有さず、前記分離機能層に強度を与えることができる。
 (1)支持膜
 本実施形態では、支持膜は、例えば、基材および多孔性支持層を備える。ただし、本発明はこの構成に限定されるものではない。例えば、支持膜は、基材を持たず、多孔性支持層のみで構成されていてもよい。
 (1-1)基材
 基材としては、例えば、ポリエステル系重合体、ポリアミド系重合体、ポリオレフィン系重合体、及びこれらの混合物又は共重合体等が挙げられる。中でも、機械的、熱的に安定性の高いポリエステル系重合体の布帛が特に好ましい。布帛の形態としては、長繊維不織布や短繊維不織布、さらには織編物を好ましく用いることができる。
 基材には高分子重合体の溶液を流延した際にそれが過浸透により裏抜けしたり、微多孔性支持膜が剥離したり、さらには基材の毛羽立ち等により膜の不均一化やピンホール等の欠点が生じたりすることがないような優れた製膜性が要求されることから、中でも長繊維不織布をより好ましく用いることができる。
 基材として熱可塑性連続フィラメントより構成される長繊維不織布を用いることにより、短繊維不織布を用いたときに起こる、毛羽立ちによって生じる高分子溶液流延時の不均一化や、膜欠点を抑制することができる。また、複合半透膜の連続製膜においては、製膜方向に対し張力がかけられることからも、基材にはより寸法安定性に優れる長繊維不織布を用いることが好ましい。特に、微多孔性支持層と反対側に配置される繊維が、製膜方向に対して縦配向であることにより、強度を保ち、膜破れ等を防ぐことができる。
 基材において多孔性支持層と反対側に配置される繊維の繊維配向度としては0°~25°の範囲にあることが好ましい。ここで、繊維配向度とは、支持膜を構成する不織布基材の繊維の向きを示す指標であり、連続製膜を行う際の製膜方向を0°とし、製膜方向と直角方向、すなわち不織布基材の幅方向を90°としたときの、不織布基材を構成する繊維の平均の角度のことを言う。よって、維配向度が0°に近いほど縦配向であり、90°に近いほど横配向であることを示す。
 また、複合半透膜の製造工程やエレメントの製造工程においては加熱する工程が含まれるが、加熱により支持膜または複合半透膜が収縮する現象が起きる。特に、連続製膜において張力が付与されていない幅方向において顕著である。収縮することにより、寸法安定性等に問題が生じるため、基材としては熱寸法変化率が小さいものが望まれる。不織布基材において多孔性支持層と反対側に配置される繊維と多孔性支持層側に配置される繊維との配向度差が10°~90°であると、熱による幅方向の変化を抑制することができ好ましい。
 また、基材は、通気量が0.5cc/cm/sec以上5.0cc/cm/sec以下であることが好ましい。基材の通気量が上記範囲内にあることにより、多孔性支持層となる高分子溶液が基材に含浸するため、多孔性支持層の基材への接着性が向上し、支持膜の物理的安定性を高めることができる。
 基材の厚みは、10~200μmの範囲内にあることが好ましく、30~120μmの範囲内にあることがより好ましい。
 なお、本書において、特に付記しない限り、厚みとは、平均値を意味する。ここで平均値とは相加平均値を表す。すなわち、基材及び多孔性支持層の厚みは、断面観察で厚み方向に直交する方向(膜の面方向)に20μm間隔で測定した20点の厚みの平均値を算出することで求められる。
 (1-2)多孔性支持層
 本発明において多孔性支持層は、イオン等の分離性能を実質的に有さず、分離性能を実質的に有する分離機能層に強度を与えるためのものである。多孔性支持層の孔のサイズや分布は特に限定されない。
 例えば、均一で微細な孔、又は分離機能層が形成される側の表面からもう一方の面まで徐々に大きな微細孔をもち、かつ、分離機能層が形成される側の表面で微細孔の大きさが0.1nm以上100nm以下であるような多孔性支持層が好ましい。支持層に使用する材料やその形状は特に限定されない。
 多孔性支持層の素材には、例えば、ポリスルホン、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、及びポリフェニレンオキシド等のホモポリマー又はコポリマーを、単独で又は混合して使用することができる。ここでセルロース系ポリマーとしては酢酸セルロース、硝酸セルロースなど、ビニルポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリルなどが使用できる。
 中でもポリスルホン、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホンなどのホモポリマーまたはコポリマーが好ましい。より好ましくは酢酸セルロース、ポリスルホン、ポリフェニレンスルフィドスルホン、またはポリフェニレンスルホンが挙げられる。さらに、これらの素材の中では化学的、機械的、熱的に安定性が高く、成型が容易であることからポリスルホンが一般的に使用できる。
 具体的には、次の化学式に示す繰り返し単位からなるポリスルホンを用いると、多孔性支持層の孔径が制御しやすく、寸法安定性が高いため好ましい。
Figure JPOXMLDOC01-appb-C000001
 ポリスルホンは、ゲルパーミエーションクロマトグラフィー(GPC)でN-メチルピロリドンを溶媒に、ポリスチレンを標準物質として測定した場合の質量平均分子量(Mw)が、10000以上200000以下であることが好ましく、より好ましくは15000以上100000以下である。
 ポリスルホンのMwが10000以上であることで、多孔性支持層として好ましい機械的強度および耐熱性を得ることができる。また、Mwが200000以下であることで、溶液の粘度が適切な範囲となり、良好な成形性を実現することができる。
 例えば、上記ポリスルホンのN,N-ジメチルホルムアミド(以降、DMFと記載)溶液を、密に織ったポリエステル布又は不織布の上に一定の厚さに注型し、それを水中で湿式凝固させることによって、表面の大部分が直径数10nm以下の微細な孔を有する多孔性支持層を得ることができる。
 基材と多孔性支持層の厚みは、複合半透膜の強度及びそれをエレメントにしたときの充填密度に影響を与える。十分な機械的強度及び充填密度を得るためには、基材と多孔性支持層の厚みの合計が、30μm以上300μm以下であることが好ましく、100μm以上220μm以下であるとより好ましい。また、多孔性支持層の厚みは、20μm以上100μm以下であることが好ましい。
 本発明に使用する多孔性支持層は、例えば、ミリポア社製“ミリポアフィルターVSWP”(商品名)や、東洋濾紙社製“ウルトラフィルターUK10”(商品名)のような各種市販材料から選択することもできる。また、“オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って製造することもできる。
 (2)分離機能層
 本発明において分離機能層は、架橋芳香族ポリアミドを含有する。特に、分離機能層は、架橋芳香族ポリアミドを主成分として含有することが好ましい。主成分とは分離機能層の成分のうち、50重量%以上を占める成分を指す。分離機能層は、架橋芳香族ポリアミドを50重量%以上含むことにより、高い除去性能を発現することができる。
 また、分離機能層における架橋芳香族ポリアミドの含有率は80重量%以上であることが好ましく、90重量%以上であることがより好ましく、分離機能層は実質的に芳香族ポリアミドのみで形成されていることがさらに好ましい。分離機能層が実質的に架橋芳香族ポリアミドのみで形成されるとは、分離機能層の99重量%以上を架橋芳香族ポリアミドが占めることを意図する。
 架橋芳香族ポリアミドとしては、アラミド系の化合物が挙げられるが、分子構造内に、芳香族以外の部位を含んでもよい。ただし、架橋全芳香族ポリアミドが剛直性・化学的安定性の点からより好ましい。架橋芳香族ポリアミドは、多官能芳香族アミンと多官能芳香族酸ハロゲン化物との界面重縮合により形成することができる。ここで、多官能芳香族アミン及び多官能芳香族酸ハロゲン化物の少なくとも一方が3官能以上の化合物を含んでいることが好ましい。
 本発明における分離機能層を、以下、ポリアミド分離機能層と記載することがある。
 多官能芳香族アミンとは、一分子中に第一級アミノ基及び第二級アミノ基のうち少なくとも一方のアミノ基を2個以上有し、かつ、アミノ基のうち少なくとも1つは第一級アミノ基である芳香族アミンを意味する。
 多官能芳香族アミンとしては、例えば、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、o-ジアミノピリジン、m-ジアミノピリジン、及びp-ジアミノピリジン等の2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係で芳香環に結合した多官能芳香族アミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、3-アミノベンジルアミン、及び4-アミノベンジルアミンなどの多官能芳香族アミンなどが挙げられる。
 特に、膜の選択分離性や透過性、耐熱性を考慮すると、m-フェニレンジアミン、p-フェニレンジアミン、及び1,3,5-トリアミノベンゼンが好適に用いられる。中でも、入手の容易性や取り扱いのしやすさから、m-フェニレンジアミン(以下、m-PDAとも記す)を用いることがより好ましい。これらの多官能芳香族アミンは、単独で用いられてもよいし、2種以上が併用されてもよい。
 多官能芳香族酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する芳香族酸ハロゲン化物をいう。例えば、3官能酸ハロゲン化物では、トリメシン酸クロリドなどを挙げることができ、2官能酸ハロゲン化物では、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、及びナフタレンジカルボン酸クロリドなどを挙げることができる。
 多官能芳香族アミンとの反応性を考慮すると、多官能芳香族酸ハロゲン化物は多官能芳香族酸塩化物であることが好ましく、また、膜の選択分離性、耐熱性を考慮すると、一分子中に2~4個の塩化カルボニル基を有する多官能芳香族酸塩化物であることが好ましい。
 ポリアミド分離機能層には、多官能芳香族アミンと多官能芳香族酸ハロゲン化物の重合に由来するアミド基、未反応官能基に由来するアミノ基とカルボキシ基が存在する。また、分離機能層において、薄膜は、凹部と凸部とを有するひだ構造を形成する。より具体的には、ひだ構造においては、凹部と凸部が繰り返される。以下、分離機能層のひだ構造の凹部をひだ凹部、または単に凹部といい、ひだ構造の凸部をひだ凸部、または単に凸部ということがある。
 本発明者らは鋭意検討した結果、分離機能層のひだ構造のひだ凸部において高さが100nm以上である凸部の数の割合が80%以上であるときに、高い透水性を有することを見出した。
 100nm以上の高さを有する凸部の数の割合の求め方について以下に述べる。まず、凸部の高さは以下の手順で測定される。
(i)透過型電子顕微鏡(TEM)でひだ構造の断面を撮影する。
(ii)得られた画像において粗さ曲線を求める。
(iii)粗さ曲線の平均線を描き、その平均線の方向に2.0μmの幅で断面画像を10箇所抜き取る。
(iv)10箇所の断面画像のそれぞれで、10点平均面粗さを算出する。
(v)10箇所の断面画像のそれぞれで、上記(iv)の10点平均面粗さの5分の1以上の高さを有する凸部の高さを測定する。
 上記(i)の撮影手順は以下のとおりである。まず、複合半透膜を水溶性高分子で包埋する。水溶性高分子としては、サンプルの形状を保持できるものであればよく、例えばPVA等を用いることができる。次に、断面観察を容易にするためにOsOで染色する。染色された試料をウルトラミクロトームで膜面に垂直な方向に切断して超薄切片を作製する。TEMを用いて、得られた超薄切片の断面を撮影する。
 撮影箇所は1枚の膜につき1箇所であり、倍率は10万倍である。
 上記(ii)の手順は以下のとおりである。上記(i)により得られた、膜面に垂直な方向の断面画像には、分離機能層2を構成するひだ構造1の表面が、凸部と凹部とを連続的に繰り返す曲線として表れる。このひだ構造の表面の曲線について、ISO4287:1997に基づき定義される粗さ曲線(図2)を求める。なお、図1に符号“3”で示すのは多孔性支持層である。
 次に、上記(iii)のとおり、上記(i)の画像から、粗さ曲線の平均線の方向に2.0μmの幅の画像を10箇所抜き取る。
 粗さ曲線の平均線とは、ISO4287:1997に基づき定義される直線である。具体的には、粗さ曲線の平均線とは、表面粗さを測定する領域の幅(本測定の場合は2.0μm)に渡って、平均線と粗さ曲線とで囲まれる範囲の面積の合計が平均線の上下で等しくなるように描かれる直線である。
 なお、図2は模式図なので、実際に得られる画像とは異なり、平均線(基準線:図中の点線)と粗さ曲線とで囲まれる範囲の面積は、平均線の上下で厳密に同一ではない。
 上記(iv)のとおり、上記(iii)で得られた10個の画面のそれぞれにおいて、10点平均面粗さを算出する。具体的には、図2に示すように、抜き取った幅2.0μmの画像において、上記平均線を基準線として、分離機能層における凸部の高さと、凹部の深さをそれぞれ測定する。最も高い凸部から徐々に高さが低くなって5番目の高さまでの5つの凸部の高さH1~H5の絶対値について平均値を算出し、最も深い凹部から徐々に深さが浅くなって5番目の深さまでの5つの凹部の深さD1~D5の絶対値について平均値を算出して、さらに、得られた2つの平均値の絶対値の和を算出する。こうして得られた和が、10点平均面粗さである。
 つまり、1枚の複合半透膜から、10個の10点平均面粗さが得られる。
 次に、上記(v)のとおり、上記(iii)で得られた10個の画像で、凸部の高さを測定する。このとき、各画像において算出された10点平均面粗さの5分の1以上の高さを有する凸部について、高さを測定する。
 以上の手順によって、10箇所の断面画像のそれぞれで、複数の凸部の高さの値が得られる。
 凸部における高さが100nm以上である凸部の数の割合は、次のように算出される。
 上述の10箇所の断面画像のそれぞれで、10点平均面粗さの5分の1以上の高さを有する凸部を数える。つまり、10個の画像から、10点平均面粗さの5分の1以上の高さを有する凸部の数として、a1,a2・・・a10の計10個の値が得られるので、その合計値Aを算出する。
 一方で、各画像で、100nm以上(かつ、10点平均面粗さの5分の1以上)の高さを有する凸部を数える。つまり、10個の画像から、100nm以上(かつ、10点平均面粗さの5分の1以上)の高さを有する凸部の数b1、b2・・・b10の計10個の値が得られるので、その合計値Bを算出する。
 数Aに対する数Bの割合(B/A)が、上述の割合である。
 また、分離機能層におけるカルボキシ基とアミド基のモル比(カルボキシ基/アミド基)をx、アミノ基とアミド基のモル比(アミノ基/アミド基)をyとしたとき、y/x≦0.81であるときに、高い透水性と高い耐酸性を有することを見出した。より好ましくはy/x≦0.71である。
 また、分離機能層のカルボキシ基、アミノ基、及びアミド基のモル比は、分離機能層の13C固体NMR測定より求めることができる。具体的には、複合半透膜5mから基材を剥離し、ポリアミド分離機能層と多孔性支持層を得た後、多孔性支持層を溶解・除去し、ポリアミド分離機能層を得る。得られたポリアミド分離機能層をDD/MAS-13C固体NMR法により測定を行い、各官能基の炭素ピークまたは各官能基が結合している炭素ピークの積分値の比較から、各比を算出することができる。
 膜の透水性は膜が有する官能基が親水性であるほど大きくなる。一般に、親水性の度合いは、官能基の極性が大きく、水素結合が可能なほど大きい。カルボキシ基とアミノ基を比較すると、カルボキシ基のほうが双極子モーメントが大きく、親水性の度合いが大きい。y/x≦0.81であると、十分に親水性が大きくなり、膜の透水性が大きくなる。
 また、本発明者らは、x+yが透水性及び耐酸性に相関することを見出した。x+yが小さいほど透水性は低下する。これは、アミノ基とカルボキシ基の合計量に対するアミド基のモル比が大きくなるほど、ポリマーが緻密な構造を形成したためだと推定される。
 x+yは0.50以上であることが好ましい。また、x+yは0.98以下であることが好ましい。x+yが0.50以上であれば実用に耐える透水性を有することが出来る。一方、x+yが小さいとき、ポリマーが緻密な構造を形成しているため、強酸性条件下でも構造が変化しにくく、溶質の除去率が低下しにくくなる。x+yが0.98以下であると、強酸性条件下で処理しても、実用に耐えうる溶質の除去率を維持することが出来る。
 ポリアミド分離機能層には、多官能芳香族アミンと多官能芳香族酸ハロゲン化物の重合に由来するアミド基、未反応官能基に由来するアミノ基とカルボキシ基が存在する。これらに加え、多官能芳香族アミンまたは多官能芳香族酸ハロゲン化物が有していた、その他の官能基が存在する。さらに、化学処理により新たな官能基を導入することもできる。化学処理を行うことで、ポリアミド分離機能層に官能基を導入することができ、複合半透膜の性能を向上することができる。
 新たな官能基としては、例えば、アルキル基、アルケニル基、アルキニル基、ハロゲノ基、水酸基、エーテル基、チオエーテル基、エステル基、アルデヒド基、ニトロ基、ニトロソ基、ニトリル基、及びアゾ基等が挙げられる。例えば、次亜塩素酸ナトリウム水溶液で処理することで塩素基を導入できる。また、ジアゾニウム塩生成を経由したザンドマイヤー反応でもハロゲノ基を導入できる。さらに、ジアゾニウム塩生成を経由したアゾカップリング反応を行うことで、アゾ基を導入することができるし、ジアゾニウム塩を加水分解することでフェノール性水酸基を導入することもできる。
 また、凸部のうち、25℃の純水中で、凸部を5nNの力で押し込んだ際の変形量が2.5nm以下となる凸部の数が40%以上を占めることが好ましい。
 分離機能層の表面を原子間力顕微鏡(AFM)にて純水中で観察し、2μm四方範囲の任意の3つの領域を選択する。これらの3つの領域に含まれる凸部を、それぞれの領域において10点、つまり合計30点選択する。さらに、選択した凸部の頂点を中心とした直径100nmの円領域内の一点を5nNの力で押し込んだときに2.5nm以下の変形量を示す凸部の数Xを数え、割合(X/30)を求める。割合(X/30)が40%以上(0.4以上)であることで、運転時の変形を抑制することができる、また、割合(X/30)は50%以上(0.5以上)であることが好ましく、60%以上(0.6以上)であることがより好ましい。
 凸部の変形量(Deformation)は、原子間力顕微鏡(AFM)のタッピングモードで測定することができる。具体的には、図3に示すように、横軸にチップ-サンプル間距離(Separation)、縦軸に荷重をとったフォースカーブ上において、カンチレバーをサンプルに近付ける前の点をA点、荷重が立ち上がる瞬間をB点、荷重が最大荷重の90%となる点をC点、最大荷重点をD点としたとき、CD間の距離を変形量とした。なお、フォースカーブは、カンチレバーをサンプルに近付けるときのものを使用する。
 原子間力顕微鏡は、例えば、Bruker AXS社製Dimension FastScanを用いることができる。付属のアタッチメントを利用することで、水中での観察が可能である。また、その際、使用するカンチレバーの探針の形状は、円錐形(ピラミッド型)のものを用いる。カンチレバーを使用する前には、校正(Calibration)を行う。まず、十分な硬度を有する物質でカンチレバーの反り感度(Deflection Sensitivity)を測定する。十分な硬度を有する物質としては、シリコンウェハーやサファイヤを用いることができる。次に、熱振動(Thermal Tune)でカンチレバーのバネ定数を測定する。校正を行うことで、測定の精度が向上する。
 2.複合半透膜の製造方法
 次に、上記複合半透膜の製造方法について説明する。複合半透膜は、基材上に多孔性支持層を形成する工程、および多孔性支持層の上に分離機能層を形成する工程を含む。
 (2-1)多孔性支持層の形成
 基材および多孔性支持層としては、例えば、ミリポア社製“ミリポアフィルターVSWP”(商品名)、および東洋濾紙社製“ウルトラフィルターUK10”(商品名)のような各種市販膜から適切な膜を選択することもできる。
 また、“オフィス・オブ・セイリーン・ウォーター・リサーチ・アンド・ディベロップメント・プログレス・レポート”No.359(1968)に記載された方法に従って製造することができる。その他、多孔性支持層の形成方法として公知の方法が好適に使用される。
 (2-2)分離機能層の形成方法
 次に複合半透膜を構成する分離機能層の形成工程を説明する。
 分離機能層の形成工程は、
(a)多官能芳香族アミンを含有する水溶液を多孔性支持層上に接触させる工程と、(b)多官能芳香族アミンを含有する水溶液を接触させた多孔性支持層に多官能芳香族酸ハロゲン化物を溶解させた溶液Aを接触させる工程と、(c)さらに多官能芳香族酸ハロゲン化物を溶解させた溶液Bを接触させ加熱する工程と、(d)反応後の有機溶媒溶液を液切りする工程、を有する。
 なお、本欄では、支持膜が基材と多孔性支持層とを備える場合を例に挙げるが、支持膜が別の構成を備える場合は、「多孔性支持層」を「支持膜」と読み替えればよい。
 工程(a)において、多官能芳香族アミン水溶液における多官能芳香族アミンの濃度は0.1重量%以上20重量%以下の範囲内であることが好ましく、より好ましくは0.5重量%以上15重量%以下の範囲内である。多官能芳香族アミンの濃度がこの範囲であると十分な溶質除去性能および透水性を得ることができる。
 多官能芳香族アミン水溶液には、多官能芳香族アミンと多官能芳香族酸ハロゲン化物との反応を妨害しないものであれば、界面活性剤や有機溶媒、アルカリ性化合物、及び酸化防止剤などが含まれていてもよい。界面活性剤は、支持膜表面の濡れ性を向上させ、多官能芳香族アミン水溶液と非極性溶媒との間の界面張力を減少させる効果がある。有機溶媒は界面重縮合反応の触媒として働くことがあり、添加することにより界面重縮合反応を効率よく行える場合がある。
 多官能芳香族アミン水溶液の接触は、多孔性支持層上に均一にかつ連続的に行うことが好ましい。具体的には、例えば、多官能芳香族アミン水溶液を多孔性支持層にコーティングする方法や、多孔性支持層を多官能芳香族アミン水溶液に浸漬する方法を挙げることができる。多孔性支持層と多官能アミン水溶液との接触時間は、1秒以上10分間以下であることが好ましく、10秒以上3分間以下であるとさらに好ましい。
 多官能アミン水溶液を多孔性支持層に接触させた後は、膜上に液滴が残らないように十分に液切りする。十分に液切りすることで、多孔性支持層形成後に液滴残存部分が膜欠点となって除去性能が低下することを防ぐことができる。
 液切りの方法としては、例えば、日本国特開平2-78428号公報に記載されているように、多官能アミン水溶液接触後の支持膜を垂直方向に把持して過剰の水溶液を自然流下させる方法や、エアーノズルから窒素などの気流を吹き付け、強制的に液切りする方法などを用いることができる。また、液切り後、膜面を乾燥させて水溶液の水分を一部除去することもできる。
 有機溶媒溶液(溶液A及び溶液B)中の多官能芳香族酸ハロゲン化物の濃度は、0.01重量%以上10重量%以下の範囲内であると好ましく、0.02重量%以上2.0重量%以下の範囲内であるとさらに好ましい。0.01重量%以上とすることで十分な反応速度が得られ、また、10重量%以下とすることで副反応の発生を抑制することができるためである。さらに、この有機溶媒溶液にアシル化触媒を含有させると、界面重縮合が促進され、さらに好ましい。
 多官能芳香族アミンを含有する水溶液を接触させた多孔性支持層と多官能芳香族酸ハロゲン化物を溶解させた溶液Aを接触させる温度は25~60℃であることが好ましい。25℃未満ではひだ高さが十分に得られず、60℃を超えると反応が速過ぎてひだ高さが得られないまま厚みが増大し、いずれも十分な透水性が得られない。
 また、多官能芳香族酸ハロゲン化物は水による加水分解を受けやすいため、多官能芳香族ハロゲン化物を含有する有機溶媒溶液を作る直前に多官能芳香族ハロゲン化物を合成するか再精製することが好ましい。精製には再結晶を用いることができる。精製によって工程(b)及び(c)の反応を促進させることができるため、耐酸性が向上する。
 有機溶媒は、水と非混和性であり、かつ多官能芳香族酸ハロゲン化物を溶解し、支持膜を破壊しないものが好ましく、多官能アミン化合物および多官能芳香族酸ハロゲン化物に対して不活性であるものであればよい。また、有機溶媒の沸点または初留点が100℃以上であると、有機溶媒の残存率を制御しやすく、好ましい。好ましい例として、n-ノナン、n-デカン、n-ウンデカン、n-ドデカン、イソデカン、及びイソドデカンなどの炭化水素化合物が挙げられる。
 多官能芳香族酸ハロゲン化物の有機溶媒溶液の多官能芳香族アミン化合物水溶液と接触させた多孔性支持層への接触の方法は、多官能芳香族アミン水溶液の多孔性支持層への被覆方法と同様に行えばよい。
 工程(c)において多官能芳香族酸ハロゲン化物を溶解させた溶液Bを接触させ加熱する。工程(b)にて生成したポリアミド分離機能層には、重合に由来するアミド基、未反応官能基に由来するアミノ基とカルボキシ基が存在する。溶液Bを添加することによって未反応のアミノ基がさらに反応する。このとき、加熱により対流が生じるため、さらなるひだ高さ向上と反応の促進が起こる。その結果、ひだ高さが100nm以上の割合が増加し、さらに、アミノ基/アミド基のモル比yが小さくなり、カルボキシ基/アミド基のモル比xは変化しない又は大きくなるため、y/xが小さくなる。
 加熱処理する温度としては50℃以上180℃以下、好ましくは60℃以上160℃以下である。さらに加熱処理後の多孔性支持層上の有機溶媒の残存率が加熱処理前の30%以上85%以下であることが好ましい。ここで有機溶媒の残存率としては、工程(b)直前の膜重量、及び工程(c)直後の膜重量から、下記式により求めた値とした。
 有機溶媒残存率(%)={(工程(c)直後の膜重量-工程(b)直前の膜重量)/(溶液Aの重量+溶液Bの重量)}×100
 有機溶媒の残存率を制御する方法としては、オーブン温度や膜面風速、加熱時間により制御することができる。加熱処理温度が50℃以上であり、かつ有機溶媒の残存率が85%以下であることにより、熱による界面重合反応の促進と界面重合中の多官能芳香族酸ハロゲン化物の濃縮による界面重合反応の促進の相乗効果が得られるため、アミド基量が大きくなり、x+yが0.98以下となる。また、有機溶媒の残存率が30%以上であることにより、界面重合により生成するオリゴマー分子の運動性が確保でき、界面重合反応速度の低下が抑制され、x+yが0.98以下となる。
 工程(d)において、反応後の有機溶媒溶液を液切りする工程により、有機溶媒を除去する。有機溶媒の除去は、例えば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法、送風機で風を吹き付けることで有機溶媒を乾燥除去する方法、水とエアーの混合流体で過剰の有機溶媒を除去する方法等を用いることができる。
 有機溶媒の除去に要する時間は、1分以内であることが好ましい。液切りをおこなわない場合や時間が長すぎる場合、反応が長時間にわたって進行し、厚い架橋ポリアミド層が形成されてx+yが0.50未満となり、透水性の低い膜が生成する。また、雰囲気温度上昇のみによって溶媒蒸発を行えば、溶媒の蒸発が終了するまでに膜中の水分の過度な蒸発が起こって透水性が低下する傾向がある。
 3.複合半透膜の利用
 本発明の複合半透膜は、プラスチックネットなどの供給水流路材と、トリコットなどの透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回され、スパイラル型の複合半透膜エレメントとして好適に用いられる。さらに、このエレメントを直列または並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。
 また、上記の複合半透膜やそのエレメント、モジュールは、それらに供給水を供給するポンプや、その供給水を前処理する装置などと組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、供給水を飲料水などの透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
 本発明に係る複合半透膜によって処理される供給水としては、例えば、海水、かん水、排水等の500mg/L以上100g/L以下のTDS(Total Dissolved Solids:総溶解固形分)を含有する液状混合物が挙げられる。一般に、TDSは総溶解固形分量を指し、「質量÷体積」あるいは「重量比」で表される。定義によれば、0.45ミクロンのフィルターで濾過した溶液を39.5℃以上40.5℃以下の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分(S)から換算する。
 流体分離装置の操作圧力は高い方が溶質除去率は向上するが、運転に必要なエネルギーも増加すること、また、複合半透膜の耐久性を考慮すると、複合半透膜に被処理水を透過する際の操作圧力は、0.5MPa以上、10MPa以下が好ましい。供給水温度は、高くなると溶質除去率が低下するが、低くなるにしたがい膜透過流束も減少するので、5℃以上、45℃以下が好ましい。また、供給水pHが高くなると、海水などの高溶質濃度の供給水の場合、マグネシウムなどのスケールが発生する恐れがあり、また、高pH運転による膜の劣化が懸念されるため、中性領域での運転が好ましい。
 以下に実施例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。
 実施例、比較例における官能基解析(カルボキシ基・アミノ基・アミド基の定量)、ひだ凸部高さ解析、及び有機溶媒残存率は以下のように測定した。以下、特段の記述がない場合は、25℃で操作を行った。
 (カルボキシ基・アミノ基・アミド基の定量)
 複合半透膜5mから基材を物理的に剥離させ、多孔性支持層と分離機能層を回収した。24時間静置することで乾燥させた後、ジクロロメタンの入ったビーカー内に少量ずつ加えて撹拌し、多孔性支持層を構成するポリマーを溶解させた。ビーカー内の不溶物を濾紙で回収した。この不溶物をジクロロメタンの入ったビーカー内に入れ攪拌し、ビーカー内の不溶物を回収した。この作業をジクロロメタン溶液中に多孔性支持層を形成するポリマーの溶出が検出できなくなるまで繰り返した。回収した分離機能層は真空乾燥機で乾燥させ、残存するジクロロメタンを除去した。得られた分離機能層は凍結粉砕によって粉末状の試料とし、固体NMR法測定に用いられる試料管内に封入して、CP/MAS法、及びDD/MAS法による13C固体NMR測定を行った。13C固体NMR測定には、例えば、Chemagnetics社製CMX-300を用いることができる。測定条件例を以下に示す。
 基準物質:ポリジメチルシロキサン(内部基準:1.56ppm)
 試料回転数:10.5kHz
 パルス繰り返し時間:100s
 得られたスペクトルから、各官能基が結合している炭素原子由来のピークごとにピーク分割を行い、分割されたピークの面積から、カルボキシ基・アミノ基・アミド基の官能基量比を定量した。
 (ひだ凸部高さ)
 複合半透膜をPVAで包埋し、OsOで染色し、これをウルトラミクロトームで切断して超薄切片を作製した。得られた超薄切片を、透過型電子顕微鏡を用いて断面写真を撮影した。透過型電子顕微鏡により撮影した断面写真を画像解析ソフトに読み込み、長さ2.0μmの距離におけるひだ凸部高さとひだ凹部深さを測定し、上述したように10点平均面粗さを算出した。この10点平均面粗さに基づいて、10点平均面粗さの5分の1以上の高さを有する凸部について、その凸部の高さを測定した。さらに、ひだ凸部高さの中間値を算出した。
 (変形量)
 変形量を上述の方法で測定した。
 分離機能層の表面を原子間力顕微鏡(AFM)にて純水中で観察し、2μm四方範囲の任意の3つの領域を選択した。これらの3つの領域に含まれる凸部を、それぞれの領域において10点、つまり合計30点選択した。さらに、選択した凸部の頂点を中心とした直径100nmの円領域内の一点を5nNの力で押し込んだときに2.5nm以下の変形量を示す凸部の数Xを数え、割合(X/30)を求めた。
 なお、凸部の変形量(Deformation)は、上述のとおり、原子間力顕微鏡(AFM)のタッピングモードで測定した。
 原子間力顕微鏡はBruker AXS社製Dimension FastScanを用いた。カンチレバーの探針の形状は円錐形(ピラミッド型)であった。
(有機溶媒残存率)
 有機溶媒残存率は、工程(b)直前の膜重量、工程(c)直後の膜重量から、下記式により求めた値とした。
 有機溶媒残存率(%)={(工程(c)直後の膜重量-工程(b)直前の膜重量)/(溶液Aの重量+溶液Bの重量)}×100
 複合半透膜の各種特性は、複合半透膜に、pH6.5に調整した海水(TDS濃度3.5%、ホウ素濃度約5ppm)を操作圧力5.5MPaで供給して膜ろ過処理を24時間行い、その後の透過水、供給水の水質を測定することにより求めた。
 (膜透過流束)
 供給水(海水)の膜透過水量を、膜面1平方メートルあたり、1日あたりの透水量(立方メートル)でもって膜透過流束(m/m/日)を表した。
 (ホウ素除去率)
 供給水と透過水中のホウ素濃度をICP発光分析装置(日立製作所製 P-4010)で分析し、次の式から求めた。
 ホウ素除去率(%)=100×{1-(透過水中のホウ素濃度/供給水中のホウ素濃度)}
 (耐酸性試験)
 複合半透膜をpH1に調整した硫酸水溶液に24時間浸漬した後水で十分に洗浄した。
 耐薬品性は浸漬前後での膜透過流束比とホウ素SP比から求めた。
 膜透過流束比=浸漬後の膜透過流束/浸漬前の膜透過流束
 ホウ素SP比=(100-浸漬後のホウ素除去率)/(100-浸漬前のホウ素除去率)
 (参考例1)
 ポリエステル不織布(通気量2.0cc/cm/sec)上にポリスルホン(PSf)の16.0重量%DMF溶液を25℃の条件下で200μmの厚みでキャストし、ただちに純水中に浸漬して5分間放置することによって支持膜を作製した。
 (実施例1)
 国際公開第2011/105278号記載の方法にならい複合半透膜を製膜した。参考例1によって得られた多孔性支持膜を、m-フェニレンジアミン(m-PDA)の6重量%を含む水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げた。エアーノズルから窒素を吹き付け、支持膜表面から余分な水溶液を取り除いた後、トリメシン酸クロリド(TMC)0.16重量%を含む40℃のデカン溶液(溶液A)を表面が完全に濡れるように塗布したのち、120℃のオーブンに入れた。さらにTMC0.32重量%を含むデカン溶液(溶液B)を塗布した後、有機溶媒残存率が60%となるまで加熱した。その後、膜から余分な溶液を除去するために膜を垂直にして60秒液切りを行い、送風機を使い20℃の空気を30秒吹き付けて乾燥させ、複合半透膜を得た。
 (実施例2~5)
 溶液A接触温度、溶液B接触後の有機溶媒残存率を、表1に示す値に変更した以外は、実施例1と同様にして実施例2~5の複合半透膜を得た。
 (実施例6)
 TMCを精製せずに用いたことと、有機溶媒残存率を58%にした以外は、実施例1と同様にして実施例6における複合半透膜を得た。
 (実施例7)
 液切り時、膜を垂直にして180秒液切りを行った以外は、実施例1と同様にして実施例7における複合半透膜を得た。
 (比較例1)
 溶液A接触温度、溶液Bの濃度、溶液B接触後の有機溶媒残存率、液切り所要時間を、表1に示す値に変更した以外は、実施例1と同様にして比較例1の複合半透膜を得た。
 (比較例2、3)
 溶液Bを接触させる工程を省略し、溶液A接触温度、有機溶媒残存率、液切り所要時間を、表1に示す値に変更した以外は、実施例1と同様にして比較例2及び3の複合半透膜を得た。
 (比較例4)
 溶液Bを接触させる工程、120℃のオーブンに入れる工程を省略し、溶液A接触温度、有機溶媒残存率、液切り所要時間を、表1に示す値に変更した以外は、実施例1と同様にして比較例4の複合半透膜を得た。
 (比較例5)
 120℃のオーブンに入れる工程を省略し、溶液A接触温度、溶液B接触後の有機溶媒残存率、液切り所要時間を、表1に示す値に変更した以外は、実施例1と同様にして比較例5の複合半透膜を得た。
 (比較例6)
 溶媒としてイソオクタンを用い、溶液A接触温度、溶液Bの濃度、溶液B接触後の有機溶媒残存率、液切り所要時間を、表1に示す値に変更した以外は、実施例1と同様にして比較例6の複合半透膜を得た。
 (比較例7)
 参考例1によって得られた多孔性支持膜をm-PDAの4重量%を含む水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げた。エアーノズルから窒素を吹き付け、支持膜表面から余分な水溶液を取り除いた後、TMC0.16重量%を40℃のデカン溶液に溶解し、支持膜表面が完全に濡れるように塗布した。その後、膜から余分な溶液を除去するために膜を垂直にして60秒液切りを行い、送風機を使い20℃の空気を吹き付けて乾燥させた。次に、膜を硫酸によりpH1に調整した90℃の熱水に2分間浸漬し、続いて40℃の水に2分間浸漬することで、比較例7の複合半透膜を得た。
 (比較例8)
 参考例1によって得られた多孔性支持膜をm-PDAの4重量%を含む水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げた。エアーノズルから窒素を吹き付け、支持膜表面から余分な水溶液を取り除いた後、TMC0.16重量%を40℃のデカン溶液に溶解し、支持膜表面が完全に濡れるように塗布した。その後、膜から余分な溶液を除去するために膜を垂直にして90秒液切りを行い、送風機を使い20℃の空気を吹き付けて乾燥させた。次に、膜を50℃の水で2分間洗浄し、500ppmのm-PDAを含む水溶液に60分間浸漬した。次に、膜を硫酸によりpH3に調整した、0.3重量%の亜硝酸ナトリウムを含む35℃の水溶液に1分間浸漬し、続いて水で洗浄した。最後に、0.1重量%の亜硫酸ナトリウム水溶液に2分間浸漬することで、比較例8の複合半透膜を得た。
 (比較例9)
 参考例1によって得られた支持膜を、m-PDAの5.5重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、TMC0.165重量%を含む25℃のn-デカン溶液を表面が完全に濡れるように塗布して1分間静置した。次に、膜から余分な溶液を除去するために膜を1分間垂直に保持して60秒液切りした後、50℃の熱水で2分間洗浄して複合半透膜を得た。得られた複合半透膜を、pH3、35℃に調整した、亜硝酸ナトリウム0.4重量%水溶液に1分間浸漬した。亜硝酸ナトリウムのpHの調整は硫酸で行った。次に、35℃のm-PDA0.3重量%水溶液に1分間浸漬させ、ジアゾカップリング反応を行った。最後に35℃の0.1重量%の亜硫酸ナトリウム水溶液に2分間浸漬することで、比較例9の複合半透膜を得た。
 (比較例10)
 参考例1によって得られた支持膜を、m-PDAの2.0%水溶液中に2分間浸漬した。2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、ゴムローラーを用いて圧縮し、支持膜表面から余分な水溶液を取り除いた後、TMC0.10重量%を含むn-ヘキサン溶液を表面が完全に濡れるように塗布して10秒間静置した。得られた膜を空気乾燥した。
 (比較例11)
 ポリスルホンの濃度が18.0重量%である以外は参考例1と同様の方法で得た支持膜を、2.0%のm-PDA、1%のトリエチルアミン、及び2.3%のカンファースルホン酸を含む水溶液に2分間入れてから取り出した後、支持膜上における過剰の水溶液を25psiのローラーを用いて除去し、1分乾燥した。
 次に、ISOPAR C(エクソン・モービル製)に0.10体積%のTMCを含有した有機溶液を支持膜上部に、上記支持膜を線速1m/minで移動させ、上記支持膜1mあたり100mlの量で滴下した。このとき、有機溶液の液滴あたりの体積は0.01mLであった。支持膜の幅方向に1cmの感覚で液滴を同時滴下し、移動方向に1.7回/secの周期で液滴を滴下した。滴下後、60℃のオーブンにおいて10分間乾燥した。
 (比較例12)
 ポリスルホンの濃度が16.5重量%である以外は参考例1と同様の方法で得た支持膜を、m-PDAの3.5重量%水溶液中に2分間浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け支持膜表面から余分な水溶液を取り除いた後、TMC0.14重量%、TMCのモノ加水分解体を0.06重量%、およびTMCに対して1.1当量のリン酸トリブチルを含む25℃のISOPAR L(エクソン・モービル製)溶液を表面が完全に濡れるように塗布して1分間静置した。次に、膜から余分な溶液を除去するために膜を1分間垂直に保持して液切りした後、50℃の熱水で2分間洗浄して複合半透膜を得た。最後に25℃の純水で24時間浸漬した。
 以上の実施例、比較例で得られた複合半透膜のひだ凸部高さが100nm以上である割合、凸部を5nNの力で押し込んだ際の変形量が2.5nm以下となる凸部の割合、末端官能基、耐酸性試験前後の膜性能を表2に示す。実施例に示すように、本発明の複合半透膜は、高い透水性能と除去性能を持ち、かつ高い耐酸性を有することが分かる。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更及び変形が可能であることは、当業者にとって明らかである。なお本出願は、2015年12月25日付で出願された日本特許出願(特願2015-254724)に基づいており、その全体が引用により援用される。
 本発明の複合半透膜は、かん水や海水の脱塩に好適に用いることができる。
 1 ひだ構造
 2 分離機能層
 3 多孔性支持層

Claims (5)

  1.  支持膜と、前記支持膜上に設けられた分離機能層とを備える複合半透膜であって、
     前記分離機能層が、架橋芳香族ポリアミドを含有すると共に、凸部と凹部とを備えるひだ構造を有し、前記ひだ構造の凸部において高さが100nm以上である凸部の数の割合が80%以上であり、
     かつ、前記分離機能層が、アミノ基、カルボキシ基、及びアミド基を含み、y/x≦0.81
     であることを特徴とする複合半透膜。
     x:13C固体NMRにより測定したカルボキシ基とアミド基のモル比(カルボキシ基/アミド基)
     y:13C固体NMRにより測定したアミノ基とアミド基のモル比(アミノ基/アミド基)
  2.  x+yが0.50以上である請求項1に記載の複合半透膜。
  3.  x+yが0.98以下である請求項1または2に記載の複合半透膜。
  4.  凸部を5nNの力で押し込んだ際の変形量が2.5nm以下となる凸部が40%以上を占める請求項1~3のいずれか1項に記載の複合半透膜。
  5.  前記分離機能層が架橋全芳香族ポリアミドからなる、請求項1~4のいずれか1項に記載の複合半透膜。
PCT/JP2016/088584 2015-12-25 2016-12-22 複合半透膜 WO2017111140A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680076376.8A CN108472600B (zh) 2015-12-25 2016-12-22 复合半透膜
KR1020187017609A KR102497473B1 (ko) 2015-12-25 2016-12-22 복합 반투막
EP16879026.9A EP3395434B1 (en) 2015-12-25 2016-12-22 Composite semipermeable membrane
JP2016575981A JP6197969B1 (ja) 2015-12-25 2016-12-22 複合半透膜
US16/065,563 US20190247800A1 (en) 2015-12-25 2016-12-22 Composite semipermeable membrane
ES16879026T ES2881098T3 (es) 2015-12-25 2016-12-22 Membrana semipermeable compuesta

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-254724 2015-12-25
JP2015254724 2015-12-25

Publications (1)

Publication Number Publication Date
WO2017111140A1 true WO2017111140A1 (ja) 2017-06-29

Family

ID=59090668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088584 WO2017111140A1 (ja) 2015-12-25 2016-12-22 複合半透膜

Country Status (7)

Country Link
US (1) US20190247800A1 (ja)
EP (1) EP3395434B1 (ja)
JP (1) JP6197969B1 (ja)
KR (1) KR102497473B1 (ja)
CN (1) CN108472600B (ja)
ES (1) ES2881098T3 (ja)
WO (1) WO2017111140A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138975A1 (ja) * 2020-12-25 2022-06-30 東レ株式会社 複合半透膜

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218571A1 (ja) * 2019-04-26 2020-10-29 東レ株式会社 透析液再生方法
KR20220113381A (ko) * 2019-12-23 2022-08-12 도레이 카부시키가이샤 가스 분리막, 가스 분리막 엘리먼트, 및 가스 제조 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514706A (en) 1978-07-18 1980-02-01 Hitachi Ltd Reception detector circuit
JPH0278428A (ja) 1988-06-07 1990-03-19 Toray Ind Inc 複合半透膜およびその製造方法
JPH0576740A (ja) 1991-03-12 1993-03-30 Toray Ind Inc 複合半透膜の製造方法
JPH11347385A (ja) * 1998-04-10 1999-12-21 Toray Ind Inc 複合半透膜およびその製造方法
JP2007090192A (ja) 2005-09-28 2007-04-12 Toray Ind Inc 複合半透膜の処理方法および製造方法
WO2011078047A1 (ja) * 2009-12-24 2011-06-30 東レ株式会社 複合半透膜およびその製造方法
WO2011105278A1 (ja) 2010-02-23 2011-09-01 東レ株式会社 複合半透膜およびその製造方法
JP2012143750A (ja) 2010-12-24 2012-08-02 Toray Ind Inc 複合半透膜の製造方法
WO2013108788A1 (ja) * 2012-01-16 2013-07-25 東レ株式会社 複合半透膜およびその製造方法
WO2014003141A1 (ja) * 2012-06-27 2014-01-03 東レ株式会社 複合半透膜
WO2014133130A1 (ja) * 2013-02-28 2014-09-04 東レ株式会社 複合半透膜およびその製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4277344A (en) 1979-02-22 1981-07-07 Filmtec Corporation Interfacially synthesized reverse osmosis membrane
US6171497B1 (en) * 1996-01-24 2001-01-09 Nitto Denko Corporation Highly permeable composite reverse osmosis membrane
CN1211151C (zh) * 1997-07-02 2005-07-20 日东电工株式会社 复合反渗透膜及其制造方法
AU2007317516B2 (en) * 2006-10-27 2013-04-04 The Regents Of The University Of California Micro-and nanocomposite support structures for reverse osmosis thin film membranes
CN100411722C (zh) * 2006-12-29 2008-08-20 浙江大学 聚偏氟乙烯共混多孔膜及其制备方法
CN101468299A (zh) * 2007-12-27 2009-07-01 中国科学院生态环境研究中心 一种芳香聚酰胺中空纤维纳滤膜的制备方法
US8177978B2 (en) * 2008-04-15 2012-05-15 Nanoh20, Inc. Reverse osmosis membranes
CN101785974A (zh) * 2010-03-22 2010-07-28 浙江理工大学 一种耐酸型复合反渗透膜
EP2433700A1 (en) * 2010-09-23 2012-03-28 Alstom Technology Ltd Trace component removal in CO2 removal processes by means of a semipermeable membrane
CN102120149B (zh) * 2011-01-30 2014-03-12 杭州方然滤膜技术有限公司 一种耐酸型聚磺酰胺纳滤复合膜的制备方法
US20140231338A1 (en) * 2011-09-29 2014-08-21 Toray Industries, Inc. Composite semipermeable membrane
JP2013139030A (ja) * 2011-12-08 2013-07-18 Mitsubishi Paper Mills Ltd 半透膜支持体及び半透膜支持体の製造方法
JP6197649B2 (ja) * 2012-09-26 2017-09-20 東レ株式会社 複合半透膜
CN104028117B (zh) * 2014-05-16 2015-09-23 浙江大学 两性聚电解质络合物表面修饰的聚酰胺反渗透膜的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514706A (en) 1978-07-18 1980-02-01 Hitachi Ltd Reception detector circuit
JPH0278428A (ja) 1988-06-07 1990-03-19 Toray Ind Inc 複合半透膜およびその製造方法
JPH0576740A (ja) 1991-03-12 1993-03-30 Toray Ind Inc 複合半透膜の製造方法
JPH11347385A (ja) * 1998-04-10 1999-12-21 Toray Ind Inc 複合半透膜およびその製造方法
JP2007090192A (ja) 2005-09-28 2007-04-12 Toray Ind Inc 複合半透膜の処理方法および製造方法
WO2011078047A1 (ja) * 2009-12-24 2011-06-30 東レ株式会社 複合半透膜およびその製造方法
WO2011105278A1 (ja) 2010-02-23 2011-09-01 東レ株式会社 複合半透膜およびその製造方法
JP2012143750A (ja) 2010-12-24 2012-08-02 Toray Ind Inc 複合半透膜の製造方法
WO2013108788A1 (ja) * 2012-01-16 2013-07-25 東レ株式会社 複合半透膜およびその製造方法
WO2014003141A1 (ja) * 2012-06-27 2014-01-03 東レ株式会社 複合半透膜
WO2014133130A1 (ja) * 2013-02-28 2014-09-04 東レ株式会社 複合半透膜およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138975A1 (ja) * 2020-12-25 2022-06-30 東レ株式会社 複合半透膜

Also Published As

Publication number Publication date
KR20180096639A (ko) 2018-08-29
US20190247800A1 (en) 2019-08-15
KR102497473B1 (ko) 2023-02-08
CN108472600A (zh) 2018-08-31
EP3395434A1 (en) 2018-10-31
JP6197969B1 (ja) 2017-09-20
ES2881098T3 (es) 2021-11-26
EP3395434A4 (en) 2019-09-04
JPWO2017111140A1 (ja) 2017-12-21
CN108472600B (zh) 2021-04-20
EP3395434B1 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2016002821A1 (ja) 複合半透膜
KR101985351B1 (ko) 복합 반투막, 복합 반투막 엘리먼트 및 복합 반투막의 제조 방법
JP6295949B2 (ja) 複合半透膜およびその製造方法
JP6197649B2 (ja) 複合半透膜
US20160243503A1 (en) Composite semipermeable membrane and method for manufacturing same
CN106457165B (zh) 复合半透膜
JPWO2018198679A1 (ja) 複合半透膜及びその製造方法
JP6544245B2 (ja) 複合半透膜
JP6197969B1 (ja) 複合半透膜
JP2017213501A (ja) 複合半透膜および複合半透膜の製造方法
JP6237233B2 (ja) 複合半透膜および複合半透膜エレメント
WO2016052669A1 (ja) 複合半透膜
JP6702181B2 (ja) 複合半透膜
JP6511808B2 (ja) 複合半透膜
WO2023048288A1 (ja) 複合半透膜
WO2024048695A1 (ja) 複合半透膜及び複合半透膜の製造方法
JP7343075B1 (ja) 複合半透膜及び複合半透膜の製造方法
WO2023276483A1 (ja) 正浸透膜、及びそれを含む正浸透膜モジュール
JP2021069988A (ja) 複合半透膜および複合半透膜を用いた濾過方法
WO2022138975A1 (ja) 複合半透膜
JP2014064989A (ja) 複合半透膜
JPWO2020137066A1 (ja) 複合半透膜
JP2020049466A (ja) 複合半透膜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016575981

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187017609

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016879026

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016879026

Country of ref document: EP

Effective date: 20180725