WO2023048288A1 - 複合半透膜 - Google Patents

複合半透膜 Download PDF

Info

Publication number
WO2023048288A1
WO2023048288A1 PCT/JP2022/035764 JP2022035764W WO2023048288A1 WO 2023048288 A1 WO2023048288 A1 WO 2023048288A1 JP 2022035764 W JP2022035764 W JP 2022035764W WO 2023048288 A1 WO2023048288 A1 WO 2023048288A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite semipermeable
semipermeable membrane
amount
solution
functional layer
Prior art date
Application number
PCT/JP2022/035764
Other languages
English (en)
French (fr)
Inventor
久美子 小川
晴季 志村
貴史 小川
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020247009448A priority Critical patent/KR20240063910A/ko
Publication of WO2023048288A1 publication Critical patent/WO2023048288A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a composite semipermeable membrane useful for selective separation of liquid mixtures.
  • Membranes used in membrane separation include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes, and the like. It is used for the production of industrial ultrapure water, wastewater treatment, and recovery of valuables.
  • a composite semipermeable membrane having a separation function layer containing a crosslinked polyamide obtained by a polycondensation reaction of a polyfunctional amine and a polyfunctional acid halide has a permeation It is widely used as a separation membrane with high sensitivity and selective separation.
  • An object of the present invention is to provide a composite semipermeable membrane that can achieve both high salt removal performance and water permeability even under fluctuating pressure conditions.
  • the composite semipermeable membrane of the present invention has any one of the following configurations.
  • a composite semipermeable membrane having a microporous support layer and a separation functional layer provided on the microporous support layer, wherein the separation functional layer is composed of a thin film containing a crosslinked aromatic polyamide.
  • the average number density of protrusions that are one-fifth or more of the 10-point average surface roughness is 13.0 pieces / ⁇ m or more, and the average value of the deformation amount when the protrusions are pushed with a force of 5 nN
  • x+y calculated from the amounts of amino groups, carboxyl groups, and amide groups possessed by the separation functional layer is 0.70 or less, and x and y are defined below, [1] to [4] ]
  • y molar ratio of amino groups to amide groups as measured by 13 C solid-state NMR
  • the thickness of the thin film on the projection is 10 nm or more and 20 nm or less
  • the composite semipermeable membrane according to any one of [1] to [5].
  • the method for producing a composite semipermeable membrane of the present invention has any one of the following configurations. [9] The method for producing a composite semipermeable membrane according to any one of [1] to [8] above, wherein the dissolved amount a of oxygen in the solution when the solution temperature is 25 ° C.
  • a support membrane containing a microporous support layer A method for producing a composite semipermeable membrane comprising a step of forming a crosslinked polyamide functional layer by heating after performing interfacial polycondensation on the surface. [10] The method for producing a composite semipermeable membrane according to [9], wherein the ratio b/a of the dissolved amount b to the dissolved amount a is 0.90 or more.
  • the water treatment system of this invention is provided with the following structures.
  • [11] A water treatment system, wherein the composite semipermeable membrane according to any one of [1] to [8] separates feed water into concentrated water and fresh water.
  • the present invention realizes a composite semipermeable membrane that achieves both high salt removal and water permeability under conditions where operation and shutdown are repeated and pressure fluctuates.
  • FIG. 1 is a cross-sectional view schematically showing the structure of the composite semipermeable membrane
  • FIG. 1(a) is a schematic cross-sectional view of the composite semipermeable membrane
  • FIG. 1(b) is an enlarged view of the separation functional layer
  • FIG. 1C is a schematic diagram
  • FIG. 1C is an enlarged sectional view schematically showing the fold structure of the separation functional layer.
  • FIG. 2 is a schematic diagram showing the fold structure of the thin film in the separation functional layer.
  • FIG. 3 is a diagram schematically showing a method of measuring the amount of deformation of the projections of the separation functional layer.
  • FIG. 1 shows the structure of a composite semipermeable membrane 1 in this embodiment.
  • a composite semipermeable membrane 1 according to the present invention has a microporous support layer 3 and a separation function layer 4 provided on the microporous support layer 3 .
  • the microporous support layer 3 may be formed on the substrate 2, and the composite semipermeable membrane 1 according to the embodiment of the present invention includes the substrate 2 and the microporous support layer formed on the substrate 2. It may have a support membrane comprising layer 3 .
  • the separation function layer 4 substantially has separation performance, and the microporous support layer 3 does not substantially have separation performance for ions and the like, and can give strength to the separation function layer 4. .
  • the support membrane may comprise the substrate 2 and the microporous support layer 3, or the support membrane does not have the substrate 2 and is composed only of the microporous support layer 3. may That is, the microporous support layer 3 may be a support membrane.
  • Examples of the base material 2 include fabrics made of polyester-based polymers, polyamide-based polymers, polyolefin-based polymers, and mixtures or copolymers thereof. Among them, polyester-based polymer fabric having high mechanical and thermal stability is preferable. As the form of the fabric, a long-fiber nonwoven fabric, a short-fiber nonwoven fabric, and a woven or knitted fabric can be preferably used.
  • the microporous support layer 3 has a large number of communicating pores.
  • the pore size and pore size distribution of the pores are not particularly limited.
  • a microporous support layer with a pore size at the side surface of 0.1 to 100 nm is preferred.
  • Materials for the microporous support layer 3 include polysulfone (hereinafter also referred to as "PSf"), polyethersulfone, polyamide, polyester, cellulose polymer, vinyl polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyphenylene sulfone, and polyphenylene oxide. homopolymers or copolymers, such as, can be used alone or in blends.
  • Cellulosic polymers include cellulose acetate and cellulose nitrate
  • vinyl polymers include polyethylene, polypropylene, polyvinyl chloride and polyacrylonitrile.
  • homopolymers or copolymers such as PSf, polyamide, polyester, cellulose acetate, cellulose nitrate, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, polyphenylene sulfide sulfone are preferred, and cellulose acetate, PSf, polyphenylene sulfide sulfone, or polyphenylene sulfone are preferred.
  • PSf is more preferred because it has high chemical, mechanical and thermal stability and is easy to mold.
  • the weight average molecular weight (hereinafter also referred to as “M w ”) of PSf is preferably 10,000 to 200,000, more preferably 15,000 to 100,000.
  • Mw of PSf is 10,000 or more, it is possible to obtain mechanical strength and heat resistance preferable for the microporous support layer.
  • Mw of PSf is 200,000 or less, the viscosity of the undiluted solution for the microporous support layer is in an appropriate range, and good moldability can be achieved.
  • the thickness of the base material and microporous support layer affects the strength of the composite semipermeable membrane and the packing density when it is used as an element.
  • the total thickness of the substrate and the microporous support layer is preferably 30-300 ⁇ m, more preferably 100-220 ⁇ m.
  • the thickness of the microporous support layer is preferably 20 to 100 ⁇ m.
  • the thickness of the base material and the microporous support layer is obtained by calculating the average value of the thickness of 20 points measured at intervals of 20 ⁇ m in the direction perpendicular to the thickness direction (surface direction of the film) by cross-sectional observation. can be done.
  • the separation function layer 4 is a layer that performs a solute separation function and contains crosslinked aromatic polyamide.
  • the separation functional layer 4 preferably contains a crosslinked aromatic polyamide as a main component.
  • Mating the crosslinked aromatic polyamide as the main component means that the ratio of the crosslinked aromatic polyamide in the separation functional layer is 50% by mass or more.
  • the ratio of the crosslinked aromatic polyamide in the separation functional layer is preferably 80% by mass or more, more preferably 90% by mass or more, and the separation functional layer is formed substantially only of the crosslinked aromatic polyamide. More preferably.
  • the phrase "the separation functional layer is formed substantially only from the crosslinked aromatic polyamide” means that the crosslinked aromatic polyamide accounts for 99% by mass or more of the separation functional layer.
  • crosslinked aromatic polyamide examples include aramid-based compounds, but the molecular structure may contain non-aromatic sites. However, a crosslinked wholly aromatic polyamide is more preferable from the standpoint of rigidity, chemical stability, and durability against operating pressure.
  • Crosslinked aromatic polyamides can be formed by interfacial polycondensation of polyfunctional aromatic amines and polyfunctional aromatic acid halides. Here, at least one of the polyfunctional aromatic amine and the polyfunctional aromatic acid halide preferably contains a trifunctional or higher compound.
  • the separation functional layer in the present invention may be hereinafter referred to as a polyamide separation functional layer.
  • a polyfunctional aromatic amine has two or more amino groups of at least one of a primary amino group and a secondary amino group in one molecule, and at least one of the amino groups is a primary It means an aromatic amine which is an amino group.
  • polyfunctional aromatic amines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, o-xylylenediamine, m-xylylenediamine, p-xylylenediamine, o-diaminopyridine, m- Diaminopyridine and p-diaminopyridine, polyfunctional aromatic amines in which two amino groups are bonded to an aromatic ring in either the ortho-position, meta-position, or para-position, 1,3,5-triamino and polyfunctional aromatic amines such as benzene, 1,2,4-triaminobenzene, 3,5-diaminobenzoic acid, 3-aminobenzylamine, and 4-aminobenzylamine.
  • m-phenylenediamine, p-phenylenediamine, and 1,3,5-triaminobenzene are preferably used considering the selective separation, permeability, and heat resistance of the membrane.
  • m-phenylenediamine hereinafter also referred to as “m-PDA” because of its availability and ease of handling.
  • m-PDA m-phenylenediamine
  • a polyfunctional aromatic acid halide refers to an aromatic acid halide having at least two halogenated carbonyl groups in one molecule.
  • trifunctional acid halides include trimesic acid chloride
  • bifunctional acid halides include biphenyldicarboxylic acid dichloride, azobenzenedicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, and naphthalenedicarboxylic acid chloride. can be mentioned.
  • the polyfunctional aromatic acid halide is preferably a polyfunctional aromatic acid chloride. More preferred are polyfunctional aromatic acid chlorides having 2 to 4 carbonyl chloride groups therein.
  • the separation functional layer 4 includes a thin film 41 that has a plurality of convex portions 42 and concave portions 43 forming a pleat shape. A protrusion is formed. Since the separation functional layer has a pleated thin film, the specific surface area of the separation functional layer can be significantly improved compared to a planar structure. As a result, the permeation performance can be improved in proportion to the surface area of the separation functional layer while maintaining the separation performance. As shown in FIG. 1(c), the inside of the convex portion 42 (between the thin film 41 and the microporous support layer 3) is a void.
  • protrusion and recesses refer to relatively protruding and recessed portions of the thin film.
  • protrusion the portion above a reference line A, which will be described later, is called the protrusion, and the portion below is called the recess.
  • Protrusion refers to the bottom of a recess to the bottom of an adjacent recess, ie, one protrusion and the bottoms of both adjacent recesses.
  • protrusion refers to a protrusion whose height relative to the surface of the support layer is one-fifth or more of the 10-point average surface roughness of the thin film.
  • the present inventors found that the average value of deformation when the projection, specifically the convex portion forming the projection, is pushed in pure water at 25° C. with a force of 5 nN is 2.2 nm or less, and It has been found that when the standard deviation of the deformation amount is 1.2 nm or less, stable membrane performance can be obtained even under conditions where pressure fluctuates due to frequent repetition of operation and stop.
  • the deformation amount of the protrusion can be calculated as follows.
  • the surface of the separation functional layer is observed in pure water at 25° C. with an atomic force microscope (AFM), and two arbitrarily selected 2 ⁇ m square regions are selected. 10 points of projections, specifically convex portions, included in these two areas are selected in each area, that is, 20 points in total. Further, one point in a circular area with a diameter of 100 nm centered on the apex of the selected protrusion (convex portion) is pressed with a force of 5 nN to obtain the amount of deformation. An arithmetic mean value of the obtained 20 points of the deformation amount is used as the deformation amount average value.
  • the deformation of the projection can be measured in the tapping mode of an atomic force microscope (AFM).
  • AFM atomic force microscope
  • point A is the point before the cantilever approaches the sample
  • the load is The distance between CDs is defined as the amount of deformation when point B is the moment of rising
  • point C is the point at which the load is 90% of the maximum load
  • point D is the maximum load point. Note that the force curve used is the one when the cantilever is brought close to the sample.
  • the shape of the cantilever probe used is conical (pyramidal).
  • Calibration is performed before using the cantilever. First, the deflection sensitivity of the cantilever is measured with a material having sufficient hardness. A silicon wafer or sapphire can be used as a material having sufficient hardness. Next, the spring constant of the cantilever is measured by thermal tune. Calibration improves the accuracy of measurement.
  • the amount of deformation of the protrusions (convex portions) of the separation functional layer reflects the density of the pore structure of the separation functional layer. Specifically, the coarser the pore structure of the separation functional layer, the larger the amount of deformation, and the more dense the pore structure, the smaller the amount of deformation. It is presumed that because the average deformation amount is 2.2 nm or less, the separation functional layer has a sufficiently dense structure, so that consolidation is unlikely to occur even if high pressure is applied locally when the operating pressure changes. . More preferably, the average deformation amount is 1.7 nm or less.
  • the average deformation amount is preferably 0.5 nm or more.
  • the standard deviation of the deformation amount is 1.2 nm or less, because excessively coarse portions and dense portions are reduced.
  • the standard deviation of deformation is more preferably 0.98 nm or less.
  • the standard deviation of the deformation amount is preferably 0.1 nm or more.
  • the protrusions on the thin film can be observed with an electron microscope such as a scanning electron microscope (SEM, FE-SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • FE-SEM FE-SEM
  • TEM transmission electron microscope
  • a sample is embedded with a water-soluble polymer to prepare an ultra-thin section for TEM.
  • Any water-soluble polymer can be used as long as it can retain the shape of the sample, and examples thereof include polyvinyl alcohol (PVA).
  • PVA polyvinyl alcohol
  • the tissue is stained with osmium tetroxide OsO 4 to facilitate cross-sectional observation, and cut with an ultramicrotome to prepare an ultrathin section.
  • a cross-sectional photograph of the obtained ultra-thin section is taken using an electron microscope.
  • the observation magnification may be appropriately determined according to the film thickness of the separation functional layer, but the thickness of the separation functional layer should be 10 to 100 nm so that the cross-sectional shape of the separation functional layer can be observed and the measurement is not localized. If it is a degree, it is preferable to set the observation magnification to 5 to 100,000 times.
  • the 10-point average surface roughness of a thin film is obtained by the following method.
  • a cross section perpendicular to the film surface is observed with an electron microscope. The observation magnification is preferably 10,000 to 100,000 times.
  • the surface of the composite semipermeable membrane (indicated by symbol "1" in FIG. 1) appears as a curved line in the obtained cross-sectional image.
  • a roughness curve defined based on ISO 4287:1997 is determined for this curve.
  • the average line is a straight line drawn so that the total area of the area surrounded by the average line and the roughness curve is equal above and below the average line.
  • the height of the protrusion is calculated as follows. In 10 cross sections with a width of 2.0 ⁇ m parallel to the above average line, for protrusions that are one fifth or more of the above 10 point average surface roughness, the depth of both ends of the protrusion (from the reference line to the apex of the recess). The sum of the average d of d1 and d2 and the protrusion height h (distance from the reference line to the apex of the protrusion) is calculated as the protrusion height Ph.
  • the height of the protrusion is preferably 70 nm or more.
  • the height of the projections is preferably 1000 nm or less, more preferably 800 nm or less.
  • the height of the projections is 70 nm or more, a composite semipermeable membrane having sufficient water permeability can be easily obtained.
  • the height of the projections is 1000 nm or less, stable membrane performance can be obtained without crushing the projections even when the composite semipermeable membrane is operated under high pressure.
  • the average thickness of the thin film on the protrusion can be measured by TEM.
  • Ultra-thin section preparation for TEM is as described above.
  • a cross-section of the obtained ultra-thin section is photographed by TEM.
  • the observation magnification may be appropriately determined according to the thickness of the separation functional layer.
  • the obtained cross-sectional photograph can be analyzed with image analysis software.
  • the average value of the thickness T of the thin film is preferably 10 nm or more and 20 nm or less.
  • the average value of T is 10 nm or more, good separation performance is obtained and durability against physical external force is improved. Further, when the average value of T is 20 nm or less, a composite semipermeable membrane having good permeability can be obtained. More preferably, the average value of the thickness T is 15 nm or less.
  • the average number density of protrusions in the separation functional layer is 13.0/ ⁇ m or more, more preferably 15.0/ ⁇ m or more. Also, the average number density of protrusions in the separation functional layer is preferably 50/ ⁇ m or less, more preferably 40/ ⁇ m or less.
  • the composite semipermeable membrane can obtain sufficient water permeability, and can suppress deformation of protrusions during pressurization, resulting in stable membrane performance. is obtained. Further, when the number density of the projections is 50/ ⁇ m or less, the pleat structure grows sufficiently, and a composite semipermeable membrane having desired water permeability can be easily obtained.
  • the average number density of protrusions is measured from the number of protrusions that are one-fifth or more of the above-mentioned 10-point average surface roughness in each cross section when ten cross sections with a width of 2.0 ⁇ m are observed. be able to.
  • polyamide separation functional layer there are amide groups derived from polymerization of polyfunctional aromatic amines and polyfunctional aromatic acid halides, and amino groups and carboxy groups derived from unreacted functional groups.
  • x + y is 0.70 or less.
  • x+y is 0.60 or less.
  • the molar ratio of carboxy groups, amino groups, and amide groups in the separation functional layer can be determined by 13 C solid-state NMR measurement of the separation functional layer. Specifically, after peeling off the base material from the composite semipermeable membrane 5 m 2 to obtain the polyamide separation function layer and the microporous support layer, the microporous support layer is dissolved and removed to obtain the polyamide separation function layer. . The obtained polyamide separation function layer was measured by DD/MAS- 13 C solid-state NMR method, and each ratio was calculated from the comparison of the integrated value of the carbon peak of each functional group or the carbon peak to which each functional group is bonded. can do.
  • the weight of the separation functional layer of the present invention is preferably 0.10 g/m 2 or more, more preferably 0.11 g/m 2 or more, still more preferably 0.12 g/m 2 or more. If the weight of the separation functional layer is 0.10 g/m 2 or more, the polyamide constituting the separation functional layer is sufficiently large, so the durability against physical external force is improved, and even under conditions of fluctuating pressure, the stability is maintained. membrane performance can be obtained.
  • the separation functional layer is preferably arranged on the surface side of the composite semipermeable membrane and is arranged on the primary filtration side. more preferred.
  • the method for producing the composite semipermeable membrane of the present invention is not particularly limited as long as the composite semipermeable membrane satisfying the desired characteristics described above can be obtained. .
  • PSf is dissolved in a good solvent for PSf to prepare a stock solution of the microporous support layer.
  • a good solvent for PSf for example, N,N-dimethylformamide (hereinafter referred to as "DMF") is preferable.
  • the concentration of PSf in the stock solution of the microporous support layer is preferably 10-25% by mass, more preferably 14-23% by mass.
  • the higher the polymer concentration (that is, the solid content concentration) in the polymer solution the higher the number density of particles on the surface of the microporous support layer. , and a protrusion structure that can withstand pressure fluctuations can be realized.
  • the polymer concentration is low enough that the monomer supply rate during formation of the separation function layer does not become too small, the surface pore diameter of the microporous support layer is adjusted, and the separation function layer is formed with an appropriate height. A protrusion is formed.
  • concentration of PSf in the undiluted solution for the microporous support layer is within this range, both strength and permeability of the resulting microporous support layer can be achieved.
  • concentration of the material in the undiluted solution for the microporous support layer can be appropriately adjusted depending on the material used, the good solvent, and the like.
  • the obtained undiluted solution for the microporous support layer is applied to the substrate surface and immersed in a coagulation bath containing a PSf non-solvent.
  • Water for example, is preferable as a non-solvent for PSf contained in the coagulation bath.
  • the undiluted solution of the microporous support layer applied to the substrate surface is brought into contact with a coagulation bath containing a non-solvent of PSf, the undiluted solution of the microporous support layer is solidified by non-solvent-induced phase separation, and microporosity is formed on the substrate surface.
  • a support film having a flexible support layer formed thereon can be obtained.
  • the coagulation bath may be composed of only a non-solvent for PSf, but may contain a good solvent for PSf to the extent that the undiluted solution of the microporous support layer can be coagulated.
  • the obtained support membrane may be washed before forming the separation functional layer to remove the solvent remaining in the membrane.
  • the sum a + b of the dissolved amount a of oxygen and the dissolved amount b of carbon dioxide in the solution when the solution temperature is 25 ° C. is 9 mg / L or more.
  • the interfacial polymerization step (a) the sum of the dissolved amount a of oxygen and the dissolved amount b of carbon dioxide in a solution containing a polyfunctional aromatic amine and having a solution temperature of 25° C. (b) contacting an organic solvent solution containing a polyfunctional aromatic acid halide with an amine solution containing a polyfunctional aromatic amine; (c) heating the membrane after contacting with the amine and acid halide; (d) forming a crosslinked polyamide functional layer on the support membrane formed in step (c) above; and washing the layered composite semipermeable membrane with hot water.
  • microporous support layer examples include those mentioned above, and preferred ones are also the same.
  • the concentration of the polyfunctional aromatic amine in the polyfunctional aromatic amine solution is preferably in the range of 0.1 wt% to 20 wt%, more preferably 0.5 wt% to 15 wt%. It is within the range of weight % or less. If the concentration of the polyfunctional aromatic amine is within this range, sufficient solute removal performance and water permeability can be obtained. Two or more kinds of polyfunctional aromatic amines may be used.
  • the polyfunctional aromatic amine solution contains surfactants, organic solvents, alkaline compounds, antioxidants, etc., as long as they do not interfere with the reaction between the polyfunctional aromatic amine and the polyfunctional aromatic acid halide. It may be A surfactant has the effect of improving the wettability of the support film surface and reducing the interfacial tension between the polyfunctional aromatic amine solution and the non-polar solvent.
  • the organic solvent may act as a catalyst for the interfacial polycondensation reaction, and the addition of the organic solvent may improve the efficiency of the interfacial polycondensation reaction.
  • the dissolved gas amount a + b is 9 mg. /L or more.
  • a+b is 15 mg/L or more, more preferably a+b is 32 mg/L or more, and even more preferably a+b is 100 mg/L or more.
  • a method for adjusting the amount of dissolved gas there are a method of contacting a gas and a solution with a predetermined mixing ratio, a method of injecting and dissolving the gas, and a method of using a commercially available liquid (e.g., carbonated water) in which the gas is pre-dissolved. .
  • a chemical reaction may be used to generate the gas if it does not interfere with the reaction between the polyfunctional aromatic amine and the polyfunctional aromatic acid halide.
  • the dissolved amount may be reduced to a predetermined amount by deaeration using ultrasonic waves or a vacuum pump. Any of these methods can be selected.
  • the heating step of the step (c) described later usually densifies the functional layer, and the average deformation amount of the protrusions (convex portions) becomes small, so that the average deformation amount is 2.2 nm or less.
  • the projections are also coalesced, the number density of the projections decreases, and the average number density of projections of 13.0 pieces/ ⁇ m or more is no longer satisfied.
  • the dissolved gas amount a+b increases, the number of starting points for forming protrusions due to the generation of microbubbles, which will be described later, increases, and the average number density of protrusions becomes 13.0/ ⁇ m or more even after the heating process.
  • the molecules By increasing the dissolved gas amount a+b, the molecules enter dense portions during interfacial polymerization and inhibit aggregation, thereby preventing the reaction from progressing locally and suppressing the formation of coarse portions and overly dense portions. Variation in the amount of deformation is reduced and the standard deviation is 1.2 nm or less. On the other hand, it is possible to increase the dissolved gas amount by injecting gas, but if the dissolved gas amount is too large, defects are likely to occur in the protrusions and the removal rate decreases, so the dissolved gas amount a + b is 10000 or less. is preferred.
  • the polyfunctional aromatic amine solution is preferably brought into uniform and continuous contact with the support membrane.
  • a method of coating a polyfunctional aromatic amine solution on the support film and a method of immersing the support film in a polyfunctional aromatic amine solution can be used.
  • the contact time between the supporting membrane and the polyfunctional aromatic amine solution is preferably 1 second to 10 minutes, more preferably 3 seconds to 3 minutes.
  • the solution After bringing the polyfunctional aromatic amine solution into contact with the support film, it is preferable to drain the solution sufficiently so that no droplets remain on the support film. By sufficiently draining the liquid, it is possible to prevent the drop remaining portion from becoming a membrane defect after forming the composite semipermeable membrane and lowering the separation performance.
  • a method for draining the liquid for example, as described in Japanese Patent Laid-Open No. 2-78428, a method of holding the support film in a vertical direction after contact with the aqueous solution and allowing the excess aqueous solution to naturally flow down; A method of forcibly removing liquid by blowing an air stream of nitrogen or the like from a nozzle can be used. Also, after draining, the film surface can be dried to partially remove water from the aqueous solution.
  • polyfunctional aromatic acid halide in step (b) examples include trimesic acid chloride (hereinafter referred to as "TMC"), biphenyldicarboxylic acid dichloride, azobenzenedicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, Polyfunctional aromatic acid chlorides such as naphthalenedicarboxylic acid chloride and 2,5-furandicarboxylic acid chloride can be mentioned. Polyfunctional aromatic acid halides may be used alone, or two or more thereof may be used in combination.
  • the organic solvent is immiscible with water, dissolves the polyfunctional aromatic acid halide, does not attack the support membrane, and is inert to the polyfunctional aromatic amine and the polyfunctional aromatic acid halide.
  • organic solvents include hydrocarbon compounds such as n-nonane, n-decane, n-undecane, n-dodecane, isooctane, isodecane, and isododecane, and mixed solvents thereof.
  • the concentration of the polyfunctional aromatic acid halide in the organic solvent solution is preferably 0.01 to 10% by mass, more preferably 0.02 to 4% by mass, and 0.03 to 2% by mass. is more preferable.
  • concentration of the polyfunctional aromatic acid halide is 0.01% by mass or more, polymerization can proceed at a sufficient reaction rate.
  • concentration of the polyfunctional aromatic acid halide is 10% by mass or less, the occurrence of side reactions during polymerization can be suppressed.
  • the organic solvent solution may contain a compound such as a surfactant, if necessary, as long as it does not inhibit the polymerization.
  • the method of contacting the organic solvent solution of the polyfunctional aromatic acid halide with the polyfunctional aromatic amine solution to the support film is the same as the method of coating the support film with the polyfunctional aromatic amine solution. good.
  • the temperature at which the microporous support layer contacted with the aqueous solution containing the polyfunctional aromatic amine and the solution in which the polyfunctional aromatic acid halide is dissolved is preferably 25 to 60°C, preferably 30 to 55°C. °C is more preferred. If the temperature is less than 25°C, there is a possibility that a sufficient protrusion height cannot be obtained. As the temperature rises, the solubility of the gas decreases, and the gas that cannot be completely dissolved is generated as microbubbles and the number of starting points for forming protrusions increases. Coalescence of projections progresses, and sufficient water permeability cannot be obtained in any case.
  • the contact temperature is 25 to 60° C.
  • the number of protrusions increases and the surface area of the reaction interface substantially increases, so that the amount of polyamide increases and the film thickness T can be prevented from increasing.
  • the support film may be heated, or a heated organic solvent solution of the polyfunctional acid halide may be brought into contact.
  • the temperature of the film surface immediately after contacting the polyfunctional aromatic amine solution and the polyfunctional acid halide solution can be measured with a non-contact thermometer such as a radiation thermometer.
  • step (c) the support film is heat-treated after contact with the organic solvent solution of the polyfunctional aromatic acid chloride.
  • the heating temperature is preferably 50 to 180°C, more preferably 60 to 160°C, even more preferably 80 to 150°C. Acceleration of the interfacial polymerization reaction by heating and the increase in surface area due to microbubbles generated by heating, promotion of interfacial polymerization by concentration of polyfunctional aromatic acid halides during interfacial polymerization, and improvement of reaction efficiency by improving the mobility of monomers and oligomers. Since the effect is obtained, the amount of polyamide in the separation functional layer becomes 0.10 g/m 2 or more, the amount of amide groups becomes large, and x+y becomes 0.70 or less.
  • Densification of the functional layer progresses, and the average deformation amount becomes 2.2 nm or less. If the heating temperature is too high, coalescence of the protrusions proceeds, the number density decreases, and the film thickness increases, so good water permeability cannot be obtained. When the microbubbles generated by heating rise to the surface, flow occurs to entrain the surrounding liquid, dispersing the monomers in the liquid, promoting the reaction, densifying the functional layer, and localizing In order to prevent the progress of the reaction, the average value of the deformation amount is further reduced, and the variation of the deformation amount is also reduced.
  • the ratio b/a of the dissolved amount b of carbon dioxide to the dissolved amount a of oxygen in the amine solution is 0.0. When it is 9 or more, the above effects are more obtained, which is preferable.
  • the ratio b/a is more preferably 1.0 or more.
  • the organic solvent can be removed, for example, by holding the membrane vertically and removing the excess organic solvent by gravity, by blowing air with a blower to dry and remove the organic solvent, or by using a mixed fluid of water and air. can be used to remove the excess organic solvent.
  • step (d) the composite semipermeable membrane from which the organic solvent has been removed is washed with hot water.
  • the temperature of the hot water is preferably 40-95°C, more preferably 60-95°C.
  • the temperature of the hot water is 40° C. or higher, unreacted substances and oligomers remaining in the film can be sufficiently removed.
  • the temperature of the hot water is 95° C. or lower, the degree of contraction of the composite semipermeable membrane does not increase, and good permeation performance can be maintained.
  • the preferred temperature range of the hot water can be appropriately adjusted depending on the polyfunctional aromatic amine or polyfunctional aromatic acid chloride used.
  • Composite semipermeable membranes can be used in water treatment systems in which the composite semipermeable membrane separates feed water into permeate (fresh water) and concentrate water.
  • the composite semipermeable membrane has a feed water channel material such as a plastic net, a permeate water channel material such as tricot, and, if necessary, a film for increasing pressure resistance, and has a large number of holes. It is wound around a cylindrical water collecting tube and is suitably used as a spiral type composite semipermeable membrane element.
  • a composite semipermeable membrane module in which these elements are connected in series or in parallel and housed in a pressure vessel can also be formed.
  • the above composite semipermeable membranes, their elements, and modules can be combined with a pump that supplies water to them, a device that preprocesses the water, and the like to form a fluid separation device.
  • a separator By using this separator, it is possible to separate feed water into permeated water such as drinking water and concentrated water that has not permeated the membrane, thereby obtaining desired water.
  • Examples of the feed water to be treated by the composite semipermeable membrane according to the present invention include liquid mixtures containing 500 mg/L to 100 g/L of TDS (Total Dissolved Solids) such as seawater, brackish water, and waste water. be done.
  • TDS Total Dissolved Solids
  • mass/volume or weight ratio
  • the operating pressure during permeation is preferably 0.5 to 10 MPa.
  • scale such as magnesium may occur in the case of feed water with a high solute concentration such as seawater, and there is concern about deterioration of the membrane due to high pH operation. It is preferable to drive at
  • the physical properties of the composite semipermeable membrane of the present invention were measured by the following methods.
  • ⁇ Apparatus Dimension FastScan manufactured by Bruker AXS - Scanning mode: Underwater nanomechanical mapping - Probe: Silicon cantilever (ScanAsyst-Fluid manufactured by Bruker AXS). The cantilever was calibrated before measurement.
  • ⁇ Maximum load 5.0nN ⁇ Scan range: 2 ⁇ m ⁇ 2 ⁇ m
  • ⁇ Scanning speed 0.5Hz ⁇ Number of pixels: 256 x 256 ⁇ Measurement conditions: Pure water ⁇ Measurement temperature: 25°C
  • the substrate was physically peeled off from 5 m 2 of the composite semipermeable membrane to recover the microporous support layer and the separation functional layer. After drying by standing still for 24 hours, it was added little by little into a beaker containing dichloromethane and stirred to dissolve the polymer constituting the microporous support layer. The insoluble matter in the beaker was collected with filter paper. This insoluble matter was placed in a beaker containing dichloromethane and stirred, and the insoluble matter in the beaker was recovered again. This operation was repeated until no elution of the polymer forming the microporous support layer into the dichloromethane solution was detectable.
  • the recovered separation functional layer was dried in a vacuum dryer to remove residual dichloromethane.
  • the polyamide weight per unit area was obtained by dividing the obtained weight of the separation functional layer by the used area of 5 m 2 .
  • the separation function layer was freeze-ground to obtain a powdery sample, which was sealed in a sample tube used for solid-state NMR measurement, and 13 C solid-state NMR measurement was performed by the CP/MAS method and the DD/MAS method.
  • CMX-300 manufactured by Chemagnetics was used for 13 C solid-state NMR measurement. Examples of measurement conditions are shown below.
  • the composite semipermeable membrane was cut into 3 cm ⁇ 3 cm squares and washed with distilled water at 25° C. for 24 hours. After the washed composite semipermeable membrane was embedded in an epoxy resin, it was stained with osmium tetroxide to obtain a measurement sample. The obtained sample was observed using a scanning transmission electron microscope (manufactured by Hitachi, Ltd.; HD2700) using the thin film cross section as an observation surface.
  • the thickness T of the thin film was defined as the shortest distance from a point on the outer surface of the thin film to the inner surface, using an image acquired at a magnification of 1,000,000. Ten randomly selected convex portions were analyzed at five points per convex portion, and the average value thereof was taken as the average value of the thickness T of the thin film. Furthermore, the number of pleated protrusions was counted to obtain an average number density.
  • Oxygen and carbon dioxide were measured using a commercially available DO meter and dissolved carbon dioxide concentration meter immediately after preparation of the aqueous amine solution.
  • a starting/stopping test was conducted by supplying evaluation raw water (NaCl concentration 3.2%) adjusted to a temperature of 40°C and pH 6.5 to the composite semipermeable membrane at an operating pressure of 7.0 MPa, operating for 5 minutes, and then stopping for 5 minutes. After performing 1000 times, the membrane filtration process was performed. After that, the performance of the composite semipermeable membrane was evaluated by the method shown below.
  • membrane permeation flux (membrane permeation flux)
  • the membrane permeation flux (m 3 /m 2 /day) in terms of the amount of water permeation (cubic meter) per day per square meter of the membrane surface.
  • the support film was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support film.
  • a 40° C. decane solution (an example of a polyfunctional aromatic acid halide solution) containing 0.16 mass % trimesic acid chloride (TMC) was applied so that the surface was completely wetted.
  • TMC trimesic acid chloride
  • the support film was then heated in an oven at 120°C, after which the film was vertically drained to remove excess solution from the film, and dried by blowing air at 20°C using a blower. . Finally, the composite semipermeable membrane was obtained by washing with pure water at 90°C.
  • Comparative example 2 The amount of gas dissolved in the amine aqueous solution is the amount shown in Table 1.
  • TMC solution was a 45 ° C.
  • Comparative Example 3 Comparative Example 1 except that the amount of gas dissolved in the aqueous amine solution was the amount shown in Table 1, the step of placing in an oven at 120 ° C. was omitted, the temperature of the TMC solution was 25 ° C., and the coating was performed in an environment controlled at 25 ° C.
  • a composite semipermeable membrane of Comparative Example 3 was obtained in the same manner as above.
  • the film was placed vertically to remove excess solution from the film, and dried by blowing air at 20° C. using an air blower. Finally, the composite semipermeable membrane of Comparative Example 4 was obtained by washing with pure water at 90°C.
  • Comparative Example 5 The amount of gas dissolved in the amine aqueous solution is the amount shown in Table 1, and a decane solution containing 0.16% by mass of TMC at 40°C is applied so that the surface is completely wet, and then a decane solution containing 0.32% by mass of TMC is further applied.
  • a composite semipermeable membrane of Comparative Example 5 was obtained in the same manner as in Comparative Example 1, except that the coating was heated in an oven at 120°C.
  • Comparative Example 6 The amount of gas dissolved in the amine aqueous solution is shown in Table 1, the support film obtained in Reference Example 2 is used, the m-phenylenediamine concentration is 4.0% by mass, the TMC concentration is 0.12% by mass, A composite semipermeable membrane of Comparative Example 6 was obtained in the same manner as in Comparative Example 3, except that the final washing temperature with pure water was 45°C.
  • Comparative Example 7 The amount of gas dissolved in the amine aqueous solution was the amount shown in Table 1, the solvent of the TMC solution was isooctane, the temperature of the solution was set to 25°C, and the coating was performed in an environment controlled at 25°C, and the temperature of the oven was set to 150°C. Except for this, a composite semipermeable membrane of Comparative Example 7 was obtained in the same manner as in Comparative Example 1.
  • Comparative Example 8 A composite semipermeable membrane of Comparative Example 8 was obtained in the same manner as in Comparative Example 1, except that the amount of gas dissolved in the amine aqueous solution was the amount shown in Table 1.
  • Comparative Example 9 Comparison was performed in the same manner as in Comparative Example 1 except that the amount of gas dissolved in the aqueous amine solution was the amount shown in Table 1, the m-phenylenediamine concentration was 2.0% by mass, and the TMC concentration was 0.10% by mass. A composite semipermeable membrane of Example 9 was obtained.
  • Comparative Example 10 A composite semipermeable membrane of Comparative Example 10 was obtained in the same manner as in Comparative Example 1, except that the amount of gas dissolved in the aqueous amine solution was set to the amount shown in Table 1. The amount of dissolved gas was adjusted by degassing.
  • Example 1 The support film obtained in Reference Example 1 was immersed for 2 minutes in a 3.0 mass % m-phenylenediamine aqueous solution having a dissolved gas amount shown in Table 1. The support film was slowly pulled up in the vertical direction, and nitrogen was blown from an air nozzle to remove excess aqueous solution from the surface of the support film. In an environment controlled at 40° C., a 40° C. decane solution containing 0.16% by mass of TMC was applied so as to completely wet the surface. Next, the film was heated in an oven at 150° C., after which the film was vertically drained to remove excess solution from the film, and dried by blowing air at 20° C. using a blower. Finally, the composite semipermeable membrane was obtained by washing with pure water at 90°C.
  • Example 2 A composite semipermeable membrane of Example 2 was obtained in the same manner as in Example 1, except that the temperature of the oven was 120°C.
  • Example 3 A composite semipermeable membrane of Example 3 was obtained in the same manner as in Example 1, except that the temperature of the oven was 80°C.
  • Example 4 A composite semipermeable membrane of Example 4 was obtained in the same manner as in Example 1, except that the amount of gas dissolved in the amine aqueous solution was the amount shown in Table 1.
  • Example 5 A composite semipermeable membrane of Example 5 was obtained in the same manner as in Example 2, except that the support membrane obtained in Reference Example 3 was used.
  • Example 6 A composite semipermeable membrane of Example 6 was prepared in the same manner as in Example 1, except that the surface was completely wetted with a 55°C decane solution containing 0.16% by mass of TMC in an environment controlled at 55°C. Obtained.
  • Example 7 A composite semipermeable membrane of Example 7 was obtained in the same manner as in Example 1, except that the dissolved gas amount of the aqueous amine solution was the amount shown in Table 1 and the concentration of the aqueous m-phenylenediamine solution was 8.0% by mass. rice field.
  • Example 8 A composite semipermeable membrane of Example 8 was obtained in the same manner as in Example 1, except that the amount of gas dissolved in the aqueous amine solution was the amount shown in Table 1 and the concentration of the aqueous m-phenylenediamine solution was 2.0% by mass. rice field.
  • Example 9 A composite semipermeable membrane of Example 9 was obtained in the same manner as in Example 1, except that the TMC concentration was 0.10% by mass.
  • Example 10 A composite semipermeable membrane of Example 10 was obtained in the same manner as in Example 8, except that the TMC concentration was 0.10% by mass.
  • Example 11 Example 1 except that the amount of gas dissolved in the amine aqueous solution was the amount shown in Table 1, and the film was heated in an oven at 150°C while supplying steam at 100°C from a nozzle provided on the back side of the film. A composite semipermeable membrane of Example 11 was obtained in the same manner as.
  • Example 12-17 Composite semipermeable membranes of Examples 12 to 17 were obtained in the same manner as in Example 2, except that the amount of gas dissolved in the amine aqueous solution was the amount shown in Table 1.
  • Table 1 shows the above results. From Examples 1 to 17, it can be seen that the composite semipermeable membrane of the present invention has excellent water permeability and low salt permeation even after frequent operation and shutdown at high temperature and high pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)

Abstract

本発明は、圧力が変動する条件下でも、高い塩除去性能および透水性を両立できる複合半透膜を提供する。本発明の複合半透膜は、微多孔性支持膜と、架橋芳香族ポリアミドを含有する分離機能層とを備え、前記複合半透膜の膜面方向における長さが2.0μmである任意の10箇所の断面を観察したときに、各断面において、分離機能層における10点平均面粗さの5分の1以上の高さを有する突起の平均数密度が13.0個/μm以上であり、かつ突起を5nNの力で押し込んだ際の変形量の平均値が2.2nm以下であり、かつ変形量の標準偏差が1.2nm以下である。

Description

複合半透膜
 本発明は、液状混合物の選択的分離に有用な、複合半透膜に関する。
 液状混合物の分離に関して、溶媒(例えば水)に溶解した物質(例えば塩類)を除くための技術には様々なものがあるが、近年、省エネルギーおよび省資源のためのプロセスとして、膜分離法の利用が拡大している。膜分離法に使用される膜には、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜等があり、これらの膜は、例えば塩分、有害物を含んだ水等から飲料水を得る場合や、工業用超純水の製造、排水処理、有価物の回収等に用いられている。
 現在市販されている逆浸透膜およびナノろ過膜の大部分は、支持膜上に塩類等の分離性能を有する分離機能層を被覆した複合半透膜であり、支持膜上にゲル層とポリマーを架橋した活性層を有するものと、支持膜上でモノマーを重縮合した活性層を有するものとの2種類がある。後者の複合半透膜のなかでも、多官能アミンと多官能酸ハロゲン化物との重縮合反応によって得られる架橋ポリアミドを含有する分離機能層を有する複合半透膜(特許文献1参照)が、透過性および選択分離性の高い分離膜として広く用いられている。
 逆浸透膜を用いる造水プラントではランニングコストの一層の低減を図るため、さらなる高い透水性能が求められている。また、複合半透膜を逆浸透膜として用いる場合には、高圧での長時間運転や、頻繁に運転・停止が繰り返され圧力が変動する運転条件においても上記の膜性能を維持できることが要求される。複合半透膜を運転した際の性能変化を抑制するために、多孔質支持膜の圧密化を抑制する方法が提示されている(特許文献2、3参照)。
国際公開第2010/096563号 日本国特開2001-179061号公報 日本国特許第3385824号公報
 しかし、従来の複合半透膜では、頻繁に運転と停止とが繰り返される場合など、膜にかかる圧力が変動する状況下で、透水性または塩除去性が低下することがある。
 本発明の目的は、圧力が変動する条件下でも、高い塩除去性能および透水性を両立することができる複合半透膜を提供することにある。
 上記目的を達成するために、本発明の複合半透膜は、以下のいずれかの構成を備える。
[1]微多孔性支持層と、前記微多孔性支持層上に設けられた分離機能層とを有する複合半透膜であって、前記分離機能層が架橋芳香族ポリアミドを含有する薄膜で構成される複数の突起を有し、膜面方向に垂直で、膜面方向の長さが2.0μmである任意の10箇所の断面において、支持層表面を基準とした高さが前記分離機能層中で10点平均面粗さの5分の1以上である突起の平均数密度が13.0個/μm以上であり、かつ前記突起を5nNの力で押し込んだ際の変形量の平均値が2.2nm以下であり、かつ前記変形量の標準偏差が1.2nm以下である、複合半透膜。
[2]前記突起を5nNの力で押し込んだ際の変形量の平均値が1.7nm以下である、[1]に記載の複合半透膜。
[3]前記突起の平均数密度が15.0個/μm以上である、[1]または[2]に記載の複合半透膜。
[4]前記変形量の標準偏差が0.98nm以下である、[1]~[3]のいずれか1つに記載の複合半透膜。
[5]前記分離機能層が有するアミノ基、カルボキシ基及びアミド基の量から計算されるx+yが0.70以下であり、前記x及び前記yは以下で定義される、[1]~[4]のいずれか1つに記載の複合半透膜。
x:13C固体NMRにより測定した、アミド基に対するカルボキシ基のモル比
y:13C固体NMRにより測定した、アミド基に対するアミノ基のモル比
[6]前記突起における薄膜の厚みが10nm以上20nm以下である、[1]~[5]のいずれか1つに記載の複合半透膜。
[7]前記分離機能層の重量が0.10g/m以上である、[1]~[6]のいずれか1つに記載の複合半透膜。
[8]前記分離機能層が架橋全芳香族ポリアミドからなる、[1]~[7]のいずれか1つに記載の複合半透膜。
 また、本発明の複合半透膜の製造方法は、以下のいずれかの構成を備える。
[9]前記[1]~[8]のいずれか1つに記載の複合半透膜の製造方法であって、溶液温度を25℃としたときの溶液中の酸素の溶存量aと二酸化炭素の溶存量bの和a+bが9mg/L以上である多官能芳香族アミン溶液と、多官能芳香族酸ハロゲン化物を有機溶媒に溶解した溶液とを用い、微多孔性支持層を含む支持膜の表面で界面重縮合を行った後、加熱することで架橋ポリアミド機能層を形成する工程を備える複合半透膜の製造方法。
[10]前記溶存量aに対する前記溶存量bの比b/aが0.90以上である、[9]に記載の複合半透膜の製造方法。
 また、本発明の水処理システムは、以下の構成を備える。
[11]前記[1]~[8]のいずれか1つに記載の複合半透膜によって、供給水を濃縮水と淡水に分離する、水処理システム。
 本発明によって、頻繁に運転・停止が繰り返され圧力が変動する条件下で、高い塩除去性および透水性を両立する複合半透膜が実現される。
図1は、複合半透膜の構造を模式的に示す断面図であり、図1の(a)は複合半透膜の断面模式図であり、図1の(b)は分離機能層の拡大模式図であり、図1の(c)は分離機能層のひだ構造を模式的に示した拡大断面図である。 図2は、分離機能層における薄膜のひだ構造を示す模式図である。 図3は、分離機能層の凸部の変形量の測定方法を模式的に示す図である。
 以下に、本発明の実施形態について詳細に説明するが、本発明はこれらによって何ら限定されるものではない。
 なお、本明細書において、「質量」は「重量」と同義である。
 1.複合半透膜
 図1に本実施形態における複合半透膜1の構造を示す。図1に示すように、本発明に係る複合半透膜1は、微多孔性支持層3と、前記微多孔性支持層3上に設けられた分離機能層4とを有する。
 微多孔性支持層3は、基材2上に形成されていてもよく、本発明の実施形態に係る複合半透膜1は、基材2と基材2上に形成された微多孔性支持層3とを含む支持膜を有していてもよい。
 前記分離機能層4は実質的に分離性能を有するものであり、前記微多孔性支持層3は実質的にイオン等の分離性能を有さず、前記分離機能層4に強度を与えることができる。
 (1-1)支持膜
 支持膜は、基材2と微多孔性支持層3を備えてもよいし、支持膜は基材2を有さず、微多孔性支持層3のみで構成されていてもよい。すなわち、微多孔性支持層3が支持膜であってもよい。
 基材2としては、ポリエステル系重合体、ポリアミド系重合体、ポリオレフィン系重合体及びこれらの混合物、又は共重合体からなる布帛が挙げられる。中でも、機械的、熱的に安定性の高いポリエステル系重合体の布帛が好ましい。布帛の形態としては、長繊維不織布や短繊維不織布、さらには織編物を好ましく用いることができる。
 微多孔性支持層3は、連通した多数の細孔を有する。細孔の孔径や孔径分布は特に限定されないが、例えば、均一な孔径からなる対称構造、又は、一方の面からもう一方の面まで徐々に孔径が大きくなる非対称構造であり、且つ、孔径が小さい側の表面における孔径が、0.1~100nmである、微多孔性支持層が好ましい。
 微多孔性支持層3の素材としては、ポリスルホン(以下、「PSf」とも称する。)、ポリエーテルスルホン、ポリアミド、ポリエステル、セルロース系ポリマー、ビニルポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルホン、ポリフェニレンオキシド等の、ホモポリマー又はコポリマーを単独であるいはブレンドして使用することができる。ここでセルロース系ポリマーとしては、酢酸セルロース、硝酸セルロース等、ビニルポリマーとしてはポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリアクリロニトリルが挙げられる。中でも、PSf、ポリアミド、ポリエステル、酢酸セルロース、硝酸セルロース、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン等の、ホモポリマー又はコポリマーが好ましく、酢酸セルロース、PSf、ポリフェニレンスルフィドスルホン、又はポリフェニレンスルホンがより好ましく、化学的、機械的、熱的に安定性が高く、成型が容易であることから、PSfが特に好ましい。
 PSfの重量平均分子量(以下、「M」とも称する。)は、10000~200000であることが好ましく、15000~100000であることがより好ましい。PSfのMが10000以上であることで、微多孔性支持層として好ましい機械的強度および耐熱性を得ることができる。一方、PSfのMが200000以下であることで、微多孔性支持層原液の粘度が適切な範囲となり、良好な成形性を実現することができる。
 基材と微多孔性支持層の厚みは、複合半透膜の強度及びそれをエレメントにしたときの充填密度に影響を与える。良好な機械的強度及び充填密度を得るため、基材と微多孔性支持層の厚みの合計は、30~300μmであることが好ましく、100~220μmであることがより好ましい。また、微多孔性支持層の厚みは、20~100μmであることが好ましい。なお、基材と微多孔性支持層の厚みは、断面観察で厚み方向に直交する方向(膜の面方向)に20μm間隔で測定した、20点の厚みの平均値を算出することで求めることができる。
 (1-2)分離機能層
 分離機能層4は、溶質の分離機能を担う層であり、架橋芳香族ポリアミドを含有する。分離機能層4は、架橋芳香族ポリアミドを主成分とすることが好ましい。
 架橋芳香族ポリアミドを主成分とするとは、分離機能層中の架橋芳香族ポリアミドが占める割合が50質量%以上であることをいう。分離機能層中の架橋芳香族ポリアミドが占める割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、分離機能層は実質的に架橋芳香族ポリアミドのみで形成されていることがさらに好ましい。分離機能層が実質的に架橋芳香族ポリアミドのみで形成されるとは、分離機能層の99質量%以上を架橋芳香族ポリアミドが占めることを意図する。
 架橋芳香族ポリアミドとしては、アラミド系の化合物が挙げられるが、分子構造内に、芳香族以外の部位を含んでもよい。ただし、架橋全芳香族ポリアミドが剛直性・化学的安定性、操作圧力に対する耐久性の点からより好ましい。架橋芳香族ポリアミドは、多官能芳香族アミンと多官能芳香族酸ハロゲン化物との界面重縮合により形成することができる。ここで、多官能芳香族アミン及び多官能芳香族酸ハロゲン化物の少なくとも一方が3官能以上の化合物を含んでいることが好ましい。本発明における分離機能層を、以下、ポリアミド分離機能層と記載することがある。
 多官能芳香族アミンとは、一分子中に第一級アミノ基及び第二級アミノ基のうち少なくとも一方のアミノ基を2個以上有し、かつ、アミノ基のうち少なくとも1つは第一級アミノ基である芳香族アミンを意味する。
 多官能芳香族アミンとしては、例えば、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、o-キシリレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、o-ジアミノピリジン、m-ジアミノピリジン、及びp-ジアミノピリジン等の2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係で芳香環に結合した多官能芳香族アミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、3-アミノベンジルアミン、及び4-アミノベンジルアミンなどの多官能芳香族アミンなどが挙げられる。
 特に、膜の選択分離性や透過性、耐熱性を考慮すると、m-フェニレンジアミン、p-フェニレンジアミン、及び1,3,5-トリアミノベンゼンが好適に用いられる。中でも、入手の容易性や取り扱いのしやすさから、m-フェニレンジアミン(以下、「m-PDA」とも記す。)を用いることがより好ましい。これらの多官能芳香族アミンは、単独で用いられてもよいし、2種以上が併用されてもよい。
 多官能芳香族酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する芳香族酸ハロゲン化物をいう。例えば、3官能酸ハロゲン化物では、トリメシン酸クロリドなどを挙げることができ、2官能酸ハロゲン化物では、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、及びナフタレンジカルボン酸クロリドなどを挙げることができる。
 多官能芳香族アミンとの反応性を考慮すると、多官能芳香族酸ハロゲン化物は多官能芳香族酸塩化物であることが好ましく、また、膜の選択分離性、耐熱性を考慮すると、一分子中に2~4個の塩化カルボニル基を有する多官能芳香族酸塩化物であることがより好ましい。
 分離機能層の形状や厚みは、分離性能及び透過性能に影響を与える。図1の(b)に示すように、分離機能層4は複数の凸部42と凹部43とでひだ状を成す薄膜41を含み、薄膜41からなる層では隣り合う凸部42と凹部43により突起が形成されている。分離機能層がひだ状の薄膜を有することで、平面構造と比較して分離機能層の比表面積を大幅に向上させることができる。その結果、分離性能を維持しつつ、分離機能層の表面積に比例して透過性能を向上させることができる。図1の(c)に示すように、凸部42内部(薄膜41と微多孔性支持層3との間)は空隙である。凸部及び凹部について図2を用いて説明する。「凸部」および「凹部」は、薄膜において相対的に突出している部分と凹んでいる部分を指し、特に後述の基準線Aから上の部分を凸部、下の部分を凹部と呼ぶ。「突起」は、凹部の底から隣の凹部の底まで、つまり1つの凸部とその両隣の凹部の底までを指す。また、以下では、突起とは、支持層表面を基準とした高さが薄膜の10点平均面粗さの5分の1以上であるものを指す。
 本発明者らは、前記突起、具体的には前記突起を形成する凸部を25℃の純水中で5nNの力で押し込んだ際の変形量の平均値が2.2nm以下であり、かつ前記変形量の標準偏差が1.2nm以下であるとき、頻繁に運転および停止が繰り返されるなどで圧力が変動する条件下でも、安定した膜性能を得ることができることを見出した。
 前記突起の変形量は次のように算出できる。分離機能層の表面を原子間力顕微鏡(AFM)にて25℃の純水中で観察し、2μm四方範囲の任意の2つの領域を選択する。これらの2つの領域に含まれる突起、具体的には凸部を、それぞれの領域において10点、つまり合計20点選択する。さらに、選択した突起(凸部)の頂点を中心とした直径100nmの円領域内の一点を5nNの力で押し込み、変形量を得る。得られた20点の変形量の相加平均値を、変形量の平均値とする。
 突起(凸部)の変形量(Deformation)は、原子間力顕微鏡(AFM)のタッピングモードで測定することができる。具体的には、図3に示すように、横軸にチップ-サンプル間距離(Separation)、縦軸に荷重をとったフォースカーブ上において、カンチレバーをサンプルに近付ける前の点をA点、荷重が立ち上がる瞬間をB点、荷重が最大荷重の90%となる点をC点、最大荷重点をD点としたとき、CD間の距離を変形量とする。なお、フォースカーブは、カンチレバーをサンプルに近付けるときのものを使用する。
 原子間力顕微鏡は、例えば、Bruker AXS社製Dimension FastScanを用いることができる。付属のアタッチメントを利用することで、水中での観察が可能である。また、その際、使用するカンチレバーの探針の形状は、円錐形(ピラミッド型)のものを用いる。カンチレバーを使用する前には、校正(Calibration)を行う。まず、十分な硬度を有する物質でカンチレバーの反り感度(Deflection Sensitivity)を測定する。十分な硬度を有する物質としては、シリコンウェハーやサファイヤを用いることができる。次に、熱振動(Thermal Tune)でカンチレバーのバネ定数を測定する。校正を行うことで、測定の精度が向上する。
 分離機能層の突起(凸部)の変形量は、分離機能層の孔構造の粗密を反映する。具体的には、分離機能層の孔構造は、粗であるほど変形量が大きく、密であるほど変形量が小さい。変形量の平均値が2.2nm以下であることで、分離機能層が十分に緻密な構造を有するため、運転圧力変化時に局所的に高圧がかかっても圧密化が起こりにくいためと推定される。変形量の平均値は1.7nm以下であることがより好ましい。一方で、変形量が小さすぎる場合は、機能層が緻密すぎて十分な透水性が得られず、また可撓性が小さいため膜を曲げる、折る、揺らす、などの衝撃が加わった際の物理的な構造安定性が減り、ピンホール欠陥が発生しやすくなる。したがって、変形量の平均値は0.5nm以上であることが好ましい。
 また、変形量の平均値が2.2nm以下であっても、一部が粗大で一部が過密であると、局所的に高圧がかかった際に粗大部分において欠陥が生じ、塩除去率が低下しやすい。前記変形量の標準偏差が1.2nm以下であることで、過度な粗大部や過密部が少なくなり好ましい。変形量の標準偏差は、より好ましくは、0.98nm以下である。一方で、分離機能層の機械強度と弾力性を両立するためには、前記変形量の標準偏差は0.1nm以上であることが好ましい。
 薄膜の突起は走査電子顕微鏡(SEM,FE-SEM)、透過型電子顕微鏡(TEM)等の電子顕微鏡により観察できる。まず、TEM用の超薄切片作製のため、サンプルを水溶性高分子で包埋する。水溶性高分子はサンプルの形状を保持できるものであればよく、例えばポリビニルアルコール(PVA)が挙げられる。次に、断面観察を容易にするため四酸化オスミウムOsOで染色し、これをウルトラミクロトームで切断して超薄切片を作製する。得られた超薄切片を、電子顕微鏡を用いて断面写真を撮影する。観察倍率は、分離機能層の膜厚により適宜決定すればよいが、分離機能層の断面形状が観察でき、かつ、測定が局所的にならないようにするため、分離機能層の厚みが10~100nm程度であれば、観察倍率を5~10万倍とするとよい。
 薄膜における10点平均面粗さは次の方法で得られる。
 電子顕微鏡により、膜面に垂直な方向の断面を観察する。観察倍率は10,000~100,000倍が好ましい。得られた断面画像には、図1の(a)及び(b)に示すように、複合半透膜(図1に符号“1”で示す。)の表面が曲線として表れる。この曲線について、ISO4287:1997に基づき定義される粗さ曲線を求める。同じくISO4287:1997に基づいて、上記粗さ曲線の平均線を得る。平均線とは、平均線と粗さ曲線とで囲まれる領域の面積の合計が平均線の上下で等しくなるように描かれる直線である。
 こうして得られた平均線に平行な幅2.0μmの画像において、図2に示したように、平均線を基準線Aとして、最も高い凸部から5番目の高さまでの5つの凸部について、基準線Aからの高さ(基準線Aから凸部頂点までの距離)H1~H5を測定してその平均値を算出する。また、最も深い凹部から5番目の深さまでの5つの凹部について、深さ(基準線Aから凹部頂点までの距離)D1~D5を測定してその平均値を算出する。得られた2つの平均値の和が10点平均面粗さである。なお、頂点とは、凸部または凹部において基準線からの距離が最大となる点である。
 突起高さは次のようにして算出される。上述の平均線に平行な幅2.0μmの10箇所の断面において、上述の10点平均面粗さの5分の1以上である突起について、突起の両端の深さ(基準線から凹部の頂点までの距離)d1、d2の平均dと凸部高さh(基準線から凸部の頂点までの距離)の和が突起高さPhとして算出される。
 突起の高さは、好ましくは70nm以上である。また、突起の高さは、好ましくは1000nm以下であり、より好ましくは800nm以下である。突起の高さが70nm以上であることで、十分な透水性を備えた複合半透膜を容易に得ることができる。また、突起の高さが1000nm以下であることにより、複合半透膜を高圧で運転して使用する際にも突起が潰れることなく、安定した膜性能を得ることができる。
 突起における薄膜の平均厚みは、TEMにより測定することができる。TEM用の超薄切片作製については、上述のとおりである。得られた超薄切片の断面をTEMにより撮影する。観察倍率は、分離機能層の厚みにより適宜決定すればよい。得られた断面写真の解析は、画像解析ソフトで行うことができる。
 上記薄膜の厚みTの平均値は10nm以上20nm以下であることが好ましい。Tの平均値が10nm以上であることで、良好な分離性能が得られるとともに物理的外力への耐久性が向上する。また、Tの平均値が20nm以下であることで、良好な透過性能を有する複合半透膜を得ることができる。厚みTの平均値は、15nm以下であることがより好ましい。
 分離機能層の突起の平均数密度は、13.0個/μm以上であり、より好ましくは15.0個/μm以上である。また、分離機能層の突起の平均数密度は、好ましくは50個/μm以下であり、より好ましくは40個/μm以下である。突起の平均数密度が13.0個/μm以上であることで、複合半透膜が十分な透水性を得られ、さらには加圧時の突起の変形を抑えることもでき、安定した膜性能を得られる。また突起の数密度が50個/μm以下であることで、ひだ構造の成長が十分に起こり、所望の透水性を備えた複合半透膜を容易に得ることができる。突起の平均数密度は、上述の幅2.0μmの10箇所の断面を観察したときに、各断面において、上述の10点平均面粗さの5分の1以上である突起の数から測定することができる。
 ポリアミド分離機能層には、多官能芳香族アミンと多官能芳香族酸ハロゲン化物の重合に由来するアミド基、未反応官能基に由来するアミノ基とカルボキシ基が存在する。
 分離機能層におけるアミド基に対するカルボキシ基のモル比(カルボキシ基/アミド基)をx、アミド基に対するアミノ基のモル比(アミノ基/アミド基)をyとしたとき、x+yが0.70以下であることが好ましい。より好ましくはx+yは0.60以下である。x+yが小さいとき、アミノ基とカルボキシ基の合計量に対するアミド基のモル比が大きく、ポリマーが緻密な構造をしているため、運転圧力変化時に局所的に高圧がかかっても圧密化が起こりにくいためと推定される。
 分離機能層のカルボキシ基、アミノ基、及びアミド基のモル比は、分離機能層の13C固体NMR測定より求めることができる。具体的には、複合半透膜5mから基材を剥離し、ポリアミド分離機能層と微多孔性支持層を得た後、微多孔性支持層を溶解・除去し、ポリアミド分離機能層を得る。得られたポリアミド分離機能層をDD/MAS-13C固体NMR法により測定を行い、各官能基の炭素ピークまたは各官能基が結合している炭素ピークの積分値の比較から、各比を算出することができる。
 本発明の分離機能層の重量は0.10g/m以上であることが好ましく、より好ましくは0.11g/m以上、さらに好ましくは0.12g/m以上である。分離機能層の重量が0.10g/m以上であれば、分離機能層を構成するポリアミドが十分多いため、物理的外力への耐久性が向上し、圧力が変動する条件下でも、安定した膜性能を得ることができる。
 分離対象物質が複合半透膜内部に浸透することを防ぐため、分離機能層は、複合半透膜の表面側に配置されていることが好ましく、且つ、ろ過一次側に配置されていることがより好ましい。
 2.複合半透膜の製造方法
 本発明の複合半透膜の製造方法は、上述した所望の特徴を満たす複合半透膜が得られれば特に限定されないが、例えば、以下の方法で製造することができる。
 (2-1)支持膜の製膜
 支持膜の製膜方法としては、公知の方法が好適に利用できる。以下、微多孔性支持層の素材としてPSfを用いる場合を例にとって述べる。
 まず、PSfを、PSfの良溶媒に溶解し、微多孔性支持層原液を調製する。PSfの良溶媒としては、例えば、N,N-ジメチルホルムアミド(以下、「DMF」と称する。)が好ましい。
 微多孔性支持層原液中のPSfの濃度は、10~25質量%であることが好ましく、14~23質量%であることがより好ましい。高分子溶液におけるポリマー濃度(すなわち固形分濃度)が高いほど、微多孔性支持層の表面における粒の数密度が大きい微多孔性支持層が得られ、その結果、分離機能層の突起の数密度も高くなり、圧力変動に耐えうる突起構造を実現できる。また、分離機能層形成時のモノマー供給速度が小さくなりすぎない程度にポリマー濃度が低いことで、微多孔性支持層の表面細孔径が調整され、分離機能層形成時に、適切な高さを持つ突起が形成される。微多孔性支持層原液中のPSfの濃度がこの範囲内であることで、得られる微多孔性支持層の強度と透過性能とを両立することができる。なお、微多孔性支持層原液中の素材の濃度の好ましい範囲は、用いる素材、良溶媒等によって適宜調整することができる。
 次に、得られた微多孔性支持層原液を、基材表面に塗布し、PSfの非溶媒を含む凝固浴に浸漬する。
 凝固浴に含まれるPSfの非溶媒としては、例えば、水が好ましい。基材表面に塗布した微多孔性支持層原液を、PSfの非溶媒を含む凝固浴に接触させることで、非溶媒誘起相分離によって微多孔性支持層原液が凝固し、基材表面に微多孔性支持層が形成された支持膜を得ることができる。
 凝固浴は、PSfの非溶媒のみで構成されていてもよいが、微多孔性支持層原液を凝固可能な範囲で、PSfの良溶媒を含んでいてもよい。
 得られた支持膜を、分離機能層の形成の前に洗浄することで、膜中に残存する溶媒を除去してもよい。
 (2-2)分離機能層の重合工程
 架橋芳香族ポリアミドを含有する分離機能層の形成方法について、「(2-1)支持膜の製膜」で得られた支持膜上で、多官能芳香族アミンと多官能芳香族酸ハロゲン化物とを重合して固化させる方法を例にとって述べる。重合方法としては、生産性、性能の観点から界面重合法で行う。以下、界面重合の工程について説明する。
 本発明の複合半透膜の製造方法は、溶液温度を25℃としたときの溶液中の酸素の溶存量aと二酸化炭素の溶存量bの和a+bが9mg/L以上である多官能芳香族アミン溶液と、多官能芳香族酸ハロゲン化物を有機溶媒に溶解した溶液とを用い、微多孔性支持層を含む支持膜の表面で界面重縮合を行った後、加熱することで架橋ポリアミド機能層を形成する工程を備える。
 より具体的に、界面重合の工程は、(a)多官能芳香族アミンを含有し、かつ溶液温度を25℃としたときの溶液中の酸素の溶存量aと二酸化炭素の溶存量bの和a+bが9mg/L以上であるアミン溶液を支持膜に接触させる工程と、(b)多官能芳香族酸ハロゲン化物を含有する有機溶媒溶液を、多官能芳香族アミンを含有するアミン溶液を接触させた支持膜に接触させる工程と、(c)アミン及び酸ハロゲン化物と接触した後の膜を加熱する工程と、(d)前記(c)の工程で形成された、支持膜上に架橋ポリアミド機能層を備えた複合半透膜を熱水で洗浄する工程、とを備える。
 微多孔性支持層、多官能芳香族アミン及び多官能芳香族酸ハロゲン化物としては、上述のものを挙げることができ、好ましいものも同様である。
 工程(a)において、多官能芳香族アミン溶液における多官能芳香族アミンの濃度は0.1重量%以上20重量%以下の範囲内であることが好ましく、より好ましくは0.5重量%以上15重量%以下の範囲内である。多官能芳香族アミンの濃度がこの範囲であると十分な溶質除去性能および透水性を得ることができる。多官能芳香族アミンは、2種類以上を用いてもよい。
 多官能芳香族アミン溶液には、多官能芳香族アミンと多官能芳香族酸ハロゲン化物との反応を妨害しないものであれば、界面活性剤や有機溶媒、アルカリ性化合物、及び酸化防止剤などが含まれていてもよい。界面活性剤は、支持膜表面の濡れ性を向上させ、多官能芳香族アミン溶液と非極性溶媒との間の界面張力を減少させる効果がある。有機溶媒は界面重縮合反応の触媒として働くことがあり、添加することにより界面重縮合反応を効率よく行える場合がある。
 多官能芳香族アミン溶液は、溶液温度25℃における溶液中の酸素の溶存量をa(mg/L)、二酸化炭素の溶存量をb(mg/L)としたとき、気体溶存量a+bは9mg/L以上にして用いる。好ましくはa+bが15mg/L以上、より好ましくはa+bは32mg/L以上、さらに好ましくはa+bは100mg/L以上である。気体の溶解量を調整する方法としては、所定の混合比とした気体と溶液を接触する方法、気体を圧入溶解する方法、気体を予め溶解させた市販液(例えば炭酸水)を用いる方法がある。多官能芳香族アミンと多官能芳香族酸ハロゲン化物との反応を妨害しないのであれば、化学反応を用いて気体を発生させてもよい。気体を予め溶解した市販液を用いる場合、超音波や真空ポンプにより脱気して溶存量を所定量まで減らして用いてもよい。これらの方法は任意に選択可能である。
 通常、後述の工程(c)の加熱工程により、通常は機能層が緻密化していき突起(凸部)の変形量の平均値は小さくなり前記変形量の平均値2.2nm以下を満たすようになるが、同時に突起の合一化も進むため突起の数密度は小さくなり、突起の平均数密度13.0個/μm以上を満たさなくなっていく。一方、気体溶存量a+bが大きくなることで、後述のマイクロバブル発生により突起を形成する起点が増え、加熱工程を経ても突起の平均数密度が13.0個/μm以上となる。気体溶存量a+bが大きくなることで、界面重合時に分子が密になる部分に入り凝集を阻害することで局所的に反応が進行することを防ぎ粗大部や過密部の生成を抑制できるため、前記変形量のばらつきが小さくなり標準偏差が1.2nm以下となる。一方、気体を圧入すると気体溶存量を過大にすることが可能であるが、気体溶存量が多すぎると突起に欠陥が生じやすくなり除去率が低下するため、気体溶存量a+bは10000以下であることが好ましい。
 工程(a)において、多官能芳香族アミン溶液は、支持膜に均一且つ連続的に接触させることが好ましい。具体的には、例えば、支持膜上に多官能芳香族アミン溶液をコーティングする方法や、支持膜を多官能芳香族アミン溶液に浸漬する方法が挙げられる。支持膜と多官能芳香族アミン溶液との接触時間は、1秒~10分であることが好ましく、3秒~3分であることがより好ましい。
 多官能芳香族アミン溶液を支持膜に接触させた後は、支持膜上に液滴が残らないよう十分に液切りすることが好ましい。十分に液切りすることで、複合半透膜形成後に液滴残存部分が膜欠点となって分離性能が低下することを防ぐことができる。液切りの方法としては、例えば、日本国特開平2-78428号公報に記載されているように、水溶液接触後の支持膜を垂直方向に把持して過剰の水溶液を自然流下させる方法や、エアーノズルから窒素等の気流を吹き付け、強制的に液切りする方法が挙げられる。また、液切り後、膜面を乾燥させて水溶液の水分を一部除去することもできる。
 工程(b)において、多官能芳香族酸ハロゲン化物としては、例えば、トリメシン酸クロリド(以下、「TMC」と称する。)、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリド、2,5-フランジカルボン酸クロリド等の多官能芳香族酸クロリドが挙げられる。多官能芳香族酸ハロゲン化物は、単独で用いられてもよいし、2種以上が併用されてもよい。
 有機溶媒は、水と非混和性であり、多官能芳香族酸ハロゲン化物を溶解し、支持膜を侵さず、且つ、多官能芳香族アミン及び多官能芳香族酸ハロゲン化物に対して不活性であることが好ましい。有機溶媒としては、例えば、n-ノナン、n-デカン、n-ウンデカン、n-ドデカン、イソオクタン、イソデカン、イソドデカン等の炭化水素化合物及びこれらの混合溶媒が挙げられる。
 有機溶媒溶液中の多官能芳香族酸ハロゲン化物の濃度は、0.01~10質量%であることが好ましく、0.02~4質量%であることがより好ましく、0.03~2質量%であることがさらに好ましい。多官能芳香族酸ハロゲン化物の濃度が0.01質量%以上であることで、十分な反応速度で重合を進行させることができる。一方、多官能芳香族酸ハロゲン化物の濃度が10質量%以下であることで、重合中の副反応の発生を抑制することができる。また、有機溶媒溶液には、重合を阻害しない範囲であれば、必要に応じて、界面活性剤等の化合物が含まれていてもよい。
 多官能芳香族酸ハロゲン化物の有機溶媒溶液の、多官能芳香族アミン溶液と接触させた支持膜への接触の方法は、多官能芳香族アミン溶液の支持膜への被覆方法と同様に行えばよい。
 多官能芳香族アミンを含有する水溶液を接触させた微多孔性支持層と多官能芳香族酸ハロゲン化物を溶解させた溶液を接触させる温度は25~60℃であることが好ましく、30℃~55℃がより好ましい。25℃未満では突起高さが十分に得られない虞がある。温度が高くなるほど気体の溶解度が小さくなり、溶解しきれなくなった気体がマイクロバブルとして発生して突起を形成する起点が増えるが、60℃を超えると反応が速過ぎて突起の薄膜厚みの増大や突起の合一化が進行し、いずれも十分な透水性が得られない。接触させる温度が25~60℃であることで、突起の数が増え実質的に反応界面の表面積が増えるため、ポリアミド量が大きくなるとともに膜厚Tの肥大化が抑制できる。温度付与方法は、支持膜を加温してもよく、加温した多官能酸ハロゲン化物の有機溶媒溶液を接触させてもよい。多官能芳香族アミン溶液と多官能酸ハロゲン化物溶液とを接触させた直後の膜面の温度は、放射温度計のような非接触型温度計により測定することができる。
 工程(c)において、多官能芳香族酸クロリドの有機溶媒溶液を接触させた後、支持膜を加熱処理する。加熱処理する場合、加熱温度は50~180℃が好ましく、60~160℃がより好ましく、80~150℃がさらに好ましい。加熱、及び加熱により発生したマイクロバブルによる表面積増大による界面重合反応の促進と界面重合中の多官能芳香族酸ハロゲン化物の濃縮による界面重合促進、モノマーやオリゴマーの運動性向上による反応効率向上の相乗効果が得られるため、分離機能層中のポリアミド量が0.10g/m以上になるとともに、アミド基量が大きくなりx+yが0.70以下となる。機能層の緻密化が進み、上記変形量の平均値が2.2nm以下となる。加熱温度が高すぎると、突起の合一化が進み、数密度が小さくなるとともに厚膜化が進むため、良好な透水性が得られない。加熱により発生したマイクロバブルが浮上する際、周囲の液体を連行するために流動が生じ、モノマーを液中に分散をさせ、反応の促進が起こり、機能層の緻密化が進むとともに、局所的な反応の進行を防ぐため、上記変形量の平均値がさらに小さくなるとともに、前記変形量のばらつきもさらに小さくなる。
 このとき、溶液温度25℃におけるアミン溶液中における気体溶存量a+bが大きいほど、接触時の温度で溶解しきれなくなる気体量が増え、この効果が増大する。
 また、25℃時と高温時における気体溶解度の差は、酸素よりも二酸化炭素のほうが大きいため、さらにアミン溶液中の酸素の溶存量aに対する二酸化炭素の溶存量bの比b/aが0.9以上であると、上記の効果がより得られるため好ましい。比b/aは、より好ましくは1.0以上である。
 反応・加熱後は有機溶媒溶液を液切りする工程により、有機溶媒を除去することが好ましい。有機溶媒の除去は、例えば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法、送風機で風を吹き付けることで有機溶媒を乾燥除去する方法、水とエアーの混合流体で過剰の有機溶媒を除去する方法等を用いることができる。
 工程(d)において、有機溶媒を除去した複合半透膜を熱水で洗浄する。熱水の温度は40~95℃が好ましく、60~95℃がより好ましい。熱水の温度が40℃以上であることで、膜中に残存する未反応物やオリゴマーを十分に除去することができる。一方、熱水の温度が95℃以下であることで、複合半透膜の収縮度が大きくならず、良好な透過性能を維持することができる。なお、熱水の温度の好ましい範囲は、用いる多官能芳香族アミンや多官能芳香族酸クロリドによって適宜調整することができる。
 3.複合半透膜の利用
 複合半透膜は、複合半透膜によって供給水を透過水(淡水)と濃縮水とに分離する水処理システムに利用することができる。
 具体的には、複合半透膜は、プラスチックネット等の供給水流路材と、トリコット等の透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りに巻回され、スパイラル型の複合半透膜エレメントとして好適に用いられる。さらに、このエレメントを直列又は並列に接続して圧力容器に収納した複合半透膜モジュールとすることもできる。
 また、上記の複合半透膜やそのエレメント、モジュールは、それらに供給水を供給するポンプや、その供給水を前処理する装置等と組み合わせて、流体分離装置を構成することができる。この分離装置を用いることにより、供給水を飲料水等の透過水と膜を透過しなかった濃縮水とに分離して、目的にあった水を得ることができる。
 本発明に係る複合半透膜によって処理される供給水としては、海水、かん水、排水等の500mg/L~100g/LのTDS(Total Dissolved Solids:総溶解固形分)を含有する液状混合物が挙げられる。一般に、TDSは総溶解固形分量を指し、「質量÷体積」あるいは「重量比」で表される。定義によれば、0.45ミクロンのフィルターでろ過した溶液を39.5~40.5℃の温度で蒸発させ残留物の重さから算出できるが、より簡便には実用塩分(S)から換算する。
 流体分離装置の操作圧力は高い方が溶質除去率は向上するが、運転に必要なエネルギーも増加すること、また、複合半透膜の耐久性を考慮すると、複合半透膜に被処理水を透過する際の操作圧力は、0.5~10MPaであることが好ましい。供給水温度は、高くなると溶質除去率が低下するが、低くなるに従い膜透過流束も減少するので、5~45℃であることが好ましい。また、供給水pHが高くなると、海水等の高溶質濃度の供給水の場合、マグネシウム等のスケールが発生する恐れがあり、また、高pH運転による膜の劣化が懸念されるため、中性領域での運転であることが好ましい。
 以下に具体的な実施例を挙げて本発明を説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 本発明の複合半透膜に関する物性値は、以下の方法で測定した。
 (突起(凸部)の変形量、標準偏差)
 純水で濡れた状態の複合半透膜を1cm四方に切り、接着剤を用いて分離機能層面が上になるようにサンプル台に固定し、測定サンプルを作製した。次に、測定ステージ上に磁石を用いて測定サンプルを固定し、分離機能層上に純水を滴下した後、原子間力顕微鏡(AFM)で表面の観察を行った。得られた画像のうち凸部のフォースカーブを10点抜きだし、変形量を解析した。この操作を2視野分行い、計20点の変形量を解析し、平均値、最大値および、標準偏差を算出した。具体的な測定条件は以下のとおりである。
・装置:Bruker AXS社製 Dimension FastScan
・走査モード:水中ナノメカニカルマッピング
・探針:シリコンカンチレバー(Bruker AXS社製ScanAsyst-Fluid)。なお、カンチレバーは測定前に校正した。
・最大荷重:5.0nN
・走査範囲:2μm×2μm
・走査速度:0.5Hz
・ピクセル数:256×256
・測定条件:純水中
・測定温度:25℃
 (カルボキシ基、アミノ基及びアミド基の定量、並びにポリアミドの重量)
 複合半透膜5mから基材を物理的に剥離させ、微多孔性支持層と分離機能層を回収した。24時間静置することで乾燥させた後、ジクロロメタンの入ったビーカー内に少量ずつ加えて撹拌し、微多孔性支持層を構成するポリマーを溶解させた。ビーカー内の不溶物を濾紙で回収した。この不溶物をジクロロメタンの入ったビーカー内に入れ攪拌し、再度ビーカー内の不溶物を回収した。この作業をジクロロメタン溶液中に微多孔性支持層を形成するポリマーの溶出が検出できなくなるまで繰り返した。回収した分離機能層は真空乾燥機で乾燥させ、残存するジクロロメタンを除去した。得られた分離機能層の重量を、用いた面積5mで除すことで、単位面積当たりのポリアミド重量を得た。さらに分離機能層を凍結粉砕によって粉末状の試料とし、固体NMR法測定に用いられる試料管内に封入して、CP/MAS法、及びDD/MAS法による13C固体NMR測定を行った。13C固体NMR測定には、Chemagnetics社製CMX-300を用いた。測定条件例を以下に示す。
 基準物質:ポリジメチルシロキサン(内部基準:1.56ppm)
 試料回転数:10.5kHz
 パルス繰り返し時間:100s
 得られたスペクトルから、各官能基が結合している炭素原子由来のピークごとにピーク分割を行い、分割されたピークの面積から官能基量比を定量した。
 (突起厚みTの平均値、突起の数密度)
 複合半透膜を3cm×3cm角に切り出し、25℃の蒸留水で24時間洗浄した。洗浄後の複合半透膜をエポキシ樹脂で包埋した後、四酸化オスミウムで染色して測定サンプルとした。得られたサンプルを、薄膜断面を観察面として、走査型透過電子顕微鏡(株式会社日立製作所製;HD2700)を用いて観察した。倍率100万倍での取得画像を用いて、薄膜外部表面上のある点から内部表面への最短距離を薄膜の厚みTとした。無作為に選択した10個の凸部について、凸部1個に対し5箇所の点の解析を行い、それらの平均値を薄膜の厚みTの平均値とした。さらに、ひだ凸部の数を数え、平均数密度を求めた。
 (溶存気体量の算出方法)
 酸素、二酸化炭素は、アミン水溶液調製後、すみやかに市販のDO計及び溶存二酸化炭素濃度計を用いて測定した。
 (高温高圧下での発停運転)
 複合半透膜に、温度40℃、pH6.5に調整した評価原水(NaCl濃度3.2%)を操作圧力7.0MPaで供給して、5分運転した後5分停止させる発停試験を1000回行った後、膜ろ過処理を行なった。その後、以下に示す方法で、複合半透膜の性能を評価した。
 (NaCl透過率)
 複合半透膜に、温度25℃、pH6.5に調整した評価原水(NaCl濃度3.2%、)を操作圧力5.5MPaで供給して膜ろ過処理を24時間行ない、その後の供給水および透過水の電気伝導度を東亜電波工業株式会社製電気伝導度計で測定して、それぞれのNaCl濃度を得た。透過水及び供給水中のNaCl濃度より、下記式に従い、NaCl透過率を算出した。
 NaCl透過率(%)=100×(透過水中のNaCl濃度/供給水中のNaCl濃度)
 (膜透過流束)
 前項の試験において、供給水(評価原水)の膜透過水量を、膜面1平方メートルあたり、1日あたりの透水量(立方メートル)でもって膜透過流束(m/m/日)を表した。
 (参考例1)
 ポリエステル不織布(通気量2.0cc/cm/sec)上にポリスルホン(PSf)の18.0質量%DMF溶液を200μmの厚みでキャストし、ただちに純水中に浸漬して5分間放置することによって支持膜を作製した。
 (参考例2)
 ポリエステル不織布(通気量2.0cc/cm/sec)上にポリスルホン(PSf)15質量%のDMF溶液を110μmの厚みで、またポリスルホン25質量%のDMF溶液を50μmの厚みで同時にキャストし、直ちに25℃の純水中に浸漬して5分間放置することによって支持膜を作製した。
 (参考例3)
 DMF溶液におけるポリスルホン(PSf)の濃度を20質量%とした以外は、参考例1と同様にして、支持膜を作製した。
 (比較例1)
 アミン水溶液中の気体溶存量(a+b、b/a)を表1に表す量とした6.0質量%m-フェニレンジアミン水溶液(多官能芳香族アミン溶液の一例)中に、参考例1で得られた支持膜を2分浸漬した。なお、a+bは溶液温度を25℃としたときのアミン水溶液中の酸素の溶存量aと二酸化炭素の溶存量bの和であり、b/aはアミン溶液中の酸素の溶存量aに対する二酸化炭素の溶存量bの比率である。
 該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付けることで、支持膜表面から余分な水溶液を取り除いた。40℃に制御した環境で、0.16質量%トリメシン酸クロリド(TMC)を含む40℃のデカン溶液(多官能芳香族酸ハロゲン化物溶液の一例)を表面が完全に濡れるように塗布した。次に、120℃のオーブンで支持膜を加熱し、その後膜から余分な溶液を除去するために、膜を垂直にして液切りを行って、送風機を使い20℃の空気を吹き付けて乾燥させた。最後に、90℃の純水で洗浄することで複合半透膜を得た。
 (比較例2)
 アミン水溶液中の気体溶存量を表1に表す量とし、3.0質量%m-フェニレンジアミン水溶液を用い、TMC溶液を0.165質量%TMCの45℃のIsopar M(エクソンモービル社製)溶液を、45℃に制御した環境で支持膜に塗布し、さらにオーブン温度を150℃に変更した以外は、比較例1と同様にして、比較例2の複合半透膜を得た。
 (比較例3)
 アミン水溶液中の気体溶存量を表1に表す量とし、120℃のオーブンに入れる工程を省略し、TMC溶液の温度を25℃とし、25℃に制御した環境で塗布した以外は、比較例1と同様にして、比較例3の複合半透膜を得た。
 (比較例4)
 アミン水溶液中の気体溶存量を表1に表す量とし、m-フェニレンジアミン水溶液を3.0質量%とし、空気を30分間送り込むことで、水溶液に空気中の気体を溶解させた。参考例1で得られた支持膜を、該アミン水溶液に2分浸漬し、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付けることで、支持膜表面から余分な水溶液を取り除いた。25℃に制御した環境で、TMC0.16質量%を含む25℃のデカン溶液を表面が完全に濡れるように塗布した。1分間静置した後、膜から余分な溶液を除去するために、膜を垂直にして液切りを行って、送風機を使い20℃の空気を吹き付けて乾燥させた。最後に、90℃の純水で洗浄することで、比較例4の複合半透膜を得た。
 (比較例5)
 アミン水溶液中の気体溶存量を表1に表す量とし、TMC0.16質量%を含む40℃のデカン溶液を表面が完全に濡れるように塗布した後、さらにTMC0.32質量%を含むデカン溶液を塗布してから120℃のオーブンで加熱した以外は、比較例1と同様にして、比較例5の複合半透膜を得た。
 (比較例6)
 アミン水溶液中の気体溶存量を表1に表す量とし、参考例2で得られた支持膜を用い、m-フェニレンジアミン濃度を4.0質量%とし、TMC濃度を0.12質量%とし、最後の純水での洗浄温度を45℃とした以外は、比較例3と同様にして、比較例6の複合半透膜を得た。
 (比較例7)
 アミン水溶液中の気体溶存量を表1に表す量とし、TMC溶液の溶媒をイソオクタンとし、溶液の温度を25℃として、25℃に制御した環境で塗布し、さらにオーブンの温度を150℃にした以外は、比較例1と同様にして、比較例7の複合半透膜を得た。
 (比較例8)
 アミン水溶液中の気体溶存量を表1に表す量とした以外は、比較例1と同様にして、比較例8の複合半透膜を得た。
 (比較例9)
 アミン水溶液中の気体溶存量を表1に表す量とし、m-フェニレンジアミン濃度を2.0質量%とし、TMC濃度を0.10質量%とした以外は、比較例1と同様にして、比較例9の複合半透膜を得た。
 (比較例10)
 アミン水溶液中の気体溶存量を表1に表す量とした以外は、比較例1と同様にして、比較例10の複合半透膜を得た。なお、気体溶存量は脱気を行うことで調整した。
 (実施例1)
 気体溶存量を表1に表す量とした3.0質量%m-フェニレンジアミン水溶液中に、参考例1で得られた支持膜を2分浸漬した。該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付けることで、支持膜表面から余分な水溶液を取り除いた。40℃に制御した環境で、TMC0.16質量%を含む40℃のデカン溶液を表面が完全に濡れるように塗布した。次に、150℃のオーブンで加熱し、その後膜から余分な溶液を除去するために、膜を垂直にして液切りを行って、送風機を使い20℃の空気を吹き付けて乾燥させた。最後に、90℃の純水で洗浄することで複合半透膜を得た。
 (実施例2)
 オーブンの温度を120℃とした以外は、実施例1と同様にして、実施例2の複合半透膜を得た。
 (実施例3)
 オーブンの温度を80℃とした以外は、実施例1と同様にして、実施例3の複合半透膜を得た。
 (実施例4)
 アミン水溶液中の気体溶存量を表1に表す量とした以外は、実施例1と同様にして、実施例4の複合半透膜を得た。
 (実施例5)
 参考例3で得られた支持膜を用いた以外は、実施例2と同様にして、実施例5の複合半透膜を得た。
 (実施例6)
 55℃に制御した環境で、TMC0.16質量%を含む55℃のデカン溶液を表面が完全に濡れるように塗布した以外は、実施例1と同様にして、実施例6の複合半透膜を得た。
 (実施例7)
 アミン水溶液の気体溶存量を表1に表す量とし、m-フェニレンジアミン水溶液の濃度を8.0質量%とした以外は、実施例1と同様にして、実施例7の複合半透膜を得た。
 (実施例8)
 アミン水溶液の気体溶存量を表1に表す量とし、m-フェニレンジアミン水溶液の濃度を2.0質量%とした以外は、実施例1と同様にして、実施例8の複合半透膜を得た。
 (実施例9)
 TMC濃度を0.10質量%とした以外は、実施例1と同様にして、実施例9の複合半透膜を得た。
 (実施例10)
 TMC濃度を0.10質量%とした以外は、実施例8と同様にして、実施例10の複合半透膜を得た。
 (実施例11)
 アミン水溶液の気体溶存量を表1に表す量とし、150℃のオーブン内で加熱する際に、膜の裏面側に設けたノズルから100℃の水蒸気を供給しつつ加熱した以外は、実施例1と同様にして、実施例11の複合半透膜を得た。
 (実施例12~17)
 アミン水溶液の気体溶存量を表1に表す量とした以外は、実施例2と同様にして、実施例12~17の複合半透膜を得た。
 以上の結果を表1に示す。実施例1~17より、本発明の複合半透膜は、高温高圧で頻繁に運転・停止が繰り返された後でも、透水性に優れ、かつ、塩透過が少ないことが分かる。
Figure JPOXMLDOC01-appb-T000001
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお、本出願は2021年9月27日付で出願された日本特許出願(特願2021-156465)に基づいており、その全体が引用により援用される。
1  複合半透膜
 2  基材
 3  微多孔性支持層
 4  分離機能層
 41 薄膜
 42 凸部
 43 凹部
 A  基準線
 H1~H5 基準線からの高さ
 D1~D5 基準線からの深さ

Claims (11)

  1.  微多孔性支持層と、前記微多孔性支持層上に設けられた分離機能層とを有する複合半透膜であって、
     前記分離機能層が架橋芳香族ポリアミドを含有する薄膜で構成される複数の突起を有し、
     膜面方向に垂直で、膜面方向の長さが2.0μmである任意の10箇所の断面において、支持層表面を基準とした高さが前記分離機能層中で10点平均面粗さの5分の1以上である突起の平均数密度が13.0個/μm以上であり、かつ
     前記突起を5nNの力で押し込んだ際の変形量の平均値が2.2nm以下であり、かつ前記変形量の標準偏差が1.2nm以下である、複合半透膜。
  2.  前記突起を5nNの力で押し込んだ際の変形量の平均値が1.7nm以下である、請求項1に記載の複合半透膜。
  3.  前記突起の平均数密度が15.0個/μm以上である、請求項1または2に記載の複合半透膜。
  4.  前記変形量の標準偏差が0.98nm以下である、請求項1~3のいずれか1項に記載の複合半透膜。
  5.  前記分離機能層が有するアミノ基、カルボキシ基及びアミド基の量から計算されるx+yが0.70以下であり、前記x及び前記yは以下で定義される、請求項1~4のいずれか1項に記載の複合半透膜。
     x:13C固体NMRにより測定した、アミド基に対するカルボキシ基のモル比
     y:13C固体NMRにより測定した、アミド基に対するアミノ基のモル比
  6.  前記突起における薄膜の厚みが10nm以上20nm以下である、請求項1~5のいずれか1項に記載の複合半透膜。
  7.  前記分離機能層の重量が0.10g/m以上である、請求項1~6のいずれか1項に記載の複合半透膜。
  8.  前記分離機能層が架橋全芳香族ポリアミドからなる、請求項1~7のいずれか1項に記載の複合半透膜。
  9.  請求項1~8のいずれか1項に記載の複合半透膜の製造方法であって、
     溶液温度を25℃としたときの溶液中の酸素の溶存量aと二酸化炭素の溶存量bの和a+bが9mg/L以上である多官能芳香族アミン溶液と、多官能芳香族酸ハロゲン化物を有機溶媒に溶解した溶液とを用い、微多孔性支持層を含む支持膜の表面で界面重縮合を行った後、加熱することで架橋ポリアミド機能層を形成する工程を備える複合半透膜の製造方法。
  10.  前記溶存量aに対する前記溶存量bの比b/aが0.90以上である、請求項9に記載の複合半透膜の製造方法。
  11.  請求項1~8のいずれか1項に記載の複合半透膜によって、供給水を濃縮水と淡水に分離する、水処理システム。
     
PCT/JP2022/035764 2021-09-27 2022-09-26 複合半透膜 WO2023048288A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247009448A KR20240063910A (ko) 2021-09-27 2022-09-26 복합 반투막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-156465 2021-09-27
JP2021156465 2021-09-27

Publications (1)

Publication Number Publication Date
WO2023048288A1 true WO2023048288A1 (ja) 2023-03-30

Family

ID=85720815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035764 WO2023048288A1 (ja) 2021-09-27 2022-09-26 複合半透膜

Country Status (2)

Country Link
KR (1) KR20240063910A (ja)
WO (1) WO2023048288A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002821A1 (ja) * 2014-06-30 2016-01-07 東レ株式会社 複合半透膜
JP2016144794A (ja) * 2015-01-29 2016-08-12 東レ株式会社 複合半透膜および複合半透膜エレメント
WO2016136966A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 複合半透膜

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001179061A (ja) 1999-12-22 2001-07-03 Toray Ind Inc 複合半透膜およびその製造方法
US8754139B2 (en) 2009-02-20 2014-06-17 International Business Machines Corporation Polyamide membranes with fluoroalcohol functionality

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016002821A1 (ja) * 2014-06-30 2016-01-07 東レ株式会社 複合半透膜
JP2016144794A (ja) * 2015-01-29 2016-08-12 東レ株式会社 複合半透膜および複合半透膜エレメント
WO2016136966A1 (ja) * 2015-02-27 2016-09-01 東レ株式会社 複合半透膜

Also Published As

Publication number Publication date
KR20240063910A (ko) 2024-05-10

Similar Documents

Publication Publication Date Title
US20190070569A1 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method of manufacturing composite semipermeable membrane
KR102289642B1 (ko) 복합 반투막
CN106457165B (zh) 复合半透膜
JP6237232B2 (ja) 複合半透膜
JP2018039003A (ja) 複合半透膜およびその製造方法
US20180311623A1 (en) Composite semipermeable membrane and method for producing same
JP6197969B1 (ja) 複合半透膜
JP2014065004A (ja) 複合半透膜
JP2017213501A (ja) 複合半透膜および複合半透膜の製造方法
WO2016052669A1 (ja) 複合半透膜
CN111787998B (zh) 复合半透膜及复合半透膜元件
KR102253557B1 (ko) 복합 반투막 및 복합 반투막 엘리먼트
WO2023048288A1 (ja) 複合半透膜
JP6702181B2 (ja) 複合半透膜
JP6511808B2 (ja) 複合半透膜
WO2024048695A1 (ja) 複合半透膜及び複合半透膜の製造方法
JP7343075B1 (ja) 複合半透膜及び複合半透膜の製造方法
JP2024007836A (ja) 複合半透膜
JP2014064989A (ja) 複合半透膜
JP2021069988A (ja) 複合半透膜および複合半透膜を用いた濾過方法
JP2014151241A (ja) 複合半透膜およびその製造方法
JPWO2020137066A1 (ja) 複合半透膜
JP2020049466A (ja) 複合半透膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022561001

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22873039

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 20247009448

Country of ref document: KR

Kind code of ref document: A