WO2011103705A1 - 一种长寿命负极的制备工艺及使用该负极的电容电池 - Google Patents

一种长寿命负极的制备工艺及使用该负极的电容电池 Download PDF

Info

Publication number
WO2011103705A1
WO2011103705A1 PCT/CN2010/001153 CN2010001153W WO2011103705A1 WO 2011103705 A1 WO2011103705 A1 WO 2011103705A1 CN 2010001153 W CN2010001153 W CN 2010001153W WO 2011103705 A1 WO2011103705 A1 WO 2011103705A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
carbon
current collector
electrode sheet
conductive agent
Prior art date
Application number
PCT/CN2010/001153
Other languages
English (en)
French (fr)
Inventor
华黎
杨恩东
梁全顺
安仲勋
吴明霞
曹小卫
Original Assignee
上海奥威科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海奥威科技开发有限公司 filed Critical 上海奥威科技开发有限公司
Priority to EP10846329.0A priority Critical patent/EP2541566A4/en
Priority to US13/515,382 priority patent/US20120321913A1/en
Priority to JP2012554188A priority patent/JP5939990B2/ja
Publication of WO2011103705A1 publication Critical patent/WO2011103705A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49114Electric battery cell making including adhesively bonding

Definitions

  • This invention relates to the combination of supercapacitor and lithium ion battery technology, and more particularly to organic hybrid supercapacitors and lithium ion batteries. Background technique
  • Supercapacitor is a new type of electrochemical energy storage device between traditional capacitors and batteries. It has higher energy density than traditional capacitors, and its electrostatic capacity can reach tens of thousands of terahertz; it is higher than battery. Its power density and long cycle life make it a combination of traditional capacitors and batteries. It is a promising chemical power source. It has the characteristics of high specific capacity, high power, long life, wide working temperature limit and maintenance-free.
  • supercapacitors can be divided into three categories: electric double layer capacitors (EDLC), Faraday quasi-capacitor supercapacitors and hybrid supercapacitors, in which electric double layer capacitors are mainly formed by electrode/electrolyte interface charge separation.
  • EDLC electric double layer capacitors
  • Faraday quasi-capacitor supercapacitors Faraday quasi-capacitor supercapacitors
  • hybrid supercapacitors in which electric double layer capacitors are mainly formed by electrode/electrolyte interface charge separation.
  • the electric double layer is used to realize the storage of charge and energy;
  • the Faraday quasi-capacitor supercapacitor mainly realizes the storage of charge and energy by means of the Faraday "quasi-capacitance" generated by the rapid redox reaction of the electrode surface;
  • the hybrid supercapacitor is a
  • the non-polarized electrode of the battery such as nickel hydroxide
  • the polarized electrode of the electric double layer capacitor such as activated carbon
  • Supercapacitors can be divided into three kinds of supercapacitors: inorganic electrolyte, organic electrolyte and polymer electrolyte.
  • the inorganic electrolytes are mostly used in high concentration acidic (such as H 2 S0 4 ) or alkaline (such as KOH) aqueous solutions. Neutral aqueous electrolytes are less used; organic electrolytes generally use a quaternary ammonium salt or a lithium salt and a high-conductivity organic solvent (such as acetonitrile) to form a mixed electrolyte, while polymer electrolytes are now only in the laboratory stage, still No commercial products emerged.
  • mature organic supercapacitors generally adopt a symmetrical structure, that is, the same carbon material is used for the positive and negative electrodes, and the electrolyte is composed of a quaternary ammonium salt and an organic solvent (such as acetonitrile).
  • the capacitor has a high power density and can reach 5000. -6000W/Kg, However, its energy density is low, only 3-5Wh/Kg.
  • organic supercapacitors in order to further increase the energy density of organic supercapacitors, a hybrid structural design has been adopted, that is, different active materials are used for the positive and negative electrodes.
  • organic hybrid supercapacitors have been increasing, such as the use of activated carbon for the positive electrode, the use of lithium titanate for the negative electrode and polythiophene for the positive electrode, and the use of an organic supercapacitor such as lithium titanate for the negative electrode.
  • an object of the present invention is to improve the bonding strength of a negative electrode sheet to have a higher compaction density and cycle life.
  • the energy density and cycle life of supercapacitors are greatly improved, and the application fields of supercapacitors are further expanded.
  • a preparation process for a long-life negative electrode sheet comprising the following steps:
  • the sheet-like pole piece is pressed and attached to a negative electrode current collector coated with a conductive agent to have a density of 1.2 to 1.6 g/cm 3 .
  • the negative electrode uses a fast lithium storage carbon with a layer spacing of 0.372 nm or more, which is typically represented by hard carbon.
  • the porous carbon comprises one or a mixture of activated carbon, carbon cloth, carbon fiber, carbon felt, carbon aerogel, carbon nanotubes.
  • the lithium ion intercalation compound comprises: one or a mixture of LiCo0 2 , LiMn 2 0 4 , LiNi0 2 , LiFeP0 4 , LiNio.sCoo.2O2> LiNii/3 C01/3 Mm / 3 0 2 LiMn0 2 .
  • the solute in the electrolyte is at least one or more of LiC10 4 , LiBF 4 , LiPF 6 , LiCF 3 S0 3 , LiN(CF 3 S0 2 ) LiBOB, LiAsF 6 , Et 4 BF 4 , And Me 3 EtNBF 4 , Me 2 Et 2 NBF 4 , MeEt 3 NBF 4 , Et 4 NBF 4 , Pr 4 NBF 4 , MeBu 3 NBF 4 , Bu 4 NBF 4 , Hex 4 NBF 4 , Me 4 PBF 4 , Et 4 At least one or more of PBF 4 , Pr 4 PBF 4 Bu 4 PBF 4 are mixed, and the non-aqueous organic solvent in the electrolyte includes ethylene carbonate, propylene carbonate, Y-butyrolactone, One or more of dimethyl carbonate, diethyl carbonate, butylene carbonate, ethyl methyl carbonate, methylpropyl carbonate, vinyl sulfite, propylene s
  • the separator comprises a polyethylene microporous membrane, a polypropylene microporous membrane, a composite membrane, an inorganic ceramic membrane, a paper separator, and a non-woven membrane.
  • a method of preparing an organic hybrid capacitor battery comprising:
  • Preparation steps of the positive electrode sheet First, a lithium ion intercalation compound, an activated carbon porous carbon material, a conductive agent, a binder, and the like are mixed, adjusted into a slurry, and then coated on a positive electrode current collector, dried, and compacted. , cutting, vacuum drying to prepare a positive electrode sheet;
  • the conductive agent comprises natural graphite powder, artificial graphite, carbon black, ethylene black, mesocarbon microspheres, hard carbon, petroleum coke, carbon nanotubes, graphene, or a mixture thereof.
  • the binder comprises one or more of polytetrafluoroethylene, polyvinylidene fluoride, hydroxypropylmethylcellulose, carboxymethylcellulose nano and styrene-butadiene rubber.
  • the current collector of the positive electrode sheet comprises an aluminum foil, an aluminum mesh
  • the current collector of the negative electrode sheet comprises a copper foil and a copper mesh
  • the invention prepares the negative electrode pole piece by using the non-coating process and uses it in the organic hybrid supercapacitor, so that the super capacitor has the characteristics of high energy density and long cycle life, and can be widely applied to electric vehicles, electric boats, electric tools. , solar energy storage, wind energy storage and other fields.
  • 1 is a schematic flow chart of a coating process of a pole piece in the prior art
  • 2 is a schematic view showing the process flow of the preparation of the negative electrode sheet of the present invention. detailed description
  • the coating process of the negative electrode sheet in the prior art includes steps of mixing, coating, roll forming and the like. After the active material, the conductive agent and the adhesive are mixed, coated on a copper foil or a copper mesh, dried, rolled, cut, and vacuum dried to prepare a negative electrode sheet.
  • the coating process of the negative electrode sheet of the present invention comprises: firstly mixing hard carbon and a binder, adding a solvent; pressing with a roll press to obtain a sheet-like pole piece having a certain thickness; adjusting the conductive agent into The slurry is then coated with a conductive agent on the negative current collector; the pole piece is pressed and attached to the negative current collector coated with a layer of conductive agent; and the negative electrode sheet is prepared by drying, rolling, cutting, and vacuum drying.
  • the sheet-like pole piece was press-bonded to a negative electrode current collector coated with a layer of a conductive agent to have a density of 1.2 to 1.6 g/cm 3 .
  • the existing coating process has a density of only 0.9 to 1.29 g/cm 3 .
  • An organic hybrid capacitor battery consisting of a positive electrode, a negative electrode, a separator interposed therebetween, and an organic electrolyte.
  • the positive electrode is a mixture of a lithium ion intercalation compound and an activated carbon material
  • the negative electrode has a layer spacing of 0.372 nm or more.
  • Lithium intercalated carbon, the electrolyte uses an organic solvent containing lithium ions and quaternary ammonium salts.
  • the negative pole piece is a process of attaching to the current collector after being pressed first, and has a higher compaction density and cycle life.
  • the fast lithium intercalation carbon with a layer spacing of 0.372 nm or more as described in the present invention is typically represented by hard carbon, and the hard carbon refers to non-graphitizable carbon, generally having a specific capacity (up to 300-700 mAh/g) and good rate performance.
  • the characteristics while the intercalation of lithium ions in such materials does not cause significant expansion of the structure, has good charge and discharge cycle performance, and includes including resin carbon and organic polymer pyrolytic carbon, the resin carbon including phenolic resin carbon , epoxy resin carbon, polynonanol resin carbon, furfural resin carbon, and the organic polymer pyrolytic carbon includes benzene carbon, polydecyl alcohol pyrolytic carbon, polyvinyl chloride pyrolytic carbon, phenolic pyrolytic carbon.
  • the lithium ion intercalation compound described in the present invention includes: LiCo0 2 , LiMn 2 0 4 , LiNiO 2 , LiFeP0 4 , LiNi. . 8 Co. 2 0 2 , LiNi 1/3 Co 1/3 Mn 1/3 0 2 and the like.
  • Lithium ions have good reversibility, fast diffusion rate, and small volume change accompanying the reaction in such materials, so that they all have good cycle characteristics and high current characteristics.
  • the solute in the electrolytic solution described in the present invention includes at least one of LiC10 4 , LiBF 4 , LiPF 6 , LiCF 3 S0 3 , LiN(CF 3 S0 2 ), LiBOB, LiAsF 6 , Et 4 BF 4 and Me 3 EtNBF 4 , Me 2 Et 2 NBF 4 , MeEt 3 NBF 4 , Et 4 NBF 4 , Pr 4 NBF 4 , MeBu 3 NBF 4 , Bu 4 NBF 4 , Hex 4 NBF 4 , Me 4 PBF 4 , Et 4 PBF 4 , Pr 4 PBF 4 Bu 4 PBF 4 At least one mixed; non-aqueous organic solvent including ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, butylene carbonate, ethyl methyl carbonate, methyl propyl carbonate, sub One or more of vinyl sulfate, propylene sulfite, ethyl acetate
  • organic electrolytes composed of lithium salts have high ionic conductivity, provide fast channels for lithium ion migration during charge and discharge, increase the rate of reaction, and have a wide range of electrochemically stable potentials (at 0-5V).
  • the characteristics are stable), good thermal stability, wide temperature range, etc., which greatly improves the stability of the charging and discharging reaction of the supercapacitor, which is beneficial to the improvement of the cycle life of the capacitor.
  • the separator described in the present invention comprises a polyethylene polypropylene three-layer composite microporous membrane ( ⁇ ), a polypropylene microporous membrane ( ⁇ ), a composite membrane ( ⁇ + ⁇ + ⁇ ), an inorganic ceramic membrane, a paper separator, and a thickness thereof. It is generally 10-30 ⁇ ⁇ , with a pore size of 0.03 ⁇ m-0.05 ⁇ m, and has good ability to adsorb electrolyte and high temperature resistance.
  • the current collector of the positive electrode sheet is made of aluminum foil or aluminum mesh
  • the current collector of the negative electrode sheet is made of copper foil or copper mesh.
  • a conductive agent in the present invention employs graphite powder having high conductivity, carbon black, black block black or a mixture thereof.
  • the binder in the present invention is polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), hydroxypropylmethylcellulose (HPMC), carboxymethylcellulose (CMC) and styrene butadiene rubber (SBR). One or several of them.
  • the positive electrode sheet is prepared by mixing a lithium ion intercalation compound, an activated carbon material, a conductive agent, and a binder according to a certain mass ratio, stirring it to a paste, and then applying it to a current collector for drying. Prepared into a positive electrode sheet by rolling, cutting, and vacuum drying.
  • the preparation step of the negative electrode sheet is as follows: After the hard carbon and the binder are mixed according to a certain mass ratio, the mixture is stirred until it is a paste, and pressed by a roll press to obtain a sheet-like pole piece having a certain thickness, and the conductive agent is made of an organic solvent. Mixing, then applying a layer of conductive agent on the anode current collector, and finally attaching the pole piece to the anode current collector coated with a layer of conductive agent, drying, rolling, cutting, vacuum drying to prepare a negative electrode sheet.
  • the invention can be fabricated into a square supercapacitor and a cylindrical supercapacitor with a laminated or wound structure, and can maintain high power and high energy characteristics, and the outer casing can adopt aluminum plastic film, steel shell, Aluminum shell.
  • LiNi 1/3 Co 1/3 Mn 1/3 0 2 Henan Xinxiang Huaxin Energy Materials Co., Ltd.; Model SY-A LiMn 2 0 4 —Shijiazhuang Best Battery Material Co., Ltd.; LiFeP0 4 - produced by Tianjin Strand Energy Technology Co., Ltd., model SLFP-ES01;
  • Activated carbon is produced by KURARAY, Japan, model YP-17D;
  • Conductive carbon black - produced by TIMCAL, model is Super-P;
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • Preparation of positive electrode sheet LiNi 1/3 Coi/3 Mn 1/3 0 2 , activated carbon, graphite powder and PVDF in a total amount of 500 g were mixed at a mass ratio of 75:15:5:5, and pulped with NMP. Then, coated on 20 ⁇ aluminum foil (coating weight gain: 240g / m 2 ), dried (110 ⁇ 120 ° C), crushed, cut pieces (size: 37.5 * 59.5mm 2 ) 24h vacuum drying (120 ⁇ 130 °C) to make a positive electrode sheet.
  • Preparation of negative electrode sheet A total of 500 g of hard carbon and PVDF were mixed at a mass ratio of 90:10, slurried with NMP, and then coated on a copper foil of 16 ⁇ m (coating weight gain: 120 g/m) 2 ), dried (110 ⁇ 120 °C), compacted (compacted density is 0.96g/cm 3 ), cut piece (size: 37.5*59.5mm 2 ), vacuum dried at 24h (120 ⁇ 130°) C) Make a negative electrode sheet.
  • the polyethylene polypropylene three-layer composite microporous membrane is selected as the separator, and the pole piece is assembled into a 38*61*32 aluminum shell and laminated into a battery core, the elastic ratio is 95%, and then the positive electrode group of the laminated battery core is welded.
  • the anode group was soldered on the copper-plated nickel tab and injected with 1 mol/L LiPF 6 +0.5 mol/LE NBF4 EC (ethylene carbonate) / DEC (diethyl carbonate) (1)
  • the electrolyte is 20g and assembled into a square super capacitor battery. After the capacitor battery is formed (ie, the activation of the performance of the capacitor battery), the performance test is performed.
  • the test system is charged to 5V to 4.2V, left to stand for 5 minutes, 5A to 2.5V, and the specific energy of the capacitor battery is 60Wh/Kg. 5000 W/Kg, after 20,000 cycles of 5A charge and discharge, the capacity retention rate is 82%.
  • Preparation of positive electrode sheet LiNi 1/3 Coi/3 Mn 1/3 0 2 , activated carbon, graphite powder, and PVDF in a total amount of 500 g were mixed at a mass ratio of 75:15:5:5, and slurried with NMP. , then coated on a 20 ⁇ aluminum foil (coating weight: 240 g / m 2 ), dried (110 ⁇ 120 ° C), crushed, cut pieces (size: 37.5 * 59.5mm 2 ) , 24h vacuum drying (120 ⁇ 130 ° C) was made into a positive electrode sheet.
  • Preparation of negative electrode sheet A total of 500 g of hard carbon and PTFE were mixed at a mass ratio of 90:10, and the slurry was adjusted with deionized water, stirred to a paste, and pressed by a roll press to obtain a sheet having a certain thickness.
  • the pole piece has a compaction density of 1.35, the conductive agent Super-P is adjusted into a slurry, and then a conductive agent is coated on the negative electrode current collector, and finally the pole piece is attached to the negative electrode current collector coated with a conductive agent. After drying, rolling, cutting (size: 37.5 * 59.5 mm 2 ), vacuum drying to prepare a negative electrode sheet.
  • the polyethylene polypropylene three-layer composite microporous membrane is selected as the separator, and the pole piece is assembled into a 38*61*32 aluminum shell and laminated into a battery core, the elastic ratio is 95%, and then the positive electrode group of the laminated battery core is welded.
  • the negative pole group is soldered on the copper-plated nickel tabs, and injected with 1 mol/L LiPF 6 +0.5 mol/L Et 4 NBF 4 —EC (ethylene carbonate) /DEC (diethyl carbonate) ) (1 : 1 )
  • the electrolyte is 20g, assembled into a square super capacitor battery. After the capacitor battery is formed (that is, the activation of the performance of the capacitor battery), the performance test is performed.
  • the test system is charged to 5V to 4.2V, left to stand for 5 minutes, 5A to 2.5V, and the specific energy of the capacitor battery is 72 Wh/Kg. It is 6000 W/Kg, and after 50,000 cycles of 5A charge and discharge, the capacity retention rate is 95%.
  • Preparation of positive electrode sheet A total of 500 g of LiMn 2 0 4 , activated carbon, graphite powder, and PVDF were mixed at a mass ratio of 75:15:5:5, slurried with NMP, and then coated on an aluminum foil of 20 ⁇ m. (Coating weight gain: 300 g/m 2 ), dried (110 ⁇ 120 ° C), compacted, cut pieces (size: 37.5*59.5mm 2 ), vacuum dried at 24h (120 ⁇ 130° C) Made into a positive electrode.
  • Preparation of negative electrode sheet A total of 500 g of hard carbon and PVDF were mixed at a mass ratio of 90:10, slurried with NMP, and then coated on a copper foil of 16 ⁇ m (coating weight gain: 120 g/m) 2 ), dried (110 ⁇ 120 °C), compacted (compacted density is 0.96g/cm 3 ), cut piece (size: 37.5*59.5mm 2 ), vacuum dried at 24h (120 ⁇ 130°) C) Make a negative electrode sheet.
  • the polyethylene polypropylene three-layer composite microporous membrane is selected as the separator, and the pole piece is assembled into a 38*61*32 aluminum shell and laminated into a battery core, the elastic ratio is 95%, and then the positive electrode group of the laminated battery core is welded.
  • the negative pole group is soldered on the copper-plated nickel tab and injected with 1 mol/L LiPF 6 +0.5 mol/LE NBF4-EC (ethylene carbonate) / DEC (diethyl carbonate) (1 : 1 )
  • the electrolyte is 10g and assembled into a square super capacitor battery. After the capacitor battery is formed (ie, the activation of the performance of the capacitor battery), the performance test is performed.
  • the test system is charged to 5V to 4.2V, left to stand for 5 minutes, 5A to 2.75V, and the specific energy of the capacitor battery is 55 Wh/Kg. At 5000 W/Kg, after 50,000 cycles of 5A charge and discharge, the capacity retention rate is 65%.
  • Example 4
  • Preparation of positive electrode sheet A total of 500 g of LiMn 2 0 4 , activated carbon, graphite powder, and PVDF were mixed at a mass ratio of 75:15:5:5, slurried with NMP, and then coated on an aluminum foil of 20 ⁇ m ( The coating weight gain is: 300 g/m 2 ), dried (110 ⁇ 120 ° C), crushed, cut pieces (size: 37.5*59.5mm 2 ), vacuum dried at 24h (120 ⁇ 130°C) ) Made into a positive electrode.
  • Preparation of negative electrode sheet A total of 500 g of hard carbon and PTFE were mixed at a mass ratio of 90:10, and the slurry was adjusted with deionized water, stirred to a paste, and pressed by a roll press to obtain a sheet having a certain thickness.
  • the pole piece has a compaction density of 1.35, the conductive agent Super-P is adjusted into a slurry, and then a conductive agent is coated on the negative electrode current collector, and finally the pole piece is attached to the negative electrode current collector coated with a conductive agent. After drying, rolling, cutting (size: 37.5 * 59.5 mm 2 ), vacuum drying to prepare a negative electrode sheet.
  • the polyethylene polypropylene three-layer composite microporous membrane is selected as the separator, and the pole piece is assembled into a 38*61*32 aluminum shell and laminated into a battery core, the elastic ratio is 95%, and then the positive electrode group of the laminated battery core is welded.
  • the negative pole group is soldered on the copper-plated nickel tabs, and injected with 1 mol/L LiPF 6 +0.5 mol/L Et 4 NBF 4 —EC (ethylene carbonate) /DEC (diethyl carbonate) (1: 1)
  • the electrolyte 10g is assembled into a square super capacitor battery. After the capacitor battery is formed (that is, the activation of the performance of the capacitor battery), the performance test is performed.
  • the test system is charged to 4.2V for 5A, left for 5min, 5A for 2.5V, and the specific energy of the capacitor battery is 66Wh/Kg. 6000 W/Kg, after 50,000 cycles of 5A charge and discharge, the capacity retention rate is 85%.
  • Preparation of positive electrode sheet A total of 500 g of LiFeP0 4 , activated carbon, graphite powder, and PVDF were mixed at a mass ratio of 75:15:5:5, slurried with NMP, and then coated on an aluminum foil of 20 ⁇ m (coating) The weight gain of the cloth is: 300 g/m 2 ), dried (110 ⁇ 120 ° C), crushed, cut pieces (size: 37.5*59.5mm 2 ), vacuum dried at 24h (120 ⁇ 130°C) Made into a positive electrode.
  • Preparation of negative electrode sheet A total of 500 g of hard carbon and PVDF were mixed at a mass ratio of 90:10, slurried with NMP, and then coated on a copper foil of 16 ⁇ m (coating weight gain: 120 g/m) 2 ), dried (110 ⁇ 120 °C), compacted (compacted density is 0.96g/cm 3 ), cut piece (size: 37.5*59.5mm 2 ), vacuum dried at 24h (120 ⁇ 130°) C) Make a negative electrode sheet.
  • the polyethylene polypropylene three-layer composite microporous membrane is selected as the separator, and the pole piece is assembled into a 38*61*32 aluminum shell and laminated into a battery core, the elastic ratio is 95%, and then the positive electrode group of the laminated battery core is welded.
  • the negative pole group is soldered on the copper-plated nickel tab and injected with 1 mol/L LiPF 6 +0.5 mol/LE NBF4-EC (ethylene carbonate) / DEC (diethyl carbonate) (1 : 1 ) Electricity Dissolve 20g and assemble into a square super capacitor battery. After the capacitor battery is formed (that is, the activation of the performance of the capacitor battery), the performance test is performed.
  • the test system is charged to 3.7V for 5A, left for 5min, 5A for discharge to 2.3V, and the specific energy of the capacitor battery is 50 Wh/Kg. At 5000 W/Kg, after 50,000 cycles of 5A charge and discharge, the capacity retention rate is 88%.
  • Preparation of positive electrode sheet A total of 500 g of LiFeP0 4 , activated carbon, graphite powder, and PVDF were mixed at a mass ratio of 75:15:5:5, slurried with NMP, and then coated on an aluminum foil of 20 ⁇ m (coating) The weight gain is: 300 g/m 2 ), dried (110 ⁇ 120 ° C), crushed, cut pieces (size: 37.5*59.5mm 2 ),
  • Preparation of negative electrode sheet A total of 500 g of hard carbon and PTFE were mixed at a mass ratio of 90:10, and the slurry was adjusted with deionized water, stirred to a paste, and pressed by a roll press to obtain a sheet having a certain thickness.
  • the pole piece has a compaction density of 1.35, the conductive agent Super-P is adjusted into a slurry, and then a conductive agent is coated on the negative electrode current collector, and finally the pole piece is attached to the negative electrode current collector coated with a conductive agent. After drying, rolling, cutting (size: 37.5 * 59.5 mm 2 ), vacuum drying to prepare a negative electrode sheet.
  • the polyethylene polypropylene three-layer composite microporous membrane is selected as the separator, and the pole piece is assembled into a 38*61*32 aluminum shell and laminated into a battery core, the elastic ratio is 95%, and then the positive electrode group of the laminated battery core is welded.
  • the negative pole group is soldered on the copper-plated nickel tabs, and injected with 1 mol/L LiPF 6 +0.5 mol/L Et 4 NBF 4 —EC (ethylene carbonate) /DEC (diethyl carbonate) (1: 1)
  • the electrolyte 10g is assembled into a square super capacitor battery. After the capacitor battery is formed (that is, the activation of the performance of the capacitor battery), the performance test is performed. The test system is charged to 3.7V for 5A, left for 5 minutes, and discharged to 5A.
  • the specific energy of the capacitor battery is 60Wh/Kg, the specific power is 6000 W/Kg, after 5A charging and discharging cycle

Description

一种长寿命负极的制备工艺及使用该负极的电容电池
技术领域
本发明涉及超级电容器和锂离子电池技术的结合,特别是涉及有机混合型超 级电容器和锂离子电池。 背景技术
超级电容器是介于传统电容器与电池之间的一种新型电化学储能器件,它相 比传统电容器有着更高的能量密度,静电容量能达千法拉至万法拉级; 相比电池 有着更高的功率密度和超长的循环寿命, 因此它结合了传统电容器与电池的优 点, 是一种应用前景广阔的化学电源。 它具有比容量高、 功率大、 寿命长、 工作 温限宽、 免维护等特点。
按照储能原理的不同, 超级电容器可以分为三类: 双电层电容器 (EDLC), 法拉第准电容超级电容器和混合型超级电容器,其中双电层电容器主要是利用电 极 /电解质界面电荷分离所形成的双电层来实现电荷和能量的储存; 法拉第准电 容超级电容器主要是借助电极表面快速的氧化还原反应所产生的法拉第"准电 容"来实现电荷和能量的储存; 而混合型超级电容器是一极采用电池的非极化电 极(如氢氧化镍), 另一极采用双电层电容器的极化电极(如活性炭), 这种混合 型的设计可以大幅度提高超级电容器的能量密度。
超级电容器按电解质分可分为无机电解质、有机电解质、聚合物电解质三种 超级电容器,其中无机电解质应用较多的为高浓度的酸性(如 H2S04)或碱性(如 KOH) 的水溶液, 中性水溶液电解质应用的较少; 有机电解质则一般采用季胺 盐或锂盐与高电导率的有机溶剂(如乙腈)组成混合电解液, 而聚合物电解质如 今只停留在实验室阶段, 尚无商业化产品的出现。
超级电容器采用有机电解质, 可以大幅度提高电容器的工作电压, 根据 E=1/2CV2可知, 对提高电容器能量密度有很大的帮助。 如今, 成熟的有机超级 电容器一般都采用对称型结构, 即正负极使用相同的炭材料, 电解液由季铵盐和 有机溶剂(如乙腈)组成,这种电容器的功率密度很高,能达到 5000-6000W/Kg, 但其能量密度偏低, 只能达到 3-5Wh/Kg, 因此, 为了进一步提高有机超级电容 器的能量密度, 人们采用了混合型的结构设计, 即正负极使用不同的活性材料。 近年来, 有机混合型超级电容器的研究不断增多, 出现了如正极采用活性炭、 负 极采用钛酸锂和正极采用聚噻吩, 负极采用钛酸锂等有机超级电容器。
但是, 这些有机混合型超级电容器由于极片采用传统涂布方法, 极片的压实 密度都受到限制,因此能量密度与传统电池相比都不理想,循环寿命也受到制约。 发明内容
针对上述问题,本发明的目的是提高负极片粘结强度, 使其具有更高的压实 密度和循环寿命。 在保持超级电容器高功率、 无污染、 高安全性、 免维护等特性 的前提下, 大幅度提高超级电容器的能量密度和循环寿命, 进一步拓宽超级电容 器的应用领域。
本发明的目的是这样实现的:
一种长寿命负极片的制备工艺, 包括如下步骤:
混料, 将快速储锂碳、 粘结剂混合, 加入溶剂;
压制, 用辊压机对混料进行压制, 得到一定厚度的片状极片;
涂覆, 将导电剂调成浆料, 涂覆在负极集流体上;
附片, 将片状极片压制附着在涂有一层导电剂的负极集流体上;
烘干、 碾压、 裁切、 真空干燥制备成负极片。
其中将片状极片压制附着在涂有一层导电剂的负极集流体上,使其密度达到 使其密度达到 1.2〜1.6g/cm3
一种使用上述工艺制备的长寿命负极片的有机混合型超级电容电池,其正极 采用锂离子嵌入化合物和活性炭材料多孔碳材料的混合物, 经涂布工艺形成, 负 极采用层间距大于等于 0.372nm的快速嵌锂碳材料, 电解液采用有机电解液。
其中,负极采用层间距大于等于 0.372nm的快速储锂碳,其典型代表为硬碳。 其中, 所述的多孔碳包括活性炭、 碳布、 碳纤维、 碳毡、 碳气凝胶、 碳纳米 管中的一种或者混合物。
其中,所述的锂离子嵌入化合物包括: LiCo02、 LiMn204、 LiNi02、 LiFeP04、 LiNio.sCoo.2O2> LiNii/3 C01/3 Mm/302 LiMn02中的一种或者混合物。 其中, 所述的电解液中的溶质为 LiC104、 LiBF4、 LiPF6、 LiCF3S03、 LiN(CF3S02) LiBOB、 LiAsF6、 Et4BF4中的至少一种或者几种, 与 Me3EtNBF4、 Me2Et2NBF4、 MeEt3NBF4、 Et4NBF4、 Pr4NBF4、 MeBu3NBF4、 Bu4NBF4、 Hex4NBF4、 Me4PBF4、 Et4PBF4、 Pr4PBF4 Bu4PBF4中的至少一种或者几种, 进行混合, 并且 所述的电解液中的非水有机溶剂包括碳酸乙烯酯、 碳酸丙烯酯、 Y -丁内酯、 碳 酸二甲酯、碳酸二乙酯、碳酸丁烯酯、碳酸甲乙酯、碳酸甲丙酯、亚硫酸乙烯酯、 亚硫酸丙烯酯、 乙酸乙酯、 乙腈中的一种或几种。
其中,所述的隔膜包括聚乙烯微孔膜、聚丙烯微孔膜、复合膜、无机陶瓷膜、 纸隔膜、 无纺布隔膜。
一种制备有机混合型电容电池的方法, 包括:
( 1 ) 正极片的制备步骤: 首先将锂离子嵌入化合物、 活性炭多孔碳材料、 导电剂、 粘结剂等混合, 调成浆料, 然后涂布在正极集流体上, 经烘干、 碾压、 裁切、 真空干燥制备成正极片;
(2) 负极片的制备步骤: 采用权利要求 1所述的工艺;
( 3 )组装步骤: 将制备好的正、 负极片经叠片或卷绕成电芯, 放入铝塑膜、 铝壳或钢壳、 塑料壳中, 然后进行封口、注入在非水有机溶剂中含有锂离子和季 铵盐的电解液。
其中, 所述的导电剂包括天然石墨粉、 人造石墨、 炭黑、 乙块黑、 中间相炭 微球、 硬炭、 石油焦、 碳纳米管、 石墨烯中、 的一种或它们的混合物, 并且所述 的粘结剂包括聚四氟乙烯、聚偏氟乙烯、羟丙基甲基纤维素、羧甲基纤维素纳和 丁苯橡胶中的一种或几种。
其中, 所述的正极片的集流体包括铝箔、铝网, 并且所述的负极片的集流体 包括铜箔、 铜网。
本发明通过使用非涂布的工艺制备负极极片,将其使用在有机混合超级电容 器中, 使得超级电容器具有高能量密度、长循环寿命的特性, 可广泛应用于电动 汽车、 电动船、 电动工具、 太阳能储能、 风能储能等领域。 附图说明
附图 1是现有技术中极片的涂布工艺流程示意图; 附图 2是本发明负极片制备工艺流程示意图。 具体实施方式
下面结合附图详细说明本发明的具体实施例。
如图 1所示, 现有技术中负极片的涂布工艺包括混料、涂覆、滚压成型等步 骤。将活性材料、导电剂、粘接剂混合后, 涂覆在铜箔或铜网上, 经烘干、碾压、 裁切、 真空干燥制备成负极片。
如图 2所示, 本发明负极片的涂布工艺包括: 首先将硬碳、 粘结剂混合, 加 入溶剂; 用辊压机进行压制, 得到一定厚度的片状极片; 将导电剂调成浆料, 然 后在负极集流体上涂一层导电剂;再将极片压制附着在涂有一层导电剂的负极集 流体上; 经烘干、 碾压、 裁切、 真空干燥制备成负极片。
将片状极片压制附着在涂有一层导电剂的负极集流体上, 使其密度达到 1.2〜1.6g/cm3。 现有的涂布工艺其密度只可达到 0.9〜1.29 g/cm3
一种有机混合型电容电池, 由正极、 负极、 介于两者之间的隔膜及有机电解 液组成,其正极采用锂离子嵌入化合物和活性炭材料的混合物, 负极为层间距大 于等于 0.372nm的快速嵌锂碳, 电解液采用含有锂离子和季铵盐的有机溶剂。负 极极片采用先压片后附着在集流体上的工艺, 具有更高的压实密度和循环寿命。
本发明中所述的层间距大于等于 0.372nm的快速嵌锂碳, 典型代表为硬碳, 硬碳是指难石墨化碳, 一般具有比容量高(达 300-700mAh/g)、 倍率性能好的特 点, 同时锂离子在这类材料中的嵌入不会引起结构显著膨胀, 具有很好的充放电 循环性能,它包括包括树脂碳和有机聚合物热解碳,所述树脂碳包括酚醛树脂碳、 环氧树脂碳、聚糠醇树脂碳、糠醛树脂碳,并且所述有机聚合物热解碳包括苯碳、 聚糠醇热解碳、 聚氯乙烯热解碳、 酚醛热解碳。
本发明中所述的锂离子嵌入化合物包括: LiCo02、 LiMn204、 LiNi02、 LiFeP04、 LiNi。.8Co。.202、 LiNi1/3 Co1/3 Mn1/302等。 锂离子在这类材料中嵌入-脱 嵌可逆性好、扩散速度快, 伴随反应的体积变化小, 这样它们都具有良好的循环 特性和大电流特性。
本发明中所述的电解液中的溶质包括 LiC104、 LiBF4、 LiPF6、 LiCF3S03、 LiN(CF3S02)、 LiBOB、 LiAsF6、 Et4BF4中的至少一种和 Me3EtNBF4、 Me2Et2NBF4、 MeEt3NBF4、 Et4NBF4、 Pr4NBF4、 MeBu3NBF4、 Bu4NBF4、 Hex4NBF4、 Me4PBF4、 Et4PBF4、 Pr4PBF4 Bu4PBF4中的至少一种混合; 非水有机溶剂包括碳酸乙烯酯、 碳酸丙烯酯、 γ-丁内酯、 碳酸二甲酯、 碳酸二乙酯、 碳酸丁烯酯、 碳酸甲乙酯、 碳酸甲丙酯、 亚硫酸乙烯酯、 亚硫酸丙烯酯、 乙酸乙酯、 乙腈中的一种或几种。 这些由锂盐组成的有机电解液具有高的离子电导率,能为充放电过程中锂离子的 迁移提供快速的通道, 增加反应的速率; 同时具有电化学稳定的电位范围宽(在 0-5V之间是稳定的)、 热稳定性好、 使用温度范围宽等特点, 使得超级电容器充 放电反应的稳定性大大提高, 有利于电容器循环寿命的提升。
本发明中所述的隔膜包括聚乙烯聚丙烯三层复合微孔膜 (ΡΕ)、 聚丙烯微孔 膜(ΡΡ)、 复合膜(ΡΡ+ΡΕ+ΡΡ)、无机陶瓷膜、纸隔膜, 其厚度一般在 10-30 μ ηι, 孔径在 0.03 μ m-0.05 μ m, 具有良好的吸附电解液的能力和耐高温特性。
本发明中正极片的集流体采用铝箔、铝网,负极片的集流体采用铜箔、铜网。 在正极片的制作中,加入适量的导电剂和粘结剂。本发明中导电剂采用具有高导 电性的石墨粉、炭黑、 乙块黑或它们的混合物。本发明中的粘结剂采用聚四氟乙 烯 (PTFE)、 聚偏氟乙烯 (PVDF)、 羟丙基甲基纤维素 (HPMC)、 羧甲基纤维 素纳 (CMC) 和丁苯橡胶 (SBR) 中的一种或几种。
本发明中,正极片的制作步骤为:按照一定的质量比称取锂离子嵌入化合物、 活性炭材料、导电剂、粘结剂混合后, 搅拌至膏状, 然后涂在集流体上, 经烘干、 碾压、 裁切、 真空干燥制备成正极片。
负极片的制作步骤为: 按照一定的质量比称取硬碳、粘结剂混合后, 搅拌至 膏状,用辊压机进行压制,得到一定厚度的片状极片,将导电剂用有机溶剂混合, 然后在负极集流体上涂一层导电剂,最后将极片附着在涂有一层导电剂的负极集 流体上, 经烘干、 碾压、 裁切、 真空干燥制备成负极片。
本发明根据实际应用情况,可以制作成叠片或卷绕结构的方型超级电容器和 圆柱型超级电容器,并都能保持高功率、高能量的特性,其外壳可以采用铝塑膜、 钢壳、 铝壳。
本发明具体实施例中使用的主要原材料如下:
LiNi1/3 Co1/3 Mn1/302—河南新乡华鑫能源材料股份有限公司; 型号为 SY-A型 LiMn204—石家庄百思特电池材料有限公司生产; LiFeP04—天津斯特兰能源科技有限公司生产, 型号为 SLFP-ES01 ;
活性炭一日本 KURARAY公司生产, 型号为 YP- 17D;
硬碳一深圳贝特瑞公司 HC-1产品;
石墨粉一 TIMCAL公司生产, 型号为 KS-6;
导电炭黑一 TIMCAL公司生产, 型号为 Super-P;
三层复合隔膜 (PP/PE/PP)一日本宇部生产;
PVDF (聚偏氟乙烯)一法国 Kynar761;
PTFE (聚四氟乙烯) 美国杜邦公司生产;
NMP ( 1-甲基 -2-吡咯烷酮)一上海实验试剂有限公司
实施例 1 :
正极片的制作:将总量为 500g的 LiNi1/3 Coi/3 Mn1/302、活性碳、石墨粉、 PVDF 按质量比为 75: 15 : 5 : 5混合, 用 NMP调成浆料, 然后涂布在 20μηι的铝箔 (涂 布增重为:240g/m2)上,经烘干(110〜120°C )、碾压、裁片 (;尺寸为:37.5*59.5mm2)、 24h真空干燥 (120〜130°C ) 制作成正极片。
负极片的制作: 将总量为 500g的硬碳、 PVDF 按质量比为 90: 10混合, 用 NMP 调成浆料,然后涂布 16μηι的铜箔上 (涂布增重为: 120 g/m2),经烘干(110〜 120°C )、 碾压 (压实密度为 0.96g/cm3)、 裁片 (;尺寸为: 37.5*59.5mm2)、 24h真空 干燥 (120〜130°C ) 制作成负极片。 选用聚乙烯聚丙烯三层复合微孔膜为隔膜, 将极片装入 38*61*32的铝壳层叠成电芯, 松紧比为 95%, 然后将叠好的电芯的 正极极群焊在铝制极耳上、 负极极群焊在铜镀镍制极耳上, 并注入 lmol/L LiPF6+0.5 mol/L E NBF4 EC (碳酸乙烯酯) /DEC (碳酸二乙酯) ( 1: 1 ) 的电 解液 20g,组装成方型超级电容电池。 电容电池经化成(即电容电池性能的激活) 后, 进行性能测试, 测试制度为 5A充电至 4.2V, 静置 5min, 5A放电至 2.5V, 电容电池的比能量为 60Wh/Kg, 比功率为 5000 W/Kg, 经过 5A充放循环 20000 次后, 容量保持率在 82%。
实施例 2
正极片的制作:将总量为 500g的 LiNi1/3 Coi/3 Mn1/302、活性炭、石墨粉、 PVDF 按质量比为 75: 15 : 5 : 5混合, 用 NMP调成浆料, 然后涂布在 20μηι的铝箔 (涂 布增重为: 240 g/m2)上,经烘干( 110〜120°C )、碾压、裁片 (;尺寸为: 37.5*59.5mm2)、 24h真空干燥 (120〜130°C ) 制作成正极片。
负极片的制作: 将总量为 500g的硬碳、 PTFE 按质量比为 90: 10混合, 用 去离子水调成浆料,搅拌至膏状,用辊压机进行压制,得到一定厚度的片状极片, 压实密度为 1.35, 将导电剂 Super-P调成浆料, 然后在负极集流体上涂一层导电 剂, 最后将极片附着在涂有一层导电剂的负极集流体上, 经烘干、碾压、裁切 (尺 寸为: 37.5*59.5mm2)、 真空干燥制备成负极片。 选用聚乙烯聚丙烯三层复合微 孔膜为隔膜, 将极片装入 38*61*32的铝壳层叠成电芯, 松紧比为 95%, 然后将 叠好的电芯的正极极群焊在铝制极耳上、负极极群焊在铜镀镍制极耳上, 并注入 lmol/L LiPF6+0.5 mol/L Et4NBF4— EC (碳酸乙烯酯) /DEC (碳酸二乙酯)( 1: 1 ) 的电解液 20g, 组装成方型超级电容电池。 电容电池经化成 (即电容电池性能的 激活) 后, 进行性能测试, 测试制度为 5A充电至 4.2V, 静置 5min, 5A放电至 2.5V, 电容电池的比能量为 72 Wh/Kg, 比功率为 6000 W/Kg, 经过 5A充放循环 20000次后, 容量保持率在 95%。
实施例 3
正极片的制作: 将总量为 500g的 LiMn204、 活性碳、 石墨粉、 PVDF按质量 比为 75: 15 : 5 : 5混合, 用 NMP调成浆料, 然后涂布在 20μηι的铝箔 (涂布增重 为: 300 g/m2)上, 经烘干 (110〜120°C )、 碾压、 裁片 (尺寸为: 37.5*59.5mm2)、 24h真空干燥 (120〜130°C ) 制作成正极片。
负极片的制作: 将总量为 500g的硬碳、 PVDF 按质量比为 90: 10混合, 用 NMP 调成浆料,然后涂布 16μηι的铜箔上 (涂布增重为: 120 g/m2),经烘干(110〜 120°C )、 碾压 (压实密度为 0.96g/cm3)、 裁片 (;尺寸为: 37.5*59.5mm2)、 24h真空 干燥 (120〜130°C ) 制作成负极片。 选用聚乙烯聚丙烯三层复合微孔膜为隔膜, 将极片装入 38*61*32的铝壳层叠成电芯, 松紧比为 95%, 然后将叠好的电芯的 正极极群焊在铝制极耳上、 负极极群焊在铜镀镍制极耳上, 并注入 lmol/L LiPF6+0.5 mol/L E NBF4— EC (碳酸乙烯酯) /DEC (碳酸二乙酯) ( 1: 1 ) 的电 解液 10g,组装成方型超级电容电池。 电容电池经化成(即电容电池性能的激活) 后, 进行性能测试, 测试制度为 5A充电至 4.2V, 静置 5min, 5A放电至 2.75V, 电容电池的比能量为 55 Wh/Kg, 比功率为 5000 W/Kg, 经过 5A充放循环 20000 次后, 容量保持率在 65%。 实施例 4
正极片的制作: 将总量为 500g的 LiMn204、 活性炭、 石墨粉、 PVDF按质量 比为 75: 15 : 5 : 5混合, 用 NMP调成浆料, 然后涂布在 20μηι的铝箔 (涂布增重 为: 300 g/m2)上, 经烘干 (110〜120°C )、 碾压、 裁片 (尺寸为: 37.5*59.5mm2)、 24h真空干燥 (120〜130°C ) 制作成正极片。
负极片的制作: 将总量为 500g的硬碳、 PTFE 按质量比为 90: 10混合, 用 去离子水调成浆料,搅拌至膏状,用辊压机进行压制,得到一定厚度的片状极片, 压实密度为 1.35, 将导电剂 Super-P调成浆料, 然后在负极集流体上涂一层导电 剂, 最后将极片附着在涂有一层导电剂的负极集流体上, 经烘干、碾压、裁切 (尺 寸为: 37.5*59.5mm2)、 真空干燥制备成负极片。 选用聚乙烯聚丙烯三层复合微 孔膜为隔膜, 将极片装入 38*61*32的铝壳层叠成电芯, 松紧比为 95%, 然后将 叠好的电芯的正极极群焊在铝制极耳上、负极极群焊在铜镀镍制极耳上, 并注入 lmol/L LiPF6+0.5 mol/L Et4NBF4— EC (碳酸乙烯酯) /DEC (碳酸二乙酯)( 1: 1 ) 的电解液 10g, 组装成方型超级电容电池。 电容电池经化成 (即电容电池性能的 激活) 后, 进行性能测试, 测试制度为 5A充电至 4.2V, 静置 5min, 5A放电至 2.5V, 电容电池的比能量为 66Wh/Kg, 比功率为 6000 W/Kg, 经过 5A充放循环 20000次后, 容量保持率在 85%。
实施例 5
正极片的制作: 将总量为 500g的 LiFeP04、 活性碳、 石墨粉、 PVDF按质量 比为 75: 15 : 5 : 5混合, 用 NMP调成浆料, 然后涂布在 20μηι的铝箔 (涂布增重 为: 300 g/m2)上, 经烘干 (110〜120°C )、 碾压、 裁片 (尺寸为: 37.5*59.5mm2)、 24h真空干燥 (120〜130°C ) 制作成正极片。
负极片的制作: 将总量为 500g的硬碳、 PVDF 按质量比为 90: 10混合, 用 NMP 调成浆料,然后涂布 16μηι的铜箔上 (涂布增重为: 120 g/m2),经烘干(110〜 120°C )、 碾压 (压实密度为 0.96g/cm3)、 裁片 (;尺寸为: 37.5*59.5mm2)、 24h真空 干燥 (120〜130°C ) 制作成负极片。 选用聚乙烯聚丙烯三层复合微孔膜为隔膜, 将极片装入 38*61*32的铝壳层叠成电芯, 松紧比为 95%, 然后将叠好的电芯的 正极极群焊在铝制极耳上、 负极极群焊在铜镀镍制极耳上, 并注入 lmol/L LiPF6+0.5 mol/L E NBF4— EC (碳酸乙烯酯) /DEC (碳酸二乙酯) ( 1: 1 ) 的电 解液 20g,组装成方型超级电容电池。 电容电池经化成(即电容电池性能的激活) 后, 进行性能测试, 测试制度为 5A充电至 3.7V, 静置 5min, 5A放电至 2.3 V, 电容电池的比能量为 50 Wh/Kg, 比功率为 5000 W/Kg, 经过 5A充放循环 20000 次后, 容量保持率在 88%。
实施例 6
正极片的制作: 将总量为 500g的 LiFeP04、 活性炭、 石墨粉、 PVDF按质量 比为 75: 15 : 5 : 5混合, 用 NMP调成浆料, 然后涂布在 20μηι的铝箔 (涂布增重 为: 300 g/m2)上, 经烘干 (110〜120°C )、 碾压、 裁片 (尺寸为: 37.5*59.5mm2)、
24h真空干燥 (120〜130°C ) 制作成正极片。
负极片的制作: 将总量为 500g的硬碳、 PTFE 按质量比为 90: 10混合, 用 去离子水调成浆料,搅拌至膏状,用辊压机进行压制,得到一定厚度的片状极片, 压实密度为 1.35, 将导电剂 Super-P调成浆料, 然后在负极集流体上涂一层导电 剂, 最后将极片附着在涂有一层导电剂的负极集流体上, 经烘干、碾压、裁切 (尺 寸为: 37.5*59.5mm2)、 真空干燥制备成负极片。 选用聚乙烯聚丙烯三层复合微 孔膜为隔膜, 将极片装入 38*61*32的铝壳层叠成电芯, 松紧比为 95%, 然后将 叠好的电芯的正极极群焊在铝制极耳上、负极极群焊在铜镀镍制极耳上, 并注入 lmol/L LiPF6+0.5 mol/L Et4NBF4— EC (碳酸乙烯酯) /DEC (碳酸二乙酯)( 1: 1 ) 的电解液 10g, 组装成方型超级电容电池。 电容电池经化成 (即电容电池性能的 激活) 后, 进行性能测试, 测试制度为 5A充电至 3.7V, 静置 5min, 5A放电至
2.3V, 电容电池的比能量为 60Wh/Kg, 比功率为 6000 W/Kg, 经过 5A充放循环
20000次后, 容量保持率在 96%。 本说明书中所述的只是本发明的几种较佳具体实施例,以上实施例仅用以说 明本发明的技术方案而非对本发明的限制。凡本领域技术人员依本发明的构思通 过逻辑分析、推理或者有限的实验可以得到的技术方案, 皆应在本发明的范围之 内。

Claims

权 利 要 求 书
1. 一种长寿命负极片的制备工艺, 其特征在于包括如下步骤:
混料, 将快速储锂碳、 粘结剂混合, 加入溶剂;
压制, 用辊压机对混料进行压制, 得到一定厚度的片状极片;
涂覆, 将导电剂调成浆料, 涂覆在负极集流体上;
附片, 将片状极片压制附着在涂有一层导电剂的负极集流体上;
烘干、 碾压、 裁切、 真空干燥制备成负极片。
2.如权利要求 1所述制备工艺,其特征在于将片状极片压制附着在涂有一层导电 剂的负极集流体上, 使其密度达到 1.2~1.6g/cm3
3.使用如权利要求 1所述的长寿命负极片的有机混合型超级电容电池,其特征在 于正极采用锂离子嵌入化合物和活性炭材料多孔碳材料的混合物, 经涂布工艺形成, 负极采用层间距大于等于 0.372nm的快速嵌锂碳材料, 电解液采用有机电解液。
4.如权利要求 3所述的有机混合型电容电池,其特征在于负极采用层间距大于等 于 0.372nm的快速嵌锂碳材料, 其典型代表如硬碳。
5.如权利要求 3所述的有机混合型电容电池,其特征在于所述的多孔碳包括活性 炭、 碳布、 碳纤维、 碳毡、 碳气凝胶、 碳纳米管中的一种或者混合物。
6.如权利要求 3所述的有机混合型电容电池,其特征在于所述的锂离子嵌入化合 物包括: LiCo02、 LiMn204、 LiNi02、 LiFeP04、 LiNi。 8Co。 202、 LiNi1/3 Co1/3 Mn1/302、 LiMn02中的一种或者混合物。
7.如权利要求 3所述的有机混合型电容电池,其特征在于所述的电解液中的溶质 为 LiC104、 LiBF4、 LiPF6、 LiCF3S03、 LiN(CF3S02)、 LiBOB、 LiAsF6、 Et4BF4中的至 少一种或者几种, 与 Me3EtNBF4、 Me2Et2NBF4 MeEt3NBF4 Et4NBF4、 Pr4NBF4、 MeBu3NBF4 Bu4NBF4、 Hex4NBF4 Me4PBF4 Et4PBF4、 Pr4PBF4、 Bu4PBF4中的至少 一种或者几种, 进行混合, 并且所述的电解液中的非水有机溶剂包括碳酸乙烯酯、 碳 酸丙烯酯、 Y -丁内酯、 碳酸二甲酯、 碳酸二乙酯、 碳酸丁烯酯、 碳酸甲乙酯、 碳酸甲 丙酯、 亚硫酸乙烯酯、 亚硫酸丙烯酯、 乙酸乙酯、 乙腈中的一种或几种。
8.如权利要求 3所述的有机混合型电容电池,其特征在于所述的隔膜包括聚乙烯 微孔膜、 聚丙烯微孔膜、 复合膜、 无机陶瓷膜、 纸隔膜、 无纺布隔膜。
9. 一种制备如权利要求 3-8之一所述的有机混合型超级电容电池的方法, 包括: ( 1 )正极片的制备步骤: 首先将锂离子嵌入化合物、活性炭多孔碳材料、导电剂、 粘结剂等混合, 调成浆料, 然后涂布在正极集流体上, 经烘干、 碾压、 裁切、 真空干 燥制备成正极片;
(2) 负极片的制备步骤: 采用权利要求 1所述的工艺;
(3)组装步骤: 将制备好的正、 负极片经叠片或卷绕成电芯, 放入铝塑膜、 铝壳 或钢壳、 塑料壳中, 然后进行封口、 注入在非水有机溶剂中含有锂离子和季铵盐的电 解液。
10. 如权利要求 9所述的方法, 其特征在于所述的导电剂包括天然石墨粉、 人造 石墨、 炭黑、 乙块黑、 中间相炭微球、 硬炭、 石油焦、 碳纳米管、 石墨烯中、 的一种 或它们的混合物, 并且所述的粘结剂包括聚四氟乙烯、 聚偏氟乙烯、 羟丙基甲基纤维 素、 羧甲基纤维素纳和丁苯橡胶中的一种或几种。
11. 如权利要求 9所述的方法, 其特征在于所述的正极片的集流体包括铝箔、 铝 网, 并且所述的负极片的集流体包括铜箔、 铜网。
PCT/CN2010/001153 2010-02-26 2010-07-30 一种长寿命负极的制备工艺及使用该负极的电容电池 WO2011103705A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10846329.0A EP2541566A4 (en) 2010-02-26 2010-07-30 MANUFACTURING METHOD FOR NEGATIVE ELECTRODE WITH LONG LIFETIME AND CONDENSER BATTERY THE ADOPTER
US13/515,382 US20120321913A1 (en) 2010-02-26 2010-07-30 Manufacturing method for long-lived negative electrode and capacitor battery adopting the same
JP2012554188A JP5939990B2 (ja) 2010-02-26 2010-07-30 長寿命負極板の製造方法及び該負極板を用いたスーパーキャパシタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010101146125A CN101847513B (zh) 2010-02-26 2010-02-26 一种长寿命负极片的制备工艺及使用该负极片的电容电池
CN201010114612.5 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011103705A1 true WO2011103705A1 (zh) 2011-09-01

Family

ID=42772091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001153 WO2011103705A1 (zh) 2010-02-26 2010-07-30 一种长寿命负极的制备工艺及使用该负极的电容电池

Country Status (5)

Country Link
US (1) US20120321913A1 (zh)
EP (1) EP2541566A4 (zh)
JP (1) JP5939990B2 (zh)
CN (1) CN101847513B (zh)
WO (1) WO2011103705A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012011189A1 (ja) * 2010-07-23 2013-09-09 トヨタ自動車株式会社 リチウムイオン二次電池

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5306418B2 (ja) * 2010-07-09 2013-10-02 日新製鋼株式会社 銅被覆鋼箔、負極用電極及び電池
US8758947B2 (en) * 2011-01-11 2014-06-24 Battelle Memorial Institute Graphene-based battery electrodes having continuous flow paths
WO2012137141A1 (en) * 2011-04-04 2012-10-11 Laor Consulting Llc Fiber felt capacitors and batteries
CN102403527B (zh) * 2011-07-30 2015-02-25 珠海锂源新能源科技有限公司 一种大容量高功率软包装锂离子动力电池及其制备方法
CN102496699A (zh) * 2011-12-22 2012-06-13 上海奥威科技开发有限公司 一种化学电源电极制造方法
TWI442616B (zh) * 2011-12-23 2014-06-21 Ind Tech Res Inst 混成型儲能元件
JP5892420B2 (ja) * 2012-01-18 2016-03-23 日産自動車株式会社 電気デバイス用電極、電気デバイス用電極の製造方法、電気デバイス用電極構造体及び電気デバイス
CN103367810A (zh) * 2012-03-29 2013-10-23 海洋王照明科技股份有限公司 电容器电池的制备方法
CN103515560A (zh) * 2012-06-20 2014-01-15 万向电动汽车有限公司 一种软包装高功率锂离子动力电池
CN103779107A (zh) * 2012-10-25 2014-05-07 海洋王照明科技股份有限公司 石墨烯/离子液体复合材料及其制备方法与电化学电容器
CN103794379A (zh) * 2012-11-02 2014-05-14 海洋王照明科技股份有限公司 石墨烯/碳纳米管复合材料及其制备方法与应用
CN103833009A (zh) * 2012-11-23 2014-06-04 海洋王照明科技股份有限公司 石墨烯、其制备方法、电极片以及超级电容器
CN103116046B (zh) * 2012-12-12 2015-03-25 上海电气钠硫储能技术有限公司 一种吸附混合熔盐碳毡电极的制备方法
CN103943817A (zh) * 2013-01-17 2014-07-23 比亚迪股份有限公司 一种动力电池负极片及电池和动力电池缓冲电池组
US9472354B2 (en) * 2013-03-15 2016-10-18 InHwan Do Electrodes for capacitors from mixed carbon compositions
CN103413693B (zh) * 2013-05-24 2016-01-13 宁波南车新能源科技有限公司 一种超级电容器的制造方法
CN105340038B (zh) * 2013-06-26 2019-10-11 大金工业株式会社 电解液和电化学器件
CN103500666A (zh) * 2013-09-09 2014-01-08 上海交通大学 一种混合型三元电化学超级电容器
US9293268B2 (en) 2013-11-22 2016-03-22 Corning Incorporated Ultracapacitor vacuum assembly
CN103700881B (zh) * 2013-12-10 2017-01-04 中山市电赢科技有限公司 一种磷酸亚铁锂高功率动力锂离子二次电池及其制备方法
CN104752775B (zh) * 2013-12-26 2017-04-12 台湾神户电池股份有限公司 铅酸电容电池以及制备铅酸电容电池的方法
CN103746102A (zh) * 2013-12-31 2014-04-23 东莞市特耐克新能源科技有限公司 一种高电压锂离子电池及其负极材料
CN104681311B (zh) * 2014-12-12 2017-12-19 宁波中车新能源科技有限公司 一种锂离子电容器的新型预嵌锂方法
CN104701031B (zh) * 2014-12-12 2018-01-09 宁波中车新能源科技有限公司 一种锂离子电容器的制作方法及锂离子电容器
CN106410283B (zh) * 2016-02-03 2018-11-16 宁波设会物联网科技有限公司 一种锂硫电池的制备方法
CN106024419B (zh) * 2016-05-16 2018-11-16 泉州市名典工业设计有限公司 一种电化学电容器及其制备方法
US10944100B2 (en) 2016-06-01 2021-03-09 GM Global Technology Operations LLC Electrochemical cell including anode and cathode including battery and capacitor particles and having equal electrochemical capacities, and method for forming the same
CN105977039A (zh) * 2016-06-29 2016-09-28 陈小刚 一种石墨烯活性复合电极超级电容电池
CN106449136B (zh) * 2016-09-05 2019-04-05 郑州大学 α-氢氧化镍钴电极材料及其制备方法与应用
CN106783207B (zh) * 2016-12-27 2019-05-07 宁波中车新能源科技有限公司 (Li4Ti5O12-Li2TiO3)/(AC-Li2MnO4)混合超级电容器
CN106848189A (zh) * 2017-01-23 2017-06-13 北京鼎能开源电池科技股份有限公司 一种高密度锂离子电池极片的制备方法
CN106910870A (zh) * 2017-03-28 2017-06-30 华南师范大学 一种超级锂离子电池正极的制备方法
CN108336297B (zh) * 2017-12-29 2021-10-08 惠州市纬世新能源有限公司 一种锂离子电池极片制备方法
CN108258186B (zh) * 2018-01-08 2020-11-20 苏州宇量电池有限公司 一种锂离子电池极片的制备方法
CN108909076A (zh) * 2018-07-17 2018-11-30 凌容新能源科技(上海)股份有限公司 汽车内饰用面层及其制备方法
CN109616611A (zh) * 2018-10-24 2019-04-12 昆明理工大学 一种锂-硫族混合储能系统
CN109742327A (zh) * 2018-12-29 2019-05-10 西安鸿钧睿泽新材料科技有限公司 一种自支撑柔性锂离子电池碳布负载LiFePO4正极材料的制备方法
CN110993885A (zh) * 2019-12-19 2020-04-10 佛山市恩力晟和能源科技有限公司 一种二次电池用电极的成型方法
CN111261422A (zh) * 2020-01-20 2020-06-09 宁波瞬能科技有限公司 一种钠离子电容器及其制备方法
CN112331485A (zh) * 2020-10-29 2021-02-05 上海奥威科技开发有限公司 一种锂离子电容器及其制备方法和用途
CN112735841A (zh) * 2021-01-04 2021-04-30 中车青岛四方车辆研究所有限公司 一种新型扣式电池型超级电容器的制备方法
CN113140691B (zh) * 2021-04-20 2022-03-22 凯博能源科技有限公司 电池及其制备方法
CN113593920A (zh) * 2021-08-09 2021-11-02 中国科学院青岛生物能源与过程研究所 一种锂离子电容器负极极片及其制备方法
CN115295314A (zh) * 2022-08-25 2022-11-04 双洎能源(洛阳)有限公司 一种方形电化学电容器及其制备方法
CN115679122B (zh) * 2022-11-23 2024-03-15 陈畅 一种复合结构的电极及其制作方法与应用
CN116314624A (zh) * 2023-03-17 2023-06-23 天津得瑞丰凯新材料科技有限公司 一种基于碳气凝胶的微型柔性锂离子电池的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1272699A (zh) * 1999-04-16 2000-11-08 三星Sdi株式会社 集电体、电极和采用它们的二次电池
CN1519870A (zh) * 2003-01-23 2004-08-11 上海奥威科技开发有限公司 一种混合型超级电容器制造方法
CN101409154A (zh) * 2008-09-24 2009-04-15 上海奥威科技开发有限公司 有机混合型超级电容器
CN100481609C (zh) * 2007-06-25 2009-04-22 中南大学 一种超级电容电池

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414882A (en) * 1987-07-08 1989-01-19 Mitsubishi Gas Chemical Co Secondary battery
JPH10228896A (ja) * 1997-02-13 1998-08-25 Nec Corp 非水電解液二次電池
JP4968977B2 (ja) * 1997-09-22 2012-07-04 日本ゴア株式会社 分極性電極体及びその製造方法
JP4042187B2 (ja) * 1997-11-07 2008-02-06 旭硝子株式会社 二次電源
JP3124749B2 (ja) * 1998-03-02 2001-01-15 三菱電線工業株式会社 リチウムイオン二次電池
JP4096438B2 (ja) * 1998-03-17 2008-06-04 旭硝子株式会社 二次電源
JP2000228222A (ja) * 1999-02-05 2000-08-15 Asahi Glass Co Ltd 二次電源
US6645675B1 (en) * 1999-09-02 2003-11-11 Lithium Power Technologies, Inc. Solid polymer electrolytes
JP2001110418A (ja) * 1999-10-13 2001-04-20 Toyota Central Res & Dev Lab Inc リチウム二次電池用正極およびそれを用いたリチウム二次電池
US7625839B2 (en) * 2000-05-09 2009-12-01 Mitsubishi Chemical Corporation Activated carbon for use in electric double layer capacitors
JP4825344B2 (ja) * 2000-06-07 2011-11-30 Fdk株式会社 電池・キャパシタ複合素子
JP4694737B2 (ja) * 2000-09-26 2011-06-08 旭硝子株式会社 電気二重層キャパシタ用電極体の製造方法
JP4356294B2 (ja) * 2001-09-03 2009-11-04 日本ゼオン株式会社 電極用バインダー組成物、電極用スラリー、電極、および電池
US7897281B2 (en) * 2003-03-18 2011-03-01 Zeon Corporation Binder composition for electric double layer capacitor electrode
JP2005191423A (ja) * 2003-12-26 2005-07-14 Tdk Corp キャパシタ用電極
JP2006331702A (ja) * 2005-05-24 2006-12-07 Hitachi Ltd 蓄電デバイス
JP2007109702A (ja) * 2005-10-11 2007-04-26 Hitachi Aic Inc 電気二重層キャパシタ
KR100836524B1 (ko) * 2006-02-23 2008-06-12 한국전기연구원 고용량 전극 활물질, 그 제조방법, 이를 구비한 전극 및에너지 저장 장치
JP5372318B2 (ja) * 2006-07-14 2013-12-18 パナソニック株式会社 電気化学キャパシタの製造方法
CN101127276B (zh) * 2006-08-15 2012-03-28 中国人民解放军63971部队 有机电解液体系混合电化学电容器及其制备方法
KR101050021B1 (ko) * 2006-10-23 2011-07-19 액시온 파워 인터네셔널, 인크. 하이브리드 에너지 저장 장치용 음극
CN100546077C (zh) * 2007-11-12 2009-09-30 成都中科来方能源科技有限公司 复合正极材料、电池——超级电容储能器及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1272699A (zh) * 1999-04-16 2000-11-08 三星Sdi株式会社 集电体、电极和采用它们的二次电池
CN1519870A (zh) * 2003-01-23 2004-08-11 上海奥威科技开发有限公司 一种混合型超级电容器制造方法
CN100481609C (zh) * 2007-06-25 2009-04-22 中南大学 一种超级电容电池
CN101409154A (zh) * 2008-09-24 2009-04-15 上海奥威科技开发有限公司 有机混合型超级电容器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012011189A1 (ja) * 2010-07-23 2013-09-09 トヨタ自動車株式会社 リチウムイオン二次電池
JP5590424B2 (ja) * 2010-07-23 2014-09-17 トヨタ自動車株式会社 リチウムイオン二次電池

Also Published As

Publication number Publication date
CN101847513A (zh) 2010-09-29
US20120321913A1 (en) 2012-12-20
CN101847513B (zh) 2013-08-07
JP2013520805A (ja) 2013-06-06
EP2541566A4 (en) 2016-01-13
JP5939990B2 (ja) 2016-06-29
EP2541566A1 (en) 2013-01-02

Similar Documents

Publication Publication Date Title
WO2011103705A1 (zh) 一种长寿命负极的制备工艺及使用该负极的电容电池
WO2011103708A1 (zh) 一种高比能量有机体系的电容电池
WO2012146046A1 (zh) 一种聚酰亚胺电容电池及其制作方法
CN112271271B (zh) 负极片及制备方法、锂离子电芯、锂离子电池包及其应用
EP4138161A1 (en) Current collector, preparation method therefor, and application thereof
JP4918418B2 (ja) リチウムイオンのプレドープ方法およびリチウムイオン・キャパシタ蓄電素子の製造方法
CN101847764A (zh) 一种高比能量/高比功率型超级电池
CN104347881A (zh) 一种电池用石墨烯基集流体的制备方法和应用
WO2018059180A1 (zh) 一种高功率高能量化学电源及其制备方法
CN109802094A (zh) 一种低温磷酸铁锂电池及其制备方法
KR101503807B1 (ko) 리튬 금속 분체를 이용한 리튬이온커패시터 제조방법
CN112331485A (zh) 一种锂离子电容器及其制备方法和用途
CN112614703B (zh) 一种离子电容器负极材料及其制备方法和应用
JP2014096238A (ja) 蓄電デバイス用正極の製造方法、及び正極
WO2017150264A1 (ja) 電気化学デバイスおよびこれに用いる負極とその製造方法
CN113066961A (zh) 负极极片、电化学装置和电子装置
US20120300366A1 (en) Method for pre-doping anode and lithium ion capacitor storage device including the same
CN105761944A (zh) 一种混合超级电容器用复合正极片及其制备方法、混合超级电容器
JP2010109080A (ja) 蓄電素子用電極体の製造方法および蓄電素子用電極体ならびに非水系リチウム型蓄電素子
CN109817467B (zh) 一种复合正极材料及其制备方法以及一种化学电源及其制备方法
JP2007294539A (ja) リチウムイオンハイブリッドキャパシタ
CN113192760B (zh) 混合型超级电容器以及采用其的设备
CN115020638B (zh) 一种锂离子电池
JP4682395B2 (ja) 非水電池
CN115566137B (zh) 一种高能量密度型极片及其制备方法和电芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846329

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 221148

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2012554188

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010846329

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010846329

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13515382

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE