WO2011099598A1 - 光信号断検出回路および光受信器 - Google Patents

光信号断検出回路および光受信器 Download PDF

Info

Publication number
WO2011099598A1
WO2011099598A1 PCT/JP2011/053013 JP2011053013W WO2011099598A1 WO 2011099598 A1 WO2011099598 A1 WO 2011099598A1 JP 2011053013 W JP2011053013 W JP 2011053013W WO 2011099598 A1 WO2011099598 A1 WO 2011099598A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
optical signal
circuit
optical
inverted
Prior art date
Application number
PCT/JP2011/053013
Other languages
English (en)
French (fr)
Inventor
弘 小泉
和好 西村
正史 野河
義和 卜部
Original Assignee
日本電信電話株式会社
Nttエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社, Nttエレクトロニクス株式会社 filed Critical 日本電信電話株式会社
Priority to CN201180009481.7A priority Critical patent/CN102771065B/zh
Priority to EP11742341.8A priority patent/EP2538583B1/en
Priority to US13/578,811 priority patent/US9025970B2/en
Publication of WO2011099598A1 publication Critical patent/WO2011099598A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion

Definitions

  • the present invention relates to an optical communication technique, and more particularly to an optical signal detection technique that can accurately detect the presence or absence of an optical signal input.
  • the PON (Passive Optical Network) method used in the FTTH (Fiber To The Home) system as a high-speed broadband optical transmission method is an OLT (Optical Linear Terminal) that accommodates multiple users on the station side and an optical subscriber line on the user side. Is connected to an ONU (Optical Network Unit) that terminates the network with an optical fiber, and signals are transmitted bidirectionally.
  • OLT Optical Linear Terminal
  • ONU Optical Network Unit
  • the optical signal disconnection detection circuit determines whether or not the optical signal is input, A technique for preventing unnecessary noise from being output from an optical receiver has been proposed (see, for example, Patent Document 1).
  • the optical signal Pin received by the photodiode PD is photoelectrically converted into a photocurrent signal Iin and amplified by a transimpedance amplifier TIA that is a preamplifier.
  • the electric signal Tout of the transimpedance amplifier TIA is input to a limiting amplifier LA that is a post-amplifier, amplified so that optical signals Pin having different intensities become electric signals having a constant amplitude, and output as a reception output Rout.
  • a waveform shaping circuit such as CDR (Clock Data Recovery) or a timing adjustment circuit is normally connected to the subsequent stage of the limiting amplifier LA, and a clock signal is extracted from the data signal and shaped into a waveform that can be easily handled as a digital signal.
  • CDR Chip Data Recovery
  • a timing adjustment circuit is normally connected to the subsequent stage of the limiting amplifier LA, and a clock signal is extracted from the data signal and shaped into a waveform that can be easily handled as a digital signal.
  • an optical signal break detection circuit (LOS: Loss Of Signal) 20 that determines reception of the optical signal Pin is provided in parallel with the limiting amplifier LA in the subsequent stage of the transimpedance amplifier TIA.
  • the optical signal disconnection detection circuit 20 generates a signal disconnection detection signal LOS indicating whether or not an optical signal Pin with sufficient signal strength is received, thereby detecting a communication abnormality or limiting amplifier LA when there is no signal.
  • the squelch circuit control is performed to cut off the noise output.
  • the comparator 21 outputs the comparison output signal Cout only when the optical signal Pin is received, and this comparison output signal Cout is held by the SR latch 22 to be a signal disconnection detection signal composed of a DC signal. Convert to LOS. The holding of the signal loss detection signal LOS in the SR latch 22 is released by the reset signal RESET.
  • the PON control IC can output a reset signal RESET at the end of reception of a burst packet.
  • the signal loss detection signal LOS is used as an output control signal of the limiting amplifier LA, for example, for controlling the squelch, and by closing the squelch until the next burst signal is received after receiving the reset, the limiting amplifier LA It is possible to prevent noise from being output.
  • a burst signal is received, a normal reception state can be obtained by opening the squelch.
  • the comparator 21 shown in FIG. 11 includes a bias circuit 21A, a first stage amplifier circuit 21B, a first stage emitter follower circuit 21C, and a next stage amplifier circuit 21D.
  • the non-inverted signal Tout + and the inverted signal Tout ⁇ of the electric signal Tout input from the transimpedance amplifier TIA are AC-coupled to the bias circuit 21A via the respective coupling capacitors C. Since this coupling capacitor C is a differentiation circuit, the differential waveforms of the non-inverted signal Tout + and the inverted signal Tout ⁇ are input to the differential transistor pair Q1, Q2 of the first stage amplifier circuit 21B.
  • the output of the first stage amplifier circuit 21B has an offset voltage at its DC level. Therefore, if the non-inverted signal Tout + and the inverted signal Tout ⁇ having sufficient amplitude are not inputted, the output amplitude of the first stage amplifier circuit 21B is insufficient and a differential signal is not formed, that is, the non-inverted output from the transistor Q1 and the transistor Q2 Therefore, the comparison output signal Cout is not output from the next stage amplifier circuit 21D connected via the first stage emitter follower circuit 21C, and remains at the low level.
  • this circuit is characterized in that once the high level is output as the comparison output signal Cout, that level is maintained, so that a high-speed optical signal break detection circuit 20 that responds immediately to signal reception can be realized.
  • such a conventional technique has a problem in that it can operate autonomously without requiring a control signal from the outside and cannot accurately detect the presence or absence of an optical signal input. That is, in the conventional optical signal disconnection detection circuit 20 described above, since the comparison output signal Cout of the comparator 21 is held by the SR latch 22, the change from the signal disconnection state of the optical signal Pin to the signal reception state is performed. Can detect and display quickly, but cannot detect a change from the optical signal reception state to the signal loss state. Further, since the reset signal RESET for resetting the SR latch 22 is essential as an external control signal, autonomous operation is not possible.
  • the SR latch 22 when used, there is a risk that indefinite logic may occur depending on the relationship between the logic level of the comparison output signal Cout of the comparator 21 and the logic level of the reset signal RESET. This problem can be solved by using a JK flip-flop circuit instead of the SR latch 22, but a clock signal is required separately.
  • the SR latch 22 continues to output a high level as the signal loss detection signal LOS if the comparator 21 outputs a high level even as one pulse as the comparison output signal Cout. There was a risk of malfunction if there was an input.
  • the present invention is for solving such problems, and is an optical signal detection that can operate autonomously without the need for an external control signal and can accurately detect the presence or absence of an optical signal input.
  • the purpose is to provide technology.
  • an optical signal break detection circuit detects an optical signal input presence / absence based on an electrical signal obtained by photoelectrically converting an optical signal comprising a pulse train.
  • a disconnection detection circuit that outputs, as a comparison output signal, a pulse having an amplitude greater than or equal to a reference value among electrical signals input via a coupling capacitor, and a holding capacitor for each pulse included in the comparison output signal.
  • an analog holding circuit that generates a holding output signal that varies depending on whether or not an optical signal is input by discharging a DC voltage obtained by charging with a discharge resistor.
  • An optical receiver includes a photoelectric conversion element that photoelectrically converts an optical signal composed of a pulse train into a photocurrent signal, and an electrical signal that amplifies the photocurrent signal and includes an inverted signal and a non-inverted signal.
  • a transimpedance amplifier that outputs a signal, a limiting amplifier that amplifies and outputs each pulse of a pulse train included in the electrical signal, and any one of the foregoing that detects whether an optical signal is input based on the electrical signal And an optical signal break detection circuit.
  • the present invention it is possible to operate autonomously without the need for a control signal from the outside of the optical signal disconnection detection circuit such as a reset signal, and to accurately detect the presence or absence of the input of the optical signal. Therefore, since it is not necessary to input a control signal from the outside, it can be easily applied to an optical receiver having no function of outputting such a control signal, and high versatility can be obtained. Further, it is possible to delete a circuit unit that outputs such a control signal from the optical receiver, thereby realizing cost reduction. In addition, since the presence or absence of optical signal input is detected by charging the pulse included in the burst signal with the analog holding circuit, malfunctions caused by this can be avoided even if there is noise input when the optical signal is interrupted. Stable optical signal detection operation can be realized.
  • FIG. 1 is a block diagram illustrating a configuration of an optical receiver and an optical signal break detection circuit according to the first embodiment.
  • FIG. 2 is a circuit diagram illustrating a configuration example of the comparator according to the first embodiment.
  • FIG. 3 is a signal waveform diagram illustrating the operation of the optical signal break detection circuit according to the first embodiment.
  • FIG. 4 is a block diagram illustrating a configuration of an optical receiver and an optical signal break detection circuit according to the second embodiment.
  • FIG. 5 is a block diagram illustrating a configuration of an optical receiver and an optical signal break detection circuit according to the third embodiment.
  • FIG. 6 is a circuit diagram showing a configuration of a comparator according to the third embodiment.
  • FIG. 7 is a signal waveform diagram showing the operation of the optical signal break detection circuit according to the third embodiment.
  • FIG. 1 is a block diagram illustrating a configuration of an optical receiver and an optical signal break detection circuit according to the first embodiment.
  • FIG. 2 is a circuit diagram illustrating a configuration example of the comparator
  • FIG. 8 is a block diagram illustrating a configuration of an optical receiver and an optical signal break detection circuit according to the fourth embodiment.
  • FIG. 9 is a block diagram illustrating a configuration of an optical receiver and an optical signal break detection circuit according to the fifth embodiment.
  • FIG. 10 is a block diagram showing the configuration of a conventional optical receiver and optical signal break detection circuit.
  • FIG. 11 is a circuit diagram showing a configuration of a comparator used in a conventional optical signal break detection circuit.
  • the optical receiver 100 is a communication device that converts an optical signal received via an optical fiber into an electric signal and outputs the electric signal.
  • the station side accommodates a plurality of users. Used in OLT.
  • the optical receiver 100 is provided with a photodiode PD, a transimpedance amplifier TIA, a limiting amplifier LA, and an optical signal loss detection circuit 10 as main circuit configurations.
  • the optical signal Pin that has reached through the optical fiber is received by the photodiode PD, converted into a photocurrent signal Iin, and amplified by a transimpedance amplifier TIA that is a preamplifier.
  • the electric signal Tout of the transimpedance amplifier TIA is input to a limiting amplifier LA that is a post-amplifier, amplified so that optical signals Pin having different intensities become electric signals having a constant amplitude, and output as a reception output Rout.
  • a waveform shaping circuit such as a CDR and a timing adjustment circuit are usually provided after the limiting amplifier LA, and a clock signal is extracted from the data signal and treated as a digital signal. It is shaped into an easy waveform.
  • the optical signal disconnection detection circuit 10 is connected to the transimpedance amplifier TIA in parallel with the limiting amplifier LA and detects whether or not the optical signal Pin is input based on an electrical signal from the transimpedance amplifier TIA. It is.
  • the optical signal break detection circuit 10 outputs, as a comparison output signal Cout, a pulse having an amplitude greater than or equal to a reference value out of the electrical signal Tout from the transimpedance amplifier TIA input through the coupling capacitor.
  • the comparator 11 and each of the pulses included in the comparison output signal Cout are charged by a holding capacitor, and the DC voltage obtained by the charging is discharged by a discharge resistor, so that the holding output that changes depending on whether or not the optical signal Pin is input.
  • an analog holding circuit 12 that generates the signal Hout.
  • the optical signal disconnection detection circuit 10 includes a comparator 11, an analog holding circuit 12, and an output buffer 13 as main circuit units.
  • the comparator 11 compares and outputs a pulse having an amplitude equal to or larger than a preset reference value out of the non-inverted signal Tout + and the inverted signal Tout ⁇ from the transimpedance amplifier TIA input via the coupling capacitor C for AC coupling. It has a function of outputting as a signal Cout. Details of the internal configuration of the comparator 11 will be described later with reference to FIG.
  • the optical signal Pin is converted into the photocurrent signal Iin by the photodiode PD, amplified by the transimpedance amplifier TIA, and the obtained electric signal Tout is input to the limiting amplifier LA.
  • the LA is usually composed of a multi-stage amplifier circuit, and in many cases, the front-stage and rear-stage amplifier circuits are connected via an emitter follower circuit for level adjustment. Therefore, the input stage may be an amplifier circuit or an emitter follower circuit. Further, the output terminal of the transimpedance amplifier TIA and the input terminal of the limiting amplifier LA may be AC coupled or DC coupled.
  • the non-inverted signal Tout + and the inverted signal Tout ⁇ from the transimpedance amplifier TIA are also connected to the comparator 11 by AC coupling via the coupling capacitor C.
  • the capacity of the coupling capacitor C may be optimized according to the bit rate of the received signal. For example, if the bit rate is 10 Gbps, approximately 1 pF or less is desirable.
  • the analog holding circuit 12 charges each pulse included in the comparison output signal Cout output from the comparator 11 with the holding capacitor Ch, and discharges the analog DC voltage obtained by the charging with the discharge resistor Rh. It has a function of generating a holding output signal Hout that changes depending on whether or not the optical signal Pin is input from the DC voltage.
  • the output buffer 13 indicates whether or not the optical signal Pin is input by shaping the holding output signal Hout formed of the analog DC voltage generated by the analog holding circuit 12 into a digital logic signal used in a general logic gate. It has a function of outputting a signal interruption detection signal LOS.
  • the comparison output signal Cout output from the comparator 11 is input to the analog holding circuit 12 and charged / discharged, and the obtained holding output signal Hout composed of an analog DC voltage is composed of a digital logic signal via the output buffer 13. It is output as a signal loss detection signal LOS.
  • the holding output signal Hout of the analog holding circuit 12 is, in principle, top-held when receiving the optical signal Pin, and at a low level when the signal is cut, so that the signal break detection signal LOS also has a logic corresponding thereto. .
  • the logic configuration is such that the signal break detection signal LOS is at the high level when the holding output signal Hout is at the low level. do it.
  • the analog holding circuit 12 includes a diode Dh that rectifies each pulse included in the comparison output signal Cout output from the comparator 11, and these pulses rectified by the diode Dh. And a discharge resistor Rh for discharging a DC voltage obtained by charging.
  • the anode terminal is connected to the output terminal of the comparator 11, and the cathode terminal is connected to one end of the holding capacitor Ch.
  • the other end of the holding capacitor Ch is connected to the ground potential.
  • the comparator 11 includes a bias circuit 11A, a first stage amplifier circuit (front side amplifier circuit) 11B, a first stage emitter follower circuit 11C, a next stage amplifier circuit (rear side amplifier circuit) 11D, and a next stage emitter follower circuit 11E. These circuit portions are respectively integrated on the semiconductor chip.
  • these circuit portions are configured by bipolar transistors will be described as an example, but some or all of these may be configured by MOSFETs.
  • the bias circuit 11A is composed of a resistance dividing circuit including resistance elements R1 and R3 pulled up to the power supply potential Vcc and resistance elements R2 and R4 pulled down to the ground potential GND, and is input via the coupling capacitor C. Further, it has a function of applying a DC bias corresponding to the resistance ratio of R1 and R3 and the resistance ratio of R2 and R4 to the electric signals Tout + and Tout ⁇ from the transimpedance amplifier TIA. Actually, since these resistance ratios are equal, equal DC bias is applied to the input electric signals Tout + and Tout ⁇ .
  • the first stage amplifier circuit 11B includes transistors Q1 and Q2 forming a differential pair, a resistance element R5 connected between the collector terminal of Q1 and Vcc, and a resistance element connected between the collector terminal of Q2 and Vcc.
  • a differential composed of R6, resistance elements R7 and R8 connected in series between the emitter terminals of Q1 and Q2, and a constant current source I1 connected between the connection point of the resistance elements R7 and R8 and GND.
  • the amplifier circuit has a function of differentially amplifying electrical signals Tout + and Tout ⁇ input to the base terminals of the transistors Q1 and Q2.
  • R5 and R6 correspond to the load resistance of the differential amplifier circuit, and different resistance values according to the reference value are set in advance. For this reason, the DC voltage difference corresponding to the offset voltage is applied to the differential outputs respectively output from the collector terminals of Q1 and Q2.
  • the first-stage emitter follower circuit 11C includes transistors Q3 and Q4 whose collector terminals are connected to the power supply potential Vcc, and constant current sources I2 and I3 connected between the emitter terminals of these Q3 and Q4 and GND, respectively.
  • the output signals of the first stage amplifier circuit 11B input to the base terminals of Q3 and Q4 are output with low impedance.
  • the next-stage amplifier circuit 11D includes transistors Q5 and Q6 forming a differential pair, a resistance element R9 connected between the collector terminal of Q5 and Vcc, and a resistor connected between the collector terminal of Q6 and Vcc. It comprises a differential amplifier circuit composed of the element R10 and a constant current source I4 connected between the connection point of the emitter terminals of Q5 and Q6 and GND, and is input to the base terminals of the transistors Q5 and Q6. It has a function of differentially amplifying the first stage output signal Fout of the first stage emitter follower circuit 11C.
  • the next-stage emitter follower circuit 11E includes transistors Q7 and Q8 whose collector terminals are connected to the power supply potential Vcc, and constant current sources I5 and I6 connected between the emitter terminals of these Q7 and Q8 and GND, respectively.
  • the differential output of the next-stage amplifier circuit 11D input to the base terminals of Q7 and Q8, respectively, has a function of outputting the comparison output signal Cout with low impedance.
  • 10 G-EPON is assumed as a system to which the optical receiver 100 including the optical signal break detection circuit 10 is applied, and an input burst signal has an amplitude (difference of about 10 mV with a bit rate of 10 Gbps). And has an amplitude of about 20 mV). The amplitude of 10 mV corresponds to the output amplitude at the minimum reception sensitivity (about ⁇ 30 dBm) in a general TIA.
  • the burst signal includes, for example, 128 bits, that is, a continuous same sign section of about 13 nsec, and the response time for the detection of the head of the burst signal is 100 ns or less.
  • the capacitance value of the holding capacitor Ch of the analog holding circuit 12 was set to 1 pF, and the resistance value of the discharge resistor Rh was set to 25 k ⁇ .
  • the power supply potential Vcc is 3.3V, and the ground potential GND is 0V.
  • the burst signal input from the transimpedance amplifier TIA becomes a differential waveform via the coupling capacitor C, is input to the comparator 11, and is differentially amplified by the first stage amplifier circuit 11B shown in FIG.
  • different resistance values corresponding to the reference values are set in advance as the resistance values of the resistance elements R5 and R6. Therefore, the DC bias of the inverted signal Fout ⁇ and the DC voltage of the non-inverted signal Fout + of the first stage output signal Fout are set. An offset voltage corresponding to the reference value is applied between the bias.
  • the first stage output signal Fout is input to the next stage amplifier circuit 11D via the first stage emitter follower circuit 11C and differentially amplified. For this reason, among the pulses included in the inverted signal Fout ⁇ and the non-inverted signal Fout +, pulses having an amplitude less than the offset voltage do not cross each other and are not output from the next stage amplifier circuit 11D. Therefore, in the next-stage amplifier circuit 11D, pulses having an amplitude less than the offset voltage are removed, and only pulses having an amplitude greater than or equal to the reference value are output as the comparison output signal Cout via the next-stage emitter follower circuit 11E.
  • the comparison output signal Cout is input to the analog holding circuit 12 and, of the pulses included in the comparison output signal Cout, only the signal interval higher than the DC voltage of the holding capacitor Ch by the diode junction voltage is the diode Dh. Extracted and charged to the holding capacitor Ch.
  • the DC voltage of the holding capacitor Ch that is, the holding output signal Hout is charged by a pulse having an amplitude greater than or equal to the reference value of the burst signal of the optical signal Pin, and the voltage value rises.
  • the voltage is lowered due to discharge by the discharge resistor Rh. Note that the reason why the holding output signal Hout does not drop to the ground potential GND in the signal interruption period without the burst signal is that a DC bias is applied to the comparison output signal Cout.
  • the time constants of the holding capacitor Ch and the discharge resistor Rh are the response speed for detecting the head of the burst signal, and the same sign continuity tolerance that does not erroneously determine that the same sign continuous section included in the burst signal is broken. It is decided by the balance of
  • the hold output signal Hout indicates the presence of the burst signal from the low level where there is no burst signal in a required time of 100 ns or less defined as the response time by the pulse included in the burst signal.
  • the battery is charged to a high level.
  • the hold output signal Hout is discharged by this pulse interruption, the high level indicating the presence of the burst signal for about 13 nsec, which is the maximum same sign continuous section, that is, It is held above the threshold value Hth.
  • the signal loss detection signal LOS indicating the detection of the optical signal Pin can be output within a predetermined response time, and the same sign continuous section is included in the burst signal. Even in this case, the signal loss detection signal LOS indicating the detection of the optical signal Pin can be held and output without erroneously outputting the signal loss detection signal LOS indicating the signal loss.
  • the signal loss detection signal LOS is output with a response time of about 10 ns.
  • the signal cut detection signal LOS indicating the signal cut of the optical signal Pin may be output after the maximum same sign continuous section has elapsed from the end of the burst signal. it can.
  • the optical signal break detection circuit 10 a pulse having an amplitude greater than or equal to the reference value among the electrical signals from the transimpedance amplifier TIA input via the coupling capacitor by the comparator 11 is obtained.
  • the comparison output signal Cout is output, and the analog holding circuit 12 charges each pulse included in the comparison output signal Cout with a holding capacitor, and discharges the DC voltage obtained by the charging with a discharge resistor, thereby Since the holding output signal Hout that changes according to the presence or absence of input is generated, it operates autonomously without the need for an external control signal such as a reset signal, and accurately detects the presence or absence of an optical signal input. can do.
  • the comparison output signal from the comparator is latched to generate the signal interruption detection signal, if there is noise input at the time of the optical signal Pin signal interruption, it is erroneously detected by this noise input.
  • a signal break detection signal indicating the presence of an optical signal is output.
  • the analog holding circuit 12 detects whether or not an optical signal is input by charging a pulse included in the burst signal. Therefore, even when there is noise input when the optical signal Pin is disconnected, A malfunction due to this can be avoided, and a stable optical signal detection operation can be realized.
  • a diode Dh that rectifies each pulse included in the comparison output signal Cout, a holding capacitor Ch that charges these rectified pulses, and a discharge resistor Rh that discharges a DC voltage obtained by charging. Since the analog holding circuit 12 is configured from the above, it is possible to generate a holding output signal that changes depending on whether or not an optical signal is input with a very small circuit scale.
  • the response speed for detecting the head of the burst signal and the same code continuous section included in the burst signal are erroneously determined as signal loss. This can be determined in consideration of the continuous resistance of the same code, and sufficient noise resistance can be obtained while ensuring high-speed response.
  • the comparator 11 is provided with two differential amplifier circuits 11B and 11D connected in series, and the first-stage amplifier circuit 11B located on the front side of these differential amplifier circuits has the inverted signal Fout ⁇ and The two load resistors R5 and R6 corresponding to the non-inverted signal Fout +, respectively, and the load resistors R5 and R6 having different resistance values according to the reference value are used to differentiate the inverted and non-inverted signals.
  • an offset voltage corresponding to the reference value is applied between the DC bias of the inverted signal and the DC bias of the non-inverted signal and output, and the signal is positioned after the previous differential amplifier circuit.
  • the side differential amplifier circuit differentially amplifies the inverted signal Fout ⁇ and the non-inverted signal Fout + output from the front side differential amplifier circuit, the optical signal Pin No. Even when there is noise input during disconnection, the amplitude of the pulse less than the reference value may be removed.
  • the comparison output signal Cout from the comparator 11 is charged by the holding capacitor Ch via the diode Dh, and is charged by the discharge resistor Rh connected in parallel to the holding capacitor Ch.
  • the discharge resistor Rh connected in parallel to the holding capacitor Ch.
  • the base terminal of the transistor Qh is connected to the collector terminal and the comparison output signal Cout of the comparator 11, and the emitter terminal is connected to one end of the holding capacitor Ch. It is connected. The other end of the holding capacitor Ch is connected to the ground potential.
  • a discharge resistor Rh is connected in parallel between the base terminal and the emitter terminal of the transistor Qh.
  • a signal loss detection signal LOS indicating that is autonomously output.
  • the analog holding circuit 12 is obtained by charging a diode-connected transistor that rectifies each pulse included in the comparison output signal, a holding capacitor that charges these rectified pulses, and charging. Since the high-level digital logic signal can be output as the holding output signal Hout, the output buffer 13 can detect the signal breakage of the holding output signal Hout consisting of the digital logic signal. The level can be easily converted to the signal LOS. Further, by using the transistor as a diode by diode connection, the process of separately creating the diode can be omitted.
  • the diode-connected transistor Qh is used.
  • a diode Dh similar to that of the first embodiment may be used instead of the transistor Qh.
  • the response speed for detecting the head of the burst signal input as the electric signals Tout + and Tout ⁇ and the same sign continuous section included in the burst signal are determined. It is determined in consideration of the signal interruption and the same sign continuity tolerance that is not erroneously determined.
  • the comparator 11 includes a plurality of differential amplifier circuits connected in series, and is a differential amplifier circuit located at the tail of these differential amplifier circuits. At least one of the two corresponding load resistors is a variable resistor Rs. Further, an intermediate buffer 14 that further generates a comparison output signal Cout from the differential signal output from the comparator 11 and outputs the comparison output signal Cout to the analog holding circuit 12 is further provided.
  • the converter 10 Compared with the comparator according to the first embodiment described above with reference to FIG. 2, the converter 10 according to the present embodiment includes a next-stage amplifier circuit (last amplifier circuit) 11 ⁇ / b> D as illustrated in FIG. 6.
  • a variable resistor Rs for sensitivity adjustment is connected in parallel to R9 which is a load resistor corresponding to Fout + among the resistor elements R9 and R10 which are load resistors. That is, one end of the variable resistor Rs is connected to the collector terminal of the transistor Q5, and the other end is connected to the power supply potential Vcc.
  • the intermediate buffer 14 includes FETs M1 and M2 forming a differential pair and FETs M3 and M4 forming a differential pair.
  • M1 and M2 constitute a current mirror circuit
  • the gate terminal of M1 is connected to the source terminal and the gate terminal of M2
  • the drain terminal of M1 and the drain terminal of M2 are connected to the power supply potential Vcc.
  • M1 and M2 constitute a differential amplifier circuit.
  • the drain terminal of M3 is connected to the source terminal of M1
  • the drain terminal of M4 is connected to the source terminal of M2, and the connection point between M3 and M4 and GND Is connected to a constant current source I7.
  • the intermediate buffer 14 differentially amplifies the comparison output signal Cout input to the gate terminals of M3 and M4, and the non-inverted output output from M4 among the obtained differential comparison outputs is used as the holding input signal. It outputs to the analog holding circuit 12 as Hin.
  • the load resistance value of Q5 changes. Therefore, in the comparison output signal Cout from the next-stage differential amplifier circuit 11D, the DC bias of the inverted signal Cout ⁇ changes, and the offset voltage with respect to the DC bias of the non-inverted signal Cout + changes. Therefore, in the intermediate buffer 14, among the pulses included in the inverted signal Cout ⁇ and the non-inverted signal Cout +, with respect to the pulse having an amplitude less than the offset voltage, the signals do not cross each other, and the holding input from the intermediate buffer 14. The signal Hin is not output. Therefore, the magnitude of the DC voltage charged in the holding capacitor Ch of the analog holding circuit 12 changes.
  • the inverted signal Cout ⁇ of the comparison output signal Cout in FIG. 7 is obtained by adjusting the resistance value of the variable resistor Rs, and the DC bias is set to be lower by about 0.2V than that in FIG. ing.
  • the ratio of the pulses of the inverted signal Cout ⁇ and the non-inverted signal Cout + decreases, and the number and amplitude of pulses output as the holding input signal Hin are reduced. Therefore, the holding output signal Hout of the analog holding circuit 12 is generally lower in voltage than the one shown in FIG. 3, and is lower than the threshold value Hth. For this reason, as a result, the detection sensitivity of the burst signal is lowered, and the high-level signal break detection signal LOS indicating the presence of the burst signal is not output.
  • the comparator 11 includes a plurality of differential amplifier circuits 11B and 11D connected in series, and the differential amplifier circuit 11D located at the end of these differential amplifier circuits is inverted.
  • the comparison output signal output from the comparator 11 is output from the comparator 11 by using at least one of the two load resistors R9 and R10 corresponding to the signal Fout ⁇ and the non-inverted signal Fout + as a variable resistor. Since Cout is differentially amplified and output to the analog holding circuit 12, the detection sensitivity for detecting whether or not the optical signal Pin is input can be adjusted by adjusting the value of the variable resistor. As a result, by changing the resistance value of the variable resistor in accordance with fluctuations in temperature and power supply potential, a stable optical signal detection operation can be realized even when fluctuations in temperature and power supply potential occur.
  • variable resistor Rs is provided in the last differential amplifier circuit 11D among the differential amplifier circuits of the comparator 11
  • the present invention is not limited to this.
  • the variable amplifier Rs may be provided in at least one of the load resistors R5 and R6 in the first stage amplifier circuit 11B located in front of the tail.
  • the intermediate buffer 14 can be omitted.
  • the amplification factor of the first stage amplifier circuit 11B is set low, and the next stage amplifier circuit 11D. Is set high. Accordingly, since the load resistance of the next stage amplifier circuit 11D also has a large resistance value, the value of the load resistance can be changed greatly, and the sensitivity adjustment range can be increased by connecting the variable resistor Rs to the next stage amplifier circuit 11D. Can be taken widely.
  • variable resistor Rs is connected in parallel to the load resistor.
  • present invention is not limited to this, and any load resistor circuit capable of changing the resistance value can be used. Any circuit may be used.
  • the output buffer 13 a case where a buffer having hysteresis characteristics is used as the output buffer 13 will be described as an example.
  • the holding output signal Hout of the analog holding circuit 12 rises and falls slowly, and the voltage level fluctuates in the same symbol continuous section included in the burst signal. Since such characteristics are caused by the CR time constant of the analog holding circuit 12, for example, the capacitance of the holding capacitor Ch and the value of the discharge resistance Rh are increased in order to suppress the level fluctuation in the same sign continuous section. Then, the rise and fall will become increasingly slower.
  • a logic circuit having hysteresis characteristics such as a Schmitt trigger inverter, is used as the analog holding circuit 12.
  • an inverter or an output buffer may be further connected to the Schmitt trigger inverter output in order to adjust the level of the signal interruption detection signal LOS or buffering.
  • a hysteresis comparator may be connected instead of the Schmitt trigger inverter.
  • the case where the electric signal Tout from the transimpedance amplifier TIA is input to the comparator 11 of the optical signal disconnection detection circuit 10 has been described as an example.
  • the electric signal Pout (Pout +, Pout ⁇ ) output from the first stage amplifier circuit PA constituting the limiting amplifier LA is input to the comparator 11.
  • the first stage amplifier circuit PA of the limiting amplifier LA is composed of an emitter follower circuit or a differential amplifier circuit having a low output impedance, and an electric signal Tout from the input transimpedance amplifier TIA is provided in the limiting amplifier LA. It has a function of outputting to the subsequent amplifier circuit.
  • the electric signal Tout from the transimpedance amplifier TIA is input to the limiting amplifier LA without being branched to the optical signal break detection circuit 10. Then, the electrical signal Pout output at a low impedance from the first stage amplifier circuit PA of the limiting amplifier LA is branched to the optical signal break detection circuit 10.
  • the electric signal Pout output at a low impedance from the first stage amplifier circuit PA provided in the limiting amplifier LA is branched, Since the signal is input to the optical signal disconnection detection circuit 10, a decrease in the load impedance of the transimpedance amplifier TIA accompanying the branch of the electric signal Tout can be covered by the first stage amplifier circuit PA. For this reason, the driving load of the transimpedance amplifier TIA can be reduced. Further, impedance conversion by the first stage amplifier circuit PA facilitates impedance matching between the output of the transimpedance amplifier TIA and the input of the limiting amplifier LA.
  • SYMBOLS 100 ... Optical receiver, 10 ... Optical signal break detection circuit, 11 ... Comparator, 12 ... Analog holding circuit, C ... Coupling capacitor, Pin ... Optical signal, Tout ... Electric signal, Hout ... Holding output signal

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Optical Communication System (AREA)

Abstract

 コンパレータ(11)で、結合コンデンサを介して入力されたトランスインピーダンスアンプ(TIA)からの電気信号のうち、基準値以上の振幅を持つパルスを比較出力信号(Cout)として出力し、アナログ保持回路(12)で、比較出力信号(Cout)に含まれる各パルスを保持コンデンサで充電するとともに、充電により得られた直流電圧を放電抵抗で放電することにより、光信号の入力有無に応じて変化する保持出力信号(Hout)を生成する。これにより、外部からの制御信号を必要とすることなく自律的に動作して、光信号の入力有無を的確に検出することができる。

Description

光信号断検出回路および光受信器
 本発明は、光通信技術に関し、特に光信号の入力有無を的確に検出することができる光信号検出技術に関する。
 高速広帯域光伝送方式としてFTTH(Fiber To The Home)システムに採用されているPON(Passive Optical Network)方式では、局側で複数ユーザを収容するOLT(Optical Line Terminal)とユーザ側で光加入者線を終端するONU(Optical Network Unit)との間が光ファイバで結ばれ、信号が双方向伝送される。
 このようなOLTの光受信回路において、光入力がない状態において不要なノイズが出力されるのを防ぐノイズマスク機能がない場合は、新たなONUが接続された際に、アナログフロントエンドの後段に接続されたアクセスコントローラは、受信した光信号がノイズなのか新たに接続されたONUからの光信号なのかを特定のアルゴリズムにより判別しなければならない。したがって、上位レイヤの複雑化に伴ってコストがアップし、通信制御として効率的ではない。
 一方、OLTの光受信回路では、トランスインピーダンスアンプ(TIA: Trans Impedance Amplifier)から出力される電気信号に基づいて、光信号断検出回路で光信号の入力有無を判定し、光信号がない状態において不要なノイズが光受信器から出力されるのを防ぐ技術が提案されている(例えば、特許文献1など参照)。
 図10に示すように、この光受信器200において、フォトダイオードPDで受光された光信号Pinは光電流信号Iinに光電変換されて、プリアンプであるトランスインピーダンスアンプTIAによって増幅される。このトランスインピーダンスアンプTIAの電気信号Toutは、ポストアンプであるリミッティングアンプLAに入力され、異なる強度の光信号Pinが一定振幅の電気信号となるように増幅され、受信出力Routとして出力される。リミッティングアンプLAの後段には、通常、CDR(Clock Data Recovery)などの波形整形回路やタイミング調整回路が接続され、データ信号からクロック信号が抽出されデジタル信号として扱いやすい波形に整形される。
 一方、トランスインピーダンスアンプTIAの後段には、リミッティングアンプLAと並列的に、光信号Pinの受信を判定する光信号断検出回路(LOS:Loss Of Signal)20が設けられている。この光信号断検出回路20により、充分な信号強度の光信号Pinを受信しているか否かを示す信号断検出信号LOSを生成することで、通信の異常検出や、無信号時にリミッティングアンプLAからノイズの出力を遮断するためのスケルチ(Squelch)回路制御を行う。
 この光信号断検出回路20では、光信号Pinを受信した場合のみコンパレータ21が比較出力信号Coutを出力し、この比較出力信号CoutをSRラッチ22で保持して、DC信号からなる信号断検出信号LOSに変換する。SRラッチ22における信号断検出信号LOSの保持解除はリセット信号RESETで行う。例えばPONシステムに代表されるバースト通信では、PON制御ICがバーストパケットの受信終了時にリセット信号RESETを出力することができる。
 したがって、この信号断検出信号LOSをリミッティングアンプLAの出力制御信号として、例えばスケルチの制御に用いて、リセットを受信して次のバースト信号を受信するまでスケルチを閉じることにより、リミッティングアンプLAからノイズが出力されることを防ぐことができる。また、バースト信号を受信した場合には、スケルチを開くことにより、通常の受信状態とすることができる。
 図11に示すコンパレータ21は、バイアス回路21A、初段増幅回路21B、初段エミッタフォロア回路21C、次段増幅回路21Dから構成されている。
 トランスインピーダンスアンプTIAから入力される電気信号Toutの非反転信号Tout+および反転信号Tout-は、それぞれの結合コンデンサCを介してバイアス回路21AへAC結合されている。この結合コンデンサCは微分回路であるから、非反転信号Tout+および反転信号Tout-の微分波形が初段増幅回路21Bの差動トランジスタ対Q1,Q2に入力される。
 ここで、差動トランジスタ対Q1,Q2の負荷抵抗R5,R6の値を互いに異なる値にすれば、初段増幅回路21Bの出力はそのDCレベルにオフセット電圧を有することになる。
 したがって、充分な振幅の非反転信号Tout+および反転信号Tout-が入力されないと初段増幅回路21Bの出力振幅が足りず、差動信号を形成しないため、すなわちトランジスタQ1からの非反転出力とトランジスタQ2からの反転出力が交差しないため、初段エミッタフォロア回路21Cを介して接続されている次段増幅回路21Dから比較出力信号Coutは出力されず、Lowレベルのままである。
 一方、入力された非反転信号Tout+および反転信号Tout-の振幅が十分大きい場合は、トランジスタQ1からの非反転出力とトランジスタQ2からの反転出力が交差するため、比較出力信号Coutとして、その交差部分に応じたHighレベルとLowレベルが交互に現れることになる。
 この比較出力信号CoutはSRラッチ22で保持されるため、例えば光信号Pinの受信とともに、比較出力信号CoutとしてHighレベルが出力され続ける。したがって、この回路の特徴は、ひとたび比較出力信号CoutとしてHighレベルが出力されればそのレベルが保持されるので、信号受信に即座に応答する高速な光信号断検出回路20を実現できることである。
特開2009-044228号公報
 しかしながら、このような従来技術では、外部からの制御信号を必要とすることなく自律的に動作して、光信号の入力有無を的確に検出することができないという問題点があった。
 すなわち、前述した従来の光信号断検出回路20では、コンパレータ21の比較出力信号CoutをSRラッチ22で保持する構成となっているため、光信号Pinの信号断状態から信号受信状態への変化については俊敏に検出して表示することができるものの、光信号の受信状態から信号断状態への変化を検出できない。また、外部からの制御信号としてSRラッチ22をリセットするリセット信号RESETが必須であることから、自律的な動作はできない。
 さらに、SRラッチ22を用いる場合は、コンパレータ21の比較出力信号Coutの論理レベルとリセット信号RESETの論理レベルとの関係によっては不定論理を生じる危険がある。この問題についてはSRラッチ22の代わりにJKフリップフロップ回路を用いれば解決できるが、別途、クロック信号が必要となる。
 また、SRラッチ22は、コンパレータ21が比較出力信号Coutとして1パルスでもHighレベルを出力すれば、信号断検出信号LOSとしてHighレベルを出力し続けてしまうため、光信号Pinの信号断時に大きなノイズ入力があると誤動作を起こす危険があった。
 したがって、このような従来技術を光受信器に用いた場合には、光信号がない状態において不要なノイズが出力されるのを防ぐノイズマスク機能を適切に駆動することができないという問題点があった。
 本発明はこのような課題を解決するためのものであり、外部からの制御信号を必要とすることなく自律的に動作して、光信号の入力有無を的確に検出することができる光信号検出技術を提供することを目的としている。
 このような目的を達成するために、本発明にかかる光信号断検出回路は、パルス列からなる光信号を光電変換して得られた電気信号に基づいて、光信号の入力有無を検出する光信号断検出回路であって、結合コンデンサを介して入力された電気信号のうち、基準値以上の振幅を持つパルスを比較出力信号として出力するコンパレータと、比較出力信号に含まれる各パルスを保持コンデンサで充電するとともに、充電により得られた直流電圧を放電抵抗で放電することにより、光信号の入力有無に応じて変化する保持出力信号を生成するアナログ保持回路とを備えている。
 また、本発明にかかる光受信器は、パルス列からなる光信号を光電流信号に光電変換して出力する光電変換素子と、光電流信号を増幅して反転信号と非反転信号とからなる電気信号を出力するトランスインピーダンスアンプと、電気信号に含まれるパルス列の各パルスを一定振幅に増幅して出力するリミッティングアンプと、電気信号に基づいて光信号の入力有無を検出する、前述したいずれか1つの光信号断検出回路とを備えている。
 本発明によれば、リセット信号など、光信号断検出回路の外部からの制御信号を必要とすることなく自律的に動作して、光信号の入力有無を的確に検出することができる。したがって、外部からの制御信号の入力を必要としないため、このような制御信号を出力する機能を持たない光受信器にも容易に適用でき、高い汎用性が得られる。また、光受信器から、このような制御信号を出力する回路部を削除することができ、低コスト化を実現できる。また、アナログ保持回路でバースト信号に含まれるパルスを充電することにより、光信号の入力有無を検出しているため、光信号の信号断時にノイズ入力があった場合でも、これによる誤動作を回避でき、安定した光信号検出動作を実現できる。
図1は、第1の実施の形態にかかる光受信器および光信号断検出回路の構成を示すブロック図である。 図2は、第1の実施の形態にかかるコンパレータの構成例を示す回路図である。 図3は、第1の実施の形態にかかる光信号断検出回路の動作を示す信号波形図である。 図4は、第2の実施の形態にかかる光受信器および光信号断検出回路の構成を示すブロック図である。 図5は、第3の実施の形態にかかる光受信器および光信号断検出回路の構成を示すブロック図である。 図6は、第3の実施の形態にかかるコンパレータの構成を示す回路図である。 図7は、第3の実施の形態にかかる光信号断検出回路の動作を示す信号波形図である。 図8は、第4の実施の形態にかかる光受信器および光信号断検出回路の構成を示すブロック図である。 図9は、第5の実施の形態にかかる光受信器および光信号断検出回路の構成を示すブロック図である。 図10は、従来の光受信器および光信号断検出回路の構成を示すブロック図である。 図11は、従来の光信号断検出回路で用いられるコンパレータの構成を示す回路図である。
 次に、本発明の実施の形態について図面を参照して説明する。
[第1の実施の形態]
 まず、図1を参照して、本発明の第1の実施の形態にかかる光受信器および光信号断検出回路について説明する。
 この光受信器100は、光ファイバを介して受信した光信号を電気信号に変換して出力する通信装置であり、例えばFTTHシステムに採用されているPON方式において、局側で複数ユーザを収容するOLTで用いられる。
 光受信器100には、主な回路構成として、フォトダイオードPD、トランスインピーダンスアンプTIA、リミッティングアンプLA、および光信号断検出回路10が設けられている。
 光ファイバを介して到達した光信号Pinは、フォトダイオードPDで受信されて光電流信号Iinに変換され、プリアンプであるトランスインピーダンスアンプTIAによって増幅される。このトランスインピーダンスアンプTIAの電気信号Toutは、ポストアンプであるリミッティングアンプLAに入力され、異なる強度の光信号Pinが一定振幅の電気信号となるように増幅され、受信出力Routとして出力される。なお、図1では省略してあるが、リミッティングアンプLAの後段には、通常、CDRなどの波形整形回路やタイミング調整回路が設けられており、データ信号からクロック信号が抽出されデジタル信号として扱いやすい波形に整形される。
 光信号断検出回路10は、トランスインピーダンスアンプTIAに対して、リミッティングアンプLAと並行に接続されて、トランスインピーダンスアンプTIAからの電気信号に基づいて、光信号Pinの入力有無を検出する回路部である。
 本実施の形態にかかる光信号断検出回路10は、結合コンデンサを介して入力されたトランスインピーダンスアンプTIAからの電気信号Toutのうち、基準値以上の振幅を持つパルスを比較出力信号Coutとして出力するコンパレータ11と、比較出力信号Coutに含まれる各パルスを保持コンデンサで充電するとともに、充電により得られた直流電圧を放電抵抗で放電することにより、光信号Pinの入力有無に応じて変化する保持出力信号Houtを生成するアナログ保持回路12とを備えている。
 次に、図1を参照して、本実施の形態にかかる光信号断検出回路の構成について詳細に説明する。
 光信号断検出回路10には、主な回路部として、コンパレータ11、アナログ保持回路12、および出力バッファ13が設けられている。
 コンパレータ11は、AC結合用の結合コンデンサCを介して入力されたトランスインピーダンスアンプTIAからの非反転信号Tout+および反転信号Tout-のうち、予め設定された基準値以上の振幅を持つパルスを比較出力信号Coutとして出力する機能を有している。なお、コンパレータ11の内部構成の詳細については、図2を参照して後述する。
 前述したように、光信号Pinは、フォトダイオードPDにより光電流信号Iinに変換されて、トランスインピーダンスアンプTIAで増幅され、得られた電気信号ToutはリミッティングアンプLAに入力される。
 LAは、通常、多段の増幅回路で構成されており、レベル調整のため、エミッタフォロア回路を介して前段と後段の増幅回路が接続されることが多い。したがって、入力段は増幅回路であったり、エミッタフォロア回路であったりする。また、トランスインピーダンスアンプTIAの出力端子とリミッティングアンプLAの入力端子は、AC結合である場合もあればDC結合である場合もある。
 一方、トランスインピーダンスアンプTIAからの非反転信号Tout+および反転信号Tout-は、結合コンデンサCを介してAC結合によりコンパレータ11にも接続されている。
 結合コンデンサCの容量は、受信信号のビットレートに応じて最適化すればよい。例えばビットレートが10Gbpsであれば、概ね1pF以下が望ましい。
 アナログ保持回路12は、コンパレータ11から出力された比較出力信号Coutに含まれる各パルスを保持コンデンサChで充電するとともに、充電により得られたアナログの直流電圧を放電抵抗Rhで放電することにより、この直流電圧から光信号Pinの入力有無に応じて変化する保持出力信号Houtを生成する機能を有している。
 出力バッファ13は、アナログ保持回路12で生成されたアナログの直流電圧からなる保持出力信号Houtを、一般的な論理ゲートで用いられるデジタル論理信号へ整形することにより、光信号Pinの入力有無を示す信号断検出信号LOSを出力する機能を有している。
 コンパレータ11から出力された比較出力信号Coutは、アナログ保持回路12に入力されて充放電され、得られたアナログの直流電圧からなる保持出力信号Houtが、出力バッファ13を介してデジタル論理信号からなる信号断検出信号LOSとして出力される。
 アナログ保持回路12の保持出力信号Houtは、原理的には、光信号Pinの受信時にトップホールドされるとともに、信号断時にはLowレベルとなるため、信号断検出信号LOSもこれに応じた論理となる。この際、例えば、信号断検出信号LOSにおいて信号断表示をHighレベルで表示する場合には、保持出力信号HoutがLowレベルであるとき、信号断検出信号LOSがHighレベルとなるような論理構成にすればよい。
 本実施の形態において、アナログ保持回路12は、図1に示すように、コンパレータ11から出力された比較出力信号Coutに含まれる各パルスを整流するダイオードDhと、このダイオードDhで整流されたこれらパルスを充電する保持コンデンサChと、充電により得られた直流電圧を放電する放電抵抗Rhとから構成されている。
 具体的には、ダイオードDhのうち、アノード端子がコンパレータ11の出力端子に接続され、カソード端子が保持コンデンサChの一端に接続されている。また、保持コンデンサChの他端が接地電位に接続されている。
 これにより、コンパレータ11から出力された比較出力信号Coutに含まれる各パルスのうち、保持コンデンサChの直流電圧よりダイオード接合電圧分だけ高いパルスのみがダイオードDhで抽出されて、保持コンデンサChに充電される。
 また、保持コンデンサChに対して放電抵抗Rhが並列接続されており、保持コンデンサChに充電された直流電圧が放電抵抗Rhを介して自然放電される。これにより、光信号Pinが信号断状態となった場合には、直流電圧が放電されるため、光信号Pinの信号断を示す信号断検出信号LOSが自律的に出力される。これら保持コンデンサChと放電抵抗Rhで決まる時定数については、電気信号Tout+,Tout-として入力されるバースト信号の先頭を検出するための応答速度と、バースト信号内に含まれる同符号連続区間を信号断と誤判定しない同符号連続耐性との兼ね合いで決定される。
[コンパレータ]
 次に、図2を参照して、本実施の形態にかかる光信号断検出回路10で用いられるコンパレータ11の内部構成について詳細に説明する。
 このコンパレータ11には、バイアス回路11A、初段増幅回路(前側増幅回路)11B、初段エミッタフォロア回路11C、次段増幅回路(後側増幅回路)11D、および次段エミッタフォロア回路11Eが設けられており、これら回路部が半導体チップ上にそれぞれ集積化されている。ここでは、これら回路部をバイポーラトランジスタで構成した場合を例として説明するが、これらの一部あるいはすべてをMOSFETで構成してもよい。
 バイアス回路11Aは、電源電位Vccにプルアップされた抵抗素子R1,R3と接地電位GNDにプルダウンされた抵抗素子R2,R4とから構成された抵抗分割回路からなり、結合コンデンサCを介して入力された、トランスインピーダンスアンプTIAからの電気信号Tout+,Tout-に対して、R1,R3の抵抗比およびR2,R4の抵抗比に応じた直流バイアスをそれぞれ印加する機能を有している。実際には、これらの抵抗比は等しいため、入力された電気信号Tout+,Tout-に対して等しい直流バイアスが印加される。
 初段増幅回路11Bは、差動対をなすトランジスタQ1,Q2と、Q1のコレクタ端子とVccとの間に接続された抵抗素子R5と、Q2のコレクタ端子とVccとの間に接続された抵抗素子R6と、Q1,Q2のエミッタ端子間に直列接続された抵抗素子R7,R8と、抵抗素子R7,R8の接続点とGNDとの間に接続された定電流源I1とで構成された差動増幅回路からなり、トランジスタQ1,Q2のベース端子に入力された電気信号Tout+,Tout-を差動増幅する機能を有している。
 ここで、R5,R6については、差動増幅回路の負荷抵抗に相当し、基準値に応じた互いに異なる抵抗値が予め設定されている。このため、Q1,Q2のコレクタ端子からそれぞれ出力される差動出力には、オフセット電圧分の直流電圧差が印加されることになる。
 初段エミッタフォロア回路11Cは、それぞれのコレクタ端子が電源電位Vccに接続されたトランジスタQ3,Q4とこれらQ3,Q4のエミッタ端子とGNDとの間にそれぞれ接続された定電流源I2,I3とからなり、これらQ3,Q4のベース端子にそれぞれ入力された初段増幅回路11Bの出力信号をそれぞれ低インピーダンスで出力する機能を有している。
 次段増幅回路11Dは、差動対をなすトランジスタQ5,Q6と、Q5のコレクタ端子とVccとの間に接続された抵抗素子R9と、Q6のコレクタ端子とVccとの間に接続された抵抗素子R10と、Q5,Q6のエミッタ端子の接続点とGNDとの間に接続された定電流源I4とで構成された差動増幅回路からなり、トランジスタQ5,Q6のベース端子に入力された、初段エミッタフォロア回路11Cの初段出力信号Foutを差動増幅する機能を有している。
 この場合、Q5,Q6のベース端子に入力される初段出力信号Foutの反転出力と非反転出力とに対して、初段増幅回路11Bでオフセット電圧が印加されているため、これら反転出力と非反転出力に含まれるパルスの振幅がオフセット電圧より小さい場合、これら信号は交差しなくなり、結果としてQ5,Q6のコレクタ端子から出力される次段差動出力が変化しなくなる。このため、コンパレータ11に入力される電気信号Tout+,Tout-に含まれるパルスのうち、R5,R6で決定されるオフセット電圧と対応する基準値に満たない振幅のパルスについては除去され、基準値以上の振幅を持つパルスのみが出力されることになる。
 次段エミッタフォロア回路11Eは、それぞれのコレクタ端子が電源電位Vccに接続されたトランジスタQ7,Q8とこれらQ7,Q8のエミッタ端子とGNDとの間にそれぞれ接続された定電流源I5,I6とからなり、これらQ7,Q8のベース端子にそれぞれ入力された次段増幅回路11Dの差動出力を、比較出力信号Coutとしてそれぞれ低インピーダンスで出力する機能を有している。
[第1の実施の形態の動作]
 次に、図3を参照して、本実施の形態にかかる光信号断検出回路10の動作について説明する。
 ここでは、光信号断検出回路10を含む光受信器100が適用されるシステムとして、10G-EPONを想定しており、入力されるバースト信号は、ビットレートが10Gbpsで、約10mVの振幅(差動で約20mVの振幅)を持っている。この10mVという振幅は、一般的なTIAにおける最小受信感度(-30dBm程度)のときの出力振幅に相当する。また、バースト信号には、例えば128bit、すなわち約13nsecの連続同符号区間が含まれるものとし、バースト信号の先頭検出に対する応答時間は100ns以下としている。これにより、アナログ保持回路12の保持コンデンサChの容量値を1pFとし、放電抵抗Rhの抵抗値を25kΩとした。なお、電源電位Vccは3.3Vであり、接地電位GNDは0Vである。
 トランスインピーダンスアンプTIAから入力されたバースト信号は、結合コンデンサCを介して微分波形となってコンパレータ11に入力され、図2に示した初段増幅回路11Bで差動増幅される。この際、抵抗素子R5,R6の抵抗値として、基準値に応じた互いに異なる抵抗値が予め設定されているため、初段出力信号Foutのうち反転信号Fout-の直流バイアスと非反転信号Fout+の直流バイアスとの間には、基準値に相当するオフセット電圧が印加されている。
 初段出力信号Foutは、初段エミッタフォロア回路11Cを介して次段増幅回路11Dへ入力されて差動増幅される。このため、反転信号Fout-および非反転信号Fout+に含まれるパルスのうち、オフセット電圧に満たない振幅のパルスについては、互いの信号が交差しなくなって、次段増幅回路11Dから出力されない。したがって、次段増幅回路11Dでは、オフセット電圧に満たない振幅のパルスが除去され、基準値以上の振幅を持つパルスのみが比較出力信号Coutとして、次段エミッタフォロア回路11Eを介して出力される。
 続いて、比較出力信号Coutは、アナログ保持回路12へ入力されて、比較出力信号Coutに含まれる各パルスのうち、保持コンデンサChの直流電圧よりダイオード接合電圧分だけ高い信号区間のみがダイオードDhで抽出されて、保持コンデンサChに充電される。
 これにより、保持コンデンサChの直流電圧、すなわち保持出力信号Houtは、光信号Pinのバースト信号のうち、基準値以上の振幅を持つパルスにより充電されて電圧値が上昇し、バースト信号のない信号断区間、バースト信号のうちパルス信号のない同符号連続区間、および基準値に満たない振幅のパルス区間については、放電抵抗Rhにより放電されて電圧値が低下する。なお、バースト信号のない信号断区間において、保持出力信号Houtが接地電位GNDまで低下しないのは、比較出力信号Coutに直流バイアスが印加されているからである。
 この際、保持コンデンサChと放電抵抗Rhの時定数は、バースト信号の先頭を検出するための応答速度と、バースト信号内に含まれる同符号連続区間を信号断と誤判定しない同符号連続耐性との兼ね合いで決定されている。
 これにより、バースト信号が入力された際、このバースト信号に含まれるパルスによって、応答時間として規定された100ns以下の所要時間で、保持出力信号Houtがバースト信号のないLowレベルからバースト信号有りを示すHighレベルまで充電される。また、バースト信号に含まれる同符号連続区間が到来した際、このパルス断により保持出力信号Houtが放電されても、最大同符号連続区間である約13nsecだけ、バースト信号有りを示すHighレベル、すなわちしきい値Hth以上に保持される。
 したがって、バースト信号が入力された際には、所定の応答時間内に光信号Pinの検出を示す信号断検出信号LOSを出力することができ、バースト信号内に同符号連続区間が含まれている場合でも、誤って信号断を示す信号断検出信号LOSを出力することもなく、光信号Pinの検出を示す信号断検出信号LOSを保持出力することができる。特に、図3では、10ns程度の応答時間で信号断検出信号LOSが出力されている。
 また、バースト信号が終了して信号断状態となった場合には、その終了時点から最大同符号連続区間が経過した後、光信号Pinの信号断を示す信号断検出信号LOSを出力することができる。
[第1の実施の形態の効果]
 このように、本実施の形態は、光信号断検出回路10において、コンパレータ11で、結合コンデンサを介して入力されたトランスインピーダンスアンプTIAからの電気信号のうち、基準値以上の振幅を持つパルスを比較出力信号Coutとして出力し、アナログ保持回路12で、比較出力信号Coutに含まれる各パルスを保持コンデンサで充電するとともに、充電により得られた直流電圧を放電抵抗で放電することにより、光信号の入力有無に応じて変化する保持出力信号Houtを生成するようにしたので、リセット信号などの外部からの制御信号を必要とすることなく自律的に動作して、光信号の入力有無を的確に検出することができる。
 したがって、光信号断検出回路10の外部から、リセット信号などの制御信号の入力を必要としないため、このような制御信号を出力する機能を持たない光受信器にも容易に適用でき、高い汎用性が得られる。また、光受信器から、このような制御信号を出力する回路部を削除することができ、低コスト化を実現できる。
 また、前述した従来技術では、コンパレータからの比較出力信号をラッチして信号断検出信号を生成しているため、光信号Pinの信号断時にノイズ入力があった場合、このノイズ入力により誤検出されて、光信号ありを示す信号断検出信号が出力されてしまうという問題点があった。本実施の形態では、アナログ保持回路12でバースト信号に含まれるパルスを充電することにより、光信号の入力有無を検出しているため、光信号Pinの信号断時にノイズ入力があった場合でも、これによる誤動作を回避でき、安定した光信号検出動作を実現できる。
 また、本実施の形態では、比較出力信号Coutに含まれる各パルスを整流するダイオードDhと、整流されたこれらパルスを充電する保持コンデンサChと、充電により得られた直流電圧を放電する放電抵抗Rhとからアナログ保持回路12を構成しているため、極めて小さい回路規模で、光信号の入力有無に応じて変化する保持出力信号を生成することができる。この際、ChとRhの時定数については、対象となるFTTHシステムに応じて、バースト信号の先頭を検出するための応答速度と、バースト信号内に含まれる同符号連続区間を信号断と誤判定しない同符号連続耐性との兼ね合いで決定することができ、高速応答性を確保しつつ、十分なノイズ耐性を得ることができる。
 また、本実施の形態では、コンパレータ11に、直列接続された2つの差動増幅回路11B,11Dを設け、これら差動増幅回路のうち前側に位置する初段増幅回路11Bで、反転信号Fout-および非反転信号Fout+のそれぞれに対応した2つの負荷抵抗R5,R6であって、かつ基準値に応じた互いに異なる抵抗値を有する負荷抵抗R5,R6を用いて、これら反転信号および非反転信号を差動増幅することにより、当該反転信号の直流バイアスと当該非反転信号の直流バイアスとの間に基準値に応じたオフセット電圧を印加して出力し、前段差動増幅回路より後側に位置する後側差動増幅回路で、前側差動増幅回路から出力された反転信号Fout-と非反転信号Fout+とを差動増幅するようにしたので、光信号Pinの信号断時にノイズ入力があった場合でも、基準値に満たない振幅のパルスについては除去することができる。
[第2の実施の形態]
 次に、図4を参照して、本発明の第2の実施の形態にかかる光信号断検出回路10について説明する。
 第1の実施の形態では、アナログ保持回路12として、コンパレータ11からの比較出力信号CoutをダイオードDhを介して保持コンデンサChで充電し、保持コンデンサChに並列接続された放電抵抗Rhで、充電により得られた直流電圧を放電する場合について説明した。本実施の形態では、ダイオードDhに代えてダイオード接続したトランジスタQhを用いるとともに、このトランジスタQhに放電抵抗Rhを並列接続する場合を例として説明する。
 本実施の形態にかかるアナログ保持回路12は、図4に示すように、トランジスタQhのうち、ベース端子がコレクタ端子およびコンパレータ11の比較出力信号Coutと接続され、エミッタ端子が保持コンデンサChの一端に接続されている。また、保持コンデンサChの他端が接地電位に接続されている。また、放電抵抗RhがトランジスタQhのベース端子とエミッタ端子との間に並列接続されている。
 これにより、コンパレータ11から出力された比較出力信号Coutに含まれる各パルスのうち、保持コンデンサChの直流電圧よりダイオード接合電圧分だけ高いパルスのみがトランジスタQhで抽出されて、保持コンデンサChに充電される。また、各パルスのうち、保持コンデンサChの直流電圧より高いパルスのみが放電抵抗Rhを介して保持コンデンサChに充電される。これにより、保持コンデンサChの直流電圧は、ダイオード接合電圧分の電圧降下がなくなり、電源電位Vccでピークホールドされることになる。
 また、光信号Pinが信号断状態となった場合には、直流電圧が放電抵抗Rhを介してコンパレータ11側へ放電されるため、第1の実施の形態と同様に、光信号Pinの信号断を示す信号断検出信号LOSが自律的に出力される。
[第2の実施の形態の効果]
 このように、本実施の形態では、アナログ保持回路12を、比較出力信号に含まれる各パルスを整流する、ダイオード接続されたトランジスタと、整流されたこれらパルスを充電する保持コンデンサと、充電により得られた直流電圧を放電する放電抵抗とから構成したので、保持出力信号Houtとしてデジタル論理信号のHighレベルを出力することができ、出力バッファ13で保持出力信号Houtをデジタル論理信号からなる信号断検出信号LOSへ、容易にレベル変換することができる。また、トランジスタをダイオード接続によりダイオードとして使用することにより、ダイオードを別途作成するプロセスを省くことができる。
 なお、本実施の形態では、ダイオード接続したトランジスタQhを用いたが、このトランジスタQhに代えて、第1の実施の形態と同様のダイオードDhを用いてもよい。
 また、保持コンデンサChと放電抵抗Rhで決まる時定数については、電気信号Tout+,Tout-として入力されるバースト信号の先頭を検出するための応答速度と、バースト信号内に含まれる同符号連続区間を信号断と誤判定しない同符号連続耐性との兼ね合いで決定される。
[第3の実施の形態]
 次に、図5を参照して、本発明の第3の実施の形態にかかる光信号断検出回路10について説明する。
 本実施の形態では、コンパレータ11に、光信号の検出感度を調整するための可変抵抗Rsを設けた場合を例として説明する。
 本実施の形態において、コンパレータ11は、直列接続された複数の差動増幅回路を含み、これら差動増幅回路のうち最後尾に位置する差動増幅回路で、反転信号および非反転信号のそれぞれに対応した2つの負荷抵抗のうちの少なくともいずれか一方の負荷抵抗を可変抵抗Rsとしている。また、コンパレータ11から出力された差動信号から比較出力信号Coutを生成してアナログ保持回路12へ出力する中間バッファ14をさらに備えている。
 前述の図2で説明した第1の実施の形態にかかるコンパレータと比較して、本実施の形態にかかるコンバータ10には、図6に示すように、次段増幅回路(最後尾増幅回路)11Dの負荷抵抗である抵抗素子R9,R10のうち、Fout+に対応する負荷抵抗であるR9に、感度調整用の可変抵抗Rsが並列接続されている。すなわち、可変抵抗Rsの一端がトランジスタQ5のコレクタ端子に接続され、他端が電源電位Vccに接続されている。
 一方、中間バッファ14は、差動対をなすFETM1,M2と、差動対をなすFETM3,M4とから構成されている。このうちM1,M2はカレントミラー回路構成しており、M1のゲート端子がソース端子とM2のゲート端子に接続されており、M1のドレイン端子とM2のドレイン端子が電源電位Vccに接続されている。また、M1,M2は差動増幅回路を構成しており、M3のドレイン端子がM1のソース端子に接続され、M4のドレイン端子がM2のソース端子に接続され、M3,M4の接続点とGNDとの間に定電流源I7が接続されている。これにより、中間バッファ14は、M3,M4のゲート端子に入力された比較出力信号Coutを差動増幅し、得られた差動比較出力のうちM4から出力された非反転出力を、保持入力信号Hinとしてアナログ保持回路12へ出力する。
 図7示すように、この可変抵抗Rsの抵抗値を変化させた場合、Q5の負荷抵抗値が変化する。このため、次段差動増幅回路11Dからの比較出力信号Coutのうち、反転信号Cout-の直流バイアスが変化して、非反転信号Cout+の直流バイアスとの間のオフセット電圧が変化する。
 したがって、中間バッファ14において、これら反転信号Cout-と非反転信号Cout+に含まれるパルスのうち、オフセット電圧に満たない振幅のパルスについては、互いの信号が交差しなくなって、中間バッファ14から保持入力信号Hinとして出力されない。したがって、アナログ保持回路12の保持コンデンサChに充電される直流電圧の大きさが変化する。
 例えば、図7における比較出力信号Coutの反転信号Cout-は、可変抵抗Rsの抵抗値が調整されたものであり、図3のものと比較して、直流バイアスが0.2Vほど低めに設定されている。これにより、図3の場合と比較して、反転信号Cout-と非反転信号Cout+のパルスが交差する割合が低下し、保持入力信号Hinとして出力されるパルスの数や振幅が低減する。したがって、アナログ保持回路12の保持出力信号Houtは、図3のものと比較して全体的に電圧が低下して、しきい値Hthより低くなっている。このため、結果として、バースト信号の検出感度が低下して、バースト信号有りを示すHighレベルの信号断検出信号LOSは出力されていない。
[第3の実施の形態の効果]
 このように、本実施の形態では、コンパレータ11に、直列接続された複数の差動増幅回路11B,11Dを含み、これら差動増幅回路のうち最後尾に位置する差動増幅回路11Dで、反転信号Fout-および非反転信号Fout+のそれぞれに対応した2つの負荷抵抗R9,R10のうちの少なくともいずれか一方の負荷抵抗R9を可変抵抗とし、中間バッファ14で、コンパレータ11から出力された比較出力信号Coutを差動増幅してアナログ保持回路12へ出力するようにしたので、可変抵抗の値を調整することにより、光信号Pinの入力有無を検出する検出感度を調整することができる。これにより、温度や電源電位の変動に応じて可変抵抗の抵抗値を変化させることで、温度や電源電位の変動が発生した場合でも、安定した光信号検出動作を実現できる。
 また、本実施の形態では、コンパレータ11の差動増幅回路のうち、最後尾の差動増幅回路11Dに可変抵抗Rsを設けた場合を例として説明したが、これに限定されるものではなく、例えば、最後尾より前側に位置する初段増幅回路11Bで、負荷抵抗R5,R6のうちの少なくともいずれか一方に可変抵抗Rsを設けてもよい。この際には、次段増幅回路11Dで、初段増幅回路11Bの初段出力信号Foutが差動増幅されるため、中間バッファ14を省くことができる。
 なお、コンパレータ11では、初段増幅回路11Bにおいて、初段出力信号Foutの反転信号Fout-および非反転信号Fout+にオフセット電圧を与えるため、初段増幅回路11Bの増幅率は低く設定し、次段増幅回路11Dの増幅率を高く設定してある。したがって、次段増幅回路11Dの負荷抵抗も大きい抵抗値を有しているため、負荷抵抗の値を大きく変化させることができ、次段増幅回路11Dに可変抵抗Rsを接続したほうが感度調整範囲を広くとることができる。
 また、本実施の形態では、負荷抵抗に対して可変抵抗Rsを並列接続する場合について説明したが、これに限定されるものではなく、抵抗値を変化させることが可能な負荷抵抗回路であればいずれの回路を用いてもよい。
[第4の実施の形態]
 次に、図8を参照して、本発明の第4の実施の形態にかかる光信号断検出回路10について説明する。
 第4の実施の形態では、出力バッファ13としてヒステリシス特性を持つバッファを用いる場合を例として説明する。
 アナログ保持回路12の保持出力信号Houtにおいて、その立ち上がりおよび立ち下りは緩やかで、バースト信号に含まれる同符合連続区間では、その電圧レベルも変動する。このような特性は、アナログ保持回路12のCR時定数に起因するものであるから、例えば同符合連続区間のレベル変動を抑制するために、保持コンデンサChの容量や、放電抵抗Rhの値を大きくすると、ますます立ち上がりや立ち下りが遅くなってしまう。
 このような、立ち上がり時間や立ち下り時間の増加、および同符合連続区間での保持レベルの変動は、出力バッファ13から出力される信号断検出信号LOSのチャタリングの原因となって好ましくない。
 本実施の形態では、アナログ保持回路12として、シュミットトリガインバータなど、ヒステリシス特性を具備した論理回路を用いている。もちろん、信号断検出信号LOSのレベル調整やバッファリングのために、シュミットトリガインバータ出力に対して、さらにインバータや出力バッファを接続してもよい。また、シュミットトリガインバータの代わりに、ヒステリシスコンパレータを接続してもよい。
[第4の実施の形態の効果]
 このように、本実施の形態は、アナログ保持回路12として、シュミットトリガインバータなど、ヒステリシス特性を具備した論理回路を用いたので、アナログ保持回路12のCR時定数を大きく設定した場合でも、信号断検出信号LOSのチャタリング発生を抑制することができる。
[第5の実施の形態]
 次に、図9を参照して、本発明の第5の実施の形態にかかる光受信器および光信号断検出回路について説明する。
 第1の実施の形態では、トランスインピーダンスアンプTIAからの電気信号Toutを光信号断検出回路10のコンパレータ11へ入力する場合を例として説明した。本実施の形態では、リミッティングアンプLAを構成する初段増幅回路PAから出力される電気信号Pout(Pout+,Pout-)をコンパレータ11へ入力している。
 リミッティングアンプLAの初段増幅回路PAは、出力インピーダンスの低い、エミッタフォロア回路または差動増幅回路からなり、入力されたトランスインピーダンスアンプTIAからの電気信号Toutを、リミッティングアンプLA内に設けられている後段の増幅回路へ出力する機能を有している。
 したがって、トランスインピーダンスアンプTIAからの電気信号Toutは、光信号断検出回路10へ分岐されることなくリミッティングアンプLAに入力される。そして、リミッティングアンプLAの初段増幅回路PAから低インピーダンスで出力された電気信号Poutが、光信号断検出回路10へ分岐される。
[第5の実施の形態の効果]
 このように、本実施の形態は、トランスインピーダンスアンプTIAからの電気信号Toutに代えて、リミッティングアンプLAに設けられた初段増幅回路PAから低インピーダンスで出力された電気信号Poutを分岐して、光信号断検出回路10へ入力するようにしたので、電気信号Toutの分岐に伴うトランスインピーダンスアンプTIAの負荷インピーダンスの低下を初段増幅回路PAでカバーすることができる。このため、トランスインピーダンスアンプTIAの駆動負荷を軽減できる。また、初段増幅回路PAによるインピーダンス変換により、トランスインピーダンスアンプTIAの出力とリミッティングアンプLAの入力とのインピーダンス整合がとりやすくなる。
[実施の形態の拡張]
 以上、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
 100…光受信器、10…光信号断検出回路、11…コンパレータ、12…アナログ保持回路、C…結合コンデンサ、Pin…光信号、Tout…電気信号、Hout…保持出力信号。

Claims (8)

  1.  パルス列からなる光信号を光電変換して得られた電気信号を、結合コンデンサを介して入力し、基準値以上の振幅を持つパルスを比較出力信号として出力するコンパレータと、
     前記比較出力信号に含まれる各パルスを保持コンデンサで充電するとともに、充電により得られた直流電圧を放電抵抗で放電することにより、前記光信号の入力有無に応じて変化する保持出力信号を生成するアナログ保持回路と
     を備えることを特徴とする光信号断検出回路。
  2.  請求項1に記載の光信号断検出回路において、
     前記アナログ保持回路は、前記比較出力信号に含まれる各パルスを整流するダイオードと、整流されたこれらパルスを充電する保持コンデンサと、充電により得られた直流電圧を放電する放電抵抗とを含むことを特徴とする光信号断検出回路。
  3.  請求項1に記載の光信号断検出回路において、
     前記アナログ保持回路は、前記比較出力信号に含まれる各パルスを整流する、ダイオード接続されたトランジスタと、このトランジスタからの出力信号を充電する保持コンデンサと、充電により得られた直流電圧を放電する放電抵抗とを含むことを特徴とする光信号断検出回路。
  4.  請求項1に記載の光信号断検出回路において、
     前記電気信号は、反転信号と非反転信号とからなる差動信号からなり、
     前記コンパレータは、直列接続された複数の差動増幅回路を含み、これら差動増幅回路のうち最後尾に位置する差動増幅回路で、前記反転信号および前記非反転信号のそれぞれに対応した2つの負荷抵抗のうちの少なくともいずれか一方の負荷抵抗を可変抵抗とし、
     前記コンパレータから出力された差動信号から前記比較出力信号を生成して前記アナログ保持回路へ出力する中間バッファをさらに備える
     ことを特徴とする光信号断検出回路。
  5.  請求項1に記載の光信号断検出回路において、
     前記電気信号は、反転信号と非反転信号とからなる差動信号からなり、
     前記コンパレータは、直列接続された複数の差動増幅回路を含み、これら差動増幅回路のうち最後尾より前側に位置するいずれか1つの差動増幅回路で、前記反転信号および前記非反転信号のそれぞれに対応した2つの負荷抵抗のうちの少なくともいずれか一方の負荷抵抗を可変抵抗とすることを特徴とする光信号断検出回路。
  6.  請求項1に記載の光信号断検出回路において、
     前記アナログ保持回路で得られた前記保持出力信号を、ヒステリシス特性に基づいて整形出力するバッファをさらに備えることを特徴とする光信号断検出回路。
  7.  請求項1に記載の光信号断検出回路において、
     前記電気信号は、反転信号と非反転信号とからなる差動信号からなり、
     前記コンパレータは、直列接続された2つの差動増幅回路を含み、これら差動増幅回路のうち前側に位置する前側差動増幅回路で、前記反転信号および前記非反転信号のそれぞれに対応した2つの負荷抵抗であって、かつ前記基準値に応じた互いに異なる抵抗値を有する負荷抵抗を用いて、これら反転信号および前記非反転信号を差動増幅することにより、当該反転信号の直流バイアスと当該非反転信号の直流バイアスとの間に前記基準値に応じたオフセット電圧を印加して出力し、前記前側差動増幅回路より後側に位置する後側差動増幅回路で、前記前側差動増幅回路から出力された前記反転信号と前記非反転信号とを差動増幅する
     ことを特徴とする光信号断検出回路。
  8.  パルス列からなる光信号を光電流信号に光電変換して出力する光電変換素子と、
     前記光電流信号を増幅して反転信号と非反転信号とからなる電気信号を出力するトランスインピーダンスアンプと、
     前記電気信号に含まれる前記パルス列の各パルスを一定振幅に増幅して出力するリミッティングアンプと、
     パルス列からなる光信号を光電変換して得られた電気信号を、結合コンデンサを介して入力し、基準値以上の振幅を持つパルスを比較出力信号として出力するコンパレータと、
     前記比較出力信号に含まれる各パルスを保持コンデンサで充電するとともに、充電により得られた直流電圧を放電抵抗で放電することにより、前記光信号の入力有無に応じて変化する保持出力信号を生成するアナログ保持回路と
     を備えることを特徴とする光受信器。
PCT/JP2011/053013 2010-02-15 2011-02-14 光信号断検出回路および光受信器 WO2011099598A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180009481.7A CN102771065B (zh) 2010-02-15 2011-02-14 光信号切断检测电路和光接收器
EP11742341.8A EP2538583B1 (en) 2010-02-15 2011-02-14 Optical signal turn-off detection circuit and optical receiver
US13/578,811 US9025970B2 (en) 2010-02-15 2011-02-14 Optical signal cutoff detection circuit and optical receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010030011A JP4856771B2 (ja) 2010-02-15 2010-02-15 光信号断検出回路および光受信器
JP2010-030011 2010-02-15

Publications (1)

Publication Number Publication Date
WO2011099598A1 true WO2011099598A1 (ja) 2011-08-18

Family

ID=44367865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053013 WO2011099598A1 (ja) 2010-02-15 2011-02-14 光信号断検出回路および光受信器

Country Status (5)

Country Link
US (1) US9025970B2 (ja)
EP (1) EP2538583B1 (ja)
JP (1) JP4856771B2 (ja)
CN (1) CN102771065B (ja)
WO (1) WO2011099598A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255056A (ja) * 2012-06-06 2013-12-19 Nippon Telegr & Teleph Corp <Ntt> 光信号検出回路
US20220345225A1 (en) * 2019-08-27 2022-10-27 Mitsubishi Electric Corporation Reception device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102300A1 (ja) * 2011-01-25 2012-08-02 日本電信電話株式会社 光信号検出回路および光受信器
JP5885467B2 (ja) * 2011-11-01 2016-03-15 三菱電機株式会社 受光レベル取得装置、光受信器、光通信システム、受光レベル取得方法及びプログラム
JP5762943B2 (ja) * 2011-12-27 2015-08-12 株式会社東芝 光送受信回路装置及び受信回路
JP2014160176A (ja) * 2013-02-20 2014-09-04 Sumitomo Electric Ind Ltd 駆動回路
CN103595486A (zh) * 2013-11-14 2014-02-19 中国电子科技集团公司第三十四研究所 突发式低抖动光模块及其运行方法
WO2015186223A1 (ja) * 2014-06-05 2015-12-10 三菱電機株式会社 バースト信号受信回路
US9461743B1 (en) * 2014-07-16 2016-10-04 Rockwell Collins, Inc. Pulse to digital detection circuit
KR101898452B1 (ko) 2014-10-17 2018-09-13 샘텍, 인코포레이티드 액티브 광 케이블에서의 수신기 결합 효율, 링크 마진 및 링크 토폴로지의 측정방법
CN104639257B (zh) * 2015-01-29 2017-11-03 电子科技大学 应用于光接收器的抗干扰电路
US20180062762A1 (en) * 2016-08-29 2018-03-01 Electronics And Telecommunications Research Institute Optical signal receiving apparatus for receiving optical signal in burst mode
WO2019130526A1 (ja) * 2017-12-27 2019-07-04 株式会社ニコンビジョン 光検出装置及び方法並びに測距装置及び方法
CN109995436B (zh) * 2017-12-29 2021-08-31 北京华为数字技术有限公司 光线路终端的单板及光线路终端
WO2019163135A1 (ja) 2018-02-26 2019-08-29 三菱電機株式会社 信号検出回路、光受信器、親局装置および信号検出方法
EP3776859A1 (en) * 2018-03-30 2021-02-17 Intel IP Corporation Transceiver baseband processing
JP6909929B2 (ja) * 2018-05-30 2021-07-28 株式会社ニコンビジョン 光検出装置及び方法並びに測距装置及び方法
US10972815B2 (en) * 2019-05-01 2021-04-06 Semtech Corporation Signal detection for GPON optical line terminal
CN110336617B (zh) * 2019-07-31 2024-05-17 深圳市亚派光电器件有限公司 光接收模块和光模块
WO2022180779A1 (ja) * 2021-02-26 2022-09-01 三菱電機株式会社 光受信モジュールおよび光トランシーバ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245725A (ja) * 1988-03-28 1989-09-29 Hitachi Cable Ltd 光受信回路
JP2007005968A (ja) * 2005-06-22 2007-01-11 Nippon Telegr & Teleph Corp <Ntt> バースト先頭検出回路
JP2007081599A (ja) * 2005-09-13 2007-03-29 Fujikura Ltd バースト信号受信装置及びバースト信号検出方法
JP2007189294A (ja) * 2006-01-11 2007-07-26 Nec Corp 信号検出システム、信号検出回路、信号検出方法およびプログラム
JP2009044228A (ja) 2007-08-06 2009-02-26 Ntt Electornics Corp 光受信回路

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4688260A (en) * 1985-10-09 1987-08-18 Westinghouse Electric Corp. High-reliability fiber optic repeater
EP0792012B1 (en) * 1996-02-23 2003-05-07 Matsushita Electric Industrial Co., Ltd. Amplifier for burst signal and optical receiving circuit
JPH1084231A (ja) * 1996-05-24 1998-03-31 Toshiba Corp デジタル信号受信回路
JP3729993B2 (ja) 1997-09-18 2005-12-21 シャープ株式会社 ピークホールド回路およびそれを備える赤外線通信装置
US5991335A (en) * 1997-10-14 1999-11-23 3Com Corporation Method and system for line isolation
JP2000241778A (ja) * 1999-02-19 2000-09-08 Fujitsu Ltd 光通信装置および光分岐・挿入装置
JP3593646B2 (ja) * 1999-03-19 2004-11-24 富士通株式会社 バースト光送信回路
US7173551B2 (en) * 2000-12-21 2007-02-06 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
US7307569B2 (en) * 2001-03-29 2007-12-11 Quellan, Inc. Increasing data throughput in optical fiber transmission systems
JP2003158493A (ja) * 2001-11-21 2003-05-30 Mitsubishi Electric Corp 光遮断検出装置、光受信器、光送信器及び光遮断検出方法
KR100703428B1 (ko) * 2002-04-26 2007-04-03 삼성전자주식회사 버스트모드 광 수신기 및 그의 신호 크기 검출 장치
JP4569195B2 (ja) * 2003-11-14 2010-10-27 富士ゼロックス株式会社 信号伝送装置
JP2005332209A (ja) 2004-05-20 2005-12-02 Rohm Co Ltd 半導体集積回路装置及びこれを用いた携帯機器
US7868701B2 (en) * 2004-08-03 2011-01-11 Nippon Telephone And Telegraph Corporation Transimpedance amplifier
US20060216042A1 (en) * 2005-03-24 2006-09-28 Yeo Kok S Automatic gain control circuit for infrared receiver
JP2007258956A (ja) * 2006-03-22 2007-10-04 Nec Electronics Corp 信号増幅回路および光受信器
WO2012102300A1 (ja) * 2011-01-25 2012-08-02 日本電信電話株式会社 光信号検出回路および光受信器
JP5724546B2 (ja) * 2011-03-31 2015-05-27 富士通オプティカルコンポーネンツ株式会社 光送信機および光波形補償方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245725A (ja) * 1988-03-28 1989-09-29 Hitachi Cable Ltd 光受信回路
JP2007005968A (ja) * 2005-06-22 2007-01-11 Nippon Telegr & Teleph Corp <Ntt> バースト先頭検出回路
JP2007081599A (ja) * 2005-09-13 2007-03-29 Fujikura Ltd バースト信号受信装置及びバースト信号検出方法
JP2007189294A (ja) * 2006-01-11 2007-07-26 Nec Corp 信号検出システム、信号検出回路、信号検出方法およびプログラム
JP2009044228A (ja) 2007-08-06 2009-02-26 Ntt Electornics Corp 光受信回路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013255056A (ja) * 2012-06-06 2013-12-19 Nippon Telegr & Teleph Corp <Ntt> 光信号検出回路
US20220345225A1 (en) * 2019-08-27 2022-10-27 Mitsubishi Electric Corporation Reception device
US11784721B2 (en) * 2019-08-27 2023-10-10 Mitsubishi Electric Corporation Reception device

Also Published As

Publication number Publication date
EP2538583A1 (en) 2012-12-26
US9025970B2 (en) 2015-05-05
EP2538583A4 (en) 2015-11-25
CN102771065A (zh) 2012-11-07
US20130039649A1 (en) 2013-02-14
JP2011166659A (ja) 2011-08-25
JP4856771B2 (ja) 2012-01-18
EP2538583B1 (en) 2017-11-01
CN102771065B (zh) 2015-03-04

Similar Documents

Publication Publication Date Title
JP4856771B2 (ja) 光信号断検出回路および光受信器
US9160458B2 (en) Optical signal detection circuit and optical receiver
CN106851443B (zh) Olt收发一体芯片
US9853618B2 (en) Transimpedance amplifier circuit
US9496826B2 (en) Transimpedance amplifier
JP2008211702A (ja) 前置増幅器およびそれを用いた光受信装置
WO2012016388A1 (en) Burst optical signal receiving device
KR101544077B1 (ko) 친국측 장치
JP2003318680A (ja) 差動出力型バーストモード光受信機
US7330670B2 (en) Bottom level detection device for burst mode optical receiver
JPWO2014128986A1 (ja) バースト光受信器、バースト光受信器のapdのバイアス電圧制御方法
JP6661057B1 (ja) リミッティング増幅回路
CN114389550A (zh) 用于接收突发光信号的跨阻抗放大电路
KR20030082074A (ko) 버스트모드 광 수신기
JP5065426B2 (ja) 光信号断検出回路および光受信器
US20090243729A1 (en) Controlling overload of a transimpedance amplifier in an optical transceiver
KR100703428B1 (ko) 버스트모드 광 수신기 및 그의 신호 크기 검출 장치
KR100381410B1 (ko) 다단 궤환형 버스트모드 광수신기
JP4838279B2 (ja) 増幅回路
JP4691128B2 (ja) 増幅回路
JP4691127B2 (ja) 増幅回路
JP5096507B2 (ja) 振幅制限増幅回路および光受信器
JP2010226627A (ja) バースト信号識別器、バースト光受信器、バースト信号識別方法およびバースト光受信方法
JP2013081064A (ja) 光受信器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009481.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742341

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011742341

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011742341

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13578811

Country of ref document: US