WO2011093403A1 - 含フッ素弾性共重合体及び製造方法 - Google Patents

含フッ素弾性共重合体及び製造方法 Download PDF

Info

Publication number
WO2011093403A1
WO2011093403A1 PCT/JP2011/051652 JP2011051652W WO2011093403A1 WO 2011093403 A1 WO2011093403 A1 WO 2011093403A1 JP 2011051652 W JP2011051652 W JP 2011051652W WO 2011093403 A1 WO2011093403 A1 WO 2011093403A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic copolymer
fluorinated elastic
fluorinated
fluorine
copolymer according
Prior art date
Application number
PCT/JP2011/051652
Other languages
English (en)
French (fr)
Inventor
丈裕 巨勢
満 関
水野 剛
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP11737114.6A priority Critical patent/EP2530096B1/en
Priority to CN2011800077690A priority patent/CN102741304A/zh
Priority to JP2011551911A priority patent/JPWO2011093403A1/ja
Publication of WO2011093403A1 publication Critical patent/WO2011093403A1/ja
Priority to US13/551,157 priority patent/US8927668B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/443Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds
    • H01B3/445Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylhalogenides or other halogenoethylenic compounds from vinylfluorides or other fluoroethylenic compounds

Definitions

  • the present invention relates to a fluorinated elastic copolymer and a method for producing the same, and more specifically, it has excellent crosslinking reactivity, high fluidity, and includes a compression set and a base resistance of a crosslinked rubber obtained by crosslinking.
  • the present invention relates to a fluoroelastic copolymer and a method for producing the same.
  • Fluorine-containing elastic copolymers are excellent in heat resistance, chemical resistance, oil resistance, weather resistance, and the like, and are therefore applied to harsh environments where ordinary hydrocarbon materials cannot withstand.
  • Known fluorine-containing elastic copolymers include vinylidene fluoride / hexafluoropropylene copolymer, tetrafluoroethylene / propylene copolymer, and tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer. It has been.
  • tetrafluoroethylene / propylene copolymers are superior in amine resistance and high temperature steam resistance as compared to the above-mentioned fluorinated elastic copolymers containing repeating units based on vinylidene fluoride, and also in electrical insulation. Since it is excellent, it is widely used as a covering material for electric wires (see Patent Document 1 and Patent Document 2).
  • the tetrafluoroethylene / propylene copolymer is prone to swell in nonpolar solvents such as gasoline and automatic transmission oil, and its use in environments exposed to these solvent atmospheres is limited. There was a problem such as.
  • a fluorine-containing elastic copolymer obtained by copolymerizing tetrafluoroethylene and propylene in the presence of a fluorine-containing chain transfer agent having an iodo atom has an iodine atom at the polymer terminal, Is possible (see Patent Document 3).
  • the fluorinated elastic copolymer is excellent in cross-linking reactivity and extrusion moldability, and the cross-linked rubber obtained by cross-linking is excellent in compression set resistance, base resistance and oil resistance, and is particularly suitable as a wire coating material. Development of was desired.
  • the object of the present invention is excellent in crosslinking reactivity and extrusion moldability, and a crosslinked rubber obtained by crosslinking is excellent in compression set resistance, base resistance and oil resistance, and particularly suitable as a wire coating material.
  • the object is to provide a fluorinated elastic copolymer and a method for producing the same.
  • the inventors of the present invention include a repeating unit based on tetrafluoroethylene and a repeating unit based on propylene at a specific ratio, and a repeating unit based on other monomers as necessary. It has been found that the above problems can be solved by using a polymer, and the present invention has been completed.
  • the fluorinated elastic copolymer of the present invention is a fluorinated elastic copolymer obtained by copolymerizing tetrafluoroethylene, propylene and, if necessary, other monomers, and comprises a fluorinated elastic copolymer.
  • the molar ratio (a) / (b) of the repeating unit (a) based on tetrafluoroethylene and the repeating unit (b) based on propylene in the coalescence is 60/40 to 75/25, and the repeating based on the other monomer.
  • the unit (c) is 0 to 10 mol% in the fluorinated elastic copolymer.
  • the other monomer is preferably perfluoro (alkyl vinyl ether).
  • the fluorinated elastic copolymer of the present invention preferably has an iodine atom.
  • the fluorine-containing elastic copolymer composition of the present invention contains the above-mentioned fluorine-containing elastic copolymer.
  • the crosslinked rubber of the present invention is obtained by crosslinking the fluorinated elastic copolymer with an organic peroxide.
  • the covered electric wire of the present invention is obtained by crosslinking the composition containing the fluorinated elastic copolymer.
  • the method for producing a fluorinated elastic copolymer of the present invention is a method for producing the above fluorinated elastic copolymer, comprising a radical polymerization initiator and a general formula RI 2 (wherein R is a carbon number of 3 or more).
  • RI 2 wherein R is a carbon number of 3 or more.
  • An alkylene group or a perfluoroalkylene group), and in the presence of an iodo compound represented by the formula, the tetrafluoroethylene, the propylene, and, if necessary, the other monomers are copolymerized. is there.
  • the fluorinated elastic copolymer of the present invention is excellent in cross-linking reactivity and extrusion moldability, and a cross-linked rubber obtained by cross-linking is excellent in compression set resistance, base resistance and oil resistance, It is suitable as.
  • the fluorinated elastic copolymer of the present invention is a fluorinated elastic copolymer obtained by copolymerizing tetrafluoroethylene (hereinafter referred to as TFE) and propylene (hereinafter referred to as P).
  • TFE tetrafluoroethylene
  • P propylene
  • the crosslinking reactivity and extrusion moldability are excellent, and the base resistance and oil resistance are excellent. If the ratio (a) is higher than (a) / (b) than 70/30, the rubber-like properties are lost, and the resulting crosslinked rubber becomes brittle, which is not preferable.
  • the repeating unit (c) based on other monomers is 0 to 10 mol% in the fluorinated elastic copolymer.
  • Other monomers include fluorinated olefins such as monofluoroethylene, trifluoroethylene, trifluoropropylene, pentafluoropropylene, hexafluoropropylene, hexafluoroisobutylene and dichlorodifluoroethylene, perfluoromethyl vinyl ether, perfluoroethyl vinyl ether, Perfluoroalkyl vinyl ethers such as fluoropropyl vinyl ether, perfluoro (3,6-dioxa-5-methyl-octene), perfluoro (ethoxyethyl vinyl ether), hydrocarbon olefins such as ethylene, 1-butene and isobutylene, methyl vinyl ether, Alkyl vinyl ethers such as ethyl vinyl ether, butyl vinyl ether, cyclohexyl vinyl ether, vinyl acetate, propylene Nsan vinyl esters of vinyl such as vinyl chloride, vinylidene chlor
  • Other monomers are preferably fluorinated olefins and perfluoroalkyl vinyl ethers, and more preferably perfluoroalkyl vinyl ethers.
  • perfluoroalkyl vinyl ether perfluoromethyl vinyl ether and perfluoropropyl vinyl ether are more preferable.
  • 93/7 to 98/2 is more preferable
  • 95/5 to 98/2 (molar ratio) is most preferable.
  • the iodo compound acts as a chain transfer agent, and iodo is introduced into the molecular terminals of the fluorinated elastic copolymer.
  • Such an iodo end group is excellent in radical reactivity, and therefore excellent in reactivity during a crosslinking reaction with an organic peroxide.
  • the iodo compound represented by the general formula RI 2 is a compound having an iodo atom bonded to both ends of an alkylene group or a perfluoroalkylene group having 3 or more carbon atoms, preferably 3 to 8 carbon atoms.
  • diiodo compounds having an alkylene group such as 1,3-diiodopropane, 1,4-diiodobutane, 1,6-diiodohexane, 1,8-diiodooctane, 1,3-diiodoper
  • diiodo compounds having a perfluoroalkylene group such as fluoropropane, 1,4-diiodoperfluorobutane, 1,6-diiodoperfluorohexane, and 1,8-diiodoperfluorooctane.
  • the iodo compound represented by the general formula RI 2 is more preferably an iodo compound having a perfluoroalkylene group, and most preferably 1,4-diiodoperfluorobutane.
  • the iodo compound represented by the general formula RI 2 is added so that the total amount of iodo atoms in the fluorinated elastic copolymer is 0.01 to 5.0% by mass with respect to the amount of polymer produced. It is preferable to do. Further, it is particularly preferable to add so as to be 0.1 to 1.0% by mass.
  • examples of the polymerization method include an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, a bulk polymerization method and the like.
  • an emulsion polymerization method in which monomers such as TFE and P are polymerized in an aqueous medium in the presence of an emulsifier is preferable because the molecular weight and the copolymer composition are easily adjusted and the productivity is excellent.
  • Examples of the aqueous medium include water or water containing a water-soluble organic solvent, and water containing a water-soluble organic solvent is more preferable.
  • Examples of the water-soluble organic solvent include tert-butanol, propylene glycol, dipropylene glycol, dipropylene glycol monomethyl ether, and tripropylene glycol.
  • As the water-soluble organic solvent tert-butanol, propylene glycol, and dipropylene glycol monomethyl ether are preferable, and tert-butanol is more preferable.
  • the content of the water-soluble organic solvent in the aqueous medium is preferably 1 to 50 parts by mass and more preferably 3 to 20 parts by mass with respect to 100 parts by mass of water.
  • the pH of the aqueous medium is preferably 7 to 14, more preferably 7 to 11, further preferably 7.5 to 11, and most preferably 8 to 10.5.
  • the period during which the pH of the aqueous medium is maintained in the above range is preferably the entire polymerization period from the start of the polymerization to the end of the polymerization, but may not be the entire polymerization period.
  • it is 80% or more of the total polymerization period, more preferably 90% or more, and still more preferably 95% or more.
  • pH buffering agents include inorganic salts.
  • examples of the inorganic salts include phosphates such as disodium hydrogen phosphate and sodium dihydrogen phosphate, and carbonates such as sodium bicarbonate and sodium carbonate. More preferable specific examples of the phosphate include disodium hydrogen phosphate dihydrate and disodium hydrogen phosphate dodecahydrate.
  • an ionic emulsifier is preferable and an anionic emulsifier is more preferable because the resulting fluorinated elastic copolymer latex is excellent in mechanical and chemical stability.
  • an anionic emulsifier known ones can be used. Specific examples include hydrocarbon emulsifiers such as sodium lauryl sulfate and sodium dodecylbenzenesulfonate, and fluorine-containing compounds such as ammonium perfluorooctanoate and ammonium perfluorohexanoate.
  • Alcanic acid salt general formula (1): R f1 OR f2 COOA (wherein R f1 is a C 1-10 perfluoroalkyl group, R f2 is a linear fluorine-containing alkylene group, The fluorine-containing alkylene group may have an etheric oxygen atom, the fluorine-containing alkylene group may have a side chain of a perfluoroalkyl group having 1 to 3 carbon atoms, and A is a hydrogen atom, an alkali metal or NH 4.
  • the carbon number of R f2 is preferably 1 to 12, fluorine-containing to 1-8 is represented by a more preferred.
  • Ether carboxylic acid compound (hereinafter, referred to as the compound of the general formula (1)) and the like.
  • a fluorine-containing emulsifier is preferable, and a fluorine-containing alkane salt and a compound of the general formula (1) are more preferable. Furthermore, the compound of the general formula (2) is most preferable.
  • Specific examples of the compound represented by the general formula (1) or the compound represented by (2) when A is NH 4 include C 2 F 5 OCF 2 COONH 4 and C 3 F 7 OCF 2.
  • Examples of the most preferable compound represented by the general formula (2) include F (CF 2 ) 2 OCF 2 CF 2 OCF 2 COONH 4 , F (CF 2 ) 2 O (CF 2 CF 2 O) 2 CF 2 COONH 4 , F (CF 2 ) 3 O (CF (CF 3 ) CF 2 O) 2 CF (CF 3 ) COONH 4 , F (CF 2 ) 3 OCF 2 CF 2 OCF 2 COONH 4 , F (CF 2 ) 3 O (CF 2 CF 2 O) 2 CF 2 COONH 4 , F (CF 2 ) 4 OCF 2 CF 2 OCF 2 COONH 4 , F (CF 2 ) 4 OCF 2 CF 2 OCF 2 COONH 4 , F (CF 2 ) 4 O (CF 2 CF 2 O) 2 COONH 4 , F (CF 2 ) 4 O (CF 2 CF 2 O) 2 CF 2 COONH 4 , F (CF 2) 2 OCF (CF 3) CF 2 OCF (
  • the content of the emulsifier is preferably 0.01 to 15 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the aqueous medium.
  • the polymerization temperature in the method for producing a fluorinated elastic copolymer of the present invention is preferably 0 ° C. to 50 ° C., more preferably 10 ° C. to 40 ° C., and further preferably 20 ° C. to 30 ° C.
  • the polymerization temperature exceeds 50 ° C., the crosslinking reactivity of the resulting fluorinated elastic copolymer may be lowered.
  • the polymerization temperature is in the range of 0 ° C. to 50 ° C., the obtained fluorinated elastic copolymer is excellent in crosslinking reactivity, and the crosslinked rubber is excellent in mechanical properties.
  • the radical polymerization initiator in the production method of the present invention is preferably a water-soluble initiator or a redox polymerization initiator.
  • the content of the radical polymerization initiator is preferably 0.0001 to 3% by mass and more preferably 0.001 to 1% by mass with respect to the total mass of the monomers.
  • water-soluble initiators include persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate, organic initiators such as disuccinic acid peroxide and azobisisobutylamidine dihydrochloride, and the like. Persulfates such as are preferred. In particular, ammonium persulfate is most preferable.
  • redox initiators include combinations of persulfates and reducing agents, and are polymerization initiators that can polymerize monomers such as TFE and P at a polymerization temperature, for example, in the range of 0 ° C. to 50 ° C. Is preferred.
  • specific examples of the persulfate include persulfate alkali metal salts such as ammonium persulfate, sodium persulfate and potassium persulfate, and preferably ammonium persulfate.
  • examples of the reducing agent include thiosulfate, sulfite, bisulfite, pyrosulfite, hydroxymethanesulfinate, etc., preferably hydroxymethanesulfinate, more preferably sodium hydroxymethanesulfinate. Salt.
  • a small amount of iron, a ferrous salt such as ferrous salt, silver sulfate, etc. coexist as a third component of the redox initiator, more preferably a water-soluble iron salt coexists.
  • water-soluble iron salts include ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate, ferrous chloride, ferric chloride, ferrous ammonium sulfate, ferric sulfate Ammonium etc. are mentioned.
  • a chelating agent is added to the redox initiator system.
  • the chelating agent ethylenediaminetetraacetic acid disodium salt is most preferable.
  • the amount of persulfate used is preferably 0.001 to 3% by weight, more preferably 0.01 to 1% by weight, based on the total amount of the monomer mixture gas injected in the aqueous medium as the polymerization proceeds. 05 to 0.5% by mass is particularly preferred.
  • the amount of the reducing agent used is preferably 0.001 to 3% by mass, more preferably 0.01 to 1% by mass, and more preferably 0.05 to 1% by mass with respect to the total amount of the monomer mixed gas that is injected as the polymerization proceeds in the aqueous medium. Particularly preferred is .about.0.5% by weight.
  • the amount of the third component such as iron, iron salt such as ferrous salt, silver sulfate, etc. is 0.0001 to 0.000 based on the total amount of the monomer mixed gas that is injected in the aqueous medium as the polymerization proceeds. 3% by mass is preferable, 0.001 to 0.1% by mass is more preferable, and 0.01 to 0.1% by mass is particularly preferable.
  • the chelating agent is preferably 0.0001 to 0.3% by mass, more preferably 0.001 to 0.1% by mass, more preferably 0.001 to 0.1% by mass with respect to the total amount of the monomer mixed gas that is injected as the polymerization proceeds in an aqueous medium. 01 to 0.1% by mass is particularly preferable.
  • the polymerization pressure in the method for producing a fluorinated elastic copolymer of the present invention is preferably 1.0 to 10 MPaG, more preferably 1.5 to 5.0 MPaG, and most preferably 2.0 to 4.0 MPaG.
  • the polymerization rate is extremely low, which is not preferable. Within this range, the polymerization rate is appropriate and easy to control, and the productivity is excellent.
  • the polymerization rate is preferably 10 to 100 g / L ⁇ hour.
  • the polymerization rate is more preferably 5 to 70 g / L ⁇ hour, and most preferably 30 to 50 g / L ⁇ hour.
  • the fluorinated elastic copolymer by aggregating the latex of the fluorinated elastic copolymer obtained by the emulsion polymerization method by a known method.
  • the aggregation method include a method of salting out by adding a metal salt, a method of adding an inorganic acid such as hydrochloric acid, a method by mechanical shearing, a method by freezing / thawing, and the like.
  • the fluorinated elastic copolymer of the present invention comprises 100 parts by mass of the fluorinated elastic copolymer, 30 parts by mass of carbon black, 5 parts by mass of triallyl isocyanurate, and 1,3-bis (tert-butylperoxide). 1 part by mass of oxyisopropyl) benzene was kneaded to prepare a fluorinated elastic copolymer composition, and its crosslinking characteristics were measured using a crosslinking characteristic measuring machine at 177 ° C. for 12 minutes at an amplitude of 3 degrees.
  • the (M H ⁇ M L ) value which is the difference between the maximum value (M H ) and the minimum value (M L ) of the measured torque is preferably 30 or more, more preferably 35 or more. More preferably, it is 38 or more.
  • the kneading can be performed under normal conditions by a rubber mixing device such as a roll, a kneader, a Banbury mixer, and an extruder, but kneading with two rolls is preferable.
  • the Mooney viscosity of the fluorinated elastic copolymer of the present invention is preferably 5 to 200, more preferably 10 to 170, and most preferably 20 to 100.
  • Mooney viscosity is JIS K6300: (Established in 1994), using L-shaped rotor with a diameter of 38.1 mm and a thickness of 5.54 mm, preheating time of 1 minute and rotor rotation time of 10 minutes at 100 ° C And is a measure of the molecular weight of the rubber. When it is in the range of 5 to 200, the balance between fluidity and crosslinkability is excellent.
  • the glass transition temperature of the fluorinated elastic copolymer of the present invention is preferably -40 to 20 ° C, more preferably -20 to 10 ° C.
  • the specific gravity of the fluorinated elastic copolymer of the present invention is preferably 1.57 to 1.80, more preferably 1.60 to 1.75, and particularly preferably 1.65 to 1.75.
  • the fluorinated elastic copolymer composition of the present invention preferably contains an organic peroxide as a crosslinking agent in the fluorinated elastic copolymer.
  • the content of the fluorinated elastic copolymer in the fluorinated elastic copolymer composition is preferably from 30 to 99% by mass based on the total amount of the monomer mixed gas that is injected as the polymerization proceeds.
  • the fluorinated elastic copolymer composition may contain various additives such as a crosslinking aid, a filler and a reinforcing agent, if necessary.
  • the fluorinated elastic copolymer composition can be easily obtained by uniformly mixing the fluorinated elastic copolymer, organic peroxide, etc.
  • the fluorinated elastic copolymer of the present invention is preferably crosslinked using an organic peroxide.
  • organic peroxides include di-tert-butyl peroxide, tert-butyl cumyl peroxide, dicumyl peroxide, ⁇ , ⁇ -bis (tert-butylperoxy) -p-diisopropylbenzene, 2,5-dimethyl- Dialkyl peroxides such as 2,5-di (tert-butylperoxy) hexane and 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane-3, 1,1-di (tert- Butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroxyperoxide,
  • the amount of the organic peroxide used is preferably 0.3 to 10 parts by weight, more preferably 0.3 to 5 parts by weight, and 0.5 to 3 parts by weight with respect to 100 parts by weight of the fluorinated elastic copolymer. Part is more preferable.
  • the amount of the organic peroxide used is within this range, the crosslinking rate is appropriate, and the resulting crosslinked rubber is excellent in the balance between tensile strength and elongation.
  • crosslinking aids include triallyl cyanurate, triallyl isocyanurate, trimethacryl isocyanurate, 1,3,5-triacryloylhexahydro-1,3,5-triazine, triallyl trimellitate, m-phenylenediamine Bismaleimide, p-quinonedioxime, p, p′-dibenzoylquinonedioxime, dipropargyl terephthalate, diallyl phthalate, N, N ′, N ′′, N ′ ′′-tetraallylterephthalamide, polymethylvinyl And vinyl group-containing siloxane oligomers such as siloxane and polymethylphenylvinylsiloxane.
  • crosslinking aid triallyl cyanurate, triallyl isocyanurate, and trimethallyl isocyan
  • the addition amount of the crosslinking aid is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the fluorinated elastic copolymer.
  • the crosslinking rate is appropriate, and the obtained crosslinked rubber is excellent in the balance between strength and elongation.
  • a metal oxide may be added to the fluorinated elastic copolymer.
  • the metal oxide is preferably a divalent metal oxide.
  • the divalent metal oxide include magnesium oxide, calcium oxide, zinc oxide, lead oxide and the like.
  • the addition amount of the metal oxide is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the fluorinated elastic copolymer.
  • the fluorinated elastic copolymer composition of the present invention may contain pigments, fillers, reinforcing agents and the like for coloring.
  • Fillers or reinforcing agents include carbon black, titanium oxide, silicon dioxide, clay, talc, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene, tetrafluoroethylene / Examples thereof include an ethylene copolymer, an ethylene tetrafluoride / propylene copolymer, an ethylene tetrafluoride / vinylidene fluoride copolymer, and the like.
  • the fluorinated elastic copolymer composition is usually crosslinked simultaneously with molding by a method such as hot pressing, but may be crosslinked after being previously molded.
  • a method such as hot pressing
  • the molding method compression molding, injection molding, extrusion molding, calender molding, or dipping in a solvent, coating, or the like is employed.
  • crosslinking conditions various conditions such as hot press crosslinking, steam crosslinking, hot air crosslinking, lead-based crosslinking and the like are adopted in consideration of the molding method and the shape of the crosslinked product.
  • the crosslinking temperature is usually preferably 100 to 400 ° C. and several seconds to 24 hours.
  • secondary crosslinking is preferably employed for the purpose of improving mechanical properties and compression set of the crosslinked product and stabilizing other properties.
  • the secondary crosslinking conditions are preferably 100 to 300 ° C. for 30 minutes to 48 hours.
  • the molded fluorinated elastic copolymer composition by irradiation with radiation.
  • radiation to be irradiated include electron beams and ultraviolet rays.
  • the irradiation amount in electron beam irradiation is preferably 0.1 to 30 Mrad, and more preferably 1 to 20 Mrad.
  • the compression set of the crosslinked rubber obtained by crosslinking can be reduced.
  • the compression set is preferably 40 or less, more preferably 30 or less, and even more preferably 25 or less.
  • the fluorinated elastic copolymer composition does not contain an organic peroxide.
  • a fluorinated elastic copolymer composition containing an organic peroxide in addition to a crosslinked rubber obtained by crosslinking a fluorinated elastic copolymer composition containing an organic peroxide, a fluorinated elastic copolymer composition containing no organic peroxide or It is also preferable to use a crosslinked rubber obtained by radiation-crosslinking the fluorinated elastic copolymer itself.
  • Glass transition temperature (°C) Glass transition temperature (°C)
  • 10 ⁇ 0.1 mg of the fluorinated elastic copolymer is heated from ⁇ 50 ° C. to 150 ° C. at 10 ° C./min, and up to ⁇ 50 ° C. at 10 ° C./min.
  • the center temperature of the endothermic peak change upon cooling was taken as the glass transition temperature.
  • Mooney viscosity The Mooney viscosity of the fluorinated elastic copolymer is, according to JIS K6300: (established in 1994), using an L-shaped rotor having a diameter of 38.1 mm and a thickness of 5.54 mm, at 100 ° C., and a preheating time of 1 minute. The rotor rotation time was set to 4 minutes and measured. Larger values indicate higher molecular weight indirectly.
  • the specific gravity of the fluorinated elastic copolymer was measured by a method according to JIS K6220-1: (established in 2001) using a specific gravity meter manufactured by Shinko Denshi.
  • M H represents the maximum torque
  • M L represents the minimum value of the torque
  • M H -M L indicates the degree of crosslinking.
  • the cross-linking characteristics serve as an index of cross-linking reactivity of the fluorinated elastic copolymer, and the larger the value of (M H ⁇ M L ), the better the cross-linking reactivity.
  • the fluorine-containing elastic copolymer composition was hot-pressed at 170 ° C. for 20 minutes, and then subjected to secondary crosslinking in an oven at 200 ° C. for 4 hours to obtain a thickness of the fluorine-containing elastic copolymer composition. A 2 mm cross-linked rubber sheet was obtained.
  • the obtained crosslinked rubber sheet was punched out with a No. 3 dumbbell to prepare a sample, and 100% tensile stress, tensile strength, and elongation at break were measured according to JIS K6251: (1993 established). Further, the hardness was measured according to JIS K6253: (established in 1993).
  • compression set The crosslinked rubber obtained by crosslinking the fluorinated elastic copolymer composition was subjected to a compression set test at 200 ° C. for 72 hours according to JIS K6262 (established in 1993) to measure the compression set. .
  • ⁇ (good) Some roughness is observed on the surface of the molded product, and all thicknesses are within ⁇ 10% of the average value.
  • X (defect) Roughness is recognized on the surface of the molded product, and a part of the thickness exceeds ⁇ 10% of the average value.
  • Example 1 Production of fluorinated elastic copolymer A: After degassing the inside of a 3200 mL stainless steel pressure-resistant reactor equipped with an anchor blade for stirring, 1500 g of ion-exchanged water, 60 g of disodium hydrogenphosphate dodecahydrate, water 0.9 g of sodium oxide, 198 g of tert-butanol, 9 g of C 2 F 5 OCF 2 CF 2 OCF 2 COONH 4 as a fluorine-containing emulsifier, and 3.8 g of ammonium persulfate were added.
  • EDTA ethylenediaminetetraacetic acid disodium salt dihydrate
  • ferrous sulfate heptahydrate aqueous solution in which 0.4 g of ethylenediaminetetraacetic acid disodium salt dihydrate (hereinafter referred to as EDTA) and 0.3 g of ferrous sulfate heptahydrate were dissolved in 200 g of ion-exchanged water, Added to the reactor. At this time, the pH of the aqueous medium in the reactor was 9.2.
  • the latex of fluorinated elastic copolymer A was added to a 5% by mass aqueous solution of calcium chloride, and the latex of fluorinated elastic copolymer A was agglomerated by salting out to precipitate fluorinated elastic copolymer A.
  • the fluorinated elastic copolymer A was filtered and recovered. Subsequently, the fluorinated elastic copolymer A was washed with ion exchange water (3500 ml) and dried in an oven at 100 ° C. for 15 hours to obtain 985 g of a white fluorinated elastic copolymer A.
  • the ratio (a) / (b) of the repeating unit (a) based on TFE and the repeating unit (b) based on P in the fluorinated elastic copolymer A was 70/30 (molar ratio).
  • the fluorinated elastic copolymer A had a Mooney viscosity of 90, a specific gravity of 1.76, and a glass transition temperature of ⁇ 3 ° C.
  • Table 1 below shows the cross-linking characteristics and physical properties of the cross-linked rubber of the fluorinated elastic copolymer A.
  • the ratio (a) / (b) of the repeating unit (a) based on TFE and the repeating unit (b) based on P in the fluorinated elastic copolymer B was 63/37 (molar ratio).
  • the fluorinated elastic copolymer B had a Mooney viscosity of 80, a specific gravity of 1.68, and a glass transition temperature of ⁇ 3 ° C. Table 1 below shows the cross-linking characteristics and physical properties of the cross-linked rubber of the fluorinated elastic copolymer B.
  • Example 3 Production of fluorinated elastic copolymer C: A latex of fluorinated elastic copolymer C was obtained in the same manner as in Example 1 except that 9 g of sodium lauryl sulfate was added instead of C 2 F 5 OCF 2 CF 2 OCF 2 COONH 4 as an emulsifier. . The obtained latex had a pH of 8.0. The amount of Rongalite 2.5 mass% aqueous solution added was 50 g. The polymerization time was about 8 hours. In the same manner as in Example 1, 880 g of fluorinated elastic copolymer C was obtained from the latex of fluorinated elastic copolymer C.
  • the ratio (a) / (b) of the repeating unit (a) based on TFE and the repeating unit (b) based on P in the fluorinated elastic copolymer C was 70/30 (molar ratio).
  • the fluorinated elastic copolymer C had a Mooney viscosity of 75, a specific gravity of 1.75, and a glass transition temperature of ⁇ 3 ° C.
  • the crosslinking characteristics and physical properties of the crosslinked rubber of the fluorinated elastic copolymer C are shown in Table 1 below.
  • the ratio (a) / (b) of the repeating unit (a) based on TFE and the repeating unit (b) based on P in the fluorinated elastic copolymer D was 56/44 (molar ratio).
  • the fluorinated elastic copolymer D had a Mooney viscosity of 85, a specific gravity of 1.55, and a glass transition temperature of ⁇ 3 ° C.
  • Table 1 below shows the cross-linking characteristics and physical properties of the cross-linked rubber of the fluorinated elastic copolymer D.
  • volume change rate [(Volume after immersion ⁇ Volume before immersion) / (Volume before immersion)] ⁇ 100
  • the fluorinated elastic copolymers of Examples 1 to 3, wherein the molar ratio (a) / (b) of the repeating unit (a) based on tetrafluoroethylene and the repeating unit (b) based on propylene is within the scope of the present invention. All have a high (M H -M L ) value, exhibit excellent cross-linking reactivity, have a smooth extruded product surface, excellent cross-linked rubber properties, and high physical property retention ratio for automatic transmission oil And showed a small volume change rate.
  • the fluorinated elastic copolymer of Comparative Example 1 in which the molar ratio (a) / (b) is outside the scope of the present invention is inferior in cross-linking reactivity and cross-linked rubber physical properties to those in Examples, and particularly extrusion molding.
  • the smoothness of the surface of the product was greatly inferior, and the physical properties decreased significantly after immersion in the automatic transmission oil, indicating a large volume change rate.
  • the fluorine-containing coelastic polymer of the present invention can be made into a crosslinked rubber by a crosslinking reaction.
  • the cross-linked rubber is suitable for materials such as O-rings, sheets, gaskets, oil seals, diaphragms, V-rings, etc., and heat resistant chemical resistant seal materials, heat resistant oil resistant seal materials, wire coating materials, It can also be applied to applications such as semiconductor device sealing materials, corrosion-resistant rubber paints, and urea-based grease sealing materials.
  • the crosslinked rubber is useful as a wire covering material, a tube, a sheet-shaped rubber product, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 架橋反応性、及び押出成形性に優れ、架橋して得られるゴムが耐圧縮永久歪性、耐塩基性及び耐オイル性に優れ、特に電線被覆材として好適な含フッ素弾性共重合体及びその製造方法を提供する。 テトラフルオロエチレン、プロピレン、及び必要に応じてその他のモノマーを共重合することにより得られる含フッ素弾性共重合体であって、含フッ素弾性共重合体中におけるテトラフルオロエチレンに基づく繰り返し単位(a)とプロピレンに基づく繰り返し単位(b)のモル比率(a)/(b)が60/40~75/25であり、前記その他のモノマーに基づく繰り返し単位(c)が含フッ素弾性共重合体中0~10モル%である含フッ素弾性共重合体である。

Description

含フッ素弾性共重合体及び製造方法
 本発明は、含フッ素弾性共重合体及びその製造方法に関し、詳しくは、架橋反応性に優れ、流動性が高く、また、架橋して得られる架橋ゴムの圧縮永久歪及び耐塩基性に優れる含フッ素弾性共重合体及びその製造方法に関する。
 含フッ素弾性共重合体は、耐熱性、耐薬品性、耐油性、耐候性等に優れることから、通常の炭化水素系材料が耐え得ないような過酷な環境に適用される。含フッ素弾性共重合体としては、フッ化ビニリデン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチエレン/プロピレン系共重合体、テトラフルオロエチエレン/パーフルオロ(アルキルビニルエーテル)系共重合体等が知られている。
 中でも、テトラフルオロエチレン/プロピレン系共重合体は、フッ化ビニリデンに基づく繰り返し単位を含む上記含フッ素弾性共重合体に比べ、耐アミン性や耐高温蒸気性に優れ、また、電気絶縁性にも優れていることから、電線の被覆材等に広く使用されている(特許文献1、及び特許文献2を参照)。しかし、該テトラフルオロエチレン/プロピレン系共重合体は、ガソリンやオートマチックトランスミッションオイル等の非極性溶剤に対し、膨潤しやすい性質があり、これらの溶剤雰囲気に曝される環境下での使用が限定されるといった問題点があった。
 これらの含フッ素弾性共重合体は、反応性に乏しいため架橋反応性が充分でなく、従来より、反応性官能基を導入し、反応性を向上する方法が提案されている。なかでも過酸化物による架橋反応性を向上させるために、特別な硬化性モノマーを共重合する方法、反応性官能基を有する連鎖移動剤の存在下に重合する方法、過酸化物による架橋の前に、含フッ素弾性共重合体を前処理する方法等が実施されている。例えば、ヨード原子を有する含フッ素連鎖移動剤の存在下に、テトラフルオロエチレンとプロピレンを共重合させて得た含フッ素弾性共重合体は、高分子末端にヨード原子を有するので、過酸化物架橋が可能である(特許文献3を参照)。
特開昭58-57209号公報 特開2001-176336号公報 特開平5-222130号公報
 しかしながら、上記特許文献に記載された方法では、重合速度が遅く、含フッ素弾性共重合体の生産性が非常に低いという問題があった。また、得られる含フッ素弾性共重合体は架橋反応性が不十分であり、圧縮永久歪をはじめとする架橋ゴムの諸物性も満足のいくものではなかった。
 さらに、これらの含フッ素弾性共重合体は押出成形性が悪く、成形品表面が平滑になりにくい、生産性が低いといった問題があった。
 したがって、架橋反応性、及び押出し成形性に優れ、架橋して得られる架橋ゴムが耐圧縮永久歪性、耐塩基性及び耐オイル性に優れ、特に電線被覆材として好適な含フッ素弾性共重合体の開発が望まれていた。
 そこで、本発明の目的は、架橋反応性、及び押出成形性に優れ、架橋して得られる架橋ゴムが耐圧縮永久歪性、耐塩基性及び耐オイル性に優れ、特に電線被覆材として好適な含フッ素弾性共重合体及びその製造方法を提供することにある。
 本発明者らは上記課題を解決すべく鋭意検討した結果、テトラフルオロエチレンに基づく繰り返し単位、プロピレンに基づく繰り返し単位を特定の割合で含み、その他のモノマーに基づく繰り返し単位を必要に応じて含む共重合体とすることで上記課題を解決しうることを見出し、本発明を完成するに至った。
 即ち、本発明の含フッ素弾性共重合体は、テトラフルオロエチレン、プロピレン、及び必要に応じてその他のモノマーを共重合することにより得られる含フッ素弾性共重合体であって、含フッ素弾性共重合体中におけるテトラフルオロエチレンに基づく繰り返し単位(a)とプロピレンに基づく繰り返し単位(b)のモル比率(a)/(b)が60/40~75/25であり、前記その他のモノマーに基づく繰り返し単位(c)が含フッ素弾性共重合体中0~10モル%であることを特徴とするものである。
 本発明の含フッ素弾性共重合体は、前記その他のモノマーがパ-フルオロ(アルキルビニルエ-テル)であることが好ましい。
 また、本発明の含フッ素弾性共重合体は、ヨウ素原子を有することが好ましい。
 本発明の含フッ素弾性共重合体組成物は上記含フッ素弾性共重合体を含有するものである。
 本発明の架橋ゴムは、上記含フッ素弾性共重合体を有機過酸化物で架橋してなるものである。
 本発明の被覆電線は、上記含フッ素弾性共重合体を含有する組成物を架橋してなるものである。
 本発明の含フッ素弾性共重合体の製造方法は、上記含フッ素弾性共重合体の製造方法であって、ラジカル重合開始剤、及び、一般式RI(式中、Rは炭素数3以上のアルキレン基またはパーフルオロアルキレン基である。)で表されるヨード化合物の存在下、前記テトラフルオロエチレンと、前記プロピレンと、必要に応じて前記その他のモノマーを共重合することを特徴とするものである。
 本発明の含フッ素弾性共重合体は、架橋反応性、及び押出成形性に優れ、架橋して得られる架橋ゴムが耐圧縮永久歪性、耐塩基性及び耐オイル性に優れ、特に電線被覆材として好適である。
 以下、本発明の含フッ素弾性共重合体の実施の形態について詳細に説明する。
 本発明の含フッ素弾性共重合体は、テトラフルオロエチレン(以下、TFEという)、プロピレン(以下、Pという)を共重合させて得られる含フッ素弾性共重合体である。
 含フッ素弾性共重合体中のTFEに基づく繰り返し単位(a)とPに基づく繰り返し単位(b)の比率(a)/(b)は、(a)/(b)=60/40~75/25(モル比)である。好ましくは(a)/(b)=63/37~75/25(モル比)、さらに好ましくは(a)/(b)=65/35~70/30(モル比)である。この範囲にあると架橋反応性、及び押出成形性に優れ、かつ耐塩基性、及び耐オイル性に優れる。(a)/(b)が70/30よりも(a)の比率が高くなると、ゴム的な性質が失われ、得られる架橋ゴムが脆性となるので、好ましくない。
 本発明の含フッ素弾性共重合体には、本発明の効果を損なわない範囲でTFE、及びPに加えて、その他のモノマーを共重合させることもできる。その他のモノマーに基づく繰り返し単位(c)は、含フッ素弾性共重合体中0~10モル%である。
 その他のモノマーとしては、モノフルオロエチレン、トリフルオロエチレン、トリフルオロプロピレン、ペンタフルオロプロピレン、ヘキサフルオロプロピレン、ヘキサフルオロイソブチレン、ジクロロジフルオロエチレン等のフッ素化オレフィン、パーフルオロメチルビニルエーテル、パーフルオロエチルビニルエーテル、パーフルオロプロピルビニルエーテル、パーフルオロ(3,6-ジオキサ-5-メチル-オクテン)、パーフルオロ(エトキシエチルビニルエーテル)等のパーフルオロアルキルビニルエーテル、エチレン、1-ブテン、イソブチレン等の炭化水素オレフィン、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル等のアルキルビニルエーテル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、塩化ビニル、塩化ビニリデン、トリフルオロスチレン等が挙げられる。
 その他のモノマーとしては、フッ素化オレフィン及びパーフルオロアルキルビニルエーテルが好ましく、パーフルオロアルキルビニルエーテルがより好ましい。
 パーフルオロアルキルビニルエーテルとしては、パーフルオロメチルビニルエーテル、パーフルオロプロピルビニルエーテルがより好ましい。
 本発明の含フッ素弾性共重合体の製造において、上記の共重合比率の含フッ素弾性共重合体を得るために、重合時に反応系内に存在させるモノマーの比率としては、TFE/P=90/10~99/1(モル比)が好ましく、93/7~98/2(モル比)がより好ましく、95/5~98/2(モル比)が最も好ましい。TFEの割合がTFE/P=99/1より高くなると、重合速度が著しく増大し、重合反応が不安定化したり、暴走したりするので好ましくない。
 本発明の含フッ素弾性共重合体の製造方法においては、ラジカル重合開始剤及び一般式RIで表されるヨード化合物の存在下、テトラフルオロエチレン及びプロピレン、必要に応じてその他のモノマーを共重合させることが好ましい。ヨード化合物の存在下に共重合すると、ヨード化合物が連鎖移動剤として作用し、含フッ素弾性共重合体の分子末端にヨードが導入される。かかるヨード末端基は、ラジカル反応性に優れることから、有機過酸化物による架橋反応時の反応性に優れる。
 一般式RIで表されるヨード化合物としては、炭素数3以上、好ましくは3~8の、アルキレン基またはパーフルオロアルキレン基の両末端にヨード原子が結合した化合物である。具体例としては、1,3-ジヨードプロパン、1,4-ジヨードブタン、1,6-ジヨードヘキサン、1,8-ジヨードオクタン等のアルキレン基を有するジヨード化合物、1,3-ジヨードパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン等のパーフルオロアルキレン基を有するジヨード化合物等が挙げられる。一般式RIで表されるヨード化合物としては、パーフルオロアルキレン基を有するヨード化合物がより好ましく、特に1,4-ジヨードパーフルオロブタンが最も好ましい。
 本発明において、一般式RIで表されるヨード化合物は、含フッ素弾性共重合体中のヨード原子の総量が、生成するポリマー量に対して0.01~5.0質量%となるよう添加することが好ましい。さらに0.1~1.0質量%となるよう添加することが特に好ましい。
 本発明の含フッ素弾性共重合体の製造方法において、重合方法としては、乳化重合法、溶液重合法、懸濁重合法、塊状重合法等が挙げられる。特に、分子量及び共重合組成の調整がしやすく、生産性に優れる点から、乳化剤の存在下に水性媒体中でTFE及びP等のモノマーを重合する乳化重合法が好ましい。
 水性媒体としては、水、または水溶性有機溶媒を含む水が挙げられ、水溶性有機溶媒を含む水がより好ましい。
 水溶性有機溶媒としては、tert-ブタノール、プロピレングリコール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコール等が挙げられる。
 水溶性有機溶媒としては、tert-ブタノール、プロピレングリコール、ジプロピレングリコールモノメチルエーテルが好ましく、tert-ブタノールがより好ましい。水性媒体中における水溶性有機溶媒の含有量は、水100質量部に対して、1~50質量部が好ましく、3~20質量部がより好ましい。
 乳化重合法において、水性媒体のpHは好ましくは7~14、より好ましくは7~11、さらに好ましくは7.5~11、最も好ましくは8~10.5である。pHが7より小さいと、ヨード化合物を用いた場合にヨード化合物の安定性が低下し、得られる含フッ素弾性共重合体の架橋反応性が低下することがある。
 水性媒体のpHを上記範囲に保持する期間は、乳化重合の重合開始から重合終了の間の全重合期間であることが好ましいが、全重合期間でなくてもよい。好ましくは全重合期間の80%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。
 pHの調整には、pH緩衝剤を用いることが好ましい。pH緩衝剤としては、無機塩類等が挙げられる。無機塩類としては、リン酸水素二ナトリウム、リン酸二水素ナトリウム等のリン酸塩、炭酸水素ナトリウム、炭酸ナトリウム等の炭酸塩等が挙げられる。リン酸塩のより好ましい具体例としては、リン酸水素二ナトリウム2水和物、リン酸水素二ナトリウム12水和物等が挙げられる。
 乳化剤としては、得られる含フッ素弾性共重合体のラテックスの機械的及び化学的安定性が優れることから、イオン性乳化剤が好ましく、アニオン性乳化剤がより好ましい。
 アニオン性乳化剤としては、公知のものが使用できるが、具体例としては、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等の炭化水素系乳化剤、パーフルオロオクタン酸アンモニウム、パーフルオロヘキサン酸アンモニウム等の含フッ素アルカン酸塩、一般式(1):Rf1ORf2COOA(式中、Rf1は炭素数1~10のパーフルオロアルキル基であり、Rf2は、直鎖状の含フッ素アルキレン基であり、該含フッ素アルキレン基はエーテル性の酸素原子を有してもよく、該含フッ素アルキレン基は炭素数1~3のパーフルオロアルキル基の側鎖を有してもよく、Aは水素原子、アルカリ金属又はNHである。なお、Rf2の炭素数は、1~12が好ましく、1~8がより好ましい。)で表される含フッ素エーテルカルボン酸化合物(以下、一般式(1)の化合物という)が挙げられる。一般式(1)の化合物としては、一般式(2):F(CFO(CF(X)CFO)CF(X)COOA (式中、Xは、フッ素原子または炭素原子数1~3のパーフルオロアルキル基を表し、Aは、水素原子、アルカリ金属、またはNHを表し、pは、1~10の整数を表し、qは、0~3の整数を表す。)で表される含フッ素エーテルカルボン酸化合物(以下、一般式(2)の化合物という。)が好ましい。
 本発明における乳化剤としては、含フッ素乳化剤が好ましく、含フッ素アルカン酸塩、一般式(1)の化合物がより好ましい。さらに、一般式(2)の化合物が最も好ましい。
 一般式(1)で表される化合物または(2)で表される化合物として、AがNHの場合の化合物の具体例としては、COCFCOONH、COCFCOONH、COCFCOONH、C11OCFCOONH、C13OCFCOONH、CFOCFCFOCFCOONH、COCFCFOCFCOONH、COCFCFOCFCOONH、COCFCFOCFCOONH、C11OCFCFOCFCOONH、C13OCFCFOCFCOONH、CO(CFCFO)CFCOONH、CO(CFCFO)CFCOONH、CO(CFCFO)CFCOONH、C11O(CFCFO)CFCOONH、C13O(CFCFO)CFCOONH、CO(CFCFO)CFCOONH、CO(CFCFO)CFCOONH、CO(CFCFO)CFCOONH、C11O(CFCFO)CFCOONH、C13O(CFCFO)CFCOONH、COCF(CF)COONH、COCF(CF)COONH、COCF(CF)COONH、COCF(CF)CFOCF(CF)COONH、COCF(CF)CFOCF(CF)COONH、CO(CF(CF)CFO)CF(CF)COONH、CO(CF(CF)CFO)CF(CF)COONH、CFO(CFOCFCOONH、CO(CFOCFCOONH、CFO(CFO(CFCOONH、CFCFO(CFO(CFCOONH、CFO(CFOCF(CF)COONH、CO(CFOCF(CF)COONH、CFO(CFO(CFCOONH、CFOCFOCFOCFCOONHが挙げられる。
 最も好ましい、一般式(2)で表される化合物の例としては、F(CFOCFCFOCFCOONH、F(CFO(CFCFO)CFCOONH、F(CFO(CF(CF)CFO)CF(CF)COONH、F(CFOCFCFOCFCOONH、F(CFO(CFCFO)CFCOONH、F(CFOCFCFOCFCOONH、F(CFO(CFCFO)CFCOONH、F(CFOCF(CF)CFOCF(CF)COONH等が挙げられる。
 乳化剤の含有量は、水性媒体の100質量部に対して、0.01~15質量部が好ましく、0.1~10質量部がより好ましい。
 本発明の含フッ素弾性共重合体の製造方法における重合温度は好ましくは、0℃~50℃であり、より好ましくは10℃~40℃、さらに好ましくは20℃~30℃である。重合温度が50℃を超えると、得られる含フッ素弾性共重合体の架橋反応性が低下することがある。重合温度が0℃~50℃の範囲にあると、得られた含フッ素弾性共重合体は、架橋反応性に優れ、架橋ゴムが機械特性に優れる。
 本発明の製造方法におけるラジカル重合開始剤としては、水溶性開始剤またはレドックス(redox)重合開始剤が好ましい。ラジカル重合開始剤の含有量は、モノマーの合計の質量に対して、0.0001~3質量%が好ましく、0.001~1質量%がより好ましい。
 水溶性開始剤としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸塩類、ジコハク酸過酸化物、アゾビスイソブチルアミジン二塩酸塩等の有機系開始剤、等が挙げられ、過硫酸アンモニウム等の過硫酸塩類が好ましい。特に、過硫酸アンモニウムが最も好ましい。
 レドックス開始剤としては、過硫酸塩類と還元剤との組合せ等が挙げられ、重合温度、例えば0℃~50℃の範囲で、TFE及びP等のモノマーを重合可能にする重合開始剤であることが好ましい。過硫酸塩の具体例としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸アルカリ金属塩等が挙げられ、好ましくは過硫酸アンモニウムである。一方、還元剤としては、チオ硫酸塩、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、ヒドロキシメタンスルフィン酸塩等が挙げられ、好ましくはヒドロキシメタンスルフィン酸塩であり、より好ましくはヒドロキシメタンスルフィン酸ナトリウム塩である。
 さらに、レドックス開始剤の第三成分として、少量の鉄、第一鉄塩等の鉄塩、硫酸銀等を共存させることが好ましく、より好ましくは水溶性鉄塩を共存させることである。水溶性鉄塩の具体例としては、硫酸第一鉄、硫酸第二鉄、硝酸第一鉄、硝酸第二鉄、塩化第一鉄、塩化第二鉄、硫酸第一鉄アンモニウム、硫酸第二鉄アンモニウム等が挙げられる。該レドックス開始剤系には、キレート剤を加えることが最も好ましい。キレート剤としては、エチレンジアミン四酢酸二ナトリウム塩が最も好ましく挙げられる。
 過硫酸塩の使用量は、水性媒体中、重合の進行に伴い圧入するモノマー混合ガスの総量に対して0.001~3質量%が好ましく、0.01~1質量%がより好ましく、0.05~0.5質量%が特に好ましい。還元剤の使用量は、水性媒体中、重合の進行に伴い圧入するモノマー混合ガスの総量に対して0.001~3質量%が好ましく、0.01~1質量%がより好ましく、0.05~0.5質量%が特に好ましい。また、鉄、第一鉄塩等の鉄塩、硫酸銀等の第三成分の使用量は、水性媒体中、重合の進行に伴い圧入するモノマー混合ガスの総量に対して0.0001~0.3質量%が好ましく、0.001~0.1質量%がより好ましく、0.01~0.1質量%が特に好ましい。キレート剤は、水性媒体中、重合の進行に伴い圧入するモノマー混合ガスの総量に対して0.0001~0.3質量%が好ましく、0.001~0.1質量%がより好ましく、0.01~0.1質量%が特に好ましい。
 本発明の含フッ素弾性共重合体の製造方法における重合圧力としては、1.0~10MPaGが好ましく、1.5~5.0MPaGがより好ましく、2.0~4.0MPaGが最も好ましい。重合圧力が1.0MPaG未満であると、重合速度が極めて低くなり、好ましくない。この範囲にあると重合速度が適切で制御しやすく、また、生産性に優れる。本発明の含フッ素弾性共重合体の製造方法において、重合速度は10~100g/L・時間が好ましい。重合速度は、5~70g/L・時間がより好ましく、30~50g/L・時間が最も好ましい。重合速度が上記範囲よりも小さいと、生産性が低下し、実用上好ましくない。一方、上記範囲よりも大きいと、分子量が低下し、架橋性が低下することになり、好ましくない。
 上記乳化重合法で得られる含フッ素弾性共重合体のラテックスを、公知の方法で凝集させて含フッ素弾性共重合体を単離することが好ましい。凝集方法としては、金属塩を添加して塩析する方法、塩酸等の無機酸を添加する方法、機械的剪断による方法、凍結/解凍による方法等が挙げられる。
 本発明の含フッ素弾性共重合体は、該含フッ素弾性共重合体の100質量部、カーボンブラックの30質量部、トリアリルイソシアヌレートの5質量部、及び1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼンの1質量部を混練して含フッ素弾性共重合体組成物を調製し、その架橋特性を、架橋特性測定機を用いて177℃で12分間、振幅3度の条件にて測定した場合に、測定されたトルクの最大値(M)及びトルクの最小値(M)の差である(M-M)値が、好ましくは30以上であり、より好ましくは35以上であり、さらに好ましくは38以上である。
 なお、上記混練は、ロール、ニーダー、バンバリーミキサー、押し出し機等のゴム用混合装置により通常条件で行うことができるが、2本ロールによる混練が好ましい。
 本発明の含フッ素弾性共重合体のムーニー粘度は、5~200が好ましく、10~170がより好ましく、20~100が最も好ましい。
 ムーニー粘度は、JIS K6300:(1994年制定)に準じ、直径38.1mm、厚さ5.54mmのL型ローターを用い、100℃で、予熱時間を1分間、ローター回転時間を10分間に設定して測定され、ゴムの分子量の目安である。5~200の範囲にあると流動性と架橋性のバランスに優れる。
 本発明の含フッ素弾性共重合体のガラス転移温度は、-40~20℃が好ましく、-20~10℃がより好ましい。
 本発明の含フッ素弾性共重合体の比重は、1.57~1.80が好ましく、1.60~1.75がより好ましく、1.65~1.75が特に好ましい。
 本発明の含フッ素弾性共重合体組成物としては、上記含フッ素弾性共重合体に、架橋剤である有機過酸化物を含むものが好ましい。含フッ素弾性共重合体組成物中の含フッ素弾性共重合体の含有量は、重合の進行に伴い圧入するモノマー混合ガスの総量に対して30~99質量%が好ましい。含フッ素弾性共重合体組成物には、必要に応じて、架橋助剤、充填剤、補強剤等の各種添加剤を含有することもできる。含フッ素弾性共重合体組成物は、上記含フッ素弾性共重合体、有機過酸化物等を、ロール、ニーダー、バンバリーミキサー、押し出し機等のゴム用混合装置で、均一に混合することにより、容易に得ることができる。本発明の含フッ素弾性共重合体は、有機過酸化物を用いて架橋することが好ましい。
 有機過酸化物としては、ジtert-ブチルパーオキシド、tert-ブチルクミルパーオキシド、ジクミルパーオキシド、α,α-ビス(tert-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン-3等のジアルキルパーオキシド類、1,1-ジ(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロキシパーオキシド、ベンゾイルパーオキシド、tert-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、tert-ブチルパーオキシマレイン酸、tert-ブチルパーオキシソプロピルカーボネート等が挙げられ、ジアルキルパーオキシド類が好ましい。
 有機過酸化物の使用量は、含フッ素弾性共重合体の100質量部に対して、0.3~10質量部が好ましく、0.3~5質量部がより好ましく、0.5~3質量部がさらに好ましい。有機過酸化物の使用量が該範囲にあると、架橋速度が適切で、得られた架橋ゴムは引張強度と伸びのバランスに優れる。
 また、必要に応じて架橋助剤を添加すると、架橋反応性が向上し好ましい。架橋助剤としては、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタクリルイソシアヌレート、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン、トリアリルトリメリテート、m-フェニレンジアミンビスマレイミド、p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム、ジプロパルギルテレフタレート、ジアリルフタレート、N,N’,N’’,N’’’-テトラアリルテレフタールアミド、ポリメチルビニルシロキサン、ポリメチルフェニルビニルシロキサン等のビニル基含有シロキサンオリゴマー、等が挙げられる。架橋助剤としては、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタリルイソシアヌレートが好ましく、トリアリルイソシアヌレートがより好ましい。
 架橋助剤の添加量は、含フッ素弾性共重合体100質量部に対して、0.1~20質量部が好ましく、1~10質量部がより好ましい。架橋助剤の添加量が該範囲にあると、架橋速度が適切で、得られた架橋ゴムは強度と伸びのバランスに優れる。
 また、必要に応じて含フッ素弾性共重合体に金属酸化物を添加してもよい。金属酸化物としては、2価金属の酸化物が好ましい。2価金属の酸化物としては、酸化マグネシウム、酸化カルシウム、酸化亜鉛、酸化鉛等が挙げられる。金属酸化物の添加量は、含フッ素弾性共重合体の100質量部に対して、0.1~10質量部が好ましく、0.5~5質量部がより好ましい。
 さらに、本発明の含フッ素弾性共重合体組成物には、着色させるための顔料、充填剤、補強剤等を含有させてもよい。通常よく用いられる充填剤又は補強剤としては、カーボンブラック、酸化チタン、二酸化珪素、クレー、タルク、ポリ四フッ化エチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリクロロトリフルオロエチレン、四フッ化エチレン/エチレン共重合体、四フッ化エチレン/プロピレン共重合体、四フッ化エチレン/フッ化ビニリデン共重合体等が挙げられる。
 該含フッ素弾性共重合体組成物は、通常は加熱プレス等の方法によって、成形と同時に架橋されるが、予め成形した後に架橋してもよい。
 成形法としては、圧縮成形、射出成形、押し出し成形、カレンダー成形又は溶剤に溶かしてディッピング(dipping)、コーティング等が採用される。
 架橋条件は、成形法や架橋物の形状を考慮して加熱プレス架橋、スチーム架橋、熱風架橋、被鉛架橋等種々の条件が採用される。架橋温度は、通常は100~400℃で数秒~24時間の範囲が好ましい。また、架橋物の機械特性や圧縮永久歪の向上やその他の特性の安定化を目的に、2次架橋が好ましく採用される。2次架橋条件としては、100~300℃で30分間~48時間程度が好ましい。
 成形した含フッ素弾性共重合体組成物を放射線照射により架橋することも好ましい。照射する放射線としては、電子線、紫外線等が挙げられる。電子線照射における照射量は、0.1~30Mradが好ましく、1~20Mradがより好ましい。このようにして架橋すると得られる架橋ゴムの圧縮永久歪を小さくすることができる。該圧縮永久歪は、40以下であることが好ましく、30以下であることがより好ましく、25以下であることがさらに好ましい。
 放射線照射により架橋する場合には、含フッ素弾性共重合体組成物が有機過酸化物を含有しないことも好ましい。特に、電線用途においては、有機過酸化物を含有する含フッ素弾性共重合体組成物を架橋して得た架橋ゴムに加えて、有機過酸化物を含有しない含フッ素弾性共重合体組成物または含フッ素弾性共重合体それ自身を放射線架橋して得た架橋ゴムを使用することも好ましい。
 以下に実施例をあげて本発明を具体的に説明するが、本発明はこれらに限定されない。各物性の測定は下記の方法を用いた。
(含フッ素弾性共重合体の共重合組成)
 含フッ素弾性共重合体の共重合組成(TFEに基づく繰り返し単位(a)とPに基づく繰り返し(b)単位のモル比(a)/(b))は、含フッ素弾性共重合体のフッ素含有量分析により算出した。
(ガラス転移温度(℃))
 セイコーインスツルメント社製DSC220型を用いて、10±0.1mgの含フッ素弾性共重合体を-50℃から10℃/分で150℃まで昇温させ、10℃/分で-50℃まで冷却させた際の吸熱ピーク変化の中心温度をガラス転移温度とした。
(ムーニー粘度)
 含フッ素弾性共重合体のムーニー粘度は、JIS K6300:(1994年制定)に準じて、直径38.1mm、厚さ5.54mmのL型ローターを用い、100℃で、予熱時間を1分間、ローター回転時間を4分間に設定して測定した。値が大きい程、間接的に高分子量であることを示す。
(比重)
 含フッ素弾性共重合体の比重は、新光電子社製比重計を用い、JIS K6220-1:(2001年制定)に準ずる方法にて測定した。
(架橋物性及び架橋ゴム物性の測定)
 含フッ素弾性共重合体100質量部、カーボンブラック15質量部、トリアリルイソシアヌレート5質量部、及び1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン(化薬アクゾ社製、商品名「パーカドックス14」)1質量部を2本ロールにより、室温下にて10分間混練し、均一に混合された含フッ素弾性共重合体組成物を得た。得られた含フッ素弾性共重合体組成物は架橋特性測定機(アルファーテクノロジーズ社製、商品名「RPA2000」)を用いて177℃で12分間、振幅3度の条件にて架橋特性を測定した。架橋特性において、Mはトルクの最大値を示し、Mはトルクの最小値を示し、M-Mは架橋度を示す。該架橋特性は、含フッ素弾性共重合体の架橋反応性の指標となり、(M-M)の値が大きいほど、架橋反応性に優れることを示す。また、該含フッ素弾性共重合体組成物を170℃で20分間の熱プレスを行った後、200℃のオーブン内で4時間の2次架橋を行い、含フッ素弾性共重合体組成物の厚さ2mmの架橋ゴムシートを得た。得られた架橋ゴムシートを3号ダンベルで打ち抜き、試料を作製し、JIS K6251:(1993年制定)に準じて、100%引張応力、引張強さ及び破断伸びを測定した。また、JIS K6253:(1993年制定)に準じて硬度を測定した。
(圧縮永久歪)
 前記含フッ素弾性共重合体組成物を架橋して得られた架橋ゴムにつき、JIS K6262:(1993年制定)に準じて200℃で72時間の圧縮永久歪試験を行い、圧縮永久歪を測定した。
(押出し特性)
 前記含フッ素弾性共重合体組成物につき、二軸押出機(三葉工業所社製、40G-120、スクリュー径40mm、L/D=12、押出温度90℃)にて、真円状のダイスから、円柱状の成形物を押出し、表面の状態を目視にて確認した。また、成形物の厚みを1cmおきに20点測定し、下記の基準で評価した。
 ◎(優):成形品表面にザラツキがなく、すべての厚みが平均値の±3%以内に収まっている。
 ○(良):成形品表面にザラツキが少し認められ、すべての厚みが平均値の±10%以内に収まっている。
 ×(不良):成形品表面にザラツキがかなり認められ、一部の厚みが平均値の±10%を超えている。
(実施例1)含フッ素弾性共重合体Aの製造:
 撹拌用アンカー翼を備えた内容積3200mLのステンレス鋼製の耐圧反応器の内部を脱気した後、該反応器に、イオン交換水の1500g、リン酸水素二ナトリウム12水和物の60g、水酸化ナトリウムの0.9g、tert-ブタノールの198g、含フッ素乳化剤としてCOCFCFOCFCOONHの9g、及び過硫酸アンモニウムの3.8g、を加えた。さらに、200gのイオン交換水に0.4gのエチレンジアミン四酢酸二ナトリウム塩二水和物(以下、EDTAと記す。)及び0.3gの硫酸第一鉄7水和物を溶解させた水溶液を、反応器に加えた。このときの反応器内の水性媒体のpHは9.2であった。
 ついで、24℃で、TFE/P=95/5(モル比)のモノマー混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、1,4-ジヨードパーフルオロブタンの8.8gを添加した。その後、水酸化ナトリウムでpHを10.0に調整したヒドロキシメタンスルフィン酸ナトリウム2水和物(以下、ロンガリットと記す。)2.5質量%水溶液(以下、ロンガリット2.5質量%水溶液と記す。)を反応器に加え、重合反応を開始させた。以降、ロンガリット2.5質量%水溶液を、高圧ポンプを用いて連続的に反応器に加えた。
 重合温度を24℃に維持して重合を進行させ、重合の進行に伴い、反応器内の圧力が低下するので、反応器の内圧が2.49MPaGに降下した時点で、TFE/P=70/30(モル比)のモノマー混合ガスを圧入し、反応器の内圧を2.51MPaGまで昇圧させた。この操作を繰り返し、反応器の内圧を2.49~2.51MPaGに保持し、重合反応を続けた。TFE/Pのモノマー混合ガスの圧入量の総量が1000gとなった時点で、ロンガリット2.5質量%水溶液の添加を停止し、反応器の内温を10℃まで冷却し、重合反応を停止し、含フッ素弾性共重合体Aのラテックスを得た。得られたラテックスのpHは7.8であった。ロンガリット2.5質量%水溶液の添加量は40gであった。重合時間は約7時間であった。
 含フッ素弾性共重合体Aのラテックスを塩化カルシウムの5質量%水溶液に添加して、塩析により含フッ素弾性共重合体Aのラテックスを凝集させ、含フッ素弾性共重合体Aを析出させた。含フッ素弾性共重合体Aをろ過、回収した。ついで、含フッ素弾性共重合体Aをイオン交換水(3500ml)により洗浄し、100℃のオーブンで15時間乾燥させ、白色の含フッ素弾性共重合体Aの985gを得た。
 含フッ素弾性共重合体A中のTFEに基づく繰り返し単位(a)とPに基づく繰り返し単位(b)の比率(a)/(b)は70/30(モル比)であった。また、含フッ素弾性共重合体Aのムーニー粘度は90、比重は1.76、ガラス転移温度は-3℃であった。
 含フッ素弾性共重合体Aの架橋特性及び架橋ゴム物性を下記表1に示す。
(実施例2)含フッ素弾性共重合体Bの製造:
 反応器に最初に圧入するモノマー混合ガスの割合をTFE/P=95/5(モル比)から、TFE/P=93/7(モル比)に、重合の進行時に圧入するモノマー混合ガスの割合をTFE/P=70/30(モル比)から、TFE/P=63/37(モル比)に、変更した以外は、実施例1と同様にして、含フッ素弾性共重合体Bのラテックスを得た。得られたラテックスのpHは7.8であった。ロンガリット2.5質量%水溶液の添加量は50gであった。重合時間は約8時間であった。
 実施例1と同様にして、含フッ素弾性共重合体Bのラテックスから含フッ素弾性共重合体Bの960gを得た。
 含フッ素弾性共重合体B中のTFEに基づく繰り返し単位(a)とPに基づく繰り返し単位(b)の比率(a)/(b)は63/37(モル比)であった。また、含フッ素弾性共重合体Bのムーニー粘度は80、比重は1.68、ガラス転移温度は-3℃であった。
 含フッ素弾性共重合体Bの架橋特性及び架橋ゴム物性を下記表1に示す。
(実施例3)含フッ素弾性共重合体Cの製造:
 乳化剤としてCOCFCFOCFCOONHに代えてラウリル硫酸ナトリウムの9gを添加した以外は、実施例1と同様にして製造し、含フッ素弾性共重合体Cのラテックスを得た。得られたラテックスのpHは8.0であった。ロンガリット2.5質量%水溶液の添加量は50gであった。重合時間は約8時間であった。
 実施例1と同様にして、含フッ素弾性共重合体Cのラテックスから含フッ素弾性共重合体Cの880gを得た。
 含フッ素弾性共重合体C中のTFEに基づく繰り返し単位(a)とPに基づく繰り返し単位(b)の比率(a)/(b)は70/30(モル比)であった。また、含フッ素弾性共重合体Cのムーニー粘度は75、比重は1.75、ガラス転移温度は-3℃であった。
 含フッ素弾性共重合体Cの架橋特性及び架橋ゴム物性を下記表1に示す。
(比較例1)含フッ素弾性共重合体Dの製造:
 反応器に最初に圧入するモノマー混合ガスの割合をTFE/P=95/5(モル比)から、TFE/P=88/12(モル比)に、重合の進行時に圧入するモノマー混合ガスの割合をTFE/P=70/30(モル比)から、TFE/P=56/44(モル比)に、変更した以外は、実施例1と同様にして、含フッ素弾性共重合体Dのラテックスを得た。得られたラテックスのpHは8.0であった。ロンガリット2.5質量%水溶液の添加量は90gであった。重合時間は約6時間であった。
 実施例1と同様にして、含フッ素弾性共重合体Dのラテックスから含フッ素弾性共重合体Dの960gを得た。
 含フッ素弾性共重合体D中のTFEに基づく繰り返し単位(a)とPに基づく繰り返し単位(b)の比率(a)/(b)は56/44(モル比)であった。また、含フッ素弾性共重合体Dのムーニー粘度は85、比重は1.55、ガラス転移温度は-3℃であった。
 含フッ素弾性共重合体Dの架橋特性及び架橋ゴム物性を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
(オートマチックトランスミッションオイル浸漬試験)
 前述の架橋ゴムシートを3号ダンベルで打ち抜いて作製した試料を、175℃に保持したオートマチックトランスミッションオイル(商品名:トヨタ純正オートフルードD-II)に2000時間浸漬した後、取り出して、JIS K6251:(1993年制定)に準じて、引張強さ及び破断伸びを測定し、浸漬前後の引張強さの保持率、及び破断伸びの保持率を測定した。また浸漬前後の試料の体積変化率を算出した。なお体積変化率は以下の方法で測定した。結果を下記表2に示す。
(体積変化率)
 各試料の体積は、新光電子社製 自動比重計DMA-220Hを用いて測定し、浸漬前後の試料の体積から下記式により、体積変化率を算出した。
 体積変化率(%)=[(浸漬後の体積-浸漬前の体積)/(浸漬前の体積)]×100
Figure JPOXMLDOC01-appb-T000002
 テトラフルオロエチレンに基づく繰り返し単位(a)とプロピレンに基づく繰り返し単位(b)のモル比率(a)/(b)が本発明の範囲内にある、実施例1~3の含フッ素弾性共重合体は、いずれも(M-M)の値が大きく、優れた架橋反応性を示し、平滑な押出成形品表面を有し、かつ優れた架橋ゴム物性及び、オートマチックトランスミッションオイルに対する高い物性保持率と小さな体積変化率を示した。
 一方、モル比率(a)/(b)が本発明の範囲外である、比較例1の含フッ素弾性共重合体は、架橋反応性、及び架橋ゴム物性が実施例に比べ劣り、特に押出成形品の表面の平滑性が大きく劣り、また、オートマチックトランスミッションオイル浸漬後の物性低下が大きく、大きな体積変化率を示した。
 本発明の含フッ素共弾性重合体は、架橋反応により架橋ゴムにすることができる。該架橋ゴムは、O-リング、シート、ガスケット、オイルシール、ダイヤフラム、V-リング等の材料に好適であり、また、耐熱性耐薬品性シール材、耐熱性耐油性シール材、電線被覆材、半導体装置用シール材、耐蝕性ゴム塗料、耐ウレア系グリース用シール材等の用途にも適用できる。特に、押出し特性に優れることから、該架橋ゴムは、電線被覆材、チューブ、シート形状のゴム製品等として有用である。
 なお、2010年1月29日に出願された日本特許出願2010-019228号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (11)

  1.  テトラフルオロエチレン、プロピレン、及び必要に応じてその他のモノマーを共重合することにより得られる含フッ素弾性共重合体であって、含フッ素弾性共重合体中におけるテトラフルオロエチレンに基づく繰り返し単位(a)とプロピレンに基づく繰り返し単位(b)のモル比率(a)/(b)が60/40~75/25であり、前記その他のモノマーに基づく繰り返し単位(c)が含フッ素弾性共重合体中0~10モル%であることを特徴とする含フッ素弾性共重合体。
  2.  前記その他のモノマーがパ-フルオロ(アルキルビニルエ-テル)である請求項1に記載の含フッ素弾性共重合体。
  3.  ヨウ素原子を有する請求項1または2に記載の含フッ素弾性共重合体。
  4.  請求項1~3のいずれかに記載の含フッ素弾性共重合体を含有する含フッ素弾性共重合体組成物。
  5.  請求項1~3のいずれかに記載の含フッ素弾性共重合体を有機過酸化物で架橋してなる架橋ゴム。
  6.  請求項1~3のいずれかに記載の含フッ素弾性共重合体を含有する組成物を架橋してなる被覆電線。
  7.  請求項1~3のいずれかに記載の含フッ素弾性共重合体の製造方法であって、ラジカル重合開始剤、及び、一般式RI(式中、Rは炭素数3以上のアルキレン基またはパーフルオロアルキレン基である。)で表されるヨード化合物の存在下、前記テトラフルオロエチレンと、前記プロピレンと、必要に応じて前記その他のモノマーを共重合することを特徴とする含フッ素弾性共重合体の製造方法。
  8.  前記共重合が、乳化剤の存在下に実施する乳化重合である請求項7に記載の含フッ素弾性共重合体の製造方法。
  9.  前記乳化剤が、ラウリル硫酸ナトリウム、または、一般式(1):Rf1ORf2COOA(式中、Rf1は炭素数1~10のパーフルオロアルキル基であり、Rf2は、直鎖状の含フッ素アルキレン基であり、該含フッ素アルキレン基はエーテル性の酸素原子を有してもよく、該含フッ素アルキレン基は炭素数1~3のパーフルオロアルキル基の側鎖を有してもよく、Aは水素原子、アルカリ金属又はNHである。なお、Rf2の炭素数は、1~12が好ましく、1~8がより好ましい。)で表される含フッ素エーテルカルボン酸化合物である請求項8に記載の含フッ素弾性共重合体の製造方法。
  10.  前記ラジカル重合開始剤が、過硫酸塩類である請求項7~9のいずれかに記載の含フッ素弾性共重合体の製造方法。
  11.  前記ヨード化合物が、パーフルオロアルキレン基を有するジヨード化合物である請求項7~10のいずれかに記載の含フッ素弾性共重合体の製造方法。
PCT/JP2011/051652 2010-01-29 2011-01-27 含フッ素弾性共重合体及び製造方法 WO2011093403A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11737114.6A EP2530096B1 (en) 2010-01-29 2011-01-27 Fluorinated elastic copolymer and method for its production
CN2011800077690A CN102741304A (zh) 2010-01-29 2011-01-27 含氟弹性共聚物及其制造方法
JP2011551911A JPWO2011093403A1 (ja) 2010-01-29 2011-01-27 含フッ素弾性共重合体及び製造方法
US13/551,157 US8927668B2 (en) 2010-01-29 2012-07-17 Fluorinated elastic copolymer and method for its production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-019228 2010-01-29
JP2010019228 2010-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/551,157 Continuation US8927668B2 (en) 2010-01-29 2012-07-17 Fluorinated elastic copolymer and method for its production

Publications (1)

Publication Number Publication Date
WO2011093403A1 true WO2011093403A1 (ja) 2011-08-04

Family

ID=44319386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051652 WO2011093403A1 (ja) 2010-01-29 2011-01-27 含フッ素弾性共重合体及び製造方法

Country Status (5)

Country Link
US (1) US8927668B2 (ja)
EP (1) EP2530096B1 (ja)
JP (1) JPWO2011093403A1 (ja)
CN (1) CN102741304A (ja)
WO (1) WO2011093403A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2738845A4 (en) * 2011-07-29 2015-03-18 Asahi Glass Co Ltd BINDER FOR ELECTRICITY STORAGE DEVICE

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150076155A (ko) 2012-10-19 2015-07-06 아사히 가라스 가부시키가이샤 축전 디바이스용 바인더 조성물의 제조 방법
WO2014189016A1 (ja) * 2013-05-21 2014-11-27 旭硝子株式会社 電線被覆用樹脂材料および電線

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235289A (en) * 1975-09-16 1977-03-17 Asahi Glass Co Ltd Preparation of fluorine-containing elastomer
JPS5684711A (en) * 1979-12-14 1981-07-10 Asahi Glass Co Ltd Fluorine-containing elastomer and vulcanized composition thereof
JPS5857209A (ja) 1981-09-30 1983-04-05 日立電線株式会社 含フツ素弾性共重合体絶縁電線
JPH03176907A (ja) * 1989-12-04 1991-07-31 Hitachi Cable Ltd 含ふっ素エラストマ被覆絶縁電線
JPH05222130A (ja) 1990-03-01 1993-08-31 E I Du Pont De Nemours & Co フルオル弾性体及びその製造法
JPH0718002A (ja) * 1993-07-02 1995-01-20 Asahi Glass Co Ltd 含フッ素共重合体の製造方法
JP2001176336A (ja) 1999-12-20 2001-06-29 Asahi Glass Co Ltd 耐熱耐油性電線
WO2008106189A1 (en) * 2007-02-27 2008-09-04 Dupont Performance Elastomers L.L.C. Curable base-resistant fluoroelastomers
JP2009513796A (ja) * 2005-10-28 2009-04-02 デュポン パフォーマンス エラストマーズ エルエルシー ビニルエステルの共重合単位を含有するフルオロエラストマー
WO2009119202A1 (ja) * 2008-03-28 2009-10-01 旭硝子株式会社 含フッ素弾性共重合体及び製造方法
JP2009280687A (ja) * 2008-05-21 2009-12-03 Asahi Glass Co Ltd 含フッ素弾性共重合体
JP2010019228A (ja) 2008-07-14 2010-01-28 Hitachi Ltd 回転機械の翼ランダム振動監視システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892641A (en) * 1970-05-26 1975-07-01 Japan Atomic Energy Res Inst Process for producing a copolymer of tetrafluoroethylene and propylene
GB1291936A (en) * 1970-11-19 1972-10-04 Asahi Glass Co Ltd Process for producing a copolymer of tetrafluoroethylene and propylene
US3933773A (en) * 1972-06-08 1976-01-20 Thiokol Corporation Thermoplastic elastomeric copolymers and terpolymers of tetrafluoroethylene and propylene and method of making the same
US4277586A (en) * 1974-11-20 1981-07-07 Asahi Glass Company, Ltd. Process for preparing a propylene-tetrafluoroethylene copolymer
DE3069835D1 (en) * 1980-09-19 1985-01-31 Asahi Glass Co Ltd Process for producing propylene-tetrafluoroethylene copolymer
US5102965A (en) * 1990-03-01 1992-04-07 E. I. Du Pont De Nemours And Company Base resistant fluoroelastomers with improved processibility and curability
US5856417A (en) * 1996-10-29 1999-01-05 Asahi Glass Company Ltd. Fluorine-containing copolymer
KR100542783B1 (ko) * 1997-06-23 2006-01-11 다이낑 고오교 가부시키가이샤 테트라플루오로에틸렌 공중합체 및 그 용도
JPH1125985A (ja) * 1997-06-27 1999-01-29 Asahi Glass Co Ltd 非水系二次電池用電極及び非水系二次電池
US5877269A (en) * 1997-12-19 1999-03-02 Bridgestone Corporation Organic ester plasticizers
DE69923065T2 (de) * 1998-03-31 2006-03-02 Asahi Glass Co., Ltd. Fluorcopolymer und dessen Zusammensetzung
JPH11343315A (ja) * 1998-05-29 1999-12-14 Asahi Glass Co Ltd 農業用被覆資材
JP4310899B2 (ja) * 2000-07-19 2009-08-12 東レ株式会社 高開口数プラスチック光ファイバ
JP2002156533A (ja) * 2000-11-17 2002-05-31 Toray Ind Inc プラスチック光ファイバコード
US6703450B2 (en) * 2001-05-15 2004-03-09 Dupont Dow Elastomer, L.L.C. Curable base-resistant fluoroelastomers
US6927259B2 (en) * 2002-05-02 2005-08-09 Dupont Dow Elastomers Llc Curable base-resistant fluoroelastomers
US6803435B2 (en) * 2002-07-18 2004-10-12 3M Innovative Properties Company Curable fluoropolymers containing bromine groups having improved compression set
DE602005018228D1 (de) * 2004-08-04 2010-01-21 Asahi Glass Co Ltd Elastomeres fluorcopolymer, dieses enthaltende zusammensetzung und vernetzte kautschuke
JP5092367B2 (ja) * 2006-01-13 2012-12-05 旭硝子株式会社 含フッ素弾性共重合体の製造方法および架橋フッ素ゴム
ATE434004T1 (de) * 2006-01-13 2009-07-15 Asahi Glass Co Ltd Verfahren zur herstellung von elastischem fluorcopolymer und vernetztem fluorkautschuk
EP2343325A4 (en) * 2008-11-05 2012-04-11 Asahi Glass Co Ltd FLUORINATED ELASTIC COPOLYMER, PROCESS FOR PRODUCING THE SAME, AND RETICULATED RUBBER
CN101824119B (zh) * 2010-04-15 2013-12-25 上海三爱富新材料股份有限公司 多元共聚四氟乙烯-丙烯氟弹性体及其制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5235289A (en) * 1975-09-16 1977-03-17 Asahi Glass Co Ltd Preparation of fluorine-containing elastomer
JPS5684711A (en) * 1979-12-14 1981-07-10 Asahi Glass Co Ltd Fluorine-containing elastomer and vulcanized composition thereof
JPS5857209A (ja) 1981-09-30 1983-04-05 日立電線株式会社 含フツ素弾性共重合体絶縁電線
JPH03176907A (ja) * 1989-12-04 1991-07-31 Hitachi Cable Ltd 含ふっ素エラストマ被覆絶縁電線
JPH05222130A (ja) 1990-03-01 1993-08-31 E I Du Pont De Nemours & Co フルオル弾性体及びその製造法
JPH0718002A (ja) * 1993-07-02 1995-01-20 Asahi Glass Co Ltd 含フッ素共重合体の製造方法
JP2001176336A (ja) 1999-12-20 2001-06-29 Asahi Glass Co Ltd 耐熱耐油性電線
JP2009513796A (ja) * 2005-10-28 2009-04-02 デュポン パフォーマンス エラストマーズ エルエルシー ビニルエステルの共重合単位を含有するフルオロエラストマー
WO2008106189A1 (en) * 2007-02-27 2008-09-04 Dupont Performance Elastomers L.L.C. Curable base-resistant fluoroelastomers
WO2009119202A1 (ja) * 2008-03-28 2009-10-01 旭硝子株式会社 含フッ素弾性共重合体及び製造方法
JP2009280687A (ja) * 2008-05-21 2009-12-03 Asahi Glass Co Ltd 含フッ素弾性共重合体
JP2010019228A (ja) 2008-07-14 2010-01-28 Hitachi Ltd 回転機械の翼ランダム振動監視システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2530096A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2738845A4 (en) * 2011-07-29 2015-03-18 Asahi Glass Co Ltd BINDER FOR ELECTRICITY STORAGE DEVICE

Also Published As

Publication number Publication date
EP2530096A4 (en) 2013-07-10
CN102741304A (zh) 2012-10-17
US20120289661A1 (en) 2012-11-15
EP2530096A1 (en) 2012-12-05
JPWO2011093403A1 (ja) 2013-06-06
US8927668B2 (en) 2015-01-06
EP2530096B1 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5321580B2 (ja) 含フッ素弾性共重合体及び製造方法
JP7125263B2 (ja) 含フッ素弾性共重合体、その製造方法、架橋ゴムおよびその製造方法
JP5644502B2 (ja) 含フッ素弾性共重合体、その製造方法および架橋ゴム
US8877870B2 (en) Fluorinated elastic copolymer and process for its production, and crosslinked rubber article
JP6582991B2 (ja) ペルフルオロエラストマー、ペルフルオロエラストマー組成物、及び架橋ゴム物品
US7884166B2 (en) Elastic fluorocopolymer, its composition and crosslinked rubber
JP5061510B2 (ja) 含フッ素弾性共重合体組成物および架橋ゴム
US20060047084A1 (en) Fluorocopolymer
US8927668B2 (en) Fluorinated elastic copolymer and method for its production
JP5050320B2 (ja) 含フッ素共重合体
JP4640021B2 (ja) 含フッ素共重合体
JP5055718B2 (ja) 架橋可能な含フッ素弾性共重合体組成物および架橋ゴム
JP5163287B2 (ja) 含フッ素弾性共重合体、その製造方法および架橋ゴム
JP2009096906A (ja) 含フッ素共重合体、その製造方法および架橋ゴム
RU2378291C2 (ru) Эластичный фторсополимер, его смесь и сшитый каучук
JP2008308544A (ja) 含フッ素共重合体
JP2018044078A (ja) 含フッ素弾性共重合体組成物および架橋ゴム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007769.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11737114

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551911

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011737114

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE