WO2009119202A1 - 含フッ素弾性共重合体及び製造方法 - Google Patents

含フッ素弾性共重合体及び製造方法 Download PDF

Info

Publication number
WO2009119202A1
WO2009119202A1 PCT/JP2009/052940 JP2009052940W WO2009119202A1 WO 2009119202 A1 WO2009119202 A1 WO 2009119202A1 JP 2009052940 W JP2009052940 W JP 2009052940W WO 2009119202 A1 WO2009119202 A1 WO 2009119202A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic copolymer
fluorinated elastic
copolymer
fluorine
mass
Prior art date
Application number
PCT/JP2009/052940
Other languages
English (en)
French (fr)
Inventor
丈裕 巨勢
満 関
宙 舟木
康彦 松岡
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010505456A priority Critical patent/JP5321580B2/ja
Priority to EP09724032.9A priority patent/EP2258733B1/en
Priority to CN2009801119462A priority patent/CN101981067B/zh
Publication of WO2009119202A1 publication Critical patent/WO2009119202A1/ja
Priority to US12/892,295 priority patent/US8716419B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/186Monomers containing fluorine with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers

Definitions

  • the present invention relates to a fluorinated elastic copolymer having excellent crosslinking reactivity, high fluidity, excellent compression set and base resistance, and a method for producing the same.
  • Fluorine-containing elastic copolymers are excellent in heat resistance, chemical resistance, oil resistance, weather resistance, and the like, and are therefore applied even in harsh environments where ordinary hydrocarbon materials cannot withstand.
  • Known fluorine-containing elastic copolymers include vinylidene fluoride / hexafluoropropylene copolymer, tetrafluoroethylene / propylene copolymer, and tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer. It has been.
  • the tetrafluoroethylene / propylene copolymer is excellent in amine resistance and high temperature steam resistance as compared with the above-mentioned fluorinated elastic copolymer containing a repeating unit of vinylidene fluoride.
  • a fluorinated elastic copolymer obtained by copolymerizing a monomer containing a crosslinkable functional group such as a vinyl ester monomer has been proposed (see Patent Document 2). reference).
  • Patent Document 2 a fluorinated elastic copolymer obtained by copolymerizing a monomer containing a crosslinkable functional group such as a vinyl ester monomer has been proposed (see Patent Document 2). reference).
  • the tetrafluoroethylene / propylene copolymer has insufficient fluidity in a cavity of a molding die when producing a product having a complicated shape.
  • a fluorine-containing elastic copolymer obtained by copolymerizing tetrafluoroethylene / propylene in the presence of a fluorine-containing chain transfer agent having an iodine atom has also been proposed (see Patent Document 3).
  • the polymerization rate was slow and the productivity of the fluorinated elastic copolymer was very low.
  • the obtained fluorinated elastic copolymer has insufficient crosslinking reactivity, and various physical properties of the crosslinked rubber including compression set were not satisfactory.
  • An object of the present invention is to provide a fluorinated elastic copolymer having excellent crosslinking reactivity, high fluidity, excellent heat resistance, chemical resistance and compression set resistance, and a method for producing the same.
  • the present invention relates to a fluorinated elastic copolymer obtained by copolymerizing tetrafluoroethylene, propylene and, if necessary, perfluoro (alkyl vinyl ether), the fluorinated elastic copolymer Fluorine-containing elastic copolymer composition obtained by kneading 100 parts by mass, 30 parts by mass of carbon black, 5 parts by mass of triallyl isocyanurate, and 1 part by mass of 1,3-bis (tert-butylperoxyisopropyl) benzene
  • the cross-linking characteristics were measured using a cross-linking characteristic measuring machine at 177 ° C.
  • a fluorinated elastic copolymer having a difference (M H ⁇ M L ) value of 30 dN ⁇ m or more.
  • the molar ratio of the repeating unit based on tetrafluoroethylene / the repeating unit based on propylene in the fluorinated elastic copolymer is 30/70 to 70/30.
  • a fluorinated elastic copolymer is provided.
  • the present invention also provides a fluorinated elastic copolymer containing an iodine atom and having a content of 0.01 to 5.0% by mass in the above fluorinated elastic copolymer.
  • the present invention also includes a radical polymerization initiator and an iodine compound represented by the general formula RI 2 (wherein R is an alkylene group or a perfluoroalkylene group having 3 or more carbon atoms).
  • R is an alkylene group or a perfluoroalkylene group having 3 or more carbon atoms.
  • the present invention provides a method for producing the fluorinated elastic copolymer, wherein the copolymerization is carried out by emulsion polymerization in which the pH of the aqueous medium is in the range of 7 to 14 in the presence of an emulsifier in the aqueous medium.
  • a method for producing a fluorinated elastic copolymer which is polymerization is provided.
  • the present invention provides the method for producing a fluorinated elastic copolymer, wherein the RI 2 is 1,3-diiodopropane, 1,4-diiodobutane, 1,6-diiodohexane, 1,8-diiodine.
  • the emulsifier may be represented by the general formula (1): R f1 OR f2 COOA (wherein R f1 is a perfluoroalkyl group having 1 to 8 carbon atoms).
  • R f2 is a linear fluorine-containing alkylene group, and the fluorine-containing alkylene group may contain an etheric oxygen atom, and the fluorine-containing alkylene group has a carbon number of 1 to 3;
  • a method for producing a fluorinated elastic copolymer which may have a side chain of a fluoroalkyl group, and A is a hydrogen atom, an alkali metal, or NH 4 . To do.
  • the present invention provides the method of manufacturing a fluorinated elastic copolymer, wherein the emulsifier is represented by the general formula (2): F (CF 2 ) p O (CF (X) CF 2 O) q CF (X) COOA (In the formula, X represents a fluorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms, A represents a hydrogen atom, an alkali metal, or NH 4 , and p represents an integer of 1 to 10, q represents an integer of 0 to 3.)
  • a method for producing a fluorinated elastic copolymer which is a fluorinated ether carboxylic acid compound represented by
  • the present invention also provides a method for producing a fluorinated elastic copolymer, wherein the radical polymerization initiator is a redox polymerization initiator in the method for producing the fluorinated elastic copolymer.
  • the present invention also provides the fluorinated elastic copolymer, ethylene tetrafluoride / ethylene copolymer, vinylidene fluoride / hexafluoropropylene copolymer, and tetrafluoroethylene other than the fluorinated elastic copolymer.
  • a fluorinated elastic copolymer composition containing at least one copolymer selected from the group consisting of a propylene copolymer and an ethylene-propylene-nonconjugated diene copolymer, Fluorine-containing elastic copolymer composition, wherein the content ratio of the polymer and the copolymer is fluorinated elastic copolymer / copolymer (mass ratio) 100/1 to 100/300 I will provide a.
  • the fluorinated elastic copolymer of the present invention has excellent crosslinking reactivity, high fluidity, and excellent heat resistance, chemical resistance, and compression set resistance. In particular, it is excellent in injection moldability and suitable for products with complicated shapes. Moreover, the fluorinated elastic copolymer composition of the present invention is excellent in extrusion moldability and is suitable for a wire coating material.
  • the fluorinated elastic copolymer of the present invention comprises tetrafluoroethylene (hereinafter referred to as TFE), propylene (hereinafter referred to as P), and optionally perfluoro (alkyl vinyl ether) (hereinafter referred to as PAVE).
  • TFE tetrafluoroethylene
  • P propylene
  • PAVE optionally perfluoro (alkyl vinyl ether)
  • the ratio of the repeating unit based on TFE and the repeating unit based on P is preferably 45/55 to 65/35, more preferably 50/50 to 60/40 (molar ratio).
  • the ratio of the repeating unit based on TFE / the repeating unit based on P / the repeating unit based on PAVE in the obtained fluorinated elastic copolymer is 30 to 60/10 to 40 / It is preferably 10 to 40 (molar ratio).
  • the fluorinated elastic copolymer of the present invention can be copolymerized with other monomers in addition to TFE, P, and PAVE as long as the effects of the present invention are not impaired.
  • Other monomers include fluorinated olefins such as monofluoroethylene, trifluoroethylene, trifluoropropylene, pentafluoropropylene, hexafluoropropylene, hexafluoroisobutylene and dichlorodifluoroethylene; hydrocarbons such as ethylene, 1-butene and isobutylene Examples include olefins; alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, and cyclohexyl vinyl ether; vinyl esters such as vinyl acetate and vinyl propionate; vinyl chloride, vinylidene chloride, and trifluorostyrene.
  • the iodine compound represented by the general formula RI 2 is an iodine compound in which iodine atoms are bonded to both ends of an alkylene group or a perfluoroalkylene group having 3 or more carbon atoms. It is. Specific examples include 1,3-diiodopropane, 1,4-diiodobutane, 1,6-diiodohexane, 1,8-diiodooctane, 1,3-diiodoperfluoropropane, 1,4-diiodopropane.
  • Examples include iodoperfluorobutane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, and the like.
  • the carbon number of the iodine compound represented by the general formula RI 2 is preferably 3 to 8.
  • the iodine compound represented by the general formula RI 2 is more preferably an iodine compound having a perfluoroalkylene group, and most preferably 1,4-diiodoperfluorobutane.
  • the iodine compound represented by the general formula RI 2 is preferably added so that the iodine atom content in the fluorinated elastic copolymer is 0.01 to 5.0% by mass. Further, it is particularly preferable to add so as to be 0.1 to 1.0% by mass.
  • examples of the polymerization method include an emulsion polymerization method, a solution polymerization method, a suspension polymerization method, a bulk polymerization method and the like.
  • an emulsion polymerization method in which monomers such as TFE and P are polymerized in an aqueous medium in the presence of an emulsifier is preferable because the molecular weight and the copolymer composition are easily adjusted and the productivity is excellent.
  • the aqueous medium water or water containing a water-soluble organic solvent is preferable, and water containing a water-soluble organic solvent is more preferable.
  • the water-soluble organic solvent include tert-butanol, propylene glycol, dipropylene glycol, dipropylene glycol monomethyl ether, and tripropylene glycol.
  • tert-butanol, propylene glycol, and dipropylene glycol monomethyl ether are preferable, and tert-butanol is more preferable.
  • the content of the water-soluble organic solvent in the aqueous medium is preferably 1 to 50 parts by mass and more preferably 3 to 20 parts by mass with respect to 100 parts by mass of water.
  • the pH of the aqueous medium is preferably 7 to 14, more preferably 7 to 11, further preferably 7.5 to 11, and most preferably 8 to 10.5.
  • the pH of the aqueous medium should be in the above range during the entire polymerization period from the start of the polymerization to the end of the polymerization, but it may not be the total polymerization period. Preferably, it is 80% or more of the total polymerization period, more preferably 90% or more, and still more preferably 95% or more.
  • pH buffering agents include inorganic salts.
  • inorganic salts include phosphates such as disodium hydrogen phosphate and sodium dihydrogen phosphate, and carbonates such as sodium bicarbonate and sodium carbonate. More preferable specific examples of the phosphate include disodium hydrogen phosphate dihydrate and disodium hydrogen phosphate dodecahydrate.
  • an ionic emulsifier is preferable and an anionic emulsifier is more preferable because the resulting fluorinated elastic copolymer latex is excellent in mechanical and chemical stability.
  • an anionic emulsifier known ones can be used. Specific examples include hydrocarbon emulsifiers such as sodium lauryl sulfate and sodium dodecylbenzenesulfonate, and fluorine-containing compounds such as ammonium perfluorooctanoate and ammonium perfluorohexanoate.
  • Alcoic acid salt general formula (1): R f1 OR f2 COOA (wherein R f1 is a perfluoroalkyl group having 1 to 8 carbon atoms, R f2 is a linear fluorine-containing alkylene group, The fluorine-containing alkylene group may contain an etheric oxygen atom, the fluorine-containing alkylene group may have a side chain of a perfluoroalkyl group having 1 to 3 carbon atoms, A is a hydrogen atom, alkali metal or NH 4. fluorinated ether carboxylic acid compound represented by) (hereinafter, the general formula (1) that the compounds of) the elevation I can get lost.
  • the carbon number of R f2 is preferably 1 to 12, and more preferably 1 to 8.
  • a fluorine-containing emulsifier is preferable, and a fluorine-containing alkane salt or a compound of the general formula (1) is more preferable.
  • An acid compound hereinafter referred to as a compound of the general formula (2) is most preferable.
  • Examples of the compound represented by the general formula (1) or the compound represented by (2) when A is NH 4 include the following compounds.
  • More preferable examples of the compound of the general formula (2) include F (CF 2 ) 2 OCF 2 CF 2 OCF 2 COONH 4 , F (CF 2 ) 2 O (CF 2 CF 2 O) 2 CF 2 COONH 4 , F (CF 2 ) 3 O (CF (CF 3 ) CF 2 O) 2 CF (CF 3 ) COONH 4 , F (CF 2 ) 3 OCF 2 CF 2 OCF 2 COONH 4 , F (CF 2 ) 3 O (CF 2 CF 2 O) 2 CF 2 COONH 4, F (CF 2) 4 OCF 2 CF 2 OCF 2 COONH 4, F (CF 2) 4 O (CF 2 CF 2 O) 2 CF 2 COONH 4, F (CF 2 ) 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 and the like.
  • the content of the emulsifier is preferably 0.01 to 15 parts by mass, more preferably 0.1 to 10 parts by mass, and most preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the aqueous medium.
  • the polymerization temperature in the method for producing a fluorinated elastic copolymer of the present invention is 0 ° C. to 50 ° C., preferably 10 ° C. to 40 ° C., more preferably 20 ° C. to 30 ° C.
  • the polymerization temperature exceeds 50 ° C., the crosslinking reactivity of the resulting fluorinated elastic copolymer is remarkably lowered, which is not preferable.
  • the polymerization temperature is within this range, the obtained fluorinated elastic copolymer is excellent in crosslinking reactivity, and the crosslinked rubber is excellent in mechanical properties.
  • a water-soluble initiator and a redox polymerization initiator are preferable.
  • the content of the radical polymerization initiator is preferably 0.0001 to 3% by mass and more preferably 0.001 to 1% by mass with respect to the total mass of the monomers.
  • water-soluble initiators include persulfates (ammonium persulfate, sodium persulfate, potassium persulfate, etc.), organic initiators (disuccinic acid peroxide, azobisisobutylamidine dihydrochloride, etc.) and the like.
  • Persulfates such as ammonium persulfate are preferred. In particular, ammonium persulfate is most preferable.
  • the redox initiator a combination of persulfuric acid and a reducing agent may be mentioned.
  • the redox initiator needs to be a polymerization initiator capable of polymerizing monomers such as TFE and P within a polymerization temperature range of 0 ° C to 50 ° C. is there.
  • the persulfate include ammonium persulfate and alkali metal persulfates such as sodium persulfate and potassium persulfate. Particularly preferred is ammonium persulfate.
  • examples of the reducing agent include thiosulfate, sulfite, bisulfite, pyrosulfite, hydroxymethanesulfinate, etc., preferably hydroxymethanesulfinate, most preferably hydroxymethanesulfinate.
  • thiosulfate thiosulfate, sulfite, bisulfite, pyrosulfite, hydroxymethanesulfinate, etc., preferably hydroxymethanesulfinate, most preferably hydroxymethanesulfinate.
  • a small amount of iron, a ferrous salt such as a ferrous salt, silver sulfate, or the like is present as a third component, and particularly preferably a water-soluble iron salt is allowed to coexist.
  • water-soluble iron salts include ferrous sulfate, ferric sulfate, ferrous nitrate, ferric nitrate, ferrous chloride, ferric chloride, ferrous ammonium sulfate, ferric sulfate Ammonium etc. are mentioned.
  • a chelating agent is added in addition to the redox initiator system.
  • the chelating agent ethylenediaminetetraacetic acid disodium salt is most preferable.
  • the amount of persulfate used is preferably 0.001 to 3% by weight, more preferably 0.01 to 1% by weight, particularly 0.05 to 0.5% by weight, based on the aqueous medium (100% by weight).
  • the amount of the reducing agent used is preferably 0.001 to 3% by mass, more preferably 0.01 to 1% by mass, and particularly preferably 0.05 to 0.5% by mass with respect to the aqueous medium (100% by mass). .
  • the amount of iron, iron salt such as ferrous salt, and third component such as silver sulfate is preferably 0.0001 to 0.3% by mass with respect to the aqueous medium (100% by mass), 0.001 Is more preferably 0.1 to 0.1% by mass, and particularly preferably 0.01 to 0.1% by mass.
  • the chelating agent is preferably 0.0001 to 0.3% by weight, more preferably 0.001 to 0.1% by weight, particularly 0.01 to 0.1% by weight based on the aqueous medium (100% by weight). preferable.
  • the polymerization pressure in the method for producing a fluorinated elastic copolymer of the present invention is preferably 1.0 to 10 MPaG, more preferably 1.5 to 5.0 MPaG, and most preferably 2.0 to 4.0 MPaG.
  • the polymerization rate is extremely low, which is not preferable. Within this range, the polymerization rate is appropriate and easy to control, and the productivity is excellent.
  • the polymerization rate can be 10 to 100 g / L ⁇ hour.
  • the polymerization rate is preferably 5 to 70 g / L ⁇ hour, more preferably 30 to 50 g / L ⁇ hour.
  • the latex of the fluorinated elastic copolymer obtained by the emulsion polymerization method is aggregated by a known method to isolate the fluorinated elastic copolymer.
  • the aggregation method include a method of salting out by adding a metal salt, a method of adding an inorganic acid such as hydrochloric acid, a method by mechanical shearing, a method by freezing / thawing, and the like.
  • the fluorinated elastic copolymer of the present invention comprises 100 parts by mass of the fluorinated elastic copolymer, 30 parts by mass of carbon black, 5 parts by mass of triallyl isocyanurate, and 1,3-bis (tert-butylperoxyisopropyl).
  • the cross-linking properties of the fluorinated elastic copolymer composition obtained by kneading 1 part by mass of benzene were measured using a cross-linking property measuring machine at 177 ° C. for 12 minutes under an amplitude angle of 3 degrees.
  • the (M H ⁇ M L ) value which is the difference between the maximum torque value (M H ) and the minimum torque value (M L ), is 30 dN ⁇ m or more, preferably 35 dN ⁇ m or more, more preferably 38 dN. -M or more.
  • t 90 (90% crosslinking time) representing the time required to reach 90% of the maximum value (M H ) of the torque is preferably 5 minutes or less, more preferably 4 minutes or less, and particularly preferably 3 .5 minutes or less, most preferably 3 minutes or less.
  • the kneading can be performed under normal conditions by a rubber mixing device such as a roll, a kneader, a Banbury mixer, and an extruder, but kneading with two rolls is preferable.
  • the Mooney viscosity of the fluorinated elastic copolymer of the present invention is preferably 5 to 200, more preferably 10 to 170, and most preferably 20 to 100.
  • the Mooney viscosity is measured according to JIS K6300 using an L-shaped rotor with a diameter of 38.1 mm and a thickness of 5.54 mm at 100 ° C. with a preheating time of 1 minute and a rotor rotation time of 10 minutes. Is a measure of the molecular weight of Within this range, the balance between fluidity and crosslinkability is excellent.
  • the glass transition temperature of the fluorinated elastic copolymer of the present invention is preferably -40 to 20 ° C, more preferably -20 to 10 ° C.
  • the specific gravity of the fluorinated elastic copolymer of the present invention is preferably from 1.20 to 1.70, more preferably from 1.40 to 1.65.
  • the fluorinated elastic copolymer obtained by the production method of the present invention is preferably crosslinked using an organic peroxide.
  • organic peroxides include dialkyl peroxides (di-tert-butyl peroxide, tert-butyl cumyl peroxide, dicumyl peroxide, ⁇ , ⁇ -bis (tert-butylperoxy) -p-diisopropylbenzene, 2 , 5-dimethyl-2,5-di (tert-butylperoxy) hexane, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane-3, etc.), 1,1-di ( tert-butylperoxy) -3,3,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroxyperoxide, benzoyl peroxide, tert-butylperoxybenzene, 2,5-dimethyl
  • the amount of the organic peroxide used is preferably 0.3 to 10 parts by weight, more preferably 0.3 to 5 parts by weight, and 0.5 to 3 parts by weight with respect to 100 parts by weight of the fluorinated elastic copolymer. Part is more preferable.
  • the amount of the organic peroxide used is within this range, the crosslinking rate is appropriate, and the resulting crosslinked rubber is excellent in the balance between tensile strength and elongation.
  • crosslinking aids include triallyl cyanurate, triallyl isocyanurate, trimethacryl isocyanurate, 1,3,5-triacryloylhexahydro-1,3,5-triazine, triallyl trimellitate, m-phenylenediamine Bismaleimide, p-quinone dioxime, p, p'-dibenzoylquinone dioxime, dipropargyl terephthalate, diallyl phthalate, N, N ', N ", N' ''-tetraallyl terephthalamide, containing vinyl group
  • siloxane oligomers polymethylvinylsiloxane, polymethylphenylvinylsiloxane, etc.
  • triallyl cyanurate, triallyl isocyanurate, and trimethallyl isocyanurate are examples of crosslinking aids.
  • the addition amount of the crosslinking aid is preferably 0.1 to 20 parts by mass, more preferably 1 to 10 parts by mass with respect to 100 parts by mass of the fluorinated elastic copolymer.
  • the crosslinking rate is appropriate, and the obtained crosslinked rubber is excellent in the balance between strength and elongation.
  • the metal oxide is preferably a divalent metal oxide.
  • Preferred examples of the divalent metal oxide include magnesium oxide, calcium oxide, zinc oxide, lead oxide and the like.
  • the addition amount of the metal oxide is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the fluorinated elastic copolymer.
  • the addition of the metal oxide can further improve the high cross-linking performance, which is a feature of the fluorinated elastic copolymer of the present invention.
  • a pigment, a filler, a reinforcing agent, or the like for coloring the fluorinated elastic copolymer may be blended.
  • fillers or reinforcing agents that are commonly used include carbon black, titanium oxide, silicon dioxide, clay, and talc.
  • the fluorinated elastic copolymer of the present invention is blended with a polymer material other than the fluorinated elastic copolymer in accordance with the purpose to obtain a fluorinated elastic copolymer composition.
  • polymer material examples include fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, polychlorotrifluoroethylene, and tetrafluoroethylene / ethylene copolymers; vinylidene fluoride / propylene hexafluoride Copolymers, Tetrafluoroethylene / Propylene Copolymers Other than Fluorine-Containing Elastic Copolymers, Vinylidene Fluoride / Tetrafluoroethylene / Hexafluoropropylene Copolymers, Tetrafluoroethylene / Perfluoro (Alkyl Vinyl) Fluorine-containing elastomers such as ether) copolymers; Hydrocarbon elastomers such as ethylene-propylene-nonconjugated diene copolymers; and the like.
  • fluorine-containing resins such as polytetrafluoroethylene, polyvinylid
  • a fluorine-containing resin such as tetrafluoroethylene / ethylene copolymer
  • the high crosslinkability and fluidity that are the characteristics of the fluorine-containing elastic copolymer of the present invention.
  • the moldability and strength can be further improved.
  • an elastomer such as an ethylene-propylene-nonconjugated diene copolymer
  • the high crosslinkability characteristic of the fluorinated elastic copolymer of the present invention can be further improved.
  • the polymer material contained in the fluorinated elastic copolymer composition of the present invention includes other than tetrafluoroethylene / ethylene copolymer, vinylidene fluoride / hexafluoropropylene copolymer, and fluorinated elastic copolymer. Of these, at least one copolymer selected from the group consisting of a tetrafluoroethylene / propylene copolymer and an ethylene-propylene-nonconjugated diene copolymer is preferred.
  • the fluorinated elastic copolymer composition of the present invention preferably contains the above-mentioned crosslinking aid and various fillers.
  • fluorinated elastic copolymer of the present invention By uniformly mixing the fluorinated elastic copolymer of the present invention with an organic peroxide, a crosslinking aid, other various additives, etc., with a rubber mixing device such as a roll, a kneader, a Banbury mixer, or an extruder.
  • a fluorinated elastic copolymer composition can be easily obtained.
  • the fluorinated elastic copolymer composition is usually crosslinked simultaneously with molding by a method such as hot pressing, but may be crosslinked after being previously molded.
  • a method such as hot pressing
  • compression molding, injection molding, extrusion molding, calendar molding, dipping in a solvent, coating, or the like is employed.
  • Various conditions such as hot press crosslinking, steam crosslinking, hot air crosslinking, and lead-based crosslinking are adopted as the crosslinking conditions in consideration of the molding method and the shape of the crosslinked product.
  • the crosslinking temperature is preferably 100 to 400 ° C. and several seconds to 24 hours.
  • secondary crosslinking is preferably employed for the purpose of improving mechanical properties and compression set of the crosslinked product and stabilizing other properties.
  • the secondary crosslinking conditions are preferably 100 to 300 ° C. for 30 minutes to 48 hours.
  • the fluorinated elastic copolymer composition can reduce the compression set.
  • the compression set is preferably 50 or less, more preferably 40 or less, and even more preferably 35 or less.
  • Glass transition temperature (°C) Glass transition temperature (°C)
  • 10 ⁇ 0.1 mg of the fluorinated elastic copolymer is heated from ⁇ 50 ° C. to 150 ° C. at 10 ° C./min, and up to ⁇ 50 ° C. at 10 ° C./min.
  • the center temperature of the endothermic peak change upon cooling was taken as the glass transition temperature.
  • Mooney viscosity The Mooney viscosity of the fluorinated elastic copolymer is compliant with JIS K6300, using an L-shaped rotor having a diameter of 38.1 mm and a thickness of 5.54 mm, preheating time of 1 minute, and rotor rotation time of 4 minutes at 100 ° C. Measured with setting. Larger values indicate higher molecular weight indirectly.
  • the specific gravity of the fluorinated elastic copolymer was measured by a method according to JIS K6220-1 using a specific gravity meter manufactured by Shinko Denshi.
  • M H represents the maximum torque
  • M L represents the minimum value of the torque
  • M H -M L indicates the degree of crosslinking.
  • the cross-linking characteristics serve as an index of cross-linking reactivity of the fluorinated elastic copolymer, and the larger the value of (M H ⁇ M L ), the better the cross-linking reactivity.
  • the unit of torque is dN ⁇ m.
  • t 10 and t 90 are 10% crosslinking time and the 90% crosslinking time, represents the time required to reach 10% and 90% of the maximum torque shown in crosslinking properties measured.
  • the fluorine-containing elastic copolymer composition was hot-pressed at 170 ° C. for 20 minutes, and then subjected to secondary crosslinking in an oven at 200 ° C. for 4 hours to obtain a thickness of the fluorine-containing elastic copolymer composition.
  • a 2 mm cross-linked rubber sheet was obtained.
  • the obtained crosslinked rubber sheet was punched with a No. 3 dumbbell to prepare a sample. According to JISK6251, 100% tensile stress, tensile strength, and elongation at break were measured. Further, the hardness was measured according to JIS K6253.
  • compression set The fluorinated elastic copolymer composition was subjected to a compression set test at 200 ° C. for 72 hours in accordance with JIS K6262, and the compression set was measured.
  • Example 1 Production of fluorinated elastic copolymer A: After degassing the inside of a 3200 mL stainless steel pressure-resistant reactor equipped with an anchor blade for stirring, 1500 g of ion-exchanged water, 60 g of disodium hydrogenphosphate dodecahydrate, water 0.9 g of sodium oxide, 198 g of tert-butanol, 9 g of C 2 F 5 OCF 2 CF 2 OCF 2 COONH 4 as a fluorine-containing emulsifier, and 3.8 g of ammonium persulfate were added.
  • EDTA ethylenediaminetetraacetic acid disodium salt dihydrate
  • ferrous sulfate heptahydrate aqueous solution in which 0.4 g of ethylenediaminetetraacetic acid disodium salt dihydrate (hereinafter referred to as EDTA) and 0.3 g of ferrous sulfate heptahydrate were dissolved in 200 g of ion-exchanged water, Added to the reactor. At this time, the pH of the aqueous medium in the reactor was 9.5.
  • EDTA ethylenediaminetetraacetic acid disodium salt dihydrate
  • the anchor blade was rotated at 300 rpm and 6.4 g of 1,4-diiodoperfluorobutane was added.
  • a 2.5% by mass aqueous solution of sodium hydroxymethanesulfinate dihydrate (hereinafter referred to as Rongalite) adjusted to pH 10.0 with sodium hydroxide (hereinafter referred to as Rongalit 2.5% by mass aqueous solution). .) was added to the reactor to initiate the polymerization reaction.
  • Rongalite 2.5 mass% aqueous solution was continuously added to the reactor using a high-pressure pump.
  • the latex of fluorinated elastic copolymer A was added to a 5% by mass aqueous solution of calcium chloride, and the latex of fluorinated elastic copolymer A was agglomerated by salting out to precipitate fluorinated elastic copolymer A.
  • the fluorinated elastic copolymer A was filtered and recovered.
  • the fluorinated elastic copolymer A was washed with ion-exchanged water and dried in an oven at 100 ° C. for 15 hours to obtain 880 g of a white fluorinated elastic copolymer A.
  • the ratio of the repeating unit based on TFE and the repeating unit based on P in the fluorinated elastic copolymer A was 56/44 (molar ratio).
  • the fluorinated elastic copolymer A had a Mooney viscosity of 80, a specific gravity of 1.55, and a glass transition temperature of ⁇ 3 ° C.
  • Table 1 shows the crosslinking properties and the physical properties of the crosslinked rubber of the fluorinated elastic copolymer A.
  • Example 2 Fluorine-containing elastic copolymer in the same manner as in Example 1, except that the amount of 1,4-diiodoperfluorobutane added was 12.8 g and the total amount of the TFE / P monomer mixture gas was 800 g. A latex of B was obtained. The latex obtained had a pH of 7.8. The amount of Rongalite 2.5 mass% aqueous solution added was 90 g. The polymerization time was about 6 hours. In the same manner as in Example 1, 760 g of fluorinated elastic copolymer B was obtained from the latex of fluorinated elastic copolymer B.
  • the ratio of the repeating unit based on TFE and the repeating unit based on P in the fluorinated elastic copolymer B was 56/44 (molar ratio).
  • the fluorinated elastic copolymer B had a Mooney viscosity of 27, a specific gravity of 1.55, and a glass transition temperature of ⁇ 3 ° C.
  • Table 1 shows the crosslinking properties and crosslinked rubber properties of the fluorinated elastic copolymer B.
  • Example 3 Production of fluorinated elastic copolymer C: It was produced in the same manner as in Example 1 except that 9 g of ammonium perfluorooctanoate was added instead of C 2 F 5 OCF 2 CF 2 OCF 2 COONH 4 as the fluorine-containing emulsifier. Latex was obtained. The obtained latex had a pH of 8.0. The addition amount of Rongalite 2.5 mass% aqueous solution was 85 g. The polymerization time was about 7 hours. In the same manner as in Example 1, 880 g of fluorinated elastic copolymer B was obtained from the latex of fluorinated elastic copolymer C.
  • the ratio of the repeating unit based on TFE and the repeating unit based on P in the fluorinated elastic copolymer C was 56/44 (molar ratio).
  • the fluorinated elastic copolymer C had a Mooney viscosity of 77, a specific gravity of 1.55, and a glass transition temperature of ⁇ 3 ° C.
  • Table 1 shows the crosslinking properties and crosslinked rubber physical properties of the fluorinated elastic copolymer C.
  • Example 4 Production of fluorinated elastic copolymer D: A latex of fluorinated elastic copolymer D was obtained in the same manner as in Example 1 except that the polymerization temperature was 40 ° C. and the total amount of the TFE / P monomer mixed gas was 800 g. The resulting latex had a pH of 7.6. The amount of Rongalite 2.5 mass% aqueous solution added was 90 g. The polymerization time was about 6 hours. In the same manner as in Example 1, 780 g of fluorinated elastic copolymer B was obtained from the latex of fluorinated elastic copolymer D.
  • the ratio of the repeating unit based on TFE and the repeating unit based on P in the fluorinated elastic copolymer D was 56/44 (molar ratio). Further, the fluorinated elastic copolymer D had a Mooney viscosity of 60, a specific gravity of 1.55, and a glass transition temperature of ⁇ 3 ° C. Table 1 shows the crosslinking properties and crosslinked rubber physical properties of the fluorinated elastic copolymer D.
  • Example 5 Production of fluorinated elastic copolymer E: A latex of fluorinated elastic copolymer E was obtained in the same manner as in Example 1 except that 4.4 g of 1,4-diiodobutane was added instead of 1,4-diiodoperfluorobutane. The resulting latex had a pH of 7.6. The amount of Rongalite 2.5 mass% aqueous solution added was 99 g. The polymerization time was about 7 hours. In the same manner as in Example 1, 880 g of fluorinated elastic copolymer E was obtained from the latex of fluorinated elastic copolymer E.
  • the ratio of the repeating unit based on TFE and the repeating unit based on P in the fluorinated elastic copolymer E was 56/44 (molar ratio). Further, the fluorinated elastic copolymer E had a Mooney viscosity of 95, a specific gravity of 1.55, and a glass transition temperature of ⁇ 3 ° C. Table 1 shows the crosslinking characteristics and physical properties of the crosslinked rubber of the fluorinated elastic copolymer E.
  • Example 6 Production of fluorinated elastic copolymer F: A latex of fluorinated elastic copolymer F was obtained in the same manner as in Example 1, except that the polymerization temperature was 20 ° C. The pH of the obtained latex was 7.9. The addition amount of Rongalite 2.5 mass% aqueous solution was 85 g. The polymerization time was about 7 hours. In the same manner as in Example 1, 880 g of fluorinated elastic copolymer F was obtained from the latex of fluorinated elastic copolymer F.
  • the ratio of the repeating unit based on TFE to the repeating unit based on P in the fluorinated elastic copolymer F was 56/44 (molar ratio).
  • the fluorinated elastic copolymer F had a Mooney viscosity of 83, a specific gravity of 1.55, and a glass transition temperature of -3 ° C.
  • Table 1 shows the cross-linking properties and physical properties of the cross-linked rubber of the fluorinated elastic copolymer F.
  • Example 7 Production of fluorinated elastic copolymer H: Instead of 1,4-diiodoperfluorobutane, 7.8 g of 1,6-diiodoperfluorohexane was added, and the fluorine-containing elasticity was the same as in Example 1 except that the polymerization temperature was 30 ° C. A latex of copolymer H was obtained. The obtained latex had a pH of 7.5. The amount of Rongalite 2.5 mass% aqueous solution added was 90 g. The polymerization time was about 7 hours. In the same manner as in Example 1, 880 g of fluorinated elastic copolymer H was obtained from the latex of fluorinated elastic copolymer H.
  • the ratio of the repeating unit based on TFE and the repeating unit based on P in the fluorinated elastic copolymer E was 56/44 (molar ratio).
  • the fluorinated elastic copolymer H had a Mooney viscosity of 95, a specific gravity of 1.55, and a glass transition temperature of ⁇ 3 ° C.
  • Table 1 shows the cross-linking characteristics and physical properties of the cross-linked rubber of the fluorinated elastic copolymer H.
  • the anchor blade was rotated at 300 rpm and 6.4 g of 1,4-diiodoperfluorobutane was added.
  • a 14.4% by mass aqueous solution of ammonium persulfate adjusted to pH 10.0 with sodium hydroxide was added to the reactor to initiate the polymerization reaction.
  • the polymerization proceeds by maintaining a 14.4% by mass aqueous solution of ammonium persulfate at 75 ° C. using a high-pressure pump. As the polymerization proceeds, the pressure in the reactor decreases.
  • the reactor internal temperature was cooled to 10 ° C., the polymerization reaction was stopped, and a latex of fluorinated elastic copolymer G was obtained. .
  • the latex obtained had a pH of 7.0.
  • the polymerization time was about 13 hours.
  • the latex of the fluorinated elastic copolymer G is added to a 5% by mass aqueous solution of calcium chloride, the latex of the fluorinated elastic copolymer G is aggregated by salting out, and the fluorinated elastic copolymer G is precipitated.
  • the fluorinated elastic copolymer G was filtered and recovered.
  • the fluorinated elastic copolymer G was washed with ion-exchanged water and dried in an oven at 100 ° C. for 15 hours to obtain 770 g of a white fluorinated elastic copolymer G.
  • the Mooney viscosity of the fluorinated elastic copolymer G was 30, the specific gravity was 1.55, and the glass transition temperature was ⁇ 3 ° C.
  • Table 2 shows the cross-linking characteristics and physical properties of the cross-linked rubber of the fluorinated elastic copolymer G.
  • Example 8 70 parts by mass of fluorinated elastic copolymer B, 30 parts by mass of fluorinated elastic copolymer J, 30 parts by mass of carbon black, 5 parts by mass of triallyl isocyanurate, and 1,3-bis (tert-butyl) 1 part by mass of peroxyisopropyl) benzene (trade name “Perkadox 14” manufactured by Kayaku Akzo Co., Ltd.) is kneaded with two rolls at room temperature for 10 minutes and uniformly mixed. A composition was obtained. Table 3 shows the crosslinking characteristics and the properties of the crosslinked rubber.
  • Example 9 70 parts by mass of fluorinated elastic copolymer B, 30 parts by mass of “Aphras 150E” (trade name) manufactured by Asahi Glass Co., Ltd., 30 parts by mass of carbon black, 5 parts by mass of triallyl isocyanurate, 1,3-bis 1 part by mass of (tert-butylperoxyisopropyl) benzene (trade name “Perkadox 14”, manufactured by Kayaku Akzo Co., Ltd.) is kneaded with two rolls for 10 minutes at room temperature, and uniformly mixed with fluorine An elastic copolymer composition was obtained. Table 3 shows the crosslinking characteristics and the properties of the crosslinked rubber.
  • Example 10 70 parts by mass of fluorinated elastic copolymer A, 30 parts by mass of “Esplen 505A” (trade name) manufactured by Sumitomo Chemical Co., Ltd., 30 parts by mass of carbon black, triethylene as an ethylene-propylene-nonconjugated diene copolymer 5 parts by mass of allyl isocyanurate and 1 part by mass of 1,3-bis (tert-butylperoxyisopropyl) benzene (manufactured by Kayaku Akzo Co., Ltd., trade name “Perkadox 14”) were mixed at room temperature with two rolls. Was kneaded for 10 minutes to obtain a uniformly mixed fluorinated elastic copolymer composition. Table 3 shows the crosslinking characteristics and the properties of the crosslinked rubber.
  • the fluorinated elastic copolymer composition of Example 1 was excellent in fluidity and suitable for injection molding. Further, after heating, the crosslinked rubber made of the fluorinated elastic copolymer composition of Example 1 was easily removed from the mold, and no mold contamination was observed. On the other hand, the crosslinked rubbers made of the fluorinated elastic copolymer compositions of Comparative Example 1 and Comparative Example 2 do not easily peel from the mold because of insufficient crosslinking. The copolymer composition remained partially adhered.
  • the fluorine-containing coelastic polymer of the present invention can be made into a crosslinked rubber by a crosslinking reaction.
  • the crosslinked rubber is suitable for materials such as O-rings, sheets, gaskets, oil seals, diaphragms, and V-rings. It can also be applied to uses such as heat-resistant chemical-resistant sealing materials, heat-resistant oil-resistant sealing materials, wire coating materials, semiconductor device sealing materials, corrosion-resistant rubber paints, and urea-based grease sealing materials. In particular, since it is excellent in fluidity, it is suitable for use in rubber products having complicated shapes and products obtained by injection molding. The entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2008-087936 filed on Mar. 28, 2008 are incorporated herein as the disclosure of the specification of the present invention. Is.

Abstract

 高い架橋反応性を有し、流動性が高く、圧縮永久歪及び耐塩基性に優れる含フッ素弾性共重合体及びその製造方法を提供する。  式RI(式中、Rは炭素数3以上の炭化水素基またはパーフルオロアルキル基である。)で表されるヨウ素化合物の存在下、(a)テトラフルオルエチレン、(b)プロピレン、及び必要に応じて(c)パ-フルオロ(アルキルビニルエ-テル)を共重合させ、かつ該共重合を0°C~50°Cの温度で行う含フッ素弾性共重合体の製造方法及びその製造方法で得られた含フッ素弾性共重合体。

Description

含フッ素弾性共重合体及び製造方法
 本発明は、架橋反応性に優れ、流動性が高く、圧縮永久歪及び耐塩基性に優れる含フッ素弾性共重合体及びその製造方法に関する。
 含フッ素弾性共重合体は、耐熱性、耐薬品性、耐油性、耐候性等に優れることから、通常の炭化水素系材料が耐え得ないような過酷な環境においても適用される。含フッ素弾性共重合体としては、フッ化ビニリデン/ヘキサフルオロプロピレン系共重合体、テトラフルオロエチエレン/プロピレン系共重合体、テトラフルオロエチエレン/パーフルオロ(アルキルビニルエーテル)系共重合体等が知られている。
 これらの含フッ素弾性共重合体は、反応性に乏しいため架橋反応性や他材料との接着性が充分でなく、従来より反応性官能基を導入し、反応性を向上する方法が提案されている。なかでも過酸化物による架橋反応性を向上するために、特別な硬化性モノマーを共重合する方法や、過酸化物による架橋の前の、前処理が実施されている。例えば、ヨウ素原子を有する含フッ素連鎖移動剤の存在下に、フッ化ビニリデンとヘキサフルオロプロピレンを共重合させて得た含フッ素弾性共重合体は、高分子末端にヨウ素原子を含有するので、過酸化物架橋が可能である(特許文献1を参照)。
 一方、テトラフルオロエチレン/プロピレン系共重合体は、フッ化ビニリデンの繰り返し単位を含む上記含フッ素弾性共重合体に比べ、耐アミン性や耐高温蒸気性に優れる。該テトラフルオロエチレン/プロピレン系共重合体についてはビニルエステルモノマーなどの架橋反応性の官能基を含有するモノマーを共重合して得られる含フッ素弾性共重合体が提案されている(特許文献2を参照)。しかし、該テトラフルオロエチレン/プロピレン系共重合体は、複雑な形状の製品を製造する場合に、成形金型のキャビティ内での流動性が充分ではなかった。
 ヨウ素原子を有する含フッ素連鎖移動剤の存在下、テトラフルオロエチレン/プロピレンを共重合して得られる、含フッ素弾性共重合体も提案されている(特許文献3を参照)。しかし、該特許文献に記載された方法では、重合速度が遅く、含フッ素弾性共重合体の生産性が非常に低くかった。また、得られる含フッ素弾性共重合体は架橋反応性が不十分であり、圧縮永久歪をはじめとする架橋ゴムの諸物性も満足のいくものではなかった。
 したがって、架橋反応に優れ、流動性が高く、耐圧縮永久歪性及び耐塩基性に優れる含フッ素弾性共重合体の製造方法の開発が望まれていた。
特開昭53-125491号公報 特開2006-70245号公報 特開平5-222130号公報
 本発明の目的は、架橋反応性に優れ、流動性が高く、耐熱性、耐薬品性、耐圧縮永久歪性に優れる含フッ素弾性共重合体及びその製造方法を提供することである。
 本発明は、テトラフルオロエチレン、プロピレン、及び必要に応じてパ-フルオロ(アルキルビニルエ-テル)を共重合することにより得られる含フッ素弾性共重合体であって、該含フッ素弾性共重合体100質量部、カーボンブラック30質量部、トリアリルイソシアヌレート5質量部、及び1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン1質量部を混練して得られる含フッ素弾性共重合体組成物の架橋特性を、架橋特性測定機を用いて177℃で12分間、振幅角3度の条件にて測定し、測定されたトルクの最大値(M)及びトルクの最小値(M)の差である(M-M)値が30dN・m以上であることを特徴とする含フッ素弾性共重合体を提供する。
 また、本発明は、上記含フッ素弾性共重合体において、含フッ素弾性共重合体中における、テトラフルオロエチレンに基づく繰り返し単位/プロピレンに基づく繰り返し単位の(モル比率)が30/70~70/30である含フッ素弾性共重合体を提供する。
 また、本発明は、上記の含フッ素弾性共重合体において、ヨウ素原子を含有し、その含有量が、0.01~5.0質量%である含フッ素弾性共重合体を提供する。
 また、本発明は、ラジカル重合開始剤、及び、一般式RI(式中、Rは炭素数3以上のアルキレン基またはパーフルオロアルキレン基である。)で表されるヨウ素化合物の存在下に、テトラフルオロエチレン、プロピレン、及び必要に応じてパ-フルオロ(アルキルビニルエ-テル)を、重合温度0℃~50℃の範囲で共重合することを特徴とする含フッ素弾性共重合体の製造方法を提供する。
 また、本発明は、前記含フッ素弾性共重合体の製造方法において、前記共重合が、水性媒体中で乳化剤の存在下に、前記水性媒体のpHを7~14の範囲で行う乳化重合による共重合である含フッ素弾性共重合体の製造方法を提供する。
 また、本発明は、前記含フッ素弾性共重合体の製造方法において、前記RIが、1,3-ジヨードプロパン、1,4-ジヨードブタン、1,6-ジヨードヘキサン、1,8-ジヨードオクタン、1,3-ジヨードパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン及び1,8-ジヨードパーフルオロオクタンからなる群から選ばれる1種以上である含フッ素弾性共重合体の製造方法を提供する。
 また、本発明は、前記含フッ素弾性共重合体の製造方法において、前記乳化剤が、一般式(1):Rf1ORf2COOA(式中、Rf1は炭素数1~8のパーフルオロアルキル基であり、Rf2は、直鎖状の含フッ素アルキレン基であり、該含フッ素アルキレン基にはエーテル性の酸素原子を含有してもよく、該含フッ素アルキレン基は炭素数1~3のパーフルオロアルキル基の側鎖を有してもよく、Aは水素原子、アルカリ金属又はNHである。)で表される含フッ素エーテルカルボン酸化合物である含フッ素弾性共重合体の製造方法を提供する。
 また、本発明は、前記含フッ素弾性共重合体の製造方法において、前記乳化剤が、一般式(2):F(CFO(CF(X)CFO)CF(X)COOA(式中、Xは、フッ素原子または炭素原子数1~3のパーフルオロアルキル基を表し、Aは、水素原子、アルカリ金属、またはNHを表し、pは、1~10の整数を表し、qは、0~3の整数を表す。)で表される含フッ素エーテルカルボン酸化合物である含フッ素弾性共重合体の製造方法を提供する。
 また、本発明は、前記含フッ素弾性共重合体の製造方法において、前記ラジカル重合開始剤がレドックス系重合開始剤である含フッ素弾性共重合体の製造方法を提供する。
 また、本発明は、前記含フッ素弾性共重合体と、四フッ化エチレン/エチレン共重合体、フッ化ビニリデン/六フッ化プロピレン共重合体、該含フッ素弾性共重合体以外の四フッ化エチレン/プロピレン共重合体及びエチレン-プロピレン-非共役ジエン共重合体からなる群から選ばれる少なくとも1種の共重合体とを含有する含フッ素弾性共重合体組成物であって、該含フッ素弾性共重合体と該共重合体との含有割合が、含フッ素弾性共重合体/共重合体(質量比)=100/1~100/300であることを特徴とする含フッ素弾性共重合体組成物を提供する。
 本発明の含フッ素弾性共重合体は、架橋反応性に優れ、流動性が高く、耐熱性、耐薬品性、耐圧縮永久歪性に優れる。特に、射出成形性に優れ複雑な形状の製品に好適である。
 また、本発明の含フッ素弾性共重合体組成物は、押出成形性に優れ、電線被覆材に好適である。
 本発明の含フッ素弾性共重合体は、テトラフルオロエチレン(以下、TFEという。)、プロピレン(以下、Pという)、及び必要に応じてパ-フルオロ(アルキルビニルエ-テル)(以下、PAVEという)を共重合させて得られる含フッ素弾性共重合体である。
 TFEとPの共重合比率は、得られる含フッ素弾性共重合体中のTFEに基づく繰り返し単位/Pに基づく繰り返し単位が30/70~70/30(モル比)となるように、重合系内に存在させるモノマー比率が決定される。好ましくはTFEに基づく繰り返し単位とPに基づく繰り返し単位の比率が45/55~65/35、さらに好ましくは50/50~60/40(モル比)である。
 上記の共重合比率を得るための重合系内に存在させるモノマーの比率としては、TFE/P=5/95~98/2(モル比)が好ましく、40/60~95/5(モル比)がより好ましく、50/50~93/7(モル比)が最も好ましい。
 また、PAVEを共重合させる場合には、得られる含フッ素弾性共重合体中、TFEに基づく繰り返し単位/Pに基づく繰り返し単位/PAVEに基づく繰り返し単位の比率が、30~60/10~40/10~40(モル比)であることが好ましい。
 さらに、本発明の含フッ素弾性共重合体は、本発明の効果を損なわない範囲で、TFE、P、PAVEに加えて、その他のモノマーを共重合させることもできる。
 その他のモノマーとしては、モノフルオロエチレン、トリフルオロエチレン、トリフルオロプロピレン、ペンタフルオロプロピレン、ヘキサフルオロプロピレン、ヘキサフルオロイソブチレン、ジクロロジフルオロエチレン等のフッ素化オレフィン;エチレン、1-ブテン、イソブチレン等の炭化水素オレフィン;メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル等のアルキルビニルエーテル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;塩化ビニル、塩化ビニリデン、トリフルオロスチレン等が挙げられる。
 本発明の含フッ素弾性共重合体の製造方法における、一般式RIで表されるヨウ素化合物は、炭素数3以上のアルキレン基またはパーフルオロアルキレン基の両末端にヨウ素原子が結合した、ヨウ素化合物である。
 具体例としては、1,3-ジヨードプロパン、1,4-ジヨードブタン、1,6-ジヨードヘキサン、1,8-ジヨードオクタン、1,3-ジヨードパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン、1,8-ジヨードパーフルオロオクタン等が挙げられる。一般式RIで表されるヨウ素化合物の炭素数は、好ましくは3~8である。一般式RIで表されるヨウ素化合物としては、パーフルオロアルキレン基を有するヨウ素化合物がより好ましく、特に1,4-ジヨードパーフルオロブタンが最も好ましい。
 本発明において、一般式RIで表されるヨウ素化合物は、含フッ素弾性共重合体中のヨウ素原子含有量が0.01~5.0質量%となるよう添加することが好ましい。さらに0.1~1.0質量%となるよう添加することが特に好ましい。
 本発明の含フッ素弾性共重合体の製造方法において、重合方法としては、乳化重合法、溶液重合法、懸濁重合法、塊状重合法等が挙げられる。特に、分子量および共重合組成の調整がしやすく、生産性に優れる点から、乳化剤の存在下に水性媒体中でTFE及びP等のモノマーを重合する乳化重合法が好ましい。
 水性媒体としては、水、または水溶性有機溶媒を含む水が好ましく、水溶性有機溶媒を含む水がより好ましい。
 水溶性有機溶媒としては、tert-ブタノール、プロピレングリコール、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコール等が挙げられる。
 水溶性有機溶媒としては、tert-ブタノール、プロピレングリコール、ジプロピレングリコールモノメチルエーテルが好ましく、tert-ブタノールがより好ましい。
 水性媒体中における水溶性有機溶媒の含有量は、水の100質量部に対して、1~50質量部が好ましく、3~20質量部がより好ましい。
 乳化重合法において、水性媒体のpHは好ましくは7~14、より好ましくは7~11、さらに好ましくは7.5~11、最も好ましくは8~10.5である。pHが7より小さい場合は、ヨウ素化合物の安定性が低下し、得られる含フッ素弾性共重合体の架橋反応性が低下する場合がある。
 水性媒体のpHを上記範囲にするのは、乳化重合の重合開始から重合終了の間の全重合期間であることがよいが、全重合期間でなくてもよい。好ましくは全重合期間の80%以上であり、より好ましくは90%以上であり、さらに好ましくは95%以上である。
 pHの調整には、pH緩衝剤を用いることが好ましい。pH緩衝剤としては、無機塩類などが挙げられる。無機塩類としては、リン酸水素二ナトリウム、リン酸二水素ナトリウムなどのりん酸塩、炭酸水素ナトリウム、炭酸ナトリウムなどの炭酸塩などが挙げられる。リン酸塩のより好ましい具体例としては、リン酸水素二ナトリウム2水和物、リン酸水素二ナトリウム12水和物等が挙げられる。
 乳化剤としては、得られる含フッ素弾性共重合体のラテックスの機械的および化学的安定性が優れることから、イオン性乳化剤が好ましく、アニオン性乳化剤がより好ましい。
 アニオン性乳化剤としては、公知のものが使用できるが、具体例としては、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等の炭化水素系乳化剤、パーフルオロオクタン酸アンモニウム、パーフルオロヘキサン酸アンモニウム等の含フッ素アルカン酸塩、一般式(1):Rf1ORf2COOA(式中、Rf1は炭素数1~8のパーフルオロアルキル基であり、Rf2は、直鎖状の含フッ素アルキレン基であり、該含フッ素アルキレン基にはエーテル性の酸素原子を含有してもよく、該含フッ素アルキレン基は炭素数1~3のパーフルオロアルキル基の側鎖を有してもよく、Aは水素原子、アルカリ金属又はNHである。)で表される含フッ素エーテルカルボン酸化合物(以下、一般式(1)の化合物という)が挙げられる。なお、Rf2の炭素数は、1~12が好ましく、1~8がより好ましい。
 本発明における乳化剤としては、含フッ素乳化剤が好ましく含フッ素アルカン酸塩または、一般式(1)の化合物がより好ましい。
 さらに、一般式(2):F(CFO(CF(X)CFO)CF(X)COOA (式中、Xは、フッ素原子または炭素原子数1~3のパーフルオロアルキル基を表し、Aは、水素原子、アルカリ金属、またはNHを表し、pは、1~10の整数を表し、qは、0~3の整数を表す。)で表される含フッ素エーテルカルボン酸化合物(以下、一般式(2)の化合物という。)が最も好ましい。
 一般式(1)で表される化合物または(2)で表される化合物として、AがNHの場合の化合物を例示すると、下記の化合物が挙げられる。
 COCFCOONH、COCFCOONH、COCFCOONH、C11OCFCOONH、C13OCFCOONH、CFOCFCFOCFCOONH、COCFCFOCFCOONH、COCFCFOCFCOONH、COCFCFOCFCOONH、C11OCFCFOCFCOONH、C13OCFCFOCFCOONH、CO(CFCFO)CFCOONH、CO(CFCFO)CFCOONH、CO(CFCFO)CFCOONH、C11O(CFCFO)CFCOONH、C13O(CFCFO)CFCOONH、CO(CFCFO)CFCOONH、CO(CFCFO)CFCOONH、CO(CFCFO)CFCOONH、C11O(CFCFO)CFCOONH、C13O(CFCFO)CFCOONH、COCF(CF)COONH、COCF(CF)COONH、COCF(CF)COONH、COCF(CF)CFOCF(CF)COONH、COCF(CF)CFOCF(CF)COONH、CO(CF(CF)CFO)CF(CF)COONH、CO(CF(CF)CFO)CF(CF)COONH、CFO(CFOCFCOONH、CO(CFOCFCOONH、CFO(CFO(CFCOONH、CFCFO(CFO(CFCOONH、CFO(CFOCF(CF)COONH、CO(CFOCF(CF)COONH、CFO(CFO(CFCOONH、CFOCFOCFOCFCOONH等が挙げられる。
 より好ましい、一般式(2)の化合物の例としては、F(CFOCFCFOCFCOONH、F(CFO(CFCFO)CFCOONH、F(CFO(CF(CF)CFO)CF(CF)COONH、F(CFOCFCFOCFCOONH、F(CFO(CFCFO)CFCOONH、F(CFOCFCFOCFCOONH、F(CFO(CFCFO)CFCOONH、F(CFOCF(CF)CFOCF(CF)COONH等が挙げられる。
 乳化剤の含有量は、水性媒体の100質量部に対して、0.01~15質量部が好ましく、0.1~10質量部がより好ましく、0.1~3質量部が最も好ましい。
 本発明の含フッ素弾性共重合体の製造方法における重合温度は0℃~50℃であり、好ましくは10℃~40℃、より好ましくは20℃~30℃である。重合温度が50℃を超えると、得られる含フッ素弾性共重合体の架橋反応性が著しく低下し、好ましくない。重合温度がこの範囲にあると、得られた含フッ素弾性共重合体は、架橋反応性に優れ、架橋ゴムが機械特性に優れる。
 本発明の製造方法におけるラジカル重合開始剤としては、水溶性開始剤及びレドックス重合開始剤が好ましい。ラジカル重合開始剤の含有量は、モノマーの合計の質量に対して、0.0001~3質量%が好ましく、0.001~1質量%がより好ましい。
 水溶性開始剤としては、過硫酸類(過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等。)、有機系開始剤(ジコハク酸過酸化物、アゾビスイソブチルアミジン二塩酸塩等。)等が挙げられ、過硫酸アンモニウム塩等の過硫酸類が好ましい。特に、過硫酸アンモニウムが最も好ましい。
 レドックス開始剤としては、過硫酸類と、還元剤との組合せが挙げられるが、重合温度が0℃~50℃の範囲でTFE及びPなどのモノマーを重合可能にする重合開始剤である必要がある。過硫酸塩の具体例としては、過硫酸アンモニウムや、過硫酸ナトリウム、過硫酸カリウムなどの過硫酸アルカリ金属塩などが挙げられるが、特に好ましくは過硫酸アンモニウムである。一方、還元剤としては、チオ硫酸塩、亜硫酸塩、亜硫酸水素塩、ピロ亜硫酸塩、ヒドロキシメタンスルフィン酸塩などが挙げられるが、好ましくはヒドロキシメタンスルフィン酸塩であり、最も好ましくはヒドロキシメタンスルフィン酸ナトリウム塩である。
 さらに、第三成分として、少量の鉄、第一鉄塩などの鉄塩、硫酸銀等を共存させることが好ましく、特に好ましくは水溶性鉄塩を共存させることである。水溶性鉄塩の具体例としては、硫酸第一鉄、硫酸第二鉄、硝酸第一鉄、硝酸第二鉄、塩化第一鉄、塩化第二鉄、硫酸第一鉄アンモニウム、硫酸第二鉄アンモニウムなどが挙げられる。
 該レドックス開始剤系に加えて、キレート剤を加えることが最も好ましい。キレート剤としては、エチレンジアミン四酢酸二ナトリウム塩が最も好ましく挙げられる。
 過硫酸塩の使用量は、水性媒体(100質量%)に対して0.001~3質量%が好ましく、0.01~1質量%がより好ましく、0.05~0.5質量%が特に好ましい。
 還元剤の使用量は、水性媒体(100質量%)に対して0.001~3質量%が好ましく、0.01~1質量%がより好ましく、0.05~0.5質量%が特に好ましい。
また、鉄、第一鉄塩などの鉄塩、硫酸銀などの第三成分の使用量は、水性媒体(100質量%)に対して0.0001~0.3質量%が好ましく、0.001~0.1質量%がより好ましく、0.01~0.1質量%が特に好ましい。
 キレート剤は、水性媒体(100質量%)に対して0.0001~0.3質量%が好ましく、0.001~0.1質量%がより好ましく、0.01~0.1質量%が特に好ましい。
 本発明の含フッ素弾性共重合体の製造方法における重合圧力としては、1.0~10MPaGが好ましく、1.5~5.0MPaGがより好ましく、2.0~4.0MPaGが最も好ましい。重合圧力が1.0MPaG未満であると、重合速度が極めて低くなり、好ましくない。この範囲にあると重合速度が適切で制御しやすく、また、生産性に優れる。
 本発明の含フッ素弾性共重合体の製造方法によると、重合速度を10~100g/L・時間にすることができる。重合速度は、5~70g/L・時間が好ましく、30~50g/L・時間がより好ましい。重合速度が上記範囲よりも小さいと、生産性が低下し、実用上好ましくない。一方、上記範囲よりも大きいと、分子量が低下し、架橋性が低下することになり、好ましくない。
 上記乳化重合法で得られる含フッ素弾性共重合体のラテックスは、公知の方法で凝集させて含フッ素弾性共重合体を単離する。凝集方法としては、金属塩を添加して塩析する方法、塩酸等の無機酸を添加する方法、機械的剪断による方法、凍結/解凍による方法等が挙げられる。
 本発明の含フッ素弾性共重合体は、該含フッ素弾性共重合体100質量部、カーボンブラック30質量部、トリアリルイソシアヌレート5質量部、及び1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン1質量部を混練して得られる含フッ素弾性共重合体組成物の架橋特性を、架橋特性測定機を用いて177℃で12分間、振幅角3度の条件にて測定し、測定されたトルクの最大値(M)及びトルクの最小値(M)の差である(M-M)値が30dN・m以上であり、好ましくは35dN・m以上であり、さらに好ましくは38dN・m以上である。
 また、トルクの最大値(M)の90%に達するのに要する時間を表すt90(90%架橋時間)は、5分以下が好ましく、さらに好ましくは4分以下であり、特に好ましくは3.5分以下であり、最も好ましくは3分以下である。
 なお、上記混練は、ロール、ニーダー、バンバリーミキサー、押し出し機などのゴム用混合装置により通常条件で行うことができるが、2本ロールによる混練が好ましい。
 本発明の含フッ素弾性共重合体のムーニー粘度は、5~200が好ましく、10~170がより好ましく、20~100が最も好ましい。
 ムーニー粘度は、JIS K6300に準じ、直径38.1mm、厚さ5.54mmのL型ローターを用い、100℃で、予熱時間を1分間、ローター回転時間を10分間に設定して測定され、ゴムの分子量の目安である。この範囲にあると流動性と架橋性のバランスに優れる。
 本発明の含フッ素弾性共重合体のガラス転移温度は、-40~20℃が好ましく、-20~10℃がより好ましい。
 本発明の含フッ素弾性共重合体の比重は、1.20~1.70が好ましく、1.40~1.65がより好ましい。
 本発明の製造方法によって得られる含フッ素弾性共重合体は、有機過酸化物を用いて架橋することが好ましい。
 有機過酸化物としては、ジアルキルパーオキシド類(ジtert-ブチルパーオキシド、tert-ブチルクミルパーオキシド、ジクミルパーオキシド、α,α-ビス(tert-ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン-3等。)、1,1-ジ(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロキシパーオキシド、ベンゾイルパーオキシド、tert-ブチルパーオキシベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、tert-ブチルパーオキシマレイン酸、tert-ブチルパーオキシソプロピルカーボネート等が挙げられ、ジアルキルパーオキシド類が好ましい。
 有機過酸化物の使用量は、含フッ素弾性共重合体の100質量部に対して、0.3~10質量部が好ましく、0.3~5質量部がより好ましく、0.5~3質量部がさらに好ましい。有機過酸化物の使用量が該範囲にあると、架橋速度が適切で、得られた架橋ゴムは引張強度と伸びのバランスに優れる。
 また、必要に応じて架橋助剤を添加すると、架橋反応性が向上し好ましい。架橋助剤としては、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタクリルイソシアヌレート、1,3,5-トリアクリロイルヘキサヒドロ-1,3,5-トリアジン、トリアリルトリメリテート、m-フェニレンジアミンビスマレイミド、p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム、ジプロパルギルテレフタレート、ジアリルフタレート、N,N’,N’’,N’’’-テトラアリルテレフタールアミド、ビニル基含有シロキサンオリゴマー(ポリメチルビニルシロキサン、ポリメチルフェニルビニルシロキサン等。)等が挙げられ、トリアリルシアヌレート、トリアリルイソシアヌレート、トリメタリルイソシアヌレートが好ましく、トリアリルイソシアヌレートがより好ましい。
 架橋助剤の添加量は、含フッ素弾性共重合体100質量部に対して、0.1~20質量部が好ましく、1~10質量部がより好ましい。架橋助剤の添加量が該範囲にあると、架橋速度が適切で、得られた架橋ゴムは強度と伸びのバランスに優れる。
 また、必要に応じて含フッ素弾性共重合体に金属酸化物を添加してもよい。金属酸化物としては、2価金属の酸化物が好ましい。2価金属の酸化物としては、酸化マグネシウム、酸化カルシウム、酸化亜鉛、酸化鉛等が好ましく挙げられる。金属酸化物の添加量は、含フッ素弾性共重合体の100質量部に対して、0.1~10質量部が好ましく、0.5~5質量部がより好ましい。
 上記金属酸化物の添加により、本発明の含フッ素弾性共重合体の特徴である高い架橋性能をより向上することができる。
 さらに、本発明の含フッ素弾性共重合体を架橋させる際には、含フッ素弾性共重合体に着色させるための顔料、充填剤、補強剤などを配合してもよい。通常よく用いられる充填剤又は補強剤としては、カーボンブラック、酸化チタン、二酸化珪素、クレー、タルク等が挙げられる。
 また、本発明の含フッ素弾性共重合体には、目的に応じて、含フッ素弾性共重合体以外の高分子材料を配合して、含フッ素弾性共重合体組成物とすることも好ましい。該高分子材料としては、ポリ四フッ化エチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ポリクロロトリフルオロエチレン、四フッ化エチレン/エチレン共重合体等の含フッ素樹脂;フッ化ビニリデン/六フッ化プロピレン共重合体、含フッ素弾性共重合体以外の四フッ化エチレン/プロピレン共重合体、フッ化ビニリデン/四フッ化エチレン/六フッ化プロピレン共重合体、四フッ化エチレン/パ-フルオロ(アルキルビニルエ-テル)共重合体等の含フッ素エラストマー;エチレン-プロピレン-非共役ジエン共重合体などの炭化水素系エラストマー;等が挙げられる。例えば、本発明の含フッ素弾性共重合体に四フッ化エチレン/エチレン共重合体等の含フッ素樹脂を配合すると本発明の含フッ素弾性共重合体の特徴である高い架橋性、流動性に加えて、成形性、強度をさらに向上することができる。また、本発明の含フッ素弾性共重合体にエチレン-プロピレン-非共役ジエン共重合体などのエラストマーを配合すると、本発明の含フッ素弾性共重合体の特徴である高い架橋性をさらに向上できる。
 本発明の含フッ素弾性共重合体組成物に含有される高分子材料としては、四フッ化エチレン/エチレン共重合体、フッ化ビニリデン/六フッ化プロピレン共重合体、含フッ素弾性共重合体以外の四フッ化エチレン/プロピレン共重合体及びエチレン-プロピレン-非共役ジエン共重合体からなる群から選ばれる少なくとも1種の共重合体が好ましい。
 本発明の含フッ素弾性共重合体組成物に含有される、含フッ素弾性共重合体と上記共重合体との含有割合は、含フッ素弾性共重合体/共重合体(質量比)=100/1~100/300が好ましく、100/5~100/200がより好ましく、100/10~100/100が最も好ましい。
 本発明の含フッ素弾性共重合体組成物には、上記の架橋助剤や種々の充填剤を配合することも好ましい。
 本発明の含フッ素弾性共重合体を、有機過酸化物、架橋助剤、他各種添加剤等と、ロール、ニーダー、バンバリーミキサー、押し出し機などのゴム用混合装置で、均一に混合することにより、容易に含フッ素弾性共重合体組成物を得ることができる。
 該含フッ素弾性共重合体組成物は、通常は加熱プレス等の方法によって、成形と同時に架橋されるが、予め成形した後に架橋してもよい。
 成形法としては、圧縮成形、射出成形、押し出し成形、カレンダー成形又は溶剤に溶かしてディッピング、コーティングなどが採用される。
 架橋条件は、成形法や架橋物の形状を考慮して加熱プレス架橋、スチーム架橋、熱風架橋、被鉛架橋など種々の条件が採用される。架橋温度は、通常は100~400℃で数秒~24時間の範囲が好ましく採用される。また、架橋物の機械特性や圧縮永久歪の向上やその他の特性の安定化を目的に、2次架橋が好ましく採用される。2次架橋条件としては、100~300℃で30分間~48時間程度が好ましい。
 成形した含フッ素弾性共重合体組成物を放射線照射により架橋することも好ましい。照射する放射線としては、電子線、紫外線などが挙げられる。電子線照射における照射量は、0.1~30Mradが好ましく、1~20Mradがより好ましい。
 該含フッ素弾性共重合体組成物は、圧縮永久歪を小さくすることができる。該圧縮永久歪は、50以下であることが好ましく、40以下であることがより好ましく、35以下であることがさらに好ましい。
 以下に実施例をあげて本発明を具体的に説明するが、本発明はこれらに限定されない。各物性の測定は下記の方法を用いた。
(含フッ素弾性共重合体中の繰り返し単位の比)
 含フッ素弾性共重合体中のTFEに基づく繰り返し単位とPに基づく繰り返し単位の比は、含フッ素弾性共重合体のフッ素含有量分析により算出した。
(ガラス転移温度(℃))
 セイコーインスツルメント社製DSC220型を用いて、10±0.1mgの含フッ素弾性共重合体を-50℃から10℃/分で150℃まで昇温させ、10℃/分で-50℃まで冷却させた際の吸熱ピーク変化の中心温度をガラス転移温度とした。
(ムーニー粘度)
 含フッ素弾性共重合体のムーニー粘度は、JIS K6300に準じて、直径38.1mm、厚さ5.54mmのL型ローターを用い、100℃で、予熱時間を1分間、ローター回転時間を4分間に設定して測定した。値が大きい程、間接的に高分子量であることを示す。
(比重)
 含フッ素弾性共重合体の比重は、新光電子社製比重計を用い、JIS K6220-1に準ずる方法にて測定した。
(架橋物性及び架橋ゴム物性の測定)
 含フッ素弾性共重合体の100質量部、カーボンブラックの30質量部、トリアリルイソシアヌレートの5質量部、及び1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン(化薬アクゾ社製、商品名「パーカドックス14」)の1質量部を2本ロールにより、室温下にて10分間混練し、均一に混合された含フッ素弾性共重合体組成物を得た。得られた含フッ素弾性共重合体組成物は架橋特性測定機(アルファーテクノロジーズ社製、商品名「RPA2000」)を用いて177℃で12分間、振幅角3度の条件にて架橋特性を測定した。架橋特性において、Mはトルクの最大値を示し、Mはトルクの最小値を示し、M-Mは架橋度を示す。該架橋特性は、含フッ素弾性共重合体の架橋反応性の指標となり、(M-M)の値が大きいほど、架橋反応性に優れることを示す。トルクの単位は、dN・mである。また、t10及びt90は10%架橋時間及び90%架橋時間であり、架橋特性測定中に示す最大トルクの10%及び90%に達するのに要する時間を表す。t90が小さいほど、架橋が速いことを示す。
 また、該含フッ素弾性共重合体組成物を170℃で20分間の熱プレスを行った後、200℃のオーブン内で4時間の2次架橋を行い、含フッ素弾性共重合体組成物の厚さ2mmの架橋ゴムシートを得た。得られた架橋ゴムシートを3号ダンベルで打ち抜き試料を作製した。JISK6251に準じて、100%引張応力、引張強さ及び破断伸びを測定した。また、JIS K6253に準じて硬度を測定した。
(圧縮永久歪)
 前記含フッ素弾性共重合体組成物につき、JIS K6262に準じて200℃で72時間の圧縮永久歪試験を行い、圧縮永久歪を測定した。
(実施例1)含フッ素弾性共重合体Aの製造:
 撹拌用アンカー翼を備えた内容積3200mLのステンレス鋼製の耐圧反応器の内部を脱気した後、該反応器に、イオン交換水の1500g、リン酸水素二ナトリウム12水和物の60g、水酸化ナトリウムの0.9g、tert-ブタノールの198g、含フッ素乳化剤としてCOCFCFOCFCOONHの9g、及び過硫酸アンモニウムの3.8g、を加えた。さらに、200gのイオン交換水に0.4gのエチレンジアミン四酢酸二ナトリウム塩二水和物(以下、EDTAと記す。)および0.3gの硫酸第一鉄7水和物を溶解させた水溶液を、反応器に加えた。このときの反応器内の水性媒体のpHは9.5であった。
 ついで、24℃で、TFE/P=88/12(モル比)のモノマー混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、1,4-ジヨードパーフルオロブタンの6.4gを添加した。その後、水酸化ナトリウムでpHを10.0に調整したヒドロキシメタンスルフィン酸ナトリウム2水和物(以下、ロンガリットと記す。)の2.5質量%水溶液(以下、ロンガリット2.5質量%水溶液と記す。)を反応器に加え、重合反応を開始させた。以降、ロンガリット2.5質量%水溶液を、高圧ポンプを用いて連続的に反応器に加えた。
 重合温度を24℃に維持して重合を進行させ、重合の進行に伴い、反応器内の圧力が低下するので、反応器の内圧が2.49MPaGに降下した時点で、TFE/P=56/44(モル比)のモノマー混合ガスを圧入し、反応器の内圧を2.51MPaGまで昇圧させた。この操作を繰り返し、反応器の内圧を2.49~2.51MPaGに保持し、重合反応を続けた。TFE/Pのモノマー混合ガスの圧入量の総量が900gとなった時点で、ロンガリット2.5質量%水溶液の添加を停止し、反応器の内温を10℃まで冷却し、重合反応を停止し、含フッ素弾性共重合体Aのラテックスを得た。得られたラテックスのpHは8.0であった。ロンガリット2.5質量%水溶液の添加量は88gであった。重合時間は約7時間であった。
 含フッ素弾性共重合体Aのラテックスを塩化カルシウムの5質量%水溶液に添加して、塩析により含フッ素弾性共重合体Aのラテックスを凝集させ、含フッ素弾性共重合体Aを析出させた。含フッ素弾性共重合体Aをろ過、回収した。ついで、含フッ素弾性共重合体Aをイオン交換水により洗浄し、100℃のオーブンで15時間乾燥させ、白色の含フッ素弾性共重合体Aの880gを得た。
 含フッ素弾性共重合体A中のTFEに基づく繰り返し単位とPに基づく繰り返し単位の比率は56/44(モル比)であった。また、含フッ素弾性共重合体Aのムーニー粘度は80、比重は1.55、ガラス転移温度は-3℃であった。
 含フッ素弾性共重合体Aの架橋特性および架橋ゴム物性を表1に示す。
(実施例2)含フッ素弾性共重合体Bの製造:
 1,4-ジヨードパーフルオロブタンの添加量を12.8gとし、TFE/Pのモノマー混合ガスの圧入量の総量を800gとした以外は実施例1と同様にして、含フッ素弾性共重合体Bのラテックスを得た。得られたラテックスのpHは7.8であった。ロンガリット2.5質量%水溶液の添加量は90gであった。重合時間は約6時間であった。実施例1と同様にして、含フッ素弾性共重合体Bのラテックスから含フッ素弾性共重合体Bの760gを得た。
 含フッ素弾性共重合体B中のTFEに基づく繰り返し単位とPに基づく繰り返し単位の比率は56/44(モル比)であった。また、含フッ素弾性共重合体Bのムーニー粘度は27、比重は1.55、ガラス転移温度は-3℃であった。
 含フッ素弾性共重合体Bの架橋特性および架橋ゴム物性を表1に示す。
(実施例3)含フッ素弾性共重合体Cの製造:
 含フッ素乳化剤としてCOCFCFOCFCOONHに代えてパーフルオロオクタン酸アンモニウムの9gを添加した以外は、実施例1と同様にして製造し、含フッ素弾性共重合体Cのラテックスを得た。得られたラテックスのpHは8.0であった。ロンガリット2.5質量%水溶液の添加量は85gであった。重合時間は約7時間であった。
 実施例1と同様にして、含フッ素弾性共重合体Cのラテックスから含フッ素弾性共重合体Bの880gを得た。
 含フッ素弾性共重合体C中のTFEに基づく繰り返し単位とPに基づく繰り返し単位の比率は56/44(モル比)であった。また、含フッ素弾性共重合体Cのムーニー粘度は77、比重は1.55、ガラス転移温度は-3℃であった。
 含フッ素弾性共重合体Cの架橋特性および架橋ゴム物性を表1に示す。
(実施例4)含フッ素弾性共重合体Dの製造:
 重合温度を40℃とし、TFE/Pのモノマー混合ガスの圧入量の総量を800gとした以外は、実施例1と同様にして、含フッ素弾性共重合体Dのラテックスを得た。得られたラテックスのpHは7.6であった。ロンガリット2.5質量%水溶液の添加量は90gであった。重合時間は約6時間であった。
 実施例1と同様にして、含フッ素弾性共重合体Dのラテックスから含フッ素弾性共重合体Bの780gを得た。
 含フッ素弾性共重合体D中のTFEに基づく繰り返し単位とPに基づく繰り返し単位の比率は56/44(モル比)であった。また、含フッ素弾性共重合体Dのムーニー粘度は60、比重は1.55、ガラス転移温度は-3℃であった。
 含フッ素弾性共重合体Dの架橋特性および架橋ゴム物性を表1に示す。
(実施例5)含フッ素弾性共重合体Eの製造:
 1,4-ジヨードパーフルオロブタンに代えて、1,4-ジヨードブタンの4.4gを添加した以外は実施例1と同様にして、含フッ素弾性共重合体Eのラテックスを得た。得られたラテックスのpHは7.6であった。ロンガリット2.5質量%水溶液の添加量は99gであった。重合時間は約7時間であった。
 実施例1と同様にして、含フッ素弾性共重合体Eのラテックスから含フッ素弾性共重合体Eの880gを得た。
 含フッ素弾性共重合体E中のTFEに基づく繰り返し単位とPに基づく繰り返し単位の比率は56/44(モル比)であった。また、含フッ素弾性共重合体Eのムーニー粘度は95、比重は1.55、ガラス転移温度は-3℃であった。
 含フッ素弾性共重合体Eの架橋特性および架橋ゴム物性を表1に示す。
(実施例6)含フッ素弾性共重合体Fの製造:
 重合温度を20℃とした以外は、実施例1と同様にして、含フッ素弾性共重合体Fのラテックスを得た。得られたラテックスのpHは7.9であった。ロンガリット2.5質量%水溶液の添加量は85gであった。重合時間は約7時間であった。
 実施例1と同様にして、含フッ素弾性共重合体Fのラテックスから含フッ素弾性共重合体Fの880gを得た。
 含フッ素弾性共重合体F中のTFEに基づく繰り返し単位とPに基づく繰り返し単位の比率は56/44(モル比)であった。また、含フッ素弾性共重合体Fのムーニー粘度は83、比重は1.55、ガラス転移温度は-3℃であった。
 含フッ素弾性共重合体Fの架橋特性および架橋ゴム物性を表1に示す。
(実施例7)含フッ素弾性共重合体Hの製造:
 1,4-ジヨードパーフルオロブタンに代えて、1,6-ジヨードパーフルオロヘキサンの7.8gを添加し、重合温度を30℃とした以外は実施例1と同様にして、含フッ素弾性共重合体Hのラテックスを得た。得られたラテックスのpHは7.5であった。ロンガリット2.5質量%水溶液の添加量は90gであった。重合時間は約7時間であった。
 実施例1と同様にして、含フッ素弾性共重合体Hのラテックスから含フッ素弾性共重合体Hの880gを得た。
 含フッ素弾性共重合体E中のTFEに基づく繰り返し単位とPに基づく繰り返し単位の比率は56/44(モル比)であった。また、含フッ素弾性共重合体Hのムーニー粘度は95、比重は1.55、ガラス転移温度は-3℃であった。
 含フッ素弾性共重合体Hの架橋特性および架橋ゴム物性を表1に示す。
(比較例1)含フッ素弾性共重合体Gの製造:
 撹拌用アンカー翼を備えた内容積3200mLのステンレス鋼製の耐圧反応器の内部を脱気した後、該反応器に、イオン交換水の1500g、リン酸水素二ナトリウム12水和物の60g、水酸化ナトリウムの0.9g、tert-ブタノールの198g、及び含フッ素乳化剤としてパーフルオロオクタン酸アンモニウムの9g、を加えた。このときの反応器内の水性媒体のpHは10.0であった。
 ついで、75℃で、TFE/P=88/12(モル比)のモノマー混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、1,4-ジヨードパーフルオロブタンの6.4gを添加した。その後、水酸化ナトリウムでpHを10.0に調整した過硫酸アンモニウムの14.4質量%水溶液を反応器に加え、重合反応を開始させた。以降、過硫酸アンモニウムの14.4質量%水溶液を、高圧ポンプを用いて、75℃に維持して重合を進行させ、重合の進行に伴い、反応器内の圧力が低下するので、反応器の内圧が2.49MPaGに降下した時点で、TFE/P=56/44(モル比)のモノマー混合ガスを圧入し、反応器の内圧を2.51MPaGまで昇圧させた。この操作を繰り返し、反応器の内圧を2.49~2.51MPaGに保持し、重合反応を続けた。過硫酸アンモニウムの14.4質量%水溶液は重合開始から4時間かけ、過硫酸アンモニウムの14.4質量%水溶液として66g添加した。TFE/Pのモノマー混合ガスの圧入量の総量が800gとなった時点で、反応器の内温を10℃まで冷却し、重合反応を停止し、含フッ素弾性共重合体Gのラテックスを得た。得られたラテックスのpHは7.0であった。重合時間は約13時間であった。
 含フッ素弾性共重合体Gのラテックスを塩化カルシウムの5質量%水溶液に添加して、塩析により含フッ素弾性共重合体Gのラテックスを凝集させ、含フッ素弾性共重合体Gを析出させた後、含フッ素弾性共重合体Gをろ過、回収した。ついで、含フッ素弾性共重合体Gをイオン交換水により洗浄し、100℃のオーブンで15時間乾燥させ、白色の含フッ素弾性共重合体Gの770gを得た。
 含フッ素弾性共重合体Gのムーニー粘度は30、比重は1.55、ガラス転移温度は-3℃であった。含フッ素弾性共重合体Gの架橋特性および架橋ゴム物性を表2に示す。
(比較例2)含フッ素弾性共重合体Jの製造:
 1,4-ジヨードパーフルオロブタンを添加しない以外は実施例1と同様にして、含フッ素弾性共重合体Jのラテックスを得た。得られたラテックスのpHは7.5であった。ロンガリット2.5質量%水溶液の添加量は70gであり、重合時間は約7時間であった。
 実施例1と同様にして、含フッ素弾性共重合体Jのラテックスから含フッ素弾性共重合体Jの900gを得た。含フッ素弾性共重合体Jの架橋特性および架橋ゴム物性を表2に示す。
(比較例3)
 含フッ素弾性共重合体として、旭硝子社製「アフラス150E」(商品名)を使用した。「アフラス150E」は四フッ化エチレン-プロピレン共重合体であり、TFEに基づく繰り返し単位とPに基づく繰り返し単位の比率は56/44(モル比)であった。
 「アフラス150E」のムーニー粘度は60、比重は1.55、ガラス転移温度は-3℃であった。「アフラス150E」の架橋特性および架橋ゴム物性を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 50℃以下の重合温度で重合して得られた、実施例1~6の含フッ素弾性共重合体は、いずれも(M-M)の値が大きく、架橋反応性に優れていた。また、優れた架橋ゴム物性を示した。
 50℃を超える重合温度で重合した、比較例1の含フッ素弾性共重合体は、架橋反応性に乏しく、架橋ゴム物性が不充分であった。
(実施例8)
 含フッ素弾性共重合体Bの70質量部、含フッ素弾性共重合体Jの30質量部、カーボンブラックの30質量部、トリアリルイソシアヌレートの5質量部、及び1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン(化薬アクゾ社製、商品名「パーカドックス14」)の1質量部を2本ロールにより、室温下にて10分間混練し、均一に混合された含フッ素弾性共重合体組成物を得た。架橋特性および架橋ゴム物性を表3に示す。
(実施例9)
 含フッ素弾性共重合体Bの70質量部、旭硝子社製「アフラス150E」(商品名)の30質量部、カーボンブラックの30質量部、及びトリアリルイソシアヌレートの5質量部、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン(化薬アクゾ社製、商品名「パーカドックス14」)の1質量部を2本ロールにより、室温下にて10分間混練し、均一に混合された含フッ素弾性共重合体組成物を得た。架橋特性および架橋ゴム物性を表3に示す。
(実施例10)
 含フッ素弾性共重合体Aの70質量部にエチレン-プロピレン-非共役ジエン共重合体として、住友化学工業社製「エスプレン505A」(商品名)の30質量部、カーボンブラックの30質量部、トリアリルイソシアヌレートの5質量部、及び1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン(化薬アクゾ社製、商品名「パーカドックス14」)の1質量部を2本ロールにより、室温下にて10分間混練し、均一に混合された含フッ素弾性共重合体組成物を得た。架橋特性および架橋ゴム物性を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(スパイラルフロー試験)
 実施例1、比較例1及び比較例2の含フッ素弾性共重合体組成物につき、下記の装置、条件でスパイラルフロー長さを測定した。結果を表2に示す。
  射出成形機:三友工業社製 ゴム射出成形機 STI-0.5-75VA
  バレル温度:80℃
  金型温度:180℃
  射出時間:5秒間
  加熱時間:5分間
  スパイラル金型:8×4×1230mm
Figure JPOXMLDOC01-appb-T000004
 実施例1の含フッ素弾性共重合体組成物が流動性に優れ、射出成形に好適であった。また、加熱後、実施例1の含フッ素弾性共重合体組成物からなる架橋ゴムは容易に金型から取り出せ、金型の汚れも認められなかった。これに対し、比較例1及び比較例2の含フッ素弾性共重合体組成物からなる架橋ゴムは架橋が不充分のため、金型から容易に剥離せず、剥離後の金型にはフッ素弾性共重合体組成物が一部付着したままであった。
 本発明の含フッ素共弾性重合体は、架橋反応により架橋ゴムにすることができる。該架橋ゴムは、O-リング、シート、ガスケット、オイルシール、ダイヤフラム、V-リング等の材料に適する。また、耐熱性耐薬品性シール材、耐熱性耐油性シール材、電線被覆材、半導体装置用シール材、耐蝕性ゴム塗料、耐ウレア系グリース用シール材等の用途にも適用できる。特に、流動性に優れることから、形状の複雑なゴム製品や射出成形により得られる製品の用途に適する。

 なお、2008年3月28日に出願された日本特許出願2008-087936号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  テトラフルオロエチレン、プロピレン、及び必要に応じてパ-フルオロ(アルキルビニルエ-テル)を共重合することにより得られる含フッ素弾性共重合体であって、該含フッ素弾性共重合体100質量部、カーボンブラック30質量部、トリアリルイソシアヌレート5質量部、及び1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン1質量部を混練して得られる含フッ素弾性共重合体組成物の架橋特性を、架橋特性測定機を用いて177℃で12分間、振幅角3度の条件にて測定し、測定されたトルクの最大値(M)及びトルクの最小値(M)の差である(M-M)値が30dN・m以上であることを特徴とする含フッ素弾性共重合体。
  2.  前記含フッ素弾性共重合体中における、テトラフルオロエチレンに基づく繰り返し単位/プロピレンに基づく繰り返し単位(モル比率)が30/70~70/30である請求項1に記載の含フッ素弾性共重合体。
  3.  前記含フッ素弾性共重合体が、ヨウ素原子を含有し、その含有量が0.01~5.0質量%である請求項1または2に記載の含フッ素弾性共重合体。
  4.  ラジカル重合開始剤、及び、一般式RI(式中、Rは炭素数3以上のアルキレン基またはパーフルオロアルキレン基である。)で表されるヨウ素化合物の存在下に、テトラフルオロエチレン、プロピレン、及び必要に応じてパ-フルオロ(アルキルビニルエ-テル)を、重合温度0℃~50℃の範囲で共重合することを特徴とする、含フッ素弾性共重合体の製造方法。
  5.  前記共重合が、水性媒体中で乳化剤の存在下に、前記水性媒体のpHを7~14の範囲で行う乳化重合による共重合である請求項4に記載の含フッ素弾性共重合体の製造方法。
  6.  前記ラジカル重合開始剤がレドックス系重合開始剤である請求項4または5に記載の含フッ素弾性共重合体の製造方法。
  7.  前記RIが、1,3-ジヨードプロパン、1,4-ジヨードブタン、1,6-ジヨードヘキサン、1,8-ジヨードオクタン、1,3-ジヨードパーフルオロプロパン、1,4-ジヨードパーフルオロブタン、1,6-ジヨードパーフルオロヘキサン及び1,8-ジヨードパーフルオロオクタンからなる群から選ばれる1種以上である請求項4~6のいずれかに記載の含フッ素弾性共重合体の製造方法。
  8.  前記乳化剤が、一般式(1):Rf1ORf2COOA(式中、Rf1は炭素数1~8のパーフルオロアルキル基であり、Rf2は、直鎖状の含フッ素アルキレン基であり、該含フッ素アルキレン基にはエーテル性の酸素原子を含有してもよく、該含フッ素アルキレン基は炭素数1~3のパーフルオロアルキル基の側鎖を有してもよく、Aは水素原子、アルカリ金属又はNHである。)で表される含フッ素エーテルカルボン酸化合物である請求項5~7のいずれかに記載の含フッ素弾性共重合体の製造方法。
  9.  前記乳化剤が、一般式(2):F(CFO(CF(X)CFO)CF(X)COOA(式中、Xは、フッ素原子または炭素原子数1~3のパーフルオロアルキル基を表し、Aは、水素原子、アルカリ金属、またはNHを表し、pは、1~10の整数を表し、qは、0~3の整数を表す。)で表される含フッ素エーテルカルボン酸化合物である請求項5~7のいずれかに記載の含フッ素弾性共重合体の製造方法。
  10.  請求項1~3のいずれかに記載の含フッ素弾性共重合体と、四フッ化エチレン/エチレン共重合体、フッ化ビニリデン/六フッ化プロピレン共重合体、該含フッ素弾性共重合体以外の四フッ化エチレン/プロピレン共重合体及びエチレン-プロピレン-非共役ジエン共重合体からなる群から選ばれる少なくとも1種の共重合体とを含有する含フッ素弾性共重合体組成物であって、該含フッ素弾性共重合体と該共重合体との含有割合が、含フッ素弾性共重合/共重合体(質量比)=100/1~100/300であることを特徴とする含フッ素弾性共重合体組成物。
PCT/JP2009/052940 2008-03-28 2009-02-19 含フッ素弾性共重合体及び製造方法 WO2009119202A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010505456A JP5321580B2 (ja) 2008-03-28 2009-02-19 含フッ素弾性共重合体及び製造方法
EP09724032.9A EP2258733B1 (en) 2008-03-28 2009-02-19 Fluorine-containing elastic copolymer and method for producing the same
CN2009801119462A CN101981067B (zh) 2008-03-28 2009-02-19 含氟弹性共聚物及制造方法
US12/892,295 US8716419B2 (en) 2008-03-28 2010-09-28 Fluorinated elastic copolymer and production process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008087936 2008-03-28
JP2008-087936 2008-03-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/892,295 Continuation US8716419B2 (en) 2008-03-28 2010-09-28 Fluorinated elastic copolymer and production process

Publications (1)

Publication Number Publication Date
WO2009119202A1 true WO2009119202A1 (ja) 2009-10-01

Family

ID=41113410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052940 WO2009119202A1 (ja) 2008-03-28 2009-02-19 含フッ素弾性共重合体及び製造方法

Country Status (5)

Country Link
US (1) US8716419B2 (ja)
EP (1) EP2258733B1 (ja)
JP (1) JP5321580B2 (ja)
CN (1) CN101981067B (ja)
WO (1) WO2009119202A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093403A1 (ja) * 2010-01-29 2011-08-04 旭硝子株式会社 含フッ素弾性共重合体及び製造方法
WO2014084397A1 (ja) * 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液の製造方法
JP2014227421A (ja) * 2013-05-17 2014-12-08 ダイキン工業株式会社 パーフルオロゴム水性分散液の製造方法
EP2624341A4 (en) * 2010-09-30 2015-10-07 Asahi Glass Co Ltd POSITIVE ELECTRODE MATERIAL MIXTURE FOR A NON-WATER SECONDARY CELL, POSITIVE ELECTRODE FOR A NON-WATER SECONDARY CELL, AND NON-WATER SECONDARY CELL THEREWITH
US9243080B2 (en) 2012-11-30 2016-01-26 Daikin Industries, Ltd. Production method for polytetrafluoroethylene aqueous dispersion
US9527980B2 (en) 2012-11-30 2016-12-27 Daikin Industries, Ltd. Polytetrafluoroethylene aqueous dispersion, and polytetrafluoroethylene fine powder
WO2019070039A1 (ja) 2017-10-05 2019-04-11 Agc株式会社 積層体の製造方法及び積層体
WO2019070040A1 (ja) 2017-10-06 2019-04-11 Agc株式会社 含フッ素共重合体組成物及び金属ゴム積層体
WO2020184432A1 (ja) 2019-03-08 2020-09-17 Agc株式会社 架橋ゴム
WO2020184429A1 (ja) 2019-03-08 2020-09-17 Agc株式会社 組成物、架橋ゴムおよびその製造方法
WO2020204082A1 (ja) * 2019-04-03 2020-10-08 Agc株式会社 含フッ素弾性共重合体組成物、フッ素ゴム及びこれらの製造方法
WO2020204076A1 (ja) 2019-04-04 2020-10-08 Agc株式会社 積層体の製造方法および積層体
WO2021261450A1 (ja) 2020-06-25 2021-12-30 Agc株式会社 塗料および塗料の製造方法、ならびに、塗装物品および塗装物品の製造方法
WO2023277036A1 (ja) 2021-06-30 2023-01-05 Agc株式会社 組成物及びその製造方法
WO2023136248A1 (ja) * 2022-01-12 2023-07-20 Agc株式会社 樹脂組成物、成形体、複合体およびその用途

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2343325A4 (en) * 2008-11-05 2012-04-11 Asahi Glass Co Ltd FLUORINATED ELASTIC COPOLYMER, PROCESS FOR PRODUCING THE SAME, AND RETICULATED RUBBER
KR20140051899A (ko) * 2011-07-29 2014-05-02 아사히 가라스 가부시키가이샤 축전 디바이스용 바인더
JP6222098B2 (ja) 2012-10-19 2017-11-01 旭硝子株式会社 蓄電デバイス用バインダー組成物の製造方法
CN103342772B (zh) 2013-07-12 2015-08-05 中昊晨光化工研究院有限公司 一种可用过氧化物硫化的含氟弹性体的制备方法
US20160125469A1 (en) * 2014-10-30 2016-05-05 Facebook, Inc. Selection of a group of content items for presentation to an online system user based on content item characteristics and user attributes
JP7156309B2 (ja) 2017-12-06 2022-10-19 Agc株式会社 含フッ素弾性共重合体及び含フッ素弾性共重合体の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125491A (en) 1977-04-08 1978-11-01 Daikin Ind Ltd Fluorine-containing polymer easily curable and its curable composition
JPS6323907A (ja) * 1986-07-16 1988-02-01 Nippon Mektron Ltd パ−オキサイド加硫可能な含フツ素エラストマ−の製造方法
JPH03247608A (ja) * 1990-02-26 1991-11-05 Asahi Chem Ind Co Ltd パーオキシド加硫可能な含フッ素エラストマーの製造方法
JPH05222130A (ja) 1990-03-01 1993-08-31 E I Du Pont De Nemours & Co フルオル弾性体及びその製造法
JPH0812838A (ja) * 1994-06-29 1996-01-16 Asahi Glass Co Ltd フッ素化熱可塑性エラストマーの製造方法
JP2006070245A (ja) 2004-08-04 2006-03-16 Asahi Glass Co Ltd 含フッ素共重合体

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102965A (en) * 1990-03-01 1992-04-07 E. I. Du Pont De Nemours And Company Base resistant fluoroelastomers with improved processibility and curability
JP3247608B2 (ja) 1996-05-23 2002-01-21 株式会社東海 ガス器具のボンベ誤装着防止装置
JP5061446B2 (ja) * 2005-03-04 2012-10-31 旭硝子株式会社 含フッ素エラストマーラテックス、その製造方法、含フッ素エラストマーおよび含フッ素ゴム成形品
US7361930B2 (en) 2005-03-21 2008-04-22 Agilent Technologies, Inc. Method for forming a multiple layer passivation film and a device incorporating the same
US20070100062A1 (en) * 2005-10-28 2007-05-03 Lyons Donald F Process for the manufacture of fluoroelastomers having bromine or lodine atom cure sites
WO2007119834A1 (ja) * 2006-04-19 2007-10-25 Asahi Glass Company, Limited 含フッ素エラストマー組成物および含フッ素ゴム成形品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125491A (en) 1977-04-08 1978-11-01 Daikin Ind Ltd Fluorine-containing polymer easily curable and its curable composition
JPS6323907A (ja) * 1986-07-16 1988-02-01 Nippon Mektron Ltd パ−オキサイド加硫可能な含フツ素エラストマ−の製造方法
JPH03247608A (ja) * 1990-02-26 1991-11-05 Asahi Chem Ind Co Ltd パーオキシド加硫可能な含フッ素エラストマーの製造方法
JPH05222130A (ja) 1990-03-01 1993-08-31 E I Du Pont De Nemours & Co フルオル弾性体及びその製造法
JPH0812838A (ja) * 1994-06-29 1996-01-16 Asahi Glass Co Ltd フッ素化熱可塑性エラストマーの製造方法
JP2006070245A (ja) 2004-08-04 2006-03-16 Asahi Glass Co Ltd 含フッ素共重合体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2258733A4 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741304A (zh) * 2010-01-29 2012-10-17 旭硝子株式会社 含氟弹性共聚物及其制造方法
JPWO2011093403A1 (ja) * 2010-01-29 2013-06-06 旭硝子株式会社 含フッ素弾性共重合体及び製造方法
WO2011093403A1 (ja) * 2010-01-29 2011-08-04 旭硝子株式会社 含フッ素弾性共重合体及び製造方法
US8927668B2 (en) 2010-01-29 2015-01-06 Asahi Glass Company, Limited Fluorinated elastic copolymer and method for its production
EP2624341A4 (en) * 2010-09-30 2015-10-07 Asahi Glass Co Ltd POSITIVE ELECTRODE MATERIAL MIXTURE FOR A NON-WATER SECONDARY CELL, POSITIVE ELECTRODE FOR A NON-WATER SECONDARY CELL, AND NON-WATER SECONDARY CELL THEREWITH
US9214665B2 (en) 2010-09-30 2015-12-15 Asahi Glass Company, Limited Positive electrode material mixture, and positive electrode for non-aqueous secondary battery and secondary battery, employing it
WO2014084397A1 (ja) * 2012-11-30 2014-06-05 ダイキン工業株式会社 ポリテトラフルオロエチレン水性分散液の製造方法
US9243080B2 (en) 2012-11-30 2016-01-26 Daikin Industries, Ltd. Production method for polytetrafluoroethylene aqueous dispersion
US9527980B2 (en) 2012-11-30 2016-12-27 Daikin Industries, Ltd. Polytetrafluoroethylene aqueous dispersion, and polytetrafluoroethylene fine powder
US9574020B2 (en) 2012-11-30 2017-02-21 Daikin Industries, Ltd. Production method for fluoropolymer aqueous dispersion
JP2014227421A (ja) * 2013-05-17 2014-12-08 ダイキン工業株式会社 パーフルオロゴム水性分散液の製造方法
WO2019070039A1 (ja) 2017-10-05 2019-04-11 Agc株式会社 積層体の製造方法及び積層体
RU2768403C2 (ru) * 2017-10-05 2022-03-24 ЭйДжиСи Инк. Способ производства ламината и ламинат
WO2019070040A1 (ja) 2017-10-06 2019-04-11 Agc株式会社 含フッ素共重合体組成物及び金属ゴム積層体
JP7173027B2 (ja) 2017-10-06 2022-11-16 Agc株式会社 含フッ素共重合体組成物及び金属ゴム積層体
US11767410B2 (en) 2017-10-06 2023-09-26 AGC Inc. Fluorinated copolymer composition and metal rubber laminate
JPWO2019070040A1 (ja) * 2017-10-06 2020-11-05 Agc株式会社 含フッ素共重合体組成物及び金属ゴム積層体
KR20210139228A (ko) 2019-03-08 2021-11-22 에이지씨 가부시키가이샤 가교 고무
KR20210139227A (ko) 2019-03-08 2021-11-22 에이지씨 가부시키가이샤 조성물, 가교 고무 및 그 제조 방법
WO2020184432A1 (ja) 2019-03-08 2020-09-17 Agc株式会社 架橋ゴム
WO2020184429A1 (ja) 2019-03-08 2020-09-17 Agc株式会社 組成物、架橋ゴムおよびその製造方法
KR20210150359A (ko) 2019-04-03 2021-12-10 에이지씨 가부시키가이샤 함불소 탄성 공중합체 조성물, 불소 고무 및 이들의 제조 방법
WO2020204082A1 (ja) * 2019-04-03 2020-10-08 Agc株式会社 含フッ素弾性共重合体組成物、フッ素ゴム及びこれらの製造方法
WO2020204076A1 (ja) 2019-04-04 2020-10-08 Agc株式会社 積層体の製造方法および積層体
WO2021261450A1 (ja) 2020-06-25 2021-12-30 Agc株式会社 塗料および塗料の製造方法、ならびに、塗装物品および塗装物品の製造方法
WO2023277036A1 (ja) 2021-06-30 2023-01-05 Agc株式会社 組成物及びその製造方法
WO2023136248A1 (ja) * 2022-01-12 2023-07-20 Agc株式会社 樹脂組成物、成形体、複合体およびその用途

Also Published As

Publication number Publication date
EP2258733A1 (en) 2010-12-08
US8716419B2 (en) 2014-05-06
CN101981067A (zh) 2011-02-23
US20110015342A1 (en) 2011-01-20
JPWO2009119202A1 (ja) 2011-07-21
EP2258733A4 (en) 2011-03-02
CN101981067B (zh) 2013-03-27
JP5321580B2 (ja) 2013-10-23
EP2258733B1 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5321580B2 (ja) 含フッ素弾性共重合体及び製造方法
JP5644502B2 (ja) 含フッ素弾性共重合体、その製造方法および架橋ゴム
TWI711636B (zh) 含氟彈性共聚物、其製造方法、交聯橡膠及其製造方法
EP2383302B1 (en) Fluorine-containing elastic copolymer, process for the production thereof, and crosslinked rubber articles
JP6582991B2 (ja) ペルフルオロエラストマー、ペルフルオロエラストマー組成物、及び架橋ゴム物品
US7884166B2 (en) Elastic fluorocopolymer, its composition and crosslinked rubber
JP5061510B2 (ja) 含フッ素弾性共重合体組成物および架橋ゴム
EP1630179B1 (en) Fluorocopolymer
JP5050320B2 (ja) 含フッ素共重合体
US8927668B2 (en) Fluorinated elastic copolymer and method for its production
JP4640021B2 (ja) 含フッ素共重合体
EP3722340B1 (en) Fluorine-containing elastic copolymer and method for producing fluorine-containing elastic copolymer
JP5163287B2 (ja) 含フッ素弾性共重合体、その製造方法および架橋ゴム
JP2009096906A (ja) 含フッ素共重合体、その製造方法および架橋ゴム
RU2378291C2 (ru) Эластичный фторсополимер, его смесь и сшитый каучук
JP2018044078A (ja) 含フッ素弾性共重合体組成物および架橋ゴム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980111946.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09724032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010505456

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009724032

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 6580/DELNP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE