WO2011090174A1 - 表面処理銅箔、その製造方法及び銅張積層基板 - Google Patents

表面処理銅箔、その製造方法及び銅張積層基板 Download PDF

Info

Publication number
WO2011090174A1
WO2011090174A1 PCT/JP2011/051131 JP2011051131W WO2011090174A1 WO 2011090174 A1 WO2011090174 A1 WO 2011090174A1 JP 2011051131 W JP2011051131 W JP 2011051131W WO 2011090174 A1 WO2011090174 A1 WO 2011090174A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
layer
treatment
copper
adhesion
Prior art date
Application number
PCT/JP2011/051131
Other languages
English (en)
French (fr)
Inventor
哲 藤澤
岳夫 宇野
公一 服部
Original Assignee
古河電気工業株式会社
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 新日鐵化学株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020127016600A priority Critical patent/KR101561731B1/ko
Priority to EP11734780A priority patent/EP2527498A1/en
Priority to CN201180004965.2A priority patent/CN102713020B/zh
Priority to US13/574,478 priority patent/US8852754B2/en
Publication of WO2011090174A1 publication Critical patent/WO2011090174A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/002Alloys based on nickel or cobalt with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • Y10T428/12438Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12451Macroscopically anomalous interface between layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12472Microscopic interfacial wave or roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12882Cu-base component alternative to Ag-, Au-, or Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/1291Next to Co-, Cu-, or Ni-base component

Definitions

  • the present invention relates to a copper foil, a manufacturing method thereof, and a copper-clad laminate using the copper foil.
  • the present invention relates to a surface-treated copper foil that is excellent in initial adhesion with an insulating resin, heat-resistant adhesion, chemical resistance, good in circuit processability, and easy in soft etching, and a method for producing the same.
  • the present invention further relates to a copper-clad laminate (hereinafter sometimes referred to as CCL) using a surface-treated copper foil.
  • a roughening treatment is applied to the bonding surface to be bonded to the insulating resin of the copper foil after the foil formation (hereinafter, sometimes referred to as an untreated copper foil), and zinc (Zn) is further applied to the roughened surface.
  • various other measures have been taken, such as plating, nickel (Ni) plating, and the like, and further, chromate treatment or the like on the surface plated with Zn or Ni.
  • Patent Document 1 discloses a technique of roughening the surface of an untreated copper foil with a Zn-containing alloy.
  • the surface of untreated copper foil bonded to insulating resin is surfaced with an electrolytic solution containing molybdenum and at least one of iron, cobalt, nickel, and tungsten.
  • an electrolytic solution containing molybdenum and at least one of iron, cobalt, nickel, and tungsten.
  • a surface-treated copper foil that has been treated and further provided with a Ni plating layer or a Zn plating layer or (Ni plating layer + Zn plating layer) on the plating layer has been proposed (for example, see Patent Document 2).
  • the roughening treatment layer including the Zn layer described in Patent Documents 1 and 2 is effective in improving the adhesive strength between the copper foil and the insulating resin at a high temperature.
  • the zinc layer is bonded between the copper foil and the insulating resin because zinc is easily dissolved in acid.
  • the adhesive strength between the copper foil and the insulating resin after the circuit formation is extremely lowered, and the wiring circuit (copper foil) may be peeled off from the insulating resin during use of the circuit board.
  • the etching time is shortened and the dissolution and outflow of the Zn layer are kept to a minimum.
  • the etching process requires advanced technology and a management system, which reduces circuit board productivity and increases the cost. Invite.
  • Patent Documents 1 and 2 cannot satisfy all the adhesive strength, chemical resistance, and etching property with the insulating resin as described above, and the surface treatment that satisfies these characteristics.
  • copper foil is not provided. Therefore, CCL satisfying all of adhesive strength, chemical resistance, and etching properties has not been provided.
  • Patent Document 3 proposes a CCL made of Ni—Zn alloy plating using a pyrophosphoric acid bath as a plating bath and comprising the surface-treated copper foil and a polyimide film as a surface treatment of the copper foil. ing.
  • a pyrophosphoric acid bath By using a pyrophosphoric acid bath, a Ni—Zn alloy layer with excellent film thickness uniformity can be obtained, and even if tin plating is applied to the terminal portion after circuit formation, tin (Sn) is formed at the interface between the circuit and the polyimide substrate. It is recognized that the phenomenon of subduction is unlikely to occur.
  • a photosensitive film (resist) is attached to one copper foil surface (surface side) of the laminated substrate.
  • An exposure apparatus having an exposure mask mounted on the photosensitive film surface is used to transfer (project) the pattern of the exposure mask onto the photosensitive film by irradiation with exposure light.
  • the unexposed portion of the photosensitive film is removed by a development process to form a film resist pattern (etching resist).
  • the copper foil in the portion not exposed (exposed) with the film resist pattern is removed (etched) by an etching process to form a wiring on the surface side.
  • the film resist pattern used in the etching process is removed from the wiring (copper foil) using, for example, an alkaline aqueous solution.
  • a predetermined wiring is also applied to the copper foil on the other surface (back surface side) in the same process as described above.
  • a blind via hole is formed to connect the front surface side wiring (copper foil) and the back surface side wiring (copper foil).
  • the blind via hole is formed by irradiating the insulating resin exposed on the surface side with a laser beam such as a CO 2 laser. In this laser drilling process, insulating resin flaws (smear) remain on the bottom of the hole (rear wiring). In order to remove the soot, the soot is removed using an oxidizing agent such as a potassium permanganate solution (desmear treatment is performed).
  • the object of the present invention is excellent in adhesion between the surface-treated copper foil and an insulating resin such as polyimide after initial and thermal history (hereinafter sometimes referred to as heat-resistant adhesion) and chemical resistance, and blind.
  • An object of the present invention is to provide an industrially excellent surface-treated copper foil that satisfies the etching property in the soft etching treatment after forming the via hole.
  • Another object of the present invention is to provide a copper-clad laminate that has a strong adhesive strength between the surface-treated copper foil and an insulating resin, particularly polyimide, has chemical resistance in circuit formation, and satisfies soft etching properties. It is to provide.
  • the surface-treated copper foil of the present invention is subjected to a roughening treatment with a surface roughness Rz of 1.1 ⁇ m or less on at least one surface of a base material copper foil (untreated copper foil).
  • Zn content (wt%) Zn adhesion amount / (Ni adhesion amount + Zn adhesion amount) ⁇ 100 (1)
  • the manufacturing method of this invention surface-treated copper foil forms a roughening process surface by the roughening process from which surface roughness Rz is 1.1 micrometers or less with respect to at least one surface of base material copper foil (unprocessed copper foil).
  • the Ni—Zn alloy layer is a manufacturing method in which a Zn content of 6 to 30% and a Zn deposition amount of 0.08 mg / dm 2 or more are formed in a content (wt%) represented by Formula 1. is there.
  • the copper clad laminate of the present invention is formed by laminating the surface-treated copper foil or the surface-treated copper foil produced by the production method on one or both surfaces of the insulating resin layer.
  • FIG. 3 illustrates a process of an embodiment of the present invention. It is a figure which shows the expanded cross section of the roughening copper foil by embodiment of this invention.
  • a base material copper foil (untreated copper foil) to be surface-treated is manufactured (FIG. 1, step 1).
  • the base material copper foil may be either an electrolytic copper foil or a rolled copper foil.
  • it may be expressed simply as a copper foil or a base material copper foil (untreated copper foil).
  • the thickness of the untreated copper foil is preferably 5 ⁇ m to 35 ⁇ m. This is because, when the thickness of the copper foil is less than 5 ⁇ m, for example, wrinkles or the like enter at the time of manufacture, and the production of the thin copper foil is costly and not realistic.
  • the foil thickness is larger than 35 ⁇ m, it is not preferable because it is out of the specifications for thin and miniaturization such as an IC mounting substrate for driving a liquid crystal display as a display unit of a personal computer, a mobile phone or a PDA.
  • the surface of the base copper foil is roughened to improve adhesion with an insulating resin (for example, polyimide) (FIG. 1, steps 2 and 3), and further rust-proofed for the purpose of rust prevention (FIG.
  • the surface treatment with FIG. 1, step 4) is performed.
  • a roughening treatment mainly made of copper or a copper alloy step 2)
  • a roughening treatment made of a Ni—Zn alloy film step 3
  • the rust prevention treatment is performed.
  • the roughening treatment that improves the adhesion between the copper foil and the insulating resin such as polyimide improves the adhesion as the roughened particles become rougher, that is, as the surface irregularities become rougher. Tend to get worse.
  • step 2 first, a roughening treatment for increasing the surface roughness Rz by 0.05 to 0.30 ⁇ m is applied to the surface of the base copper foil (untreated copper foil) by copper or copper alloy.
  • a surface-treated copper foil in which Rz after the roughening treatment is 1.1 ⁇ m or less.
  • the roughening treatment represented by the surface roughness Ra is performed within a range of increasing 0.02 to 0.05 ⁇ m, and Ra after the roughening treatment is set to 0.35 ⁇ m or less. If the surface roughness after the roughening treatment is less than the above range, the adhesiveness with the insulating resin is deteriorated.
  • the reason why the surface roughness Rz is 1.1 ⁇ m or less is that the soft etching property described later is deteriorated when the surface roughness is further increased. That is, by setting the surface roughness Rz after the roughening treatment of the surface-treated copper foil to 1.1 ⁇ m or less, it is possible to obtain a surface-treated copper foil having excellent adhesion to polyimide and excellent soft etching properties.
  • the surface roughness Ra and Rz are values measured in accordance with JIS-B-0601.
  • the roughened surface of the copper foil has a convex shape that forms the roughened surface, a tip having a width of 0.3 to 0.8 ⁇ m and a height of 0.6 to 1.8 ⁇ m.
  • a sharp shape This is because, by using such a shape, the unevenness roughened on the insulating resin when it is attached to the insulating resin can easily bite (anchor effect), and good adhesion can be obtained.
  • the width in the convex shape is a length obtained by measuring the root portion of the foil surface, and the height is a length from the foil surface to the end.
  • the aspect ratio [height / width] of the convex shape on the roughened surface is set to 1.2 to 3.5.
  • the reason why the aspect ratio [height / width] is 1.2 to 3.5 is that if it is less than 1.2, the adhesiveness with the insulating resin is not sufficient, and if the aspect ratio is greater than 3.5, it is roughened. This is because there is a high possibility that the convex portion is missing from the copper foil.
  • a Ni—Zn alloy is formed on at least one surface of the roughened copper foil, the Zn content (wt%) represented by the following formula 1 is 6% to 30%, and Zn is deposited to 0.08 mg / dm 2 or more.
  • a base copper foil (untreated copper foil) having a surface roughness Rz of 0.8 ⁇ m or less is subjected to a roughening treatment so that the Rz increases by 0.05 to 0.30 ⁇ m.
  • a base copper foil having a Ra of 0.03 to 0.30 ⁇ m it is preferable to use a base copper foil having a Ra of 0.03 to 0.30 ⁇ m, and to perform a roughening treatment to increase the Ra by 0.02 to 0.05 ⁇ m.
  • the surface roughness is defined because when the Rz of the base material copper foil (untreated copper foil) exceeds 0.8 ⁇ m, unevenness (roughening treatment) is not uniformly formed on the copper foil surface. The reason why the range of the increased roughening treatment is defined is that if it is out of the above range, the soft etching property is adversely affected.
  • the roughening treatment that increases the three-dimensional surface area by a laser microscope to three times or more with respect to the two-dimensional surface area is less than three times, the area where the soft etching solution is in contact with the copper foil surface is small and the etching rate is slow. This is because the contact force with the insulating resin is reduced, resulting in a decrease in adhesion.
  • the amount of roughening applied to the copper foil is 3.56 to 8.91 g / m 2 (thickness conversion: 0). .4 to 1.0 ⁇ m).
  • the reason why the roughening amount is 3.56 to 8.91 g per 1 m 2 is that the base material copper foil (untreated copper foil) has an Rz of 0.05 to 0.30 ⁇ m, or an Ra of 0.02 to 0.8. This is because the optimum range for attaching roughened particles increasing by 05 ⁇ m is obtained.
  • step 3 it is preferable to deposit a Ni—Zn alloy on at least one surface of the roughened copper foil so that the Ni deposition amount is 0.45 to 3 mg / dm 2 .
  • the amount of adhesion of Ni is defined because it has an effect on the improvement in heat-resistant adhesion and the soft etching property. If the amount of adhesion of Ni is less than 0.45 mg / dm 2 , the improvement in heat-resistant adhesion cannot be expected so much. This is because if it exceeds 3 mg / dm 2 , there is a concern that the soft etching property may be adversely affected.
  • controlling the shape of the roughened particles, the surface roughness, and the surface area leads to an increase in surface area, an increase in adhesion due to the anchor effect, and an improvement in heat-resistant adhesion, and a laser.
  • the resin residue on the roughened part during desmear treatment at the bottom of the via is reduced, and the amount of rust-proof metal per unit can be reduced by increasing the surface area and control with a narrow management width is possible Thus, the effect of providing good soft etching properties is exhibited.
  • the insulating resin used for the copper clad laminate in the embodiment of the present invention is not particularly limited, but is preferably polyimide from the viewpoint of heat resistance and dimensional stability.
  • the polyimide constituting the polyimide layer is generally represented by the following general formula (Chemical Formula 1), and is a known method in which a diamine component and an acid dianhydride component are used in substantially equimolar amounts and polymerized in an organic polar solvent. Can be manufactured by.
  • Ar 1 is a tetravalent organic group having one or more aromatic rings
  • Ar 2 is a divalent organic group having one or more aromatic rings. That is, Ar 1 is an acid dianhydride residue and Ar 2 is a diamine residue.
  • an aromatic tetracarboxylic dianhydride represented by O (CO) 2 —Ar 1 — (CO) 2 O is preferable, and the following (Chemical Formula 2) aromatic acid anhydride residue Is given as Ar 1 .
  • Acid dianhydrides can be used alone or in admixture of two or more.
  • PMDA pyromellitic dianhydride
  • BPDA 4,4′-biphenyltetracarboxylic dianhydride
  • DBDA 4,4′-benzophenone tetracarboxylic acid
  • BTDA 4,4′-diphenylsulfonetetracarboxylic dianhydride
  • ODPA 4,4′-oxydiphthalic dianhydride
  • an aromatic diamine represented by H 2 N—Ar 2 —NH 2 is preferable, and an aromatic diamine which gives the following (Chemical Formula 3) aromatic diamine residue as Ar 2 is exemplified.
  • diaminodiphenyl ether DAPE
  • 2′-methoxy-4,4′-diaminobenzanilide MABA
  • 2,2′-dimethyl-4,4′-diaminobiphenyl m-TB
  • para Phenylenediamine P-PDA
  • 1,3-bis (4-aminophenoxy) benzene TPE-R
  • 1,3-bis (3-aminophenoxy) benzene APB
  • 1,4-bis (4- Aminophenoxy) benzene TPE-Q
  • 2,2-bis [4- (4-aminophenoxy) phenyl] propane BAPP
  • the solvent used for the polymerization examples include dimethylacetamide, n-methylpyrrolidinone, 2-butanone, diglyme, xylene, and the like. These can be used alone or in combination of two or more.
  • the resin viscosity of the polyamic acid (polyimide precursor) obtained by polymerization is preferably in the range of 500 cps to 35000 cps.
  • the polyimide layer of the copper clad laminate of the embodiment of the present invention may be composed of a single layer or a plurality of layers, but the dimensional stability of the flexible copper clad laminate or the copper foil In order to make the adhesive strength excellent, it is preferable to have a plurality of layers.
  • the coefficient of linear expansion is as low as 30 ⁇ 10 ⁇ 6 [1 / K] or less, preferably in the range of 1 ⁇ 10 ⁇ 6 to 30 ⁇ 10 ⁇ 6 [1 / K]. It is preferable that a resin layer having a linear expansion coefficient is a main polyimide layer (1), and a polyimide layer (2) having a glass transition temperature of 330 ° C. or lower is provided on one or both sides thereof.
  • the polyimide layer (2) preferably has a linear expansion coefficient (CTE) exceeding 30 ⁇ 10 ⁇ 6 [1 / K] and a glass transition temperature of 330 ° C. or less, more preferably a polyimide layer. (2) has a linear expansion coefficient of 30 ⁇ 10 ⁇ 6 to 60 ⁇ 10 ⁇ 6 [1 / K] and a glass transition temperature in the range of 200 to 330 ° C.
  • CTE linear expansion coefficient
  • the thickness of the polyimide layer (1) is 50% or more, preferably 70 to 95% of the total polyimide layer thickness.
  • the thickness of the polyimide layer (2) is preferably in the range of 1.2 to 2.5 times the surface roughness (Rz) of the copper foil. When the value of Rz is smaller than 1.2 times, good adhesion and reliability cannot be obtained because the filling property of the polyimide layer into the copper foil is insufficient. On the other hand, if the value of Rz is larger than 2.5 times, cohesive failure occurs in the polyimide layer and the adhesiveness is lowered, which is not preferable.
  • the method for forming the polyimide layer is not particularly limited.
  • a polyamic acid resin solution that is a polyimide precursor is directly applied to the surface of the surface-treated copper foil, and (b) the resin solution is applied. After removing the contained solvent to some extent at a temperature of 150 ° C. or lower, further, (c) heat treatment is performed at a temperature range of 100 to 450 ° C., preferably 300 to 450 ° C. for about 5 to 40 minutes to dry the solvent and Imidization is preferably performed.
  • the thickness of the polyimide layer is preferably in the range of 6 to 60 ⁇ m, and preferably in the range of 9 to 40 ⁇ m. If the thickness of the insulating layer is less than 6 ⁇ m, there is a risk of problems such as wrinkling when transporting in the manufacture of copper-clad laminates. Conversely, if the thickness exceeds 60 ⁇ m, dimensional stability during production of copper-clad laminates and There is a risk of problems in flexibility and the like. In addition, when forming a polyimide layer by multiple layers, what is necessary is just to make it the total thickness be in the said range.
  • the copper-clad laminate of the embodiment of the present invention may be a single-sided copper-clad laminate having copper foil only on one side of the polyimide layer, as well as both sides having copper foil on both sides of the polyimide layer.
  • a copper-clad laminate may also be used.
  • the polyimide layers are faced to each other and bonded by hot pressing, or copper is applied to the polyimide layer of the single-sided copper-clad laminate. It can be obtained, for example, by forming a foil by thermocompression bonding.
  • the copper-clad laminate provided by the embodiment of the present invention directly forms a blind via hole by directly irradiating a CO 2 laser having an energy of 50 to 150 mJ / cm 2 , preferably 100 to 120 mJ / cm 2 from the polyimide surface.
  • a CO 2 laser having an energy of 50 to 150 mJ / cm 2 , preferably 100 to 120 mJ / cm 2 from the polyimide surface.
  • the processing conditions such as the laser type and the amount of irradiation energy are not limited to those described above, and optimized conditions are appropriately selected depending on the resin thickness and resin type.
  • a blind via hole is a via that is open on only one side of a printed wiring board, and is described in “Printed Circuit Terminology” edited by the Japan Printed Circuit Industry Association.
  • FIG. 1 An untreated electrolytic copper foil was produced using the following plating bath and plating conditions. (Plating bath and plating conditions) Copper sulfate: Copper concentration 50-50g / L Sulfuric acid concentration: 30-70 g / L Chlorine concentration: 0.01-30ppm Liquid temperature: 35-45 ° C Current density: 20-50 A / dm 2 (2) Roughening process: FIG. 1, step 2 Surface treatment was performed in the order of roughening plating 1 and then roughening plating 2 under the following plating bath and electrolytic plating conditions, and a roughening treatment was performed to form a convex shape with a sharp tip.
  • Ni—Zn alloy layer forming step Step 3 Ni—Zn alloy plating was performed under the following plating bath and electrolytic plating conditions.
  • Nickel sulfate nickel concentration of 0.1 g / L to 200 g / L, preferably 20 g / L to 60 g / L
  • Zinc sulfate zinc concentration of 0.01 g / L to 100 g / L, preferably 0.05 g / L to 50 g / L
  • Ammonium sulfate 0.1 g / L to 100 g / L, preferably 0.5 g / L to 40 g / L
  • Liquid temperature 20-60 ° C pH: 2-7 Current density: 0.3 to 10 A / dm 2
  • Step 4 Cr plating
  • the alloy layer surface was subjected to Cr treatment.
  • Cr treatment chromic anhydride is used, and the chromic anhydride is treated at a liquid temperature of 20 to 50 ° C. and a current density of 0.1 to 20 A / dm 2 in a bath of 0.1 g / L to 100 g / L. Went.
  • Silane treatment Step 5
  • ⁇ -aminopropyltrimethoxysilane was used, a bath of 0.1 g / L to 10 g / L was used, and the treatment was performed by immersion or spraying at a liquid temperature of 20 to 50 ° C. .
  • Synthesis Example 2 DMAc was placed in a reaction vessel equipped with a thermocouple and a stirrer and capable of introducing nitrogen. 2,2′-Dimethyl-4,4′-diaminobiphenyl (m-TB) was dissolved in this reaction vessel with stirring. Next, the diamine component and equimolar pyromellitic dianhydride (PMDA) were added, and then the polymerization reaction was continued for about 3 hours to carry out the polymerization reaction, and the polyamic acid b having a solid concentration of 15% by weight and a solution viscosity of 20000 cps was obtained. A resin solution was obtained. A polyimide film was prepared using the polyamic acid b, and the coefficient of linear expansion was measured to find 13 ⁇ 10 ⁇ 6 [1 / K].
  • PMDA equimolar pyromellitic dianhydride
  • test piece The untreated copper foil was coated with the above polyamic acid resin by the method shown in each example to obtain a test piece.
  • the blind via hole was created on the copper clad laminated board produced by each evaluation sample preparation method on condition of the following. Thereafter, the shape of the created via hole was observed with a 100 ⁇ optical microscope to confirm the via shape and the penetration state to the bottom. After that, the resin layer remaining at the bottom of the via is desmeared under the following conditions to remove the residual resin layer, and the copper foil surface is soft-etched under the following conditions to remove the rust preventive layer and the roughened layer. Then, the copper layer was exposed. Whether or not the copper layer was exposed was confirmed by SEM and EDX. The criteria (calculation method) are shown in Table 1.
  • Desmear treatment Swelling: alkaline ethylene glycol solution (immersion time 3 minutes)
  • Etching Alkaline KMnO4 aqueous solution (immersion time 6 minutes)
  • Reduction 2 wt% sulfuric acid aqueous solution (immersion time 5 minutes)
  • Example 1 The same chromate-treated layer and silane-treated layer as in Example 1 were formed on the same base material copper foil (untreated electrolytic copper foil) used in Example 1. A polyimide layer was formed on the copper foil surface in the same manner as in Example 1, and then a double-sided copper-clad laminate was formed. Table 1 shows the initial adhesion of the obtained copper-clad laminate, heat resistance after 150 ° C. and 168 hours, adhesion after chemical resistance test, and via bottom observation results after soft etching.
  • Example 2 On the surface of the same base material copper foil (untreated electrolytic copper foil) used in Example 1, a surface treatment layer made of Ni—Zn and a chromate treatment layer having an adhesion amount shown in Table 1 were formed. A silane-treated layer similar to that described above was formed. A polyimide layer was formed on the copper foil surface in the same manner as in Example 1, and then a double-sided copper-clad laminate was obtained. Table 1 shows the initial adhesion of the obtained copper-clad laminate, heat resistance after 150 ° C. and 168 hours, adhesion after chemical resistance test, and via bottom observation results after soft etching.
  • Example 8 The surface of the same base material copper foil (untreated electrolytic copper foil) used in Example 10 was subjected to a fine roughening treatment so as to have the increased roughening amount shown in Table 1.
  • Table 1 shows the aspect ratio and the surface area ratio.
  • a surface treatment layer made of Ni—Zn and a chromate treatment layer shown in Table 1 were formed on this surface, and a silane treatment layer similar to that in Example 1 was formed.
  • a polyimide layer was formed on the copper foil surface in the same manner as in Example 1, and then a double-sided copper-clad laminate was obtained.
  • Table 1 shows the initial adhesion of the obtained copper-clad laminate, heat resistance after 150 ° C. and 168 hours, adhesion after chemical resistance test, and via bottom observation results after soft etching.
  • the judgment criteria shown in Table 1 are ⁇ : good, :: within the criteria, and x: outside the criteria in each evaluation.
  • Judgment criteria for each evaluation item are as follows.
  • Initial adhesion (kN / m) ⁇ : 1.0 or more, ⁇ : 0.8 or more, less than 1.0, x: less than 0.8
  • Chemical resistance [Adhesion after chemical resistance test (kN / m)] ⁇ : 1.0 or more, ⁇ : 0.8 or more and less than 1.0, x: less than 0.8
  • Soft etching property via bottom observation result after soft etching) A: removed at a processing time of 60 s, B: removed at a processing time of 90 s, x: not removable at a processing time of 90 s
  • Example 5 As shown in Table 1, in Examples 1 to 4, since the alloy composition, the roughened foil roughness, the increased roughening amount, the aspect ratio, and the surface area were within the range, each evaluation item was in a good range. It was. (Comprehensive evaluation ⁇ ) In Example 5, the aspect ratio and the surface area ratio are within the standard range, but the soft etching properties are slightly low because they are 1, 2, 3, and 2 respectively small. (Comprehensive evaluation ⁇ )
  • Example 6 although the Ni adhesion amount is within the standard, it is slightly higher at 2.20 mg / dm 2 , so it takes time for soft etching and the soft etching property is slightly low. (Comprehensive evaluation ⁇ )
  • Example 7 since the Ni adhesion amount was 3.30 mg / dm 2 higher than in Example 6, the time for the soft etching process was slightly longer than in Example 6. (Comprehensive evaluation ⁇ )
  • Example 8 since the Ni adhesion amount is as small as 0.38 mg / dm 2 , the heat-resistant adhesion is slightly low. (Comprehensive evaluation ⁇ )
  • the surface-treated copper foil according to the embodiment of the present invention is an industrially excellent surface-treated copper foil that satisfies initial adhesion with polyimide, heat-resistant adhesion, chemical resistance, and soft etching properties. .
  • the outstanding surface-treated copper foil which is excellent in adhesiveness with a polyimide and can satisfy chemical resistance and soft etching property industrially can be manufactured.
  • the adhesive strength between the insulating resin, particularly polyimide and copper foil is strong, and the circuit has excellent acid resistance and satisfactory etching properties. It has an effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

ポリイミドなどの絶縁樹脂との密着性、耐熱密着性、耐薬品性、ソフトエッチング性を満足し、工業的に優れた表面処理銅箔を提供する。更に、絶縁樹脂と銅箔との接着強度が強く、回路形成にあたっては耐薬品性を有し、レーザー加工によるビア形成後にも良好なソフトエッチング性を有する表面処理銅箔の製造方法を提供する。母材銅箔に対して、表面粗さRzが1.1μm以下となる粗化処理が施され、該粗化処理表面にNi-Zn合金層が施される。前記粗化処理は、粗化処理面における幅が0.3~0.8μm、高さが0.6~1.8μmで、アスペクト比が1.2~3.5で、先端が尖った凸部形状となる粗化処理であり、前記母材銅箔の表面粗さRzが0.05~0.3μm増加する範囲で施され、前記Ni-Zn合金層は、Zn含有率(wt%)が6~30%、Zn付着量が0.08mg/dm以上である。

Description

表面処理銅箔、その製造方法及び銅張積層基板
 本発明は、銅箔とその製造方法、および、銅箔を用いた銅張積層基板に関する。
 本発明は、特に、絶縁樹脂との初期密着性、耐熱密着性、耐薬品性に優れ、回路加工性も良好であり、かつソフトエッチング処理が容易な表面処理銅箔及びその製造方法に関する。
 本発明はさらに、表面処理銅箔を用いた銅張積層基板(以下、CCLと記載することがある)に関するものである。
 CCL用銅箔は、銅箔を絶縁樹脂に接合させるにあたり、その接着強度を向上させ、プリント配線板としての所要の電気特性、エッチング性、耐熱性、耐薬品性を満足させる必要がある。そのため、製箔後の銅箔(以後未処理銅箔と云うことがある)の絶縁樹脂と接合する接合表面に粗化処理を施し、更には該粗化処理を施した表面上に亜鉛(Zn)めっきやニッケル(Ni)めっき等を施し、また更には該ZnめっきやNiめっき等を施された表面上にクロメート処理等を施す等、種々の工夫が施されている。
 パソコン、携帯電話やPDA(Personal Data Assistant)の表示部である液晶ディスプレイを駆動するIC実装基板においては近時高密度化が進み、その製造過程においては正確な回路構成と、高温処理での熱安定性が要求されている。
 この要求に対応するために、正確な導電回路を形成する電解銅箔と高温で使用可能な絶縁樹脂を接着したCCLの提供の検討がなされている。ここでの課題の一つは、銅箔と絶縁樹脂とを数百度の高温で熱接着するために、高温での銅箔と絶縁樹脂との接着強度の向上である。この課題を解決する方法として、未処理銅箔表面をZn含有合金で粗化処理する技術が、例えば、特許文献1に開示されている。
 また、銅箔を絶縁樹脂と高温接着する方法として、絶縁樹脂と接着する未処理銅箔の表面に、モリブデンと、鉄、コバルト、ニッケル、タングステンの内の少なくとも1種を含有する電解液で表面処理し、更にこのめっき層の上にNiめっき層又はZnめっき層若しくは(Niめっき層+Znめっき層)を設けた表面処理銅箔が提案されている(たとえば、特許文献2参照)。
 特許文献1及び2に記載のZn層を含む粗化処理層は、高温において銅箔と絶縁樹脂との間で接着強度を向上させる点では効果がある。しかし、銅箔を絶縁樹脂に接着後、酸溶液によるエッチング処理で配線回路を形成し回路基板とすると、亜鉛は酸に溶け易いために銅箔と絶縁樹脂との間を接着しているZn層までが溶け出し、回路形成後の銅箔と絶縁樹脂との接着強度が極端に落ち、回路基板の使用中に配線回路(銅箔)が絶縁樹脂から剥がれる可能性がある。これ懸念を防ぐために、エッチング時間を短くし、Zn層の溶解流出を最小限に留めているが、エッチング処理に高度の技術と管理体制を必要とし、回路基板の生産性を低下させると共にコスト高を招く。
 このように、特許文献1、2に開示の粗化処理では、前記したように絶縁樹脂との接着強度、耐薬品性、エッチング性を全て満足することができず、これら特性を満す表面処理銅箔は提供されていないのが現状である。
 そのため、接着強度、耐薬品性、エッチング性を全て満足するCCLは提供されていなかった。
 また、たとえば、特許文献3には、銅箔の表面処理として、めっき浴にピロリン酸浴を使用してNi-Zn合金めっきを施し、該表面処理銅箔とポリイミドフィルムとからなるCCLが提案されている。ピロリン酸浴を用いることにより膜厚の均一性に優れたNi-Zn合金層が得られ、回路形成後の端子部に錫めっきを行っても回路とポリイミド基材との界面に錫(Sn)の潜り込み現象が起こりにくいとの認識がされている。
 しかしながら、ピロリン酸浴を用いためっきにおいては、めっき皮膜中へ、りん(P)が共析し、共析したPによりめっき皮膜の溶解性が高くなることが知られている。
 めっき皮膜の溶解性が高くなるとエッチングによる回路形成に大きく影響し、銅箔をエッチングで回路形成した回路において端子部にSnメッキを行うと、Snめっき液の潜り込み現象(耐薬品性の劣化)を十分に防止できず、Snめっき液により表面処理層が劣化され、配線回路の密着性に悪影響を及ぼす不具合が生ずる。
 近年は回路のファインピッチ化が進んで配線回路幅が細くなっており、回路と絶縁樹脂との接合面積が減少している。このようなファインピッチの回路においてSnめっき液の潜り込み現象が発生すると、回路の密着性が低下して信頼性の問題が生じるため、このSnめっき液の潜り込み現象を抑制できる銅箔が望まれている。
 ここで、ポリイミド等の薄い絶縁樹脂の両面に銅箔が設けられた銅張積層基板(以下、単に、積層基板ともいう。)にサブトラクティブ法により配線パターンを形成する工程の一例を簡単に説明する。
 先ず、積層基板の一方の銅箔表面(表面側)に、感光性フィルム(レジスト)を貼り付ける。該感光性フィルム面に露光マスクを装着した露光装置を用い、露光光の照射によって露光マスクのパターンを感光性フィルム上に転写(投影)する。感光性フィルムのうち露光されていない部分を現像プロセスにて除去しフィルムレジストパターン(エッチングレジスト)を形成する。
 次いで、フィルムレジストパターンで覆われていない(露出している)部分の銅箔をエッチング工程にて除去(蝕刻)して、表面側の配線を形成する。その後、エッチング工程で使用済みのフィルムレジストパターンを、例えば、アルカリ水溶液を用いて配線(銅箔)上から除去する。
 上記と同様の工程でもう一方の面(裏面側)の銅箔にも所定の配線を施す。
 上述したように表裏面に配線を形成した後、表面側配線(銅箔)と裏面側配線(銅箔)とを導通するためのブラインドビアホールを穿設する。
 ブラインドビアホールの穿設は表面側に露出した絶縁樹脂にCOレーザー等のレーザービームを照射して穴を開ける。このレーザーでの穴あけ工程では穴の底(裏面側配線)に絶縁樹脂の滓(スミア)が残る。この滓を除去するために過マンガン酸カリウム溶液等の酸化性の薬剤を用いて滓を除去する(デスミア処理を行う)。
 次に、樹脂基板の表裏の銅箔を導通させるため、形成した穴に無電解めっきや電解めっきで銅の膜(導通層)を形成する。このための前処理として、穴の底部(裏面側配線)を過酸化水素系のソフトエッチング液にて処理し、銅箔の表面処理金属を除去する。最後にソフトエッチング処理を行った穴の底部(裏面側配線)と穴あけされた銅箔(表面側配線)を電解銅めっきで導通させ、配線基板を完成させる。
 なお、裏面側の銅箔に配線を形成する工程はブラインドビアホールを穿設した後に行うことも可能である。
特開2000-269637号公報 特開平11-256389号公報 特開2005-344174号公報
 しかしながらかかる前記工程において、スミアの除去が不十分であったり、ソフトエッチング処理時に穴の底部にめっき成分とは異なる金属が残存していると、ブラインドビアホールに施す銅めっきでの導通が不十分となったり、銅めっきが均一にされないといった不具合が生じることがある。
 本発明の目的は、表面処理した銅箔とポリイミドなどの絶縁樹脂との初期及び熱履歴を受けた後での密着性(以下、耐熱密着性ということがある)、耐薬品性に優れ、ブラインドビアホールを形成後のソフトエッチング処理におけるエッチング性を満足し、工業的に優れた表面処理銅箔を提供することである。
 また、本発明の他の目的は、前記表面処理銅箔と絶縁樹脂、特にポリイミドとの接着強度が強く、回路形成にあたっては耐薬品性を有し、ソフトエッチング性を満足する銅張積層板を提供することにある。
 本願発明者等は鋭意検討した結果、裏面側銅箔と無電解めっきで形成するブラインドビアホール内の導通層との間に問題があることを見い出し、本発明を完成するに至った。
 本発明の表面処理銅箔は、母材銅箔(未処理銅箔)の少なくとも片面に対して、表面粗さRzが1.1μm以下となる粗化処理が施され、該粗化処理表面にNi-Zn合金層が施されており、前記粗化処理は、粗化処理面における幅が0.3~0.8μm、高さが0.6~1.8μmで、アスペクト比[高さ/幅]が1.2~3.5で、先端が尖った凸部形状となる粗化処理で、前記母材銅箔の表面粗さRzが0.05~0.3μm増加する範囲で施され、
前記Ni-Zn合金層は、式1で表される含有率(wt%)でZnが6~30%含有し、Zn付着量が0.08mg/dm以上である。
 Zn含有率(wt%)=Zn付着量/(Ni付着量+Zn付着量)×100…(1)
 本発明表面処理銅箔の製造方法は、母材銅箔(未処理銅箔)の少なくとも片面に対して、表面粗さRzが1.1μm以下となる粗化処理で粗化処理表面を形成し、該粗化処理表面にNi-Zn合金層を設ける表面処理銅箔の製造方法であって、
前記粗化処理面は、粗化処理面における幅が0.3~0.8μm、高さが0.6~1.8μmで、アスペクト比[高さ/幅]が1.2~3.5で、先端が尖った凸部形状となる粗化処理で、前記母材銅箔の表面粗さRzが0.05~0.3μm増加する範囲に形成し、
前記Ni-Zn合金層は、式1で表される含有率(wt%)でZnが6~30%含有し、Zn付着量が0.08mg/dm以上となる層に形成する製造方法である。
 本発明の銅張積層板は、絶縁樹脂層の片面又は両面に前記表面処理銅箔、又は前記製造方法で製造した表面処理銅箔を張り合わせてなるものである。
 本発明の表面処理銅箔は、ポリイミドなどの絶縁樹脂との密着性、耐熱密着性、耐薬品性、ソフトエッチング性を満足し、工業的に優れた表面処理銅箔である。
 更に本発明の銅張積層板によれば、絶縁樹脂、特にポリイミドと銅箔との接着強度が強く、回路形成にあたっては耐薬品性を有し、エッチング性を満足することができる。
本発明の実施形態のプロセスを図解する図である。 本発明の実施の形態による粗化銅箔の拡大断面を示す図である。
 本発明の実施の形態において、表面処理を施す母材銅箔(未処理銅箔)を製造する(図1、ステップ1)。母材銅箔は、電解銅箔、圧延銅箔何れでもよい。なお、特にこれらを区別する必要がないときは、単に銅箔または母材銅箔(未処理銅箔)と表現することがある。
 未処理銅箔の厚みは5μm~35μmが好適である。銅箔の厚みが5μmより薄いと製造時に、例えば、シワなどが入り、薄い銅箔の製造にコストがかかり現実的ではないためである。他方、箔厚が35μmより厚い場合は、パソコン、携帯電話やPDAの表示部である液晶ディスプレイを駆動するIC実装基板等薄型・小型化の仕様から外れるため好ましくない。
 母材銅箔の表面は、絶縁樹脂(例えばポリイミド)との密着性を改善するために粗化処理(図1、ステップ2、3)と、その上に防錆を目的とした防錆処理(図1、ステップ4)との表面処理がなされる。
 本発明の実施の形態では表面処理として、主として銅又は銅合金からなる粗化処理(ステップ2)と、Ni-Zn合金被膜からなる粗化処理(ステップ3)と、その上にCr、Si等の防錆処理(ステップ4)が施される。
 銅箔とポリイミドなどの絶縁樹脂との密着性を向上させる粗化処理は、粗化粒子を粗くするほど、すなわち表面の凹凸を粗くするほど密着性は向上するが、ソフトエッチング処理でのエッチング性が悪くなる傾向にある。
 本発明の実施の形態では、ステップ2として、母材銅箔(未処理銅箔)の表面に、先ず、表面粗さRzが0.05~0.30μm増加する粗化処理を銅又は銅合金で施し、粗化処理後のRzが1.1μm以下とした表面処理銅箔とする。
 ここで、表面粗さRaで表される粗化処理を0.02~0.05μm増加する範囲で行い、粗化処理後のRaを0.35μm以下とすることが好ましい。粗化処理後の表面粗さが上記範囲に満たないと、絶縁樹脂との密着性が悪くなる一方、上記範囲を超え表面が粗くなると後述するソフトエッチング性が悪くなる。
 本発明の実施の形態において特に、表面粗さRzが1.1μm以下とするのは、これ以上表面粗さが粗くなると後述するソフトエッチング性を悪くするためである。すなわち、表面処理銅箔の粗化処理後の表面粗さRzを1.1μm以下とすることで、ポリイミドとの密着性に優れ、ソフトエッチング性に優れた表面処理銅箔とすることができる。
 なお、表面粗さRa、RzはJIS-B-0601の規定に準じて測定される値である。
 また、本発明の実施の形態では銅箔の粗化面は、粗化を形成する凸状の大きさが、幅0.3~0.8μm、高さ0.6~1.8μmの先端が尖っている形状とする。このような形状とすることで絶縁樹脂と張付ける際に絶縁樹脂に粗化処理した凹凸が食い込み易く(アンカー効果)、良好な密着性を得ることができるためである。なお、凸状の大きさにおける幅は箔表面の付け根部分を測定した長さであり、高さは箔表面から頂きまでの長さである。
 また、本発明の実施の形態では、粗化処理面における凸部形状のアスペクト比=[高さ/幅]は1.2~3.5とする。アスペクト比[高さ/幅]を1.2~3.5とする理由は、1.2未満では絶縁樹脂との密着性が十分でなく、アスペクト比が3.5より大きいと、粗化した凸状部分が銅箔より欠落する可能性が高くなり好ましくないからである。
 本発明の実施の形態において、ステップ3として、粗化処理銅箔の少なくとも片面にNi-Zn合金を、下記の式1で示すZn含有率(wt%)が6%~30%で、かつ、Znを0.08mg/dm以上付着させる。
 Zn含有率(wt%)=Zn付着量/(Ni付着量+Zn付着量)×100…(1)
 Znの付着量を規定するのは、銅箔と絶縁樹脂との耐熱密着性と銅箔の耐薬品性を改善するためである。Ni-Zn合金中のZn含有率(wt%)が6%未満では耐熱密着性が改善されず、30%より多いと耐薬品性が悪くなり好ましくないためである。
 また、Znを0.08mg/dm以上付着させる。Znを0.08mg/dm以上付着させる理由は耐熱密着性を改善するためで、0.08mg/dm未満では耐熱密着性の効果が期待できないためである。
 本発明の実施の形態においては、表面粗さRzが0.8μm以下の母材銅箔(未処理銅箔)に、Rzで0.05~0.30μm増加するように粗化処理する。ここで、好ましくは、母材銅箔のRaは0.03~0.30μmのものを用い、Raが0.02~0.05μm増加する粗化処理を施すことが好ましい。
 ここで表面粗さを規定するのは、母材銅箔(未処理銅箔)のRzが0.8μmを超えると銅箔表面に対して均一に凹凸(粗化処理)が形成されず、また、増加粗化処理の範囲を規定するのは、上記範囲を外れるとソフトエッチング性に悪影響を及ぼすためである。
 また本発明の実施の形態では、図2のAからみた、突部の二次元表面積に対して、たとえば、レーザーマイクロスコープによる三次元表面積が3倍以上となる粗化処理を施すことが好ましい。
 二次元表面積に対してレーザーマイクロスコープによる三次元表面積が3倍以上となる粗化処理を施すのは、3倍未満ではソフトエッチング液が銅箔表面と接触する面積が少なく、エッチング速度が遅くなってしまうためであり、また絶縁樹脂との接触面積が少なくなることによる密着力低下が起こるためである。
 本発明の実施の形態において、銅箔に粗化処理を施す粗化量(粗化処理で付着する粗化粒子の重量)は、1mあたり3.56~8.91g(厚さ換算:0.4~1.0μm)であることが好ましい。
 粗化量を1mあたり3.56~8.91gとするのは、母材銅箔(未処理銅箔)に、Rzが0.05~0.30μm、又はRaが0.02~0.05μm増加する粗化粒子を付着させるのに最適な範囲となるからである。
 本発明の実施の形態において、ステップ3として、粗化処理銅箔の少なくとも片面にNi-Zn合金を、Ni付着量が0.45~3mg/dm付着させることが好ましい。Niの付着量を規定するのは、耐熱密着性の改善とソフトエッチング性に影響があるためであり、Ni付着量が0.45mg/dm未満では耐熱密着性の改善がそれほど期待できず、3mg/dmより多いとソフトエッチング性に悪影響を及ぼすことが懸念されるためである。
 上記の本発明の実施の形態において、粗化粒子の形状およびその表面粗さ、表面積を制御することにより、表面積の増加やアンカー効果による密着性の増加、耐熱密着性の改善につながり、またレーザー加工によりブラインドビアホールを形成後、ビア底部へのデスミア処理時の粗化部への樹脂残りを低減させ、かつ表面積増加による単位あたりの防錆金属量の低減と狭い管理幅での制御が可能になり、良好なソフトエッチング性をもたらす効果が発現する。
 本発明の実施の形態における銅張積層板に用いる絶縁樹脂は特に限定されるものではないが、耐熱性や寸法安定性の観点からポリイミドであることが好ましい。ポリイミド層を構成するポリイミドは、一般的に下記一般式(化1)で表され、ジアミン成分と酸二無水物成分とを実質的に等モル使用し、有機極性溶媒中で重合する公知の方法によって製造することができる。
Figure JPOXMLDOC01-appb-C000001
 ここで、Arは芳香族環を1個以上有する4価の有機基であり、Arは芳香族環を1個以上有する2価の有機基である。即ち、Arは酸二無水物の残基であり、Arはジアミンの残基である。
 酸二無水物としては、例えば、O(CO)-Ar-(CO)Oによって表される芳香族テトラカルボン酸二無水物が好ましく、下記(化2)芳香族酸無水物残基をArとして与えるものが例示される。
Figure JPOXMLDOC01-appb-C000002
 酸二無水物は単独で又は2種以上混合して用いることができる。これらの中でも、ピロメリット酸二無水物(PMDA)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3',4,4'-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)、及び4,4'-オキシジフタル酸二無水物(ODPA)から選ばれるものを使用することが好ましい。
 ジアミンとしては、例えば、HN-Ar-NHによって表される芳香族ジアミン
が好ましく、下記(化3)芳香族ジアミン残基をArとして与える芳香族ジアミンが例示される。
Figure JPOXMLDOC01-appb-C000003
 これらのジアミンの中でも、ジアミノジフェニルエーテル(DAPE)、2’-メトキシ-4,4’-ジアミノベンズアニリド(MABA)、2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)、パラフェニレンジアミン(P-PDA)、1、3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)、1,4-ビス(4-アミノフェノキシ)ベンゼン(TPE-Q)、及び2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)が好適なものとして例示される。
 重合に用いる溶媒については、例えば、ジメチルアセトアミド、n-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等を挙げることができ、これらについては1種若しくは2種以上を併用して使用することもできる。また、重合して得られたポリアミド酸(ポリイミド前駆体)の樹脂粘度については、500cps~35000cpsの範囲とするのが好ましい。
 本発明の実施の形態の銅張積層板のポリイミド層は、単層からなるものであっても複数層からなるものであってもよいが、フレキシブル銅張積層板の寸法安定性や、銅箔との接着強度を優れたものとするためには、複数層とすることが好ましい。
 ポリイミド層を複数層とする場合、線膨張係数(CTE)が30×10-6[1/K]以下、好ましくは1×10-6~30×10-6[1/K]の範囲の低線膨張係数の樹脂層を主たるポリイミド層(1)とし、その片面又は両面にガラス転移温度が330℃以下のポリイミド層(2)を設けることが好ましい。
 前記ポリイミド層(2)は、線膨張係数(CTE)が30×10-6[1/K]を超え、ガラス転移温度が330℃以下にあるものを用いることが好ましく、より好ましくは、ポリイミド層(2)は、線膨張係数が30×10-6~60×10-6[1/K]で、ガラス転移温度が200~330℃の範囲にあるものである。
 ポリイミド層(1)のCTEが30×10-6[1/K]より大きいと、銅張積層板を形成した際のカールが激しくなるおそれがあり、また、寸法安定性が低下するため製品として好ましくない。ポリイミド層(1)の厚みは、全ポリイミド層の厚みの50%以上、好ましくは70~95%であることが好ましい。
 上記ポリイミド層(2)の厚みは銅箔の表面粗度(Rz)の1.2~2.5倍の範囲が好ましい。Rzの値が1.2倍より小さいと、ポリイミド層の銅箔への充填性が不十分なため良好な接着性や信頼性が得られない。また、Rzの値が2.5倍より大きいと、ポリイミド層内での凝集破壊が発生し、接着性が低下するため好ましくない。
 ポリイミド層を形成する方法については特に限定されないが、例えば、(a)ポリイミドの前駆体であるポリアミド酸の樹脂溶液を、表面処理された銅箔の表面に直接塗布し、(b)樹脂溶液に含まれる溶剤を150℃以下の温度である程度除去した後、更に、(c)100~450℃、好ましくは300~450℃の温度範囲で5~40分間程度の熱処理を行って、溶媒の乾燥及びイミド化を行うことがよい。
 2層以上にポリイミド層を設ける場合は、(aa)第一のポリアミド酸の樹脂溶液を塗布、乾燥したのち、(bb)第二のポリアミド酸の樹脂溶液を塗布、乾燥し、(cc)以下同様にして第三以下のポリアミド酸の樹脂溶液を順次、塗布、乾燥したのち、(dd)まとめて300~450℃の温度範囲で5~40分間程度の熱処理を行って、イミド化を行うことがよい。
 熱処理の温度が100℃より低いとポリイミドの脱水閉環反応が十分に進行せず、反対に450℃を超えると、ポリイミド層及び銅箔が酸化等により劣化するおそれがあり好ましくない。
 ポリイミド層の厚さは、6~60μmの範囲であるのがよく、好ましくは9~40μmの範囲である。絶縁層の厚みが6μmに満たないと、銅張積層板製造等における搬送時にシワが入るなどの不具合が生じるおそれがあり、反対に60μmを超えると銅張積層板の製造時の寸法安定性や屈曲性等において問題が生じるおそれがある。なお、複数層でポリイミド層を形成する場合には、その合計の厚みが上記範囲内になるようにすればよい。
 本発明の実施の形態の銅張積層板は、ポリイミド層の片面側のみに銅箔を有する片面銅張積層板であってもよいことはもちろんのこと、ポリイミド層の両面に銅箔を有する両面銅張積層板でもよい。なお、両面銅張積層板を得るためには、片面銅張積層板を形成した後、互いにポリイミド層を向き合わせて熱プレスによって圧着し形成することや、片面銅張積層板のポリイミド層に銅箔を加熱圧着し形成すること等により得ることができる。
 本発明の実施の形態により提供される銅張積層板は、銅箔とポリイミド層との密着性が優れ、またCOガス(炭酸ガス)レーザー等のレーザーで容易にビア形成加工できることから、エッチング、穴空け、デスミア、ソフトエッチング、めっき等の加工をおこなっても、剥がれ等の問題はなく、電子部品として高密度実装加工が可能である。
 本発明の実施の形態により提供される銅張積層板は、例えば、ポリイミド面から、エネルギー50~150mJ/cm、好ましくは100~120mJ/cmのCOレーザーを直接照射してブラインドビアホールを形成する。なお上記レーザー種等の加工条件および照射エネルギー量は上述したものに限定されるものではなく、樹脂厚みや樹脂種類により適宜、最適化した条件を選択する。また銅張積層板への穴形成方法および、穴形成後のビア底部に残存するポリイミド層の除去(デスミア処理)方法、またその後の銅メッキによる導通を取るため銅箔の防錆層および粗化層を除去するソフトエッチング処理方法については後述する実施例で説明する。
 なおブラインドビアホールとは、プリント配線板の片側のみが開口しているビアであり、社団法人日本プリント回路工業会編「プリント回路用語」等に記載されている。
 本発明の実施の形態の表面処理銅箔の実施例を詳細に説明する。
(1)製箔工程:図1、ステップ1
下記のめっき浴及びめっき条件で未処理電解銅箔を製造した。
(めっき浴及びめっき条件)
硫酸銅:銅濃度が50~80g/L
硫酸濃度:30~70g/L
塩素濃度:0.01~30ppm
液温:35~45℃
電流密度:20~50A/dm
(2)粗化処理工程:図1、ステップ2
 下記めっき浴、電解めっき条件で、粗化めっき1、次いで粗化めっき2 の順で表面処理し、先端が尖った凸部形状となる粗化処理を施した。
(粗化めっき1:ステップ2a)
硫酸銅:銅濃度が5~10g/dm
  硫酸濃度:30~120g/dm
  液温:20~60℃  
電流密度:10~60A/dm
(粗化めっき2:ステップ2b)
硫酸銅:銅濃度が20~70g/dm
硫酸濃度:30~120g/dm
  液温:20~65℃
電流密度:5~65A/dm
(3)Ni-Zn合金層形成工程:ステップ3
 下記のめっき浴及び電解めっき条件でNi-Zn合金めっきを施した。
(Ni-Zn合金めっき浴及びめっき条件)
 硫酸ニッケル:ニッケル濃度が0.1g/L~200g/L、好ましくは20g/L~60g/L
 硫酸亜鉛:亜鉛濃度が0.01g/L~100g/L、好ましくは0.05g/L~50g/L
 硫酸アンモニウム:0.1g/L~100g/L、好ましくは0.5g/L~40g/L
 液温:20~60℃
 pH:2~7
 電流密度:0.3~10A/dm
(4)防錆処理:ステップ4
(Crめっき)
 Ni-Zn合金めっき後、該合金層表面にCr処理を施した。
 Cr処理としては無水クロム酸を用い、該無水クロム酸を0.1g/L~100g/Lとなる浴で、液温:20~50℃、電流密度:0.1~20A/dmとして処理を行った。
(5)シラン処理:ステップ5
 シランカップリング処理としては、γ-アミノプロピルトリメトキシシランを用い、0.1g/L~10g/Lの浴とし、液温:20~50℃にて浸漬もしくはスプレー等の方法により処理を行った。
(6)ポリアミド層
(ポリアミド酸樹脂の重合)
合成例1.
 熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、N,N-ジメチルアセトアミド(DMAc)を入れた。この反応容器に2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を容器中で撹拌しながら溶解させた。次に、ジアミン成分と等モルのピロメリット酸二無水物(PMDA)を加え、その後、約3時間撹拌を続けて重合反応を行い、固形分濃度15重量%、溶液粘度が3000cpsのポリアミド酸aの樹脂溶液を得た。ポリアミド酸aを用いてポリイミドフィルムを作成し、そのガラス転移温度を測定したところ280℃であり、線膨張係数を測定したところ55×10-6[1/K]であった。
合成例2.
 熱電対及び攪拌機を備えると共に窒素導入が可能な反応容器に、DMAcを入れた。この反応容器に2,2’-ジメチル-4,4’-ジアミノビフェニル(m-TB)を容器中で撹拌しながら溶解させた。次に、ジアミン成分と等モルのピロメリット酸二無水物(PMDA)を加えその後、約3時間撹拌を続けて重合反応を行い、固形分濃度15重量%、溶液粘度が20000cpsのポリアミド酸bの樹脂溶液を得た。ポリアミド酸bを用いてポリイミドフィルムを作成し、その線膨張係数を測定したところ13×10-6[1/K]であった。
試験片の作成
 製箔した未処理銅箔に上記ポリアミド酸樹脂を各実施例に示す方法で施し試験片とした。
測定手段、測定条件
(1)金属付着量の測定
蛍光X線((株)リガク製ZSXPrimus、分析径:35φ)にて分析した。
(2)表面粗さの測定
接触式表面粗さ測定機((株)小坂研究所製SE1700)にて測定した。
(3)アスペクト比の算出
粗化断面(FIBやウルトラミクロトーム等にて加工)の図2に示す、突部のwと幅・高さhを走査型電子顕微鏡(SEM)にて、幅wは箔の付け根の部分の長さを、高さhは箔の付け根から頂きまでの長さを計測し、[高さ/幅]をアスペクト比として算出した。
(4)表面積の算出
レーザーマイクロスコープ((株)キーエンス製VK8500)にて突部を測定し、「表面積比=三次元表面積/二次元表面積」を算出した。
(5)初期密着性の測定
 テンシロンテスター(東洋精機製作所製)を使用して、幅1mmの配線を形成し、樹脂側を両面テープによりステンレス板に固定し、銅配線を90度方向に50mm/分の速度で剥離して求めた。判定基準(算出方法)は表1に示す。
(6)耐熱密着性(熱処理後の密着強度)の測定
ポリイミドと接着後の試験片を、150℃で168時間加熱処理した後の密着性を測定した。熱処理後の密着性の判定基準は初期密着性の90%以上を合格とした。
なお、判定基準(算出方法)は表1に示す。
(7)耐薬品性(酸処理後の密着性)の測定
 ポリイミドと接着後の試験片を、水:塩酸=1:1の塩酸溶液に常温で1時間浸漬し、
その後の密着性を測定した。判定基準(算出方法)は表1に示す。
(8)ソフトエッチング性
 各評価試料作成方法により作成した銅張積層板を、以下の条件によりブラインドビアホールを作成した。その後作成したビアホールの形状を100倍の光学顕微鏡で観察してビア形状および底部までの貫通状態を確認した。その後、ビア底部に残った樹脂層を以下の条件にてデスミア処理を実施し残樹脂層を除去し、銅箔表面を以下の条件でソフトエッチング処理して防錆層および粗化処理層を除去し、銅層を露出させた。銅層が露出したかどうかについてはSEM、EDXにて確認した。判定基準(算出方法)は表1に示す。
 ブラインドビアホール形成:
装置:COガスレーザー加工機(澁谷工業株式会社製)
ビア径:400μmφ
波長:9.6μm
エネルギー:約115J/cm
 デスミア処理:
膨潤:アルカリ性エチレングリコール溶液(浸漬時間3分)
エッチング:アルカリ性KMnO4水溶液(浸漬時間6分)
還元:2wt%硫酸水溶液(浸漬時間5分)
 ソフトエッチング処理:
薬液:CPE-920(三菱ガス化学株式会社製 10倍希釈)
温度:25℃
処理時間:60s、90s
[実施例1]
 表面粗さ(Ra)0.08μm、(Rz)0.58μmの母材銅箔(未処理電解銅箔)の表面に粗化形成後の増加粗化量が0.03μm(Ra)、0.15μm(Rz)になるような微細粗化処理を施した。このときの粗化のアスペクト比は1.4で表面積比は3.7であった。
 この表面にNi-Znからなる表面処理とクロメート処理層を形成し、3アミノプロピルトリメトキシシラン処理層を形成した。そのときの銅箔表面のニッケル量は0.91mg/dm、亜鉛量は0.17mg/dmであった。
 この銅箔上に、前記合成例1で製造したポリアミド酸aを用いて硬化後の厚みが2μmとなるように熱可塑性ポリイミド層を形成し、その上に前記合成例2で製造したポリアミド酸bを用いて硬化後の厚みが21μmとなるように低熱膨張性樹脂層を、更にその上に前記ポリアミド酸aを用いて硬化後の厚みが2μmとなるようにポリイミド層を形成し、フレキシブル片面銅張積層板を得た。
 得られた銅張積層板の初期密着性は1.2kN/mであり、150℃、168h後の耐熱密着性は1.1kN/mであった。また耐薬品性試験後の密着性は1.2kN/mであった。
 この銅張積層板の樹脂面に前記と同様の銅箔をラミネートプレスし、両面銅張積層板を作成し、ラミネートした銅箔面に所定のパターンを形成した後、開口部に前記のレーザー加工およびその後のデスミア処理、ソフトエッチング処理を実施した。その結果、ビア底部の樹脂残り及び防錆金属、粗化部の残渣はなく良好なビア底部性状が得られた。
これらの評価結果を表1に示す。
[実施例2~9]
 実施例1で用いたものと同じ母材銅箔(未処理電解銅箔)の表面に、表1に示す増加粗化量になるように微細粗化処理を施した。このときのアスペクト比、表面積比を表1に示す。
 この表面に表1に示す付着量のNi-Znからなる表面処理層とクロメート処理層を形成し、実施例1と同様のシラン処理層を形成した。
 その銅箔表面に実施例1と同様の方法でポリイミド層を形成し、その後、両面銅張積層板を得た。
 得られた銅張積層板の初期密着性、150℃、168h後の耐熱密着性、耐薬品性試験後の密着性、ソフトエッチング後のビア底部観察結果を表1に併記する。
[実施例10]
 表面粗さ(Ra)0.20μm、(Rz)0.85μmの母材銅箔(未処理電解銅箔)の表面に、表1に示す増加粗化量になるように微細粗化処理を施した。このときのアスペクト比、表面積比を表1に示す。
 この表面に表1に示す付着量のNi-Znからなる表面処理層とクロメート処理層を形成し、実施例1と同様のシラン処理層を形成した。
 その銅箔表面に実施例1と同様の方法でポリイミド層を形成し、その後、両面銅張積層板を得た。
 得られた銅張積層板の初期密着性、150℃、168h後の耐熱密着性、耐薬品性試験後の密着性、ソフトエッチング後のビア底部観察結果を表1に併記する。
[比較例1]
 実施例1で用いたものと同じ母材銅箔(未処理電解銅箔)の表面に、実施例1と同様のクロメート処理層、シラン処理層を形成した。その銅箔表面に実施例1と同様の方法でポリイミド層を形成し、その後、両面銅張積層板を形成した。得られた銅張積層板の初期密着性、150℃、168h後の耐熱密着性、耐薬品性試験後の密着性、ソフトエッチング後のビア底部観察結果を表1に併記する。
[比較例2]
 実施例1で用いたものと同じ母材銅箔(未処理電解銅箔)の表面に、表1に示す付着量のNi-Znからなる表面処理層とクロメート処理層を形成し、実施例1と同様のシラン処理層を形成した。その銅箔表面に実施例1と同様の方法でポリイミド層を形成し、その後、両面銅張積層板を得た。得られた銅張積層板の初期密着性、150℃、168h後の耐熱密着性、耐薬品性試験後の密着性、ソフトエッチング後のビア底部観察結果を表1に併記する。
[比較例3~7]
 実施例1で用いたものと同じ母材銅箔(未処理電解銅箔)の表面に、表1に示す増加粗化量になるように微細粗化処理を施した。このときのアスペクト比、表面積比を表1に示す。この表面に表1に示す付着量のNi-Znからなる表面処理層とクロメート処理層を形成し、実施例1と同様のシラン処理層を形成した。その銅箔表面に実施例1と同様の方法でポリイミド層を形成し、その後、両面銅張積層板を得た。得られた銅張積層板の初期密着性、150℃、168h後の耐熱密着性、耐薬品性試験後の密着性、ソフトエッチング後のビア底部観察結果を表1に併記する。
[比較例8]
 実施例10で用いたものと同じ母材銅箔(未処理電解銅箔)の表面に、表1に示す増加粗化量になるように微細粗化処理を施した。このときのアスペクト比、表面積比を表1に示す。この表面に表1に示す付着量のNi-Znからなる表面処理層とクロメート処理層を形成し、実施例1と同様のシラン処理層を形成した。その銅箔表面に実施例1と同様の方法でポリイミド層を形成し、その後、両面銅張積層板を得た。得られた銅張積層板の初期密着性、150℃、168h後の耐熱密着性、耐薬品性試験後の密着性、ソフトエッチング後のビア底部観察結果を表1に併記する。
Figure JPOXMLDOC01-appb-T000004
 表1に示す判断基準は各評価において、◎:良好、○:基準内、×:基準外である。
各評価項目における判断基準は以下のとおりである。
初期密着性(kN/m)
◎:1.0以上、○:0.8以上、1.0未満、×:0.8未満
耐熱密着性〔耐熱性試験後密着性(kN/m)〕
◎:0.9以上、○:0.72以上0.9未満、×:0.72未満
耐薬品性〔耐薬品試験後密着性(kN/m)〕
◎:1.0以上、○:0.8以上1.0未満、×:0.8未満
ソフトエッチング性(ソフトエッチング後のビア底部観察結果)
◎:処理時間60sで除去、○:処理時間90sで除去、×:処理時間90sで除去不可
 表1に示すように、実施例1~実施例4は、合金組成、粗化箔粗さ、増加粗化量、アスペクト比、表面積が範囲内であるため、各評価項目が良好な範囲であった。(総合評価◎)
 実施例5は、アスペクト比、表面積比が基準内であるが、それぞれ1、2,3、2と小さめのため、ソフトエッチング性がやや低い。(総合評価○)
 実施例6は、Ni付着量が基準内であるが2.20mg/dmとやや多めのため、ソフトエッチングに時間がかかり、ソフトエッチング性がやや低い。(総合評価○)
実施例7は、実施例6よりNi付着量が3.30mg/dmと多めのため、実施例6よりソフトエッチング処理の時間がややかかった。(総合評価○)
実施例8は、Ni付着量が0.38mg/dmと少なめのため、耐熱密着性がやや低い。(総合評価○)
実施例9は、増加粗化量、アスペクト比が範囲内であるが、Rz=0.28μm、アスペクト比=2.2と大きめであるため、ソフトエッチング性がやや劣った。(総合評価○)
実施例10は、母材銅箔(未処理電解銅箔)の表面粗さが、Rz=1.00μm、Ra=0.23μmと、大きめであるため、ソフトエッチング性がやや劣った。(総合評価○)
比較例1は、粗化処理を行わず、またNi-Zn合金層を設けていないため、ソフトエッチング性は良好であるが、他の評価項目は基準外であった。(総合評価×)
比較例2は、Ni-Zn合金層を設けたが粗化処理を行っていないため、ソフトエッチング性が基準外であった。(総合評価×)
比較例3は、Zn付着量が0.08mg/dm以下であるため、耐熱密着性が基準外であった。(総合評価×)
比較例4は、Zn含有率が基準以下であるため、耐熱密着性が基準外であった。(総合評価×)
比較例5は、Zn含有率が基準以上であるため、耐薬品性が基準外であった。(総合評価×)
比較例6は、増加粗化量が少なく、粗化幅、粗化高さ、アスペクト比も小さいため、ソフトエッチング性が基準外であった。(総合評価×)
比較例7は、増加粗化量、粗化幅、粗化高さが基準以上であり、ソフトエッチング性が基準外であった。(総合評価×)
比較例8は、粗化箔粗さが基準以上であるため、ソフトエッチング性が基準外であった。(総合評価×)
 上述したように、本発明の実施の形態もとづく表面処理銅箔はポリイミドとの初期密着性、耐熱密着性、耐薬品性、ソフトエッチング性を満足し、工業的に優れた表面処理銅箔である。
 また、本発明の表面処理銅箔の製造方法によれば、ポリイミドとの密着性に優れ、耐薬品性、ソフトエッチング性を工業的に満足する優れた表面処理銅箔を製造することができる。
 更に、本発明の実施の形態もとづく銅張積層板によれば、絶縁樹脂、特にポリイミドと銅箔との接着強度が強く、回路形成にあたっては耐酸性を有し、エッチング性を満足するといった優れた効果を有するものである。

Claims (10)

  1.  母材銅箔(未処理銅箔)の少なくとも片面に対して、表面粗さRzが1.1μm以下となる粗化処理が施され、該粗化処理表面にNi-Zn合金層が施された
     前記粗化処理は、粗化処理面における幅が0.3~0.8μm、高さが0.6~1.8μmで、アスペクト比[高さ/幅]が1.2~3.5で、先端が尖った凸部形状となる粗化処理で、前記母材銅箔の表面粗さRzが0.05~0.3μm増加する範囲で施され、
    前記Ni-Zn合金層は、下記式で表される含有率(wt%)でZnが6~30%含有し、Zn付着量が0.08mg/dm以上である
     表面処理銅箔。
     Zn含有率(wt%)=Zn付着量/(Ni付着量+Zn付着量)×100
  2.  粗化処理表面の二次元表面積に対する三次元表面積の比が、3倍以上である
     請求項1に記載の表面処理銅箔。
  3.  前記Ni-Zn合金層におけるNi付着量が0.45~3mg/dmである
     請求項1又は2に記載の表面処理銅箔。
  4.  母材銅箔(未処理銅箔)の表面粗さRaが0.3μm以下、Rzが0.8μm以下である請求項1乃至3のいずれかに記載の表面処理銅箔。
  5.  母材銅箔(未処理銅箔)の少なくとも片面に対して、表面粗さRzが1.1μm以下となる粗化処理で粗化処理表面を形成し、該粗化処理表面にNi-Zn合金層を設ける表面処理銅箔の製造方法であって、前記粗化処理面は、粗化処理面における幅が0.3~0.8μm、高さが0.6~1.8μmで、アスペクト比[高さ/幅]が1.2~3.5で、先端が尖った凸部形状となる粗化処理で、前記母材銅箔の表面粗さRzが0.05~0.3μm増加する範囲に形成し、前記Ni-Zn合金層は、下記式で表される含有率(wt%)でZnが6~30%含有し、Zn付着量が0.08mg/dm以上となる層に形成する表面処理銅箔の製造方法。
     Zn含有率(wt%)=Zn付着量/(Ni付着量+Zn付着量)×100
  6.  母材銅箔表面に施す粗化処理の粗化量(粗化処理で付着する重量)が、1mあたり3.56~8.91g(厚さ換算:0.4~1.0μm)である請求項5に記載の表面処理銅箔の製造方法。
  7.  前記Ni-Zn合金層に、防錆処理を行う、
     請求項5または6に記載の製造方法。
  8.  前記防錆処理を施した層にシランカップリング処理を行う、
     請求項7に記載の製造方法。
  9.  絶縁樹脂層の片面又は両面に請求項1乃至4のいずれかに記載の表面処理銅箔、又は請求項5~8のいずれかに記載の製造方法で製造した表面処理銅箔を張り合わせてなる銅張積層板。
  10.  絶縁樹脂層がポリイミドからなる請求項9に記載の銅張積層板。
PCT/JP2011/051131 2010-01-22 2011-01-21 表面処理銅箔、その製造方法及び銅張積層基板 WO2011090174A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127016600A KR101561731B1 (ko) 2010-01-22 2011-01-21 표면 처리 동박, 그 제조 방법 및 동장 적층 기판
EP11734780A EP2527498A1 (en) 2010-01-22 2011-01-21 Surface-treated copper foil, method for producing same, and copper clad laminated board
CN201180004965.2A CN102713020B (zh) 2010-01-22 2011-01-21 表面处理铜箔,其制造方法以及覆铜层压印刷电路板
US13/574,478 US8852754B2 (en) 2010-01-22 2011-01-21 Surface-treated copper foil, method for producing same, and copper clad laminated board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010012244A JP4927963B2 (ja) 2010-01-22 2010-01-22 表面処理銅箔、その製造方法及び銅張積層基板
JP2010-012244 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011090174A1 true WO2011090174A1 (ja) 2011-07-28

Family

ID=44306974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051131 WO2011090174A1 (ja) 2010-01-22 2011-01-21 表面処理銅箔、その製造方法及び銅張積層基板

Country Status (7)

Country Link
US (1) US8852754B2 (ja)
EP (1) EP2527498A1 (ja)
JP (1) JP4927963B2 (ja)
KR (1) KR101561731B1 (ja)
CN (1) CN102713020B (ja)
TW (1) TWI443231B (ja)
WO (1) WO2011090174A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150373843A1 (en) * 2012-12-21 2015-12-24 Sk Innovation Co., Ltd. Multi-layer flexible metal-clad laminate and manufacturing method thereof
JPWO2013183605A1 (ja) * 2012-06-04 2016-02-01 Jx日鉱日石金属株式会社 キャリア付金属箔
JPWO2013183604A1 (ja) * 2012-06-04 2016-02-01 Jx日鉱日石金属株式会社 多層プリント配線板の製造方法
JPWO2013183607A1 (ja) * 2012-06-04 2016-02-01 Jx日鉱日石金属株式会社 キャリア付金属箔
WO2016031960A1 (ja) * 2014-08-28 2016-03-03 株式会社有沢製作所 3層フレキシブル金属張積層板及び両面3層フレキシブル金属張積層板
CN110546313A (zh) * 2017-04-25 2019-12-06 古河电气工业株式会社 表面处理铜箔
JP7435444B2 (ja) 2018-07-18 2024-02-21 株式会社レゾナック 銅張積層板、プリント配線板、半導体パッケージ及び銅張積層板の製造方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5497808B2 (ja) * 2012-01-18 2014-05-21 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いた銅張積層板
KR102128954B1 (ko) * 2012-06-06 2020-07-01 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 프린트 배선판용 동박, 그 제조방법, 및 그 동박을 사용한 프린트 배선판
CN103887253A (zh) * 2012-12-20 2014-06-25 浙江大学 使用齿状铜片的dbc板
JP6271134B2 (ja) * 2013-03-05 2018-01-31 Jx金属株式会社 キャリア付銅箔、キャリア付銅箔の製造方法、プリント配線板、プリント回路板、銅張積層板、及び、プリント配線板の製造方法
JP6092689B2 (ja) * 2013-03-29 2017-03-08 Jx金属株式会社 表面処理金属材及びそれを用いたコネクタ、端子、積層板、シールドテープ、シールド材、プリント配線板、プリント回路板、金属加工部材の製造方法、及び、電子機器の製造方法
JP6085510B2 (ja) * 2013-03-29 2017-02-22 Jx金属株式会社 表面処理金属材及びそれを用いたコネクタ、端子、積層板、シールドテープ、シールド材、プリント配線板、プリント回路板、金属加工部材、及び、電子機器
JP5470487B1 (ja) * 2013-05-29 2014-04-16 Jx日鉱日石金属株式会社 銅箔、それを用いた半導体パッケージ用銅張積層体、プリント配線板、プリント回路板、樹脂基材、回路の形成方法、セミアディティブ工法、半導体パッケージ用回路形成基板及び半導体パッケージ
WO2015012327A1 (ja) * 2013-07-23 2015-01-29 Jx日鉱日石金属株式会社 表面処理銅箔、キャリア付銅箔、基材、樹脂基材、プリント配線板、銅張積層板及びプリント配線板の製造方法
JP6343204B2 (ja) * 2013-08-20 2018-06-13 Jx金属株式会社 表面処理銅箔及びそれを用いたキャリア付銅箔、積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
CN103481583B (zh) * 2013-10-09 2017-01-04 北京科技大学 一种表面具有多孔结构的处理铜箔的制备方法
WO2015111756A1 (ja) * 2014-01-27 2015-07-30 三井金属鉱業株式会社 粗化処理銅箔、銅張積層板及びプリント配線板
CN106795644B (zh) * 2014-09-09 2019-10-01 古河电气工业株式会社 印刷配线板用铜箔及覆铜层压板
JP5877282B1 (ja) * 2014-09-09 2016-03-02 古河電気工業株式会社 プリント配線板用銅箔及び銅張積層板
CN107429417B (zh) * 2015-03-31 2019-11-22 三井金属矿业株式会社 粗糙化处理铜箔、带载体铜箔、覆铜层叠板及印刷电路板
JP6427454B2 (ja) * 2015-03-31 2018-11-21 日鉄ケミカル&マテリアル株式会社 銅張積層板及びプリント配線板
JP6023367B1 (ja) * 2015-06-17 2016-11-09 Jx金属株式会社 キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
JP6782561B2 (ja) * 2015-07-16 2020-11-11 Jx金属株式会社 キャリア付銅箔、積層体、積層体の製造方法、プリント配線板の製造方法及び電子機器の製造方法
JP6200042B2 (ja) 2015-08-06 2017-09-20 Jx金属株式会社 キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
KR101887337B1 (ko) * 2015-09-30 2018-08-09 세키스이가가쿠 고교가부시키가이샤 적층체
PH12017000015A1 (en) * 2016-01-15 2018-08-06 Jx Nippon Mining & Metals Corp Copper foil, copper-clad laminate board, method for producing printed wiring board, method for poducing electronic apparatus, method for producing transmission channel, and method for producing antenna
US10529992B2 (en) * 2017-02-03 2020-01-07 Jx Nippon Mining & Metals Corporation Surface-treated copper foil, and current collector, electrode, and battery cell using the surface-treated copper foil
JP7033905B2 (ja) * 2017-02-07 2022-03-11 Jx金属株式会社 表面処理銅箔、キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
JP6543001B2 (ja) * 2017-03-30 2019-07-10 古河電気工業株式会社 表面処理銅箔、並びにこれを用いた銅張積層板およびプリント配線板
JP7492808B2 (ja) * 2017-03-31 2024-05-30 Jx金属株式会社 表面処理銅箔、樹脂層付き表面処理銅箔、キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
JP7356209B2 (ja) 2017-03-31 2023-10-04 Jx金属株式会社 表面処理銅箔、樹脂層付き表面処理銅箔、キャリア付銅箔、積層体、プリント配線板の製造方法及び電子機器の製造方法
CN107245735A (zh) * 2017-05-26 2017-10-13 东强(连州)铜箔有限公司 一种高耐药性和耐热性合金铜箔的镀液和制备方法
WO2019111914A1 (ja) * 2017-12-05 2019-06-13 古河電気工業株式会社 表面処理銅箔、並びにこれを用いた銅張積層板及びプリント配線板
JPWO2019208520A1 (ja) * 2018-04-27 2021-06-17 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板
JP7195530B2 (ja) * 2019-01-11 2022-12-26 エルジー・ケム・リミテッド フィルム、金属張積層板、フレキシブル基板、フィルムの製造方法、金属張積層板の製造方法、及びフレキシブル基板の製造方法
US10581081B1 (en) 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
JP7014884B1 (ja) * 2020-12-23 2022-02-01 Jx金属株式会社 表面処理銅箔、銅張積層板及びプリント配線板

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256389A (ja) 1998-03-09 1999-09-21 Furukawa Circuit Foil Kk プリント配線板用銅箔及びその製造方法
JP2000269637A (ja) 1999-03-18 2000-09-29 Furukawa Circuit Foil Kk 高密度超微細配線板用銅箔
JP2005344174A (ja) 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd 表面処理銅箔及びその表面処理銅箔を用いて製造したフレキシブル銅張積層板並びにフィルムキャリアテープ
JP2006103189A (ja) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk 表面処理銅箔並びに回路基板
JP2006142514A (ja) * 2004-11-16 2006-06-08 Nippon Steel Chem Co Ltd 銅張り積層板
JP2007238968A (ja) * 2006-03-06 2007-09-20 Furukawa Electric Co Ltd:The 銅箔、銅箔の製造方法および前記銅箔を用いた積層回路基板
JP2007332418A (ja) * 2006-06-15 2007-12-27 Fukuda Metal Foil & Powder Co Ltd 表面処理銅箔
JP2008285751A (ja) * 2007-04-19 2008-11-27 Mitsui Mining & Smelting Co Ltd 表面処理銅箔及びその表面処理銅箔を用いて得られる銅張積層板並びにその銅張積層板を用いて得られるプリント配線板

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634448B2 (ja) * 1988-07-25 1994-05-02 株式会社日立製作所 多層プリント配線板及びその製造方法
US5861076A (en) * 1991-07-19 1999-01-19 Park Electrochemical Corporation Method for making multi-layer circuit boards
JP2717911B2 (ja) * 1992-11-19 1998-02-25 日鉱グールド・フォイル株式会社 印刷回路用銅箔及びその製造方法
US5600103A (en) * 1993-04-16 1997-02-04 Kabushiki Kaisha Toshiba Circuit devices and fabrication method of the same
TW317575B (ja) * 1994-01-21 1997-10-11 Olin Corp
US6221176B1 (en) * 1999-03-17 2001-04-24 Gould Electronics, Inc. Surface treatment of copper to prevent microcracking in flexible circuits
US6372113B2 (en) * 1999-09-13 2002-04-16 Yates Foil Usa, Inc. Copper foil and copper clad laminates for fabrication of multi-layer printed circuit boards and process for producing same
US6346335B1 (en) * 2000-03-10 2002-02-12 Olin Corporation Copper foil composite including a release layer
JP2003051673A (ja) * 2001-08-06 2003-02-21 Mitsui Mining & Smelting Co Ltd プリント配線板用銅箔及びそのプリント配線板用銅箔を用いた銅張積層板
US6693793B2 (en) * 2001-10-15 2004-02-17 Mitsui Mining & Smelting Co., Ltd. Double-sided copper clad laminate for capacitor layer formation and its manufacturing method
WO2004005588A1 (ja) * 2002-07-04 2004-01-15 Mitsui Mining & Smelting Co.,Ltd. キャリア箔付電解銅箔
TWI414638B (zh) 2006-06-07 2013-11-11 Furukawa Electric Co Ltd A method for manufacturing a surface-treated electrolytic copper foil, and a circuit board
KR101318871B1 (ko) * 2008-07-22 2013-10-17 후루카와 덴키 고교 가부시키가이샤 표면 처리 동박 및 동장 적층판
TWI462826B (zh) 2008-07-22 2014-12-01 Furukawa Electric Co Ltd Flexible copper clad sheet
CN101547558B (zh) * 2009-04-21 2011-04-13 无锡宏仁电子材料科技有限公司 一种覆铜箔基板及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256389A (ja) 1998-03-09 1999-09-21 Furukawa Circuit Foil Kk プリント配線板用銅箔及びその製造方法
JP2000269637A (ja) 1999-03-18 2000-09-29 Furukawa Circuit Foil Kk 高密度超微細配線板用銅箔
JP2005344174A (ja) 2004-06-03 2005-12-15 Mitsui Mining & Smelting Co Ltd 表面処理銅箔及びその表面処理銅箔を用いて製造したフレキシブル銅張積層板並びにフィルムキャリアテープ
JP2006103189A (ja) * 2004-10-06 2006-04-20 Furukawa Circuit Foil Kk 表面処理銅箔並びに回路基板
JP2006142514A (ja) * 2004-11-16 2006-06-08 Nippon Steel Chem Co Ltd 銅張り積層板
JP2007238968A (ja) * 2006-03-06 2007-09-20 Furukawa Electric Co Ltd:The 銅箔、銅箔の製造方法および前記銅箔を用いた積層回路基板
JP2007332418A (ja) * 2006-06-15 2007-12-27 Fukuda Metal Foil & Powder Co Ltd 表面処理銅箔
JP2008285751A (ja) * 2007-04-19 2008-11-27 Mitsui Mining & Smelting Co Ltd 表面処理銅箔及びその表面処理銅箔を用いて得られる銅張積層板並びにその銅張積層板を用いて得られるプリント配線板

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013183605A1 (ja) * 2012-06-04 2016-02-01 Jx日鉱日石金属株式会社 キャリア付金属箔
JPWO2013183604A1 (ja) * 2012-06-04 2016-02-01 Jx日鉱日石金属株式会社 多層プリント配線板の製造方法
JPWO2013183607A1 (ja) * 2012-06-04 2016-02-01 Jx日鉱日石金属株式会社 キャリア付金属箔
JP2017043105A (ja) * 2012-06-04 2017-03-02 Jx金属株式会社 キャリア付金属箔
JP2017053040A (ja) * 2012-06-04 2017-03-16 Jx金属株式会社 多層プリント配線板の製造方法
JP2019084829A (ja) * 2012-06-04 2019-06-06 Jx金属株式会社 キャリア付金属箔
US20150373843A1 (en) * 2012-12-21 2015-12-24 Sk Innovation Co., Ltd. Multi-layer flexible metal-clad laminate and manufacturing method thereof
US10645805B2 (en) * 2012-12-21 2020-05-05 Nexflex Co., Ltd. Multi-layer flexible metal-clad laminate and manufacturing method thereof
WO2016031960A1 (ja) * 2014-08-28 2016-03-03 株式会社有沢製作所 3層フレキシブル金属張積層板及び両面3層フレキシブル金属張積層板
JP2016049773A (ja) * 2014-08-28 2016-04-11 株式会社有沢製作所 3層フレキシブル金属張積層板及び両面3層フレキシブル金属張積層板
CN110546313A (zh) * 2017-04-25 2019-12-06 古河电气工业株式会社 表面处理铜箔
JP7435444B2 (ja) 2018-07-18 2024-02-21 株式会社レゾナック 銅張積層板、プリント配線板、半導体パッケージ及び銅張積層板の製造方法

Also Published As

Publication number Publication date
CN102713020A (zh) 2012-10-03
JP2011149067A (ja) 2011-08-04
TWI443231B (zh) 2014-07-01
JP4927963B2 (ja) 2012-05-09
KR20120135197A (ko) 2012-12-12
TW201139752A (en) 2011-11-16
EP2527498A1 (en) 2012-11-28
KR101561731B1 (ko) 2015-10-19
US20130040162A1 (en) 2013-02-14
US8852754B2 (en) 2014-10-07
CN102713020B (zh) 2015-05-13

Similar Documents

Publication Publication Date Title
JP4927963B2 (ja) 表面処理銅箔、その製造方法及び銅張積層基板
TWI462826B (zh) Flexible copper clad sheet
JP5242710B2 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板
JP5181618B2 (ja) 金属箔積層ポリイミド樹脂基板
KR101078234B1 (ko) 동박 적층판
TWI455671B (zh) 印刷電路板之製造方法
JP2004189981A (ja) 熱可塑性ポリイミド樹脂材料および積層体およびプリント配線板の製造方法
JP4907580B2 (ja) フレキシブル銅張積層板
TW201515533A (zh) 表面處理銅箔、附載體銅箔、積層板、印刷配線板、電子機器、以及印刷配線板之製造方法
WO2015012376A1 (ja) 表面処理銅箔、キャリア付銅箔、基材、樹脂基材、プリント配線板、銅張積層板及びプリント配線板の製造方法
JP2006289959A (ja) 銅張り積層板
WO2014192895A1 (ja) 銅箔、キャリア付銅箔、銅張積層体、プリント配線板、半導体パッケージ用回路形成基板、半導体パッケージ、電子機器、樹脂基材、回路の形成方法、セミアディティブ工法、プリント配線板の製造方法
JP2015117436A (ja) 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
JP5133724B2 (ja) ポリイミド樹脂積層体の製造方法及び金属張積層板の製造方法
JP5073801B2 (ja) 銅張り積層板の製造方法
JP2000280401A (ja) 樹脂付き銅箔
JP5255496B2 (ja) 金属張積層体及び金属張積層体の製造方法
JP2009154447A (ja) 金属張積層体
JP2009066860A (ja) 金属張積層体及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004965.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127016600

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011734780

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13574478

Country of ref document: US