WO2011090075A1 - 圧縮機 - Google Patents
圧縮機 Download PDFInfo
- Publication number
- WO2011090075A1 WO2011090075A1 PCT/JP2011/050876 JP2011050876W WO2011090075A1 WO 2011090075 A1 WO2011090075 A1 WO 2011090075A1 JP 2011050876 W JP2011050876 W JP 2011050876W WO 2011090075 A1 WO2011090075 A1 WO 2011090075A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- casing
- flow path
- oil
- peripheral surface
- temperature
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B39/00—Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
- F04B39/02—Lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/02—Stopping, starting, unloading or idling control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/008—Hermetic pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/28—Safety arrangements; Monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/026—Lubricant separation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/02—Lubrication; Lubricant separation
- F04C29/028—Means for improving or restricting lubricant flow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2203/00—Motor parameters
- F04B2203/02—Motor parameters of rotating electric motors
- F04B2203/021—Lubricating-oil temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/80—Other components
- F04C2240/81—Sensor, e.g. electronic sensor for control or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/19—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/70—Safety, emergency conditions or requirements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/86—Detection
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/12—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
Definitions
- the present invention relates to a compressor.
- the present invention relates to a compressor having a mechanism for measuring the temperature of lubricating oil inside a casing.
- the compressor protection device includes, for example, a temperature detection mechanism and an operation stop mechanism.
- the temperature detection mechanism is attached to the compressor body and measures the temperature inside the compressor.
- the operation stop mechanism performs the protective operation of the compressor by stopping the operation of the compressor when the temperature detected by the temperature detection mechanism exceeds a predetermined temperature.
- the temperature detection mechanism generally measures the surface temperature of the casing of the compressor or the surface temperature of the discharge pipe that sends the compressed refrigerant to the refrigerant circuit outside the compressor.
- Patent Document 1 Japanese Patent Laid-Open No.
- 2009-197621 includes a temperature sensor holding mechanism for tightly fixing the temperature sensor to the surface of the compressor top.
- the temperature sensor can be reliably installed at a predetermined position on the surface of the top of the casing of the compressor. Then, the compressor is protected based on the casing surface temperature measured by the temperature sensor.
- Patent Document 2 Japanese Patent No. 2503699
- the temperature of the compressed refrigerant in the discharge pipe is measured by a temperature sensor fixed to the surface of the discharge pipe of the compressor. Then, based on the temperature of the compressed refrigerant measured by the temperature sensor, the compressor is protected.
- the reliability of the compressor may not be sufficiently ensured.
- the refrigerant does not flow inside the compressor. Temperature does not rise.
- the temperature of the lubricating oil circulating inside the compressor rises due to sliding of the bearings and the like inside the compressor, so that the temperature inside the compressor also rises. Therefore, even if the temperature of the discharge pipe of the compressor is measured, the temperature rise inside the compressor cannot be properly detected.
- an object of the present invention is to improve the reliability of the compressor by appropriately measuring the temperature inside the compressor.
- a compressor includes a casing, a compression mechanism, a drive shaft, a main frame, a motor, a flow path forming member, and a temperature measurement mechanism.
- the casing stores lubricating oil at the bottom.
- the compression mechanism is disposed inside the casing and compresses the refrigerant.
- the drive shaft is disposed inside the casing and drives the compression mechanism.
- the main frame mounts the compression mechanism and is joined in an airtight manner over the entire circumference of the inner peripheral surface of the casing.
- the main frame rotatably supports the drive shaft.
- the motor is disposed below the main frame and drives the drive shaft.
- the flow path forming member is disposed inside the casing and forms an oil flow path.
- the oil flow path is a space through which lubricating oil that lubricates the sliding portion including the compression mechanism and the drive shaft flows in the vicinity of the inner peripheral surface of the casing.
- the temperature measurement mechanism is disposed outside the casing. The temperature measuring mechanism measures the temperature of a portion of the outer peripheral surface of the casing and located in the vicinity of the oil flow path.
- high-temperature lubricating oil that lubricates the sliding portion inside the compressor flows through an oil passage that is a space near the inner peripheral surface of the casing.
- the sliding portion is a sliding portion between a fixed scroll and a movable scroll, a sliding portion between a drive shaft that drives the movable scroll and a bearing, and the like.
- the flow path forming member is a tubular member
- the oil flow path is a space inside the pipe.
- the flow path forming member is a plate-like member, the oil flow path is sandwiched between the flow path forming member and the inner peripheral surface of the casing. It is space.
- the high temperature lubricating oil which lubricated the sliding part inside a compressor contacts the inner peripheral surface of a casing, and the heat of lubricating oil is transmitted to a casing. Further, when the high-temperature lubricating oil comes into contact with the flow path forming member, the heat of the lubricating oil is transmitted to the casing via the flow path forming member. As a result, the temperature of the outer peripheral surface of the casing increases. Therefore, by measuring the temperature of the outer peripheral surface of the casing using a temperature measuring mechanism such as a temperature sensor, the temperature of the high-temperature lubricating oil that lubricates the sliding portion inside the compressor can be measured. The temperature of the hot lubricating oil can be used as an index of the temperature inside the compressor.
- the compressor according to the first aspect can appropriately measure the temperature inside the compressor by the temperature measurement mechanism.
- the compressor according to the first aspect determines that the temperature inside the compressor has risen abnormally and stops the operation of the compressor when the temperature measured by the temperature measurement mechanism reaches a predetermined value.
- the reliability of the compressor can be improved.
- a compressor according to a second aspect of the present invention is the compressor according to the first aspect, wherein the oil flow path has a space in contact with the inner peripheral surface of the casing, and the flow path forming member is A portion in contact with the inner peripheral surface;
- the temperature measurement mechanism measures at least one of the temperature in the temperature measurement region or the temperature in the vicinity of the temperature measurement region.
- the temperature measurement region is a portion of the outer peripheral surface of the casing corresponding to the back surface of the inner peripheral surface portion of the casing that is in contact with the oil flow channel and the flow path forming member.
- the high-temperature lubricating oil that lubricates the sliding portion inside the compressor flows through an oil passage having a space in contact with the inner peripheral surface of the casing.
- the high temperature lubricating oil which lubricated the sliding part inside a compressor contacts the inner peripheral surface of a casing, and the heat of lubricating oil is transmitted to a casing.
- the flow path forming member has a portion in contact with the inner peripheral surface of the casing.
- the high temperature lubricating oil which lubricated the sliding part inside a compressor contacts a flow path formation member, and the heat of lubricating oil is transmitted to a casing via a flow path formation member. Therefore, since the temperature measurement area is a part where the heat of the lubricating oil is easily transmitted, the temperature measurement mechanism can measure the temperature of the lubricating oil more appropriately by measuring the temperature of the temperature measurement area or the vicinity thereof. Can do.
- the compressor which concerns on the 3rd viewpoint of this invention is a compressor which concerns on a 2nd viewpoint, Comprising:
- a temperature measurement mechanism measures the temperature of a temperature measurement area
- the temperature measurement mechanism measures the temperature in the temperature measurement region. Since the temperature measurement region is a portion where heat of the lubricating oil is particularly easily transmitted, the temperature measurement mechanism can measure the temperature of the lubricating oil more appropriately by measuring the temperature of the temperature measurement region.
- the compressor according to the fourth aspect of the present invention is the compressor according to the third aspect, and the oil flow path has a constricted portion that is a space having a substantially flat cross section.
- the narrowed portion has a shape in which the major axis direction of the flow path cross section is along the circumferential direction of the casing.
- the narrowed portion has a channel cross-sectional area smaller than the channel cross-sectional area of the oil channel excluding the constricted portion.
- the temperature measurement mechanism is a temperature measurement region and measures the temperature near the constriction.
- an oil flow path has a constriction part with a small flow path cross-sectional area. Since the flow rate of the lubricating oil is reduced in the constricted portion, the flow rate of the lubricating oil flowing through the oil passage is reduced in the constricted portion. Therefore, the time for the lubricating oil flowing through the oil flow channel to contact the inner peripheral surface of the flow channel forming member and the casing in the narrowed portion is the same as that of the flow channel forming member and the casing in the other part of the oil flow channel excluding the narrowed portion. Longer than the time of contact with the peripheral surface.
- the flow-path cross section of a constriction part has the substantially flat shape in which the major axis direction follows the circumferential direction of a casing. Therefore, when the flow path cross section of the constricted portion is in contact with the inner peripheral surface of the casing, the area of the inner peripheral surface of the casing in contact with the constricted portion is large. Easy to be transmitted to the inner surface. That is, since the temperature measurement region located in the vicinity of the constriction is a portion where the heat of the lubricating oil is particularly easily transmitted, the temperature measurement mechanism measures the temperature in the temperature measurement region located in the vicinity of the constriction, Lubricating oil temperature can be measured more appropriately.
- the compressor according to the fifth aspect of the present invention is the compressor according to any one of the first to fourth aspects, and the flow path forming member is an oil return plate.
- the oil return plate is a plate member disposed below the main frame and above the motor.
- the oil flow path is a space between the inner peripheral surface of the casing and the oil return plate.
- the compressor according to the sixth aspect of the present invention is the compressor according to any one of the first to fourth aspects, and the flow path forming member is an oil return plate.
- the oil return plate is a plate member disposed below the motor.
- the oil flow path is a space between the inner peripheral surface of the casing and the oil return plate.
- a compressor according to a seventh aspect of the present invention is the compressor according to any one of the first to fourth aspects, wherein the main frame has an oil return passage through which lubricating oil having a sliding portion lubricated flows.
- the flow path forming member is a flow path forming surface that is a part of the side surface of the main frame.
- the flow path forming surface is spaced from and opposed to the inner peripheral surface of the casing, and has a surface on which the oil return passage opens.
- the oil channel is a space between the inner peripheral surface of the casing and the channel forming surface.
- a compressor according to an eighth aspect of the present invention is the compressor according to any one of the first to fourth aspects, wherein the flow path forming member is a part of the outer peripheral surface of the motor. Has a surface.
- the oil channel is a space between the inner peripheral surface of the casing and the channel forming surface.
- a compressor according to a ninth aspect of the present invention is the compressor according to any one of the second to fourth aspects, wherein the flow path forming member is lubricating oil that flows through the oil flow path. A part is formed to be inclined so that the amount of lubricating oil in contact with the forming member increases.
- the flow path forming member has a portion inclined in the radial direction of the sealed container. Accordingly, when the lubricating oil flows through the oil flow path, the amount of the lubricating oil that contacts the flow path forming member increases because the lubricating oil comes into contact with the inclined portion of the flow path forming member. Therefore, the heat of the lubricating oil is easily transmitted to the flow path forming member.
- the temperature measurement mechanism can more appropriately measure the temperature of the lubricating oil.
- the temperature measuring mechanism when the temperature of the lubricating oil measured by the temperature measuring mechanism reaches a predetermined temperature or more, it is determined that the temperature inside the compressor has abnormally increased, and the operation of the compressor is stopped. By doing so, the reliability of the compressor can be improved.
- a compressor according to a tenth aspect of the present invention is the compressor according to any one of the second aspect to the fourth aspect and the ninth aspect, wherein the oil flow path is formed by a sealed container and a flow path forming member. It is a sandwiched space.
- the compressor according to the tenth aspect all the spaces constituting the oil flow path are in contact with the inner peripheral surface of the sealed container. That is, since the lubricating oil flowing through the oil flow path is likely to come into contact with the inner peripheral surface of the sealed container, the temperature measuring mechanism can more appropriately measure the temperature of the lubricating oil.
- the compressor according to the tenth aspect when the temperature of the lubricating oil measured by the temperature measuring mechanism reaches a predetermined temperature or more, it is determined that the temperature inside the compressor has abnormally increased, and the operation of the compressor is stopped. By doing so, the reliability of the compressor can be improved.
- the compressor according to the present invention can improve the reliability of the compressor by appropriately measuring the temperature inside the compressor.
- FIG. 5 is a longitudinal sectional view of the oil return plate according to the first embodiment of the present invention taken along line VV in FIG. 3. It is the bottom view of the oil return board which concerns on 1st Embodiment of this invention seen from the arrow VI of FIG. FIG.
- FIG. 2 is a cross-sectional view of the scroll compressor according to the first embodiment of the present invention taken along line VII-VII in FIG. 1. It is a rear view of the oil return board which concerns on the modification 1C of 1st Embodiment of this invention. It is a bottom view of an oil return board concerning modification 1C of a 1st embodiment of the present invention. It is a longitudinal cross-sectional view of the oil return board which concerns on 2nd Embodiment of this invention. It is a rear view of the oil return board which concerns on 2nd Embodiment of this invention seen from the arrow XI of FIG. It is a bottom view of the oil return board which concerns on 2nd Embodiment of this invention seen from the arrow XII of FIG.
- FIG. 14 is a part of a cross-sectional view of the main frame according to the third embodiment of the present invention taken along line XIV-XIV in FIG. 13. It is a part of side view of the main frame which concerns on 3rd Embodiment of this invention seen from the arrow XV of FIG. It is a side view of the main frame concerning modification 3A of a 3rd embodiment of the present invention. It is a side view of the main frame concerning modification 3B of a 3rd embodiment of the present invention.
- the compressor according to the present embodiment is a high and low pressure dome type scroll compressor.
- the compressor which concerns on this embodiment comprises a refrigerant circuit with a condenser, an expansion mechanism, an evaporator, etc., and compresses the refrigerant gas which circulates through the refrigerant circuit.
- ⁇ Constitution ⁇ A configuration of the scroll compressor 1 according to the present embodiment will be described. A longitudinal sectional view of the scroll compressor 1 is shown in FIG. Hereinafter, each part which comprises the scroll compressor 1 is each demonstrated.
- the casing 10 includes a substantially cylindrical trunk casing portion 11, a bowl-shaped upper wall portion 12 that is airtightly welded to the upper end portion of the trunk casing portion 11, and a lower end of the trunk casing portion 11. And a bowl-shaped bottom wall portion 13 which is welded to the portion in an airtight manner.
- the casing 10 is formed of a rigid member that is unlikely to be deformed or damaged when the pressure and temperature change inside and outside the casing 10. Moreover, the casing 10 is installed so that the substantially cylindrical axial direction of the trunk
- the casing 10 accommodates a compression mechanism 15 that compresses the refrigerant, a motor 16 that is disposed below the compression mechanism 15, a drive shaft 17 that is disposed so as to extend in the vertical direction within the casing 10, and the like. .
- a suction pipe 19 and a discharge pipe (not shown), which will be described later, are joined to the casing 10 in an airtight manner.
- the compression mechanism 15 includes a fixed scroll component 24 and a turning scroll component 26.
- the fixed scroll component 24 has a first end plate 24a and a first wrap 24b having a spiral shape (involute shape) formed upright on the first end plate 24a.
- the fixed scroll component 24 is formed with a main suction hole (not shown) and an auxiliary suction hole (not shown) adjacent to the main suction hole.
- the main suction hole communicates a later-described suction pipe 19 and a later-described compression chamber 40
- the auxiliary suction hole communicates a later-described low-pressure space S2 and a later-described compression chamber 40.
- a discharge hole 41 is formed at the center of the first end plate 24a, and an enlarged recess 42 communicating with the discharge hole 41 is formed on the upper surface of the first end plate 24a.
- the enlarged recess 42 is configured by a recess that extends in the horizontal direction and is provided in the upper surface of the first end plate 24a.
- a lid 44 is fastened and fixed to the upper surface of the fixed scroll component 24 with bolts 44 a so as to close the enlarged concave portion 42.
- the muffler space 45 which consists of an expansion chamber which silences the driving
- the fixed scroll component 24 and the lid body 44 are sealed by being brought into close contact with each other via a packing (not shown).
- the fixed scroll component 24 is formed with a first communication passage 46 that communicates with the muffler space 45 and opens on the lower surface of the fixed scroll component 24.
- the orbiting scroll component 26 includes a second end plate 26a and a spiral (involute) second wrap 26b formed upright on the second end plate 26a.
- a second bearing portion 26c is formed at the center of the lower surface of the second end plate 26a.
- the second end plate 26a has oil supply pores 63 formed therein.
- the oil supply pore 63 communicates the outer peripheral portion of the upper surface of the second end plate 26a and the space inside the second bearing portion 26c.
- the fixed scroll component 24 and the orbiting scroll component 26 are compressed by being surrounded by the first end plate 24a, the first end plate 24b, the second end plate 26a and the second end wrap 26b when the first wrap 24b and the second wrap 26b are engaged with each other.
- a chamber 40 is formed.
- Main frame The main frame 23 is arrange
- the main frame 23 includes a main frame recess 31 that is recessed on the upper surface of the main frame 23, and a first bearing portion 32 that extends downward from the lower surface of the main frame 23.
- the first bearing portion 32 has a first bearing hole 33 penetrating in the vertical direction.
- the main frame 23 is mounted with a fixed scroll component 24 by being fixed with bolts or the like, and sandwiches the orbiting scroll component 26 together with the fixed scroll component 24 via an Oldham joint 39 described later.
- the main frame 23 includes an oil return passage 82 formed in the horizontal direction from the center portion of the main frame 23 toward the outer peripheral portion, and a sub oil return passage 35 formed in the vertical direction on the outer peripheral portion of the main frame 23.
- the oil return passage 82 communicates with the bottom of the main frame recess 31 and the auxiliary oil return passage 35, and the auxiliary oil return passage 35 communicates with the oil return passage 82 and an oil passage 92 described later.
- the main frame 23 has a second communication passage 48 formed through the outer peripheral portion of the main frame 23 in the vertical direction.
- the second communication passage 48 communicates with the first communication passage 46 on the upper surface of the main frame 23, and communicates with the high-pressure space S ⁇ b> 1 through the discharge port 49 on the lower surface of the main frame 23.
- the Oldham Joint 39 is a ring-shaped member for preventing the orbiting scroll component 26 from rotating, and is fitted into an oblong Oldham groove 26 d formed in the main frame 23.
- the motor 16 is a brushless DC motor disposed below the main frame 23.
- the motor 16 is a distributed winding motor including a stator 51 fixed to the inner wall of the casing 10 and a rotor 52 that is rotatably accommodated with a slight gap inside the stator 51.
- a copper wire is wound around a tooth portion, and a coil end 53 is formed above and below.
- the outer peripheral surface of the stator 51 is provided with core cut portions that are notched at a plurality of locations from the upper end surface to the lower end surface of the stator 51 at a predetermined interval in the circumferential direction.
- the core cut portion forms a motor cooling passage 55 extending in the vertical direction between the body casing portion 11 and the stator 51.
- the rotor 52 is connected to the orbiting scroll component 26 via the drive shaft 17 described later at the center of rotation.
- Subframe The subframe 60 is disposed below the motor 16.
- the sub frame 60 is fixed to the body casing portion 11 and has a third bearing portion 60a.
- Oil Separation Plate The oil separation plate 73 is a plate-like member that is disposed below the motor 16 in the casing 10 and is fixed to the upper surface side of the sub-frame 60.
- the oil separation plate 73 separates the lubricating oil contained in the compressed refrigerant that descends in the high-pressure space S1. The separated lubricating oil falls into the oil sump P at the bottom of the casing 10.
- the drive shaft 17 connects the compression mechanism 15 and the motor 16, and is disposed so as to extend in the vertical direction in the casing 10.
- the drive shaft 17 passes through the first bearing hole 33 of the main frame 23.
- the upper end portion of the drive shaft 17 is fitted into the second bearing portion 26 c of the orbiting scroll component 26.
- the lower end of the drive shaft 17 is located in the oil sump P.
- An oil supply passage 61 that penetrates in the axial direction is formed inside the drive shaft 17.
- the oil supply passage 61 communicates with an oil chamber 83 formed by the upper end surface of the drive shaft 17 and the lower surface of the second end plate 26a.
- the oil chamber 83 communicates with a sliding portion between the fixed scroll component 24 and the orbiting scroll component 26 (hereinafter referred to as “sliding portion of the compression mechanism 15”) via the oil supply hole 63 of the second end plate 26a. Finally, it is connected to the low pressure space S2.
- the drive shaft 17 includes a first oil supply horizontal hole 61a, a second oil supply horizontal hole 61b, and a third oil supply for supplying lubricating oil to the first bearing part 32, the third bearing part 60a, and the second bearing part 26c, respectively.
- a horizontal hole 61c is provided.
- the oil return plate 91 is a member that forms an oil passage 92 that is a space that communicates the auxiliary oil return passage 35 of the main frame 23 and the motor cooling passage 55.
- the oil return plate 91 is disposed in the high pressure space S ⁇ b> 1 between the main frame 23 and the motor 16.
- a perspective view of the oil return plate 91 is shown in FIG.
- a front view and a rear view of the oil return plate 91 are shown in FIGS.
- FIG. 4 is a rear view of the oil return plate 91 viewed from an arrow IV in FIG. 5 described later, in which a temperature sensor 76 and a temperature sensor holding plate 77 described later are drawn.
- FIG. 5 shows a longitudinal sectional view of the oil return plate 91 along VV in FIG. 3 and a structure in the vicinity thereof.
- FIG. 6 shows a bottom view of the oil return plate 91 viewed from the arrow VI in FIG. 3 and a structure in the vicinity thereof.
- FIG. 7 shows a cross-sectional view of the scroll compressor 1 in VII-VII in FIG.
- both ends of the oil return plate 91 in the horizontal direction are closely fixed to the inner peripheral surface (hereinafter referred to as “casing inner peripheral surface”) of the body casing portion 11. Therefore, as shown in FIG. 6, the oil return plate 91 is formed in an arc shape on the side in contact with the inner peripheral surface of the casing when viewed from the upper viewpoint. In addition, in FIG. 3, the side which contact
- the oil return plate 91 is formed by integrally forming an upper flow path forming portion 91a, a central inclined flow path forming portion 91b, and a lower flow path forming portion 91c with a thin metal plate or the like.
- the oil flow path 92 is a space sandwiched between the oil return plate 91 and the casing inner peripheral surface.
- the oil channel 92 includes an upper channel 92a, a central inclined channel 92b, and a lower channel 92c.
- the upper flow path 92a is a space sandwiched between the upper flow path forming portion 91a and the casing inner peripheral surface.
- the central inclined flow path 92b is a space sandwiched between the central inclined flow path forming portion 91b and the casing inner peripheral surface.
- the lower flow path 92c is a space sandwiched between the lower flow path forming portion 91c and the casing inner peripheral surface.
- the upper channel 92a communicates with the central inclined channel 92b
- the central inclined channel 92b communicates with the lower channel 92c.
- the upper flow path 92 a communicates with the auxiliary oil return passage 35
- the lower flow path 92 c communicates with the motor cooling passage 55.
- the cross section of the upper flow path 92a and the lower flow path 92c has the substantially flat shape extended along the circumferential direction of the casing 10, as FIG. 6 shows.
- the oil return plate 91 is formed so that the cross-sectional area of the lower flow path 92c is smaller than the cross-sectional area of the upper flow path 92a. This is because the width in the casing 10 radial direction of the motor cooling passage 55 communicating with the lower flow path 92c is smaller than the width in the casing 10 radial direction of the high-pressure space S1 directly below the auxiliary oil return passage 35 communicating with the upper flow path 92a. is there. Further, as shown in FIG. 6, the oil return plate 91 is formed so that the cross section of the lower flow path 92c is disposed at a position deviated from the cross section of the upper flow path 92a.
- the center of gravity of the horizontal cross-sectional shape of the lower flow path 92c does not exist on a straight line connecting the center of the horizontal cross-sectional shape of the trunk casing 11 and the center of gravity of the horizontal cross-sectional shape of the upper flow path 92a.
- the oil return plate 91 has a width in the radial direction of the casing 10 of the central inclined flow path 92b, that is, a horizontal distance between the central inclined flow path forming portion 91b and the inner peripheral surface of the casing decreases from the upper side to the lower side. It is formed to become. That is, as shown in FIG. 5, the flow path width in the radial direction of the casing 10 of the oil flow path 92 has a portion that decreases from the upper part toward the lower part.
- the suction pipe 19 is a tubular member that guides the refrigerant to the compression mechanism 15 and is fitted into the upper wall portion 12 in an airtight manner.
- Discharge pipe The discharge pipe is a tubular member for discharging the refrigerant in the high-pressure space S1 from the casing 10, and is fitted into the body casing portion 11 in an airtight manner.
- (12) Temperature Sensor As shown in FIGS. 5 to 7, the temperature sensor 76 is fixed to the outer peripheral surface (hereinafter referred to as “casing outer peripheral surface”) of the body casing portion 11 by a temperature sensor holding plate 77. Yes.
- the temperature sensor holding plate 77 is fixed to the outer peripheral surface of the casing by spot welding or the like.
- the temperature sensor 76 measures the temperature of the outer peripheral surface of the casing at the position where the temperature sensor holding plate 77 is fixed.
- FIG. 5 shows the vertical positional relationship between the oil return plate 91 and the temperature sensor 76
- FIGS. 6 and 7 show the horizontal positional relationship.
- the temperature sensor 76 is fixed to a portion of the casing outer peripheral surface corresponding to the back surface of the portion of the casing inner peripheral surface that is in contact with the lower flow path 92c.
- Lubricating oil is stored in an oil sump P at the bottom of the casing 10.
- the lower end portion of the oil supply passage 61 provided on the drive shaft 17 is immersed in the lubricating oil in the oil reservoir P. Since the oil reservoir P is in the high-pressure space S1 from which the refrigerant compressed by the compression mechanism 15 is discharged, the lower end portion of the oil supply passage 61 is under pressure in the high-pressure space S1.
- the upper end portion of the oil supply passage 61 communicates with the oil supply pores 63 via the oil chamber 83.
- the oil supply hole 63 communicates with the compression chamber 40 formed by the fixed scroll component 24 and the orbiting scroll component 26.
- the compression chamber 40 Since the compression chamber 40 is a space for compressing the refrigerant, it is under a pressure lower than the pressure in the high-pressure space S1 from which the compressed refrigerant is discharged. Therefore, the pressure at the upper end of the oil supply passage 61 is lower than the pressure at the lower end of the oil supply passage 61.
- the scroll compressor 1 when the scroll compressor 1 is activated and the refrigerant is compressed by the compression mechanism 15, the lubricating oil stored in the oil sump P rises in the oil supply passage 61 due to the differential pressure generated in the oil supply passage 61. . Also, the lubricating oil stored in the oil sump P rises in the oil supply passage 61 by the centrifugal pump action caused by the rotational movement of the drive shaft 17.
- Part of the lubricating oil that rises in the oil supply passage 61 is supplied to the first oil supply lateral hole 61a, the second oil supply horizontal hole 61b, and the third oil supply horizontal hole 61c, and the first bearing part 32, the third bearing part 60a, and Each of the second bearing portions 26c is lubricated.
- the lubricating oil that has risen to the upper end of the oil supply passage 61 is supplied to the oil chamber 83 and lubricates the sliding portion of the compression mechanism 15 via the oil supply holes 63.
- the lubricating oil that has lubricated the second bearing portion 26 c via the third oil supply lateral hole 61 c and the oil chamber 83 is stored at the bottom of the main frame recess 31.
- the lubricating oil flows through an oil return passage 82 provided in the main frame 23, falls through the auxiliary oil return passage 35, and is supplied to the oil passage 92.
- the lubricating oil that has flowed from the upper side to the lower side in the oil flow path 92 falls into the oil sump P via the motor cooling passage 55.
- the compressed refrigerant discharged from the compression mechanism 15 to the high-pressure space S1 includes oil droplets of lubricating oil.
- the oil droplets of the lubricating oil are separated from the compressed refrigerant by the oil separation plate 73 and fall into the oil reservoir P.
- the lubricating oil is generated by the heat generated by the sliding of the drive shaft 17 with the first bearing portion 32, the third bearing portion 60 a and the second bearing portion 26 c and the rotation of the rotor 52 when ascending the oil supply passage 61. Absorbs heat. Therefore, the lubricating oil flowing through the oil flow path 92 is lubricating oil that has become high temperature due to the operation of the scroll compressor 1.
- the channel cross-sectional area of the lower channel 92c is smaller than the channel cross-sectional areas of the upper channel 92a and the central inclined channel 92b.
- the flow rate per unit time of the lubricating oil flowing through the lower flow path 92c is smaller than the flow rate of the lubricating oil flowing through the upper flow path 92a and the central inclined flow path 92b.
- the flow velocity of the lubricating oil flowing from the upper side to the lower side in the oil channel 92 is reduced in the lower channel 92c. Accordingly, during the time that the lubricating oil is in contact with the inner peripheral surface of the casing that forms the lower flow path 92c and the lower flow path forming portion 91c, the lubricating oil is in contact with the portions that form the upper flow path 92a and the central inclined flow path 92b. Longer than the time you are.
- a portion of the casing outer peripheral surface corresponding to the back surface of the portion of the casing inner peripheral surface in contact with the lower flow path 92c and the lower flow path forming portion 91c (hereinafter referred to as “temperature measurement region” in the present embodiment).
- the heat of the lubricating oil flowing through the oil flow path 92 is more efficiently transmitted as compared with other portions of the casing outer peripheral surface.
- the horizontal cross section of the lower flow path 92 c has a substantially flat shape extending along the circumferential direction of the casing 10. Accordingly, the lubricating oil flowing through the lower flow path 92c is likely to come into contact with the casing inner peripheral surface forming the lower flow path 92c. Furthermore, even when the amount of lubricating oil flowing through the oil passage 92 is small, such as immediately after the scroll compressor 1 is started, the lower passage 92c is easily filled with lubricating oil because the passage cross-sectional area is small. That is, the lubricating oil flowing through the lower flow path 92c is likely to come into contact with the casing inner peripheral surface forming the lower flow path 92c and the lower flow path forming portion 91c.
- the heat of the lubricating oil flowing through the oil flow path 92 is more efficiently transmitted as compared with other portions of the casing outer peripheral surface.
- the central inclined flow path forming portion 91b is inclined toward the outer peripheral side of the casing 10 as the portion facing the inner peripheral surface of the casing goes downward. Thereby, a part of the lubricating oil flowing from the upper side to the lower side in the central inclined flow path 92b flows along the inclined part facing the inner peripheral surface of the casing. Therefore, the heat of the lubricating oil is transmitted to the entire oil return plate 91 through the inclined portion facing the inner peripheral surface of the casing. Accordingly, the heat of the lubricating oil flowing through the oil flow path 92 is efficiently transmitted to the temperature measurement region.
- the temperature sensor 76 is a part of the temperature measurement region and corresponds to the back surface of the portion of the casing inner peripheral surface that is in contact with the lower flow path 92 c. It is fixed to the outer peripheral surface of the casing. Therefore, since the heat of the lubricating oil flowing through the lower flow path 92c is transmitted to the temperature sensor 76 only through the trunk casing portion 11, the temperature sensor 76 appropriately sets the temperature of the lubricating oil flowing through the oil flow path 92. Can be measured. ⁇ Characteristic ⁇ In general, an abnormality that occurs during the operation of the scroll compressor 1 tends to cause an abnormal increase in the temperature of the lubricating oil flowing inside the scroll compressor 1.
- the scroll compressor 1 can improve the reliability of the scroll compressor 1 by appropriately measuring the temperature of the lubricating oil.
- the temperature sensor 76 is fixed to the temperature measurement region that is the outer peripheral surface of the casing, but may be embedded in the casing 10.
- a through hole may be formed in the outer wall of the trunk casing portion 11 at the height of the oil flow path 92, and a copper tube incorporating a temperature sensor may be inserted into the through hole.
- the temperature sensor can measure the temperature of internal lubricating oil more correctly.
- the temperature sensor 76 has a mechanism for measuring the temperature in the temperature measurement region of the casing 10, but may further have an operation stop mechanism.
- the operation stop mechanism is an electronic circuit or the like that automatically starts and stops the power supply of the scroll compressor 1 according to the measured temperature in the temperature measurement region of the casing 10.
- a thermostat using a bimetal obtained by bonding two metal plates having different thermal expansion coefficients may be used as the temperature sensor having the operation stop mechanism.
- the operation stop mechanism determines that an abnormality has occurred in the operation of the scroll compressor 1 when the temperature sensor detects a temperature equal to or higher than a predetermined value, and stops the operation of the scroll compressor 1. . That is, the operation stop mechanism performs the protective operation of the scroll compressor 1 by stopping the operation of the scroll compressor 1 when the temperature sensor detects an abnormal increase in the temperature of the lubricating oil. Thereby, the reliability of the scroll compressor 1 can be improved.
- the temperature sensor 76 is fixed to a portion of the casing outer peripheral surface corresponding to the back surface of the portion of the casing inner peripheral surface in contact with the lower flow channel 92c. It may also be fixed to the casing outer peripheral surface portion corresponding to the back surface of the casing inner peripheral surface portion in contact with the forming portion 91c.
- FIG. 8 is a rear view of the oil return plate according to the present modification as viewed from the arrow IV in FIG.
- FIG. 9 is a bottom view of the oil return plate according to the present modification as viewed from the arrow VI in FIG. 3 and a structure in the vicinity thereof.
- the temperature sensor 176a is fixed by the temperature sensor holding plate 177a to the casing outer peripheral surface corresponding to the back surface of the casing inner peripheral surface in contact with the lower flow path 92c.
- 176b is fixed to a portion of the casing outer peripheral surface corresponding to the back surface of the portion of the casing inner peripheral surface in contact with the lower flow path forming portion 91c by the temperature sensor holding plate 177b.
- the temperature sensor 176a and the temperature sensor 176b are fixed in the temperature measurement region, the temperature of the lubricating oil can be appropriately measured. Further, in this scroll compressor, since two temperature sensors are used, the reliability of the temperature measurement of the lubricating oil can be improved.
- the temperature sensor may be fixed to the outer peripheral surface of the casing in the vicinity of the temperature measurement region.
- the scroll compressor 101 according to the present embodiment has the same configuration, operation, and features as the scroll compressor 1 according to the first embodiment.
- the difference between the scroll compressor 101 according to the present embodiment and the scroll compressor 1 according to the first embodiment will be mainly described.
- ⁇ Constitution ⁇ (1) Oil return plate As shown in FIG. 10, the scroll compressor 101 according to the present embodiment is disposed in the high-pressure space S ⁇ b> 1 below the motor 16 and forms an oil flow path 192. 191. As will be described below, the oil return plate 191 has the same shape and function as the oil return plate 91 used in the first embodiment shown in FIG.
- the oil return plate 191 is formed by integrally forming an upper flow path forming portion 191a, a central inclined flow path forming portion 191b, and a lower flow path forming portion 191c with a thin metal plate or the like.
- the oil flow path 192 is a space sandwiched between the oil return plate 191 and the casing inner peripheral surface.
- the oil channel 192 includes an upper channel 192a, a central inclined channel 192b, and a lower channel 192c.
- the upper flow path 192a is a space sandwiched between the upper flow path forming portion 191a and the casing inner peripheral surface.
- the central inclined channel 192b is a space sandwiched between the central inclined channel forming part 191b and the casing inner peripheral surface.
- the lower flow path 192c is a space sandwiched between the lower flow path forming part 191c and the casing inner peripheral surface.
- the upper channel 192a communicates with the central inclined channel 192b, and the central inclined channel 192b communicates with the lower channel 192c.
- the upper flow path 192a communicates with the motor cooling passage 55, and the lower flow path 192c communicates with the oil sump P.
- the cross section of the upper flow path 192a and the lower flow path 192c has a substantially flat shape extending along the circumferential direction of the casing 10.
- the oil return plate 191 is formed so that the cross-sectional area of the lower flow path 192c is smaller than the cross-sectional area of the upper flow path 192a.
- the oil return plate 191 has a width in the radial direction of the casing 10 of the central inclined flow path 192b, that is, a horizontal distance between the central inclined flow path forming portion 191b and the inner peripheral surface of the casing decreases from the upper side to the lower side. It is formed to become.
- (2) Temperature sensor In this embodiment, the temperature sensor 176 is being fixed to the casing outer peripheral surface, as FIG. 10 shows. A vertical positional relationship between the oil return plate 191 and the temperature sensor 176 is shown in FIG. 11, and a horizontal positional relationship is shown in FIG. The temperature sensor 176 is fixed to a portion of the casing outer peripheral surface corresponding to the back surface of the portion of the casing inner peripheral surface that is in contact with the lower flow path 192c.
- the lubricating oil that has passed through the motor cooling passage 55 flows into the oil passage 192.
- the lubricating oil flowing through the oil flow path 192 is lubricating oil that has reached a high temperature due to the operation of the scroll compressor 101.
- a casing outer peripheral surface portion corresponding to the back surface of the casing inner peripheral surface portion in contact with the lower flow path 192c and the lower flow path forming portion 191c (hereinafter, this embodiment) (Referred to as “temperature measurement region”) is a region where the heat of the lubricating oil flowing through the oil flow path 192 is more efficiently transmitted than the other part of the outer peripheral surface of the casing.
- the temperature sensor 176 is a part of the temperature measurement region, and is fixed to the casing outer peripheral surface corresponding to the back surface of the casing inner peripheral surface in contact with the lower flow path 192c. Accordingly, since the heat of the lubricating oil flowing through the lower flow path 192c is transmitted to the temperature sensor 176 only through the trunk casing portion 11, the temperature sensor 176 appropriately sets the temperature of the lubricating oil flowing through the oil flow path 192. Can be measured.
- the scroll compressor 101 may further include an oil return plate 91 included in the scroll compressor 1 according to the first embodiment. In the present embodiment, the above-described modification 1A and modification 1B applied to the first embodiment may be applied.
- the temperature sensor 176 included in the scroll compressor 101 according to the present embodiment measures the temperature in the temperature measurement region other than the portion of the casing outer peripheral surface corresponding to the back surface of the portion of the casing inner peripheral surface in contact with the lower flow path 192c. You may measure.
- -Third embodiment- A compressor according to a third embodiment of the present invention will be described with reference to FIGS.
- the scroll compressor 201 according to the present embodiment has the same configuration, operation, and features as the scroll compressor 1 according to the first embodiment.
- the difference between the scroll compressor 201 according to the present embodiment and the scroll compressor 1 according to the first embodiment will be mainly described.
- the auxiliary oil return passage 292 formed in the outer peripheral portion of the main frame 223 is a part of the side surface of the main frame 223. It is a space between a certain flow path forming surface 291 and the casing inner peripheral surface.
- the flow path forming surface 291 is a surface that faces the inner peripheral surface of the casing so as to be spaced apart and the oil return passage 82 is opened.
- the secondary oil return passage 292 has a shape in which the flow path width decreases as it goes from the upper side to the lower side in the vertical direction when viewed along the radial direction of the casing 10. That is, the flow resistance of the auxiliary oil return passage 292 increases as it goes from the vertical direction upward to the downward direction.
- the auxiliary oil return passage 292 has a flow path resistance portion 292c where the flow path resistance is greatest at the lower end in the vertical direction.
- (2) Temperature sensor In this embodiment, the temperature sensor 276 is being fixed to the casing outer peripheral surface.
- FIG. 13 shows a vertical positional relationship between the main frame 223 and the temperature sensor 276, and
- FIG. 14 shows a horizontal positional relationship. The temperature sensor 276 is fixed to a portion of the casing outer peripheral surface corresponding to the back surface of the portion of the casing inner peripheral surface that is in contact with the flow path resistance portion 292c.
- the lubricating oil that has passed through the oil return passage 82 flows into the auxiliary oil return passage 292.
- the lubricating oil flowing through the auxiliary oil return passage 292 is lubricating oil that has reached a high temperature due to the operation of the scroll compressor 201.
- the portion of the casing outer peripheral surface corresponding to the back surface of the portion of the casing inner peripheral surface that is in contact with the side surface of the main frame 223 in the vicinity of the flow path resistance portion 292c and the flow path resistance portion 292c (hereinafter referred to as “temperature measurement region” in this embodiment).
- the temperature sensor 276 is fixed to a portion of the casing outer peripheral surface that is a part of the temperature measurement region and corresponds to the back surface of the portion of the casing inner peripheral surface that is in contact with the flow path resistance portion 292c. . Therefore, since the heat of the lubricating oil flowing through the flow path resistance portion 292c is transmitted to the temperature sensor 276 only through the body casing portion 11, the temperature sensor 276 appropriately sets the temperature of the lubricating oil flowing through the oil flow channel 292. Can be measured.
- the scroll compressor 201 In the scroll compressor 201 according to the present embodiment, high-temperature lubricating oil that lubricates the sliding portion inside the casing 10 flows through the auxiliary oil return passage 292. The heat of the lubricating oil flowing through the auxiliary oil return passage 292 is efficiently transmitted to the temperature measurement region on the outer peripheral surface of the casing. The temperature sensor 276 can appropriately measure the temperature of the lubricating oil flowing inside the scroll compressor 201 by measuring the temperature in the temperature measurement region.
- the auxiliary oil return passage 292 has a channel width as it goes from the upper side to the lower side in the vertical direction when viewed along the radial direction of the casing 10 as shown in FIG. However, as shown in FIG. 16, the channel width may be constant and may have a shape that is inclined with respect to the vertical direction.
- the auxiliary oil return passage 292 according to this modification has a longer time for the lubricating oil to pass than the auxiliary oil return passage extending in the vertical direction. That is, the auxiliary oil return passage 292 of the present modification can increase the amount of heat transferred from the lubricating oil to the outer peripheral surface of the casing. Therefore, the temperature sensor 276 can appropriately measure the temperature of the lubricating oil flowing inside the scroll compressor 201.
- the auxiliary oil return passage 292 has a channel width as it goes from the upper side to the lower side in the vertical direction when viewed along the radial direction of the casing 10 as shown in FIG. 17A and 17B, the flow path width is constant, and a part of the lower opening is closed by the lid 293 attached to the main frame 223. It may be removed.
- the flow resistance of the auxiliary oil return passage 292 is increased by the lid 293. That is, the lid 293 of the present modification can increase the amount of heat transferred from the lubricating oil to the outer peripheral surface of the casing. Therefore, the temperature sensor 276 can appropriately measure the temperature of the lubricating oil flowing inside the scroll compressor 201.
- the scroll compressor 201 according to the present embodiment is selected from the group consisting of the secondary oil return passage 292 according to the present embodiment, the secondary oil return passage according to Modification 3A, and the lid 293 according to Modification 3B. You may have the combination of the above elements.
- the scroll compressor 201 according to the present embodiment further includes an oil return plate 91 included in the scroll compressor 1 according to the first embodiment, and an oil return plate 191 included in the scroll compressor 101 according to the second embodiment. It may be.
- the above-described modification 1A and modification 1B applied to the first embodiment may be applied.
- the temperature sensor 276 included in the scroll compressor 201 according to the present embodiment is a temperature in a temperature measurement region other than the casing outer peripheral surface corresponding to the back surface of the casing inner peripheral surface in contact with the flow path resistance portion 292c. May be measured.
- -Fourth embodiment- The compressor which concerns on 4th Embodiment of this invention is demonstrated referring FIG.18 and FIG.19.
- the scroll compressor 301 according to the present embodiment has the same configuration, operation, and features as the scroll compressor 1 according to the first embodiment.
- the difference between the scroll compressor 301 according to the present embodiment and the scroll compressor 1 according to the first embodiment will be mainly described.
- the scroll compressor 301 according to the present embodiment does not have the oil return plate 91 included in the scroll compressor 1 according to the first embodiment.
- the motor 316 has a flow path forming surface 391 as shown in FIG.
- the flow path forming surface 391 is a part of the side surface of the upper coil end 351 a of the stator 351 and is a recessed surface that forms the oil groove 392.
- the oil groove 392 is formed by forming a part of the coil of the coil end 351a into a groove shape.
- the oil groove 392 is a groove located below the auxiliary oil return passage 35 and through which the lubricating oil dropped from the auxiliary oil return passage 35 flows.
- the oil groove 392 has a shape in which the flow path width decreases as it goes from the upper side to the lower side in the vertical direction when viewed along the radial direction of the casing 10.
- the oil groove 392 has a shape that approaches the inner peripheral surface of the casing as it goes from the upper side to the lower side in the vertical direction. That is, the flow path resistance of the oil groove 392 increases from the upper side to the lower side in the vertical direction.
- the oil groove 392 has a flow path resistance portion 392c having the largest flow path resistance at the lower end in the vertical direction.
- the temperature sensor 376 is being fixed to the casing outer peripheral surface.
- the positional relationship between the motor 316 and the temperature sensor 376 is shown in FIGS.
- the temperature sensor 376 is fixed to a portion of the casing outer peripheral surface corresponding to the back surface of the portion of the casing inner peripheral surface that is in contact with the flow path resistance portion 392c.
- the lubricating oil that has passed through the auxiliary oil return passage 35 flows into the oil groove 392.
- the lubricating oil flowing through the oil groove 392 is lubricating oil that has become high temperature due to the operation of the scroll compressor 301.
- a portion of the casing outer peripheral surface corresponding to the back surface of the portion of the inner peripheral surface of the casing in contact with the side surface of the motor 316 in the vicinity of the flow path resistance portion 392c and the flow path resistance portion 392c (hereinafter referred to as “temperature measurement region” in the present embodiment). .) Is a region where the heat of the lubricating oil flowing through the oil groove 392 is transmitted more efficiently than the other part of the outer peripheral surface of the casing.
- the temperature sensor 376 is a part of the temperature measurement region, and is fixed to a portion of the casing outer peripheral surface corresponding to the back surface of the portion of the casing inner peripheral surface that is in contact with the flow path resistance portion 392c. . Therefore, since the heat of the lubricating oil flowing through the flow path resistance portion 392c is transmitted to the temperature sensor 376 only through the trunk casing portion 11, the temperature sensor 376 appropriately sets the temperature of the lubricating oil flowing through the oil groove 392. Can be measured.
- the oil groove 392 according to this modification has a longer time for the lubricating oil to pass than the oil groove extending in the vertical direction. That is, the oil groove 392 of the present modification can increase the amount of heat transferred from the lubricating oil to the casing outer peripheral surface. Therefore, the temperature sensor 376 can appropriately measure the temperature of the lubricating oil flowing inside the scroll compressor 301.
- (2) Modification 4B In the scroll compressor 301 according to the present embodiment, as shown in FIG. 20, the oil groove 392 has a channel width that decreases from the upper side to the lower side in the vertical direction when viewed along the radial direction of the casing 10. However, as shown in FIG. 21, it may have a horizontal flow path.
- the oil groove 392 according to this modification has a longer time for the lubricating oil to pass than the oil groove extending in the vertical direction. That is, the oil groove 392 of the present modification can increase the amount of heat transferred from the lubricating oil to the casing outer peripheral surface. Therefore, the temperature sensor 376 can appropriately measure the temperature of the lubricating oil flowing inside the scroll compressor 301.
- the motor 316 is a distributed winding motor, but may be a concentrated winding motor.
- the flow path forming surface 391 may be a part of the side surface of the insulator.
- the oil groove 392 is formed by forming a part of the side surface of the insulator into a groove shape. Also in this modification, the temperature of the lubricating oil flowing inside the scroll compressor 301 can be measured appropriately.
- the scroll compressor 301 according to this embodiment includes two or more elements selected from the group consisting of an oil groove 392 according to this embodiment, an oil groove according to Modification 4A, and an oil groove according to Modification 4B. You may have a combination.
- the scroll compressor 301 according to the present embodiment further includes an oil return plate 191 included in the scroll compressor 101 according to the second embodiment, and a main frame 223 included in the scroll compressor 201 according to the third embodiment. May be.
- the above-described modification 1A and modification 1B applied to the first embodiment may be applied.
- the temperature sensor 376 included in the scroll compressor 301 according to the present embodiment is a temperature in a temperature measurement region other than a portion of the casing outer peripheral surface corresponding to the back surface of the casing inner peripheral surface portion in contact with the flow path resistance portion 392c. May be measured.
- the compressor according to the present invention has a mechanism for appropriately measuring the temperature inside the compressor, the reliability of the compressor can be improved by performing a protective operation according to the temperature inside the compressor. Therefore, the reliability of the refrigeration apparatus such as an air conditioner can be improved by using the compressor according to the present invention for the refrigeration cycle.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
- Compressor (AREA)
Abstract
Description
温度検知機構は、従来、圧縮機のケーシングの表面温度、又は、圧縮された冷媒を圧縮機外部の冷媒回路に送る吐出管の表面温度を測定することが一般的である。例えば、特許文献1(特開2009-197621号公報)に記載されている圧縮機では、圧縮機のケーシング頂部の表面に温度センサを密着固定するための温度センサ保持機構が備えられている。この温度センサ保持機構によって、圧縮機のケーシング頂部の表面の所定位置に、温度センサを確実に設置することができる。そして、温度センサによって測定されたケーシング表面温度に基づいて、圧縮機の保護動作を行う。また、特許文献2(特許第2503699号)に記載されている圧縮機では、圧縮機の吐出管の表面に固定された温度センサによって、吐出管内の圧縮冷媒の温度が測定される。そして、温度センサによって測定された圧縮冷媒の温度に基づいて、圧縮機の保護動作を行う。
例えば、空気調和装置等の修理及び移設のため、冷凍サイクル内を循環する冷媒を凝縮機及び受液器に回収する圧縮機のポンプダウン運転時には、圧縮機内部を冷媒が流れないため、吐出管の温度は上昇しない。しかし、ポンプダウン運転時においても、圧縮機内部の軸受部等が摺動することによって、圧縮機内部を循環する潤滑油の温度は上昇するので、圧縮機内部の温度も上昇する。そのため、圧縮機の吐出管の温度を測定しても、圧縮機内部の温度上昇を適切に検知することができない。
また、ケーシング表面温度に基づいて圧縮機内部の温度を測定する場合、潤滑油がほとんど流れない圧縮機内部の空間近傍のケーシング表面温度を測定しても、圧縮機内部の温度上昇を適切に検知することができない。
そこで、本発明の目的は、圧縮機内部の温度を適切に測定することで、圧縮機の信頼性を向上させることにある。
また、第1観点に係る圧縮機では、圧縮機内部の摺動部を潤滑にした高温の潤滑油が、ケーシングの内周面に接触することによって、潤滑油の熱がケーシングに伝わる。また、高温の潤滑油が、流路形成部材に接触することによって、潤滑油の熱が流路形成部材を介してケーシングに伝わる。その結果、ケーシングの外周面の温度が上昇する。従って、温度センサ等の温度測定機構を用いてケーシングの外周面の温度を測定することによって、圧縮機内部の摺動部を潤滑にした高温の潤滑油の温度を測定することができる。高温の潤滑油の温度は、圧縮機内部の温度の指標として用いることができる。
第2観点に係る圧縮機では、圧縮機内部の摺動部を潤滑にした高温の潤滑油は、ケーシングの内周面に接している空間を有する油流路を流れる。これにより、圧縮機内部の摺動部を潤滑にした高温の潤滑油がケーシングの内周面に接触することで、潤滑油の熱がケーシングに伝わる。また、流路形成部材はケーシングの内周面と接している部分を有する。これにより、圧縮機内部の摺動部を潤滑にした高温の潤滑油が流路形成部材に接触することで、潤滑油の熱が流路形成部材を介してケーシングに伝わる。従って、温度測定領域は、潤滑油の熱が伝わりやすい部分であるので、温度測定機構は、温度測定領域又はその近傍領域の温度を測定することで、潤滑油の温度をより適切に測定することができる。
第3観点に係る圧縮機では、温度測定機構は、温度測定領域の温度を測定する。温度測定領域は、潤滑油の熱が特に伝わりやすい部分であるので、温度測定機構は、温度測定領域の温度を測定することで、潤滑油の温度をより適切に測定することができる。
また、第4観点に係る圧縮機では、狭窄部の流路断面は、その長軸方向がケーシングの周方向に沿っている略扁平形状を有している。従って、狭窄部の流路断面がケーシングの内周面に接している場合には、狭窄部と接しているケーシングの内周面の領域が大きいので、狭窄部を流れる潤滑油の熱がケーシングの内周面に伝わりやすい。すなわち、狭窄部の近傍に位置する温度測定領域は、潤滑油の熱が特に伝わりやすい部分であるので、温度測定機構は、狭窄部の近傍に位置する温度測定領域の温度を測定することで、潤滑油の温度をより適切に測定することができる。
第9観点に係る圧縮機では、流路形成部材は、密閉容器の径方向に傾斜している部分を有する。これにより、油流路を潤滑油が流れる際に、流路形成部材の傾斜している部分に潤滑油が接触することで、流路形成部材に接触する潤滑油の量が増加する。従って、潤滑油の熱が流路形成部材に伝わりやすい。また、この圧縮機では、流路形成部材は、密閉容器の内周面に接している部分を有するので、潤滑油の熱は流路形成部材を介して密閉容器に間接的に伝わる。従って、温度測定機構は、潤滑油の温度をより適切に測定することができる。
第9観点に係る圧縮機は、温度測定機構が測定した潤滑油の温度が所定の温度以上に達した場合に、圧縮機内部の温度が異常に上昇したと判断して圧縮機の運転を停止させることで、圧縮機の信頼性を向上させることができる。
第10観点に係る圧縮機では、油流路を構成する全ての空間は、密閉容器の内周面に接している。すなわち、油流路を流れる潤滑油は、密閉容器の内周面に接触しやすいので、温度測定機構は、潤滑油の温度をより適切に測定することができる。
第10観点に係る圧縮機は、温度測定機構が測定した潤滑油の温度が所定の温度以上に達した場合に、圧縮機内部の温度が異常に上昇したと判断して圧縮機の運転を停止させることで、圧縮機の信頼性を向上させることができる。
本発明の第1実施形態に係る圧縮機について、図1乃至図7を参照しながら説明する。本実施形態に係る圧縮機は、高低圧ドーム型のスクロール圧縮機である。本実施形態に係る圧縮機は、凝縮器、膨張機構、蒸発器等と共に冷媒回路を構成し、その冷媒回路を循環する冷媒ガスを圧縮する。
〔構成〕
本実施形態に係るスクロール圧縮機1の構成について説明する。スクロール圧縮機1の縦断面図を図1に示す。以下、スクロール圧縮機1を構成する各部品について、それぞれ説明する。
(1)ケーシング
ケーシング10は、略円筒状の胴部ケーシング部11と、胴部ケーシング部11の上端部に気密状に溶接される椀状の上壁部12と、胴部ケーシング部11の下端部に気密状に溶接される椀状の底壁部13とを有する。ケーシング10は、ケーシング10内外において圧力及び温度が変化した場合に変形及び破損が起こりにくい剛性部材で成型される。また、ケーシング10は、胴部ケーシング部11の略円筒状の軸方向が鉛直方向に沿うように設置される。ケーシング10内には、冷媒を圧縮する圧縮機構15と、圧縮機構15の下方に配置されるモータ16と、ケーシング10内を上下方向に延びるように配置される駆動軸17等が収容されている。また、ケーシング10には、後述する吸入管19及び吐出管(図示せず)が気密状に接合されている。
圧縮機構15は、固定スクロール部品24と、旋回スクロール部品26とから構成されている。
固定スクロール部品24は、第1鏡板24aと、第1鏡板24aに直立して形成される渦巻形状(インボリュート状)の第1ラップ24bとを有している。固定スクロール部品24には、主吸入孔(図示せず)と、主吸入孔に隣接する補助吸入孔(図示せず)とが形成されている。主吸入孔により、後述する吸入管19と後述する圧縮室40とが連通され、補助吸入孔により、後述する低圧空間S2と後述する圧縮室40とが連通される。また、第1鏡板24aの中央部には、吐出孔41が形成され、第1鏡板24aの上面には、吐出孔41に連通する拡大凹部42が形成されている。拡大凹部42は、第1鏡板24aの上面に凹設された水平方向に広がる凹部により構成されている。そして、固定スクロール部品24の上面には、この拡大凹部42を塞ぐように蓋体44がボルト44aにより締結固定されている。そして、拡大凹部42に蓋体44が覆い被せられることにより圧縮機構15の運転音を消音させる膨張室からなるマフラー空間45が形成されている。固定スクロール部品24と蓋体44とは、パッキン(図示せず)を介して密着させることによりシールされている。また、固定スクロール部品24には、マフラー空間45と連通し、固定スクロール部品24の下面に開口する第1連絡通路46が形成されている。
(3)主フレーム
主フレーム23は、圧縮機構15の下方に配設され、その外周面においてケーシング10の内壁に気密状に接合されている。このため、ケーシング10の内部は、主フレーム23下方の高圧空間S1と、主フレーム23上方の低圧区間S2とに区画されている。主フレーム23は、主フレーム23の上面に凹設されている主フレーム凹部31と、主フレーム23の下面から下方に延設されている第1軸受部32とを有している。この第1軸受部32には、上下方向に貫通する第1軸受孔33が形成されている。また、主フレーム23は、ボルト等で固定することによって固定スクロール部品24を載置し、後述するオルダム継手39を介して固定スクロール部品24と共に旋回スクロール部品26を挟持している。
主フレーム23は、主フレーム23の外周部に鉛直方向に貫通して形成されている第2連絡通路48を有する。第2連絡通路48は、主フレーム23の上面において第1連絡通路46と連通し、主フレーム23の下面において吐出口49を介して高圧空間S1と連通する。
(4)オルダム継手
オルダム継手39は、旋回スクロール部品26の自転運動を防止するためのリング状部材であって、主フレーム23に形成される長円形状のオルダム溝26dに嵌め込まれている。
モータ16は、主フレーム23の下方に配設されるブラシレスDCモータである。モータ16は、ケーシング10の内壁に固定されるステータ51と、このステータ51の内側に僅かな間隙を備えて回転自在に収容されるロータ52とにより構成されている分布巻きモータである。
ステータ51は、ティース部に銅線が巻回されており、上方および下方にコイルエンド53が形成されている。また、ステータ51の外周面には、ステータ51の上端面から下端面に亘り、かつ、周方向に所定間隔をおいて複数個所に切欠形成されているコアカット部が設けられている。そして、このコアカット部により、胴部ケーシング部11とステータ51との間に上下方向に延びるモータ冷却通路55が形成されている。
(6)副フレーム
副フレーム60は、モータ16の下方に配設されている。副フレーム60は、胴部ケーシング部11に固定されていると共に、第3軸受部60aを有している。
(7)油分離板
油分離板73は、ケーシング10内におけるモータ16の下方に配置され、副フレーム60の上面側に固定されている板状の部材である。油分離板73は、高圧空間S1内を下降する圧縮された冷媒中に含まれる潤滑油を分離する。分離された潤滑油は、ケーシング10底部の油溜まりPへ落下する。
駆動軸17は、圧縮機構15とモータ16とを連結し、ケーシング10内を上下方向に延びるように配置されている。駆動軸17は、主フレーム23の第1軸受孔33を貫通する。駆動軸17の上端部は、旋回スクロール部品26の第2軸受部26cに嵌入している。駆動軸17の下端部は、油溜まりPに位置している。駆動軸17の内部には、軸方向に貫通する給油路61が形成されている。この給油路61は、駆動軸17の上端面と第2鏡板26aの下面とによって形成される油室83と連通している。この油室83は、第2鏡板26aの給油細孔63を介して、固定スクロール部品24と旋回スクロール部品26との摺動部(以下、「圧縮機構15の摺動部」という。)に連通し、最終的に低圧空間S2に繋がる。
(9)油戻し板
油戻し板91は、主フレーム23の副油戻し通路35とモータ冷却通路55とを連通する空間である油流路92を形成する部材である。油戻し板91は、主フレーム23とモータ16との間の高圧空間S1に配設される。油戻し板91の斜視図を図2に示す。油戻し板91の正面図及び背面図を、それぞれ、図3及び図4に示す。なお、図4は、後述する図5の矢印IVから視た油戻し板91の背面図であって、後述する温度センサ76及び温度センサ保持板77が描かれている。図3のV-Vにおける油戻し板91の縦断面図、及びその近傍の構造を図5に示す。図3の矢印VIから視た油戻し板91の下面図、及びその近傍の構造を図6に示す。図1のVII-VIIにおけるスクロール圧縮機1の横断面図を図7に示す。
油戻し板91は、図3乃至図5に示されるように、上部流路形成部91a、中央傾斜流路形成部91b、及び下部流路形成部91cから構成される。油戻し板91は、上部流路形成部91a、中央傾斜流路形成部91b、及び下部流路形成部91cが金属薄板等で一体成形されることで形成される。
油流路92は、油戻し板91とケーシング内周面とによって挟まれた空間である。油流路92は、上部流路92a、中央傾斜流路92b、及び下部流路92cから構成される。上部流路92aは、上部流路形成部91aとケーシング内周面とによって挟まれた空間である。中央傾斜流路92bは、中央傾斜流路形成部91bとケーシング内周面とによって挟まれた空間である。下部流路92cは、下部流路形成部91cとケーシング内周面とによって挟まれた空間である。図3及び図4に示されるように、上部流路92aは中央傾斜流路92bと連通し、中央傾斜流路92bは下部流路92cと連通する。また、図5に示されるように、上部流路92aは副油戻し通路35と連通し、下部流路92cはモータ冷却通路55と連通する。なお、上部流路92a及び下部流路92cの断面は、図6に示されるように、ケーシング10周方向に沿って伸びた略扁平形状を有している。
また、油戻し板91は、図6に示されるように、下部流路92cの断面が上部流路92aの断面に対して偏った位置に配置されるように形成されている。言い換えると、下部流路92cの水平断面形状の重心は、胴部ケーシング部11の水平断面形状の中心と上部流路92aの水平断面形状の重心とを結ぶ直線上に存在しない。
また、油戻し板91は、中央傾斜流路92bのケーシング10径方向の幅、すなわち、中央傾斜流路形成部91bとケーシング内周面との水平方向の距離が、上方から下方へ行くに従って小さくなるように形成されている。すなわち、図5に示されるように、油流路92のケーシング10径方向の流路幅は、上部から下部に行くに従って小さくなっていく部分を有する。
吸入管19は、冷媒を圧縮機構15に導くための管状部材であって、上壁部12に気密状に嵌入されている。
(11)吐出管
吐出管は、高圧空間S1の冷媒をケーシング10から吐出させるための管状部材であって、胴部ケーシング部11に気密状に嵌入されている。
(12)温度センサ
温度センサ76は、図5乃至図7に示されるように、温度センサ保持板77によって、胴部ケーシング部11の外周面(以下、「ケーシング外周面」という)に固定されている。温度センサ保持板77は、スポット溶接等により、ケーシング外周面に固定されている。温度センサ76は、温度センサ保持板77が固定されている位置におけるケーシング外周面の温度を測定する。
〔動作〕
本実施形態に係るスクロール圧縮機1の動作について説明する。具体的には、ケーシング10の内部を潤滑油が流れる過程と、ケーシング10の内部を流れる潤滑油の熱がケーシング外周面に伝えられる過程について、それぞれ説明する。
最初に、ケーシング10の内部を潤滑油が流れる過程について説明する。
潤滑油は、ケーシング10の底部にある油溜まりPに貯留される。駆動軸17に設けられる給油路61の下端部は、油溜まりPの潤滑油中に浸かっている。油溜まりPは、圧縮機構15によって圧縮された冷媒が吐出される高圧空間S1にあるので、給油路61の下端部は高圧空間S1における圧力下にある。一方、給油路61の上端部は、油室83を介して給油細孔63と連通する。給油細孔63は、固定スクロール部品24と旋回スクロール部品26とによって形成される圧縮室40に連通する。この圧縮室40は、冷媒が圧縮されるための空間であるので、圧縮冷媒が吐出される高圧空間S1における圧力より低い圧力下にある。従って、給油路61の上端部の圧力は、給油路61の下端部の圧力より低い。これにより、スクロール圧縮機1が起動して圧縮機構15で冷媒が圧縮されると、給油路61内に発生する差圧によって、油溜まりPに貯留される潤滑油が給油路61内を上昇する。また、駆動軸17の軸回転運動による遠心ポンプ作用によっても、油溜まりPに貯留される潤滑油が給油路61内を上昇する。
一方、第3給油横孔61c及び油室83を経由して第2軸受部26cを潤滑した潤滑油は、主フレーム凹部31の底部に貯留される。その後、潤滑油は、主フレーム23に設けられる油戻し通路82を流れ、副油戻し通路35を落下して、油流路92に供給される。油流路92を上方から下方へ流れた潤滑油は、モータ冷却通路55を経由して、油溜まりPへ落下する。
また、圧縮機構15から高圧空間S1に吐出される圧縮冷媒には、潤滑油の油滴が含まれている。この潤滑油の油滴は、油分離板73によって圧縮冷媒から分離されて、油溜まりPへ落下する。
油流路92において、下部流路92cの流路断面積は、上部流路92a及び中央傾斜流路92bの流路断面積より小さい。従って、下部流路92cを流れる潤滑油の単位時間当たりの流量は、上部流路92a及び中央傾斜流路92bを流れる潤滑油の流量より小さい。これにより、油流路92を上方から下方へ流れる潤滑油の流速は、下部流路92cにおいて低減される。従って、下部流路92cを形成するケーシング内周面及び下部流路形成部91cに潤滑油が接触している時間は、上部流路92a及び中央傾斜流路92bを形成する部分に潤滑油が接触している時間より長い。そのため、下部流路92c及び下部流路形成部91cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分(以下、本実施形態において、「温度測定領域」という。)は、ケーシング外周面の他の部分に比べて、油流路92を流れる潤滑油の熱がより効率的に伝達される。
また、中央傾斜流路形成部91bは、上述したように、ケーシング内周面と対向する部分が、下方に行くに従ってケーシング10の外周側に傾斜している。これにより、中央傾斜流路92bを上方から下方へ流れる潤滑油の一部は、ケーシング内周面と対向する傾斜した部分を伝って流れる。そのため、潤滑油の熱が、ケーシング内周面と対向する傾斜した部分を介して油戻し板91全体に伝わる。従って、油流路92を流れる潤滑油の熱が、温度測定領域へ効率的に伝達される。
〔特徴〕
一般的に、スクロール圧縮機1の運転動作中に発生した異常は、スクロール圧縮機1内部を流れる潤滑油の温度の異常上昇を招きやすい。例えば、固定スクロール部品24の第1ラップ24bの先端部が破損することによって、固定スクロール部品24と旋回スクロール部品26との摺動がスムーズに行われなくなると、破損箇所で摩擦熱が発生して潤滑油の温度が上昇する可能性がある。また、駆動軸17が摩耗することによって、第1軸受部32の摺動がスムーズに行われなくなると、駆動軸17が軸回転中に第1軸受部32に衝突することによって摩擦熱が発生して潤滑油の温度が上昇する可能性がある。また、スクロール圧縮機1の運転負荷が過大になることにより、モータ16に流れる電流値が異常に上昇すると、モータ16の温度が異常に上昇して潤滑油の温度も上昇する。本実施形態に係るスクロール圧縮機1は、潤滑油の温度を適切に測定することで、スクロール圧縮機1の信頼性を向上させることができる。
〔変形例〕
以上、本発明の第1実施形態について図面を参照しながら説明したが、本発明の具体的構成は、本発明の要旨を逸脱しない範囲内で変更可能である。以下、実施形態に係る圧縮機に対する適応可能な変形例について説明する。
(1)変形例1A
本実施形態に係るスクロール圧縮機1では、温度センサ76はケーシング外周面である温度測定領域に固定されているが、ケーシング10の内部に埋め込まれていてもよい。例えば、油流路92の高さにある胴部ケーシング部11の外壁に貫通孔を形成し、温度センサを内部に組み込んだ銅管を貫通孔に挿入してもよい。これにより、温度センサは、内部の潤滑油の温度をより正確に測定することができる。
本実施形態に係るスクロール圧縮機1では、温度センサ76は、ケーシング10の温度測定領域の温度を測定する機構を有するが、運転停止機構をさらに有していてもよい。運転停止機構は、ケーシング10の温度測定領域の測定温度に応じて、スクロール圧縮機1の電源を自動的に発停する電子回路等である。運転停止機構を有する温度センサは、熱膨張率の異なる2枚の金属板を張り合わせたバイメタルを利用したサーモスタットが用いられていてもよい。
本変形例では、運転停止機構は、温度センサが所定値以上の温度を検知した場合に、スクロール圧縮機1の運転動作に異常が発生したと判断して、スクロール圧縮機1の運転を停止する。すなわち、運転停止機構は、温度センサが潤滑油の温度の異常上昇を検知した場合に、スクロール圧縮機1の運転を停止させることで、スクロール圧縮機1の保護動作を行う。これにより、スクロール圧縮機1の信頼性を向上させることができる。
本実施形態に係るスクロール圧縮機1では、温度センサ76は、下部流路92cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分に固定されているが、下部流路形成部91cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分にも固定されていてもよい。この場合における、油戻し板91と温度センサとの位置関係を図8及び図9に示す。図8は、図5の矢印IVから視た、本変形例に係る油戻し板の背面図である。図9は、図3の矢印VIから視た、本変形例に係る油戻し板の下面図、及びその近傍の構造である。
このスクロール圧縮機では、温度センサ176aが、温度センサ保持板177aによって、下部流路92cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分に固定されており、温度センサ176bが、温度センサ保持板177bによって、下部流路形成部91cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分に固定されている。このスクロール圧縮機では、温度センサ176a及び温度センサ176bが温度測定領域に固定されているので、潤滑油の温度を適切に測定することができる。また、このスクロール圧縮機では、2個の温度センサが用いられているので、潤滑油の温度測定の信頼性を向上させることができる。
―第2実施形態―
本発明の第2実施形態に係る圧縮機について、図10乃至図12を参照しながら説明する。本実施形態に係るスクロール圧縮機101は、第1実施形態に係るスクロール圧縮機1と共通する構成、動作および特徴を有している。以下、本実施形態に係るスクロール圧縮機101と第1実施形態に係るスクロール圧縮機1との間の相違点を中心に説明する。
〔構成〕
(1)油戻し板
本実施形態に係るスクロール圧縮機101は、図10に示されるように、モータ16の下方の高圧空間S1に配設され、かつ、油流路192を形成する油戻し板191を備える。以下に説明するように、油戻し板191は、図2に示される第1実施形態で用いられる油戻し板91と同様の形状および機能を有する。
(2)温度センサ
本実施形態では、温度センサ176は、図10に示されるように、ケーシング外周面に固定されている。油戻し板191と温度センサ176との鉛直方向の位置関係を図11に示し、水平方向の位置関係を図12に示す。温度センサ176は、下部流路192cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分に固定されている。
本実施形態では、モータ冷却通路55を通過した潤滑油は、油流路192に流入する。油流路192を流れる潤滑油は、スクロール圧縮機101の運転動作によって高温となった潤滑油である。本実施形態では、第1実施形態と同様に、下部流路192c及び下部流路形成部191cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分(以下、本実施形態において、「温度測定領域」という。)は、ケーシング外周面の他の部分に比べて、油流路192を流れる潤滑油の熱がより効率的に伝達される領域である。
本実施形態では、温度センサ176は、温度測定領域の一部であって、下部流路192cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分に固定されている。従って、下部流路192cを流れる潤滑油の熱は、胴部ケーシング部11のみを介して温度センサ176に伝達されるので、温度センサ176は、油流路192を流れる潤滑油の温度を適切に測定することができる。
本実施形態に係るスクロール圧縮機101では、ケーシング10内部の摺動部を潤滑にした高温の潤滑油が、油戻し板191とケーシング内周面によって形成される油流路192を流れる。油流路192を流れる潤滑油の熱は、ケーシング外周面の温度測定領域へ効率的に伝達される。温度センサ176は、温度測定領域の温度を測定することによって、スクロール圧縮機101内を流れる潤滑油の温度を適切に測定することができる。
〔変形例〕
本実施形態に係るスクロール圧縮機101は、第1実施形態に係るスクロール圧縮機1が有する油戻し板91をさらに有していてもよい。本実施形態は、第1実施形態に適用される上述の変形例1Aおよび変形例1Bが適用されてもよい。
―第3実施形態―
本発明の第3実施形態に係る圧縮機について、図13乃至図15を参照しながら説明する。本実施形態に係るスクロール圧縮機201は、第1実施形態に係るスクロール圧縮機1と共通する構成、動作および特徴を有している。以下、本実施形態に係るスクロール圧縮機201と第1実施形態に係るスクロール圧縮機1との間の相違点を中心に説明する。
〔構成〕
(1)主フレーム
本実施形態に係るスクロール圧縮機201では、図13に示されるように、主フレーム223の外周部に形成される副油戻し通路292は、主フレーム223の側面の一部である流路形成面291とケーシング内周面との間の空間である。流路形成面291は、ケーシング内周面に離間して対向し、かつ、油戻し通路82が開口する面である。
(2)温度センサ
本実施形態では、温度センサ276は、ケーシング外周面に固定されている。主フレーム223と温度センサ276との鉛直方向の位置関係を図13に示し、水平方向の位置関係を図14に示す。温度センサ276は、流路抵抗部292cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分に固定されている。
本実施形態では、油戻し通路82を通過した潤滑油は、副油戻し通路292に流入する。副油戻し通路292を流れる潤滑油は、スクロール圧縮機201の運転動作によって高温となった潤滑油である。流路抵抗部292c及び流路抵抗部292c近傍の主フレーム223側面に接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分(以下、本実施形態において、「温度測定領域」という。)は、ケーシング外周面の他の部分に比べて、油流路292を流れる潤滑油の熱がより効率的に伝達される領域である。
本実施形態では、温度センサ276は、温度測定領域の一部であって、流路抵抗部292cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分に固定されている。従って、流路抵抗部292cを流れる潤滑油の熱が、胴部ケーシング部11のみを介して温度センサ276に伝達されるので、温度センサ276は、油流路292を流れる潤滑油の温度を適切に測定することができる。
本実施形態に係るスクロール圧縮機201では、ケーシング10内部の摺動部を潤滑にした高温の潤滑油が、副油戻し通路292を流れる。副油戻し通路292を流れる潤滑油の熱は、ケーシング外周面の温度測定領域へ効率的に伝達される。温度センサ276は、温度測定領域の温度を測定することによって、スクロール圧縮機201内部を流れる潤滑油の温度を適切に測定することができる。
〔変形例〕
(1)変形例3A
本実施形態に係るスクロール圧縮機201では、副油戻し通路292は、図15に示されるように、ケーシング10の径方向に沿って見た場合に、鉛直方向上方から下方へ行くに従って流路幅が小さくなる形状を有しているが、図16に示されるように、流路幅は一定で、かつ、鉛直方向に対して傾斜している形状を有していてもよい。
(2)変形例3B
本実施形態に係るスクロール圧縮機201では、副油戻し通路292は、図15に示されるように、ケーシング10の径方向に沿って見た場合に、鉛直方向上方から下方へ行くに従って流路幅が小さくなる形状を有しているが、図17Aおよび図17Bに示されるように、流路幅は一定で、かつ、主フレーム223に取り付けられる蓋293によって下側の開口部の一部が塞がれていてもよい。
(3)変形例3C
本実施形態に係るスクロール圧縮機201は、本実施形態に係る副油戻し通路292、変形例3Aに係る副油戻し通路、および、変形例3Bに係る蓋293からなるグループから選択される2つ以上の要素の組み合わせを有していてもよい。
(4)変形例3D
本実施形態に係るスクロール圧縮機201は、第1実施形態に係るスクロール圧縮機1が有する油戻し板91、および、第2実施形態に係るスクロール圧縮機101が有する油戻し板191をさらに有していてもよい。本実施形態は、第1実施形態に適用される上述の変形例1Aおよび変形例1Bが適用されてもよい。
―第4実施形態―
本発明の第4実施形態に係る圧縮機について、図18及び図19を参照しながら説明する。本実施形態に係るスクロール圧縮機301は、第1実施形態に係るスクロール圧縮機1と共通する構成、動作および特徴を有している。以下、本実施形態に係るスクロール圧縮機301と第1実施形態に係るスクロール圧縮機1との間の相違点を中心に説明する。
〔構成〕
(1)モータ
本実施形態に係るスクロール圧縮機301は、第1実施形態に係るスクロール圧縮機1が有する油戻し板91を有さない。本実施形態に係るスクロール圧縮機301では、図18に示されるように、モータ316は流路形成面391を有する。流路形成面391は、ステータ351の上側のコイルエンド351aの側面の一部であって、油溝392を形成する窪んだ面である。油溝392は、コイルエンド351aのコイルの一部を溝の形状に成形することによって形成される。
(2)温度センサ
本実施形態では、温度センサ376は、ケーシング外周面に固定されている。モータ316と温度センサ376との位置関係を図18及び図19に示す。温度センサ376は、流路抵抗部392cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分に固定されている。
本実施形態では、副油戻し通路35を通過した潤滑油は、油溝392に流入する。油溝392を流れる潤滑油は、スクロール圧縮機301の運転動作によって高温となった潤滑油である。流路抵抗部392c及び流路抵抗部392c近傍のモータ316側面に接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分(以下、本実施形態において、「温度測定領域」という。)は、ケーシング外周面の他の部分に比べて、油溝392を流れる潤滑油の熱がより効率的に伝達される領域である。
本実施形態では、温度センサ376は、温度測定領域の一部であって、流路抵抗部392cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分に固定されている。従って、流路抵抗部392cを流れる潤滑油の熱が、胴部ケーシング部11のみを介して温度センサ376に伝達されるので、温度センサ376は、油溝392を流れる潤滑油の温度を適切に測定することができる。
本実施形態に係るスクロール圧縮機301では、ケーシング10内部の摺動部を潤滑にした高温の潤滑油が、油溝392を流れる。油溝392を流れる潤滑油の熱は、ケーシング外周面の温度測定領域へ効率的に伝達される。温度センサ376は、温度測定領域の温度を測定することによって、スクロール圧縮機301内部を流れる潤滑油の温度を適切に測定することができる。
〔変形例〕
(1)変形例4A
本実施形態に係るスクロール圧縮機301では、油溝392は、図20に示されるように、ケーシング10の径方向に沿って見た場合に、鉛直方向上方から下方へ行くに従って流路幅が小さくなる形状を有しているが、図20に示されるように、流路幅は一定で、かつ、鉛直方向に対して傾斜している形状を有していてもよい。
(2)変形例4B
本実施形態に係るスクロール圧縮機301では、油溝392は、図20に示されるように、ケーシング10の径方向に沿って見た場合に、鉛直方向上方から下方へ行くに従って流路幅が小さくなる形状を有しているが、図21に示されるように、水平方向の流路を有していてもよい。
本変形例に係る油溝392は、鉛直方向に伸びる油溝に比べて、潤滑油が通過する時間が長い。すなわち、本変形例の油溝392は、潤滑油からケーシング外周面へ伝達される熱量を増加することができる。従って、温度センサ376は、スクロール圧縮機301内部を流れる潤滑油の温度を適切に測定することができる。
本実施形態に係るスクロール圧縮機301では、モータ316は、分布巻きモータであるが、集中巻きモータであってもよい。また、本変形例では、モータ316がインシュレータを有する集中巻きモータである場合、流路形成面391がインシュレータの側面の一部であってもよい。この場合、油溝392は、インシュレータの側面の一部を溝の形状に成形することによって形成される。本変形例においても、スクロール圧縮機301内部を流れる潤滑油の温度を適切に測定することができる。
(4)変形例4D
本実施形態に係るスクロール圧縮機301は、本実施形態に係る油溝392、変形例4Aに係る油溝、および、変形例4Bに係る油溝からなるグループから選択される2つ以上の要素の組み合わせを有していてもよい。
本実施形態に係るスクロール圧縮機301は、第2実施形態に係るスクロール圧縮機101が有する油戻し板191、および、第3実施形態に係るスクロール圧縮機201が有する主フレーム223をさらに有していてもよい。本実施形態は、第1実施形態に適用される上述の変形例1Aおよび変形例1Bが適用されてもよい。
また、本実施形態に係るスクロール圧縮機301が有する温度センサ376は、流路抵抗部392cに接しているケーシング内周面の部分の裏面に相当するケーシング外周面の部分以外の温度測定領域の温度を測定してもよい。
10 ケーシング
15 圧縮機構
16,316 モータ
17 駆動軸
23,223 主フレーム
76,176,276,376 温度測定機構(温度センサ)
82 油戻し通路
91,191 流路形成部材(油戻し板)
291,391 流路形成面
92,192 油流路
292 油流路(副油戻し通路)
392 油流路(油溝)
92c,192c 狭窄部(下部流路)
292c,392c 狭窄部(流路抵抗部)
Claims (8)
- 潤滑油を底部に貯留するケーシング(10)と、
前記ケーシングの内部に配設され、冷媒を圧縮する圧縮機構(15)と、
前記ケーシングの内部に配設され、前記圧縮機構を駆動する駆動軸(17)と、
前記圧縮機構を載置し、かつ、前記ケーシングの内周面の全周に亘って気密状に接合され、前記駆動軸を回転自在に支持する主フレーム(23,223)と、
前記主フレームの下方に配設され、前記駆動軸を駆動するモータ(16,316)と、
前記ケーシングの内部に配設され、前記ケーシングの内周面の近傍において前記圧縮機構および前記駆動軸を含む摺動部を潤滑にする潤滑油が流れる空間である油流路(92,192,292,392)を形成する流路形成部材(91,191)と、
前記ケーシングの外部に配設され、前記ケーシングの外周面の部分であって、前記油流路の近傍に位置する部分の温度を測定する温度測定機構(76,176,276,376)と、
を備える、
圧縮機(1,101,201,301)。 - 前記油流路は、前記ケーシングの内周面と接している空間を有し、
前記流路形成部材は、前記ケーシングの内周面と接している部分を有し、
前記温度測定機構は、前記油流路及び前記流路形成部材に接している前記ケーシングの内周面の部分の裏面に相当する前記ケーシングの外周面の部分である温度測定領域の温度、又は、前記温度測定領域の近傍の温度の少なくとも一方を測定する、
請求項1に記載の圧縮機。 - 前記温度測定機構は、前記温度測定領域の温度を測定する、
請求項2に記載の圧縮機。 - 前記油流路は、略扁平形状の流路断面を有する空間である狭窄部(92c,192c,292c,392c)を有し、
前記狭窄部は、前記流路断面の長軸方向が前記ケーシングの周方向に沿っている形状を有し、かつ、前記狭窄部を除く前記油流路の流路断面積よりも小さい流路断面積を有し、
前記温度測定機構は、前記温度測定領域であって、前記狭窄部の近傍の温度を測定する、
請求項3に記載の圧縮機。 - 前記流路形成部材は、前記主フレームの下方、かつ、前記モータの上方に配設される板部材である油戻し板(91)であり、
前記油流路(92)は、前記ケーシングの内周面と前記油戻し板との間の空間である、
請求項1~4のいずれか1項に記載の圧縮機。 - 前記流路形成部材は、前記モータの下方に配設される板部材である油戻し板(191)であり、
前記油流路(192)は、前記ケーシングの内周面と前記油戻し板との間の空間である、
請求項1~4のいずれか1項に記載の圧縮機。 - 前記主フレーム(223)は、前記摺動部を潤滑にした潤滑油が流れる油戻し通路(82)を有し、
前記流路形成部材は、前記主フレームの側面の一部であって、前記ケーシングの内周面に離間して対向し、かつ、前記油戻し通路が開口する流路形成面(291)を有し、
前記油流路(292)は、前記ケーシングの内周面と前記流路形成面との間の空間である、
請求項1~4のいずれか1項に記載の圧縮機。 - 前記流路形成部材は、前記モータ(316)の外周面の一部である流路形成面(391)を有し、
前記油流路(392)は、前記ケーシングの内周面と前記流路形成面との間の空間である、
請求項1~4のいずれか1項に記載の圧縮機。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11734681.7A EP2527654B1 (en) | 2010-01-20 | 2011-01-19 | Compressor |
BR112012017932A BR112012017932B8 (pt) | 2010-01-20 | 2011-01-19 | Compressor |
ES11734681.7T ES2681217T3 (es) | 2010-01-20 | 2011-01-19 | Compresor |
US13/522,922 US9568000B2 (en) | 2010-01-20 | 2011-01-19 | Compressor |
KR1020127021566A KR101375500B1 (ko) | 2010-01-20 | 2011-01-19 | 압축기 |
CN201180006087.8A CN102713288B (zh) | 2010-01-20 | 2011-01-19 | 压缩机 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-010222 | 2010-01-20 | ||
JP2010010222 | 2010-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011090075A1 true WO2011090075A1 (ja) | 2011-07-28 |
Family
ID=44306875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/050876 WO2011090075A1 (ja) | 2010-01-20 | 2011-01-19 | 圧縮機 |
Country Status (9)
Country | Link |
---|---|
US (1) | US9568000B2 (ja) |
EP (1) | EP2527654B1 (ja) |
JP (1) | JP4748285B1 (ja) |
KR (1) | KR101375500B1 (ja) |
CN (1) | CN102713288B (ja) |
BR (1) | BR112012017932B8 (ja) |
ES (1) | ES2681217T3 (ja) |
TR (1) | TR201807782T4 (ja) |
WO (1) | WO2011090075A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013142494A1 (en) * | 2012-03-23 | 2013-09-26 | Bitzer Kühlmaschinenbau Gmbh | Compressor with oil return passage formed between motor and shell |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101375500B1 (ko) * | 2010-01-20 | 2014-03-18 | 다이킨 고교 가부시키가이샤 | 압축기 |
US9011105B2 (en) * | 2012-03-23 | 2015-04-21 | Bitzer Kuehlmaschinenbau Gmbh | Press-fit bearing housing with large gas passages |
JP6239625B2 (ja) * | 2012-09-25 | 2017-11-29 | ジャガー・ランド・ローバー・リミテッドJaguar Land Rover Limited | 車両サスペンションシステムのためのノイズサプレッサ |
CN104937273B (zh) * | 2013-01-16 | 2017-03-08 | 三菱电机株式会社 | 密闭型压缩机及具有该密闭型压缩机的蒸汽压缩式制冷循环装置 |
CN105443393A (zh) * | 2014-05-29 | 2016-03-30 | 丹佛斯(天津)有限公司 | 压缩机的回油装置及压缩机 |
CN105156330A (zh) * | 2014-05-30 | 2015-12-16 | 丹佛斯(天津)有限公司 | 用于涡旋压缩机的回油装置和涡旋压缩机 |
KR102226456B1 (ko) * | 2014-08-07 | 2021-03-11 | 엘지전자 주식회사 | 압축기 |
JP6596233B2 (ja) * | 2015-05-20 | 2019-10-23 | 日立ジョンソンコントロールズ空調株式会社 | 密閉型スクロール圧縮機 |
KR101966650B1 (ko) * | 2017-09-19 | 2019-04-08 | (주)대주기계 | 고속 고효율 터보 공기압축기 |
US11506206B2 (en) * | 2017-12-22 | 2022-11-22 | Daikin Industries, Ltd. | Compressor having casing and temperature detector thereon |
CN111836966B (zh) * | 2018-03-14 | 2022-09-16 | 三菱电机株式会社 | 压缩机 |
EP3779199A4 (en) * | 2018-03-30 | 2021-12-01 | Daikin Industries, Ltd. | COMPRESSOR, REFRIGERATION CYCLE DEVICE |
JP6696537B2 (ja) * | 2018-08-09 | 2020-05-20 | ダイキン工業株式会社 | 圧縮機、および、圧縮機の製造方法 |
JP7225040B2 (ja) * | 2019-06-27 | 2023-02-20 | 株式会社クボタ | 液冷モータ |
JP6927267B2 (ja) * | 2019-10-29 | 2021-08-25 | ダイキン工業株式会社 | 圧縮機 |
US11421922B2 (en) * | 2020-04-22 | 2022-08-23 | Haier Us Appliance Solutions, Inc. | Heat dissipation assembly for a linear compressor |
JP6888157B1 (ja) * | 2020-07-17 | 2021-06-16 | 日立ジョンソンコントロールズ空調株式会社 | スクロール圧縮機、及び冷凍サイクル装置 |
CN114087175A (zh) * | 2020-08-24 | 2022-02-25 | 广东美的环境科技有限公司 | 涡旋压缩机和制冷设备 |
CN216278499U (zh) * | 2021-03-31 | 2022-04-12 | 丹佛斯(天津)有限公司 | 油管安装组件和涡旋压缩机 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2503699B2 (ja) | 1989-12-14 | 1996-06-05 | ダイキン工業株式会社 | 圧縮機の吐出管温度制御装置 |
JP2005344612A (ja) * | 2004-06-03 | 2005-12-15 | Matsushita Electric Ind Co Ltd | 密閉型圧縮機および冷凍装置 |
JP2009197621A (ja) | 2008-02-20 | 2009-09-03 | Panasonic Corp | 圧縮機の温度センサー保持装置 |
JP2009216026A (ja) * | 2008-03-12 | 2009-09-24 | Panasonic Corp | 縦置き密閉型圧縮機および空気調和機 |
JP4513238B2 (ja) * | 2001-06-20 | 2010-07-28 | 株式会社富士通ゼネラル | 密閉型圧縮機 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3877837A (en) * | 1973-12-27 | 1975-04-15 | Lennox Ind Inc | Compressor control with thermal density sensor |
JPS59224493A (ja) * | 1983-06-03 | 1984-12-17 | Mitsubishi Electric Corp | スクロ−ル圧縮機 |
JPS60187789A (ja) * | 1984-03-05 | 1985-09-25 | Mitsubishi Electric Corp | スクロ−ル圧縮機 |
US4666381A (en) * | 1986-03-13 | 1987-05-19 | American Standard Inc. | Lubricant distribution system for scroll machine |
JPH06103038B2 (ja) * | 1986-10-23 | 1994-12-14 | 松下電器産業株式会社 | スクロ−ル気体圧縮機 |
JPH055267Y2 (ja) * | 1987-05-19 | 1993-02-10 | ||
JPH06100185B2 (ja) * | 1987-07-10 | 1994-12-12 | 株式会社日立製作所 | スクロ−ル圧縮機 |
US4997349A (en) * | 1989-10-05 | 1991-03-05 | Tecumseh Products Company | Lubrication system for the crank mechanism of a scroll compressor |
JP2903506B2 (ja) * | 1993-07-16 | 1999-06-07 | 三菱電機株式会社 | スクロール圧縮機 |
US5533875A (en) * | 1995-04-07 | 1996-07-09 | American Standard Inc. | Scroll compressor having a frame and open sleeve for controlling gas and lubricant flow |
US5765994A (en) * | 1995-07-14 | 1998-06-16 | Barbier; William J. | Low oil detector with automatic reset |
JPH109685A (ja) | 1996-06-20 | 1998-01-16 | Matsushita Electric Ind Co Ltd | 温度センサー取付金具 |
JPH109160A (ja) * | 1996-06-24 | 1998-01-13 | Daikin Ind Ltd | スクロール圧縮機 |
US6276901B1 (en) * | 1999-12-13 | 2001-08-21 | Tecumseh Products Company | Combination sight glass and sump oil level sensor for a hermetic compressor |
US6280146B1 (en) * | 2000-02-24 | 2001-08-28 | Scroll Technologies | Sealed compressor using hot oil to actuate protector switch |
JP2001248574A (ja) * | 2000-03-03 | 2001-09-14 | Denso Corp | スクロール圧縮機 |
US6406265B1 (en) * | 2000-04-21 | 2002-06-18 | Scroll Technologies | Compressor diagnostic and recording system |
US6648607B2 (en) * | 2000-10-17 | 2003-11-18 | Scroll Technologies | Scroll compressor with oil reservoir associated with motor protector |
US6485268B1 (en) * | 2000-10-17 | 2002-11-26 | Scroll Technologies | Oil utilized as motor protector trip for scroll compressor |
JP3843333B2 (ja) * | 2002-09-11 | 2006-11-08 | 株式会社日立製作所 | スクロール流体機械 |
JP3685180B2 (ja) * | 2003-04-14 | 2005-08-17 | ダイキン工業株式会社 | 密閉型圧縮機 |
US6896498B1 (en) * | 2004-04-07 | 2005-05-24 | Scroll Technologies | Scroll compressor with hot oil temperature responsive relief of back pressure chamber |
US20050254977A1 (en) * | 2004-05-13 | 2005-11-17 | Matsushita Electric Industrial Co., Ltd. | Hermetic compressor and refrigeration unit |
CN100434709C (zh) * | 2004-06-28 | 2008-11-19 | 乐金电子(天津)电器有限公司 | 涡旋式压缩机的温度传感器设置结构 |
JP2006029160A (ja) * | 2004-07-14 | 2006-02-02 | Matsushita Electric Ind Co Ltd | 密閉型圧縮機 |
US8105054B2 (en) * | 2004-08-26 | 2012-01-31 | Scroll Technologies | Oil return tube aligned over motor protector in scroll compressor |
KR100619741B1 (ko) * | 2004-09-13 | 2006-09-12 | 엘지전자 주식회사 | 오일토출 저감기능을 구비한 고압식 스크롤 압축기 |
CN101153600A (zh) * | 2006-09-29 | 2008-04-02 | 富士通将军股份有限公司 | 旋转压缩机和热泵系统 |
JP4274284B2 (ja) * | 2007-05-02 | 2009-06-03 | ダイキン工業株式会社 | 圧縮機 |
CN101372961A (zh) * | 2007-08-22 | 2009-02-25 | 泰州乐金电子冷机有限公司 | 涡旋式压缩机的油回收装置 |
KR101375500B1 (ko) * | 2010-01-20 | 2014-03-18 | 다이킨 고교 가부시키가이샤 | 압축기 |
-
2011
- 2011-01-19 KR KR1020127021566A patent/KR101375500B1/ko active IP Right Grant
- 2011-01-19 ES ES11734681.7T patent/ES2681217T3/es active Active
- 2011-01-19 US US13/522,922 patent/US9568000B2/en active Active
- 2011-01-19 EP EP11734681.7A patent/EP2527654B1/en active Active
- 2011-01-19 CN CN201180006087.8A patent/CN102713288B/zh not_active Expired - Fee Related
- 2011-01-19 JP JP2011008633A patent/JP4748285B1/ja not_active Expired - Fee Related
- 2011-01-19 TR TR2018/07782T patent/TR201807782T4/tr unknown
- 2011-01-19 WO PCT/JP2011/050876 patent/WO2011090075A1/ja active Application Filing
- 2011-01-19 BR BR112012017932A patent/BR112012017932B8/pt active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2503699B2 (ja) | 1989-12-14 | 1996-06-05 | ダイキン工業株式会社 | 圧縮機の吐出管温度制御装置 |
JP4513238B2 (ja) * | 2001-06-20 | 2010-07-28 | 株式会社富士通ゼネラル | 密閉型圧縮機 |
JP2005344612A (ja) * | 2004-06-03 | 2005-12-15 | Matsushita Electric Ind Co Ltd | 密閉型圧縮機および冷凍装置 |
JP2009197621A (ja) | 2008-02-20 | 2009-09-03 | Panasonic Corp | 圧縮機の温度センサー保持装置 |
JP2009216026A (ja) * | 2008-03-12 | 2009-09-24 | Panasonic Corp | 縦置き密閉型圧縮機および空気調和機 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2527654A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013142494A1 (en) * | 2012-03-23 | 2013-09-26 | Bitzer Kühlmaschinenbau Gmbh | Compressor with oil return passage formed between motor and shell |
US9181949B2 (en) | 2012-03-23 | 2015-11-10 | Bitzer Kuehlmaschinenbau Gmbh | Compressor with oil return passage formed between motor and shell |
Also Published As
Publication number | Publication date |
---|---|
BR112012017932B1 (pt) | 2021-08-24 |
EP2527654A1 (en) | 2012-11-28 |
ES2681217T3 (es) | 2018-09-12 |
EP2527654B1 (en) | 2018-04-25 |
KR20120112802A (ko) | 2012-10-11 |
JP4748285B1 (ja) | 2011-08-17 |
US20120294733A1 (en) | 2012-11-22 |
BR112012017932A2 (pt) | 2020-08-25 |
CN102713288A (zh) | 2012-10-03 |
US9568000B2 (en) | 2017-02-14 |
TR201807782T4 (tr) | 2018-06-21 |
BR112012017932B8 (pt) | 2022-09-27 |
EP2527654A4 (en) | 2017-04-26 |
JP2011169316A (ja) | 2011-09-01 |
CN102713288B (zh) | 2015-01-07 |
KR101375500B1 (ko) | 2014-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4748285B1 (ja) | 圧縮機 | |
JP5516607B2 (ja) | 圧縮機及び冷凍装置 | |
US20060013697A1 (en) | Hermetic compressor | |
JP2006274807A (ja) | 横形スクロール圧縮機 | |
WO2004081384A1 (ja) | 密閉型圧縮機 | |
JP2013108389A (ja) | 圧縮機および冷凍装置 | |
JP5444850B2 (ja) | 圧縮機 | |
WO2018159449A1 (ja) | 圧縮機 | |
JP2017210898A (ja) | スクロール圧縮機 | |
JP5134885B2 (ja) | 密閉式電動圧縮機 | |
JP5209279B2 (ja) | スクロール圧縮機 | |
JP5120387B2 (ja) | 圧縮機 | |
JP2010144681A (ja) | 密閉型圧縮機 | |
JPS62126288A (ja) | 密閉形スクロ−ル圧縮機 | |
JP2009007990A (ja) | 圧縮機 | |
JP3861633B2 (ja) | 密閉型圧縮機 | |
JP7206490B2 (ja) | スクロール型圧縮機 | |
WO2022054551A1 (ja) | 圧縮機 | |
JP2011149326A (ja) | 圧縮機 | |
JP2009007992A (ja) | 圧縮機 | |
JPH07189964A (ja) | 密閉型電動圧縮機 | |
JP4134331B2 (ja) | 密閉形スクロール圧縮機 | |
JP2009047063A (ja) | 密閉式電動圧縮機 | |
JP2015045290A (ja) | 密閉型圧縮機 | |
JP2013238373A (ja) | 冷凍装置の室外ユニット |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180006087.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11734681 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13522922 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011734681 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6784/CHENP/2012 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 20127021566 Country of ref document: KR Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012017932 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012017932 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120719 |