WO2011089904A1 - 水素生成デバイス - Google Patents

水素生成デバイス Download PDF

Info

Publication number
WO2011089904A1
WO2011089904A1 PCT/JP2011/000269 JP2011000269W WO2011089904A1 WO 2011089904 A1 WO2011089904 A1 WO 2011089904A1 JP 2011000269 W JP2011000269 W JP 2011000269W WO 2011089904 A1 WO2011089904 A1 WO 2011089904A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
counter electrode
separator
generation device
hydrogen generation
Prior art date
Application number
PCT/JP2011/000269
Other languages
English (en)
French (fr)
Inventor
鈴木孝浩
野村幸生
羽藤一仁
谷口昇
黒羽智宏
徳弘憲一
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2011550856A priority Critical patent/JP5628840B2/ja
Priority to CN201180006506.8A priority patent/CN102713010B/zh
Priority to US13/522,855 priority patent/US8734625B2/en
Priority to EP11734511.6A priority patent/EP2527495B1/en
Publication of WO2011089904A1 publication Critical patent/WO2011089904A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen generation device intended to obtain hydrogen gas by decomposing water into hydrogen and oxygen using light.
  • Patent Documents 1 and 2 Conventionally, as a method for using a semiconductor material that functions as a photocatalyst, it is known to collect water by collecting light by irradiating the semiconductor material with light, or to collect electric energy (for example, Patent Documents 1 and 2).
  • Patent Document 1 discloses a water-decomposing semiconductor photoelectrode having a structure in which a photocatalyst and a solar cell are superimposed, and a water-decomposing system using the same.
  • the semiconductor photoelectrode includes, in order from the light receiving surface side, a photocatalyst film, a transparent conductive film, a transparent substrate provided with electrodes for electrically connecting the front and back surfaces, a transparent conductive film, an electrolyte solution, and a dye. It comprises a supported titanium oxide layer, a metal substrate, and a hydrogen generation catalyst layer.
  • Patent Document 1 discloses that the semiconductor photoelectrode is irradiated with sunlight to decompose water and collect hydrogen gas and oxygen gas. Specifically, it is described that a film made of a material selected from the group consisting of titanium oxide, tungsten oxide and ferric trioxide is used as the photocatalytic film.
  • Patent Document 2 discloses a regenerative photoelectrochemical cell including a polycrystalline metal oxide semiconductor as a photocatalyst.
  • Patent Document 2 discloses a photoelectrochemical cell in which a polycrystalline metal oxide semiconductor does not corrode and has an improved electric energy yield in the visible spectrum (more specifically, in the spectrum of sunlight) and Its use is disclosed.
  • JP 2006-265697 A Japanese Patent No. 2664194
  • the surface between the photocatalyst film surface that is an oxygen generation site and the hydrogen generation catalyst layer surface that is a hydrogen generation site in the semiconductor photoelectrode for water splitting is a semiconductor. They are separated by the photoelectrode itself. Therefore, protons move only through gaps provided at the lower part of the semiconductor photoelectrode, and the protons necessary for hydrogen generation do not sufficiently move from the photocatalyst film side to the hydrogen generation catalyst layer side. As a result, the proton generation rate is controlled in the vicinity of the hydrogen generation catalyst layer, and the reaction efficiency decreases as the generation reaction of hydrogen and oxygen proceeds by irradiation with light. In addition, since there is no mechanism for preventing gas mixing between the oxygen generation site and the hydrogen generation site, the generated hydrogen gas and oxygen gas are mixed with each other and are difficult to separate and recover.
  • the photoelectrochemical cell and the method of use disclosed in Patent Document 2 utilize the principle of operation of a general dye-sensitized solar cell. That is, since the technique disclosed in Patent Document 2 is to extract light energy by converting it into electric energy, it cannot be used as it is as a technique for decomposing water and extracting hydrogen. Specifically, electrons and holes generated by irradiating light to a dye-supported titanium oxide layer (polycrystalline metal oxide semiconductor as a photocatalyst) pass through an external circuit and then undergo an oxidation-reduction reaction of the electrolyte. Since both are consumed, water molecules in the electrolyte aqueous solution cannot be oxidized and reduced. As a result, the photoelectrochemical cell cannot produce oxygen and hydrogen.
  • a dye-supported titanium oxide layer polycrystalline metal oxide semiconductor as a photocatalyst
  • the present invention is a device that collects hydrogen using a photocatalytic water decomposition reaction, and that the efficiency of hydrogen and oxygen generation reaction decreases as the reaction proceeds.
  • An object of the present invention is to provide a hydrogen generation device that suppresses the efficiency of the hydrogen generation reaction and can easily recover the generated hydrogen.
  • the present invention A transparent substrate; A photocatalytic electrode formed by a transparent conductive layer disposed on the transparent substrate and a photocatalytic layer disposed on the transparent conductive layer; A counter electrode electrically connected to the transparent conductive layer; An electrolyte layer containing water provided between the photocatalytic electrode and the counter electrode; A separator that divides the electrolyte layer into a first electrolyte layer in contact with the photocatalytic electrode and a second electrolyte layer in contact with the counter electrode; A first gas outlet for taking out oxygen gas or hydrogen gas generated inside the first electrolyte layer connected to the first electrolyte layer; A second gas outlet for taking out hydrogen gas or oxygen gas generated inside the second electrolyte layer connected to the second electrolyte layer; With The photocatalyst electrode and the counter electrode are arranged so that the surface of the photocatalyst layer and the surface of the counter electrode face each other, The separator allows permeation of the electrolyte in the electrolyte layer and suppresses permeation
  • the distance between the surface of the photocatalyst layer and the surface of the counter electrode is reduced over the entire surface. Accordingly, protons are sufficiently transferred and diffused to the surface of the photocatalyst layer, which is a hydrogen generation site, or to the surface of the counter electrode. As a result, the efficiency of the hydrogen generation reaction is improved.
  • the electrolyte layer allows the electrolyte in the electrolyte layer to permeate, but the separator that suppresses the permeation of hydrogen gas and oxygen gas generated in the electrolyte layer to counteract the first electrolyte layer in contact with the photocatalyst layer. It is separated into a second electrolyte layer in contact therewith. Therefore, oxygen (or hydrogen) generated on the surface of the photocatalyst layer can be easily separated from hydrogen (or oxygen) generated on the surface of the counter electrode, and the generated hydrogen can be easily recovered.
  • the hydrogen generation device concerning Embodiment 5 of the present invention, it is a mimetic diagram showing the band structure before junction of the 1st p type semiconductor layer and the 2nd p type semiconductor layer which constitute a photocatalyst layer. It is the schematic which shows the structure of the hydrogen generation device which concerns on Embodiment 6 of this invention. It is the schematic which shows the structure of the hydrogen production
  • FIG. 1 is a schematic diagram showing the configuration of the hydrogen generation device of the present embodiment.
  • FIG. 2 is a view showing the first protrusion provided as a fixed support member in the hydrogen generation device from the viewpoint of the light irradiation direction.
  • the hydrogen generation device 100 includes an electrolysis containing a transparent substrate 1, a photocatalyst electrode 4 disposed on the transparent substrate 1, a counter electrode 8, and water provided between the photocatalyst electrode 4 and the counter electrode 8.
  • a liquid layer and a separator 6 that divides the electrolyte layer into a first electrolyte layer 5 and a second electrolyte layer 7 are provided.
  • the first electrolyte layer 5 is in contact with the photocatalytic electrode 4.
  • the second electrolyte layer 7 is in contact with the counter electrode 8.
  • the counter electrode 8 is disposed on the back substrate 9.
  • the back substrate 9 is disposed to face the transparent substrate 1.
  • “arranged to face each other” means that the transparent substrate 1 and the rear substrate 9 are arranged to face each other. Therefore, the present invention is not limited to a configuration in which the transparent substrate 1 and the back substrate 9 are arranged substantially in parallel as shown in FIG. That is, as long as the transparent substrate 1 and the back substrate 9 are disposed to face each other, they do not have to be parallel to each other.
  • the transparent substrate 1 and the back substrate 9 have substantially the same size. However, the transparent substrate 1 and the back substrate 9 do not have to have the same size, and may have different sizes and shapes.
  • the photocatalytic electrode 4 is composed of a transparent conductive layer 2 disposed on the transparent substrate 1 and a photocatalytic layer 3 disposed on the transparent conductive layer 2.
  • the transparent conductive layer 2 the photoconductive layer 3, the 1st electrolyte solution layer. 5, the separator 6, the 2nd electrolyte solution layer 7, the counter electrode 8, and the back substrate 9 are arrange
  • the photocatalyst layer 3 and the counter electrode 8 only need to have their surfaces facing each other through the electrolyte layer.
  • the present invention is not limited to a configuration in which the surface of the photocatalyst layer 3 and the surface of the counter electrode 8 are arranged substantially in parallel as shown in FIG. That is, as long as the photocatalyst layer 3 and the counter electrode 8 are arranged to face each other, their surfaces do not have to be parallel to each other.
  • FIG. 1 shows a configuration in which the photocatalyst layer 3 and the counter electrode 8 have substantially the same size. However, the photocatalyst layer 3 and the counter electrode 8 do not have to have the same size, and may have different sizes and shapes.
  • the transparent substrate 1, the photocatalyst electrode 4 (transparent conductive layer 2 and photocatalyst layer 3), the electrolyte solution layer (first electrolyte solution layer 5 and second electrolyte solution layer 7), the separator 6, the counter electrode 8 and the back substrate 9 are composed of an outer frame. 13 as a unit.
  • the outer frame 13 is bonded to the outer edges of the transparent substrate 1, the photocatalyst electrode 4, the separator 6, the counter electrode 8, and the back electrode 9, thereby fixing the positions of these members, and the progress of light irradiated on these members
  • the structure is held so as to be laminated along the direction.
  • the transparent conductive layer 2 and the counter electrode 8 are electrically connected to each other via a conductive wire 10.
  • the transparent conductive layer 2 and the conductive wire 10 and the electrical contacts between the counter electrode 8 and the conductive wire 10 are each coated with an insulator 11 to prevent contact with the electrolyte layer.
  • the hydrogen generating device 100 decomposes water in the electrolyte layer by irradiating the photocatalyst layer 3 with light to generate oxygen and hydrogen.
  • an n-type semiconductor is used for the photocatalytic layer 3 as described later. For this reason, oxygen 24 is generated on the surface of the photocatalyst layer 3, and hydrogen 25 is generated on the surface of the counter electrode 8.
  • the hydrogen generation device 100 is provided with a gas outlet for taking out gas generated inside the electrolyte layer.
  • a first gas outlet 14 for extracting a gas generated inside the first electrolyte layer 5 is connected to the first electrolyte layer 5 in contact with the photocatalyst layer 3.
  • a second gas outlet 15 for taking out the gas generated inside the second electrolyte layer 7 is connected to the second electrolyte layer 7 in contact with the counter electrode 8.
  • the first gas outlet 14 is an oxygen gas outlet
  • the second gas outlet 15 is a hydrogen gas outlet.
  • the first gas outlet 14 and the second gas outlet 15 are connected to the upper portions of the first electrolyte layer 5 and the second electrolyte layer 7 respectively so as to penetrate the outer frame 13.
  • reference numeral 23 denotes a sealing material.
  • the transparent substrate 1 is made of a material that transmits light in the visible light region, more preferably light including the peripheral wavelength in the visible light region. Examples of the material of the transparent substrate 1 include glass and resin.
  • the thickness of the transparent substrate 1 is preferably 5 mm or less in order to allow more light to reach the photocatalyst layer 3. On the other hand, the thickness of the transparent substrate 1 is preferably 2 mm or more for reasons of mechanical strength.
  • the transparent conductive layer 2 is made of a material that transmits light in the visible light region, more preferably light including the peripheral wavelength in the visible light region, and has conductivity.
  • the material of the transparent conductive layer 2 include indium tin oxide (ITO) and fluorine-doped tin oxide (FTO).
  • the photocatalyst layer 3 is formed of an n-type semiconductor.
  • the photocatalyst layer 3 needs to be excited by light irradiation to decompose water. Therefore, the band edge level of the conduction band is 0 V or less, which is the standard reduction level of hydrogen ions, and the band edge level of the valence band is formed by a semiconductor having a standard oxidation potential of water of 1.23 V or more. It is preferable.
  • Such semiconductors include oxides, oxynitrides, and nitrides containing one or more of titanium, tungsten, iron, copper, tantalum, gallium, and indium, and alkali metal ions or alkaline earths.
  • Effectively used are those to which metal ions are added and those in which iron, copper, silver, gold, platinum, or the like is supported on the metal surface.
  • a metal surface carrying iron, copper, silver, gold, platinum or the like is preferable because the overvoltage is small.
  • a film made of a material having a band edge level in the conduction band of hydrogen ions with a standard reduction level of 0 V or less, and a film made of a material with a band edge level of the valence band having a water standard oxidation potential of 1.23 V or more A laminated film in which the two are bonded together is also effectively used.
  • a WO 3 / ITO / Si laminated film is effectively used.
  • the thickness of the photocatalyst layer 3 is preferably 100 ⁇ m or less so that holes generated on the light incident surface side can efficiently move to the opposite surface (interface with the first electrolyte layer 5). Moreover, since it is necessary to fully absorb the incident light, the thickness of the photocatalyst layer 3 is preferably 0.2 ⁇ m or more.
  • an n-type semiconductor is used for the photocatalyst layer 3, but a p-type semiconductor may be used. In that case, hydrogen is generated from the surface of the photocatalyst layer 3 and oxygen is generated from the surface of the counter electrode 8.
  • the counter electrode 8 is made of a conductive material that is active in a hydrogen generation reaction (or an oxygen generation reaction when the photocatalyst layer 3 is made of a p-type semiconductor).
  • the material for the counter electrode 8 include carbon and noble metals generally used as an electrode for water electrolysis. Specifically, carbon, platinum, platinum-supporting carbon, palladium, iridium, ruthenium, nickel, and the like can be used.
  • the overall shape of the counter electrode 8 is not particularly limited.
  • the counter electrode 8 may be of any shape such as a flat plate, a flat plate having a through hole such as a perforated plate and a mesh, and a flat plate provided with a notch such as a comb shape.
  • the entire shape of the counter electrode 8 preferably has substantially the same shape as the photocatalyst layer 3 so that the entire counter electrode 8 can face the photocatalyst layer 3.
  • the area of the surface of the counter electrode 8 facing the photocatalyst layer 3 (if the counter electrode 8 has a void, the area of the outer shape of the counter electrode 8 including the void portion) is different from the area of the surface of the photocatalyst layer 3 facing the counter electrode 8. It may be. However, it is desirable that these areas are approximately equal so that the surface of the counter electrode 8 and the surface of the photocatalyst layer 3 face each other.
  • the counter electrode 8 may have a configuration in which light that has passed through the transparent substrate 1, the transparent conductive layer 2, the photocatalyst layer 3, and the separator 6 and reached the counter electrode 8 is reflected on the surface of the counter electrode 8.
  • the material of the counter electrode 8 is appropriately selected so that the light reflectance on the surface of the counter electrode 8 is increased, or the surface shape of the counter electrode 8 is devised (for example, the surface is mirror-finished). Good.
  • the light reflected by the surface of the counter electrode 8 enters the photocatalyst layer 3 again and contributes to photoexcitation of the photocatalyst layer 3. Therefore, the utilization efficiency of light is further improved by adopting such a configuration for the counter electrode 8.
  • the separator 6 is preferably made of a material having a high light transmittance.
  • the separator 6 has a function of allowing the electrolyte in the electrolyte layer to permeate and suppressing the permeation of hydrogen gas and oxygen gas in the electrolyte layer. Any material having such a function can be used as the separator 6. Examples of the material of the separator 6 include a solid electrolyte such as a polymer solid electrolyte. Examples of the polymer solid electrolyte include ion exchange membranes such as Nafion (registered trademark). A ceramic porous body can also be used for the separator 6. A ceramic porous body in which a metal film having a high reflectance is provided on the light incident side surface may be used for the separator 6.
  • the back substrate 9 can be formed of an insulating material such as glass or plastic.
  • the thickness of the back substrate 9 can be set to 2 to 5 mm, for example.
  • the back substrate 9 that supports the counter electrode 8 is provided, but a configuration in which the back substrate 9 is not provided is also possible.
  • the counter electrode 8 is formed of a metal plate and the surface exposed to the outside of the counter electrode 8 is covered with an insulating film, it is not necessary to provide the back substrate 9.
  • the electrolytic solution constituting the first electrolytic solution layer 5 and the second electrolytic solution layer 7 may be an electrolytic solution containing water, and may be acidic or alkaline.
  • the thicknesses of the first electrolytic solution layer 5 and the second electrolytic solution layer 7 are each preferably in the range of 2 to 10 mm. Thereby, the movement and diffusion of protons are sufficiently performed. Furthermore, setting the thickness of the first electrolyte layer 5 and the second electrolyte layer 7 to such a thickness also leads to a reduction in the weight of the entire hydrogen generating device, which is desirable from the viewpoint of mechanical strength.
  • the outer frame 13 is made of a material having sufficient strength in order to prevent deformation of each member being held.
  • a material having sufficient strength for example, plastic, metal, ceramics, etc. are suitable.
  • the hydrogen generation device 100 is further provided with a first protrusion 12a and a second protrusion 12b as fixed support members for fixing the position of the separator 6 and supporting the separator 6.
  • the fixed support member is for fixing and supporting the separator 6 so that the separator 6 is disposed at a predetermined interval from the surface of the photocatalyst layer 3 and the surface of the counter electrode 8. That is, the distance between the surface of the photocatalyst layer 3 and the separator 6 and the distance between the surface of the counter electrode 8 and the separator 6 are uniformly maintained over the entire surface of the separator 6 by the fixed support member.
  • the distance between the surface of the photocatalyst layer 3 and the separator 6 and the distance between the surface of the counter electrode 8 and the separator 6 are not particularly limited. For example, there may be a large difference between the intervals.
  • the separator 6 is made of a soft material such as Nafion (registered trademark) and is arranged at a position very close to the surface of the photocatalyst layer 3 or the surface of the counter electrode 8. In this case, the separator 6 is bent by the gas generated on the surface of the photocatalyst layer 3 (or the counter electrode 8) close to the separator 6.
  • the fixed support member may be made of a material that is strong enough to support the separator 6 without bending without being deformed, and that has an insulating property.
  • the fixed support member can efficiently move ions between the first electrolytic solution layer 5 and the second electrolytic solution layer 7 through the separator 6 without interfering with the contact between the separator 6 and the electrolytic solution.
  • the structure needs to have a sufficient gap.
  • the first protrusion 12 a is provided on the surface of the photocatalyst layer 3.
  • the second protrusion 12 b is provided on the surface of the counter electrode 8.
  • a plurality of the first protrusions 12a are provided so as to be evenly arranged on the surface of the separator 6.
  • the second protrusions 12b are respectively provided at positions that coincide with the first protrusions 12a with the separator 6 interposed therebetween. That is, when viewed from the direction perpendicular to the surface of the separator 6, the first protrusion 12 a and the second protrusion 12 b are arranged at positions that overlap each other.
  • the surface area of the photocatalyst layer 3 covered by the first protrusion 12a and the second protrusion 12b, the surface area of the counter electrode 8, and the surface area of the separator 6 are each preferably 10% or less, for example, with respect to the total area of each surface, 2% or less is more preferable.
  • the hydrogen generation device 100 In the hydrogen generation device 100, light transmitted through the transparent substrate 1 and the transparent conductive layer 2 enters the photocatalyst layer 3. By photoexcitation of the photocatalyst layer 3, electrons are generated in the conduction band and holes are generated in the valence band in the photocatalyst layer 3. The holes generated at this time move to the surface of the photocatalyst layer 3 (interface with the first electrolyte layer 5). As a result, water molecules are oxidized on the surface of the photocatalyst layer 3 to generate oxygen (the following reaction formula (1)). On the other hand, electrons move to the transparent conductive layer 2. The electrons that have moved to the transparent conductive layer 2 move to the counter electrode 8 side through the conducting wire 10.
  • Electrons that move inside the counter electrode 8 and reach the surface of the counter electrode 8 react with protons supplied near the surface of the counter electrode 8 (the following reaction formula (2)).
  • Hydrogen is generated.
  • the hydrogen generation device 100 is configured such that the surface of the photocatalyst layer 3 and the surface of the counter electrode 8 face each other through the electrolyte layer. Therefore, the distance between the surface of the photocatalyst layer 3 and the surface of the counter electrode 8 is shorter than that of the conventional configuration over both surfaces. Thereby, the transfer and diffusion of protons to the surface of the counter electrode 8 where the hydrogen generation reaction occurs sufficiently occur.
  • the hydrogen generation device 100 of the present embodiment has a configuration in which the photocatalyst layer 3 faces the counter electrode 8 with the electrolyte layer interposed therebetween.
  • the photocatalyst layer 3 is irradiated with light attenuated through the transparent substrate 1 and the transparent conductive layer 2. Therefore, it can be considered that the hydrogen generation device 100 of the present embodiment is less desirable than the conventional hydrogen generation device from the viewpoint of light irradiation efficiency alone.
  • the hydrogen generation device 100 the surface where the oxygen generation reaction occurs in the photocatalyst layer 3 is different from the light incident surface. Therefore, holes generated by photoexcitation must move inside the photocatalyst layer 3 to the opposite surface. For these reasons, the configuration in which the photocatalyst layer 3 faces the counter electrode 8 with the electrolyte layer interposed therebetween is presumed to be a configuration in which the hydrogen generation efficiency is not so high. However, contrary to this expectation, the hydrogen generation device 100 sufficiently realizes the transfer and diffusion of protons to the surface of the counter electrode 8 that is the hydrogen generation site, and can improve the hydrogen generation efficiency over the conventional hydrogen generation device. It has become possible.
  • the electrolyte solution layer is separated by the separator 6 into the first electrolyte solution layer 5 in contact with the photocatalyst layer 3 and the second electrolyte solution layer 7 in contact with the counter electrode 8.
  • the separator 6 allows the electrolyte in the electrolyte layer to permeate, but suppresses the permeation of hydrogen gas and oxygen gas generated in the electrolyte layer. Thereby, the oxygen produced
  • the hydrogen generation device 100 includes a component in which the transparent conductive layer 2 and the photocatalyst layer 3 are laminated on the transparent substrate 1, a component in which the counter electrode 8 is formed on the back substrate 9, and the separator 6, integrated by the outer frame 13. Can be assembled. As described above, the hydrogen generation device 100 has advantages that it is easier to assemble than the conventional hydrogen generation device and that the number of parts can be reduced.
  • FIG. 3 is a schematic diagram showing the configuration of the hydrogen generation device of the present embodiment.
  • FIG. 4 is a view showing a porous member provided as a fixed support member in the hydrogen generation device from a viewpoint from the light irradiation direction.
  • the hydrogen generation device 200 of the present embodiment has the same configuration as the hydrogen generation device 100 of the first embodiment except that the shape of the fixed support member is different. Therefore, only the porous member 16 provided as a fixed support member will be described here.
  • a porous member 16 made of an insulating material is disposed on the surface of the separator 6 on the first electrolyte solution layer 5 side.
  • the porous member 16 is joined to the separator 6 and is fixed to the outer frame 13. With such a configuration, the porous member 16 can fix and support the position of the separator 6.
  • the positions of the porous member 16 and the separator 6 are shifted in order to easily show that the porous member 16 and the separator 6 are overlapped.
  • the porous member 16 is provided on the first electrolyte solution layer 5 side of the separator 6, but the arrangement position of the porous member 16 is not limited to this.
  • the porous member 16 may be disposed on one side of the separator 6 or may be disposed on both sides. Thereby, the space
  • the porous member 16 has a function of allowing the electrolyte to sufficiently permeate, and is strong enough to support the separator 6 without bending. And it can form with the material which has insulation. For example, unglazed plates, ceramic honeycombs, foamed ceramics, porous plastics, and the like can be used.
  • the porosity of the porous member 16 is preferably, for example, 50 to 90% so that sufficient ion movement is performed between the first electrolyte solution layer 5 and the second electrolyte solution layer 7 via the separator 6.
  • the operation of the hydrogen generation device 200 is the same as that of the hydrogen generation device 100 described in the first embodiment, the description thereof is omitted here.
  • the same effect as that of the hydrogen generation device 100 of the first embodiment can be obtained.
  • FIG. 5 is a schematic diagram showing the configuration of the hydrogen generation device of the present embodiment.
  • FIG. 6 is a view showing a frame body provided as a fixed support member in the hydrogen generation device from a viewpoint from the light irradiation direction.
  • the hydrogen generation device 300 of the present embodiment has the same configuration as the hydrogen generation device 100 of the first embodiment, except that the shape of the fixed support member is different. Therefore, only the frame body 17 provided as a fixed support member will be described here.
  • the hydrogen generation device 300 is provided with a frame 17 made of an insulating material on the surface of the separator 6 on the first electrolyte layer 5 side.
  • the frame body 17 is joined to the separator 6 and is fixed to the outer frame 13. With such a configuration, the frame body 17 can fix and support the position of the separator 6.
  • the shape of the frame body 17 is a lattice shape, but is not limited to this.
  • the frame body 17 may have any shape as long as it does not hinder the movement of ions through the separator 6.
  • the surface area of the separator 6 covered by the frame body 17 can be 10% or less, preferably 2% or less with respect to the total area of the separator 6, the influence on the movement of ions due to the installation of the frame body 17 is almost a problem. Must not.
  • the frame body 17 is provided on the first electrolyte solution layer 5 side of the separator 6, but the arrangement position of the frame body 17 is not limited thereto.
  • the frame 17 may be disposed on one side of the separator 6 or may be disposed on both sides. Thereby, the space
  • the frame body 17 has a function of sufficiently allowing the electrolyte to permeate, and has a strength capable of supporting the separator 6 without bending. And it can form with the material which has insulation. For example, plastics, ceramics, insulating coated metals, etc. can be mentioned.
  • the operation of the hydrogen generation device 300 is the same as that of the hydrogen generation device 100 described in the first embodiment, the description thereof is omitted here.
  • the same effect as that of the hydrogen generation device 100 of the first embodiment can be obtained.
  • FIG. 7 is a schematic diagram showing the configuration of the hydrogen generation device of the present embodiment.
  • FIG. 8 is a schematic diagram showing a band structure before bonding of the first n-type semiconductor layer and the second n-type semiconductor layer constituting the photocatalyst layer in the hydrogen generation device of the present embodiment.
  • the hydrogen generation device 400 of the present embodiment has the same configuration as the hydrogen generation device 100 of the first embodiment except that the photocatalyst layer has a two-layer structure. Therefore, only the configuration of the photocatalyst layer will be described here.
  • the photocatalytic layer of the hydrogen generation device 400 in the present embodiment is configured by the first n-type semiconductor layer 18 and the second n-type semiconductor layer 19 which are arranged in order from the light irradiation side.
  • the band edge levels (E CB2 and E VB2 ) of the conduction band and the valence band of the second n-type semiconductor layer 19 with respect to the vacuum level are respectively the first n-type. It is larger than the band edge levels (E CB1 , E VB1 ) of the conduction band and valence band of the semiconductor layer 18.
  • the Fermi level (E FB1 ) of the first n-type semiconductor layer 18 is larger than the Fermi level (E FB2 ) of the second n-type semiconductor layer 19.
  • the band edge level of the conduction band and the band edge level (E CB2 , E VB2 ) of the valence band of the second n-type semiconductor layer 19 are the band edges of the conduction band in the first n-type semiconductor layer 18, respectively. It is larger than the band edge level (E CB1 , E VB1 ) of the level and valence band.
  • the Fermi level (E FB1 ) of the first n-type semiconductor layer 18 is larger than the Fermi level (E FB2 ) of the second n-type semiconductor layer 19. Due to these relationships, no Schottky barrier occurs at the junction surface between the first n-type semiconductor layer 18 and the second n-type semiconductor layer 19.
  • the first n-type semiconductor layer 18 electrons and holes are generated by photoexcitation.
  • the generated electrons move to the conduction band of the first n-type semiconductor layer 18.
  • the generated holes move along the band edge curve to the surface of the second n-type semiconductor layer 19 (the interface between the second n-type semiconductor layer 19 and the first electrolyte layer 5) along the bending of the band edge. . Therefore, electrons and holes are efficiently charge separated without being hindered by the Schottky barrier. As a result, the probability that electrons and holes generated inside the first n-type semiconductor layer 18 by photoexcitation are recombined is reduced. Since the holes move efficiently to the surface of the second n-type semiconductor layer 19, the quantum efficiency of the hydrogen generation reaction by light irradiation is further improved.
  • first n-type semiconductor layer 18 for example, titanium oxide, strontium titanate, niobium oxide, zinc oxide, potassium tantalate, or the like is preferably used.
  • second n-type semiconductor layer 19 for example, cadmium sulfide, tantalum oxynitride, tantalum nitride, or the like is preferably used.
  • titanium oxide (anatase type) as the first n-type semiconductor layer 18 and cadmium sulfide as the second n-type semiconductor layer 19.
  • the operation of the hydrogen generation device 400 is the same as that of the hydrogen generation device 100 described in the first embodiment, the description thereof is omitted here.
  • the same effect as the hydrogen generation device 100 of the first embodiment can be obtained.
  • the photocatalytic layer is composed of two n-type semiconductor layers. With this configuration, in the hydrogen generation device 400, charge separation between electrons and holes in the photocatalytic layer is promoted as compared to the hydrogen generation device 100 of the first embodiment. Therefore, an effect that the oxygen generation reaction on the surface of the photocatalyst layer and the hydrogen generation reaction on the surface of the counter electrode 8 are further accelerated is obtained.
  • the configuration in which the photocatalytic layer 3 of the hydrogen generation device 100 of the first embodiment is configured by two n-type semiconductor layers has been described.
  • the configuration of the present embodiment can also be applied to the photocatalyst layer 3 of the hydrogen generation device 200 of the second embodiment and the hydrogen generation device 300 of the third embodiment.
  • FIG. 9 is a schematic diagram showing the configuration of the hydrogen generation device of the present embodiment.
  • FIG. 10 is a schematic diagram showing a band structure before bonding of the first p-type semiconductor layer and the second p-type semiconductor layer constituting the photocatalyst layer in the hydrogen generation device of the present embodiment.
  • the hydrogen generation device 500 of the present embodiment has the same configuration as the hydrogen generation device 100 of the first embodiment except that the photocatalyst layer has a two-layer structure. Therefore, only the configuration of the photocatalyst layer will be described here.
  • the photocatalytic layer of the hydrogen generation device 500 in the present embodiment is configured by the first p-type semiconductor layer 20 and the second p-type semiconductor layer 21 that are arranged in order from the light irradiation side.
  • the photocatalyst layer is formed of a p-type semiconductor, unlike Embodiments 1 to 4, a hydrogen generation reaction occurs in the photocatalyst layer and an oxygen generation reaction occurs in the counter electrode 8. Therefore, the first gas outlet 14 connected to the first electrolyte layer 5 is a hydrogen gas outlet, and the second gas outlet 15 connected to the second electrolyte layer 7 is an oxygen gas outlet.
  • the band edge levels (E CB2 , E VB2 ) of the conduction band and the valence band of the second p-type semiconductor layer 21 are respectively the first p-type. It is smaller than the band edge levels (E CB1 , E VB1 ) of the conduction band and valence band of the semiconductor layer 20. Further, with reference to the vacuum level, the Fermi level (E FB1 ) of the first p-type semiconductor layer 20 is smaller than the Fermi level (E FB2 ) of the second p-type semiconductor layer 21.
  • the band edge level of the conduction band and the band edge level (E CB2 , E VB2 ) of the valence band of the second p-type semiconductor layer 21 are the band edges of the conduction band in the first p-type semiconductor layer 20, respectively. It is smaller than the band edge level (E CB1 , E VB1 ) of the level and valence band.
  • the Fermi level (E FB1 ) of the first p-type semiconductor layer 20 is smaller than the Fermi level (E FB2 ) of the second p-type semiconductor layer 21. Due to these relationships, no Schottky barrier is generated at the junction surface between the first p-type semiconductor layer 20 and the second p-type semiconductor layer 21.
  • the first p-type semiconductor layer 20 electrons and holes are generated by photoexcitation.
  • the generated holes move to the valence band of the first n-type semiconductor layer 20.
  • the generated electrons move along the band edge curve to the surface of the second p-type semiconductor layer 21 (the interface between the second p-type semiconductor layer 21 and the first electrolyte layer 5) along the band edge. Therefore, electrons and holes are efficiently charge separated without being hindered by the Schottky barrier.
  • the probability that electrons and holes generated inside the first p-type semiconductor layer 20 by photoexcitation are recombined is reduced. Since electrons move efficiently to the surface of the second p-type semiconductor layer 21, the quantum efficiency of the hydrogen generation reaction by light irradiation is further improved.
  • first p-type semiconductor layer 20 cuprous oxide is preferably used.
  • second p-type semiconductor layer 21 copper indium sulfide, copper indium gallium selenide, or the like is preferably used.
  • cuprous oxide is preferably used as the first p-type semiconductor layer 20 and copper indium sulfide is used as the second p-type semiconductor 21.
  • the operation of the hydrogen generation device 500 is the same as that of the hydrogen generation device 100 described in the first embodiment, the description thereof is omitted here.
  • the same effect as that of the hydrogen generation device 100 of the first embodiment can be obtained.
  • the photocatalytic layer is composed of two p-type semiconductor layers. With this configuration, in the hydrogen generation device 500, charge separation between electrons and holes in the photocatalyst layer is promoted as compared with the hydrogen generation device 100 of the first embodiment. Therefore, the hydrogen generation reaction on the surface of the photocatalyst layer and the oxygen generation reaction on the surface of the counter electrode 8 are further accelerated.
  • the mode in which the photocatalytic layer 3 of the hydrogen generation device 100 of the first embodiment is configured by two p-type semiconductor layers has been described.
  • the configuration of the present embodiment can also be applied to the photocatalyst layer 3 of the hydrogen generation device 200 of the second embodiment and the hydrogen generation device 300 of the third embodiment.
  • FIG. 11 is a schematic diagram showing the configuration of the hydrogen generation device of the present embodiment.
  • a power supply device 22 for applying a bias voltage is provided on the conductive wire 10 that is an electrical connection path between the transparent conductive layer 2 and the counter electrode 8. Except for this point, the hydrogen generation device 600 has the same configuration as the hydrogen generation device 100 of the first embodiment. In the hydrogen generation device 600, a bias voltage is applied simultaneously with light irradiation. Thereby, the oxygen generation reaction on the surface of the photocatalyst layer 3 and the hydrogen generation reaction on the surface of the counter electrode 8 are further accelerated.
  • a configuration in which a bias voltage is applied to the hydrogen generation device 100 of the first embodiment is applied.
  • the configuration of the present embodiment can be similarly applied to all the hydrogen generation devices described in the second to fifth embodiments.
  • Example Examples of the present invention will be specifically described.
  • the hydrogen generation device 700 shown in FIG. 12 was used.
  • This hydrogen generation device 700 has the same configuration as the hydrogen generation device 600 described in the sixth embodiment, except that the fixed support members (the first protrusion 12a and the second protrusion 12b) are not provided. It was. However, an ammeter 26 for measuring the obtained photocurrent was connected to the conducting wire 10.
  • a glass substrate (length 50 mm ⁇ width 30 mm ⁇ thickness 2.5 mm) was used.
  • An ITO film was produced as a transparent conductive layer 2 on this glass substrate by sputtering.
  • a 0.5 ⁇ m-thick titanium oxide film (anatase type) was produced as a photocatalyst layer 3 by sputtering.
  • a glass substrate (length 50 mm ⁇ width 30 mm ⁇ thickness 2.5 mm) was used for the back substrate 9.
  • a platinum film was produced as a counter electrode 8 on this glass substrate by sputtering.
  • a component in which the transparent conductive layer 2 and the photocatalyst layer 3 are provided on the transparent substrate 1 and a component in which the counter electrode 8 is provided on the back substrate 9 are interposed between the photocatalyst layer 3 and the counter electrode 8 with a separator 6 therebetween. Faced in the opposite direction. These parts were integrally held by the outer frame 13. The distance between the surface of the photocatalyst layer 3 and the surface of the counter electrode 8 was 15 mm. The separator 6 was disposed so as to be substantially equidistant from the surface of the photocatalyst layer 3 and the surface of the counter electrode 8 and to be substantially parallel to these surfaces.
  • an ion exchange membrane (“Nafion” (manufactured by DuPont)) that allows permeation of protons in the electrolyte layer and suppresses permeation of oxygen and hydrogen generated in the electrolyte layer was used.
  • the separator 6 had substantially the same shape and the same size as the transparent substrate 1 and the back substrate 9.
  • the transparent conductive layer 2 and the counter electrode 8 were electrically connected by a conductive wire 10 and a power supply device 22 for applying a bias voltage was provided on the connection path. Further, a first gas outlet 14 and a second gas outlet 15 are provided so as to penetrate the outer frame 13. As the electrolytic solution, a 0.1 mol / L sodium hydroxide aqueous solution was used.
  • the hydrogen generation device 700 of the present example produced as described above was irradiated with light using a xenon lamp having an intensity of 100 W from the transparent substrate 1 side. At the same time, a bias voltage of 0.5 V was applied using the power supply device 22. When the photocurrent flowing between the transparent conductive layer 2 and the counter electrode 8 was measured, it was 1.57 mA.
  • a hydrogen generation device 800 shown in FIG. 13 was produced.
  • the photocatalytic electrode 4 constituted by the transparent conductive layer 2 and the photocatalyst layer 3 was installed on the surface of the separator 6 in a direction in which the transparent conductive layer 2 and the counter electrode 8 face each other. Furthermore, a gap (10 mm long ⁇ 30 mm wide) for proton movement in the electrolyte was provided below the photocatalytic electrode 4.
  • a hydrogen generation device 800 of a comparative example was produced in the same manner as the hydrogen generation device 700 of the example except for the arrangement and shape of the photocatalytic electrode 4.
  • this hydrogen generation device 800 was irradiated with light under the same conditions as in the example, the photocurrent flowing between the transparent conductive layer 2 and the counter electrode 8 was 0.57 mA.
  • the photocurrent is higher than that of the conventional hydrogen generation device in which the photocatalyst layer is arranged toward the light irradiation side. Flowed. That is, according to the hydrogen generation device of the present invention, the efficiency of the hydrogen generation reaction was improved.
  • the hydrogen generation device of the present invention can improve the quantum efficiency of the hydrogen generation reaction by light irradiation, it can be suitably used as a hydrogen supply source for a fuel cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

 本発明の水素生成デバイス(100)は、透明基板(1)と、透明基板(1)上に配置された透明導電層(2)及び光触媒層(3)によって形成された光触媒電極(4)と、透明導電層(2)と電気的に接続された対極(8)と、光触媒電極(3)と対極(8)との間に設けられた水を含む電解液層と、電解液層を光触媒電極(4)と接する第1電解液層(5)と対極(8)と接する第2電解液層(7)とに分割するセパレータ(6)と、第1電解液層(5)の内部で発生したガスを取り出すための第1ガス取出口(14)と、第2電解液層(7)の内部で発生したガスを取り出すための第2ガス取出口(15)と、を備える。光触媒電極(4)と対極(8)とは、光触媒層(3)の表面と対極(8)の表面とが向かい合うように配置されている。セパレータ(6)は、電解液層中の電解質の透過を可能とし、且つ、電解液層中の水素ガス及び酸素ガスの透過を抑制する。

Description

水素生成デバイス
 本発明は、光を用いて水を水素と酸素とに分解することによって水素ガスを得ることを目的とした、水素生成デバイスに関するものである。
 従来、光触媒として機能する半導体材料の利用方法として、前記半導体材料に光を照射することにより、水を分解して水素を採取すること、又は、電気エネルギーを採取することが知られている(例えば、特許文献1及び2参照)。
 特許文献1には、光触媒と太陽電池とを重ね合わせた構造を有する、水分解用半導体光電極と、それを用いた水分解用システムとが開示されている。この半導体光電極は、受光面側から順に、光触媒膜と、透明導電膜と、表裏面間を電気的に接続するための電極を備えた透明基板と、透明導電膜と、電解質溶液と、色素担持した酸化チタン層と、金属基板と、水素発生用触媒層と、で構成されている。特許文献1には、この半導体光電極に太陽光を照射することによって水を分解し、水素ガス及び酸素ガスを採取することが開示されている。具体的には、光触媒膜として、酸化チタン、酸化タングステン及び三酸化二鉄からなる群より選択される材料からなる膜を用いることが記載されている。
 特許文献2には、光触媒としての多結晶性金属酸化物半導体を備えた、再生型光電気化学電池が開示されている。特許文献2には、多結晶性金属酸化物半導体が腐食せず、可視スペクトルの範囲で(一層詳しくは、太陽光線のスペクトルの範囲で)改善された電気エネルギー収量を有する、光電気化学電池及びその使用法が開示されている。
特開2006-265697号公報 特許第2664194号公報
 しかしながら、特許文献1に開示されている水分解用システムの場合、水分解用半導体光電極において酸素発生箇所である光触媒膜表面と水素発生箇所である水素発生用触媒層表面との間が、半導体光電極自身で隔てられている。そのため、プロトンの移動は半導体光電極の下部に設けられた隙間を通してしか行われず、水素生成に必要な、光触媒膜側から水素発生用触媒層側へのプロトンの移動が十分に起こらない。その結果、水素発生用触媒層近傍でプロトンの拡散律速状態に陥り、光を照射して水素及び酸素の生成反応が進行するにつれて、反応の効率が低下する。また、酸素生成箇所と水素生成箇所との間に気体の混合を防止する機構が備わっていないため、生成した水素ガスと酸素ガスとが相互に混ざり合って分離回収が困難である。
 特許文献2に開示されている光電気化学電池及びその使用法は、一般的な色素増感太陽電池の動作原理を利用したものである。すなわち、特許文献2に開示されている技術は、光エネルギーを電気エネルギーに変換して取り出すものであるため、水を分解して水素を取り出す技術としてそのまま利用できない。具体的には、色素担持した酸化チタン層(光触媒としての多結晶性金属酸化物半導体)へ光照射することによって生じた電子と正孔は、外部回路を経由した後、電解質の酸化還元反応によって両者ともに消費されるため、電解質水溶液中の水分子を酸化還元することができない。その結果、光電気化学電池は、酸素及び水素を生成することができない。
 そこで、本発明は、上記従来の問題点を鑑み、光触媒による水の分解反応を利用して水素を採取するデバイスとして、水素及び酸素の生成反応の効率が反応の進行に伴って低下することを抑制して水素生成反応の効率を高め、さらに、生成した水素を容易に回収できる、水素生成デバイスを提供することを課題とする。
 本発明は、
 透明基板と、
 前記透明基板上に配置された透明導電層及び前記透明導電層上に配置された光触媒層によって形成された光触媒電極と、
 前記透明導電層と電気的に接続された対極と、
 前記光触媒電極と前記対極との間に設けられた、水を含む電解液層と、
 前記電解液層を、前記光触媒電極と接する第1電解液層と、前記対極と接する第2電解液層とに分割するセパレータと、
 前記第1電解液層に接続された、前記第1電解液層の内部で発生した酸素ガス又は水素ガスを取り出すための第1ガス取出口と、
 前記第2電解液層に接続された、前記第2電解液層の内部で発生した水素ガス又は酸素ガスを取り出すための第2ガス取出口と、
を備え、
 前記光触媒電極と前記対極とは、前記光触媒層の表面と前記対極の表面とが向かい合うように配置されており、
 前記セパレータは、前記電解液層中の電解質の透過を可能とし、且つ、前記電解液層中の水素ガス及び酸素ガスの透過を抑制する、
水素生成デバイスを提供する。
 本発明の水素生成デバイスによれば、光触媒層の表面と対極の表面との距離が全面にわたって近くなる。したがって、水素生成箇所である光触媒層の表面又は対極の表面へのプロトンの移動及び拡散が、十分に起こる。その結果、水素生成反応の効率が向上する。さらに、電解液層が、電解液層中の電解質は透過させるが、電解液層中で発生した水素ガス及び酸素ガスの透過は抑制するセパレータによって、光触媒層に接する第1電解液層と対極に接する第2電解液層とに分離されている。したがって、光触媒層表面で生成した酸素(又は水素)と対極表面で生成した水素(又は酸素)とが容易に分離でき、生成した水素の回収が容易となる。
本発明の実施の形態1に係る水素生成デバイスの構成を示す概略図である。 本発明の実施の形態1に係る水素生成デバイスに固定支持部材として設けられた第1突起物を、光の照射方向からの視点で示した図である。 本発明の実施の形態2に係る水素生成デバイスの構成を示す概略図である。 本発明の実施の形態2に係る水素生成デバイスに固定支持部材として設けられた多孔質部材を、光の照射方向からの視点で示した図である。 本発明の実施の形態3に係る水素生成デバイスの構成を示す概略図である。 本発明の実施の形態3に係る水素生成デバイスに固定支持部材として設けられた枠体を、光の照射方向からの視点で示した図である。 本発明の実施の形態4に係る水素生成デバイスの構成を示す概略図である。 本発明の実施の形態4に係る水素生成デバイスにおいて、光触媒層を構成する第1のn型半導体層及び第2のn型半導体層の接合前のバンド構造を示す模式図である。 本発明の実施の形態5に係る水素生成デバイスの構成を示す概略図である。 本発明の実施の形態5に係る水素生成デバイスにおいて、光触媒層を構成する第1のp型半導体層及び第2のp型半導体層の接合前のバンド構造を示す模式図である。 本発明の実施の形態6に係る水素生成デバイスの構成を示す概略図である。 実施例で用いた水素生成デバイスの構成を示す概略図である。 比較例で用いた水素生成デバイスの構成を示す概略図である。
 以下、本発明の実施の形態を、図面を参照しながら詳細に説明する。なお、以下の実施の形態は一例であり、本発明は以下の実施の形態に限定されない。また、以下の実施の形態では、同一部材に同一の符号を付して、重複する説明を省略する場合がある。
 (実施の形態1)
 本発明の実施の形態1の水素生成デバイスについて、図1及び図2を用いて説明する。図1は、本実施の形態の水素生成デバイスの構成を示す概略図である。図2は、水素生成デバイスに固定支持部材として設けられた第1突起物を、光の照射方向からの視点で示した図である。
 本実施の形態の水素生成デバイス100は、透明基板1と、透明基板1上に配置された光触媒電極4と、対極8と、光触媒電極4と対極8との間に設けられた水を含む電解液層と、前記電解液層を第1電解液層5と第2電解液層7とに分割するセパレータ6とを備えている。第1電解液層5は、光触媒電極4と接する。第2電解液層7は、対極8と接する。
 本実施の形態では、対極8は、背面基板9上に配置されている。背面基板9は、透明基板1と対向して配置されている。なお、ここでの「対向して配置される」とは、透明基板1と背面基板9とが互いに向かい合って配置されていることを意味している。したがって、図1に示すような、透明基板1と背面基板9とがほぼ平行に配置された構成のみに限定されない。すなわち、透明基板1と背面基板9とが互いに向かい合って配置されていれば、互いに平行でなくてもよい。また、図1では、透明基板1と背面基板9とがほぼ同じ大きさを有している。しかし、透明基板1と背面基板9とが同じ大きさを有する必要はなく、互いに異なる大きさ及び形状を有していてもよい。
 光触媒電極4は、透明基板1上に配置された透明導電層2と、透明導電層2上に配置された光触媒層3と、によって構成されている。
 水素生成デバイス100に照射される光の進行方向に沿って説明すると、水素生成デバイス100には、光を照射する側から、透明基板1、透明導電層2、光触媒層3、第1電解液層5、セパレータ6、第2電解液層7、対極8及び背面基板9が、この順に配置されている。すなわち、光触媒電極4と対極8とは、光触媒層3の表面と対極8の表面とが電解液層を介して向かい合うように配置されている。なお、光触媒層3と対極8とは、電解液層を介してそれらの表面が互いに向かい合っていればよい。したがって、図1に示すような、光触媒層3の表面と対極8の表面とがほぼ平行に配置された構成のみに限定されない。すなわち、光触媒層3と対極8とが向かい合って配置されていれば、それらの表面が互いに平行でなくてもよい。また、図1では、光触媒層3と対極8とがほぼ同じ大きさを有する構成が示されている。しかし、光触媒層3と対極8とが同じ大きさを有する必要はなく、互いに異なる大きさ及び形状を有していてもよい。
 透明基板1、光触媒電極4(透明導電層2及び光触媒層3)、電解液層(第1電解液層5及び第2電解液層7)、セパレータ6、対極8及び背面基板9は、外枠13によって一体として保持されている。外枠13は、透明基板1、光触媒電極4、セパレータ6、対極8及び背面電極9の外縁と接合されることによって、これら各部材の位置を固定し、これらの部材が照射される光の進行方向に沿って積層された構造となるように、保持している。
 透明導電層2と対極8とは、導線10を介して互いに電気的に接続されている。なお、透明導電層2と導線10、並びに、対極8と導線10との電気的接点は、電解液層との接触を防止するために、それぞれ絶縁物11で被覆されている。
 水素生成デバイス100は、光触媒層3に光が照射されることによって電解液層中の水を分解し、酸素及び水素を発生させる。本実施の形態では、後述のとおり、光触媒層3にn型半導体を用いている。このため、光触媒層3の表面上では酸素24が、対極8の表面上では水素25が、それぞれ発生する。水素生成デバイス100には、電解液層の内部で発生したガスを取り出すためのガス取出口が設けられている。光触媒層3と接している第1電解液層5には、第1電解液層5の内部で発生したガスを取り出す第1ガス取出口14が接続されている。対極8と接している第2電解液層7には、第2電解液層7の内部で発生したガスを取り出すための第2ガス取出口15が接続されている。本実施の形態では、第1ガス取出口14は酸素ガス取出口となり、第2ガス取出口15は水素ガス取出口となる。第1ガス取出口14及び第2ガス取出口15は、外枠13を貫通するように、それぞれ第1電解液層5及び第2電解液層7の上部に接続されている。なお、図1中、23はシール材を示している。
 次に、水素生成デバイス100の各構成について、具体的に説明する。
 透明基板1には、可視光領域の光、さらに望ましくは可視光領域の周辺波長を含めた光が透過する材料を用いる。透明基板1の材料としては、例えば、ガラス及び樹脂が挙げられる。透明基板1の厚さは、より多くの光量を光触媒層3に到達させるために、5mm以下が好ましい。一方、力学的強度の理由から、透明基板1の厚さは、2mm以上が好ましい。
 透明導電層2には、可視光領域の光、さらに望ましくは可視光領域の周辺波長を含めた光が透過し、且つ、導電性を有する材料を用いる。透明導電層2の材料としては、例えば、酸化インジウムスズ(ITO)及びフッ素ドープ酸化スズ(FTO)が挙げられる。これにより、照射した可視光領域の光(さらに望ましくは可視光領域の周辺波長を含めた光)が、光触媒層3に到達する。
 光触媒層3は、n型半導体によって形成されている。光触媒層3は、光照射によって励起して、水を分解する必要がある。そのため、伝導帯のバンドエッジ準位が水素イオンの標準還元準位である0V以下であり、且つ、価電子帯のバンドエッジ準位が水の標準酸化電位1.23V以上である半導体によって形成されていることが好ましい。このような半導体としては、チタン、タングステン、鉄、銅、タンタル、ガリウム及びインジウムのうち一つもしくは複数の元素を含む酸化物、酸窒化物及び窒化物と、これらにアルカリ金属イオン又はアルカリ土類金属イオンを添加したものと、金属の表面に鉄、銅、銀、金又は白金等を担持したものとが、有効に用いられる。特に、金属の表面に鉄、銅、銀、金又は白金等を担持したものは、過電圧が小さいため好ましい。また、伝導帯のバンドエッジ準位が水素イオンの標準還元準位0V以下の物質からなる膜と、価電子帯のバンドエッジ準位が水の標準酸化電位1.23V以上の物質からなる膜とを互いに接合した積層膜も、有効に用いられる。一例として、例えばWO3/ITO/Si積層膜等が有効に用いられる。
 光触媒層3の厚さは、光入射面側で生じたホールが反対側の面(第1電解液層5との界面)へ効率良く移動できるように、100μm以下が好ましい。また、入射した光を十分に吸収する必要があるため、光触媒層3の厚さは0.2μm以上が好ましい。
 なお、本実施の形態では光触媒層3にn型半導体を用いたが、p型半導体を用いてもよい。その場合は、光触媒層3の表面から水素が発生し、対極8の表面から酸素が発生する水素生成デバイスとなる。
 対極8には、導電性を有し、水素生成反応(光触媒層3がp型半導体からなる場合は、酸素生成反応)に活性な材料を用いる。対極8の材料としては、水の電気分解用の電極として一般的に用いられるカーボン及び貴金属が挙げられる。具体的には、カーボン、白金、白金担持カーボン、パラジウム、イリジウム、ルテニウム及びニッケル等を採用できる。対極8の全体形状は、特に限定されない。対極8は、平板、穴あき板状及びメッシュ状のような貫通孔を有する平板、及び、櫛形状のような切れ込みが設けられた平板等、どのような形状のものでも用いることができる。しかし、対極8の全体が光触媒層3と向かい合うことができるように、対極8の全体形状は、光触媒層3とほぼ同様の形状を有することが好ましい。対極8の光触媒層3と向かい合う表面の面積(対極8が空隙を有する場合は、空隙部分も含む対極8の外形の面積)と、光触媒層3の対極8と向かい合う表面の面積とは、互いに異なっていてもよい。しかし、望ましくは、対極8の表面と光触媒層3の表面とが全体的に向かい合うように、これらの面積がほぼ同等であることが好ましい。
 対極8は、透明基板1、透明導電層2、光触媒層3及びセパレータ6を透過して対極8に到達した光が、対極8の表面で反射するような構成を有していてもよい。例えば、対極8の表面における光反射率が高くなるように、対極8の材料を適宜選択する、あるいは、対極8に表面形状を工夫する(例えば、表面に鏡面仕上げを施す)等を行ってもよい。この構成の場合、対極8の表面で反射した光は、再び光触媒層3に入射して、光触媒層3の光励起に寄与する。したがって、対極8をこのような構成とすることで、光の利用効率がさらに向上する。対極8によって反射した光を利用する構成の場合、セパレータ6が高い光透過率を有する材料からなることが好ましい。
 セパレータ6は、電解液層中の電解質を透過させ、且つ、電解液層中の水素ガス及び酸素ガスの透過を抑制する機能を有する。このような機能を有する材料であれば、どのような材料でもセパレータ6として用いることが可能である。セパレータ6の材料としては、例えば、高分子固体電解質等の固体電解質が挙げられる。高分子固体電解質としては、ナフィオン(登録商標)等のイオン交換膜が挙げられる。セラミック多孔体をセパレータ6に利用することもできる。また、光入射側の表面に、高い反射率を有する金属膜が設けられたセラミック多孔体を、セパレータ6に利用してもよい。このような金属膜により、透明基板1、透明導電層2及び光触媒層3を透過してセパレータ6に到達した光が反射される。反射された光は、再び光触媒層3に入射して、光触媒層3の光励起に寄与する。したがって、光の利用効率がさらに向上する。
 背面基板9は、絶縁性を有する材質、例えばガラスやプラスチックによって形成できる。背面基板9の厚さは、例えば2~5mmとできる。なお、本実施の形態では、対極8を支持する背面基板9を設けたが、背面基板9を設けない構成とすることも可能である。例えば、対極8が金属板によって形成され、且つ対極8の外側に露出する面が絶縁膜で被覆されている場合は、背面基板9を設ける必要はない。
 第1電解液層5及び第2電解液層7を構成する電解液は、水を含む電解液であればよく、酸性であってもよいしアルカリ性であってもよい。第1電解液層5及び第2電解液層7の厚さは、それぞれ、2~10mmの範囲内であることが好ましい。これにより、プロトンの移動及び拡散が十分に行われる。さらに、第1電解液層5及び第2電解液層7をこのような厚さとすることは、水素生成デバイス全体の重量を小さくすることにも繋がるので、力学的強度の面からも望ましい。
 外枠13には、保持している各部材の変形を防ぐために、十分な強度を有する材料を使用する。例えば、プラスチック、金属及びセラミックス等が好適である。
 水素生成デバイス100には、さらに、セパレータ6の位置を固定し、且つ、セパレータ6を支持する固定支持部材として、第1突起部12aと第2突起部12bとが設けられている。固定支持部材は、セパレータ6が、光触媒層3の表面及び対極8の表面と、所定の間隔を隔てて配置されるように、セパレータ6を固定及び支持するためのものである。すなわち、固定支持部材によって、光触媒層3の表面とセパレータ6との間隔と、対極8の表面とセパレータ6との間隔とが、セパレータ6の全面にわたって一様に保たれている。なお、光触媒層3の表面とセパレータ6との間隔、及び、対極8の表面とセパレータ6との間隔は、特に限定されない。例えば、両間隔に大きな差があってもよい。このような構成の一例として、例えばセパレータ6がナフィオン(登録商標)のような柔らかい材料からなり、光触媒層3の表面又は対極8の表面と非常に近接した位置に配置された構成が挙げられる。なお、この場合、セパレータ6と近接している光触媒層3(又は対極8)の表面で発生したガスによって、セパレータ6がたわむ。このセパレータ6のたわみによって、セパレータ6と光触媒層3(又は対極8)の表面との間に第1電解液層5(又は第2電解液層7)が形成されることになる。したがって、光触媒層3(又は対極8)と電解液との接触には何ら問題はない。しかし、一方の電極とセパレータ6との間隔が極端に狭いと、生成した気泡がこの間隔内に付着してしまい気体収集が困難になる場合がある。そのため、好ましくは、両間隔がほぼ同じになるようにセパレータ6を設置することである。固定支持部材には、固定支持部材自体が変形することなく、セパレータ6をたわませずに支持することができる丈夫さを有し、且つ、絶縁性を有する材料を用いることができる。例えば、プラスチック、セラミックス、絶縁被覆した金属等が挙げられる。また、固定支持部材は、セパレータ6と電解液との接触を妨げることなく、セパレータ6を介して第1電解液層5-第2電解液層7間でのイオンの移動が効率良く行われるように、十分な間隙を有する構造である必要がある。
 第1突起部12aは、光触媒層3の表面に設けられている。第2突起部12bは、対極8の表面に設けられている。図2に示すように、光の照射方向の視点で第1突起部12aを見た場合、第1突起部12aは、セパレータ6の表面に対して均等に配置されるように、複数設けられている。第2突起部12bは、セパレータ6を間に挟んで第1突起部12aと一致する位置にそれぞれ設けられている。すなわち、セパレータ6の表面に対して垂直な方向から見ると、第1突起部12aと第2突起部12bとは、互いに重なる位置に配置されている。光触媒層3の表面における酸素生成反応と、対極8の表面における水素生成反応と、セパレータ6を介するイオンの移動とを妨げないように、第1突起部12a及び第2突起部12bによって覆われる光触媒層3、対極8及びセパレータ6の表面積を決定することが望ましい。第1突起部12a及び第2突起部12bによって覆われる光触媒層3の表面積、対極8の表面積及びセパレータ6の表面積は、それぞれ、前記各表面の全面積に対して、例えば10%以下が好ましく、2%以下がより好ましい。これにより、第1突起部12a及び第2突起部12bを設けても、電解液が光触媒層3の表面、対極8の表面及びセパレータ6の表面と十分に接触できる。そのため、光触媒層3の表面における酸素生成反応、対極8の表面における水素生成反応、及び、セパレータ6を介してのイオンの移動が妨げられない。
 次に、水素生成デバイス100の動作について説明する。
 水素生成デバイス100では、透明基板1及び透明導電層2を透過した光が、光触媒層3に入射する。光触媒層3の光励起により、光触媒層3において、伝導帯に電子が、価電子帯にホールが生じる。このとき生じたホールは、光触媒層3の表面(第1電解液層5との界面)側に移動する。これにより、光触媒層3の表面で、水分子が酸化されて酸素が発生する(下記反応式(1))。一方、電子は透明導電層2に移動する。透明導電層2に移動した電子は、導線10を介して対極8側に移動する。対極8の内部を移動して対極8の表面(第2電解液層7との界面)に到達した電子は、対極8の表面付近に供給されたプロトンと反応し(下記反応式(2))、水素が発生する。水素生成デバイス100では、光触媒層3の表面と対極8の表面とが電解液層を介して向かい合う構成となっている。そのため、光触媒層3の表面と対極8の表面との間の距離が、両表面の全体にわたって、従来の構成よりも短くなっている。これにより、水素生成反応が生じる対極8の表面へのプロトンの移動及び拡散が、十分に起こる。その結果、水素生成反応が進行しても、対極8の表面近傍に効率良くプロトンが供給されるので、反応進行に伴う反応効率の低下を抑制できる。生成した酸素及び水素は、それぞれ、第1ガス取出口14及び第2ガス取出口15から採取される。水分解反応の進行に伴う、第1電解液層5と第2電解液層7との間でのイオンの移動は、セパレータ6を介して行われる。
 4h++2H2O → O2↑+4H+   (1)
 4e-+4H+ → 2H2↑   (2)
 従来の水素生成デバイスは、光触媒層に効率良く光を照射するために、光触媒層が光照射側を向くように構成されていた。これに対し、本実施の形態の水素生成デバイス100は、光触媒層3が電解液層を挟んで対極8と向かい合う構成を有する。このような構成では、透明基板1及び透明導電層2を通過して減衰した光が光触媒層3に照射される。したがって、本実施の形態の水素生成デバイス100は、光の照射効率という点のみから見れば、従来の水素生成デバイスよりも望ましくないと考えられる。また、水素生成デバイス100では、光触媒層3において、酸素生成反応が生じる面と光の入射面とが異なる。そのため、光励起によって生じたホールは、光触媒層3内部を反対側の表面まで移動しなければならない。これらの理由から、光触媒層3が電解液層を挟んで対極8と向かい合う構成は、一見したところ、水素生成効率がそれほど高くない構成のように予想される。しかし、この予想に反し、水素生成デバイス100は、水素生成箇所である対極8の表面へのプロトンの移動及び拡散を十分に実現し、水素生成効率を従来の水素生成デバイスよりも向上させることが可能となった。
 また、水素生成デバイス100では、電解液層が、セパレータ6によって、光触媒層3に接する第1電解液層5と、対極8に接する第2電解液層7とに分離されている。セパレータ6は、電解液層中の電解質は透過させるが、電解液層中で発生した水素ガス及び酸素ガスの透過は抑制する。これにより、光触媒層3の表面で生成した酸素と、対極8の表面で生成した水素とを、容易に分離できる。
 また、水素生成デバイス100は、透明基板1上に透明導電層2及び光触媒層3を積層した部品と、背面基板9上に対極8を形成した部品と、セパレータ6とを、外枠13により一体化することによって組み立てることができる。このように、水素生成デバイス100は、従来の水素生成デバイスよりも組み立てが容易であり、且つ、部品点数も少なくてすむというメリットがある。
 (実施の形態2)
 本発明の実施の形態2の水素生成デバイスについて、図3及び図4を用いて説明する。図3は、本実施の形態の水素生成デバイスの構成を示す概略図である。図4は、水素生成デバイスに固定支持部材として設けられた多孔質部材を、光の照射方向からの視点で示した図である。
 本実施の形態の水素生成デバイス200は、固定支持部材の形状が異なる点以外は、実施の形態1の水素生成デバイス100と同様の構成を有する。そのため、ここでは、固定支持部材として設けられた多孔質部材16についてのみ説明する。
 水素生成デバイス200には、セパレータ6の第1電解液層5側の表面に、絶縁体材料からなる多孔質部材16が配置されている。多孔質部材16は、セパレータ6と接合されており、且つ、外枠13に固定されている。このような構成により、多孔質部材16は、セパレータ6の位置を固定し、且つ、支持できる。なお、図4では、多孔質部材16とセパレータ6とが重ね合わされていることを分かりやすく示すために、多孔質部材16とセパレータ6との位置をずらして示している。しかし、本実施の形態では、光の照射方向から見た場合に多孔質部材16とセパレータ6との位置が重なるように配置されている。
 水素生成デバイス200において、図3では、セパレータ6の第1電解液層5側に多孔質部材16を設けているが、多孔質部材16の配置位置はこれに限られない。多孔質部材16は、セパレータ6のどちらか一方の片面側に配置されていてもよいし、両面側に配置されていてもよい。これにより、セパレータ6と光触媒層3との間隔、及び、セパレータ6と対極8との間隔を、セパレータ6の面全体にわたって一様に保つことができる。
 多孔質部材16は、実施の形態1で説明した固定支持部材と同様に、電解液を十分に透過させる機能を有し、セパレータ6をたわませずに支持することのできる丈夫さを有し、且つ、絶縁性を有する材料によって形成できる。例えば、素焼き板、セラミックスハニカム、発泡セラミックス及び多孔質プラスチック等が利用できる。第1電解液層5と第2電解液層7との間で、セパレータ6を介して十分なイオンの移動が行われるように、多孔質部材16の空隙率は例えば50~90%が好ましい。
 水素生成デバイス200の動作は、実施の形態1で説明した水素生成デバイス100の場合と同じであるため、ここでは説明を省略する。
 水素生成デバイス200によれば、実施の形態1の水素生成デバイス100と同様の効果を得ることができる。
 (実施の形態3)
 本発明の実施の形態3の水素生成デバイスについて、図5及び図6を用いて説明する。図5は、本実施の形態の水素生成デバイスの構成を示す概略図である。図6は、水素生成デバイスに固定支持部材として設けられた枠体を、光の照射方向からの視点で示した図である。
 本実施の形態の水素生成デバイス300は、固定支持部材の形状が異なる点以外は、実施の形態1の水素生成デバイス100と同様の構成を有する。そのため、ここでは、固定支持部材として設けられた枠体17についてのみ説明する。
 水素生成デバイス300には、セパレータ6の第1電解液層5側の表面に、絶縁体材料からなる枠体17が設けられている。枠体17は、セパレータ6と接合されており、且つ、外枠13に固定されている。このような構成により、枠体17は、セパレータ6の位置を固定し、且つ、支持できる。なお、図6に示すように、本実施の形態では枠体17の形状を格子状としているが、これに限定されない。枠体17は、セパレータ6を介するイオンの移動を妨げない形状であれば、どのような形状でも構わない。例えば、枠体17によって覆われるセパレータ6の表面積を、セパレータ6の全面積に対して10%以下、好ましくは2%以下とできれば、枠体17の設置によるイオンの移動への影響はほとんど問題にはならない。
 水素生成デバイス300において、図5では、セパレータ6の第1電解液層5側に枠体17を設けているが、枠体17の配置位置はこれに限られない。枠体17は、セパレータ6のどちらか一方の片面側に配置されていてもよいし、両面側に配置されていてもよい。これにより、セパレータ6と光触媒層3との間隔、及び、セパレータ6と対極8との間隔を、セパレータ6の面全体にわたって一様に保つことができる。
 枠体17は、実施の形態1で説明した固定支持部材と同様に、電解液を十分に透過させる機能を有し、セパレータ6をたわませずに支持することのできる丈夫さを有し、且つ、絶縁性を有する材料によって形成できる。例えば、プラスチック、セラミックス、絶縁被覆した金属等が挙げられる。
 水素生成デバイス300の動作は、実施の形態1で説明した水素生成デバイス100の場合と同じであるため、ここでは説明を省略する。
 水素生成デバイス300によれば、実施の形態1の水素生成デバイス100と同様の効果を得ることができる。
 (実施の形態4)
 本発明の実施の形態4の水素生成デバイスについて、図7及び図8を用いて説明する。図7は、本実施の形態の水素生成デバイスの構成を示す概略図である。図8は、本実施の形態の水素生成デバイスにおいて、光触媒層を構成する第1のn型半導体層及び第2のn型半導体層の接合前のバンド構造を示す模式図である。
 本実施の形態の水素生成デバイス400は、光触媒層が2層構造を有する点以外は、実施の形態1の水素生成デバイス100と同様の構成を有する。そのため、ここでは、光触媒層の構成についてのみ説明する。
 本実施の形態における水素生成デバイス400の光触媒層は、光を照射する側から順に配置された、第1のn型半導体層18及び第2のn型半導体層19によって構成されている。図8に示すように、真空準位を基準として、第2のn型半導体層19の伝導帯及び価電子帯のバンドエッジ準位(ECB2、EVB2)は、それぞれ、第1のn型半導体層18の伝導帯及び価電子帯のバンドエッジ準位(ECB1、EVB1)よりも大きい。さらに、真空準位を基準として、第1のn型半導体層18のフェルミ準位(EFB1)は、第2のn型半導体層19のフェルミ準位(EFB2)よりも大きい。
 このような関係を有する第1のn型半導体層18及び第2のn型半導体層19を互いに接合させると、第1のn型半導体層18と第2のn型半導体層19との接合面において、互いのフェルミ準位が一致するようにキャリアが移動する。このことにより、バンドエッジの曲がりが生じる。第2のn型半導体層19の伝導帯のバンドエッジ準位及び価電子帯のバンドエッジ準位(ECB2、EVB2)は、それぞれ、第1のn型半導体層18における伝導帯のバンドエッジ準位及び価電子帯のバンドエッジ準位(ECB1、EVB1)よりも大きい。さらに、第1のn型半導体層18のフェルミ準位(EFB1)は、第2のn型半導体層19のフェルミ準位(EFB2)よりも大きい。これらの関係により、第1のn型半導体層18と第2のn型半導体層19との接合面にショットキー障壁が生じない。
 第1のn型半導体層18内部で、光励起により、電子とホールとが生成する。生成した電子は、第1のn型半導体層18の伝導帯に移動する。生成したホールは、バンドエッジの曲がりに沿って、価電子帯を第2のn型半導体層19の表面(第2のn型半導体層19と第1電解液層5との界面)まで移動する。したがって、電子及びホールは、ショットキー障壁により妨げられることなく、効率的に電荷分離される。これにより、光励起により第1のn型半導体層18内部で生成した電子とホールとが再結合する確率が低くなる。ホールは、効率良く第2のn型半導体層19の表面まで移動するので、光の照射による水素生成反応の量子効率がより向上する。
 第1のn型半導体層18としては、例えば、酸化チタン、チタン酸ストロンチウム、酸化ニオブ、酸化亜鉛及びタンタル酸カリウム等が好適に用いられる。第2のn型半導体層19としては、例えば、硫化カドミウム、酸窒化タンタル及び窒化タンタル等が好適に用いられる。具体的な組み合わせとしては、例えば、第1のn型半導体層18として酸化チタン(アナタース型)を、第2のn型半導体層19として硫化カドミウムを用いることが、好適である。
 水素生成デバイス400の動作は、実施の形態1で説明した水素生成デバイス100の場合と同じであるため、ここでは説明を省略する。
 水素生成デバイス400によれば、実施の形態1の水素生成デバイス100と同様の効果を得ることができる。ただし、上記のとおり、水素生成デバイス400では、光触媒層が2層のn型半導体層によって構成されている。この構成により、水素生成デバイス400では、実施の形態1の水素生成デバイス100と比較して、光触媒層内での電子と正孔との電荷分離が促進される。したがって、光触媒層の表面での酸素生成反応及び対極8表面での水素生成反応がより加速されるという効果が得られる。
 なお、本実施の形態では、実施の形態1の水素生成デバイス100の光触媒層3を2層のn型半導体層によって構成した形態を説明した。しかし、実施の形態2の水素生成デバイス200及び実施の形態3の水素生成デバイス300の光触媒層3についても、同様に、本実施の形態の構成を適用できる。
 (実施の形態5)
 本発明の実施の形態5の水素生成デバイスについて、図9及び図10を用いて説明する。図9は、本実施の形態の水素生成デバイスの構成を示す概略図である。図10は、本実施の形態の水素生成デバイスにおいて、光触媒層を構成する第1のp型半導体層及び第2のp型半導体層の接合前のバンド構造を示す模式図である。
 本実施の形態の水素生成デバイス500は、光触媒層が2層構造を有する点以外は、実施の形態1の水素生成デバイス100と同様の構成を有する。そのため、ここでは、光触媒層の構成についてのみ説明する。
 本実施の形態における水素生成デバイス500の光触媒層は、光を照射する側から順に配置された、第1のp型半導体層20及び第2のp型半導体層21によって構成されている。本実施の形態では、光触媒層をp型半導体によって形成しているので、実施の形態1~4とは異なり、光触媒層で水素生成反応が起こり、対極8で酸素生成反応が起こる。したがって、第1電解液層5に接続された第1ガス取出口14は水素ガス取出口、第2電解液層7に接続された第2ガス取出口15は酸素ガス取出口となる。
 図10に示すように、真空準位を基準として、第2のp型半導体層21の伝導帯及び価電子帯のバンドエッジ準位(ECB2、EVB2)は、それぞれ、第1のp型半導体層20の伝導帯及び価電子帯のバンドエッジ準位(ECB1、EVB1)よりも小さい。さらに、真空準位を基準として、第1のp型半導体層20のフェルミ準位(EFB1)は、第2のp型半導体層21のフェルミ準位(EFB2)よりも小さい。
 このような関係を有する第1のp型半導体層20及び第2のp型半導体層21を互いに接合させると、第1のp型半導体層20と第2のp型半導体層21との接合面において、互いのフェルミ準位が一致するようにキャリアが移動する。このことにより、バンドエッジの曲がりが生じる。第2のp型半導体層21の伝導帯のバンドエッジ準位及び価電子帯のバンドエッジ準位(ECB2、EVB2)は、それぞれ、第1のp型半導体層20における伝導帯のバンドエッジ準位及び価電子帯のバンドエッジ準位(ECB1、EVB1)よりも小さい。さらに、第1のp型半導体層20のフェルミ準位(EFB1)は、第2のp型半導体層21のフェルミ準位(EFB2)よりも小さい。これらの関係により、第1のp型半導体層20と第2のp型半導体層21との接合面にショットキー障壁が生じない。
 第1のp型半導体層20内部で、光励起により、電子とホールとが生成する。生成したホールは、第1のn型半導体層20の価電子帯に移動する。生成した電子は、バンドエッジの曲がりに沿って、伝導帯を第2のp型半導体層21の表面(第2のp型半導体層21と第1電解液層5との界面)まで移動する。したがって、電子及びホールは、ショットキー障壁により妨げられることなく、効率的に電荷分離される。これにより、光励起により第1のp型半導体層20内部で生成した電子とホールとが再結合する確率が低くなる。電子は効率良く第2のp型半導体層21の表面まで移動するので、光の照射による水素生成反応の量子効率がより向上する。
 第1のp型半導体層20としては、例えば、酸化第一銅等が好適に用いられる。第2のp型半導体層21としては、例えば、硫化銅インジウム、セレン化銅インジウムガリウム等が好適に用いられる。具体的な組み合わせとしては、例えば、第1のp型半導体層20として酸化第一銅を、第2のp型半導体21として硫化銅インジウムを用いると好適である。
 水素生成デバイス500の動作は、実施の形態1で説明した水素生成デバイス100の場合と同じであるため、ここでは説明を省略する。
 水素生成デバイス500によれば、実施の形態1の水素生成デバイス100と同様の効果を得ることができる。ただし、上記のとおり、水素生成デバイス500では、光触媒層が2層のp型半導体層によって構成されている。この構成により、水素生成デバイス500では、実施の形態1の水素生成デバイス100と比較して、光触媒層内での電子と正孔との電荷分離が促進される。したがって、光触媒層の表面での水素生成反応及び対極8の表面での酸素生成反応が、より加速される。
 なお、本実施の形態では、実施の形態1の水素生成デバイス100の光触媒層3を2層のp型半導体層によって構成した形態を説明した。しかし、実施の形態2の水素生成デバイス200及び実施の形態3の水素生成デバイス300の光触媒層3についても、同様に、本実施の形態の構成を適用できる。
 (実施の形態6)
 本発明の実施の形態6の水素生成デバイスについて、図11を用いて説明する。図11は、本実施の形態の水素生成デバイスの構成を示す概略図である。
 本実施の形態の水素生成デバイス600には、透明導電層2と対極8との電気的な接続経路である導線10上に、バイアス電圧を印加するための電源装置22が設けられている。なお、水素生成デバイス600は、この点を除いて、実施の形態1の水素生成デバイス100と同様の構成を有する。水素生成デバイス600では、光照射と同時にバイアス電圧が印加される。これにより、光触媒層3の表面での酸素生成反応及び対極8の表面での水素生成反応が、より加速される。
 なお、本実施の形態では、実施の形態1の水素生成デバイス100に対してバイアス電圧を印加する構成を適用した。しかし、実施の形態2~5で説明した全ての水素生成デバイスについても、同様に、本実施の形態の構成を適用できる。
 (実施例)
 本発明の実施例について、具体的に説明する。実施例として、図12に示した水素生成デバイス700を用いた。この水素生成デバイス700は、固定支持部材(第1突起部12a及び第2突起部12b)が設けられていない点を除き、実施の形態6で説明した水素生成デバイス600と同様の構成を有していた。ただし、導線10には、得られた光電流を測定するための電流計26が接続されていた。
 透明基板1にはガラス基板(縦50mm×横30mm×厚さ2.5mm)を用いた。このガラス基板上に、透明導電層2として、ITO膜をスパッタ法で作製した。ITO膜上に、光触媒層3として、厚さ0.5μmの酸化チタン膜(アナタース型)を、スパッタ法で作製した。
 背面基板9にはガラス基板(縦50mm×横30mm×厚さ2.5mm)を用いた。このガラス基板上に、対極8として、白金膜をスパッタ法で作製した。
 透明基板1上に透明導電層2及び光触媒層3が設けられた部品と、背面基板9上に対極8が設けられた部品とを、間にセパレータ6を介して、光触媒層3と対極8とが向かい合う向きで対向させた。これらの部品を、外枠13によって一体的に保持した。光触媒層3の表面と対極8の表面との間の距離は、15mmであった。セパレータ6は、光触媒層3の表面及び対極8の表面からほぼ等距離であって、且つ、これらの表面とほぼ平行になるように配置した。セパレータ6には、電解液層中のプロトンの透過を可能とし、且つ、電解液層中に発生した酸素及び水素の透過を抑制するイオン交換膜(「ナフィオン」(デュポン社製))を用いた。セパレータ6は、透明基板1及び背面基板9とほぼ同じ形状及び同じ大きさを有していた。
 透明導電層2と対極8とを導線10で電気的に接続し、接続経路上にバイアス電圧を印加するための電源装置22を設けた。さらに、外枠13を貫通するように、第1ガス取出口14及び第2ガス取出口15を設けた。電解液には、0.1mol/Lの水酸化ナトリウム水溶液を用いた。
 以上のように作製した本実施例の水素生成デバイス700に対し、透明基板1側から強度100Wのキセノンランプを用いて光を照射した。このとき、同時に、電源装置22を用いて0.5Vのバイアス電圧を印加した。透明導電層2と対極8との間に流れる光電流を測定したところ、1.57mAであった。
 (比較例)
 比較例として、図13に示す水素生成デバイス800を作製した。この水素生成デバイス800では、透明導電層2と光触媒層3とによって構成された光触媒電極4を、透明導電層2と対極8とを対向させる向きで、且つ、セパレータ6の表面上に設置した。さらに、光触媒電極4の下部には、電解液中のプロトン移動のための隙間(縦10mm×横30mm)を設けた。
 光触媒電極4の配置及びその形状以外は、実施例の水素生成デバイス700と同様に、比較例の水素生成デバイス800を作製した。この水素生成デバイス800に対して実施例と同じ条件で光を照射したところ、透明導電層2と対極8との間に流れる光電流は0.57mAであった。
 以上のとおり、電解液層を介して光触媒層と対極とを対向させる本発明の水素生成デバイスによれば、光触媒層を光照射側に向けて配置する従来の水素生成デバイスよりも、高い光電流が流れた。すなわち、本発明の水素生成デバイスによれば、水素生成反応の効率が向上した。
 本発明の水素生成デバイスは、光の照射による水素生成反応の量子効率を向上させることができるので、燃料電池への水素供給源等として好適に利用できる。

Claims (10)

  1.  透明基板と、
     前記透明基板上に配置された透明導電層及び前記透明導電層上に配置された光触媒層によって形成された光触媒電極と、
     前記透明導電層と電気的に接続された対極と、
     前記光触媒電極と前記対極との間に設けられた、水を含む電解液層と、
     前記電解液層を、前記光触媒電極と接する第1電解液層と、前記対極と接する第2電解液層とに分割するセパレータと、
     前記第1電解液層に接続された、前記第1電解液層の内部で発生した酸素ガス又は水素ガスを取り出すための第1ガス取出口と、
     前記第2電解液層に接続された、前記第2電解液層の内部で発生した水素ガス又は酸素ガスを取り出すための第2ガス取出口と、
    を備え、
     前記光触媒電極と前記対極とは、前記光触媒層の表面と前記対極の表面とが向かい合うように配置されており、
     前記セパレータは、前記電解液層中の電解質の透過を可能とし、且つ、前記電解液層中の水素ガス及び酸素ガスの透過を抑制する、
    水素生成デバイス。
  2.  前記透明基板、前記光触媒電極、前記電解液層、前記セパレータ及び前記対極を一体として保持する外枠をさらに備えた、請求項1に記載の水素生成デバイス。
  3.  前記セパレータの位置を固定し、且つ、前記セパレータを支持する固定支持部材をさらに備え、
     前記固定支持部材は、前記セパレータが、前記光触媒層の表面及び前記対極の表面と、所定の間隔を隔てて且つ平行に配置されるように、前記セパレータを固定及び支持する、請求項1に記載の水素生成デバイス。
  4.  前記固定支持部材が、前記光触媒層の表面に設けられた第1突起物及び前記対極の表面に設けられた第2突起物であり、
     前記第1突起物及び前記第2突起物は、前記セパレータを間に挟んで互いに一致する位置に設けられている、
    請求項3に記載の水素生成デバイス。
  5.  前記透明基板、前記光触媒電極、前記電解液層、前記セパレータ及び前記対極を一体として保持する外枠をさらに備え、
     前記固定支持部材が、前記光触媒層と前記セパレータとの間及び前記対極と前記セパレータとの間から選ばれる少なくとも何れか一方の位置に設けられ、且つ、前記外枠に保持された多孔質部材である、
    請求項3に記載の水素生成デバイス。
  6.  前記透明基板、前記光触媒電極、前記電解液層、前記セパレータ及び前記対極を一体として保持する外枠をさらに備え、
     前記固定支持部材が、前記光触媒層と前記セパレータとの間及び前記対極と前記セパレータとの間から選ばれる少なくとも何れか一方の位置に設けられ、且つ、前記外枠に保持された枠体である、
    請求項3に記載の水素生成デバイス。
  7.  前記対極の形状は、平板、貫通孔を有する平板又は切れ込みが設けられた平板である、請求項1に記載の水素生成デバイス。
  8.  前記光触媒層が、前記透明導電層側から順に配置された第1のn型半導体層及び第2のn型半導体層によって形成されており、
     真空準位を基準として、
    (I)前記第2のn型半導体層における伝導帯及び価電子帯のバンドエッジ準位が、それぞれ、前記第1のn型半導体層における伝導帯及び価電子帯のバンドエッジ準位よりも大きく、且つ、
    (II)前記第1のn型半導体層のフェルミ準位が、前記第2のn型半導体層のフェルミ準位よりも大きい、
    請求項1に記載の水素生成デバイス。
  9.  前記光触媒層が、前記透明導電層側から順に配置された第1のp型半導体層及び第2のp型半導体層によって形成されており、
     真空準位を基準として、
    (I)前記第2のp型半導体層における伝導帯及び価電子帯のバンドエッジ準位が、それぞれ、前記第1のp型半導体層における伝導帯及び価電子帯のバンドエッジ準位よりも小さく、且つ、
    (II)前記第1のp型半導体層のフェルミ準位が、前記第2のp型半導体層のフェルミ準位よりも小さい、
    請求項1に記載の水素生成デバイス。
  10.  前記透明導電層と前記対極との電気的な接続経路上に設けられた、バイアス電圧を印加するための電源装置をさらに備えた、
    請求項1に記載の水素生成デバイス。
PCT/JP2011/000269 2010-01-22 2011-01-19 水素生成デバイス WO2011089904A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011550856A JP5628840B2 (ja) 2010-01-22 2011-01-19 水素生成デバイス
CN201180006506.8A CN102713010B (zh) 2010-01-22 2011-01-19 氢生成设备
US13/522,855 US8734625B2 (en) 2010-01-22 2011-01-19 Hydrogen generation device
EP11734511.6A EP2527495B1 (en) 2010-01-22 2011-01-19 Hydrogen generation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010012216 2010-01-22
JP2010-012216 2010-01-22

Publications (1)

Publication Number Publication Date
WO2011089904A1 true WO2011089904A1 (ja) 2011-07-28

Family

ID=44306707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000269 WO2011089904A1 (ja) 2010-01-22 2011-01-19 水素生成デバイス

Country Status (5)

Country Link
US (1) US8734625B2 (ja)
EP (1) EP2527495B1 (ja)
JP (1) JP5628840B2 (ja)
CN (1) CN102713010B (ja)
WO (1) WO2011089904A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155430A (ja) * 2012-01-31 2013-08-15 Equos Research Co Ltd 水素製造装置
JP2013155428A (ja) * 2012-01-31 2013-08-15 Equos Research Co Ltd 水素製造装置
JP2013155101A (ja) * 2012-01-31 2013-08-15 Equos Research Co Ltd 水素製造装置
JP2014116261A (ja) * 2012-12-12 2014-06-26 Kuraray Co Ltd 半導体電極、光電変換素子、および太陽電池
JP2014125368A (ja) * 2012-12-26 2014-07-07 Equos Research Co Ltd ガス生成装置
JP2014125369A (ja) * 2012-12-26 2014-07-07 Equos Research Co Ltd ガス生成装置
JP2014198644A (ja) * 2013-03-29 2014-10-23 株式会社エクォス・リサーチ ガス生成装置
WO2014174811A1 (ja) * 2013-04-26 2014-10-30 パナソニックIpマネジメント株式会社 水素を生成する方法、およびそのために用いられる水素生成デバイス
JP2015196869A (ja) * 2014-03-31 2015-11-09 イムラ・ジャパン株式会社 電極
KR20170018476A (ko) * 2013-01-31 2017-02-17 쥬코쿠 덴료쿠 가부시키 가이샤 수소 함유수 생성 장치
US9708719B2 (en) 2010-12-10 2017-07-18 Aquahydrex Pty Ltd Multi-layer water-splitting devices
US9871255B2 (en) 2013-07-31 2018-01-16 Aquahydrex Pty Ltd Modular electrochemical cells
JP2018035400A (ja) * 2016-08-31 2018-03-08 富士通株式会社 光化学電極及び酸素発生装置
JP2020012134A (ja) * 2018-07-13 2020-01-23 富士フイルム株式会社 人工光合成モジュール
US10577700B2 (en) 2012-06-12 2020-03-03 Aquahydrex Pty Ltd Breathable electrode structure and method for use in water splitting
JP2020138159A (ja) * 2019-02-28 2020-09-03 国立大学法人北海道大学 D2oおよび/またはhdoを濃縮した水の製造方法および製造装置
US11005117B2 (en) 2019-02-01 2021-05-11 Aquahydrex, Inc. Electrochemical system with confined electrolyte
CN116639650A (zh) * 2023-05-24 2023-08-25 安徽大学 一种利用非线性光谱转换的光催化分解水方法及系统

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012037478A1 (en) * 2010-09-16 2012-03-22 Northeastern University Photocatalyst with enhanced stability for hydrogen production and oxidative reactions
WO2015016707A1 (en) * 2013-07-29 2015-02-05 Universiteit Twente Method and apparatus for performing a photooxidation and photoreduction reaction
JP5899521B2 (ja) * 2013-10-17 2016-04-06 パナソニックIpマネジメント株式会社 光半導体電極、光電気化学セル、水素発生方法、及びエネルギーシステム
JP2015227503A (ja) * 2014-05-09 2015-12-17 パナソニックIpマネジメント株式会社 水を分解することによって水素を発生させる方法、ならびにそのために用いられる光電気化学セルおよび半導体電極
JP6586231B2 (ja) 2016-06-07 2019-10-02 富士フイルム株式会社 光触媒電極、人工光合成モジュール及び人工光合成装置
CN106637277B (zh) * 2016-08-29 2018-04-13 江苏师范大学 包含电磁阀驱动模块的光催化应用设备、光触媒催化剂应用设备
CN106676566B (zh) * 2016-08-29 2018-07-10 江苏师范大学 光触媒催化制氢设备、光触媒催化剂环保系统
CN106702418B (zh) * 2016-08-29 2018-08-31 江苏师范大学 光触媒催化制氢设备、光催化水处理装置
CN106637278B (zh) * 2016-08-29 2018-04-13 江苏师范大学 具有电磁阀驱动模块的光触媒催化解水系统、光催化环保装置
CN106676567B (zh) * 2016-08-29 2018-07-13 江苏师范大学 具有电磁阀驱动模块和电机控制模块的光触媒催化制氢设备、光触媒催化剂应用设备
CN106637275B (zh) * 2016-08-29 2018-04-10 江苏师范大学 应用于储能领域的含有电机控制模块的光触媒催化解水系统、光触媒催化剂应用模块
CN106647508B (zh) * 2016-08-29 2018-10-30 江苏师范大学 囊括气压传感模块的光催化应用装置、光触媒催化剂应用机械
CN106637276B (zh) * 2016-08-29 2018-04-13 江苏师范大学 含有电磁阀驱动模块和电机控制模块的光催化解水制氢装置、光触媒催化剂应用机械
CN106676568B (zh) * 2016-08-29 2018-07-10 江苏师范大学 含有电机控制模块的光催化应用装置、光触媒催化剂应用系统
CN106702416B (zh) * 2016-08-29 2018-07-10 江苏师范大学 光催化应用系统、光催化环保装置
CN106689083B (zh) * 2016-08-29 2019-10-22 江苏师范大学 具有电机控制模块的光催化应用装置、杀蚊系统
CN106702417B (zh) * 2016-08-29 2018-09-18 江苏师范大学 包含电机控制模块的光催化应用设备、光触媒催化剂环保系统
CN110467152B (zh) * 2019-08-30 2021-02-26 西安交通大学 一种基于高聚光点光源的光热耦合微流道制氢反应装置
CN110790222B (zh) * 2019-12-03 2021-04-27 河南中氢动力研究院有限公司 一种制备氢气的装置及方法
CN115261901A (zh) * 2022-06-24 2022-11-01 华东理工常熟研究院有限公司 一种新型质子交换膜光电解水制氢电解槽

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767002A (en) * 1980-10-14 1982-04-23 Toshiba Corp Decomposing apparatus for water
JPH09234374A (ja) * 1996-02-29 1997-09-09 Tokyo Gas Co Ltd 水の光酸化触媒
JP2003088753A (ja) * 2001-09-19 2003-03-25 Sumitomo Electric Ind Ltd 酸化還元反応装置、水素および酸素の製造方法、二酸化炭素の固定方法、化合物の製造方法、Cu2Oの安定化方法およびCu2Oの安定化液
JP2006302695A (ja) * 2005-04-21 2006-11-02 Nissan Motor Co Ltd 光電気化学セル及びその製造方法
WO2007129727A1 (ja) * 2006-05-09 2007-11-15 Cocoroca Corporation 電解水生成装置およびそれに用いられる隔膜付き電極セット

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674596A5 (ja) 1988-02-12 1990-06-15 Sulzer Ag
CN1036994A (zh) * 1988-04-20 1989-11-08 中国科学院界面科学实验室 双隔片光解池
JPH0773909A (ja) * 1993-08-23 1995-03-17 Ebara Res Co Ltd 光電気化学装置
JP3035483B2 (ja) * 1995-11-27 2000-04-24 スガ試験機株式会社 酸素・水素電解ガス発生装置
US6936143B1 (en) * 1999-07-05 2005-08-30 Ecole Polytechnique Federale De Lausanne Tandem cell for water cleavage by visible light
CA2496554A1 (en) * 2002-08-21 2004-10-07 Battelle Memorial Institute Photolytic oxygenator with carbon dioxide and/or hydrogen separation and fixation
JP2004197167A (ja) 2002-12-18 2004-07-15 Honda Motor Co Ltd 水素製造装置
WO2004112214A2 (en) * 2003-05-30 2004-12-23 The Arizona Board Of Regents Acting On Behalf Of Arizona State University Methods for use of a photobiofuel cell in production of hydrogen and other materials
US7037414B2 (en) * 2003-07-11 2006-05-02 Gas Technology Institute Photoelectrolysis of water using proton exchange membranes
JP2005133174A (ja) * 2003-10-31 2005-05-26 Toyota Motor Corp 水分解型水素生成セル
JP5114823B2 (ja) * 2004-05-31 2013-01-09 日産自動車株式会社 光電気化学電池
CN2763286Y (zh) * 2005-01-17 2006-03-08 徐文星 叠板电解槽的隔膜更换装置
JP2006265697A (ja) 2005-03-25 2006-10-05 Sharp Corp 水分解用半導体光電極
JP2007196165A (ja) 2006-01-27 2007-08-09 National Institute For Materials Science 新規なデバイス
US20080314435A1 (en) * 2007-06-22 2008-12-25 Xiaoming He Nano engineered photo electrode for photoelectrochemical, photovoltaic and sensor applications
KR100928072B1 (ko) * 2007-10-05 2009-11-23 강릉원주대학교산학협력단 염료감응 태양전지 및 그 제조방법
JP4494528B1 (ja) * 2008-10-30 2010-06-30 パナソニック株式会社 光電気化学セル及びそれを用いたエネルギーシステム
EP2439313B1 (en) * 2009-06-02 2016-09-21 Panasonic Intellectual Property Management Co., Ltd. Photoelectrochemical cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767002A (en) * 1980-10-14 1982-04-23 Toshiba Corp Decomposing apparatus for water
JPH09234374A (ja) * 1996-02-29 1997-09-09 Tokyo Gas Co Ltd 水の光酸化触媒
JP2003088753A (ja) * 2001-09-19 2003-03-25 Sumitomo Electric Ind Ltd 酸化還元反応装置、水素および酸素の製造方法、二酸化炭素の固定方法、化合物の製造方法、Cu2Oの安定化方法およびCu2Oの安定化液
JP2006302695A (ja) * 2005-04-21 2006-11-02 Nissan Motor Co Ltd 光電気化学セル及びその製造方法
WO2007129727A1 (ja) * 2006-05-09 2007-11-15 Cocoroca Corporation 電解水生成装置およびそれに用いられる隔膜付き電極セット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2527495A4 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10428431B2 (en) 2010-12-10 2019-10-01 Aquahydrex Pty Ltd Multi-layer water-splitting devices
US9708719B2 (en) 2010-12-10 2017-07-18 Aquahydrex Pty Ltd Multi-layer water-splitting devices
JP2013155428A (ja) * 2012-01-31 2013-08-15 Equos Research Co Ltd 水素製造装置
JP2013155101A (ja) * 2012-01-31 2013-08-15 Equos Research Co Ltd 水素製造装置
JP2013155430A (ja) * 2012-01-31 2013-08-15 Equos Research Co Ltd 水素製造装置
US10577700B2 (en) 2012-06-12 2020-03-03 Aquahydrex Pty Ltd Breathable electrode structure and method for use in water splitting
JP2014116261A (ja) * 2012-12-12 2014-06-26 Kuraray Co Ltd 半導体電極、光電変換素子、および太陽電池
JP2014125368A (ja) * 2012-12-26 2014-07-07 Equos Research Co Ltd ガス生成装置
JP2014125369A (ja) * 2012-12-26 2014-07-07 Equos Research Co Ltd ガス生成装置
KR101723562B1 (ko) 2013-01-31 2017-04-05 쥬코쿠 덴료쿠 가부시키 가이샤 수소 함유수 생성 장치
KR20170018476A (ko) * 2013-01-31 2017-02-17 쥬코쿠 덴료쿠 가부시키 가이샤 수소 함유수 생성 장치
JP2014198644A (ja) * 2013-03-29 2014-10-23 株式会社エクォス・リサーチ ガス生成装置
JP5966160B2 (ja) * 2013-04-26 2016-08-10 パナソニックIpマネジメント株式会社 水素を生成する方法、およびそのために用いられる水素生成デバイス
CN105073631A (zh) * 2013-04-26 2015-11-18 松下知识产权经营株式会社 生成氢的方法以及为此而使用的氢生成设备
US10047444B2 (en) 2013-04-26 2018-08-14 Panasonic Intellectual Property Management Co., Ltd. Method for generating hydrogen and hydrogen generation device used therefor
WO2014174811A1 (ja) * 2013-04-26 2014-10-30 パナソニックIpマネジメント株式会社 水素を生成する方法、およびそのために用いられる水素生成デバイス
US9871255B2 (en) 2013-07-31 2018-01-16 Aquahydrex Pty Ltd Modular electrochemical cells
US11018345B2 (en) 2013-07-31 2021-05-25 Aquahydrex, Inc. Method and electrochemical cell for managing electrochemical reactions
US10026967B2 (en) 2013-07-31 2018-07-17 Aquahydrex Pty Ltd Composite three-dimensional electrodes and methods of fabrication
US10297834B2 (en) 2013-07-31 2019-05-21 Aquahydrex Pty Ltd Method and electrochemical cell for managing electrochemical reactions
US10355283B2 (en) 2013-07-31 2019-07-16 Aquahydrez Pty Ltd Electro-synthetic or electro-energy cell with gas diffusion electrode(s)
US10637068B2 (en) 2013-07-31 2020-04-28 Aquahydrex, Inc. Modular electrochemical cells
JP2015196869A (ja) * 2014-03-31 2015-11-09 イムラ・ジャパン株式会社 電極
US10858745B2 (en) 2016-08-31 2020-12-08 Fujitsu Limited Photochemical electrode and oxygen evolution device
JP2018035400A (ja) * 2016-08-31 2018-03-08 富士通株式会社 光化学電極及び酸素発生装置
JP2020012134A (ja) * 2018-07-13 2020-01-23 富士フイルム株式会社 人工光合成モジュール
US11005117B2 (en) 2019-02-01 2021-05-11 Aquahydrex, Inc. Electrochemical system with confined electrolyte
US11682783B2 (en) 2019-02-01 2023-06-20 Aquahydrex, Inc. Electrochemical system with confined electrolyte
US12080928B2 (en) 2019-02-01 2024-09-03 Edac Labs, Inc. Electrochemical system with confined electrolyte
JP2020138159A (ja) * 2019-02-28 2020-09-03 国立大学法人北海道大学 D2oおよび/またはhdoを濃縮した水の製造方法および製造装置
JP7359409B2 (ja) 2019-02-28 2023-10-11 国立大学法人北海道大学 D2oおよび/またはhdoを濃縮した水の製造方法および製造装置
CN116639650A (zh) * 2023-05-24 2023-08-25 安徽大学 一种利用非线性光谱转换的光催化分解水方法及系统
CN116639650B (zh) * 2023-05-24 2024-01-02 安徽大学 一种利用非线性光谱转换的光催化分解水方法及系统

Also Published As

Publication number Publication date
CN102713010B (zh) 2015-10-07
CN102713010A (zh) 2012-10-03
EP2527495A4 (en) 2015-01-14
JP5628840B2 (ja) 2014-11-19
US20120285823A1 (en) 2012-11-15
JPWO2011089904A1 (ja) 2013-05-23
US8734625B2 (en) 2014-05-27
EP2527495A1 (en) 2012-11-28
EP2527495B1 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5628840B2 (ja) 水素生成デバイス
JP4767370B2 (ja) 光電気化学セル
JP6333235B2 (ja) 光電気化学セル、光電気化学セルを用いた水素および酸素の光駆動生成システムならびに生成方法、および、光電気化学セルの製造方法
JP5830527B2 (ja) 半導体素子、水素製造システム、並びにメタンまたはメタノール製造システム
JP4680327B2 (ja) 光電気化学セル
JP6316436B2 (ja) 水素発生電極、および人工光合成モジュール
EP2500449A1 (en) Photoelectrochemical cell and energy system using same
US20130075250A1 (en) Hydrogen production device
US20170191172A1 (en) Artificial photosynthesis module
JP5651584B2 (ja) 水素生成デバイス
CN108541275B (zh) 光电化学电池、光电极和制造光电极的方法
US9774052B2 (en) Hydrogen producing device and hydrogen producing unit and energy system including the hydrogen producing device and the hydrogen producing unit
US9447509B2 (en) Hydrogen producing cell, hydrogen producing device, and energy system including the hydrogen producing device
JP6495630B2 (ja) 光電気化学反応装置
JP6013251B2 (ja) ガス製造装置
KR101596250B1 (ko) 대면적 광화학적 수소 발생 유닛,이를 포함하는 대용량 물분해 장치 및 그에 사용되는 광전극 모듈
US20060100100A1 (en) Tetrahedrally-bonded oxide semiconductors for photoelectrochemical hydrogen production
JP2017203206A (ja) 光水素生成デバイス
EP4394084A2 (en) Photocatalytic apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180006506.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11734511

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011550856

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2011734511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011734511

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13522855

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 6399/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE