WO2011089759A1 - 変調器およびδς型d/a変換器 - Google Patents

変調器およびδς型d/a変換器 Download PDF

Info

Publication number
WO2011089759A1
WO2011089759A1 PCT/JP2010/067150 JP2010067150W WO2011089759A1 WO 2011089759 A1 WO2011089759 A1 WO 2011089759A1 JP 2010067150 W JP2010067150 W JP 2010067150W WO 2011089759 A1 WO2011089759 A1 WO 2011089759A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
input
output
modulator
signal
Prior art date
Application number
PCT/JP2010/067150
Other languages
English (en)
French (fr)
Inventor
徹矢 梶田
清太 梨本
直紀 長嶋
浩二 奥田
Original Assignee
株式会社山武
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山武 filed Critical 株式会社山武
Priority to KR1020127013174A priority Critical patent/KR101338531B1/ko
Priority to CN201080062386.9A priority patent/CN102859883B/zh
Priority to US13/522,836 priority patent/US8766837B2/en
Publication of WO2011089759A1 publication Critical patent/WO2011089759A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step
    • H03M3/51Automatic control for modifying converter range
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/02Delta modulation, i.e. one-bit differential modulation

Definitions

  • the present invention relates to a modulator and a ⁇ type D / A converter.
  • the D / A converter for example, a PWM D / A converter having a PWM modulator or a ⁇ D / A converter having a ⁇ modulator is used.
  • the PWM modulator has a problem that power consumption increases when accuracy is increased and accuracy decreases when power consumption is reduced.
  • the ⁇ modulator can achieve high linearity at a lower clock frequency than the PWM modulator by oversampling or noise shaping.
  • the ⁇ D / A converter has the advantages of reducing power consumption and improving accuracy compared to the PWM D / A converter.
  • Patent Document 1 below discloses a ⁇ D / A converter that converts a multi-bit input signal into an output signal of a pulse train.
  • the output of the ⁇ modulator is a pulse coarse / fine signal indicating a Low / High level.
  • the coarse / dense signal has no periodicity because the Low / High level is determined by the internal feedback circuit of the ⁇ modulator.
  • the state where the output of the ⁇ modulator is fixed at either the low level or the high level is a state where the internal feedback circuit is saturated. That is, this state is an abnormal state in which normal stable operation cannot be maintained.
  • the output cannot be fixed to either the low level or the high level.
  • the ⁇ D / A converter that averages the output of the ⁇ modulator and outputs an analog signal has an output voltage range of 0 [V] to 2.5 [for example] as shown in FIG.
  • V] is set to a voltage of 0 [V] to 0.1 [V] that is near the lower limit of the output voltage (lower limit side non-output range) or 2.4 that is near the upper limit of the output voltage.
  • a voltage of [V] to 2.5 [V] (upper limit output impossible range) cannot be output.
  • Some industrial measuring devices require output from 0 [V], such as 0 [V] to 1 [V] and 0 [V] to 5 [V].
  • a correction circuit including a gain adjustment circuit and a voltage source is separately provided. It is necessary to provide it.
  • the accuracy of the correction circuit is low, the accuracy of the ⁇ D / A converter is lowered.
  • the accuracy of the correction circuit is raised to a level suitable for the ⁇ modulator, the configuration becomes complicated and the cost increases.
  • the present invention has been made to solve the above-described problems caused by the prior art, and a modulator and a ⁇ D / A converter that can easily satisfy a required output range without degrading accuracy.
  • the purpose is to provide a vessel.
  • the modulator according to the present invention includes a ⁇ modulator that converts a digital input signal into a pulse signal, a comparator that compares an input value corresponding to the digital input signal with a preset threshold value, and a comparison by the comparator When the result indicates that the input value is smaller than the threshold value, output control means for decreasing the output value relative to the input value as the difference between the input value and the threshold value increases.
  • the output value when the input value is smaller than the threshold value, the output value can be made smaller than the original output value as the input value becomes smaller.
  • the output control means divides the pulse signal output from the ⁇ modulator into a pulse train composed of pulses of a difference number between the threshold and a predetermined minimum value, and among the pulses included in each of the pulse trains, By forcibly setting the pulse value corresponding to the difference between the input value and the threshold value to Low, the output value for the input value can be reduced.
  • the output control means can set the output value corresponding to the input value to a value corresponding to the minimum value when the input value is the minimum value that can be input as the input value. As a result, when the input value is the minimum value, a value corresponding to the minimum value can be output as the output value.
  • the modulator according to the present invention includes a ⁇ modulator that converts a digital input signal into a pulse signal, a comparator that compares an input value corresponding to the digital input signal with a preset threshold value, and a comparison by the comparator When the result indicates that the input value is larger than the threshold value, output control means for increasing the output value with respect to the input value as the difference between the input value and the threshold value increases.
  • the output value when the input value is larger than the threshold value, the output value can be made larger than the original output value as the input value becomes larger.
  • the output control means divides the pulse signal output from the ⁇ modulator into a pulse train composed of pulses of a difference number between a predetermined maximum value and the threshold, and among the pulses included in each of the pulse trains, By forcibly setting the pulse value of the difference number between the input value and the threshold value to High, the output value for the input value can be increased.
  • the output control means can set the output value for the input value to a value corresponding to the maximum value when the input value is a maximum value that can be input as the input value. Thereby, when the input value is the maximum value, a value corresponding to the maximum value can be output as the output value.
  • a modulator includes a ⁇ modulator that converts a digital input signal into a pulse signal, a first comparator that compares an input value corresponding to the digital input signal and a preset first threshold value. , A second comparator that compares an input value corresponding to the digital input signal with a preset second threshold value, and a comparison result by the first comparator indicates that the input value is the first threshold value.
  • the first output control means for lowering the output value relative to the input value as the difference between the input value and the first threshold value increases, and the comparison result by the second comparator Indicates that the input value is larger than the second threshold, the second output control means for increasing the output value relative to the input value as the difference between the input value and the second threshold increases. And comprising.
  • the output value when the input value is smaller than the first threshold value, the output value can be made smaller than the original output value as the input value becomes smaller.
  • the output value when the input value is larger than the second threshold value, the output value can be made larger than the original output value as the input value increases.
  • a ⁇ -type D / A converter includes the modulator and an analog filter that smoothes the output signal of the modulator.
  • FIG. 1 It is a figure which illustrates typically composition of a delta-sigma type D / A converter in an embodiment. It is a figure for demonstrating the content of the signal after a thinning
  • FIG. 1 is a diagram schematically illustrating a configuration of a ⁇ D / A converter 1 in the embodiment.
  • the ⁇ D / A converter 1 includes an input comparator 11, a ⁇ modulator 12, a counter 13, a thinning output control unit 14, a padding output control unit 15, and a selector 16. And an analog filter 17.
  • the counter 13, the thinning output control unit 14, the padding output control unit 15 and the selector 16 constitute output control means.
  • the input comparator 11, the ⁇ modulator 12, the counter 13, the thinning output control unit 14, the padding output control unit 15 and the selector 16 constitute a modulator.
  • the input comparator 11 compares an input value corresponding to the multi-bit digital input signal IS with a preset threshold LV.
  • a preset threshold LV In the present embodiment, description will be made using 16 bits as an example of multi-bits.
  • the threshold LV includes an upper limit threshold LVG and a lower limit threshold LVL.
  • the input comparator 11 outputs “LT” as the comparison result signal CS when the input value is smaller than the lower threshold LVL.
  • the input comparator 11 outputs “GT” as the comparison result signal CS.
  • the input comparator 11 outputs “ORG” as the comparison result signal CS when the input value is not less than the lower limit side threshold LVL and not more than the upper limit side threshold LVG.
  • the input comparator 11 outputs the digital input signal IS as it is as the SIS signal to the ⁇ modulator 12 while outputting “ORG” as the comparison result signal CS. While outputting “LT” as the comparison result signal CS, the input comparator 11 fixes the input value of the digital input signal IS to the lower threshold LVL and outputs it to the ⁇ modulator 12 as the SIS signal. While outputting “GT” as the comparison result signal CS, the input comparator 11 fixes the input value of the digital input signal IS to the upper threshold LVG and outputs it as the SIS signal to the ⁇ modulator 12.
  • the ⁇ modulator 12 converts the digital input signal SIS determined by the magnitude of the digital input signal IS into a pulse signal PS.
  • the pulse signal PS becomes a pulse coarse / dense signal corresponding to the digital input signal IS.
  • an example of the pulse signal PS will be described using a signal indicating a binary (Low / High) pulse. Note that the level of the pulse signal PS is not limited to being binary, and may be multilevel.
  • the counter 13 counts up the count value CV by 1 from 0 to the lower limit threshold LVL or the difference between the maximum value that can be input as the input value and the upper limit threshold LVG. When the count value CV reaches the lower limit threshold LVL or the difference, the counter 13 returns to 0 and repeats counting up to the lower limit threshold LVL or the difference again.
  • the count value CV is not limited to starting counting up from zero. For example, when the minimum value that can be input as the input value is other than 0, the count-up may be started from this minimum value.
  • the decimation output control unit 14 gradually increases the output value from the decimation output control unit 14 with respect to this input value as the difference between the input value and the lower threshold LVL increases. To lower.
  • the input value is the minimum value that can be input as the input value (hereinafter, the case where the minimum value is 0) will be described
  • the output value corresponds to the minimum value.
  • the output value is gradually decreased in accordance with the difference between the input value and the lower limit side threshold value LVL so as to be a value (the case where this value is 0 will be described below).
  • the thinning output control unit 14 divides the pulse signal PS output from the ⁇ modulator 12 into a pulse train composed of pulses of the threshold LVL number on the lower limit side. Of the pulses included in each pulse train, the output value is gradually lowered by forcibly fixing the pulse of the difference number between the input value and the lower threshold LVL to Low.
  • FIG. 2 shows a signal after decimation output from the decimation output control unit 14 when the lower threshold LVL is “0 X 0008” and the input value corresponding to the digital input signal IS is “0 X 0005”. It is a figure for demonstrating the content of PSL.
  • the pulse signal PS shown in FIG. 2 is a signal that is output from the ⁇ modulator 12 and input to the decimation output control unit 14.
  • the count value CV is a value output from the counter 13 and input to the thinning output control unit 14.
  • the counter 13 repeats the count-up of 8 counts from 0 to 7 based on the lower limit side threshold value LVL “0 X 0008” included in the threshold value LV, so that the count value CV is given to the thinning output control unit 14. Output.
  • the pulse signal PS is divided into a pulse train composed of 8 pulses by a count value CV from 0 to 7. For example, the pulse signal PS shown in FIG. 2 is divided into four pulse trains.
  • the decimation output control unit 14 outputs the five pulses distinguished by the count values from 0 to 4 in each pulse train as the decimation signal PSL.
  • the number of pulses to be output as it is is set to the same number as the input value.
  • the input value is “0 X 0005”, the number of pulses to be output as it is is set to five.
  • the thinning-out output control unit 14 forcibly fixes the three pulses distinguished by the count values from 5 to 7 as the remaining pulses in each pulse train to the low level, respectively, and performs the thinned-out signal PSL. Output as.
  • the number of pulses forcibly fixed to Low is set to the same number as the difference between the lower limit threshold LVL and the input value.
  • the lower threshold LVL is “0 X 0008” and the input value is “0 X 0005”
  • the number of pulses forcibly fixed to Low is set to three.
  • the output result by the thinning output control unit 14 will be specifically described using the four pulse trains shown in FIG.
  • the value of the pulse signal PS averages the values of the four pulse trains to be “1/4” as shown in (1) below, whereas the value of the thinned signal PSL is the value of the four pulse trains. On average, it becomes “5/32” as shown in (2) below.
  • “5/32” corresponds to a value obtained by multiplying “1/4” which is the value of the pulse signal PS by “5/8”. That is, in this case, the value of the post-thinning signal PSL is reduced to “5/8” of the value of the output pulse signal PS that is output as it is.
  • the same number of pulses as the difference between the lower limit side threshold value LVL and the input value among the pulses included in the pulse train are forcibly fixed to Low and output.
  • the value of the post-thinning signal PSL can be decreased as the difference between the lower limit side threshold value LVL and the input value is larger.
  • all pulses are forcibly fixed to Low and output, so that the value of the thinned signal PSL can be set to 0.
  • the case where the average value of the four pulse trains is calculated is described for convenience of explanation, but there are four target pulse trains when the average is calculated. It is not limited to being.
  • the calculation accuracy of the average value can be improved as the number of target pulse trains increases.
  • the number of target pulse trains corresponding to the output accuracy can be obtained by repeating the simulation.
  • the padding output control unit 15 gradually increases the output value from the padding output control unit 15 with respect to the input value as the difference between the input value and the upper limit side threshold value LVG increases. Increase to. In this case, the padding output control unit 15 sets the input value and the upper threshold LVG so that the output value becomes a value corresponding to the maximum value when the input value is the maximum value that can be input as the input value. The output value is gradually increased according to the difference.
  • the padding output control unit 15 calculates the pulse signal PS output from the ⁇ modulator 12 between the maximum value of the input value and the upper threshold LVG when the comparison result signal CS indicates “GT”. By dividing into pulse trains composed of pulses of the difference number, among the pulses contained in each pulse train, the output value is gradually increased by forcibly fixing the pulse of the difference number between the input value and the upper threshold LVG to High. increase.
  • FIG. 3 shows the post-water-filling signal output from the water-filling output control unit 15 when the upper-limit threshold value LVG is “0 X FFF7” and the input value corresponding to the digital input signal IS is “0 X FFFD”. It is a figure for demonstrating the content of PSG.
  • the pulse signal PS shown in FIG. 3 is a signal output from the ⁇ modulator 12 and input to the padding output control unit 15.
  • the count value CV is a value output from the counter 13 and input to the padding output control unit 15.
  • the counter 13 repeats the count-up of 8 counts from 0 to 7 based on the maximum value “0 X FFFF” of the input value and the upper threshold LVG “0 X FFF7” included in the threshold LV.
  • the count value CV is increased and output to the output control unit 15.
  • the pulse signal PS is divided into a pulse train composed of 8 pulses by a count value CV from 0 to 7. For example, the pulse signal PS shown in FIG. 3 is divided into four pulse trains.
  • the padding output control unit 15 outputs the two pulses that are distinguished by the count values of 0 and 1 in the pulse trains as padded signals PSG, respectively.
  • the number of pulses to be output as it is is set to the same number as the difference between the maximum input value and the input value.
  • the maximum value of the input value is “0 X FFFF” and the input value is “0 X FFFD”, the number of pulses to be output as it is is set to two.
  • the padding output control unit 15 forcibly fixes the six pulses, which are distinguished by the count values from 2 to 7 as the remaining pulses, in each pulse train to High, respectively, and the padded signal PSG Output as.
  • the number of pulses forcibly fixed to High is set to the same number as the difference between the input value and the upper threshold LVG.
  • the input value is “0 X FFFD” and the upper limit side threshold LVG is “0 X FFFF7”
  • the number of pulses forcibly fixed to High is set to six.
  • the output result by the padding output control unit 15 will be specifically described using the four pulse trains shown in FIG.
  • the value of the pulse signal PS is “11/16” as shown in the following (3) when the values of the four pulse trains are averaged, whereas the value of the signal PSG after padding is the value of the four pulse trains. On average, it is “15/16” as shown in (4) below. “15/16” corresponds to a value obtained by multiplying “11/16”, which is the value of the pulse signal PS, by “15/11”. That is, the value of the post-padding signal PSG in this case increases to the value “15/11” of the value of the output pulse signal PS that is output as it is.
  • the value of the post-padding signal PSG can be increased as the difference between the input value and the upper limit side threshold LVG is larger.
  • the input value is the maximum value, all the pulses are forcibly fixed to High and output, so that the value of the post-padding signal PSG can be maximized.
  • the selector 16 selects the output pulse signal OS to be output to the analog filter 17 based on the comparison result signal CS. Specifically, the selector 16 outputs the post-padded signal PSG to the analog filter 17 as the output pulse signal OS when the comparison result signal CS indicates “GT”. The selector 16 outputs the thinned signal PSL to the analog filter 17 as the output pulse signal OS when the comparison result signal CS indicates “LT”. When the comparison result signal CS indicates “ORG”, the selector 16 outputs the pulse signal PS output from the ⁇ modulator 12 to the analog filter 17 as it is as the output pulse signal OS.
  • the analog filter 17 removes (smooths) the high frequency component of the output pulse signal OS and outputs the analog signal AS.
  • a filter circuit including a low-pass filter having a resistor and a capacitor and a buffer amplifier can be used.
  • the analog filter 17 may be configured to smooth the output pulse signal OS as it is with a low-pass filter.
  • the output pulse signal OS may be used to smooth the selected power supply voltage with a low-pass filter.
  • the output value is reduced to the original output as the input value becomes smaller.
  • the minimum value “0 X 0000” the minimum value “0 [V]” can be output as the output value.
  • the output value can be made larger than the original output value as the input value increases, and the input value is the maximum value “0 X FFFF”. In some cases, the maximum value “2.5 [V]” can be output as the output value.
  • the analog filter 17 shown in FIG. 4 it is possible to output a voltage in the required output range of 0 [V] to 2.5 [V], so that the required output range can be satisfied. it can.
  • the minimum value of the output value need not be limited to 0 [V].
  • the output range is 1.0 [V] to 2.5 [V].
  • the minimum value of the output value is 1.0 [V].
  • the output value that can be output by the thinning output control unit 14 and the padding output control unit 15 for example, the lower limit side non-outputtable range (0 [V] to 0.1 [V]) shown in FIG. Notifying the output impossible range (2.4 [V] to 2.5 [V])) for signal value for notifying the abnormal state inside the equipment step by step, and for notifying operation errors of various setting conditions It can be used for signal values and the like.
  • the difference between the lower limit side threshold value LVL and the minimum value of 0 is equal to the difference between the maximum value and the upper limit side threshold value LVG. It is not limited to being equal. However, by making the difference between the lower limit side threshold LVL and the minimum value 0 equal to the difference between the maximum value and the upper limit side threshold LVG, the number of pulses of the pulse train and the padding output control in the thinning output control unit 14 are controlled. Since the number of pulses in the pulse train in the unit 15 can be made the same, the elements included in the output control means can be shared.
  • the thinning output control unit 14 and the padding output control unit 15 in the above-described embodiment select and process in order from the first pulse of the pulse train, but are not limited to selecting in order from the first pulse of the pulse train. If the number of pulses set as the number of pulses to be output as it is from the pulses included in the pulse train and the number of pulses set as the number of pulses forcibly fixed to Low or High can be selected, Any method may be used for selection. For example, it may be selected randomly from the pulse train. In addition, for example, a toggle counter may be used to sequentially select pulses corresponding to the count value next to the count value corresponding to the last pulse selected last time. By varying the position of the selected pulse, it is possible to shape the noise of the average value caused by the position of the selected pulse, so that the accuracy can be further improved.
  • the value of the digital input signal is expressed by a positive / negative binary number
  • the value of the digital input signal may be expressed by a two's complement.
  • 2's complement By using the 2's complement, computer calculations can be facilitated.
  • the value of the digital input signal from “0 X 0000” to “0 X FFFF” expressed by the 16-bit binary number is expressed by a 16-bit two's complement
  • the value of the digital signal However, it takes values from “0 X 8000” to “0 X 7FFF”.
  • “0 X 8000” to “0 X FFFF” express a negative number
  • the maximum negative value is “0 X 8000”.
  • the ⁇ modulator 12 in the above-described embodiment outputs a coarse / fine pulse signal, pulses are randomly output at a constant rate.
  • a dither signal may be added to the input signal to the ⁇ modulator 12 in order to increase the randomness of the output from the ⁇ modulator 12.
  • the appearance position of the high pulse and the randomness of the number of pulses can be further improved. Thereby, it is possible to eliminate the deviation of the output value caused by the periodic noise, and the output accuracy can be further improved.
  • a technique for reducing noise by adding a dither signal is a well-known technique, and is disclosed in, for example, Japanese Patent Laid-Open No. 5-284403.
  • the modulator and ⁇ type D / A converter according to the present invention are suitable for satisfying the required output range easily without degrading accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

 高精度かつ簡易に、要求出力範囲を充足させる。デジタル入力信号をパルス信号に変換するΔΣ変調器12と、デジタル入力信号に対応する入力値と予め設定された閾値とを比較する入力比較器11と、入力比較器11による比較結果が、入力値が閾値よりも小さいことを示す場合に、入力値と閾値との差が大きいほど入力値に対する出力値を低下させ、入力値が0であるときには出力値を0とする間引き出力制御部14と、を備える。

Description

変調器およびΔΣ型D/A変換器
 本発明は、変調器およびΔΣ型D/A変換器に関する。
 D/A変換器として、例えば、PWM変調器を有するPWM型D/A変換器や、ΔΣ変調器を有するΔΣ型D/A変換器が用いられている。PWM変調器には、高精度化を図ると消費電力が増大し、低消費電力化を図ると精度が低下するという問題がある。これに対して、ΔΣ変調器は、オーバサンプリングやノイズシェーピングによって、PWM変調器よりも低いクロック周波数で高いリニアリティを実現することができる。つまり、ΔΣ型D/A変換器には、PWM型D/A変換器に比べて、消費電力を低減し、かつ精度を向上させることができるというメリットがある。下記特許文献1には、多ビットの入力信号をパルス列の出力信号に変換するΔΣ型D/A変換器が開示されている。
特開2008-35038号公報
 一般に、ΔΣ変調器の出力は、Low/Highレベルを示すパルスの粗密信号となる。粗密信号は、ΔΣ変調器の内部フィードバック回路によってLow/Highレベルが決められるため、PWM波形とは異なり周期性が無い。ΔΣ変調器の出力が、LowレベルまたはHighレベルのいずれか一方に固定されている状態は、内部フィードバック回路が飽和している状態である。つまり、この状態は、正常な安定動作を保つことができない異常な状態となる。これに対して通常のΔΣ変調器では、出力をLowレベルまたはHighレベルのいずれか一方に固定することができない。例えば、入力信号の値が0であっても、ΔΣ変調器の内部が正常に動作している場合には、系の安定性を保つために一定の割合でHighレベルのパルスが出力されてしまうため、ΔΣ変調器の出力値は完全には0にならない。同様に、入力信号の値が最大値であっても、一定の割合でLowレベルのパルスが出力されてしまうため、ΔΣ変調器の出力値は最大値にはならない。その結果、ΔΣ変調器の出力をフィルタ回路で平均化してアナログ信号を出力するΔΣ型D/A変換器は、例えば図6に示すように出力電圧の範囲が0[V]~2.5[V]に設定されている場合には、出力電圧の下限付近となる0[V]~0.1[V]の電圧(下限側出力不可範囲)や、出力電圧の上限付近となる2.4[V]~2.5[V]の電圧(上限側出力不可範囲)を出力することができないことになる。
 産業用計測機器の中には、例えば0[V]~1[V]や0[V]~5[V]のように、0[V]からの出力を要求するものがある。このような計測機器において、上述したΔΣ型D/A変換器を採用する場合には、0[V]からの出力を実現するために、例えばゲイン調節回路や電圧源等を含む補正回路を別途設ける必要がある。この補正回路の精度が低い場合には、ΔΣ型D/A変換器の精度が低下してしまう。一方、補正回路の精度をΔΣ変調器に見合うレベルにまで引き上げると構成が複雑となりコストが嵩んでしまう。
 そこで、本発明は、上述した従来技術による問題点を解消するためになされたものであり、精度を低下させず、かつ簡易に、要求する出力範囲を充足できる変調器およびΔΣ型D/A変換器を提供することを目的とする。
 本発明に係る変調器は、デジタル入力信号をパルス信号に変換するΔΣ変調器と、前記デジタル入力信号に対応する入力値と予め設定された閾値とを比較する比較器と、前記比較器による比較結果が、前記入力値が前記閾値よりも小さいことを示す場合に、前記入力値と前記閾値との差が大きいほど前記入力値に対する出力値を低下させる出力制御手段と、を備える。
 かかる構成を採用することで、入力値が閾値よりも小さい場合には、入力値が小さくなるほど、出力値を本来の出力値よりも小さくすることができる。
 上記出力制御手段は、前記ΔΣ変調器から出力される前記パルス信号を、前記閾値と所定の最小値との差分数のパルスからなるパルス列に区分し、それぞれの前記パルス列に含まれるパルスのうち、前記入力値と前記閾値との差分数のパルスの値を強制的にLowにすることで、前記入力値に対する出力値を低下させることができる。
 上記出力制御手段は、前記入力値が当該入力値として入力可能な最小値であるときには、前記入力値に対する出力値を前記最小値に対応する値にすることができる。これにより、入力値が最小値であるときには、出力値として当該最小値に対応する値を出力させることが可能となる。
 本発明に係る変調器は、デジタル入力信号をパルス信号に変換するΔΣ変調器と、前記デジタル入力信号に対応する入力値と予め設定された閾値とを比較する比較器と、前記比較器による比較結果が、前記入力値が前記閾値よりも大きいことを示す場合に、前記入力値と前記閾値との差が大きいほど前記入力値に対する出力値を増加させる出力制御手段と、を備える。
 かかる構成を採用することで、入力値が閾値よりも大きい場合には、入力値が大きくなるほど、出力値を本来の出力値よりも大きくすることができる。
 上記出力制御手段は、前記ΔΣ変調器から出力される前記パルス信号を、所定の最大値と前記閾値との差分数のパルスからなるパルス列に区分し、それぞれの前記パルス列に含まれるパルスのうち、前記入力値と前記閾値との差分数のパルスの値を強制的にHighにすることで、前記入力値に対する出力値を増加させることができる。
 上記出力制御手段は、前記入力値が当該入力値として入力可能な最大値であるときには、前記入力値に対する出力値を前記最大値に対応する値にすることができる。これにより、入力値が最大値であるときには、出力値として当該最大値に対応する値を出力させることが可能となる。
 本発明に係る変調器は、デジタル入力信号をパルス信号に変換するΔΣ変調器と、前記デジタル入力信号に対応する入力値と予め設定された第1の閾値とを比較する第1の比較器と、前記デジタル入力信号に対応する入力値と予め設定された第2の閾値とを比較する第2の比較器と、前記第1の比較器による比較結果が、前記入力値が前記第1の閾値よりも小さいことを示す場合に、前記入力値と前記第1の閾値との差が大きいほど前記入力値に対する出力値を低下させる第1の出力制御手段と、前記第2の比較器による比較結果が、前記入力値が前記第2の閾値よりも大きいことを示す場合に、前記入力値と前記第2の閾値との差が大きいほど前記入力値に対する出力値を増加させる第2の出力制御手段と、を備える。
 かかる構成を採用することで、入力値が第1の閾値よりも小さい場合には、入力値が小さくなるほど、出力値を本来の出力値よりも小さくすることができる。また、入力値が第2の閾値よりも大きい場合には、入力値が大きくなるほど、出力値を本来の出力値よりも大きくすることができる。
 本発明に係るΔΣ型D/A変換器は、上記変調器と、前記変調器の出力信号を平滑化するアナログフィルタと、を備える。
 本発明によれば、高精度かつ簡易に要求出力範囲を充足可能な変調器およびΔΣ型D/A変換器を提供することができる。
実施形態におけるΔΣ型D/A変換器の構成を模式的に例示する図である。 図1に示す間引き出力制御部から出力される間引き後信号の内容を説明するための図である。 図1に示す水増し出力制御部から出力される水増し後信号の内容を説明するための図である。 図1に示すアナログフィルタの回路構成を例示する図である。 図1に示すΔΣ型D/A変換器における入力値と出力値との関係を示す図である。 従来のΔΣ型D/A変換器における入力値と出力値との関係を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除するものではない。すなわち、本発明は、その趣旨を逸脱しない範囲で種々変形して実施できる。
 まず、図1を参照して、実施形態における変調器を含むΔΣ型D/A変換器の構成について説明する。図1は、実施形態におけるΔΣ型D/A変換器1の構成を模式的に例示した図である。
 同図に示すように、ΔΣ型D/A変換器1は、入力比較器11と、ΔΣ変調器12と、カウンタ13と、間引き出力制御部14と、水増し出力制御部15と、選択器16と、アナログフィルタ17と、を有する。カウンタ13、間引き出力制御部14、水増し出力制御部15および選択器16が出力制御手段を構成する。また、入力比較器11、ΔΣ変調器12、カウンタ13、間引き出力制御部14、水増し出力制御部15および選択器16が変調器を構成する。
 入力比較器11は、多ビットのデジタル入力信号ISに対応する入力値と予め設定された閾値LVとを比較する。本実施形態では、多ビットの一例として、16ビットを用いて説明する。また、閾値LVには、上限側の閾値LVGと下限側の閾値LVLとが含まれる。
 入力比較器11は、入力値が下限側の閾値LVLよりも小さい場合には、比較結果信号CSとして“LT”を出力する。入力比較器11は、入力値が上限側LVGの閾値よりも大きい場合には、比較結果信号CSとして“GT”を出力する。入力比較器11は、入力値が下限側の閾値LVL以上、かつ上限側の閾値LVG以下である場合には、比較結果信号CSとして“ORG”を出力する。
 入力比較器11は、比較結果信号CSとして“ORG”を出力する間は、ΔΣ変調器12に対してデジタル入力信号ISをそのままSIS信号として出力する。入力比較器11は、比較結果信号CSとして“LT”を出力する間は、デジタル入力信号ISの入力値を下限側の閾値LVLに固定してSIS信号としてΔΣ変調器12に出力する。入力比較器11は、比較結果信号CSとして“GT”を出力する間は、デジタル入力信号ISの入力値を上限側の閾値LVGに固定してSIS信号としてΔΣ変調器12に出力する。
 ΔΣ変調器12は、デジタル入力信号ISの大きさによって決定されるデジタル入力信号SISをパルス信号PSに変換する。パルス信号PSは、デジタル入力信号ISに応じたパルスの粗密信号となる。本実施形態では、パルス信号PSの一例として、二値(Low/High)のパルスを示す信号を用いて説明する。なお、パルス信号PSのレベルは、二値であることには限定されず、多値であってもよい。
 カウンタ13は、カウント値CVを0から、下限側の閾値LVL、または入力値として入力可能な最大値と上限側の閾値LVGとの差まで、1ずつカウントアップする。カウンタ13は、カウント値CVが下限側の閾値LVLまたは上記差に達すると、0に戻って再度下限側の閾値LVLまたは上記差までカウントアップすることを繰り返す。なお、カウント値CVは、0からカウントアップを開始することには限定されない。例えば、入力値として入力可能な最小値が0以外である場合には、この最小値からカウントアップを開始することとしてもよい。
 間引き出力制御部14は、比較結果信号CSが“LT”を示す場合に、入力値と下限側の閾値LVLとの差が大きいほど、この入力値に対する間引き出力制御部14からの出力値を徐々に低下させる。この場合、間引き出力制御部14は、入力値が当該入力値として入力可能な最小値(以下では、最小値が0である場合について説明する。)であるときには出力値が当該最小値に対応する値(以下では、この値が0である場合について説明する。)となるように、入力値と下限側の閾値LVLとの差に応じて出力値を徐々に低下させる。
 具体的に、間引き出力制御部14は、比較結果信号CSが“LT”を示す場合に、ΔΣ変調器12から出力されるパルス信号PSを下限側の閾値LVL数のパルスからなるパルス列に区分し、それぞれのパルス列に含まれるパルスのうち、入力値と下限側の閾値LVLとの差分数のパルスを強制的にLowに固定することで出力値を徐々に低下させる。
 図2を参照し、さらに具体的に説明する。図2は、下限側の閾値LVLが“00008”であり、デジタル入力信号ISに対応する入力値が“00005”である場合に、間引き出力制御部14から出力される間引き後信号PSLの内容を説明するための図である。図2に示すパルス信号PSは、ΔΣ変調器12から出力され、間引き出力制御部14に入力される信号である。カウント値CVは、カウンタ13から出力され、間引き出力制御部14に入力される値である。カウンタ13は、閾値LVに含まれる下限側の閾値LVL“00008”に基づいて、0~7までの8カウントのカウントアップを繰り返すことで、カウント値CVを間引き出力制御部14に対して出力する。パルス信号PSは、0~7までのカウント値CVによって、8個のパルスからなるパルス列に区分される。例えば、図2に示すパルス信号PSは、4つのパルス列に区分されている。
 間引き出力制御部14は、各パルス列のうち、0~4までのカウント値で区別される5個のパルスを、それぞれそのまま間引き後信号PSLとして出力する。そのまま出力するパルス数は入力値と同数に設定する。ここでは、入力値が“00005”であるため、そのまま出力するパルス数は5個に設定されている。
 続いて、間引き出力制御部14は、各パルス列のうち、残りのパルスとなる5~7までのカウント値で区別される3個のパルスを、それぞれ強制的にLowに固定し、間引き後信号PSLとして出力する。強制的にLowに固定するパルス数は、下限側の閾値LVLと入力値との差分と同数に設定する。ここでは、下限側の閾値LVLが“00008”であり、入力値が“00005”であるため、強制的にLowに固定するパルス数は3個に設定されている。
 図2に示す4つのパルス列を用いて、間引き出力制御部14による出力結果について具体的に説明する。パルス信号PSの値は、4つのパルス列の値を平均すると、下記(1)に示すように、“1/4”となるのに対し、間引き後信号PSLの値は、4つのパルス列の値を平均すると、下記(2)に示すように、“5/32”となる。“5/32”は、パルス信号PSの値である“1/4”を“5/8”倍した値に相当する。つまり、この場合の間引き後信号PSLの値は、パルスをそのまま出力した出力パルス信号PSの値の“5/8”の値に低下することになる。
 {(3/8)+(3/8)+(2/8)+(2/8)}/4 = 1/4 … (1)
 {(2/8)+(1/8)+(1/8)+(1/8)}/4 = 5/32 … (2)
 このように、入力値が下限側の閾値LVLよりも小さい場合に、パルス列に含まれるパルスのうち下限側の閾値LVLと入力値との差分と同数のパルスを強制的にLowに固定して出力することで、下限側の閾値LVLと入力値との差が大きいほど、間引き後信号PSLの値を低下させることができる。また、入力値が0である場合には、全てのパルスが強制的にLowに固定して出力されることになるため、間引き後信号PSLの値を0にすることができる。
 なお、上記間引き出力制御部14による出力結果の説明では、説明の便宜のために、4つのパルス列の平均値を算出した場合について説明しているが、平均を算出する際の対象パルス列は4つであることには限定されない。対象パルス列が多いほど平均値の算出精度を向上させることができる。出力精度に応じた対象パルス列数は、シミュレーションを繰り返すことで求めることができる。
 水増し出力制御部15は、比較結果信号CSが“GT”を示す場合に、入力値と上限側の閾値LVGとの差が大きいほど、この入力値に対する水増し出力制御部15からの出力値を徐々に増加させる。この場合、水増し出力制御部15は、入力値が当該入力値として入力可能な最大値であるときには出力値が当該最大値に対応する値となるように、入力値と上限側の閾値LVGとの差に応じて出力値を徐々に増加させる。
 具体的に、水増し出力制御部15は、比較結果信号CSが“GT”を示す場合に、ΔΣ変調器12から出力されるパルス信号PSを、入力値の最大値と上限側の閾値LVGとの差分数のパルスからなるパルス列に区分し、それぞれのパルス列に含まれるパルスのうち、入力値と上限側の閾値LVGとの差分数のパルスを強制的にHighに固定することで出力値を徐々に増加させる。
 図3を参照し、さらに具体的に説明する。図3は、上限側の閾値LVGが“0FFF7”であり、デジタル入力信号ISに対応する入力値が“0FFFD”である場合に、水増し出力制御部15から出力される水増し後信号PSGの内容を説明するための図である。図3に示すパルス信号PSは、ΔΣ変調器12から出力され、水増し出力制御部15に入力される信号である。カウント値CVは、カウンタ13から出力され、水増し出力制御部15に入力される値である。カウンタ13は、入力値の最大値“0FFFF”と閾値LVに含まれる上限側の閾値LVG“0FFF7”とに基づいて、0~7までの8カウントのカウントアップを繰り返すことで、カウント値CVを水増し出力制御部15に対して出力する。パルス信号PSは、0~7までのカウント値CVによって、8個のパルスからなるパルス列に区分される。例えば、図3に示すパルス信号PSは、4つのパルス列に区分されている。
 水増し出力制御部15は、各パルス列のうち、0および1のカウント値で区別される2個のパルスを、それぞれそのまま水増し後信号PSGとして出力する。そのまま出力するパルス数は、入力値の最大値と入力値との差分と同数に設定する。ここでは、入力値の最大値が“0FFFF”であり、入力値が“0FFFD”であるため、そのまま出力するパルス数は2個に設定されている。
 続いて、水増し出力制御部15は、各パルス列のうち、残りのパルスとなる2~7までのカウント値で区別される6個のパルスを、それぞれ強制的にHighに固定し、水増し後信号PSGとして出力する。強制的にHighに固定するパルス数は、入力値と上限側の閾値LVGとの差分と同数に設定する。ここでは、入力値が“0FFFD”であり、上限側の閾値LVGが“0FFF7”であるため、強制的にHighに固定するパルス数は6個に設定されている。
 図3に示す4つのパルス列を用いて、水増し出力制御部15による出力結果について具体的に説明する。パルス信号PSの値は、4つのパルス列の値を平均すると、下記(3)に示すように、“11/16”となるのに対し、水増し後信号PSGの値は、4つのパルス列の値を平均すると、下記(4)に示すように、“15/16”となる。“15/16”は、パルス信号PSの値である“11/16”を“15/11”倍した値に相当する。つまり、この場合の水増し後信号PSGの値は、パルスをそのまま出力した出力パルス信号PSの値の“15/11”の値に増加することになる。
 {(5/8)+(6/8)+(5/8)+(6/8)}/4 = 11/16 … (3)
 {(7/8)+(8/8)+(7/8)+(8/8)}/4 = 15/16 … (4)
 このように、入力値が上限側の閾値LVGよりも大きい場合に、パルス列に含まれるパルスのうち入力値と上限側の閾値LVGとの差分と同数のパルスを強制的にHighに固定して出力することで、入力値と上限側の閾値LVGとの差が大きいほど、水増し後信号PSGの値を増加させることができる。また、入力値が最大値である場合には、全てのパルスが強制的にHighに固定して出力されることになるため、水増し後信号PSGの値を最大値にすることができる。
 選択器16は、比較結果信号CSに基づいて、アナログフィルタ17に対して出力する出力パルス信号OSを選択する。具体的に、選択器16は、比較結果信号CSが“GT”を示す場合に、出力パルス信号OSとして水増し後信号PSGをアナログフィルタ17に出力する。選択器16は、比較結果信号CSが“LT”を示す場合に、出力パルス信号OSとして間引き後信号PSLをアナログフィルタ17に出力する。選択器16は、比較結果信号CSが“ORG”を示す場合に、出力パルス信号OSとして、ΔΣ変調器12から出力されたパルス信号PSをそのままアナログフィルタ17に出力する。
 アナログフィルタ17は、出力パルス信号OSの高周波成分を除去(平滑化)してアナログ信号ASを出力する。アナログフィルタ17として、例えば、抵抗およびコンデンサを有するローパスフィルタとバッファアンプとを備えるフィルタ回路を用いることができる。
 ここで、アナログフィルタ17は、出力パルス信号OSをそのままローパスフィルタで平滑化する構成としてもよいが、図4に示すように、任意に設定されて異なる電圧を出力する電源VA1および電源VA2の切替を、出力パルス信号OSで行い、選択した電源電圧をローパスフィルタで平滑化する構成としてもよい。このように構成することで、例えば、電源VA1の電圧を2.5[V]、電源VA2の電圧を0.0[V]と設定した場合には、0[V]~2.5[V]の電圧が、D/A変換の結果となるアナログ信号ASの出力範囲として出力される。
 図5に示すように、本実施形態のΔΣ型D/A変換器1によれば、入力値が下限側の閾値LVLよりも小さい場合には、入力値が小さくなるほど、出力値を本来の出力値よりも小さくすることができ、入力値が最小値“00000”であるときには、出力値として最小値“0[V]”を出力させることが可能となる。また、入力値が上限側の閾値LVGよりも大きい場合には、入力値が大きくなるほど、出力値を本来の出力値よりも大きくすることができ、入力値が最大値“0FFFF”であるときには、出力値として最大値“2.5[V]”を出力させることが可能となる。
 これにより、図4に示すアナログフィルタ17を通すことで、要求出力範囲である0[V]~2.5[V]までの電圧を出力することができるため、要求出力範囲を充足することができる。なお、出力値の最小値は、0[V]に限定する必要はない。例えば、図4に示す電源VA1の電圧を2.5[V]、電源VA2の電圧を1.0[V]と設定した場合には、出力範囲が1.0[V]~2.5[V]となり、この場合には、出力値の最小値が、1.0[V]となる。
 また、間引き出力制御部14および水増し出力制御部15によって出力可能となった出力値(例えば、図6に示す下限側出力不可範囲(0[V]~0.1[V])や、上限側出力不可範囲(2.4[V]~2.5[V]))を、機器内部の異常状態を段階的に通知するための信号値や、各種の設定条件の操作ミスを通知するための信号値等に利用することが可能となる。
 なお、上述した実施形態では、間引き出力制御部14および水増し出力制御部15双方の出力制御部を備えているが、いずれか一方を備えることとしてもよい。
 また、上述した実施形態では、下限側の閾値LVLと最小値である0との差と、最大値と上限側の閾値LVGとの差とが等しい場合について説明しているが、それぞれの差が等しいことには限定されない。ただし、下限側の閾値LVLと最小値である0との差と、最大値と上限側の閾値LVGとの差とを等しくすることで、間引き出力制御部14におけるパルス列のパルス数と水増し出力制御部15におけるパルス列のパルス数とを同数にすることができるため、出力制御手段に含まれる要素を共通化することが可能となる。
 また、上述した実施形態における間引き出力制御部14および水増し出力制御部15は、パルス列の先頭パルスから順に選択して処理しているが、パルス列の先頭パルスから順に選択することには限定されない。パルス列に含まれるパルスの中から、そのまま出力するパルス数として設定された数のパルスを選択し、強制的にLowやHighに固定するパルス数として設定された数のパルスを選択することができれば、どのような方法を用いて選択してもよい。例えば、パルス列の中からランダムに選択することとしてもよい。また、例えばトグルカウンタを用いて前回最後に選択したパルスに対応するカウント値の次のカウント値に対応するパルスから順次選択することとしてもよい。選択するパルスの位置を変動させることで、選択したパルスの位置に起因して生ずる平均値のノイズをシェイピングすることができるため、さらに精度を向上させることが可能となる。
 また、上述した実施形態では、デジタル入力信号の値を正負の2進数で表現した場合について説明しているが、デジタル入力信号の値を2の補数で表現してもよい。2の補数を用いることで、コンピュータの計算を容易にすることができる。例えば、上述した16ビットの2進数で表現される“00000”~“0FFFF”までのデジタル入力信号の値を、16ビットの2の補数で表現した場合には、デジタル信号の値が、“08000”~“07FFF”までの値をとることになる。これらの値のうち、“08000”~“0FFFF”までが、負の数を表現し、負の最大値は、“08000”となる。
 また、上述した実施形態におけるΔΣ変調器12は、粗密なパルス信号を出力するため、パルスが一定の割合でランダムに出力されることになる。しかしながら、入力信号が固定されたままである場合には、出力の割合に周期性が生じることがある。そこで、ΔΣ変調器12からの出力のランダム性を高めるために、ΔΣ変調器12への入力信号にディザ信号を加えることとしてもよい。入力信号やΔΣ変調器12の内部フィードバック回路のループ内にディザ信号を加えることで、Highパルスの出現位置やパルス数のランダム性をより高めることができる。これにより、周期的なノイズによって生ずる出力値の偏りを排除することが可能となり、出力精度をさらに向上させることができる。なお、ディザ信号を付加してノイズを減少する手法は、周知技術であり、例えば、特開平5-284033号公報に開示されている。
 本発明に係る変調器およびΔΣ型D/A変換器は、精度を低下させず、かつ簡易に、要求する出力範囲を充足させることに適している。
 1…ΔΣ型D/A変換器、11…入力比較器、12…ΔΣ変調器、13…カウンタ、14…間引き出力制御部、15…水増し出力制御部、16…選択器、17…アナログフィルタ。

Claims (11)

  1.  デジタル入力信号をパルス信号に変換するΔΣ変調器と、
     前記デジタル入力信号に対応する入力値と予め設定された閾値とを比較する比較器と、
     前記比較器による比較結果が、前記入力値が前記閾値よりも小さいことを示す場合に、前記入力値と前記閾値との差が大きいほど前記入力値に対する出力値を低下させる出力制御手段と、
     を備えることを特徴とする変調器。
  2.  前記出力制御手段は、前記ΔΣ変調器から出力される前記パルス信号を、前記閾値と所定の最小値との差分数のパルスからなるパルス列に区分し、それぞれの前記パルス列に含まれるパルスのうち、前記入力値と前記閾値との差分数のパルスの値を強制的にLowにすることで、前記入力値に対する出力値を低下させることを特徴とする請求項1記載の変調器。
  3.  前記出力制御手段は、前記入力値が当該入力値として入力可能な最小値であるときには、前記入力値に対する出力値を前記最小値に対応する値にすることを特徴とする請求項1または2記載の変調器。
  4.  請求項1~3のいずれか1項に記載の変調器と、
     前記変調器の出力信号を平滑化するアナログフィルタと、
     を備えることを特徴とするΔΣ型D/A変換器。
  5.  デジタル入力信号をパルス信号に変換するΔΣ変調器と、
     前記デジタル入力信号に対応する入力値と予め設定された閾値とを比較する比較器と、
     前記比較器による比較結果が、前記入力値が前記閾値よりも大きいことを示す場合に、前記入力値と前記閾値との差が大きいほど前記入力値に対する出力値を増加させる出力制御手段と、
     を備えることを特徴とする変調器。
  6.  前記出力制御手段は、前記ΔΣ変調器から出力される前記パルス信号を、所定の最大値と前記閾値との差分数のパルスからなるパルス列に区分し、それぞれの前記パルス列に含まれるパルスのうち、前記入力値と前記閾値との差分数のパルスの値を強制的にHighにすることで、前記入力値に対する出力値を増加させることを特徴とする請求項5記載の変調器。
  7.  前記出力制御手段は、前記入力値が当該入力値として入力可能な最大値であるときには、前記入力値に対する出力値を前記最大値に対応する値にすることを特徴とする請求項5または6記載の変調器。
  8.  請求項5~7のいずれか1項に記載の変調器と、
     前記変調器の出力信号を平滑化するアナログフィルタと、
     を備えることを特徴とするΔΣ型D/A変換器。
  9.  デジタル入力信号をパルス信号に変換するΔΣ変調器と、
     前記デジタル入力信号に対応する入力値と予め設定された第1の閾値とを比較する第1の比較器と、
     前記デジタル入力信号に対応する入力値と予め設定された第2の閾値とを比較する第2の比較器と、
     前記第1の比較器による比較結果が、前記入力値が前記第1の閾値よりも小さいことを示す場合に、前記入力値と前記第1の閾値との差が大きいほど前記入力値に対する出力値を低下させる第1の出力制御手段と、
     前記第2の比較器による比較結果が、前記入力値が前記第2の閾値よりも大きいことを示す場合に、前記入力値と前記第2の閾値との差が大きいほど前記入力値に対する出力値を増加させる第2の出力制御手段と、
     を備えることを特徴とする変調器。
  10.  前記第1の閾値と前記入力値として入力可能な最小値との差と、前記入力値として入力可能な最大値と前記第2の閾値との差とが等しいことを特徴とする請求項9記載の変調器。
  11.  請求項9または10記載の変調器と、
     前記変調器の出力信号を平滑化するアナログフィルタと、
     を備えることを特徴とするΔΣ型D/A変換器。
PCT/JP2010/067150 2010-01-21 2010-09-30 変調器およびδς型d/a変換器 WO2011089759A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127013174A KR101338531B1 (ko) 2010-01-21 2010-09-30 변조기 및 δς형 d/a 변환기
CN201080062386.9A CN102859883B (zh) 2010-01-21 2010-09-30 调制器及δς型d/a转换器
US13/522,836 US8766837B2 (en) 2010-01-21 2010-09-30 Modulator and ΔΣ-type D/A converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010010833A JP5249254B2 (ja) 2010-01-21 2010-01-21 変調器およびδς型d/a変換器
JP2010-010833 2010-01-21

Publications (1)

Publication Number Publication Date
WO2011089759A1 true WO2011089759A1 (ja) 2011-07-28

Family

ID=44306575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067150 WO2011089759A1 (ja) 2010-01-21 2010-09-30 変調器およびδς型d/a変換器

Country Status (6)

Country Link
US (1) US8766837B2 (ja)
JP (1) JP5249254B2 (ja)
KR (1) KR101338531B1 (ja)
CN (1) CN102859883B (ja)
TW (1) TWI455493B (ja)
WO (1) WO2011089759A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104954025B (zh) * 2014-03-28 2018-09-04 立积电子股份有限公司 降低三角积分调变的交互调变噪声的装置
US10530372B1 (en) 2016-03-25 2020-01-07 MY Tech, LLC Systems and methods for digital synthesis of output signals using resonators
US10020818B1 (en) 2016-03-25 2018-07-10 MY Tech, LLC Systems and methods for fast delta sigma modulation using parallel path feedback loops
EP3542461B1 (en) 2016-11-21 2024-07-31 Mixed-Signal Devices Inc. High efficiency power amplifier architectures for rf applications
US11933919B2 (en) 2022-02-24 2024-03-19 Mixed-Signal Devices Inc. Systems and methods for synthesis of modulated RF signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358592A (ja) * 2000-06-14 2001-12-26 Burr-Brown Japan Ltd パルス密度変調信号(pdm)のデジタル−アナログ変換処理におけるsn比改善の方法および装置
JP2003115764A (ja) * 2001-10-09 2003-04-18 Nippon Precision Circuits Inc シグマデルタ変換器およびそのリミッタ回路
JP2005012750A (ja) * 2003-06-18 2005-01-13 Northrop Grumman Corp 拡張された範囲のディジタル・アナログ変換
JP2008035038A (ja) * 2006-07-27 2008-02-14 Yamatake Corp Δς型d/a変換器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5815530A (en) * 1995-07-25 1998-09-29 Rohm Co., Ltd. Data converters for sound equipment
US5790062A (en) * 1996-05-23 1998-08-04 Wiltron Company Delta modulator with pseudo constant modulation level
JP3282510B2 (ja) * 1996-08-01 2002-05-13 ヤマハ株式会社 D/aコンバータ回路
US6535153B1 (en) * 1999-02-04 2003-03-18 Med-El Electromedizinische Gerate Ges.M.B.H. Adaptive sigma-delta modulation with one-bit quantization
US6956512B1 (en) * 2003-01-24 2005-10-18 Altera Corporation Analog-to-digital converter for programmable logic
US6873280B2 (en) * 2003-06-12 2005-03-29 Northrop Grumman Corporation Conversion employing delta-sigma modulation
US7042287B2 (en) * 2003-07-23 2006-05-09 Northrop Grumman Corporation System and method for reducing dynamic range and improving linearity in an amplication system
US7146144B2 (en) * 2003-10-20 2006-12-05 Northrop Grumman Corporation Frequency agile exciter
US7298305B2 (en) * 2006-03-24 2007-11-20 Cirrus Logic, Inc. Delta sigma modulator analog-to-digital converters with quantizer output prediction and comparator reduction
KR101113468B1 (ko) * 2006-08-01 2012-04-17 베리지 (싱가포르) 피티이. 엘티디. 비동기식 시그마 델타 디지털-아날로그 변환기, 측정 장치, 변환 방법 및 컴퓨터 판독가능 매체
JP4237230B2 (ja) * 2007-01-22 2009-03-11 パナソニック株式会社 パルス幅変調方法およびこれを用いたデジタル−アナログ変換器
JP4816508B2 (ja) * 2007-03-02 2011-11-16 ヤマハ株式会社 Δς型ad変換器およびd級アンプ並びにdc−dc変換器
DE102007015008B4 (de) * 2007-03-28 2016-12-15 Infineon Technologies Ag Digitaler Verstärker und Verfahren zum Verstärken eines digitalen Eingangssignals
KR101095640B1 (ko) * 2007-04-18 2011-12-19 가부시키가이샤 어드밴티스트 Da 변환기 및 da 변환방법
FR2938083B1 (fr) * 2008-10-31 2013-03-29 Thales Sa Procede d'amelioration de la resolution et de correction des distorsions pour modulateur sigma-delta et modulateur sigma-delta mettant en oeuvre le procede
US8081096B2 (en) * 2009-12-08 2011-12-20 Advantest Corporation Signal generating apparatus and test apparatus
US8570199B2 (en) * 2010-12-07 2013-10-29 Marvell World Trade Ltd. Digital to analog converter circuits and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001358592A (ja) * 2000-06-14 2001-12-26 Burr-Brown Japan Ltd パルス密度変調信号(pdm)のデジタル−アナログ変換処理におけるsn比改善の方法および装置
JP2003115764A (ja) * 2001-10-09 2003-04-18 Nippon Precision Circuits Inc シグマデルタ変換器およびそのリミッタ回路
JP2005012750A (ja) * 2003-06-18 2005-01-13 Northrop Grumman Corp 拡張された範囲のディジタル・アナログ変換
JP2008035038A (ja) * 2006-07-27 2008-02-14 Yamatake Corp Δς型d/a変換器

Also Published As

Publication number Publication date
US20120286982A1 (en) 2012-11-15
KR101338531B1 (ko) 2013-12-06
JP5249254B2 (ja) 2013-07-31
KR20120085835A (ko) 2012-08-01
TWI455493B (zh) 2014-10-01
CN102859883A (zh) 2013-01-02
JP2011151581A (ja) 2011-08-04
CN102859883B (zh) 2016-03-30
TW201136189A (en) 2011-10-16
US8766837B2 (en) 2014-07-01

Similar Documents

Publication Publication Date Title
JP4763644B2 (ja) ディザ回路及びディザ回路を備えたアナログデジタル変換器
US6577257B2 (en) Methods and systems for digital dither
WO2011089759A1 (ja) 変調器およびδς型d/a変換器
US9484947B1 (en) Variable length dynamic element matching in digital-to-analog converters
CN102624398B (zh) 多比特数模转换器和三角积分模数转换器
JP2010093683A (ja) デジタルアナログ変換回路とその出力データの補正方法
US7420493B2 (en) Extended range delta-sigma modulator and delta-sigma power converter
JP4809450B2 (ja) デルタシグマad変調器
CN1945978B (zh) 采用积分非线性误差整形的流水线adc
US8102291B2 (en) Sigma delta modulator and quantizer and quantization method thereof
TW201637369A (zh) 用於sigma-delta類比至數位轉換器之高效抖動技術
JP2010226454A (ja) ゲインコントロール回路及びそれを有する電子ボリューム回路
JP4788353B2 (ja) 多段型ノイズシェーピング型量子化器
TWI799133B (zh) 積分三角類比至數位轉換器以及用來消除積分三角類比至數位轉換器的閒置音調的方法
US9621185B1 (en) Apparatus for differential amplitude pulse width modulation digital-to-analog conversion and method for encoding output signal thereof
GB2444986A (en) Digital to analogue converter
JP2001077692A (ja) D/a変換回路
US10148276B1 (en) DA converter and ADPLL circuitry
CN108173548B (zh) 差分式脉冲振幅波宽度数字模拟转换装置及信号编码方法
JPH10247852A (ja) デルタシグマa/dコンバータ
CN118199634A (zh) 一种改良缩放式模数转换器
CN118523777A (zh) 适用于sdadc调制器电容失配的整形算法
WO2012150621A1 (ja) 周波数シンセサイザ
JP2009278407A (ja) データ変調回路
JPH0766730A (ja) デルタ・シグマ変調型a/d変換器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062386.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127013174

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13522836

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843923

Country of ref document: EP

Kind code of ref document: A1