WO2011087301A2 - 기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도 - Google Patents

기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도 Download PDF

Info

Publication number
WO2011087301A2
WO2011087301A2 PCT/KR2011/000258 KR2011000258W WO2011087301A2 WO 2011087301 A2 WO2011087301 A2 WO 2011087301A2 KR 2011000258 W KR2011000258 W KR 2011000258W WO 2011087301 A2 WO2011087301 A2 WO 2011087301A2
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
substrate
film
gas
forming
Prior art date
Application number
PCT/KR2011/000258
Other languages
English (en)
French (fr)
Other versions
WO2011087301A3 (ko
Inventor
안종현
홍병희
이영빈
김형근
배수강
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2011087301A2 publication Critical patent/WO2011087301A2/ko
Publication of WO2011087301A3 publication Critical patent/WO2011087301A3/ko
Priority to US13/548,680 priority Critical patent/US10886501B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/10Duplicating or marking methods; Sheet materials for use therein by using carbon paper or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/025Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet
    • B41M5/03Duplicating or marking methods; Sheet materials for use therein by transferring ink from the master sheet by pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/02Single layer graphene
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • H10K50/8445Encapsulations multilayered coatings having a repetitive structure, e.g. having multiple organic-inorganic bilayers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1324Flexible food casing [e.g., sausage type, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present application relates to a method of forming a graphene protective film having a gas and water barrier property, a graphene protective film prepared thereby, and a use thereof, wherein the graphene protective film is a flexible (flexible) substrate such as plastic, a food and beverage container, and an organic light emitting device. It can be applied to various fields.
  • Devices such as organic solar cells and organic light-emitting devices (OLEDs) are generally manufactured on plastic substrates. Since the device on the substrate is rapidly decomposed when exposed to oxygen and moisture, the life of the device can be greatly reduced when oxygen and moisture easily permeate through the plastic substrate. Therefore, there is a need to reduce or eliminate the permeation of oxygen and moisture through the substrate in order to prevent the related devices or component materials from decomposing to oxygen or moisture, and this necessity is the same in oxygen and moisture sensitive medicine and food and beverage fields. Is applied.
  • the present inventors are to provide a graphene protective film that can improve the gas and moisture barrier properties, to maintain a high stability, durability, and electrical properties of the device for a long time.
  • Another aspect of the present disclosure provides a flexible barrier sheet comprising a graphene protective film for blocking gas and / or moisture, including a graphene film formed on a flexible substrate.
  • Yet another aspect of the present disclosure provides an article including a flexible barrier sheet including a gas and / or a moisture barrier graphene protective film including a graphene film formed on the flexible substrate of the present disclosure.
  • Graphene film used as a protective film herein has a number of excellent properties, such as adhesion to the plastic substrate, heat resistance, chemical resistance and mechanical properties compared to other materials, so as a barrier coating and encapsulant for gas, moisture shielding purposes Applicable to a wide range of industries.
  • the device using the graphene film as a coating material or an encapsulating material can maintain a high electrical property for a long time by blocking the gas, moisture and the like.
  • the method of forming the graphene protective film of the present application can be performed under normal pressure conditions, not vacuum, it is possible to form a protective film at a low cost in a short time, the graphene protective film formed by the method is very thin, a few nm or less, It is lightweight, transparent, and has excellent flexibility and elasticity.
  • FIG. 1 is a schematic diagram showing a process of forming a gas and moisture barrier graphene protective film according to an embodiment of the present application.
  • Figure 2 is a schematic diagram showing a process for transferring the large-area graphene film transferred to a flexible substrate by a roll-to-roll process according to an embodiment of the present application.
  • Figure 3 is a cross-sectional view showing the appearance of forming a multilayer graphene film using an organic support layer according to an embodiment of the present application.
  • FIG. 4 is a cross-sectional view of the flexible barrier sheet further formed with an oxide layer on the graphene film according to an embodiment of the present application.
  • FIG. 5 is a graph showing light transmittance of a graphene film-coated quartz substrate and a Raman spectrum of a graphene film-coated SiO 2 substrate according to an embodiment of the present disclosure.
  • FIG. 6 is a graph measuring the properties of a pure copper substrate and a copper substrate coated with a graphene film.
  • FIG. 7 is a graph showing an experimental method and results of the moisture permeability of the graphene film according to an embodiment of the present application.
  • FIG. 8 is a graph showing light transmittance of a graphene film-coated quartz substrate and a Raman spectrum of a graphene film-coated SiO 2 substrate according to another embodiment of the present disclosure.
  • graphene film refers to a graphene in which a plurality of carbon atoms are covalently linked to each other to form a polycyclic aromatic molecule, forming a layer or sheet form. They form a 6-membered ring as the basic repeating unit, but may further include a 5-membered ring and / or a 7-membered ring. Thus, the graphene layer appears as a single layer of covalently bonded carbon atoms (usually sp 2 bonds).
  • the graphene layer may have a variety of structures, such a structure may vary depending on the content of 5-membered and / or 7-membered rings that may be included in the graphene.
  • the graphene layer may be formed of a single layer of graphene as described above, but they may be stacked with each other to form a plurality of layers, and the side end portion of the graphene may be saturated with hydrogen atoms.
  • roller portion means a roll-to-roll type device consisting of one or a plurality of rollers, and is not limited by the shape and / or size and / or arrangement of the rollers.
  • a method of forming a gas and moisture barrier graphene protective film may include: preparing a graphene film on the substrate by reacting the substrate by providing a reaction gas and a heat including a carbon source; And transferring the coated graphene film onto the flexible substrate by a dry process, a wet process, or a roll-to-roll process.
  • the graphene protective film has gas and moisture barrier properties, and has many excellent properties such as adhesion to a plastic substrate, heat resistance, chemical resistance, and mechanical properties, compared to other materials, so that barrier coating materials and encapsulation for gas and moisture shielding purposes are provided. As a material, it can be applied to a wide range of industries.
  • the flexible substrate may be a plastic substrate, an organic light emitting device (OLED) substrate, or a sheet for a food and beverage container, but is not limited thereto.
  • OLED organic light emitting device
  • the flexible substrate is a plastic substrate
  • non-limiting examples of the plastic substrate may include a substrate including polyimide, polyethersulfone, polyetheretherketone, polyethylene terephthalate, polycarbonate, or a combination thereof. May be, but is not limited thereto.
  • the roll-to-roll process forms a laminate comprising a substrate-graphene film-flexible substrate by contacting the graphene film prepared on the substrate with the flexible substrate and passing through the first roller portion. ; Transferring and coating the graphene film onto the flexible substrate while simultaneously removing or separating the substrate from the laminate by impregnating and passing the laminate into an etching solution using a second roller portion: It may include, but is not limited thereto.
  • the wet process further comprises: floating the graphene film by selectively removing only the substrate or separating the substrate by an etching solution from the substrate on which the graphene film is formed; And transferring the graphene film to the flexible substrate by introducing the flexible substrate in an upward or downward direction of the floating graphene film.
  • the present invention is not limited thereto.
  • the substrate may be formed on the surface of the metal catalyst layer for forming graphene, but is not limited thereto.
  • the graphene forming metal catalyst layer is formed to facilitate the growth of the graphene film, non-limiting examples thereof, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, One or more metals or alloys selected from the group consisting of Rh, Si, Ta, Ti, W, U, V, Zr, brass, bronze, white brass, stainless steel and Ge It may be, but is not limited thereto.
  • the method may further include forming an organic support layer on the graphene film on the substrate, but is not limited thereto.
  • the method may further include removing the organic support layer from the graphene film. It is not limited.
  • the organic support layer may be a stamper or a heat peelable tape, but is not limited thereto.
  • the flexible substrate may be an adhesive layer formed, but is not limited thereto.
  • the adhesive layer is a low density polyethylene, a low molecular polymer, or ultraviolet or It may include an infrared curing polymer, but is not limited thereto.
  • the method may further include forming an oxide layer or an insulating polymer layer on the graphene protective layer coated on the flexible substrate, but is not limited thereto.
  • the method may further include forming an adhesive layer between the graphene film and the oxide layer or between the graphene film and the insulating polymer layer, but is not limited thereto.
  • the method may include performing a plurality of transfers of the graphene film on the flexible substrate, but is not limited thereto.
  • the graphene film may include 1 to 100 layers of graphene film, but is not limited thereto.
  • the flexible barrier sheet includes a graphene protective film for blocking gas and / or moisture, including a graphene film formed on a flexible substrate.
  • the gas and / or moisture blocking graphene protective film may be prepared by the above-described method of forming the gas and moisture blocking graphene protective film, but is not limited thereto.
  • the flexible substrate may include, but is not limited to, a plastic substrate, an organic light emitting device (OLED) substrate, or a sheet for a food and beverage container.
  • OLED organic light emitting device
  • the gas and / or moisture blocking graphene protective layer may further include a metal layer between the flexible substrate and the graphene film, but is not limited thereto.
  • the metal layer is a catalyst layer formed to facilitate the growth of the graphene film on the flexible substrate, for example, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh At least one metal or alloy selected from the group consisting of Si, Ta, Ti, W, U, V, Zr, brass, bronze, white brass, stainless steel and Ge May be, but is not limited thereto.
  • the gas and / or moisture blocking graphene protective layer forms a metal layer formed on the flexible substrate, and then reacts the graphene film by providing a reaction gas and heat including a carbon source on the metal layer. It may be prepared by a method including forming, but is not limited thereto.
  • the flexible substrate may include polyimide (PI), polyethersulfone (PES), polyetheretherketone (PEEK), polyethylene terephthalate (PET) or polycarbonate (PC), but It is not limited.
  • the production of the graphene film may be performed using a plasma chemical vapor deposition method, in this case, the production of the graphene film may be performed at a temperature of about 100 °C to about 600 °C
  • the present invention is not limited thereto.
  • Another aspect of the present disclosure provides an article comprising the above-mentioned flexible barrier sheet.
  • the article may include an electronic device, an optoelectronic device, an optical device, a light emitting device, an organic light emitting device (OLED), an organic semiconductor device, an LCD display, a solar device, a thin film sensor, or a food and beverage container.
  • OLED organic light emitting device
  • the present invention is not limited thereto.
  • the article including the flexible barrier sheet and the flexible barrier sheet may include all of the contents described in the above-described method of forming the gas and moisture barrier graphene protective film, and for convenience, the redundant substrate is omitted.
  • a method of forming a graphene protective layer having gas and moisture barrier properties of the present disclosure may include preparing a graphene film on the substrate by providing a reaction gas and heat including a carbon source to the substrate and reacting the heat; Transferring and coating the graphene film prepared above by a dry process, a wet process, or a roll-to-roll process on the flexible substrate. If necessary, as shown in Figure 1, after producing a graphene film on the substrate may be further formed on the graphene film organic support layer, such as a stamper or a heat peelable tape.
  • the method for forming the gas and moisture barrier graphene protective film of the present application can more easily coat a large-area graphene film in an atmospheric pressure atmosphere without the need for a vacuum process on the flexible substrate through the above process, low cost in a short time
  • the graphene protective film can be formed.
  • a gas and moisture barrier graphene protective film formed by the above process on a flexible substrate, it is possible to obtain a flexible barrier film that is flexible (flexible), excellent mechanical properties, and improved gas and moisture shielding properties.
  • the flexible substrate may be a plastic substrate, a food and beverage container (sheet), an OLED thin film device, or the like.
  • the gas and moisture barrier properties of the device may be further improved, thereby maintaining the improved electrical characteristics of the device for a long time.
  • the flexible substrate is a food and beverage container (sheet)
  • the graphene film formed on the substrate may be transferred and coated on the flexible substrate by various processes.
  • the coating method may be used without limitation as long as it is a method commonly used in the art to transfer and coat the graphene film on a substrate. For example, a dry process, a wet process, a spray process, and a roll-to-roll process may be used. have.
  • the substrate 10 having the graphene film 20 formed therein is impregnated into the etching solution 60 to selectively remove only the substrate 10 or to separate the substrate to form the graphene film 20.
  • the graphene film 20 may be coated on the flexible substrate 32 by introducing the flexible substrate 32 in the upper or lower direction of the floating graphene film. More specifically, a flexible substrate may be introduced from the top of the floating graphene film to imprint a graphene film on the flexible substrate, or the flexible substrate may be lifted from the bottom of the floating graphene film, i.e., in an etching solution. A graphene film may be coated on the flexible substrate.
  • a stamper or a heat release tape may be further formed.
  • the stamper those known in the art may be used without particular limitation.
  • the stamper may be made of various polymers such as PDMS, PMMA, polystyrene, PVC, polybutadiene, SBS rubber, or polyurethane, It is not limited to this.
  • a process of removing the stamper after the graphene protective film is formed may be further performed as necessary.
  • FIG. 1 illustrates a method of forming a graphene protective layer using a stamper, in contrast, the graphene protective layer may be formed by coating only a graphene film on a flexible substrate without using a stamper.
  • the step of washing the graphene protective film in distilled water and then drying may be further performed.
  • the drying process may be performed at about 70 ° C. for about 30 minutes or more, and may improve the adhesion of the graphene protective film by performing the drying process.
  • a graphene protective film on a flexible substrate may include forming a graphene film on one surface of the flexible substrate by a spray method.
  • the spray method may include a method of dispersing the graphene film in a suitable solvent and dispersed on the flexible substrate.
  • the solvent may be used without limitation as long as the graphene film is a solvent that can be dispersed in the solvent.
  • the solvent may include an organic solvent such as water or alcohol. It is not limited to this.
  • the graphene protective film on the flexible substrate may include forming the graphene protective film on the flexible substrate by a roll-to-roll process. As shown in FIG. 1, only the coating process of the graphene film may be performed by a roll-to-roll process, or as shown in FIG. 2, the graphene film may be formed on the substrate, the substrate may be etched, and the graphene film may be removed. The entire process up to coating on the substrate can be carried out by a roll-to-roll process. When using a roll-to-roll process, it is possible to coat a large area graphene protective film on the flexible substrate in a short time due to the simplification of the process.
  • a single layer or multilayer graphene film can be coated on the flexible substrate, and the multilayer graphene film is laminated by van der Waals bonding force.
  • the graphene film may be controlled in the range of 1 to 100 layers by repeating the roll-to-roll coating process of the graphene film described above.
  • the multilayer graphene film can compensate for the defects of the single layer graphene film, and in the case of stably driving an OLED device sensitive to moisture or gas, or using the graphene film as an encapsulation film, the multilayer graphene film Preference is given to using.
  • the coating on the flexible substrate may improve the gas and moisture barrier properties of the flexible substrate.
  • a stamper may be used.
  • the substrate having the substrate removed therefrom (graphene 1) and the stamper on the graphene (stamper 1) are not directly transferred onto another stamper, but directly on the other graphene (graphene 2).
  • a plurality of graphene films may be formed.
  • the substrate having the substrate removed therefrom (graphene 1) and the stamper on the graphene (stamper 1) are transferred onto another stamper (stamper 2), and then the stamper 1 and the stamper 2 are removed.
  • a plurality of layers of graphene films can be formed.
  • an oxide layer or a polymer insulating layer may be further formed on the graphene protective film on the flexible substrate.
  • the oxide layer or the polymer insulating layer is used to further improve the moisture and / or oxygen barrier property of the graphene protective film.
  • the polymer insulating layer may block the conductivity of the graphene film and prevent mechanical peeling.
  • the oxide layer (FIG. 4A) additionally formed on the graphene protective film is used as a supplement for reducing gas and moisture permeability by compensating for defects that the graphene film may have.
  • the oxide layer may be any material that can reduce gas and moisture permeation without limitation as long as it is commonly used in the art. For example, various kinds of Al 2 O 3 , SiO 2, SnO 2 , AlO x N x, and the like may be used. Oxide based materials can be used. If necessary, the graphene protective layer and the oxide layer may be alternately stacked as shown in FIG. 4B.
  • an Al 2 O 3 layer was formed as an oxide layer between the two graphene layers, and FIG. 4D is prepared by the same method.
  • the result of measuring the transmittance of the graphene protective film is shown (WVTR).
  • An adhesive layer is added between the graphene film and the oxide layer or between the graphene film and the polymer insulation layer to improve adhesion between the graphene film and the oxide layer or between the graphene film and the polymer insulation layer. It can be formed as (Fig. 4c).
  • the adhesive layer may be, for example, an organic adhesive layer including an adhesive polymer, but is not limited thereto.
  • the thickness of the oxide layer to the polymer insulating layer and the oxide layer to the polymer insulating layer are not particularly limited.
  • a method of forming each of the oxide layer to the polymer insulating layer may be sputtering, atomic layer deposition (ALD), chemical vapor deposition, or the like.
  • An oxide layer to a thin film layer having a meter thickness can be formed.
  • an adhesive layer may be further formed between the flexible substrate and the graphene film.
  • the adhesive layer may include, for example, a thermal release polymer, a low density polyethylene, a low molecular polymer, or an ultraviolet or infrared curing polymer, but is not limited thereto.
  • the adhesive layer may use PDMS, various known polyurethane-based films, or the like, or an environmentally friendly adhesive, an aqueous adhesive, a water-soluble adhesive, a vinyl acetate emulsion adhesive, a hot melt adhesive, a photocuring agent (UV, visible light, electron beam, UV / EB curing) adhesives, optical softening (UV, visible light, electron beam, UV / EB softening) tape and the like can be used, but is not limited thereto.
  • a photocuring agent UV, visible light, electron beam, UV / EB curing
  • optical softening UV, visible light, electron beam, UV / EB softening
  • the adhesive layer may be a high heat-resistant adhesive PBI (Polybenizimidazole), PI (Polyimide), Silicone / imide, BMI (Bismaleimide), modified epoxy resin (epoxy resin), etc., but is not limited thereto, or general adhesive Tape adhesive tape (adhesive tape), glue (glue), epoxy resin (epoxy resin), photo softening tape (UV visible light, electron beam, UV / EB), heat-peelable tape or water-soluble tape may be included, but is not limited thereto It is not.
  • the adhesive layer which can be formed using these materials, facilitates the adhesion and / or separation of graphene.
  • the etching solution used in the coating process of the graphene film may be used without limitation as long as it is commonly used in the art as a solution capable of selectively removing the substrate or separating the substrate.
  • the etching solution may include ammonium persulfate (NH 4 ) 2 S 2 O 8 , HF, BOE, Fe (NO 3 ) 3 , iron chloride (Iron (III) Chloride, FeCl 3 ), or CuCl 2 . It may be a solution containing, but is not limited thereto.
  • the substrate on which graphene is grown may exist only as a substrate, or may further include a catalyst layer (not shown).
  • the material of the substrate is not particularly limited, and for example, silicon, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, And one or more metals or alloys selected from the group consisting of V, Zr, brass, bronze, white brass, stainless steel, and Ge.
  • the substrate is a metal
  • the substrate itself may serve as a catalyst for forming a graphene film.
  • the substrate does not necessarily need to be a metal.
  • silicon may be used as the substrate, and a substrate in which a silicon oxide layer is further formed by oxidizing the silicon substrate to form a catalyst layer on the silicon substrate may be used.
  • the catalyst layer may be further formed on the substrate to facilitate the growth of the graphene film.
  • the catalyst layer may be used without particular limitation in terms of material, thickness, and shape.
  • the catalyst layer may be Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, At least one metal or alloy selected from the group consisting of Si, Ta, Ti, W, U, V, Zr, brass, bronze, copper, stainless steel and Ge It may be formed by the same or different materials as.
  • the thickness of the catalyst layer is not particularly limited, and may be a thin film or a thick film.
  • the method for forming a graphene film on the substrate may be used without particular limitation in the art for graphene growth in the art, for example, chemical vapor deposition may be used, but is not limited thereto.
  • the chemical vapor deposition method is Rapid Thermal Chemical Vapor Deposition (RTCVD), Inductively Coupled Plasma-Chemical Vapor Deposition (ICP-CVD), Low Pressure Chemical Vapor Deposition; LPCVD), Atmospheric Pressure Chemical Vapor Deposition (APCVD), Metal Organic Chemical Vapor Deposition (MOCVD), and Plasma-enhanced chemical vapor deposition (PECVD). May be, but is not limited now.
  • the process of growing the graphene film can be carried out under atmospheric pressure, low pressure or vacuum.
  • helium He
  • Ar heavy argon
  • hydrogen H 2
  • the treatment is performed at an elevated temperature it can synthesize high quality graphene by reducing the oxidized surface of the metal catalyst. have.
  • the graphene film formed by the above-mentioned method may have a large area with a transverse and / or longitudinal length of at least about 1 mm and up to about 1000 m.
  • the graphene film has a homogeneous structure with almost no defects.
  • the graphene film produced by the above-mentioned method may include a single layer or a plurality of layers of graphene.
  • the thickness of the graphene film can be adjusted in the range of 1 layer to 100 layers.
  • a metal substrate in the form of a thin film or foil is placed in a tubular furnace in the form of a roll and supplied with a reaction gas including a carbon source and heat treated at atmospheric pressure.
  • Graphene films can be grown.
  • the carbon source may be, for example, a carbon source such as carbon monoxide, carbon dioxide, methane, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene and the like.
  • the substrate is heat-treated at a temperature of 300 ° C. to 2000 ° C.
  • the graphene film is grown while the carbon components present in the carbon source combine to form a hexagonal plate-like structure.
  • the flexible barrier sheet including a graphene protective film for blocking gas and water
  • a method of forming a graphene film on a substrate and transferring the graphene film onto a flexible substrate has been described.
  • the flexible barrier sheet can be prepared without a transfer process by growing the graphene film directly on the flexible substrate.
  • the flexible substrate may be polyimide (PI), polyethersulfone (PES), polyetheretherketone (PEEK), polyethylene terephthalate (PET) or polycarbonate (PC).
  • PI polyimide
  • PES polyethersulfone
  • PEEK polyetheretherketone
  • PET polyethylene terephthalate
  • PC polycarbonate
  • Flexible plastic substrates are preferred.
  • a metal layer may be further included to facilitate the growth of the graphene film on the flexible plastic substrate, in which case the metal layer is left on the flexible plastic substrate without removing the metal layer to itself. It can function, improving gas and moisture blocking effect.
  • the metal layer when the transparency is required, the metal layer may be formed as a thin film layer of several nanometers to several tens of nanometers to improve the transparency of the flexible barrier substrate, and when the transparency is not required, the thickness of the metal layer may be increased. As a result, the gas and water barrier effect can be improved.
  • the method for forming the graphene film on the flexible plastic substrate or the metal layer of the flexible plastic substrate may be used all of the above-described chemical vapor deposition method, more preferably from about 100 °C to about 600 °C by plasma chemical vapor deposition method It can be carried out at a low temperature of.
  • the method of manufacturing the flexible barrier substrate by directly growing the graphene film on the flexible substrate may reduce defects of the graphene film that may occur in the process of transferring the graphene film formed on the substrate onto the flexible substrate.
  • the metal layer itself as a kind of barrier layer, it is possible to improve the gas and moisture barrier properties of the flexible barrier substrate.
  • the copper substrate was heated to 1000 ° C. in 10 sccm of H 2 gas and 160 mTorr atmosphere, and then subjected to heat treatment in the same atmosphere for 30 minutes. Thereafter, a mixture gas of 30 sccm of methane and 10 sccm of hydrogen was flowed for 30 minutes at a pressure of 1.6 Torr. And it was cooled rapidly to room temperature in the atmosphere of hydrogen gas 10 sccm, 160 mTorr.
  • an organic support layer such as a heat release tape or PMMA was attached onto the graphene film grown on the copper substrate.
  • the remaining graphene film is attached to the organic support layer, in which state the transfer to the plastic substrate is possible.
  • the wet substrate method was transferred by lifting the plastic substrate into the floating graphene film, and after the wet coating, the PMMA layer was erased by acetone.
  • the graphene produced by the above method is deposited directly on another graphene formed on the copper substrate without transferring to another PMMA layer, thereby minimizing the residue of PMMA.
  • the number of application of PMMA was reduced, and the graphene film forming a plurality of layers did not exist between the graphene films. Therefore, the graphene film of the plurality of layers was removed by removing only the stamper existing on the top layer of the graphene film through high temperature heat treatment. could be formed (see FIG. 3).
  • the multilayer graphene film formed by the above method was reduced in micro-crack.
  • Figure 5a shows the light transmittance according to the thickness of the graphene film formed on the quartz substrate by the wet process. For both films, optical transmittances of about 93% and about 86% were observed at 550 nm. Since the light transmittance per graphene layer is about 2.3%, this light transmittance corresponds to the transmittance of about 3 and 6 layers.
  • Figure 5b is a graph showing the Raman spectral data of the graphene film formed on the SiO 2 substrate by the wet process was measured by varying the number of layers of the graphene film in one, three, six layers, as a result of the layer of the graphene film As the number increased, the intensity of the G and 2D bands increased correspondingly, and the change in ratio between the two bands was not significantly revealed. This is distinguished from a graphene film having a multilayer structure having an ABAB stacking sequence extracted from graphite. Therefore, the basic properties of the graphene film laminated with an arbitrary direction has a single layer of graphene.
  • the copper substrate on which graphene was grown by the same method as described above was left to stand for two months in an atmosphere of normal temperature and atmospheric pressure, and then the surface thereof was analyzed.
  • Graphene-free copper substrates have a markedly changed surface after oxidation, whereas graphene-grown copper substrates show an unchanged surface after oxidation, which indicates that the graphene film present on the surface may Indicates that oxidation was effectively prevented.
  • the chemical analysis of the surface of the copper substrate was performed after oxidation through XPS analysis. Referring to FIG.
  • the XPS spectrum shows peaks shifted by oxidation of pure copper substrates (Cu 2 O (bond energy of 932.4 and 952.4 eV), CuO (933.6 and 953.4 eV), and Cu (OH) 2 (934.3 and 954.5 eV)).
  • Cu 2 O bond energy of 932.4 and 952.4 eV
  • CuO 933.6 and 953.4 eV
  • Cu (OH) 2 934.3 and 954.5 eV
  • the conventional single-layer inorganic barrier film may be SiO 2 or Al 2 O 3 , for example, the transmittance of Al 2 O 3 deposited by 30 nm using ALD and SiO 2 having a thickness of 100 nm deposited by PECVD. About 0.2 and 6 ⁇ 10 ⁇ 3 g / m 2 / day, respectively.
  • a substrate in the form of a roll of Cu was loaded into a 1-8 inch diameter quartz tube and then heated to 700-1,000 ° C. under atmospheric pressure.
  • He was flowed in a short time to give a temperature of ⁇ 10 ° C./s. Cooling to room temperature at a rate yielded a graphene film grown on the Cu substrate.
  • the adhesive was formed by contacting the quartz substrate and the SiO 2 substrate on which the adhesive layer was formed on the graphene film formed on the Cu substrate.
  • the Cu substrate / graphene film / substrate laminate is impregnated with 0.5 M FeCl 3 etching solution to etch and remove the Cu substrate by electrochemical reaction to transfer the graphene film on the substrate to form a graphene protective film. It was. 8 is a result of observing the light transmittance according to the thickness of the graphene film formed on the quartz substrate by the roll-to-roll process and the Raman spectrum data of the graphene film formed on the SiO 2 substrate.
  • FIG. 9 an experimental result (WVTR) of moisture (H 2 O) transmittance of a graphene film (three layers) formed on a quartz substrate is shown.
  • the water (H 2 O) transmittance of the pure quartz substrate on which the graphene film was not formed was 10 g / m 2 / day, but the water (H 2 O) transmittance of the quartz substrate on which three layers of graphene were laminated by the above method was 10 -3 ⁇ 10 -1 g / m 2 / day was found that the moisture permeability was very reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Composite Materials (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본원은 기체 및 수분 차단성을 가지는 그래핀 보호막의 형성 방법 및 이러한 방법에 의하여 제조된 그래핀 보호막 및 그의 용도에 관한 것이다. 단층 또는 다층의 그래핀 보호막은 배리어 코팅 재료 또는 봉지 재료로서 사용 가능하며, 광범위한 산업 분야의 다양한 디바이스의 기체 및 수분 차단성을 향상시켜 상기 디바이스의 전기적 특성을 장시간 유지할 수 있다.

Description

기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도
본원은 기체 및 수분 차단성을 가지는 그래핀 보호막의 형성 방법, 이에 의해 제조되는 그래핀 보호막 및 그의 용도에 관한 것으로서, 상기 그래핀 보호막은 플라스틱과 같은 유연성(플렉서블) 기판, 식음료 용기, 유기 발광 디바이스 등 다양한 분야에 적용가능 하다.
유기 태양전지, 유기 발광 디바이스(organic light-emitting devices; OLED) 등의 소자는 일반적으로 플라스틱 기판 상에 제조된다. 상기 기판 상의 소자는 산소와 수분에 노출될 경우 급속히 분해되므로 플라스틱 기판을 통해 산소 및 수분이 쉽게 투과될 경우, 소자의 수명이 크게 감소될 수 있다. 이에, 관련 소자 또는 구성 재료들이 산소나 수분에 분해되는 것을 방지하기 위해 기판을 통한 산소와 수분의 투과를 감소 또는 제거할 필요성이 있으며, 이와 같은 필요성은 산소와 수분에 민감한 의약품, 식음료 분야에서도 동일하게 적용된다.
상기 플라스틱 기판이 수분과 산소에 대해 요구되는 내성을 얻기 위해서는, 10-4 cc/m2/1 day내지 10-2 cc/m2/1 day 의 최대 산소 투과율과, 10-5 cc/m2/1day내지 10-6 cc/m2/1 day 의 최대 수분 투과율을 갖도록 보호막으로 기판을 코팅시켜야만 한다.
지난 수십 년간 수많은 기체 및 수분 차단막 물질들이 개발되었으며, 기체 및 수분 차단막의 특성을 향상시키기 위해 Al2O3/polyacrylate, SiON/silicone and SiN/parylene과 같이 유기물과 무기물을 플라스틱 기판 위에 적층하는 방법이 개발되었다. 하지만 소자 상에 여러 층을 적층 하는 방법은 근본적으로 진공 공정을 요구하기 때문에 고비용의 제작 공정이 따르며, 무기물질을 사용하는 경우 기판의 기계적 특성을 감소시키게 되는 등, 결과적으로 제조되는 필름 및 기판은 여전히 열과 습도, 산소 등의 환경 요소에 취약한 특성을 보이는 문제가 있다.
상기한 문제점을 해결하기 위하여, 본 발명자들은, 기체 및 수분 차단성을 향상시켜, 디바이스의 높은 안정성, 내구성, 및 전기적 특성을 장시간 동안 유지할 수 있는 그래핀 보호막을 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위하여, 본원의 일 측면은, 기재에 탄소 소스를 포함하는 반응 가스 및 열을 제공하여 반응시킴으로써 상기 기재 상에 그래핀 필름을 제조하는 단계; 및 건식 공정, 습식 공정, 또는 롤투롤 공정에 의하여 상기 제조된 그래핀 필름을 유연성 기판 상에 전사하여 코팅하는 단계: 를 포함하는, 기체 및 수분 차단용 그래핀 보호막의 형성 방법을 제공한다.
본원의 다른 측면은, 유연성 기판 상에 형성된 그래핀 필름을 포함하는 기체 및/또는 수분 차단용 그래핀 보호막을 포함하는, 유연성 배리어 시트를 제공한다.
본원의 또 다른 측면은, 본원의 유연성 기판 상에 형성된 그래핀 필름을 포함하는 기체 및/또는 수분 차단용 그래핀 보호막을 포함하는 유연성 배리어 시트를 포함하는 물품을 제공한다.
본원에서 보호막으로 사용되는 그래핀 필름은 다른 소재에 비하여 플라스틱 기판과의 접착성, 내열성, 내화학성 및 기계적 특성 등 다수의 월등한 특성을 갖기 때문에 기체, 수분 차폐 목적의 배리어 코팅재 및 봉지재로서 폭넓은 산업 분야에 적용 가능하다. 또한, 상기 그래핀 필름을 코팅 재료 또는 봉지 재료로 사용한 소자는 기체, 수분 등이 차단됨으로써 높은 전기적 성질을 보다 장시간 동안 유지할 수 있다.
또한, 본원의 그래핀 보호막의 형성 방법은 진공이 아닌 상압 조건하에서 수행이 가능하여, 단시간 내에 저비용으로 보호막을 형성할 수 있으며, 상기 방법에 의해 형성된 그래핀 보호막은 수 nm 이하로 매우 얇으며, 경량이고, 투명하며, 유연성 및 탄성이 탁월한 특성이 있다.
도 1은 본원의 일 구현예에 따른 기체 및 수분 차단용 그래핀 보호막을 형성하는 과정을 보여주는 도식도이다.
도 2는 본원의 일 구현예에 따른 롤투롤 공정에 의하여 대면적 그래핀 필름을 유연성 기판 상에 전사하여 코팅하는 공정을 보여 주는 도식도이다.
도 3은 본원의 일 구현예에 따른 유기물 지지층을 사용하여 다층의 그래핀 필름을 형성하는 모습을 보여주는 단면도이다.
도 4는 본원의 일 구현예에 따른 그래핀 필름 상에 산화물층이 추가 형성된 유연성 배리어 시트의 단면도이다.
도 5은 본원의 일 실시예에 따른 그래핀 필름이 코팅된 석영 기판의 광투과도 및 그래핀 필름이 코팅된 SiO2 기판의 라만 스펙트럼을 보여주는 그래프이다.
도 6은 순수한 구리 기판과 그래핀 필름이 코팅된 구리 기판의 특성을 측정한 그래프이다.
도 7은 본원의 일 실시예에 따른 그래핀 필름의 수분 투과 정도의 실험 방법 및 결과를 보여주는 그래프이다.
도 8은 본원의 다른 실시예에 따른 그래핀 필름이 코팅된 석영 기판의 광투과도 및 그래핀 필름이 코팅된 SiO2 기판의 라만 스펙트럼을 보여주는 그래프이다.
도 9는 롤투롤 공정에 의하여 유연성 PET 기판 상에 코팅된 그래핀 필름의 수분(H2O) 투과 정도를 나타내는 그래프이다.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본 명세서 전체에서, 어떤 층 또는 부재가 다른 층 또는 부재와 "상에" 위치하고 있다고 할 때, 이는 어떤 층 또는 부재가 다른 층 또는 부재에 접해 있는 경우뿐 아니라 두 층 또는 두 부재 사이에 또 다른 층 또는 또 다른 부재가 존재하는 경우도 포함한다. 또한 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 사용되는 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.
본 명세서에서 사용되는 "그래핀 필름" 이라는 용어는 복수개의 탄소원자들이 서로 공유결합으로 연결되어 폴리시클릭 방향족 분자를 형성하는 그래핀이 층 또는 시트 형태를 형성한 것으로서, 상기 공유결합으로 연결된 탄소원자들은 기본 반복단위로서 6 원환을 형성하나, 5 원환 및/또는 7 원환을 더 포함하는 것도 가능하다. 따라서 상기 그래핀 층은 서로 공유 결합된 탄소원자들(통상 sp2 결합)의 단일층으로서 보이게 된다. 상기 그래핀 층은 다양한 구조를 가질 수 있으며, 이와 같은 구조는 그래핀 내에 포함될 수 있는 5 원환 및/또는 7 원환의 함량에 따라 달라질 수 있다. 상기 그래핀 층은 상술한 바와 같이 그래핀의 단일층으로 이루어질 수 있으나, 이들이 여러 개 서로 적층되어 복수층을 형성하는 것도 가능하며, 통상 상기 그래핀의 측면 말단부는 수소원자로 포화될 수 있다.
본 명세서에서 사용되는 "롤러부" 라는 용어는 한 개 또는 복수개의 롤러로 이루어진 롤투롤 형태의 장치를 의미하며, 롤러의 형상 및/또는 크기 및/또는 배치형태 등에 의해 제한되는 것은 아니다.
본원의 일 측면에 따른 기체 및 수분 차단용 그래핀 보호막의 형성 방법은, 기재에 탄소 소스를 포함하는 반응 가스 및 열을 제공하여 반응시킴으로써 상기 기재 상에 그래핀 필름을 제조하는 단계; 건식 공정, 습식 공정, 또는 롤투롤 공정에 의하여 상기 제조된 그래핀 필름을 유연성 기판 상에 전사하여 코팅하는 단계: 를 포함한다. 상기 그래핀 보호막은 기체 및 수분차단성을 가지며, 다른 소재에 비하여 플라스틱 기판과의 접착성, 내열성, 내화학성 및 기계적 특성 등 다수의 월등한 특성을 갖기 때문에 기체 및 수분 차폐 목적의 배리어 코팅재 및 봉지재로서 폭넓은 산업 분야에 적용 가능하다.
예시적 구현예에서, 상기 유연성 기판은 플라스틱 기판, 유기 발광 디바이스(OLED)용 기판 또는 식음료 용기용 시트일 수 있으나, 이에 제한되지는 않는다. 상기 유연성 기판이 플리스틱 기판인 경우, 상기 플라스틱 기판의 비제한적인 예시로, 폴리이미드, 폴리에테르설폰, 폴리에테르에테르케톤, 폴리에틸렌테레프탈레이트, 폴리카보네이트로 또는 이들의 조합을 포함하는 기판을 포함할 수 있으나, 이에 제한되지 않는다.
예시적 구현예에서, 상기 롤투롤 공정은, 상기 기재 상에 제조된 그래핀 필름과 유연성 기재를 접촉시켜 제 1 롤러부를 통과하도록 함으로써 기재-그래핀 필름-유연성 기판을 포함하는 적층체를 형성하고; 제 2 롤러부를 이용하여, 상기 적층체를 에칭 용액 내로 함침시켜 통과하도록 함으로써 상기 적층체로부터 상기 기재를 제거하거나 또는 분리함과 동시에 상기 그래핀 필름을 상기 유연성 기판 상에 전사하여 코팅하는 것: 을 포함할 수 있으나, 이에 제한되지 않는다.
예시적 구현예에서 상기 습식 공정은, 상기 그래핀 필름이 형성되어 있는 기재로부터 에칭 용액에 의해 상기 기재 만을 선택적으로 제거하거나 상기 기재를 분리시켜 상기 그래핀 필름을 부유시키고; 및, 상기 유연성 기판을 상기 부유된 그래핀 필름의 상측 또는 하측 방향으로 도입하여 상기 유연성 기판에 상기 그래핀 필름을 전사하여 코팅하는 것: 을 포함할 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에서, 상기 기재는 그의 표면 상에 그래핀 형성용 금속 촉매층이 형성되어 있을 수 있으나, 이에 제한되는 것은 아니다. 상기 그래핀 형성용 금속촉매층은 그래핀 필름의 성장을 용이하게 하기 위하여 형성되며, 그의 비제한적인 예시로, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동(brass), 청동(bronze), 백동(white brass), 스테인레스 스틸(stainless steel) 및 Ge 로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 합금일 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에서, 상기 기재 상의 그래핀 필름 상에 유기물 지지층을 형성하는 단계를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다. 또한, 상기 유기물 지지층을 형성하는 단계를 추가 포함하는 경우, 상기 그래핀 필름을 상기 유연성 기판에 전사하여 코팅한 후에, 상기 그래핀 필름으로부터 상기 유기물 지지층을 제거하는 공정을 추가 포함할 수 있으나, 이에 제한되는 것은 아니다. 일 구현예로, 상기 유기물 지지층은 스탬퍼 또는 열 박리성 테이프 일 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에서, 상기 유연성 기판은 점착층이 형성되어 있는 것일 수 있으나, 이에 제한되는 것은 아니다. 일 구현예에 있어서, 상기 점착층은 저밀도 폴리에틸렌, 저분자 폴리머, 또는, 자외선 또는 적외선 경화 폴리머를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에서, 상기 유연성 기판 상에 코팅된 상기 그래핀 보호막 상에 산화물층 또는 절연성 고분자층을 형성하는 단계를 추가 포함할 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에서, 상기 그래핀 필름과 상기 산화물층 사이, 또는 상기 그래핀 필름과 상기 절연성 고분자층 사이에 접착층을 형성하는 것을 추가 포함할 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에서, 상기 유연성 기판 상에 그래핀 필름을 전사하여 코팅하는 것을 복수회 수행하는 것을 포함할 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에서, 상기 그래핀 필름은 1 층 내지 100 층의 그래핀 필름을 포함할 수 있으나, 이에 제한되는 것은 아니다.
본원의 다른 측면에 따른 유연성 배리어 시트는, 유연성 기판 상에 형성된 그래핀 필름을 포함하는 기체 및/또는 수분 차단용 그래핀 보호막을 포함한다.
예시적 구현예에서, 상기 기체 및/또는 수분 차단용 그래핀 보호막은 상기 언급한 본원에 따른 기체 및 수분 차단용 그래핀 보호막의 형성 방법에 의하여 제조된 것일 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에서, 상기 유연성 기판은 플라스틱 기판, 유기 발광 디바이스(OLED) 용 기판 또는 식음료 용기용 시트를 포함할 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에서, 상기 기체 및/또는 수분 차단용 그래핀 보호막은 상기 유연성 기판과 상기 그래핀 필름 사이에 금속층을 추가 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 금속층은 상기 유연성 기판 상에 그래핀 필름의 성장을 용이하게 하기 위하여 형성되는 촉매층으로서, 예를 들어, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동(brass), 청동(bronze), 백동(white brass), 스테인레스 스틸(stainless steel) 및 Ge 로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 합금일 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에서, 상기 기체 및/또는 수분 차단용 그래핀 보호막은 상기 유연성 기판에 형성된 금속층을 형성한 후 상기 금속층 상에 탄소 소스를 포함하는 반응 가스 및 열을 제공하여 반응시킴으로써 그래핀 필름을 형성하는 것을 포함하는 방법에 의하여 제조되는 것일 수 있으나, 이에 제한되는 것은 아니다. 일 구현예에 있어서, 상기 유연성 기판은 폴리이미드(PI), 폴리에테르설폰(PES), 폴리에테르에테르케톤(PEEK), 폴리에틸렌테레프탈레이트(PET) 또는 폴리카보네이트(PC)를 포함할 수 있으나, 이에 제한되는 것은 아니다.
일 구현예에 있어서, 상기 그래핀 필름의 제조는 플라즈마 화학기상증착법을 이용하여 수행되는 것일 수 있으며, 이 경우, 상기 그래핀 필름의 제조는 약 100℃ 내지 약 600℃ 온도에서 수행되는 것일 수 있으나, 이에 제한되는 것은 아니다.
본원의 또 다른 측면은 상기에서 언급한 본원의 유연성 배리어 시트를 포함하는 물품을 제공한다.
예시적 구현예에서, 상기 물품은 전자 장치, 광전자 장치, 광학 장치, 발광 장치, OLED(유기 발광 디바이스), 유기 반도체 장치, LCD 디스플레이, 태양광 장치, 박막 센서, 또는 식음료 용기를 포함할 수 있으나, 이에 제한되는 것은 아니다.
상기 유연성 배리어 시트 및 상기 유연성 배리어 시트를 포함하는 물품은 상기 언급한 기체 및 수분 차단용 그래핀 보호막의 형성 방법에 기술된 내용을 모두 포함할 수 있으며, 편의상 중복기재를 생략한다.
이하, 본원의 기체 및 수분 차단성을 가지는 그래핀 보호막 및 상기 그래핀 보호막의 형성 방법에 대하여 구현예 및 실시예를 도면을 이용하여 자세히 설명한다. 그러나, 본원이 이에 제한되는 것은 아니다.
도 1을 참조하면, 본원의 기체 및 수분 차단성을 가지는 그래핀 보호막의 형성 방법은 기재에 탄소 소스를 포함하는 반응 가스 및 열을 제공하여 반응시킴으로써 상기 기재 상에서 그래핀 필름을 제조하는 단계; 유연성 기판 상에 건식 공정, 습식 공정, 또는 롤투롤 공정에 의하여 상기 제조된 그래핀 필름을 전사하여 코팅하는 단계: 를 포함한다. 필요한 경우, 도 1에서와 같이, 상기 기재 상에 그래핀 필름을 제조한 후에 상기 그래핀 필름 상에 스탬퍼 또는 열 박리성 테이프와 같은 유기물 지지층을 추가로 형성할 수 있다.
본원의 기체 및 수분 차단용 그래핀 보호막의 형성 방법은 상기와 같은 과정을 통하여 유연성 기판 상에 진공 공정이 필요 없이 상압 분위기하에서 대면적의 그래핀 필름을 보다 용이하게 코팅할 수 있으며, 단시간 내 저비용으로 그래핀 보호막을 형성할 수 있다. 또한, 상기와 같은 과정에 의해 형성된 기체 및 수분 차단용 그래핀 보호막을 유연성 기판 상에 형성함으로써 유연하고(flexible), 기계적 특성이 우수하며, 기체 및 수분 차폐성을 향상된 유연성 배리어 필름을 얻을 수 있다. 상기 유연성 기판은 플라스틱 기판, 식음료 용기(시트), OLED 박막 소자 등일 수 있다. 상기 언급한 바와 같이 다양한 소자에 그래핀 필름을 코팅함으로써 소자의 기체 및 수분 차단성을 보다 향상시켜, 소자의 향상된 전기적 특성을 장기간 유지할 수 있다. 또한, 상기 유연성 기판이 식음료 용기(시트)인 경우, 상기 그래핀 필름을 다양한 식음료 용기 표면에 코팅함으로써 식음료의 특성을 장시간 보존할 수 있다.
기재 상에 형성된 그래핀 필름은 다양한 공정에 의하여 유연성 기판 상에 전사되어 코팅될 수 있다. 상기 코팅 방법은 그래핀 필름을 기판 상에 전사하여 코팅시키기 위하여 당업계에서 통상적으로 사용되는 방법이라면 제한 없이 사용 가능하며, 예를 들어, 건식 공정, 습식 공정, 스프레이 공정, 롤투롤 공정을 사용할 수 있다.
습식 코팅 공정 및 롤투롤 코팅 공정에 대하여 도 1을 참조하여 보다 구체적으로 언급한다. 상기 습식 코팅 공정은 상기 그래핀 필름(20)이 형성되어 있는 기재(10)를 에칭 용액(60) 내로 함침시켜 상기 기재(10) 만을 선택적으로 제거하거나 상기 기재를 분리시켜 상기 그래핀 필름(20)을 부유시키고 상기 부유된 그래핀 필름의 상측 또는 하측 방향으로 유연성 기판(32)을 도입하여 상기 유연성 기판 상(32)에 그래핀 필름(20)을 코팅할 수 있다. 보다 구체적으로, 유연성 기판을 상기 부유된 그래핀 필름의 상측으로부터 도입하여 상기 유연성 기판 상에 그래핀 필름을 찍어내거나, 상기 유연성 기판을 상기 부유된 그래핀 필름의 하부, 즉 에칭 용액 내로부터 띄워 올려서 상기 유연성 기판 상에 그래핀 필름을 코팅할 수 있다.
상기 기재 상의 그래핀 필름 상에 유기물 지지층(31)으로써, 스탬퍼 또는 열 박리 테이프를 추가로 형성할 수 있다. 상기 스탬퍼로서 당업계에 공지된 것을 특별히 제한없이 사용할 수 있으며, 예를 들어, 상기 스탬퍼는 PDMS, PMMA, 폴리스티렌, PVC, 폴리 부타디엔, SBS 고무, 또는 폴리우레탄 등 다양한 고분자로 이루어진 것을 사용할 수 있으나, 이에 제한되는 것은 아니다. 스탬퍼를 사용한 경우에는, 필요에 따라 상기 그래핀 보호막을 형성한 후에 상기 스탬퍼를 제거하는 공정이 추가로 수행될 수 있다. 도 1에서는 스탬퍼를 사용하여 그래핀 보호막을 형성하는 방법에 대하여 도시하고 있으나, 이와 달리 스탬퍼를 사용하지 않고 그래핀 필름 만을 유연성 기판 상에 코팅하여 그래핀 보호막을 형성할 수 있다.
유연성 기판 상에 그래핀 보호막을 코팅한 후에 상기 그래핀 보호막을 증류수에 세척한 후 건조시키는 공정을 추가로 수행할 수 있다. 상기 건조 과정은 예를 들어 약 70℃에서 약 30분 이상 수행되며, 건조 공정을 수행함으로써 상기 그래핀 보호막의 접착력을 향상시킬 수 있다.
유연성 기판 상에 그래핀 보호막을 코팅하는 다른 구현예에 있어서, 스프레이 방법으로 유연성 기판의 일면에 그래핀 필름을 형성하는 것을 포함할 수 있다. 일 구현예로, 상기 스프레이 방법은 상기 그래핀 필름을 적당한 용매에 분산하여 상기 유연성 기판 상에 분산하는 방법을 포함할 수 있다. 상기 용매는 상기 그래핀 필름이 상기 용매에 분산 될 수 있는 용매라면 제한 없이 사용할 수 있으며, 예를 들어, 상기 용매는 물 또는 알코올 등의 유기용매를 포함할 수 있으나. 이에 제한되는 것은 아니다.
유연성 기판 상에 그래핀 보호막을 코팅하는 또 다른 구현예에 있어서, 롤투롤 공정에 의하여 유연성 기판 상에 그래핀 보호막을 형성하는 것을 포함할 수 있다. 도 1에서와 같이 그래핀 필름의 코팅 공정만을 롤투롤 공정에 의하여 수행하거나, 도 2 에서와 같이 기재 상에 형성된 그래핀 필름의 형성, 상기 기재의 에칭 및 상기 기재가 제거된 그래핀 필름을 유연성 기판 상에 코팅하기까지의 전 공정을 롤투롤 공정에 의하여 수행할 수 있다. 롤투롤 공정을 사용하는 경우, 공정의 간단화로 인해 상기 유연성 기판 상에 대면적의 그래핀 보호막을 단시간에 코팅하는 것이 가능하다.
기체 및 수분 투과도를 더욱 감소시키기 위해 상기 전사 공정을 반복함으로써, 단층 또는 다층의 그래핀 필름을 상기 유연성 기판 상에 코팅할 수 있으며, 상기 다층의 그래핀 필름은 반데르발스 결합력에 의해 적층되어 있다. 비제한적 예로서, 상기에서 설명한 그래핀 필름의 롤투롤 코팅 공정을 반복함으로써 그래핀 필름을 1 층 내지 100 층 범위에서 조절할 수 있다. 다층의 그래핀 필름은 단층 그래핀 필름이 가지고 있는 결함을 보완할 수 있으며, 수분 또는 기체에 민감한 OLED 소자를 안정적으로 구동시키거나 상기 그래핀 필름을 봉지막으로 사용하는 경우에는 다층의 그래핀 필름을 사용하는 것이 바람직하다. 예를 들어, 롤투롤 코팅 공정에 의하여 복수층의 그래핀 필름을 형성하는 경우에는 단순히 상기 롤투롤 공정을 반복함으로써 복수층의 그래핀 필름을 코팅할 수 있으며, 이와 같이 형성된 복수층의 그래핀 필름을 유연성 기판에 코팅함으로써 상기 유연성 기판의 기체 및 수분 차단성을 향상시킬 수 있다.
복수층의 그래핀 필름을 형성하는 비제한적인 예로서, 스탬퍼를 사용할 수 있다. 예를 들어, 도 3a에서와 같이 기재가 제거된 그래핀(그래핀 1)과 상기 그래핀 상의 스탬퍼(스탬퍼 1)를 다른 스탬퍼 상에 전사하지 않고, 다른 그래핀(그래핀 2) 상에 직접 적층하여 복수층의 그래핀 필름을 형성할 수 있다. 또한, 도 3b에서와 같이 기재가 제거된 그래핀(그래핀 1)과 상기 그래핀 상의 스탬퍼(스탬퍼 1)를 다른 스탬퍼(스탬퍼 2) 상에 전사하고 이후 상기 스탬퍼 1 및 상기 스탬퍼 2를 제거하는 방법에 의하여 복수층의 그래핀 필름을 형성할 수 있다. 도 3a에서와 같이 제조된 그래핀을 스탬퍼가 아닌 다른 그래핀에 직접 적층하는 경우, 스탬퍼의 잔여물을 최소화 할 수 있으며, 그래핀 필름 간에는 스탬퍼가 존재하지 않아 이후 고온의 열처리를 통하여 그래핀 필름 중 최상층 상에 존재하는 스탬퍼 만을 제거함으로써 복수층의 그래핀 필름을 형성할 수 있다.
필요한 경우, 유연성 기판 상의 그래핀 보호막 상에 추가로 산화물층 또는 고분자 절연층을 형성할 수 있다. 상기 산화물층 또는 상기 고분자 절연층은 상기 그래핀 보호막의 수분 및/또는 산소 차단성을 보다 향상시키 위하여 사용된다. 예를 들어, 상기 그래핀 보호막 상에 추가로 고분자 절연층을 형성할 경우, 상기 고분자 절연층은 그래핀 필름의 전도성을 차단하고 기계적 박리를 막아줄 수 있다.
또한, 상기 그래핀 보호막 상에 추가로 형성되는 산화물층(도 4a)은 그래핀 필름이 가질 수 있는 결함을 보완하여 기체 및 수분 투과도를 낮추기 위한 보완제로서 사용된다. 상기 산화물층은 기체 및 수분 투과를 감소시킬 수 있는 물질로서 당업계에서 통상적으로 사용되는 것이라면 제한없이 가능하며, 예를 들어, Al203, SiO2, SnO2, AlOxNx 등의 다양한 산화물 계열 물질이 사용될 수 있다. 또한, 필요한 경우 도 4b에서와 같이 상기 그래핀 보호막과 상기 산화물층을 교대로 적층할 수 있다. 일 실시예에 있어서, 유연성 PET 기판 상에 두 개의 그래핀 필름을 코팅함에 있어서, 상기 두 개의 그래핀 층 사이에 산화물층으로서 Al203 층을 형성하였으며, 도 4d는 이와 같은 방법에 의해 제조된 그래핀 보호막의 투과율을 측정한 결과(WVTR)를 보여준다.
상기 그래핀 필름과 상기 산화물층 사이 또는 상기 그래핀 필름과 상기 고분자 절연층 사이에 접착력을 향상시키기 위하여 상기 그래핀 필름과 상기 산화물층 사이 또는 상기 그래핀 필름과 상기 고분자 절연층 사이에 접착층을 추가로 형성할 수 있다(도 4c). 상기 접착층은, 예를 들어, 점착성 고분자 등을 포함하는 유기 접착층일 수 있으나, 이에 제한되는 것은 아니다.
상기 산화물층 내지 상기 고분자 절연층을 형성하는 방법과 상기 산화물층 내지 상기 고분자 절연층의 두께는 각각 특별히 제한되지 않는다. 예를 들어, 상기 산화물층 내지 상기 고분자 절연층 각각을 형성하는 방법은 스퍼터링, 원자층 증착(atomic layer deposition; ALD), 화학기상증착법 등이 사용될 수 있으며, 상기 방법에 의해 수 나노 미터에서 수백 나노 미터 두께를 가지는 산화물층 내지 박막층을 형성할 수 있다.
상기 유연성 기판과 그래핀 필름 사이에 접착 및/또는 분리를 향상시키기 위하여 상기 유연성 기판과 상기 그래핀 필름 사이에 점착층을 추가로 형성할 수 있다. 상기 점착층은, 예를 들어, 열 박리성(thermal release) 폴리머, 저밀도 폴리에틸렌, 저분자 폴리머, 또는, 자외선 또는 적외선 경화 폴리머 등을 포함하는 것일 수 있으나, 이에 제한되지는 않는다. 구체적으로, 상기 점착층은 PDMS, 각종 공지의 폴리 우레탄계 필름 등을 사용할 수 있으며, 또는, 환경 친화적 접착제인 수계 점착제, 수용성 점착제, 초산 비닐 에멀젼 접착제, 핫멜트 접착제, 광경화용(UV, 가시광, 전자선, UV/EB 경화용) 접착제, 광연화용(UV, 가시광, 전자선, UV/EB 연화용) 테이프 등을 사용할 수 있으나, 이에 제한되는 것은 아니다. 또는, 상기 점착층은 고내열 접착제인 PBI(Polybenizimidazole), PI(Polyimide), Silicone/imide, BMI(Bismaleimide), 변성 에폭시수지(epoxy resin) 등을 사용할 수 있으나 이에 제한되는 것은 아니며, 또는 일반 접착 테이프 접착 테이프(adhesive tape), 풀(glue), 에폭시수지(epoxy resin), 광연화용 테이프(UV 가시광, 전자선, UV/EB), 열박리성 테이프 또는 수용성 테이프를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 이러한 물질들을 사용하여 형성될 수 있는 상기 점착층은 그래핀의 접착 및/또는 분리를 용이하게 하여 준다.
상기 그래핀 필름의 코팅과정에서 사용되는 에칭 용액은 상기 기재를 선택적으로 제거하거나 상기 기재를 분리시킬 수 있는 용액으로서 당업계에서 통상적으로 사용되는 것이라면 제한없이 사용가능하다. 예를 들어, 상기 에칭 용액은 암모늄 퍼설페이트(NH4)2S2O8, HF, BOE, Fe(NO3)3, 염화 철(Iron(III) Chloride, FeCl3) 또는, CuCl2 등을 포함하는 용액일 수 있으나, 이에 제한되는 것은 아니다.
그래핀이 성장되는 상기 기재는 기재만으로 존재하거나, 촉매층(미도시)을 추가 포함할 수 있다. 상기 기재의 재료는 특별히 제한 되지 않으며, 예를 들어, 실리콘, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동(brass), 청동(bronze), 백동(white brass), 스테인레스 스틸(stainless steel) 및 Ge 로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 합금을 포함할 수 있다. 상기 기재가 금속인 경우는 기재 자체로 그래핀 필름이 형성되기 위한 촉매 역할을 할 수 있다. 다만, 상기 기재가 반드시 금속일 필요는 없다. 예를 들어, 상기 기재로 실리콘을 사용할 수 있으며, 상기 실리콘 기재 상에 촉매층의 형성을 위해 실리콘 기재를 산화시켜 실리콘 산화물층이 추가 형성된 기재를 사용할 수 있다.
상기 촉매층은 기재 상에 그래핀 필름의 성장을 용이하게 하기 위하여 추가로 형성될 수 있다. 상기 촉매층은 재료, 두께, 및 형태에 있어, 특별히 제한 없이 사용될 수 있으며, 예를 들어, 상기 촉매층은 Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, 황동(brass), 청동(bronze), 백동, 스테인레스 스틸(stainless steel) 및 Ge 로 이루어진 그룹으로부터 선택된 하나 이상의 금속 또는 합금일 수 있으며, 상기 기재와 동일하거나 상이한 재료에 의해 형성될 수 있다. 또한, 상기 촉매층의 두께는 특별히 제한되지 않으며, 박막 또는 후막일 수 있다.
상기 기재 상에 그래핀 필름을 형성하는 방법은 당업계에서 그래핀 성장을 위해 통상적으로 사용하는 방법을 특별히 제한 없이 사용할 수 있으며, 예를 들어, 화학기상증착법을 이용할 수 있으나 이에 제한되는 것은 아니다. 상기 화학기상증착법은 고온 화학기상증착(Rapid Thermal Chemical Vapour Deposition; RTCVD), 유도결합플라즈마 화학기상증착(Inductively Coupled Plasma-Chemical Vapor Deposition; ICP-CVD), 저압 화학기상증착(Low Pressure Chemical Vapor Deposition; LPCVD), 상압 화학기상증착(Atmospheric Pressure Chemical Vapor Deposition; APCVD), 금속 유기화학기상증착(Metal Organic Chemical Vapor Deposition; MOCVD), 및 플라즈마 화학기상증착(Plasma-enhanced chemical vapor deposition; PECVD)을 포함할 수 있으나, 이제 제한되는 것은 아니다.
상기 그래핀 필름을 성장시키는 공정은 상압, 저압 또는 진공 하에서 수행 가능하다. 예를 들어, 상압 조건 하에서 상기 공정을 수행하는 경우 헬륨(He) 등을 캐리어 가스로 사용함으로써 고온에서 무거운 아르곤(Ar)과의 충돌에 의해 야기되는 그래핀의 손상(damage)을 최소화시킬 수 있다. 또한 상압 조건 하에서 상기 공정을 수행하는 경우, 저비용으로 간단한 공정에 의하여 대면적 그래핀 필름을 제조할 수 있는 이점이 있다. 또한, 상기 공정이 저압 또는 진공 조건에서 수행되는 경우, 수소(H2)를 분위기 가스로 사용하며, 온도를 올리면서 처리하여 주면 금속 촉매의 산화된 표면을 환원시킴으로써 고품질의 그래핀을 합성할 수 있다.
상기 언급한 방법에 의해 형성되는 그래핀 필름은 횡방향 및/또는 종방향 길이가 약 1 mm 이상 내지 약 1000 m 에 이르는 대면적일 수 있다. 또한, 상기 그래핀 필름은 결함이 거의 없는 균질한 구조를 가진다. 상기 언급한 방법에 의해 제조되는 그래핀 필름은 그래핀의 단일층 또는 복수층을 포함할 수 있다. 비제한적 예로서, 상기 그래핀 필름의 두께는 1 층 내지 100 층 범위에서 조절할 수 있다.
상기 기재 상에 그래핀 필름을 형성하는 일 구현예에 있어서, 박막 또는 호일 형태의 금속 기재를 롤 형태로 관 형태의 로(furnace)에 넣고 탄소 소스를 포함하는 반응가스를 공급하고 상압에서 열처리 함으로써 그래핀 필름을 성장시킬 수 있다. 상기 탄소 소스는, 예를 들어, 일산화탄소, 이산화탄소, 메탄, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔 등과 같은 탄소 소스를 기상으로 공급하면서, 예를 들어, 300℃ 내지 2000℃의 온도로 열처리하면 상기 탄소 소스에 존재하는 탄소 성분들이 결합하여 6각형의 판상 구조를 형성하면서 그래핀 필름이 성장된다.
지금까지 기체 및 수분 차단용 그래핀 보호막을 포함하는 유연성 배리어 시트를 제조하기 위하여, 기재 상에 그래핀 필름을 형성하고 상기 그래핀 필름을 유연성 기판 상으로 전사하여 코팅하는 방법에 대하여 설명하였으나, 다른 구현예에 있어서, 그래핀 필름을 유연성 기판 상에 직접 성장시킴으로써 전사 과정 없이 유연성 배리어 시트를 제조할 수 있다.
상기 유연성 기판 상에 그래핀 필름을 직접 성장시키는 경우, 상기 유연성 기판은 폴리이미드(PI), 폴리에테르설폰(PES), 폴리에테르에테르케톤(PEEK), 폴리에틸렌테레프탈레이트(PET) 또는 폴리카보네이트(PC)와 같은 유연성 플라스틱 기판이 바람직하다. 또한, 상기 유연성 플라스틱 기판 상에 그래핀 필름의 성장을 용이하게 하기 위하여 금속층을 추가로 포함할 수 있으며, 이 경우 상기 금속층을 제거하지 않고 상기 유연성 플라스틱 기판 상에 남겨두어 그 자체가 배리어 층으로써의 기능을 할 수 있어, 기체 및 수분 차단 효과를 향상시킬 수 있다. 상기 금속층은, 예를 들어, 투명도가 요구되는 경우에는 수 나노미터 내지 수십 나노미터의 박막층으로 형성하여 유연성 배리어 기판의 투명도를 향상시킬 수 있으며, 투명도가 요구되지 않는 경우에는 상기 금속층의 두께를 두껍게 함으로써 기체 및 수분 차단 효과를 향상시킬 수 있다. 상기 유연성 플라스틱 기판 또는 상기 유연성 플라스틱 기판의 금속층 상에 그래핀 필름을 형성하는 방법은 상기 언급한 화학기상증착법이 모두 사용될 수 있으며, 보다 바람직하게는 플라즈마 화학기상증착법에 의하여 약 100℃ 내지 약 600℃ 의 저온에서 수행될 수 있다. 이와 같이, 상기 그래핀 필름을 유연성 기판 상에 직접 성장시켜 유연성 배리어 기판을 제조하는 방법은 기재 상에 형성된 그래핀 필름을 유연성 기판 상으로 전사하는 과정에서 발생할 수 있는 그래핀 필름의 결점 등을 줄일 수 있을 뿐만 아니라, 금속층 자체를 일종의 배리어 층으로 사용함으로써, 유연성 배리어 기판의 기체 및 수분 차단 특성을 향상시킬 수 있다.
이하에서 실시예를 들어 본원을 보다 상세히 설명하나 본원이 이에 한정되는 것은 아니다.
[실시예 1]
습식 공정에 의한 그래핀 보호막 코팅
화학기상증착을 이용한 그래핀 성장공정에서 구리 기재는 H2 가스 10 sccm, 160 mTorr 분위기에서 1000℃까지 가열된 후 30 분 동안 같은 분위기에서 열처리공정을 거쳤다. 이후, 메탄 30 sccm과 수소 10 sccm의 혼합가스를 1.6 Torr의 압력으로 30분간 흘려줬다. 그리고 수소가스 10 sccm, 160 mTorr의 분위기에서 상온까지 급격히 냉각시켰다. 구리 기재 상에 그래핀 필름을 플라스틱 필름 상으로 전사하여 코팅하는 공정에서는 열박리 테잎 혹은 PMMA와 같은 유기물 지지층을 상기 구리 기재 상에 성장된 그래핀 필름 상에 부착시켰다. 에칭 용액에 의하여 구리 기판을 제거 후, 남아있는 그래핀 필름은 상기 유기물 지지층에 붙어있게 되는데 이 상태에서 플라스틱 기판으로의 전사가 가능하다. 습식 코팅 방법으로 플라스틱기판을 물에 떠있는 그래핀 필름으로 들어 올림으로써 전사하였으며, 습식 코팅 후 상기 PMMA층은 아세톤에 의해 지워졌다.
복수층의 그래핀 필름을 제조하기 위하여, 상기한 방법에 의해 제조된 그래핀을 다른 PMMA층에 전사하지 않고, 구리 기재 상에 형성된 다른 그래핀 상에 직접 적층함으로써, PMMA의 잔여물을 최소화 할 뿐만 아니라 PMMA의 도포 횟수를 줄일 수 있었으며, 복수층을 형성하는 그래핀 필름 간에는 PMMA가 존재하지 않아 이후 고온의 열처리를 통하여 그래핀 필름 중 최상층 상에 존재하는 스탬퍼 만을 제거함으로써 복수층의 그래핀 필름을 형성할 수 있었다(도 3 참조). 상기한 방법에 의해 형성된 복수층의 그래핀 필름은 마이크로-크랙(micro-crack)이 감소되었다.
도 5a는 상기 습식 공정에 의해 석영 기판 상에 형성된 그래핀 필름의 두께에 따른 광투과도를 나타낸다. 두 필름에 대하여 550 nm 에서 약 93%와 약 86%의 광투과도를 보였다. 그래핀 한 층당 광투과도가 약 2.3% 이기 때문에 이와 같은 광투과도는 약 3 층, 6 층의 투과도에 대응한다. 도 5b는 상기 습식 공정에 의해 SiO2 기판 상에 형성된 그래핀 필름의 라만 스펙트럼 데이터를 나타낸 그래프로 그래핀 필름의 층수를 한층, 3, 6 층으로 달리하여 측정하였으며, 그 결과 그래핀 필름의 층 수가 증가할수록 G, 2D 밴드의 강도가 대응되어 증가하며 두 밴드간의 비율 변화는 크게 드러나지 않는 것을 알 수 있었다. 이것은 흑연에서 추출한 ABAB적층 순서를 갖는 복층구조의 그래핀 필름과 구분된다. 따라서 임의의 방향성을 가지며 적층된 그래핀 필름의 기본적인 성질을 단층의 그래핀을 띄게 된다.
상기와 같은 방법에 의해 그래핀이 성장된 구리 기재를 상온 상압의 분위기에서 두 달간 방치한 후 그 표면을 분석하였다. 그래핀이 없는 구리 기재는 산화 후 확연히 변화된 표면을 가지고 있는 반면, 그래핀이 성장된 구리 기재의 경우 산화 과정 후 변화없는 표면을 보여주는데, 이것은 표면에 존재하는 그래핀 필름이 구리 기재를 산소 기체들로부터 산화를 효과적으로 방지했다는 것을 나타낸다. XPS 분석을 통해 산화과정 후 구리 기재 표면의 화학분석을 하였다. 도 6a를 참조하면, XPS 스펙트럼은 순수 구리 기재가 산화에 의해 이동된 피크(Cu2O (932.4 와 952.4 eV의 결합 에너지), CuO(933.6 와 953.4 eV), 그리고 Cu(OH)2(934.3 와 954.5 eV)) 를 나타냈다. 반면, 도 6b 를 참조하면, 그래핀 보호막이 성장된 구리 기재의 경우 두 개의 피크 분포가 932.6 eV 와 952.4 eV 에만 대응했다. 이는 그래핀 필름이 구리의 산화 방지막으로서 사용될 수 있음을 시사할 뿐 아니라, 나아가, 플라스틱 필름의 산소와 수분에 대한 배리어로서 사용될 수 있는 가능성을 보여준다.
그래핀 필름의 산소와 수분에 대한 배리어로서의 가능성을 보여주기 위하여, 그래핀 필름이 코팅된 PET의 수분 투과율을 물과 방사성 동위원소인 삼중수소(tritium)가 포함된 물(HTO)을 이용하여 측정하였다. 도 7a에서와 같이 그래핀 필름이 덮인 PET 필름을 공간 중 중간 부분에 위치시켰다. HTO 분자들은 그래핀 필름을 투과하여 beta-ray detector로 운반되며, 이와 같은 측정 시스템은 약 10-6 g/m2/day의 투과율 레벨까지 측정이 가능하다. 도 7b는 3층, 6층의 그래핀 필름이 코팅된 PET 필름을 상기 도 7a와 같은 방법에 의해 수분 투과율을 측정한 결과이다. 3 층(두께 ~ 1.2 nm) 와 6층 (두께 ~ 2.4 nm)의 그래핀 필름에 대하여 초기 5 시간 동안 각각 약 10-3 g/m2/day 와 10-4 g/m2/day 의 수분 투과율이 측정되었다. 이 결과는 종래의 단층 무기물 배리어 필름의 초기 데이터보다 뛰어난 특성을 보인다. 상기 종래의 단층 무기물 배리어 필름은 SiO2 또는 Al2O3 일 수 있으며, 예를 들어, PECVD로 증착된 100 nm 의 두께를 가진 SiO2 와 ALD를 이용해 30 nm 증착된 Al2O3 의 투과율은 각각 약 0.2와 6 X 10-3g/m2/day 를 나타냈다.
[실시예 2]
롤투롤 공정에 의한 그래핀 보호막 코팅
1. 구리 기재 상에 대면적 그래핀 필름의 성장
Cu의 롤 형태의 기재 (두께 : 25 ㎛ 및 크기 : 210 x 297 mm2, Alfa Aesar Co.)이 직경 1~8인치 석영 튜브 내에 로딩되었고, 이후 상압 하에서 700 ~ 1,000℃로 가열되었다. 탄소 소스를 포함하는 가스 혼합물(CH4 : H2 : Ar = 50 : 65 : 200 sccm)을 공급하여 그래핀을 상기 Cu 기재 상에 성장시킨 후, 단시간에 He를 흘려 주어 ~10℃/s 의 속도로 실온으로 냉각하여, 상기 Cu 기재 상에 성장된 그래핀 필름을 수득하였다.
2. 롤투롤 공정에 의한 그래핀 보호막 코팅 공정
이후, 상기 Cu 기재 상에 형성된 그래핀 필름 상에 점착층이 형성된 석영 기판 및 SiO2 기판에 각각 접촉하여 롤러를 통과시켜 접착시켰다. 다음, 상기 Cu 기재/그래핀 필름/기판 적층체를 0.5 M FeCl3 에칭 수용액에 함침시켜 전기화학적 반응에 의하여 Cu 기재를 에칭하여 제거하여 상기 기판 상에 그래핀 필름을 전사하여 그래핀 보호막을 형성하였다. 도 8은 상기 롤투롤 공정에 의하여 상기 석영 기판 상에 형성된 그래핀 필름의 두께에 따른 광투과도 및 상기 SiO2 기판 상에 형성된 그래핀 필름의 라만 스펙트럼 데이터를 관찰한 결과이다.
도 9를 참조하면, 석영 기판 상에 형성된 그래핀 필름(3 층)의 수분(H2O) 투과율의 실험결과(WVTR)를 보여준다. 그래핀 필름이 형성되지 않은 순수한 석영 기판의 수분(H2O) 투과율은 10g/m2/day 이었으나, 상기 방법에 의해 3 층의 그래핀이 적층된 석영 기판 의 수분(H2O) 투과율은 10-3 ~ 10-1g/m2/day 로 수분 투과율이 매우 감소되었음을 알 수 있었다.
이상에서 설명한 본원의 상세한 설명에서는 본원의 바람직한 실시예를 참조하여 설명하였지만, 본원의 보호범위는 상기 실시예에 한정되는 것이 아니며, 해당 기술분야의 통상의 지식을 갖는 자라면 본원의 사상 및 기술영역으로부터 벗어나지 않는 범위 내에서 본원을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (23)

  1. 기재에 탄소 소스를 포함하는 반응 가스 및 열을 제공하여 반응시킴으로써 상기 기재 상에 그래핀 필름을 제조하는 단계; 및
    건식 공정, 습식 공정, 또는 롤투롤 공정에 의하여 상기 제조된 그래핀 필름을 유연성 기판 상에 전사하여 코팅하는 단계:
    를 포함하는, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  2. 제 1 항에 있어서,
    상기 유연성 기판은 플라스틱 기판, 유기 발광 디바이스(OLED) 용 기판 또는 식음료 용기용 시트를 포함하는 것인, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  3. 제 1 항에 있어서,
    상기 롤투롤 공정은,
    상기 기재 상에 제조된 그래핀 필름과 상기 유연성 기판을 접촉시켜 제 1 롤러부를 통과하도록 함으로써 기재-그래핀 필름-유연성 기판을 포함하는 제 1 적층체를 형성하고; 및
    제 2 롤러부를 이용하여, 상기 제 1 적층체를 에칭 용액 내로 함침시켜 통과하도록 함으로써, 상기 제 1 적층체로부터 상기 기재를 제거하거나 또는 분리함과 동시에 상기 그래핀 필름을 상기 유연성 기판 상에 전사하여 코팅하는 것:
    을 포함하는 것인, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  4. 제 1 항에 있어서,
    상기 습식 공정은,
    상기 그래핀 필름이 형성되어 있는 기재로부터 에칭 용액에 의해 상기 기재 만을 선택적으로 제거하거나 상기 기재를 분리시켜 상기 그래핀 필름을 부유시키고; 및
    상기 유연성 기판을 상기 부유된 그래핀 필름의 상측 또는 하측 방향으로 도입하여 상기 유연성 기판 상에 상기 그래핀 필름을 전사하여 코팅하는 것:
    을 포함하는 것인, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  5. 제 1 항에 있어서,
    상기 기재는 그의 표면 상에 그래핀 형성용 금속촉매층이 형성되어 있는 것인, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  6. 제 1 항에 있어서,
    상기 기재 상의 그래핀 필름 상에 유기물 지지층을 형성하는 단계를 추가 포함하는, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  7. 제 1 항에 있어서,
    상기 유연성 기판 상에 코팅된 그래핀 보호막 상에 산화물층 또는 절연성 고분자층을 형성하는 단계를 추가 포함하는, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  8. 제 7 항에 있어서,
    상기 그래핀 필름과 상기 산화물층 사이 또는 상기 그래핀 필름과 상기 절연성 고분자층 사이에 접착층을 형성하는 것을 추가 포함하는, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  9. 제 1 항에 있어서,
    상기 유연성 기판은 점착층이 형성되어 있는 것인, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  10. 제 9 항에 있어서,
    상기 점착층은 저밀도 폴리에틸렌, 저분자 폴리머, 또는, 자외선 또는 적외선 경화 폴리머를 포함하는 것인, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  11. 제 1 항에 있어서,
    상기 유연성 기판 상에 그래핀 필름을 전사하여 코팅하는 것을 복수회 수행하는 것을 포함하는, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  12. 제 1 항에 있어서,
    상기 그래핀 필름은 1 층 내지 100 층의 그래핀 필름을 포함하는 것인, 기체 및 수분 차단용 그래핀 보호막의 형성 방법.
  13. 유연성 기판 상에 형성된 그래핀 필름을 포함하는 기체 및/또는 수분 차단용 그래핀 보호막을 포함하는, 유연성 배리어 시트.
  14. 제 13 항에 있어서,
    상기 기체 및/또는 수분차단용 그래핀 보호막은 제 1 항 내지 제 12항 중 어느 한 항에 따른 방법에 의하여 제조되는 것인, 유연성 배리어 시트.
  15. 제 13 항에 있어서,
    상기 유연성 기판은 플라스틱 기판, 유기 발광 디바이스(OLED) 용 기판 또는 식음료 용기용 시트를 포함하는 것인, 유연성 배리어 시트.
  16. 제 13 항에 있어서,
    상기 기체 및/또는 수분 차단용 그래핀 보호막은 상기 그래핀 필름 상에 산화물층 또는 절연성 고분자층을 추가 포함하는 것인, 유연성 배리어 시트.
  17. 제 13 항에 있어서,
    상기 기체 및/또는 수분 차단용 그래핀 보호막은 상기 유연성 기판과 상기 그래핀 필름 사이에 금속층을 추가 포함하는 것인, 유연성 배리어 시트.
  18. 제 17 항에 있어서,
    상기 기체 및/또는 수분 차단용 그래핀 보호막은,
    상기 유연성 기판에 형성된 금속층을 형성한 후 상기 금속층 상에 탄소 소스를 포함하는 반응 가스 및 열을 제공하여 반응시킴으로써 그래핀 필름을 형성하는 것을 포함하는 방법에 의하여 제조되는 것인, 유연성 배리어 시트.
  19. 제 18 항에 있어서,
    상기 유연성 기판은 폴리이미드(PI), 폴리에테르설폰(PES), 폴리에테르에테르케톤(PEEK), 폴리에틸렌테레프탈레이트(PET) 또는 폴리카보네이트(PC)를 포함하는 것인, 유연성 배리어 시트.
  20. 제 18 항에 있어서,
    상기 그래핀 필름의 제조는 플라즈마 화학기상증착법을 이용하여 수행되는 것인, 유연성 배리어 시트.
  21. 제 18 항에 있어서,
    상기 그래핀 필름의 제조는 100℃ 내지 600℃ 온도에서 수행되는 것인, 유연성 배리어 시트.
  22. 제 13 항, 및 제 15 항 내지 제 17 항 중 어느 한 항에 따른 유연성 배리어 시트를 포함하는 물품.
  23. 제 21 항에 있어서,
    상기 물품은 전자 장치, 광전자 장치, 광학 장치, 발광 장치, OLED(유기 발광 디바이스), 유기 반도체 장치, LCD 디스플레이, 태양광 장치, 박막 센서, 또는 식음료 용기인, 물품.
PCT/KR2011/000258 2010-01-15 2011-01-13 기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도 WO2011087301A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/548,680 US10886501B2 (en) 2010-01-15 2012-07-13 Graphene protective film serving as a gas and moisture barrier, method for forming same, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0004007 2010-01-15
KR20100004007 2010-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/548,680 Continuation US10886501B2 (en) 2010-01-15 2012-07-13 Graphene protective film serving as a gas and moisture barrier, method for forming same, and use thereof

Publications (2)

Publication Number Publication Date
WO2011087301A2 true WO2011087301A2 (ko) 2011-07-21
WO2011087301A3 WO2011087301A3 (ko) 2011-12-01

Family

ID=44304824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/000258 WO2011087301A2 (ko) 2010-01-15 2011-01-13 기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도

Country Status (3)

Country Link
US (1) US10886501B2 (ko)
KR (3) KR101405463B1 (ko)
WO (1) WO2011087301A2 (ko)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059155A1 (en) * 2011-09-01 2013-03-07 Industry-University Cooperation Foundation Hanyang University Gas barrier thin film, electronic device including the same, and method of preparing gas barrier thin film
WO2013058559A1 (en) * 2011-10-20 2013-04-25 Samsung Techwin Co., Ltd Method of obtaining graphene
WO2014109542A1 (ko) * 2013-01-09 2014-07-17 고려대학교 산학협력단 저온 스프레이 방식 그래핀 증착 장치
EP2771395A1 (en) * 2011-10-27 2014-09-03 Garmor, Inc. Composite graphene structures
CN106373986A (zh) * 2016-11-10 2017-02-01 上海天马微电子有限公司 一种显示面板
US9758379B2 (en) 2013-03-08 2017-09-12 University Of Central Florida Research Foundation, Inc. Large scale oxidized graphene production for industrial applications
US9828290B2 (en) 2014-08-18 2017-11-28 Garmor Inc. Graphite oxide entrainment in cement and asphalt composite
US9969682B2 (en) 2015-03-17 2018-05-15 Nitto Denko Corporation Functionalized graphene barrier element
KR101903679B1 (ko) * 2012-02-08 2018-10-04 삼성디스플레이 주식회사 유기 발광 표시 장치
US10197651B2 (en) 2014-12-31 2019-02-05 General Equipment For Medical Imaging S.A. Radiofrequency shield for hybrid imaging devices
US10351711B2 (en) 2015-03-23 2019-07-16 Garmor Inc. Engineered composite structure using graphene oxide
US10535443B2 (en) 2013-03-08 2020-01-14 Garmor Inc. Graphene entrainment in a host
WO2020141078A1 (en) * 2018-12-31 2020-07-09 Foundation Of Research And Technology Institute Of Chemical Engineering Sciences (Forth-Iceht) Art protection with the use of graphene materials
US10981791B2 (en) 2015-04-13 2021-04-20 Garmor Inc. Graphite oxide reinforced fiber in hosts such as concrete or asphalt
US11038182B2 (en) 2015-09-21 2021-06-15 Garmor Inc. Low-cost, high-performance composite bipolar plate
US11214658B2 (en) 2016-10-26 2022-01-04 Garmor Inc. Additive coated particles for low cost high performance materials
US11482348B2 (en) 2015-06-09 2022-10-25 Asbury Graphite Of North Carolina, Inc. Graphite oxide and polyacrylonitrile based composite
US11506956B1 (en) 2021-05-28 2022-11-22 Dell Products L.P. Cylindrical camera with integrated tilt stand
US11513428B1 (en) 2021-05-20 2022-11-29 Dell Products L.P. Camera and lens cap
US11513425B1 (en) 2021-05-20 2022-11-29 Dell Products L.P. Camera stand with integrated tilt hinge
USD972616S1 (en) 2021-05-20 2022-12-13 Dell Products L.P. Peripheral camera
US11586100B2 (en) 2021-05-20 2023-02-21 Dell Products L.P. Cylindrical camera thermal shield
US11671687B2 (en) 2021-05-20 2023-06-06 Dell Products L.P. Cylindrical camera and integrated support
US11733594B2 (en) 2021-05-20 2023-08-22 Dell Products L.P. Camera and mount
US11736789B2 (en) 2021-06-16 2023-08-22 Dell Products L.P. Peripheral camera and information handling system security system and method
US11791061B2 (en) 2019-09-12 2023-10-17 Asbury Graphite North Carolina, Inc. Conductive high strength extrudable ultra high molecular weight polymer graphene oxide composite
US11971645B2 (en) 2021-06-16 2024-04-30 Dell Products L.P. Cylindrical camera rotating cap shutter mechanism with enhanced audio security

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010141039A1 (en) 2008-10-20 2010-12-09 Abbott Laboratories Isolation and purification of antibodies using protein a affinity chromatography
TW201028433A (en) 2008-10-20 2010-08-01 Abbott Lab Viral inactivation during purification of antibodies
US9475709B2 (en) 2010-08-25 2016-10-25 Lockheed Martin Corporation Perforated graphene deionization or desalination
JP5691524B2 (ja) * 2011-01-05 2015-04-01 ソニー株式会社 グラフェン膜の転写方法および透明導電膜の製造方法
KR101275634B1 (ko) * 2011-08-30 2013-06-18 전자부품연구원 메탈 그리드를 포함하는 그래핀 복합필름 및 제조방법
US9272910B2 (en) 2011-09-21 2016-03-01 National University Of Singapore Methods of nondestructively delaminating graphene from a metal substrate
KR101858642B1 (ko) * 2011-09-29 2018-05-16 한화테크윈 주식회사 그래핀의 전사 방법
KR101437142B1 (ko) * 2011-10-28 2014-09-02 제일모직주식회사 그라핀 층을 함유하는 배리어 필름과 이를 포함하는 플렉시블 기판 및 그 제조방법
US9095077B2 (en) 2011-11-30 2015-07-28 Apple Inc. Graphene heat dissipators in portable electronic devices
WO2013096273A1 (en) * 2011-12-20 2013-06-27 University Of Florida Research Foundation, Inc. Graphene-based metal diffusion barrier
US9202945B2 (en) * 2011-12-23 2015-12-01 Nokia Technologies Oy Graphene-based MIM diode and associated methods
US20140370246A1 (en) * 2012-01-20 2014-12-18 Brown University Substrate with Graphene-based Layer
KR20130114470A (ko) * 2012-04-09 2013-10-18 광주과학기술원 그래핀 박막 이송 방법 및 이를 이용한 소자
US9744617B2 (en) 2014-01-31 2017-08-29 Lockheed Martin Corporation Methods for perforating multi-layer graphene through ion bombardment
US9834809B2 (en) 2014-02-28 2017-12-05 Lockheed Martin Corporation Syringe for obtaining nano-sized materials for selective assays and related methods of use
US9610546B2 (en) 2014-03-12 2017-04-04 Lockheed Martin Corporation Separation membranes formed from perforated graphene and methods for use thereof
US10653824B2 (en) 2012-05-25 2020-05-19 Lockheed Martin Corporation Two-dimensional materials and uses thereof
KR101969853B1 (ko) * 2012-05-25 2019-04-17 삼성전자주식회사 그래핀 전사 방법 및 이를 이용한 소자의 제조방법
US10717260B2 (en) * 2012-07-05 2020-07-21 Sony Corporation Manufacturing method of laminated structure, laminated structure and electronic device
KR101450963B1 (ko) * 2012-07-27 2014-10-16 율촌화학 주식회사 적층 배리어 필름
US20140060726A1 (en) * 2012-09-05 2014-03-06 Bluestone Global Tech Limited Methods for transferring graphene films and the like between substrates
KR101300014B1 (ko) * 2012-09-19 2013-08-26 한국기계연구원 자유지지형 나노박막 제조 방법 및 제조 장치
KR102015912B1 (ko) 2012-11-14 2019-08-29 엘지전자 주식회사 그래핀의 제조 방법 및 그 그래핀
US10287677B2 (en) 2012-11-19 2019-05-14 The Regents Of The University Of California Methods of fabricating pillared graphene nanostructures
KR102203157B1 (ko) * 2012-12-07 2021-01-13 아익스트론 에스이 기판들 간의 필름들의 전사를 위한 방법 및 장치
KR101716468B1 (ko) * 2013-01-11 2017-03-16 서울대학교산학협력단 자가점착 필름을 이용한 그래핀의 전사 방법
KR102140174B1 (ko) 2013-01-31 2020-07-31 솔브레인 주식회사 투명 박막 봉지용 조성물
US9242865B2 (en) * 2013-03-05 2016-01-26 Lockheed Martin Corporation Systems and methods for production of graphene by plasma-enhanced chemical vapor deposition
KR102049487B1 (ko) 2013-03-08 2019-11-28 삼성디스플레이 주식회사 표시 장치의 제조 방법
WO2014164621A1 (en) 2013-03-12 2014-10-09 Lockheed Martin Corporation Method for forming filter with uniform aperture size
KR101437449B1 (ko) * 2013-03-28 2014-09-11 전자부품연구원 직접 전사를 이용한 그래핀 기반 적층체 제조방법
KR101446906B1 (ko) * 2013-03-28 2014-10-07 전자부품연구원 그래핀 기반의 배리어 필름 복합체 및 제조방법
CN105188894B (zh) 2013-05-01 2018-02-13 皇家飞利浦有限公司 制造部分独立式石墨烯晶体膜的方法和包括这样的膜的器件
KR20140136601A (ko) * 2013-05-20 2014-12-01 한국화학연구원 그래핀 클리닝 공정 및 이에 의해 처리된 그래핀을 포함하는 소자
US9572918B2 (en) 2013-06-21 2017-02-21 Lockheed Martin Corporation Graphene-based filter for isolating a substance from blood
US9905797B2 (en) * 2013-10-25 2018-02-27 Boe Technology Group Co., Ltd. OLED display device and fabrication method thereof
US10858755B2 (en) * 2013-11-07 2020-12-08 Seco/Warwick S.A. Nanocomposite based on graphene for reversible storage of hydrogen
KR102144478B1 (ko) * 2013-11-12 2020-08-14 삼성디스플레이 주식회사 터치 패널 및 터치 패널의 제조 방법
WO2015084268A1 (en) * 2013-12-05 2015-06-11 National University Of Singapore Graphene tape
US9397237B2 (en) * 2013-12-12 2016-07-19 Raytheon Company Broadband graphene-based optical limiter for the protection of backside illuminated CMOS detectors
CN103692743B (zh) * 2013-12-19 2016-05-04 中国科学院重庆绿色智能技术研究院 一种石墨烯复合薄膜材料及其制备方法
CN103682054B (zh) * 2013-12-23 2016-05-04 福州大学 一种基于石墨烯的柔性光电器件封装方法
KR102034657B1 (ko) * 2013-12-31 2019-11-08 엘지디스플레이 주식회사 용액 공정용 그래핀 복합층을 갖는 플렉서블 디바이스
KR102034177B1 (ko) * 2014-01-24 2019-11-08 한국전자통신연구원 유기발광소자의 제조방법
AU2015210875A1 (en) 2014-01-31 2016-09-15 Lockheed Martin Corporation Processes for forming composite structures with a two-dimensional material using a porous, non-sacrificial supporting layer
CN105940479A (zh) 2014-01-31 2016-09-14 洛克希德马丁公司 使用宽离子场穿孔二维材料
WO2015133849A1 (ko) * 2014-03-07 2015-09-11 한양대학교 산학협력단 기체 차단 특성이 향상된 그래핀 옥사이드 나노복합막 및 그 제조방법
US9930808B2 (en) 2014-03-10 2018-03-27 The Boeing Company Graphene-based thermal management systems
US10839975B2 (en) * 2014-03-10 2020-11-17 The Boeing Company Graphene coated electronic components
AU2015229331A1 (en) 2014-03-12 2016-10-27 Lockheed Martin Corporation Separation membranes formed from perforated graphene
WO2015145155A1 (en) * 2014-03-28 2015-10-01 The University Of Manchester Reduced graphene oxide barrier materials
KR102369298B1 (ko) * 2014-04-29 2022-03-03 삼성디스플레이 주식회사 플렉서블 디스플레이 장치 및 그 제조방법
KR20150146264A (ko) 2014-06-23 2015-12-31 한국과학기술원 그래핀-구리 복합 박막의 제조 방법
JP6457766B2 (ja) * 2014-09-17 2019-01-23 国立大学法人岩手大学 絶縁材料のラマン散乱スペクトルを用いた2次元薄膜原子構造の積層数決定装置及び積層数決定方法
CN104347820A (zh) * 2014-10-10 2015-02-11 信利(惠州)智能显示有限公司 Amoled器件及制备方法
CN104445176B (zh) * 2014-12-12 2017-04-12 中国科学院宁波材料技术与工程研究所 一种石墨烯的保护装置
CN104553115A (zh) * 2014-12-26 2015-04-29 常州二维碳素科技有限公司 复合气体阻隔膜及其制备方法
KR101653478B1 (ko) * 2015-01-12 2016-09-01 영남대학교 산학협력단 탑다운 방식의 그래핀 전사 방법
EP3067073A1 (en) * 2015-03-09 2016-09-14 Centre National De La Recherche Scientifique Method of forming a medical device comprising graphene
FR3033554B1 (fr) 2015-03-09 2020-01-31 Centre National De La Recherche Scientifique Procede de formation d'un dispositif en graphene
KR101584222B1 (ko) * 2015-07-16 2016-01-11 광주과학기술원 그래핀 박막 이송 방법 및 이를 이용한 소자
JP6259023B2 (ja) 2015-07-20 2018-01-10 ウルトラテック インク 電極系デバイス用のald処理のためのマスキング方法
WO2017023376A1 (en) 2015-08-05 2017-02-09 Lockheed Martin Corporation Perforatable sheets of graphene-based material
CN105313433A (zh) * 2015-09-28 2016-02-10 常州二维碳素科技股份有限公司 一种改善石墨烯复合气体阻隔膜阻隔性能的方法
KR101979678B1 (ko) * 2016-03-21 2019-05-17 주식회사 엘지화학 이차전지용 전극 집전체의 제조 방법 및 상기 방법에 의해 제조된 전극 집전체를 포함하는 전극
WO2017180135A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Membranes with tunable selectivity
CA3020880A1 (en) 2016-04-14 2017-10-19 Lockheed Martin Corporation Selective interfacial mitigation of graphene defects
KR20190018410A (ko) 2016-04-14 2019-02-22 록히드 마틴 코포레이션 흐름 통로들을 갖는 2차원 막 구조들
EP3442739A4 (en) * 2016-04-14 2020-03-04 Lockheed Martin Corporation PROCESS FOR PROCESSING GRAPHENE SHEETS FOR LARGE SCALE TRANSFER USING A FREE FLOATING PROCESS
CN105957978B (zh) 2016-05-30 2018-03-06 京东方科技集团股份有限公司 封装结构及其制造方法
CN106206982B (zh) * 2016-08-11 2018-07-13 上海大学 一种提高柔性基底水氧阻隔性能的结构及其制备方法
KR102338593B1 (ko) * 2017-03-24 2021-12-14 서울대학교산학협력단 기능성 콘택트 렌즈 및 이의 제조방법
GB2562805B (en) * 2017-05-26 2022-02-23 Graphitene Ltd Heat spreader and method of manufacture thereof
KR102225590B1 (ko) * 2017-09-26 2021-03-10 고려대학교 산학협력단 박막성장방법 및 박막의 결정상태를 바꾸는 방법
KR102452831B1 (ko) * 2017-11-24 2022-10-07 엘지디스플레이 주식회사 플렉시블 전계발광 표시장치
CN108232029A (zh) * 2017-12-29 2018-06-29 云谷(固安)科技有限公司 一种封装方法、封装结构和显示装置
CN208078031U (zh) * 2017-12-29 2018-11-09 云谷(固安)科技有限公司 封装结构及包括封装结构的显示装置
KR102040217B1 (ko) * 2018-02-09 2019-11-06 전북대학교산학협력단 이황화몰리브덴을 이용한 수소가스 차단막 및 이의 제조방법
KR102117954B1 (ko) * 2018-02-22 2020-06-02 성균관대학교산학협력단 그래핀 전사용 고분자 및 이를 이용한 그래핀의 전사 방법
KR102182199B1 (ko) * 2018-07-13 2020-11-24 한국전자기술연구원 다층배리어박막필름 및 그의 제조방법
KR102234101B1 (ko) * 2018-09-21 2021-04-01 고려대학교 산학협력단 박막성장구조, 박막성장방법 및 박막열처리방법
EP3785911A4 (en) * 2018-10-19 2021-06-30 Lg Chem, Ltd. SECONDARY BATTERY PACKAGING FILM AND SECONDARY BATTERY WITH IT
CN109817674A (zh) * 2019-01-30 2019-05-28 武汉华星光电半导体显示技术有限公司 一种背板及其显示面板
CN113130810A (zh) * 2019-12-30 2021-07-16 Tcl集团股份有限公司 封装结构及其封装方法,显示装置
CN111244312A (zh) * 2020-01-19 2020-06-05 武汉天马微电子有限公司 一种显示面板及其制作方法
CN111483245A (zh) * 2020-04-23 2020-08-04 深圳市甲古文创意设计有限公司 一种全息光刻花纸自动贴瓶方法
CN113390937A (zh) * 2021-06-11 2021-09-14 上海大学 一种可穿戴柔性印刷电极

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062247A (ja) * 2007-09-10 2009-03-26 Univ Of Fukui グラフェンシートの製造方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246668A (ja) 1994-03-14 1995-09-26 Mitsubishi Heavy Ind Ltd マイクロ・マシン用要素部材の製造方法
JP2000269530A (ja) 1999-03-17 2000-09-29 Toppan Printing Co Ltd 太陽電池成膜装置
US6413645B1 (en) * 2000-04-20 2002-07-02 Battelle Memorial Institute Ultrabarrier substrates
US7163967B2 (en) 2003-12-01 2007-01-16 Cryovac, Inc. Method of increasing the gas transmission rate of a film
US20060188721A1 (en) 2005-02-22 2006-08-24 Eastman Kodak Company Adhesive transfer method of carbon nanotube layer
US7449133B2 (en) * 2006-06-13 2008-11-11 Unidym, Inc. Graphene film as transparent and electrically conducting material
JP5590432B2 (ja) 2006-06-15 2014-09-17 大日本印刷株式会社 燃料電池用シート状部材の製造方法、及び、メンブレンフィルタ用シート状部材の製造方法
TWI654770B (zh) 2006-09-06 2019-03-21 美國伊利諾大學理事會 二維可延伸且可撓曲設備及其製造方法
JP5309317B2 (ja) 2006-09-08 2013-10-09 古河電気工業株式会社 カーボンナノ構造体の製造方法及び製造装置
US20120141678A1 (en) 2006-11-27 2012-06-07 Fujifilm Dimatix, Inc. Carbon Nanotube Ink
US8168964B2 (en) 2007-03-02 2012-05-01 Nec Corporation Semiconductor device using graphene and method of manufacturing the same
KR101443215B1 (ko) 2007-06-13 2014-09-24 삼성전자주식회사 앰비폴라 물질을 이용한 전계효과 트랜지스터 및 논리회로
KR101384665B1 (ko) * 2007-09-13 2014-04-15 성균관대학교산학협력단 그라펜 시트를 함유하는 투명 전극, 이를 채용한 표시소자및 태양전지
KR100923304B1 (ko) 2007-10-29 2009-10-23 삼성전자주식회사 그라펜 시트 및 그의 제조방법
US8659009B2 (en) 2007-11-02 2014-02-25 The Trustees Of Columbia University In The City Of New York Locally gated graphene nanostructures and methods of making and using
KR20090051439A (ko) 2007-11-19 2009-05-22 고려대학교 산학협력단 유기 박막 트랜지스터 및 그의 제조방법
KR100951946B1 (ko) 2007-11-30 2010-04-09 한양대학교 산학협력단 투명하고 플렉서블한 탄소나노튜브 박막 트랜지스터 및이의 제조방법
KR101435999B1 (ko) 2007-12-07 2014-08-29 삼성전자주식회사 도펀트로 도핑된 산화그라펜의 환원물, 이를 포함하는 박막및 투명전극
JP5245385B2 (ja) 2007-12-13 2013-07-24 富士通株式会社 グラフェンシートの製造方法、半導体装置の製造方法および半導体装置
JP5151516B2 (ja) 2008-02-04 2013-02-27 大日本印刷株式会社 電磁波シールド材
US20100092809A1 (en) * 2008-10-10 2010-04-15 Board Of Trustees Of Michigan State University Electrically conductive, optically transparent films of exfoliated graphite nanoparticles and methods of making the same
US20110189452A1 (en) * 2009-07-31 2011-08-04 Vorbeck Materials Corp. Crosslinked Graphene and Graphite Oxide
ES2717903T3 (es) 2009-10-16 2019-06-26 Graphene Square Inc Procedimiento de transferencia de rollo a rollo de grafeno, rollo de grafeno producido por el procedimiento, y equipo de transferencia de rollo a rollo para grafeno
KR20110090134A (ko) * 2010-02-02 2011-08-10 삼성테크윈 주식회사 터치 패널 및 이의 제조 방법
KR101271827B1 (ko) * 2010-07-22 2013-06-07 포항공과대학교 산학협력단 탄소 박막 제조 방법
KR101767921B1 (ko) * 2010-08-11 2017-08-14 한화테크윈 주식회사 그래핀의 후처리 방법 및 이를 이용한 그래핀 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009062247A (ja) * 2007-09-10 2009-03-26 Univ Of Fukui グラフェンシートの製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOKI EDA ET AL.: 'Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material' NATURE NANOTECHNOLOGY vol. 3, May 2008, pages 270 - 274 *
KEUN SOO KIM ET AL.: 'Large-scale pattern growth of graphene films for stretchable transparent electrodes' NATURES LETTERS vol. 457, February 2009, pages 706 - 710 *
XUESONG LI ET AL.: 'Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils' SCIENCE vol. 324, June 2009, pages 1312 - 1314 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130059155A1 (en) * 2011-09-01 2013-03-07 Industry-University Cooperation Foundation Hanyang University Gas barrier thin film, electronic device including the same, and method of preparing gas barrier thin film
US9373429B2 (en) 2011-10-20 2016-06-21 Hanwha Techwin Co., Ltd. Method of obtaining graphene
WO2013058559A1 (en) * 2011-10-20 2013-04-25 Samsung Techwin Co., Ltd Method of obtaining graphene
EP3266814A1 (en) * 2011-10-27 2018-01-10 Garmor Inc. Composite comprising graphene structures
EP2771395A4 (en) * 2011-10-27 2015-11-04 Garmor Inc COMBINED GRAPHIC STRUCTURES
EP2771395A1 (en) * 2011-10-27 2014-09-03 Garmor, Inc. Composite graphene structures
US11466380B2 (en) 2011-10-27 2022-10-11 Asbury Graphite Of North Carolina, Inc. Composite graphene structures
US10815583B2 (en) 2011-10-27 2020-10-27 Garmor Inc. Composite graphene structures
US9951436B2 (en) 2011-10-27 2018-04-24 Garmor Inc. Composite graphene structures
KR101903679B1 (ko) * 2012-02-08 2018-10-04 삼성디스플레이 주식회사 유기 발광 표시 장치
WO2014109542A1 (ko) * 2013-01-09 2014-07-17 고려대학교 산학협력단 저온 스프레이 방식 그래핀 증착 장치
KR101518545B1 (ko) 2013-01-09 2015-05-07 고려대학교 산학협력단 저온 스프레이 방식 그래핀 증착 장치
US10287167B2 (en) 2013-03-08 2019-05-14 University Of Central Florida Research Foundation, Inc. Large scale oxidized graphene production for industrial applications
US11361877B2 (en) 2013-03-08 2022-06-14 Asbury Graphite Of North Carolina, Inc. Graphene entrainment in a host
US9758379B2 (en) 2013-03-08 2017-09-12 University Of Central Florida Research Foundation, Inc. Large scale oxidized graphene production for industrial applications
US10535443B2 (en) 2013-03-08 2020-01-14 Garmor Inc. Graphene entrainment in a host
US9828290B2 (en) 2014-08-18 2017-11-28 Garmor Inc. Graphite oxide entrainment in cement and asphalt composite
US10351473B2 (en) 2014-08-18 2019-07-16 Garmor Inc. Graphite oxide entrainment in cement and asphalt composite
US10197651B2 (en) 2014-12-31 2019-02-05 General Equipment For Medical Imaging S.A. Radiofrequency shield for hybrid imaging devices
US9969682B2 (en) 2015-03-17 2018-05-15 Nitto Denko Corporation Functionalized graphene barrier element
US10351711B2 (en) 2015-03-23 2019-07-16 Garmor Inc. Engineered composite structure using graphene oxide
US10981791B2 (en) 2015-04-13 2021-04-20 Garmor Inc. Graphite oxide reinforced fiber in hosts such as concrete or asphalt
US11482348B2 (en) 2015-06-09 2022-10-25 Asbury Graphite Of North Carolina, Inc. Graphite oxide and polyacrylonitrile based composite
US11038182B2 (en) 2015-09-21 2021-06-15 Garmor Inc. Low-cost, high-performance composite bipolar plate
US11916264B2 (en) 2015-09-21 2024-02-27 Asbury Graphite Of North Carolina, Inc. Low-cost, high-performance composite bipolar plate
US11214658B2 (en) 2016-10-26 2022-01-04 Garmor Inc. Additive coated particles for low cost high performance materials
CN106373986B (zh) * 2016-11-10 2019-04-05 上海天马微电子有限公司 一种显示面板
CN106373986A (zh) * 2016-11-10 2017-02-01 上海天马微电子有限公司 一种显示面板
WO2020141078A1 (en) * 2018-12-31 2020-07-09 Foundation Of Research And Technology Institute Of Chemical Engineering Sciences (Forth-Iceht) Art protection with the use of graphene materials
US11791061B2 (en) 2019-09-12 2023-10-17 Asbury Graphite North Carolina, Inc. Conductive high strength extrudable ultra high molecular weight polymer graphene oxide composite
US11513428B1 (en) 2021-05-20 2022-11-29 Dell Products L.P. Camera and lens cap
USD972616S1 (en) 2021-05-20 2022-12-13 Dell Products L.P. Peripheral camera
US11586100B2 (en) 2021-05-20 2023-02-21 Dell Products L.P. Cylindrical camera thermal shield
US11671687B2 (en) 2021-05-20 2023-06-06 Dell Products L.P. Cylindrical camera and integrated support
US11733594B2 (en) 2021-05-20 2023-08-22 Dell Products L.P. Camera and mount
US11513425B1 (en) 2021-05-20 2022-11-29 Dell Products L.P. Camera stand with integrated tilt hinge
US11506956B1 (en) 2021-05-28 2022-11-22 Dell Products L.P. Cylindrical camera with integrated tilt stand
US11736789B2 (en) 2021-06-16 2023-08-22 Dell Products L.P. Peripheral camera and information handling system security system and method
US11971645B2 (en) 2021-06-16 2024-04-30 Dell Products L.P. Cylindrical camera rotating cap shutter mechanism with enhanced audio security

Also Published As

Publication number Publication date
US10886501B2 (en) 2021-01-05
WO2011087301A3 (ko) 2011-12-01
KR20110084110A (ko) 2011-07-21
KR20140083962A (ko) 2014-07-04
KR101405463B1 (ko) 2014-06-27
KR101596859B1 (ko) 2016-02-23
KR20140010352A (ko) 2014-01-24
US20120282419A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
WO2011087301A2 (ko) 기체 및 수분 차단용 그래핀 보호막, 이의 형성 방법 및 그의 용도
WO2011046415A2 (ko) 그래핀의 롤투롤 전사 방법, 그에 의한 그래핀 롤, 및 그래핀의 롤투롤 전사 장치
CN107302014B (zh) 一种有机发光显示面板,其显示装置及其制作方法
WO2013022185A1 (ko) 스마트 윈도우용 그래핀 기반 vo2 적층체 및 제조방법
WO2011108878A2 (ko) 그래핀을 이용한 전자파 차폐 방법 및 전자파 차폐재
Nam et al. A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier
WO2012008789A9 (ko) 그래핀의 저온 제조 방법, 및 이를 이용한 그래핀 직접 전사 방법 및 그래핀 시트
WO2012134205A1 (en) Method of manufacturing graphene film, apparatus for manufacturing graphene film, and graphene film manufactured by using apparatus for manufacturing graphene film
JP6332283B2 (ja) ガスバリア性フィルム
KR20130001705A (ko) 그래핀/고분자 복합 보호막, 이의 제조 방법, 및 이의 용도
WO2018192044A1 (zh) 显示面板及其制造方法
WO2017065530A1 (ko) 그래핀 저온 전사방법
Lee et al. Environmental reliability and moisture barrier properties of silicon nitride and silicon oxide films using roll-to-roll plasma enhanced chemical vapor deposition
WO2011149317A2 (ko) 수분 및/또는 산소 투과 방지를 위한 유연성 유/무기 복합 보호막, 그의 제조방법, 및 상기 유연성 유/무기 복합 보호막을 포함하는 전자소자
WO2011004682A1 (ja) バリアフィルム、有機光電変換素子及びバリアフィルムの製造方法
WO2019200649A1 (zh) 有机发光二极管封装结构及其制备方法、显示装置
WO2014137057A1 (ko) 그래핀의 결정립 경계 탐지 방법 및 이러한 방법을 사용하는 장치
WO2011004698A1 (ja) ガスバリアフィルムとその製造方法、これを用いた光電変換素子
KR101339761B1 (ko) 그래핀 기반 vo2 적층체의 상전이 온도 제어 방법
TW201226606A (en) Gas-barrier laminate film
CN107428126B (zh) 层叠体及阻气膜
WO2017200255A1 (ko) 발광소자의 보호막 증착방법
WO2017116106A1 (ko) 접착제를 사용하지 않는 다층구조의 수분 및 기체 고차단성 유연필름 및 그 제조방법
WO2017200254A1 (ko) 발광소자의 보호막 증착방법
WO2017155289A1 (ko) 발광소자의 보호막 증착방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11733088

Country of ref document: EP

Kind code of ref document: A2