WO2011071931A2 - Préparations d'arn comprenant de l'arn modifié purifié pour la reprogrammation de cellules - Google Patents

Préparations d'arn comprenant de l'arn modifié purifié pour la reprogrammation de cellules Download PDF

Info

Publication number
WO2011071931A2
WO2011071931A2 PCT/US2010/059305 US2010059305W WO2011071931A2 WO 2011071931 A2 WO2011071931 A2 WO 2011071931A2 US 2010059305 W US2010059305 W US 2010059305W WO 2011071931 A2 WO2011071931 A2 WO 2011071931A2
Authority
WO
WIPO (PCT)
Prior art keywords
rna
cell
another embodiment
mrna
cells
Prior art date
Application number
PCT/US2010/059305
Other languages
English (en)
Other versions
WO2011071931A3 (fr
Inventor
Katalin Kariko
Drew Weissman
Gary Dahl
Anthony Person
Judith Meis
Jerome Jendrisak
Original Assignee
Katalin Kariko
Drew Weissman
Gary Dahl
Anthony Person
Judith Meis
Jerome Jendrisak
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP17195966.1A priority Critical patent/EP3287525B1/fr
Priority to PL10836557T priority patent/PL2510099T3/pl
Priority to AU2010328310A priority patent/AU2010328310B2/en
Priority to KR1020187019421A priority patent/KR102171849B1/ko
Priority to CA2783032A priority patent/CA2783032C/fr
Priority to CN202111349447.6A priority patent/CN114317612A/zh
Priority to BR112012013875A priority patent/BR112012013875B8/pt
Priority to JP2012543206A priority patent/JP2013512690A/ja
Priority to CN201080063294.2A priority patent/CN102947450B/zh
Priority to NO10836557A priority patent/NO2510099T3/no
Priority to KR1020127017473A priority patent/KR101878502B1/ko
Priority to EP10836557.8A priority patent/EP2510099B1/fr
Priority to KR1020207030639A priority patent/KR102505097B1/ko
Priority to PL17195966T priority patent/PL3287525T3/pl
Application filed by Katalin Kariko, Drew Weissman, Gary Dahl, Anthony Person, Judith Meis, Jerome Jendrisak filed Critical Katalin Kariko
Priority to SG2012041950A priority patent/SG181564A1/en
Priority to EP19203636.6A priority patent/EP3623474A1/fr
Priority to KR1020237006482A priority patent/KR20230035422A/ko
Publication of WO2011071931A2 publication Critical patent/WO2011071931A2/fr
Publication of WO2011071931A3 publication Critical patent/WO2011071931A3/fr
Priority to IL220219A priority patent/IL220219A0/en
Priority to AU2015215938A priority patent/AU2015215938B2/en
Priority to AU2018202479A priority patent/AU2018202479B2/en
Priority to AU2020286202A priority patent/AU2020286202A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • A61K38/1816Erythropoietin [EPO]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/465Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/50Hydrolases (3) acting on carbon-nitrogen bonds, other than peptide bonds (3.5), e.g. asparaginase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0075Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4712Cystic fibrosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/505Erythropoietin [EPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/117Nucleic acids having immunomodulatory properties, e.g. containing CpG-motifs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • C12N9/0075Nitric-oxide synthase (1.14.13.39)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/17Immunomodulatory nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/333Modified A
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/334Modified C
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/335Modified T or U
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • C12N2310/336Modified G
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/605Nanog
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/608Lin28
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)
    • C12Y114/13039Nitric-oxide synthase (NADPH dependent) (1.14.13.39)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/04Phosphoric diester hydrolases (3.1.4)
    • C12Y301/04012Sphingomyelin phosphodiesterase (3.1.4.12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/04Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amidines (3.5.4)
    • C12Y305/04004Adenosine deaminase (3.5.4.4)

Definitions

  • the present invention relates to compositions and methods for changing or
  • RNA preparations comprising or consisting of one or more different single-strand mRNA molecules that each encode a reprogramming factor (e.g., an iPS cell induction factor).
  • the purified single-stranded mRNA molecules preferably comprise at least one modified nucleoside (e.g., selected from the group consisting of a pseudouridine
  • the single-stranded mRNA molecules are preferably purified to be substantially free of RNA contaminant molecules that would activate an unintended response, decrease expression of the single-stranded mRNA, and/or activate RNA sensors in the cells.
  • the purified RNA preparations are substantially free of RNA contaminant molecules that are: shorter or longer than the full-length single-stranded mRNA molecules, double-stranded, and/or uncapped RNA.
  • pluripotent stem cells were also induced by transforming human somatic cells with genes encoding the similar human protein factors (OCT4, SOX2, KLF4, and c-MYC) (Takahashi et al. 2007), or by transforming human somatic cells with genes encoding human OCT4 and SOX2 factors plus genes encoding two other human factors, NANOG and LIN28 (Lin-28 homolog A) (Yu et al. 2007).
  • All of these methods used retroviruses or lentiviruses to integrate genes encoding the reprogramming factors into the genomes of the transformed cells and the somatic cells were reprogrammed into iPS cells only over a long period of time (e.g., in excess of a week).
  • the generation iPS cells from differentiated somatic cells offers great promise as a possible means for treating diseases through cell transplantation.
  • the possibility to generate iPS cells from somatic cells from individual patients also may enable development of patient-specific therapies with less risk due to immune rejection.
  • generation of iPS cells from disease-specific somatic cells offers promise as a means to study and develop drugs to treat specific disease states (Ebert et al. 2009, Lee et al. 2009, Maehr et al. 2009).
  • iPSC factors protein reprogramming factors
  • Induced pluripotent stem cells were also generated from human somatic cells by introduction of a plasmid that expressed genes encoding human OCT4, SOX2, c-MYC, KLF4, NANOG and LIN28 (Yu et al. 2009).
  • Other successful approaches for generating iPS cells include treating somatic cells with: recombinant protein reprogramming factors (Zhou et al. 2009); non-integrating adenoviruses (Stadtfeld et al. 2008); or piggyBac transposons (Woltjen et al. 2009) to deliver reprogramming factors.
  • recombinant protein reprogramming factors Zhou et al. 2009
  • non-integrating adenoviruses Stadtfeld et al. 2008
  • piggyBac transposons Wiltjen et al. 2009
  • the present invention provides compositions and methods for reprogramming the state of differentiation of eukaryotic cells, including human or other animal cells, by contacting the cells with purified RNA preparations comprising or consisting of one or more different single-strand mR A molecules that each encode a reprogramming factor (e.g., an iPS cell induction factor).
  • the purified single-stranded mRNA molecules preferably comprise at least one modified nucleoside (e.g., selected from the group consisting of a pseudouridine ( ⁇ ), 5-methylcytosine
  • the single-stranded mRNA molecules are preferably purified to be substantially free of RNA contaminant molecules that would activate an unintended response, decrease expression of the single-stranded mRNA, and/or activate RNA sensors (e.g., double-stranded RNA-dependent enzymes) in the cells.
  • the purified RNA preparations are substantially free of RNA contaminant molecules that are: shorter or longer than the full-length single-stranded mRNA molecules, double-stranded, and/or uncapped RNA.
  • the invention provides compositions and methods for reprogramming differentiated eukaryotic cells, including human or other animal somatic cells, by contacting the cells with purified RNA preparations comprising or consisting of one or more different single-strand mRNA molecules that each encode an iPS cell induction factor.
  • the present invention provides methods for changing the state of differentiation of a somatic cell comprising: introducing an mRNA encoding an iPS cell induction factor into a somatic cell to generate a reprogrammed dedifferentiated cell, wherein the mRNA comprises at least one 5-methylcytidine (or other modified based described herein).
  • the present invention provides methods for reprogramming a cell that exhibits a first differentiated state or phenotype to a cell that exhibits a second differentiated state or phenotype comprising: introducing into the cell that exhibits a first differentiated state a purified RNA preparation comprising modified mRNA molecules that encode at least one reprogramming factor and culturing the cell under conditions wherein the cell exhibits a second differentiated state.
  • the modified mRNA molecules contain at least one modified nucleoside selected from the group consisting of psuedouridine or 5-methylcytidine.
  • the cell is from a human or animal.
  • the purified RNA preparation i) comprises first single-stranded mRNAs encoding a first iPS cell induction factor, wherein substantially all of the first single-stranded complete mRNAs comprise at least one pseudouridine residue and/or at least one 5-methylcytidine residue, and ii) is substantially free of RNA contaminant molecules which are able to activate RNA sensors in said somatic cell.
  • the RNA contaminant molecules are selected from the group consisting of: partial mRNAs encoding only a portion of said iPS cell induction factor, RNA molecules that are smaller than the full-length mRNA, RNA molecules that are larger than the full-length mRNA, double-stranded mRNA molecules, and un-capped mRNA molecules.
  • the present invention provides methods for reprogramming a somatic cell (e.g., dedifferentiating or transdifferentiating) comprising: contacting a somatic cell with a purified RNA preparation to generate a reprogrammed cell, wherein the purified RNA preparation: i) comprises first single-stranded mRNAs encoding a first iPS cell induction factor, wherein substantially all of the first single-stranded complete mRNAs comprise at least one pseudouridine residue and/or at least one 5-methylcytidine residue, and ii) is substantially free of contaminant molecules (e.g., RNA contaminant molecules) which are able to activate RNA sensors in the somatic cell.
  • contaminant molecules e.g., RNA contaminant molecules
  • the RNA contaminant molecules comprise: partial mRNAs encoding only a portion of the iPS cell induction factor, single- stranded run-on mRNAs encoding the iPS cell induction factor and encoding at least an additional portion of the iPS cell induction factor, double-stranded mRNA molecules, and uncapped mRNA molecules.
  • the first single-stranded mRNAs do not also encoding an additional portion of the first iPS cell induction factor.
  • the reprogrammed cell is a dedifferentiated cell (e.g., stem cell or stem cell-like cell). In other embodiments, the reprogrammed cell is a transdifferentiated cells (e.g., a skin cells is reprogrammed into a neuronal cell, or other type of change).
  • the first single-stranded mRNAs encode the complete first iPS induction factor (e.g, the mRNA encodes the entire coding sequence for a particular iPS induction factor).
  • the contacting further comprises contacting the somatic cell with a growth factor and/or cytokine (e.g,. after a period of time). In further embodiments, the contact further comprises contacting the somatic cell with an immune response inhibitor.
  • all or nearlly all of the uridine nucleosides in the first single- stranded mRNA are replaced by pseudouridine nucleosides.
  • all or nearly all of the cytidine nucleosides in the first single-stranded mRNA are replaced by 5- methylcytidine nucleosides or another base recited herein.
  • the present invention provides methods for generating a reprogrammed cell comprising: contacting a somatic cell with a purified RNA preparation to generate a reprogrammed cell that is able to survive in culture for at least 10 days (e.g., at least 10 days ... at least 13 days ... at least 16 days .... at least 20 days ... at least 40 days ... or is able to form a cell-line), wherein the purified RNA preparation comprises first single-stranded mRNAs encoding an iPS cell induction factor, and wherein a majority of the first single-stranded mRNAs comprise at least one pseudouridine residue and/or at least one 5-methylcytidine residue.
  • the purified RNA preparation is free of an amount of RNA contaminant molecules that would activate an immune response in the somatic cell sufficient to prevent the reprogrammed cell from surviving at least 10 days in culture (e.g., at least 10 days ... at least 15 days ... at least 20 days ... at least 40 days, or longer).
  • the RNA contaminant molecules include: partial mRNAs encoding only a portion of the iPS cell induction factor, single-stranded run-on mRNAs fully encoding the iPS cell induction factor and encoding at least an additional portion of the iPS cell induction factor, double-stranded mRNA molecules, un-capped mRNA molecules, and mixtures thereof.
  • the reprogrammed cell that is generated is able to form a reprogrammed cell-line.
  • the purified RNA preparation is free of an amount of RNA contaminant molecules that would activate an immune response in the somatic cell sufficient to prevent generation of the reprogrammed cell-line.
  • the RNA contaminant molecules are selected from the group consisting of: partial mRNAs encoding only a portion of the iPS cell induction factor, single- stranded run-on mRNAs encoding the iPS cell induction factor and encoding at least an additional portion of the iPS cell induction factor, double-stranded mRNA molecules, un-capped mRNA molecules, and mixtures thereof.
  • the present invention provides methods for generating a reprogrammed cell-line comprising: a) contacting a somatic cell with a purified RNA
  • the purified RNA preparation comprises mRNAs encoding an iPS cell induction factor, and wherein a majority of the mRNAs comprise at least one pseudouridine residue and/or at least one 5-methylcytidine residue, and b) culturing the dedifferentiated cell to generate a reprogrammed cell-line.
  • the purified RNA preparation is free of an amount of contaminant molecules that would activate an immune response in the somatic cell sufficient to prevent generation of the reprogrammed cell- line.
  • the immune response involves activation of RNA sensors in the somatic cell.
  • the present invention provides methods for reprogramming a somatic cell comprising: contacting a somatic cell with a purified RNA preparation to generate a reprogrammed cell, wherein the purified RNA preparation: i) comprises first single-stranded mRNAs encoding a first iPS cell induction factor, wherein substantially all of the first single- stranded mRNAs comprise at least one pseudouridine residue and/or at least one 5- methylcytidine residue, and ii) is substantially free of: a) partial mRNAs encoding only a portion of the first iPS cell induction factor, and b) double-stranded mRNA molecules.
  • the first single-stranded mRNA do not also encode an additional portion of the first iPS cell induction factor.
  • the first single-stranded mRNA fully encode the first iPS cell induction factor.
  • the purified RNA preparation is also substantially free (or essentially free or virtually free or free) of single-stranded run-on mRNAs encoding the first iPS cell induction factor and encoding at least an additional portion of the first iPS cell induction factor.
  • the substantially all of the first single- stranded complete mRNAs are 5 ' capped.
  • the purified RNA preparation is also substantially free of un-capped mRNA molecules.
  • substantially all of the first single-stranded mRNAs comprise at least one psuedouridine residue. In additional embodiments, tsubstantially all of the first single-stranded mRNAs comprise at least one 5- methylcytidine residue. In other embodiments, substantially all of the first single-stranded mRNAs comprise at least one psuedouridine residue and at least one 5-methycytidine residue.
  • the purified RNA preparation comprises a transfection reagent.
  • the purified RNA preparation is obtained by HPLC purification of an R A sample that contains a substantial amount of the partial mRNAs and the double-stranded mRNAs.
  • the purified RNA preparation is essentially free of the partial mRNAs and the single-stranded run-on mRNAs.
  • the purified RNA preparation is essentially free or virtually free or free of double-stranded mRNA molecules.
  • the purified RNA preparation is essentially free or virtually free or free of un-capped mRNA molecules.
  • substantially all of the first single-stranded mRNAs are polyadenylated.
  • the first single-stranded complete mRNAs are capped with 7-methylguanosine.
  • the first iPS cell induction factor is selected from the group consisting of KLF4, LIN28, c-MYC, NANOG, OCT4, and SOX2.
  • the purified RNA preparation i) further comprises second single-stranded mRNAs encoding a second iPS cell induction factor, wherein the second single-stranded mRNAs comprise at least one pseudouridine residue and/or at least one 5-methylcytidine residue, and ii) is further substantially free of: a) partial mRNAs encoding only a portion of the second iPS cell induction factor, and b) double-stranded mRNAs.
  • the purified RNA preparation is further substantially free of single-stranded run-on mRNAs encoding a second iPS cell induction factor and encoding at least an additional portion of the second iPS cell induction factor.
  • the second iPS cell induction factor is selected from the group consisting of KLF4, LIN28, c-MYC, NANOG, OCT4, and SOX2.
  • the somatic cell is a fibroblast.
  • the reprogrammed cell is a pluripotent stem cell.
  • the dedifferentiated cell expresses NANOG and TRA-1-60.
  • the cell is in vitro. In further embodiments, the cell resides in culture. In particular embodiments, the cell resides in MEF-conditioned medium.
  • the present invention provides compositions comprising a purified RNA preparation, wherein the purified RNA preparation: i) comprises first single-stranded mRNAs encoding a first iPS cell induction factor, wherein the first single-stranded mRNAs comprise at least one pseudouridine residue and/or at least one 5-methylcytidine residue, and ii) is substantially free of RNA contaminant molecules, which are able to activate RNA sensors in a somatic cell.
  • the present invention provides compositions comprising a purified RNA preparation, wherein the purified RNA preparation: i) comprises first single- stranded mRNAs encoding a first iPS cell induction factor, wherein the first single-stranded complete mR As comprise at least one pseudouridine residue and/or at least one 5- methylcytidine residue, and ii) is substantially free of: a) partial mRNAs encoding only a portion of the first iPS cell induction factor, and b) double-stranded RNA.
  • the purified RNA preparation is also substantially free of single- stranded run-on mRNAs encoding the first iPS cell induction factor and encoding at least an additional portion of the first iPS cell induction factor.
  • the purified RNA preparation : i) further comprises second single-stranded mRNAs encoding a second iPS cell induction factor, wherein the second single-stranded complete mRNAs comprise at least one pseudouridine residue and/or at least one 5-methylcytidine residue, and ii) is substantially free of: a) partial mRNAs encoding only a portion of the second iPS cell induction factor, and b) single-stranded run-on mRNAs encoding second first iPS cell induction factor and encoding at least an additional portion of the second iPS cell induction factor.
  • the present invention provides compositions comprising an in vitro-synthesized mRNA encoding the MYC gene, wherein the in vitro-synthesized mRNA comprises at least one pseudouridine residue and/or at least one 5-methylcytidine residue.
  • the compositions are substantially free of RNA contaminant molecules which are able to activate RNA sensors in a somatic cell.
  • the present invention provides methods for inducing a mammalian cell to produce the MYC protein comprising: contacting a mammalian cell with an in vitro-synthesized mRNA encoding the MYC gene, wherein the in vitro-synthesized mRNA comprises at least one pseudouridine residue and/or at least one 5-methylcytidine residue, thereby inducing the mammalian cell to produce the MYC protein.
  • the mammalian cell is a dendritic cell.
  • the mammalian cell is an alveolar cell, an astrocyte, a microglial cell, or a neuron.
  • the present invention provides methods of treating a subject comprising contacting a subject with the MYC protein producing mammalian cell described above and herein.
  • the present invention provides methods of synthesizing an in vitro-transcribed RNA molecule encoding the MYC gene comprising: combining an isolated RNA polymerase, a tempalte nucleic acid sequence encoding the MYG gene, unmodified nucleotides, and pseudouridine or 5-methylcytidine modified nucleotides under conditions such that an in vitro-transcribed RNA molecule encoding the MYC gene is generated that comprises at least one pseudouridine or 5-methylcytidine residue.
  • mRNA molecules can be administered to cells and induce a dedifferentiation process to generate dedifferentiated cells—including pluripotent stem cells.
  • the present invention provides compositions and methods for generating iPS cells.
  • the administration of mRNA can provide highly efficient generation of iPS cells.
  • the present invention also provides RNA, oligoribonucleotide, and
  • polyribonucleotide molecules comprising pseudouridine or a modified nucleoside, gene therapy vectors comprising same, methods of synthesizing same, and methods for gene replacement, gene therapy, gene transcription silencing, and the delivery of therapeutic proteins to tissue in vivo, comprising the molecules.
  • the present invention also provides methods of reducing the immunogenicity of RNA, oligoribonucleotide, and polyribonucleotide molecules.
  • the present invention provides methods for dedifferentiating a somatic cell comprising: introducing mRNA encoding one or more iPSC induction factors into a somatic cell to generate a dedifferentiated cell.
  • the present invention provides methods for dedifferentiating a somatic cell comprising: introducing mRNA encoding one or more iPSC induction factors into a somatic cell and maintaining the cell under conditions wherein the cell is viable and the mRNA that is introduced into the cell is translated in sufficient amount and for sufficient time to generate a dedifferentiated cell.
  • the dedifferentiated cell is an induced pluripotent stem cell (iPSC).
  • the present invention provides methods for changing the state of differentiation (or differentiated state) of a eukaryotic cell comprising: introducing mRNA encoding one or more reprogramming factors into a cell and maintaining the cell under conditions wherein the cell is viable and the mRNA that is introduced into the cell is translated in sufficient amount and for sufficient time to generate a cell that exhibits a changed state of differentiation compared to the cell into which the mRNA was introduced.
  • the present invention provides methods for changing the state of differentiation of a eukaryotic cell comprising: introducing mRNA encoding one or more reprogramming factors into a cell and maintaining the cell under conditions wherein the cell is viable and the mRNA that is introduced into the cell is translated in sufficient amount and for sufficient time to generate a cell that exhibits a changed state of differentiation compared to the cell into which the mRNA was introduced.
  • the changed state of differentiation is a dedifferentiated state of differentiation compared to the cell into which the mRNA was introduced.
  • the cell that exhibits the changed state of differentiation is a pluripotent stem cell that is dedifferentiated compared to a somatic cell into which the mRNA was introduced (e.g., a somatic cell that is differentiated into a fibroblast, a cardiomyocyte, or another differentiated cell type).
  • a somatic cell into which the mRNA was introduced e.g., a somatic cell that is differentiated into a fibroblast, a cardiomyocyte, or another differentiated cell type.
  • the cell into which the mRNA is introduced is a somatic cell of one lineage, phenotype, or function
  • the cell that exhibits the changed state of differentiation is a somatic cell that exhibits a lineage, phenotype, or function that is different than that of the cell into which the mRNA was introduced; thus, in these embodiments, the method results in transdifferentiation (Graf and Enver 2009).
  • the methods of the invention are not limited with respect to a particular cell into which the mRNA is introduced.
  • the cell into which the mRNA is introduced is derived from any multi-cellular eukaryote.
  • the cell into which the mRNA is introduced is selected from among a human cell and another animal cell.
  • the methods of the present invention comprising reprogramming human and animal cells by contacting the cells with a purified RNA preparation that consists of one or more purified single-stranded mRNA molecules, each of which encodes a protein reprogramming factor (e.g., a transcription factor) also pertains to reprogramming of other eukaryotic cells (e.g., plant cells and a fungal cells).
  • a protein reprogramming factor e.g., a transcription factor
  • the cell into which the mRNA is introduced is a normal cell that is from an organism that is free of a known disease.
  • the cell into which the mRNA is introduced is a cell from an organism that has a known disease. In some embodiments of any of the above methods, the cell into which the mRNA is introduced is a cell that is free of a known pathology. In some embodiments of any of the above methods, the cell into which the mRNA is introduced is a cell that exhibits a disease state or a known pathology (e.g., a cancer cell, or a pancreatic beta cell that exhibits metabolic properties characteristic of a diabetic cell).
  • a disease state or a known pathology e.g., a cancer cell, or a pancreatic beta cell that exhibits metabolic properties characteristic of a diabetic cell.
  • the invention is not limited to the use of a specific cell type (e.g., to a specific somatic cell type) in embodiments of the methods comprising introducing mRNA encoding one or more iPSC cell induction factors in order to generate a dedifferentiated cell (e.g., an iPS cell).
  • a dedifferentiated cell e.g., an iPS cell.
  • Any cell that is subject to dedifferentiation using iPS cell induction factors is contemplated.
  • Such cells include, but are not limited to, fibroblasts, keratinocytes, adipocytes, lymphocytes, T-cells, B-Cells, cells in mononuclear cord blood, buccal mucosa cells, hepatic cells, HeLa, MCF-7 or other cancer cells.
  • the cells reside in vitro (e.g., in culture) or in vivo.
  • a cell-free conditioned medium e.g., MEF- conditioned medium
  • a feeder cell layer is used instead of conditioned medium for culturing the cells that are treated using the method.
  • the step of introducing mRNA comprises delivering the mRNA into the cell (e.g., a human or other animal somatic cell) with a cell (e.g., a human or other animal somatic cell) with a cell (e.g., a human or other animal somatic cell) with a cell (e.g., a human or other animal somatic cell) with a cell (e.g., a human or other animal somatic cell) with a
  • transfection reagent e.g., TRANSITTM mRNA transfection reagent, MirusBio, Madison, WI.
  • the invention is not limited by the nature of the transfection method utilized. Indeed, any transfection process known, or identified in the future that is able to deliver mRNA molecules into cells in vitro or in vivo, is contemplated, including methods that deliver the mRNA into cells in culture or in a life-supporting medium, whether said cells comprise isolated cells or cells comprising a eukaryotic tissue or organ, or methods that deliver the mRNA in vivo into cells in an organism, such as a human, animal, plant or fungus.
  • the transfection reagent comprises a lipid (e.g., liposomes, micelles, etc.).
  • the transfection reagent comprises a nanoparticle or nanotube.
  • the transfection reagent comprises a lipid (e.g., liposomes, micelles, etc.).
  • the transfection reagent comprises a nanoparticle or nanotube.
  • the transfection reagent comprises a lipid (e.g., liposomes, micelles, etc.
  • transfection reagent comprises a cationic compound (e.g., polyethylene imine or PEI).
  • the transfection method uses an electric current to deliver the mRNA into the cell (e.g., by electroporation).
  • the transfection method uses a bolistics method to deliver the mRNA into the cell (e.g., a "gene gun" or biolistic particle delivery system.)
  • a bolistics method to deliver the mRNA into the cell.
  • the methods of the present invention are not limited to the use of a specific amount of mRNA to introduce into the cell.
  • the invention is not limited to a particular chemical form of the mRNA used, although certain forms of mRNA may produce more efficient results.
  • the mRNA comprises at least one modified nucleoside (e.g., selected from the group consisting of a pseudouridine ( ⁇ ), 5-methylcytosine (m 5 C), 5-methyluridine (m 5 U), 2'-0- methyluridine (Um or m 2 ⁇ °U), 2-thiouridine (s 2 U), and N 6 -methyladenosine (m 6 A)) in place of at least a portion of the corresponding unmodified canonical nucleoside (e.g., in some preferred embodiments, at least one modified nucleoside in place of substantially all of the corresponding unmodified A, C, G, or T canonical nucleoside).
  • a pseudouridine
  • 5-methylcytosine m 5 C
  • 5-methyluridine m 5 U
  • 2'-0- methyluridine Um or m 2 ⁇ °U
  • the mRNA is polyadenylated.
  • the mRNA is prepared by polyadenylation of an in vitro-transcribed (IVT) RNA, the method comprising contacting the IVT RNA using a poly(A) polymerase (e.g., yeast RNA polymerase or E. coli poly(A) polymerase).
  • a poly(A) polymerase e.g., yeast RNA polymerase or E. coli poly(A) polymerase.
  • the mRNA is polyadenylated during IVT by using a DNA template that encodes the poly(A) tail.
  • the mRNA comprises a poly- A tail (e.g., a poly-A tail having 50-200 nucleotides, e.g., preferably 100-200, 150-200 nucleotides, or greater than 150 nucleotides), although in some embodiments, a longer or a shorter poly-A tail is used.
  • the mRNA used in the methods is capped. To maximize efficiency of expression in the cells, it is preferred that the majority of mRNA molecules contain a cap.
  • the mRNA molecules used in the methods are synthesized in vitro by incubating uncapped primary RNA in the presence a capping enzyme system.
  • the primary RNA used in the capping enzyme reaction is synthesized by in vitro transcription (IVT) of a DNA molecule that encodes the RNA to be synthesized.
  • the DNA that encodes the RNA to be synthesized contains an RNA polymerase promoter, to which, an RNA polymerase binds and initiates transcription therefrom. It is also known in the art that mRNA molecules often have regions of differing sequence located before the translation start codon and after the translation stop codon that are not translated.
  • 5' UTR five prime untranslated region
  • 3' UTR three prime untranslated region
  • the mRNAs that encode reprogramming factors exhibit a 5' UTR and/or a 3' UTR that results in greater mRNA stability and higher expression of the mRNA in the cells (e.g., an alpha globin or a beta globin 5' UTR and/or 3' UTR; e.g., a Xenopus or human alpha globin or a beta globin 5' UTR and/or 3' UTR, or, e.g., a tobacco etch virus (TEV) 5' UTR).
  • reprogramming factors e.g., iPSC induction factors
  • the IVT can be performed using any RNA polymerase as long as synthesis of the mRNA from the DNA template that encodes the RNA is specifically and sufficiently initiated from a respective cognate RNA polymerase promoter and full-length mRNA is obtained.
  • the RNA polymerase is selected from among T7 RNA polymerase, SP6 RNA polymerase and T3 RNA polymerase.
  • capped RNA is synthesized co-transcriptionally by using a dinucleotide cap analog in the IVT reaction (e.g., using an AMPLICAPTM T7 Kit or a MESSAGEMAXTM T7 ARCA-CAPPED MESSAGE Transcription Kit; EPICENTRE or CellScript, Madison, WI, USA).
  • the dinucleotide cap analog is an anti-reverse cap analog (ARCA).
  • ARCA anti-reverse cap analog
  • a high percentage of the mRNA molecules used in a method of the present invention are capped (e.g., greater than 80%, greater than 90%, greater than 95%, greater than 98%, greater than 99%, greater than 99.5%, or greater than 99.9% of the population of mRNA molecules are capped).
  • the mRNA used in the methods of the present invention has a cap with a capl structure, meaning that the 2' hydroxyl of the ribose in the penultimate nucleotide with respect to the cap nucleotide is methylated.
  • mRNA used in the methods has a cap with a capO structure, meaning that the 2' hydroxyl of the ribose in the penultimate nucleotide with respect to the cap nucleotide is not methylated.
  • transfection of eukaryotic cells with mRNA having a cap with a capl structure results in a higher level or longer duration of protein expression in the transfected cells compared to transfection of the same cells with the same mRNA but with a cap having a capO structure.
  • the mRNA used in the methods of the present invention has a modified cap nucleotide.
  • the present applicants found that, when 1079 or IMR90 human fibroblast cells were transfected with OCT4 mRNA that contained either uridine, or pseudouridine in place of uridine, the pseudouridine-containing mRNA was translated at a higher level or for a longer duration than the mRNA that contained uridine. Therefore, in some preferred embodiments, one or more or all of the uridines contained in the mRNA(s) used in the methods of the present invention is/are replaced by pseudouridine (e.g., by substituting pseudouridine-5 '-triphosphate in the IVT reaction to synthesize the RNA in place of uridine-5 '-triphosphate).
  • pseudouridine e.g., by substituting pseudouridine-5 '-triphosphate in the IVT reaction to synthesize the RNA in place of uridine-5 '-triphosphate.
  • the mRNA used in the methods of the invention contains uridine and does not contain pseudouridine.
  • the mRNA comprises at least one modified nucleoside (e.g., selected from the group consisting of a pseudouridine ( ⁇ ), 5-methylcytosine (m 5 C), 5-methyluridine (m 5 U), 2'-0- methyluridine (Um or m 2 ⁇ °U), 2-thiouridine (s 2 U), and N 6 -methyladenosine (m 6 A)) in place of at least a portion of the corresponding unmodified canonical nucleoside (e.g., in place of substantially all of the corresponding unmodified A, C, G, or T canonical nucleoside).
  • a pseudouridine
  • 5-methylcytosine m 5 C
  • 5-methyluridine m 5 U
  • 2'-0- methyluridine Um or m 2 ⁇ °U
  • 2-thiouridine s 2 U
  • the mRNA comprises at least one modified nucleoside selected from the group consisting of a pseudouridine ( ⁇ ) and 5-methylcytosine (m 5 C). In some preferred embodiments, the mRNA comprises both pseudouridine ( ⁇ ) and 5-methylcytosine (m 5 C).
  • internucleotide linkage in one or more of the nucleotides of the mRNA that is introduced into a eukaryotic cell in any of the methods of the invention may comprise a modified nucleic acid base, sugar moiety, or internucleotide linkage.
  • the invention is also not limited with respect to the source of the mRNA that is delivered into the eukaryotic cell in any of the methods of the invention.
  • the mRNA is synthesized by in vitro transcription of a DNA template comprising a gene cloned in a linearized plasmid vector or by in vitro transcription of a DNA template that is synthesized by PCR or RT-PCR (i.e., by IVT of a PCR amplification product), capping using a capping enzyme system or by co-transcriptional capping by incorporation of a dinucleotide cap analog (e.g., an ARCA) during the IVT, and polyadenylation using a poly(A) polymerase.
  • a dinucleotide cap analog e.g., an ARCA
  • the mRNA is synthesized by IVT of a DNA template comprising a gene cloned in a linearized plasmid vector or a PCR or RT-PCR amplification product, wherein the DNA template encodes a 3'poly(A) tail.
  • the mRNA that is delivered into the eukaryotic cell in any of the methods of the invention is derived directly from a cell or a biological sample.
  • the mRNA derived from a cell or biological sample is obtained by amplifying the mRNA from the cell or biological sample using an RNA amplification reaction, and capping the amplified mRNA using a capping enzyme system or by co-transcriptional capping by incorporation of a dinucleotide cap analog (e.g., an ARCA) during the IVT, and, if the amplified mRNA does not already contain a template-encoded poly(A) tail from the RNA amplification reaction, polyadenylating the amplified mRNA using a poly(A) polymerase.
  • a dinucleotide cap analog e.g., an ARCA
  • the invention is not limited by the nature of the iPS cell induction factors used. Any mRNA encoding one or more protein induction factors now known, or later discovered, that find use in dedifferentiation, are contemplated for use in the present invention. In some embodiments, one or more mRNAs encoding for KLF4, LIN28, c-MYC, NANOG, OCT4, or SOX2 are employed.
  • Soxl, Sox2, Sox3, and Sox 15 have been identified as transcriptional regulators involved in the induction process. Additional genes, however, including certain members of the Klf family (Klfl, Klf2, Klf , and Klf5), the Myc family (C- myc, L-myc, and N-myc), Nanog, and LIN28, have been identified to increase the induction efficiency. Any one or more such factors may be used as desired.
  • compositions and methods of the invention may be used to generate iPS cells, the invention is not limited to the generation of such cells.
  • mRNA encoding one or more reprogramming factors is introduced into a cell in order to generate a cell with a changed state of differentiation compared to the cell into which the mRNA was introduced.
  • mRNA encoding one or more iPS cell induction factors is used to generate a dedifferentiated cell that is not an iPS cells.
  • Such cells find use in research, drug screening, and other applications.
  • the present invention further provides methods employing the dedifferentiated cells generated by the above methods.
  • such cells find use in research, drug screening, and therapeutic applications in humans or other animals.
  • the cells generated find use in the identification and characterization of iPS cell induction factors as well as other factors associated with differentiation or
  • the generated dedifferentiated cells are transplanted into an organism or into a tissue residing in vitro or in vivo.
  • an organism, tissue, or culture system housing the generated cells is exposed to a test compound and the effect of the test compound on the cells or on the organism, tissue, or culture system is observed or measured.
  • a dedifferentiated cell generated using the above methods is further treated to generate a differentiated cell that has the same state of differentiation or cell type compared to the somatic cell from which the dedifferentiated cell was generated.
  • the dedifferentiated cell generated using the above methods is further treated to generate a differentiated cell that has a different state of differentiation or cell type compared to the somatic cell from which the dedifferentiated cell was generated.
  • the differentiated cell is generated from the generated dedifferentiated cell (e.g., the generated iPS cell) by introducing mRNA encoding one or more reprogramming factors into the generated iPS cell during one or multiple treatments and maintaining the cell into which the mRNA is introduced under conditions wherein the cell is viable and is differentiated into a cell that has a changed state of differentiation or cell type compared to the generated dedifferentiated cell (e.g., the generated iPS cell) into which the mRNA encoding the one or more reprogramming factors is introduced.
  • the generated differentiated cell that has the changed state of differentiation is used for research, drug screening, or therapeutic applications (e.g., in humans or other animals).
  • the generated differentiated cells find use in the identification and characterization of reprogramming factors associated with differentiation.
  • the generated differentiated cells are transplanted into an organism or into a tissue residing in vitro or in vivo.
  • differentiated cells is exposed to a test compound and the effect of the test compound on the cells or on the organism, tissue, or culture system is observed or measured.
  • the method comprising introducing mRNA encoding one or more iPSC induction factors into a somatic cell and maintaining the cell under conditions wherein the cell is viable and the mRNA that is introduced into the cell is expressed in sufficient amount and for sufficient time to generate a dedifferentiated cell (e.g., wherein the
  • the dedifferentiated cell is an induced pluripotent stem cell
  • the sufficient time to generate a dedifferentiated cell is less than one week.
  • the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 50 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced.
  • the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 100 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced.
  • the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 150 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced. In some preferred embodiments of this method, the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 200 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced. In some preferred
  • the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 300 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced.
  • the dedifferentiated cells e.g., iPSCs
  • the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 400 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced. In some preferred embodiments of this method, the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 500 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced. In some preferred embodiments of this method, the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 600 dedifferentiated cells per 3 x 10 5 input cells (e.g., iPSCs) into which the mRNA is introduced.
  • 400 dedifferentiated cells e.g., iPSCs
  • the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 500 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the
  • the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 700 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced.
  • 700 dedifferentiated cells e.g., iPSCs
  • the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 800 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced.
  • the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 800 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced.
  • the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 800 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced.
  • reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 900 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced. In some preferred embodiments of this method, the reprogramming efficiency for generating dedifferentiated cells is greater than or equal to 1000 dedifferentiated cells (e.g., iPSCs) per 3 x 10 5 input cells into which the mRNA is introduced. Thus, in some preferred embodiments, this method was greater than 2-fold more efficient than the published protocol comprising delivery of reprogramming factors with a viral vector (e.g., a lentivirus vector).
  • a viral vector e.g., a lentivirus vector
  • this method was greater than 5 -fold more efficient than the published protocol comprising delivery of reprogramming factors with a viral vector (e.g., a lentivirus vector). In some preferred embodiments, this method was greater than 10-fold more efficient than the published protocol comprising delivery of reprogramming factors with a viral vector (e.g., a lentivirus vector). In some preferred embodiments, this method was greater than 20-fold more efficient than the published protocol comprising delivery of reprogramming factors with a viral vector (e.g., a lentivirus vector).
  • this method was greater than 25 -fold more efficient than the published protocol comprising delivery of reprogramming factors with a viral vector (e.g., a lentivirus vector). In some preferred embodiments, this method was greater than 30-fold more efficient than the published protocol comprising delivery of reprogramming factors with a viral vector (e.g., a lentivirus vector). In some preferred embodiments, this method was greater than 35 -fold more efficient than the published protocol comprising delivery of reprogramming factors with a viral vector (e.g., a lentivirus vector). In some preferred embodiments, this method was greater than 40-fold more efficient than the published protocol comprising delivery of reprogramming factors with a viral vector (e.g., a lentivirus vector).
  • the present invention further provides compositions (systems, kits, reaction mixtures, cells, mRNA) used or useful in the methods and/or generated by the methods described herein.
  • the present invention provides an mRNA encoding an iPS cell induction factor, the mRNA having pseudouridine in place of uridine.
  • compositions comprising a transfection reagent and an mRNA encoding an iPS cell induction factor (e.g., a mixture of transfection reagent and mRNA).
  • the compositions comprise mRNA encoding a plurality (e.g., 2 or more, 3 or more, 4 or more, 5 or more, or 6) of iPS cell induction factors, including, but not limited to, KLF4, LIN28, c-MYC, NANOG, OCT4, and SOX2.
  • compositions may further comprise any other reagent or component sufficient, necessary, or useful for practicing any of the methods described herein.
  • reagents or components include, but are not limited to, transfection reagents, culture medium (e.g., MEF- condition medium), cells (e.g., somatic cells, iPS cells), containers, boxes, buffers, inhibitors (e.g., RNase inhibitors), labels (e.g., fluorescent, luminescent, radioactive, etc.), positive and/or negative control molecules, reagents for generating capped mRNA, dry ice or other refrigerants, instructions for use, cell culture equipment, detection/analysis equipment, and the like.
  • RNA, oligoribonucleotide, and polyribonucleotide molecules comprising pseudouridine or a modified nucleoside, gene therapy vectors comprising same, gene therapy methods and gene transcription silencing methods comprising same, methods of reducing an immunogenicity of same, and methods of synthesizing same.
  • the present invention provides a messenger RNA comprising -a pseudouridine residue.
  • the present invention provides an RNA molecule encoding a protein of interest, said RNA molecule comprising a pseudouridine residue.
  • the present invention provides an in vitro-transcribed RNA molecule, comprising a pseudouridine or a modified nucleoside.
  • the present invention provides an in vitro-synthesized oligoribonucleotide, comprising a pseudouridine or a modified nucleoside, wherein the modified nucleoside is m 5 C, m 5 U, m 6 A, s 2 U, Y, or 2'-0- methyl-U.
  • the present invention provides a gene-therapy vector, comprising an in vitro-synthesized polyribonucleotide molecule, wherein the polyribonucleotide molecule comprises a pseudouridine or a modified nucleoside.
  • the present invention provides a double-stranded RNA (dsRNA) molecule containing, as part of its sequence, a pseudouridine or a modified nucleoside and further comprising an siRNA or shRNA.
  • dsRNA double-stranded RNA
  • the dsRNA molecule is greater than 50 nucleotides in length.
  • the present invention provides a method for inducing a mammalian cell to produce a recombinant protein, comprising contacting the mammalian cell with an in vztro-synthesized RNA molecule encoding the recombinant protein, the in vitro- synthesized RNA molecule comprising a pseudouridine or a modified nucleoside, thereby inducing a mammalian cell to produce a recombinant protein.
  • the present invention provides a method for treating anemia in a subject, comprising contacting a cell of the subject with an in vitro-synthesized RNA molecule, the in vzYro-synthesized RNA molecule encoding erythropoietin, thereby treating anemia in a subject.
  • the present invention provides a method for treating a vasospasm in a subject, comprising contacting a cell of the subject with an in vitro-synthesized RNA molecule, the in vitro-synthesized RNA molecule encoding inducible nitric oxide synthase (iNOS), thereby treating a vasospasm in a subject.
  • a method for treating a vasospasm in a subject comprising contacting a cell of the subject with an in vitro-synthesized RNA molecule, the in vitro-synthesized RNA molecule encoding inducible nitric oxide synthase (iNOS), thereby treating a vasospasm in a subject.
  • iNOS inducible nitric oxide synthase
  • the present invention provides a method for improving a survival rate of a cell in a subject, comprising contacting the cell with an in vztro-synthesized RNA molecule, the in vitro-synthesized RNA molecule encoding a heat shock protein, thereby improving a survival rate of a cell in a subject.
  • the present invention provides a method for decreasing an incidence of a restenosis of a blood vessel following a procedure that enlarges the blood vessel, comprising contacting a cell of the blood vessel with an in vztro-synthesized RNA molecule, the in vztro-synthesized RNA molecule encoding a heat shock protein, thereby decreasing an incidence of a restenosis in a subject.
  • the present invention provides a method for increasing a hair growth from a hair follicle is a scalp of a subject, comprising contacting a cell of the scalp with an in vitro synthesized RNA molecule, the in vztro-synthesized RNA molecule encoding a telomerase or an immunosuppressive protein, thereby increasing a hair growth from a hair follicle.
  • the present invention provides a method of inducing expression of an enzyme with antioxidant activity in a cell, comprising contacting the cell with an in vitro- synthesized RNA molecule, the in vitro-synthesized RNA molecule encoding the enzyme, thereby inducing expression of an enzyme with antioxidant activity in a cell.
  • the present invention provides a method for treating cystic fibrosis in a subject, comprising contacting a cell of the subject with an in vitro- synthesized RNA molecule, the in vzYro-synthesized RNA molecule encoding Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), thereby treating cystic fibrosis in a subject.
  • CFTR Cystic Fibrosis Transmembrane Conductance Regulator
  • the present invention provides a method for treating an X-linked agammaglobulinemia in a subject, comprising contacting a cell of the subject with an in vitro synthesized RNA molecule, the in vztro-synthesized RNA molecule encoding a Bruton's tyrosine kinase, thereby treating an X-linked agammaglobulinemia.
  • the present invention provides a method for treating an adenosine deaminase severe combined immunodeficiency (ADA SCID) in a subject, comprising contacting a cell of the subject with an in vitro-synthesized RNA molecule, the in vitro- synthesized RNA molecule encoding an ADA, thereby treating an ADA SCID.
  • ADA SCID adenosine deaminase severe combined immunodeficiency
  • the present invention provides a method for producing a recombinant protein, comprising contacting an in vitro translation apparatus with an in vitro- synthesized polyribonucleotide, the in vztro-synthesized polyribonucleotide comprising a pseudouridine or a modified nucleoside, thereby producing a recombinant protein.
  • the present invention provides a method of synthesizing an in vztro-transcribed RNA molecule comprising a modified nucleotide with a pseudouridine modified nucleoside, comprising contacting an isolated polymerase with a mixture of unmodified nucleotides and the modified nucleotide.
  • the present invention provides an in vitro transcription apparatus, comprising: an unmodified nucleotide, a nucleotide containing a pseudouridine or a modified nucleoside, and a polymerase.
  • the present invention provides an in vitro transcription kit, comprising: an unmodified nucleotide, a nucleotide containing a pseudouridine or a modified nucleoside, and a polymerase.
  • Figure 1 shows that m NAs encoding each of the six human reprogramming factors, prepared as described in the EXAMPLES, are translated and localized to the predicted subcellular locations after transfection into human newborn 1079 fibroblasts.
  • Untreated human 1079 fibroblasts Photos A, E, I, M, Q, and U show phase contrast images of the untreated human 1079 fibroblasts which were not transfected with an mRNA encoding a reprogramming factor and photos B, F, J, N, R, and V show fluorescent images of the same fields after the cells were stained with an antibody specific for each reprogramming factor; these results show that there was little or none of these endogenous reprogramming factor proteins in untreated human 1079 fibroblasts.
  • Treated human 1079 fibroblasts Photos C, G, K, O, S, and W show phase contrast images of the human 1079 fibroblasts which were transfected with an mRNA encoding the indicated reprogramming factor, and photos D, H, L, P, T, and X show fluorescent images of the same fields after the cells were stained with an antibody specific for each reprogramming factor 24 hours after transfection. These results show that each of the reprogramming factor proteins was expressed in the human 1079 fibroblast cells 24 hours after transfection with the respective reprogramming factor-encoding mRNAs and that the reprogramming factor proteins were localized in the predicted subcellular locations.
  • A-T are at 20x magnification.
  • U-X are at lOx magnification.
  • Figure 2 shows that mRNA encoding human reprogramming factors (KLF4, LIN28, c- MYC, NANOG, OCT4, and SOX2) produce iPS cells in human somatic cells.
  • Figure 2 shows bright- field (A,C) and immuno fluorescent (B,D) images of an iPS cell colony at 12 days after the final transfection with mRNA encoding reprogramming factors. NANOG staining is observed in colony #1 (B, D). Images A and B are at lOx magnification. C and D are at 20x magnification.
  • Figure 3 shows that iPS colonies derived from human 1079 and IMR90 somatic cells are positive for NANOG and TRA-1-60.
  • Figure 3 shows phase contrast (A,D,G) and
  • IMR90 cells G.
  • the same iPS colony shown in (A) is positive for both NANOG (B) and TRA- 1-60 (C).
  • the iPS colony shown in (D) is NANOG-positive (E) and TRA-l-60-positive (F).
  • the iPS colony generated from IMR90 fibroblasts G is also positive for both NANOG (H) and TRA-1-60 (I). All images are at 20x magnification.
  • Figure 4 shows that rapid, enhanced-efficiency iPSC colony formation is achieved by transfecting cells with mRNA encoding reprogramming factors in MEF-conditioned medium. Over 200 colonies were detected 3 days after the final transfection; in the 10-cm dish, IMR90 cells were transfected three times with 36 ⁇ g of each reprogramming mRNA (i.e., encoding KLF4, LIN28, c-MYC, NANOG, OCT4, and SOX2). Representative iPSC colonies are shown at 4x (A, B), lOx (C-E) and 20x magnification (F).
  • IMR90 cells Eight days after the final mRNA transfection with mRNAs encoding the six reprogramming factors, more than 1000 iPSC colonies were counted in IMR90 cells transfected with 18 ⁇ g (G, I) or 36 ⁇ g (H) of each of the six mRNAs. Representative colonies are shown at 4x magnification (G-H) and at lOx magnification (I).
  • Figure 5 shows that 1079- and IMR90-derived iPSC colonies are positive for both NANOG and TRA-1-60.
  • the 1079-derived iPSC colonies (shown in A, D, and G) are positive for NANOG (B, E, and H) and TRA-1-60 (C, F, and I).
  • IMR90-derived iPS colonies are also positive for NANOG (K, N) and TRA-1-60 (L, O).
  • FIG. 6 Production of TNF-CX by MDDCs transfected with natural RNA, demonstrating that unmodified in vitro-synthesized RNA and bacterial RNA and mammalian mitochondrial RNA is highly immunogenic, while other mammalian RNA is weakly immunogenic.
  • Human MDDCs were incubated with Lipofectin® alone, or complexed with R-848 (1 ⁇ g/ml), or RNA (5 ⁇ g/ml) from 293 cells (total, nuclear and cytoplasmic RNAs), mouse heart (polyA+ mRNA), human platelet mitochondrial RNA, bovine tRNA, bacterial tRNA and total RNA (E. coli) with or without RNase digestion. After 8 h, TNF-CX was measured in the supernatants by ELISA.
  • C CpG ODN-2006 (5 ⁇ g/ml), LPS (1.0 ⁇ g/ml) and RNA isolates were obtained from rat liver, mouse cell line (TUBO) and human spleen (total), human platelet mitochondrial RNA, or from two different E. coli sources. 293-hTLR9 cells served as control. After 8 h, IL-8 was measured in the supernatants by ELISA. Mean values ⁇ SEM are shown. Cell lines containing hTLR3 -targeted siRNA are indicated with asterisk. The results are representative of four independent
  • MDDC generated with GM-CSF/IL-4 (A, C) or GM-CSF/IFN-CX MDDCs (B), and primary DC1 and DC2 (D) were treated for 8 to 16 h with Lipofectin® alone, Lipofectin®-R-848 (1 ⁇ / ⁇ 1) or RNA (5 ⁇ / ⁇ 1). Modified nucleosides present in RNA-1571 are noted. TNF-CX, IL-12(p70) and IFN-CX were measured in the supernatant by ELISA. Mean values ⁇ SEM are shown.
  • RNA-1886 Modified nucleosides present in RNA-1886 are noted. Expression of CD83, CD80, and HLA-DR was determined by flow cytometry.
  • FIG. 9 Activation of DC by RNA demonstrates that all nucleoside modification inhibits the RNA-mediated DC activation.
  • MDDC were treated for 20 h with Lipofectin® alone, Lipofectin®-R-848 (1 ⁇ g/ml) or RNA-1571, modified as indicated (5 ⁇ g/ml).
  • RNA- 1571 Modified nucleoside content of RNA- 1571.
  • the expected percentage of m 6 A, ⁇ (pseudouridine), or m 5 C in RNA-1571 was calculated based on the relative amount of modified NTP in the transcription reaction and the nucleoside composition of RNA-1571 (A: 505, U: 451, C: 273, G: 342). Values for measured modified nucleoside content were determined based on quantitation of the HPLC chromatograms. Notes:
  • A values (%) for m 6 ATP, ⁇ and m 5 CTP relative to ATP, UTP and CTP, respectively.
  • B values for m 6 A, ⁇ and m 5 C monophosphates relative to all NMPs.
  • C MDDC were trans fected with Lipofectin® complexed capped RNA-1571 (5 ⁇ ) containing the indicated amount of m 6 A, ⁇ or m 5 C. After 8 h, TNF-a was measured in the supematants. Data expressed as relative inhibition of TNF-a. Mean values ⁇ SEM obtained in 3 independent experiments are shown.
  • TNF-a expression by oligoribonucleotide-transfected DCs demonstrates that as few as one modified nucleoside reduces DC activation.
  • ORN oligoribonucleotides synthesized chemically (ORN1-4) (SEQ ID NOs: 6-9) or transcribed in vitro (ORN5-6) (SEQ ID NOs: 10-11) are shown. Positions of modified nucleosides Um (2'-0-methyluridine), m 5 C and ⁇ are highlighted.
  • Human MDDC were transfected with Lipofectin® alone (medium), R-848 (1 ⁇ g/ml) or Lipofectin® complexed with RNA (5 ⁇ g/ml).
  • RNA from the cells was analyzed by Northern blot. Representative mean values ⁇ SEM of 3 independent experiments are shown.
  • RNA unmodified RNA.
  • m5C mRNA with m 5 C modification.
  • Figure 14 Increased expression of luciferase from pseudouridine-containing mRNA in rabbit reticulocyte lysate.
  • Luc-Y mRNA with pseudouridine modification
  • luc-C unmodified RNA.
  • Data is expressed by normalizing luciferase activity to unmodified luciferase RNA.
  • Figure 15 Increased expression of renilla from pseudouridine-containing mRNA in cultured cells.
  • FIG. 16 A. Additive effect of 3' and 5' elements on translation efficiency of Y- modified mRNA. 293 cells were transfected with firefly luciferase conventional and Y-modified mRNAs that had 5' cap (capLuc), 50 nt-long 3' polyA-tail (TEVlucA50), both or neither of these elements (capTEVlucA50 and Luc, respectively). Cells were lysed 4 h later and luciferase activities measured in aliquots (l/20th) of the total lysates. B. Y-modified mRNA is more stable than unmodified mRNA.
  • 293 cells transfected with capTEVlucA n containing unmodified or Y- modified nucleosides were lysed at the indicated times following transfection. Aliquots (l/20th) of the lysates were assayed for luciferase. Standard errors are too small to be visualized with error bars.
  • C. Expression of ⁇ -galactosidase is enhanced using Y-modified mRNA compared with conventional mRNA. 293 cells seeded in 96-well plates were transfected with lipofectin- complexed mRNAs (0.25 ⁇ g/well) encoding bacterial ⁇ -galactosidase (lacZ).
  • the transcripts had cap and 3' polyA-tail that were either 30 nt-long (caplacZ) or -200 nt-long (caplacZ-An). Constructs made using conventional U or ⁇ nucleosides were tested. Cells were fixed and stained with X-gal, 24 h post-transfection. Images were taken by inverted microscopy (40 and 100X magnification) from representative wells.
  • FIG. 17 A. Expression of renilla following intracerebral injection of modified or unmodified encoding mR
  • Rat brain cortex was injected at 8 sites/animals. One hemisphere was injected with capped, renilla-encoding RNA with pseudouridine modification (capRenilla- Y), while the corresponding hemisphere with capped RNA with no nucleoside modification (capRenilla-C). Data from 2 animals (6 injection sites) are shown. BG; lower level of detection of the assay.
  • B Intravenously-delivered ⁇ -modified mRNA is expressed in spleen. Lipofectin- complexed 3 ⁇ 4z/mRNA (0.3 ⁇ g capTEVlucAn/mouse) was administered by tail vein injection.
  • luciferase activities were sacrificed at 2 and 4 h post-injection and luciferase activities measured in aliquots (1/lOth) of organs homogenized in lysis buffer. Values represent luciferase activities in the whole organs.
  • C. ⁇ -modified mRNA exhibits greater stability and translation in vivo.
  • Lipofectin- complexed capTEVlucAn (0.3 ⁇ g/60 ⁇ /animal) with or without ⁇ modifications was delivered i.v. to mice. Animals were sacrificed at 1, 4 and 24 h post-injection, and 1/2 of their spleens were processed for luciferase enzyme measurements (left panel) and the other half for RNA analyses (right panel).
  • RNA pseudouridine-modified RNA.
  • CapTEVluc-C capped RNA with no nucleoside modification.
  • Protein production is dependent on the amount of mRNA delivered intravenously in mice.
  • capTEVlucAn mRNA with or without ⁇ constituents and pCMVluc plasmid DNA in a volume of 60 ⁇ /animal were delivered by i.v. injection into mice.
  • Animals injected with mRNA or plasmid DNA were sacrificed at 6 h or 24 h post-injection, respectively, and luciferase activities were measured in aliquots (1/10th) of their spleens homogenized in lysis buffer. The value from each animal is shown, and short horizontal lines indicate the mean; N.D., not detectable.
  • Figure 19 Expression of firefly lucif erase following intratracheal delivery of encoding mRNA. mRNA were complexed to lipofectin (or PEI, as noted) and animals were injected with
  • ⁇ -modified mRNA does not induce inflammatory mediators after pulmonary delivery. Induction of TNF-CX and IFN-CX in serum following intratracheal delivery of luciferase- encoding unmodified mRNA or ⁇ -modified mRNA. Serum levels of TNF-CX and IFN-CX were determined by ELISA 24 hours after mRNA delivery.
  • Figure 21 shows the results from Example 35: Firefly or Renilla luciferase encoding mRNA with the indicated modifications were complexed to lipofectin and delivered to murine dendritic (A) and HEK293T (B) cells. Human DC were transfected with firefly or renilla luciferase-encoding mRNA complexed with TransIT with the indicated modifications (C).
  • Data is expressed as the fold-change compared to unmodified mRNA.
  • FIG 22 shows the results from Example 36: T7 polymerase transcription reactions used for the generation of mRNA results in large quantities of RNA of the correct size, but also contains contaminants. This is visualized by application of RNA to a reverse phase HPLC column that separates RNA based on size under denaturing conditions. ⁇ -modified TEV- luciferase-A51 RNA was applied to the HPLC column in 38% Buffer B and subjected to a linear gradient of increasing Buffer B to 55%. The profile demonstrated both smaller than expected and larger than expected contaminants.
  • Figure 23 shows the results from Example 37:
  • EPO encoding mRNA with the indicated modifications and with or without HPLC purification were delivered to murine DCs and EPO levels in the supernatant were measured 24 hr later. While m5C/Y-modified mRNA had the highest level of translation prior to HPLC purification, ⁇ -modified mRNA had the highest translation after HPLC purification.
  • B Human DCs were transfected with renilla encoding mRNA with the indicated modifications with or without HPLC purification.
  • Figure 24 shows the results from Example 38:
  • Figure 25 provides the mRNA coding sequence for KLF4 (SEQ ID NO: 12) and LIN28 (SEQ ID NO: 13).
  • Figure 26 provides the mRNA coding sequence for cMYC (SEQ ID NO: 14) and
  • NANOG SEQ ID NO: 15
  • Figure 27 provides the mRNA coding sequence for OCT4 (SEQ ID NO: 16) and SOX2 (SEQ ID NO: 17).
  • Figure 28 shows that mRNA encoding human reprogramming factors (KLF4, c-MYC,
  • FIG. 28 shows phase contrast images of HEKn cells at 2 days (A) and iPS colony formation at 11 days (B) and 20 days (C) after the final transfection with mRNA encoding 4 reprogramming factors. Images are at lOx magnification.
  • Figure 29 shows that mRNA encoding human reprogramming factors (KLF4, LIN28, c-
  • MYC, NANOG, OCT4, and SOX2) produce iPS cells in human keratinocytes that are positive for known iPS cell markers.
  • Figure 29 shows phase contrast images of colonies derived from HEKn cells (A, D, and G). The same iPS colony shown in (A) is positive for both KLF4 (B) and LIN28 (C). The iPS colony shown in (D) is SSEA4-positive (E) and TRA-l-60-positive (F). The iPS colony shown in (G) is NANOG-positive (H). All images are at 20x magnification.
  • Figure 30 shows increases in the expression of 3 iPS-associated messages in HEKn cells transfected with 4 reprogramming mRNAs (KLF4, c-MYC, OCT4, and SOX2) which did not include the reprogramming factor NANOG. Increased expression of the messages was detected by qPCR and is normalized to GAPDH expression. The expression level of each message is depicted in relation to the level found in the original cell line.
  • substantially all in reference to single-stranded complete mRNAs comprising a pseudouridine or 5-methylcytidine residue, means that of all the single-stranded complete mRNAs present in a sample, at least 95% have either a pseudouridine or 5- methylcytidine residue.
  • essentially all in reference to single-stranded complete mRNAs comprising a pseudouridine or 5-methylcytidine residue, means that of all the single-stranded complete mRNAs present in a sample, at least 99% have either a pseudouridine or 5- methylcytidine residue.
  • RNA contaminant molecules are molecules that comprise RNA residues and that can at least partially activate an immune response when transfected into a cell (e.g., by activating RNA sensors such as RNA-dependent protein kinase (PKR), retinoic acid- inducible gene-I (RIG-I), Toll-like receptor (TLR)3, TLR7, TLR8, and oligoadenylate synthetase (OAS), or RNA molecules that can at least partially activate an RNA interference (RNAi) response (e.g., including a response to large double-stranded RNA molecules or to small double- stranded RNA molecules (siRNAs)) in the cell.
  • RNAi RNA interference
  • RNA contaminant molecules include, but are not limited to: partial or non-full-length mRNAs encoding only a portion of a reprogramming factor (e.g., a non-full-length iPS cell induction factor); single-stranded mRNAs that are greater than the full-length mRNA that encodes a reprogramming factor (e.g., an iPS cell induction factor), e.g., without being bound by theory, by "run-on IVT" or other mechanisms; double-stranded large or small mRNA molecules; and uncapped mRNA molecules.
  • a reprogramming factor e.g., a non-full-length iPS cell induction factor
  • single-stranded mRNAs that are greater than the full-length mRNA that encodes a reprogramming factor (e.g., an iPS cell induction factor), e.g., without being bound by theory, by "run-on IVT" or other mechanisms
  • RNA contaminant molecules As used herein, a purified RNA preparation is "substantially free" of RNA contaminant molecules (or a particular recited RNA contaminant), when less than 0.5% of the total RNA in the purified RNA preparation consists of RNA contaminant molecules (or a particularly recited RNA contaminant).
  • the amounts and relative amounts of non-contaminant mRNA molecules and RNA contaminant molecules (or a particular RNA contaminant) may be determined by HPLC or other methods used in the art to separate and quantify RNA molecules.
  • a purified RNA preparation is "essentially free" of RNA contaminant molecules (or a particular recited RNA contaminant), when less than 1.0% of the total RNA in the purified RNA preparation consists of RNA contaminant molecules (or a particularly recited RNA contaminant).
  • the amounts and relative amounts of non-contaminant mRNA molecules and RNA contaminant molecules (or a particular RNA contaminant) may be determined by HPLC or other methods used in the art to separate and quantify RNA molecules.
  • RNA contaminant molecules As used herein, a purified RNA preparation is "virtually free" of RNA contaminant molecules (or a particular recited RNA contaminant), when less than 0.1% of the total RNA in the purified RNA preparation consists of RNA contaminant molecules (or a particularly recited RNA contaminant).
  • the amounts and relative amounts of non-contaminant mRNA molecules and RNA contaminant molecules (or a particular RNA contaminant) may be determined by HPLC or other methods used in the art to separate and quantify RNA molecules.
  • a purified RNA preparation is "free" of RNA contaminant molecules (or a particular recited RNA contaminant), when less than 0.01% of the total RNA in the purified RNA preparation consists of RNA contaminant molecules (or a particularly recited RNA contaminant).
  • the amounts and relative amounts of non-contaminant mRNA molecules and RNA contaminant molecules (or a particular RNA contaminant) may be determined by HPLC or other methods used in the art to separate and quantify RNA molecules.
  • RNA or polypeptide that is “derived” from a sample, biological sample, cell, tumor, or the like
  • RNA or polypeptide either was present in the sample, biological sample, cell, tumor, or the like, or was made using the RNA in the sample, biological sample, cell, tumor, or the like by a process such as an in vitro transcription reaction, or an RNA amplification reaction, wherein the RNA or polypeptide is either encoded by or a copy of all or a portion of the RNA or polypeptide molecules in the original sample, biological sample, cell, tumor, or the like.
  • such RNA can be from an in vitro transcription or an RNA amplification reaction, with or without cloning of cDNA, rather than being obtained directly from the sample, biological sample, cell, tumor, or the like, so long as the original RNA used for the in vitro transcription or an RNA amplification reaction was from the sample, biological sample, cell, tumor, or the like.
  • sample and “biological sample” are used in their broadest sense and encompass samples or specimens obtained from any source that contains or may contain eukaryotic cells, including biological and environmental sources.
  • sample when used to refer to biological samples obtained from organisms, includes bodily fluids (e.g., blood or saliva), feces, biopsies, swabs (e.g., buccal swabs), isolated cells, exudates, and the like.
  • the organisms include fungi, plants, animals, and humans. However, these examples are not to be construed as limiting the types of samples or organisms that find use with the present invention.
  • a "sample” or “biological sample” comprises fixed cells, treated cells, cell lysates, and the like.
  • the method wherein the mRNA is delivered into a cell from an organism that has a known disease or into a cell that exhibits a disease state or a known pathology
  • sample or “biological sample” also comprises bacteria or viruses.
  • the term "incubating" and variants thereof mean contacting one or more components of a reaction with another component or components, under conditions and for sufficient time such that a desired reaction product is formed.
  • a "nucleoside” consists of a nucleic acid base (e.g., the canonical nucleic acid bases: guanine (G), adenine (A), thymine (T), uracil (U), and cytosine (C)); or a modified nucleic acid base (e.g., 5-methylcytosine (m 5 C)), that is covalently linked to a pentose sugar (e.g., ribose or 2'-deoxyribose), whereas and a "nucleotide” or “mononucleotide” consists of a nucleoside that is phosphorylated at one of the hydroxyl groups of the pentose sugar.
  • a nucleic acid base e.g., the canonical nucleic acid bases: guanine (G), adenine (A), thymine (T), uracil (U), and cytosine (C)
  • Linear nucleic acid molecules are said to have a "5' terminus” (5' end) and a "3' terminus” (3' end) because, except with respect to capping or adenylation (e.g., adenylation by a ligase), mononucleotides are joined in one direction via a phosphodiester linkage to make
  • oligonucleotides or polynucleotides in a manner such that a phosphate on the 5' carbon of one mononucleotide sugar moiety is joined to an oxygen on the 3' carbon of the sugar moiety of its neighboring mononucleotide.
  • an end of a linear single-stranded oligonucleotide or polynucleotide or an end of one strand of a linear double-stranded nucleic acid is referred to as the "5' end” if its 5' phosphate is not joined or linked to the oxygen of the 3' carbon of a mononucleotide sugar moiety, and as the "3' end” if its 3' oxygen is not joined to a 5' phosphate that is joined to a sugar of another mononucleotide.
  • a terminal nucleotide is the nucleotide at the end position of the 3' or 5' terminus.
  • nucleic acid base In order to accomplish specific goals, a nucleic acid base, sugar moiety, or
  • internucleoside (or internucleotide) linkage in one or more of the nucleotides of the m NA that is introduced into a eukaryotic cell in any of the methods of the invention may comprise a modified base, sugar moiety, or internucleoside linkage.
  • one or more of the nucleotides of the mRNA can also have a modified nucleic acid base comprising or consisting of: xanthine; allyamino-uracil; allyamino-thymidine;
  • nucleic acid base that is derivatized with a biotin moiety, a digoxigenin moiety, a fluorescent or chemiluminescent moiety, a quenching moiety or some other moiety in order to accomplish one or more specific other purposes; and/or one or more of the nucleotides of the mRNA can have a sugar moiety, such as, but not limited to: 2'-fluoro-2'-deoxyribose or 2'-0-methyl-ribose, which provide resistance to some nucleases; or 2'-amino-2'
  • one or more of the nucleotides of the mRNA comprises a modified internucleoside linkage, such as a phosphorothioate, phosphorodithioate, phosphoroselenate, or phosphorodiselenate linkage, which are resistant to some nucleases, including in a dinucleotide cap analog (Grudzien-Nogalska et al.
  • RNA RNA
  • poly(A) tail e.g., by incorporation of a nucleotide that has the modified phosphorothioate, phosphorodithioate, phosphoroselenate, or phosphorodiselenate linkage during IVT of the RNA or, e.g., by incorporation of ATP that contains the modified phosphorothioate, phosphorodithioate, phosphoroselenate, or phosphorodiselenate linkage into a poly(A) tail on the RNA by polyadenylation using a poly(A) polymerase).
  • the invention is not limited to the modified nucleic acid bases, sugar moieties, or internucleoside linkages listed, which are presented to show examples which may be used for a particular purpose in a method.
  • nucleic acid or a "polynucleotide” or an “oligonucleotide” is a covalently linked sequence of nucleotides in which the 3' position of the sugar moiety of one nucleotide is joined by a phosphodiester bond to the 5' position of the sugar moiety of the next nucleotide (i.e., a 3' to 5' phosphodiester bond), and in which the nucleotides are linked in specific sequence; i.e., a linear order of nucleotides.
  • the nucleic acid or polynucleotide or oligonucleotide consists of or comprises 2'-deoxyribonucleotides (DNA).
  • the oligonucleotide consists of or comprises ribonucleotides (RNA).
  • isolated or purified when used in relation to a polynucleotide or nucleic acid, as in “isolated RNA” or “purified RNA” refers to a nucleic acid that is identified and separated from at least one contaminant with which it is ordinarily associated in its source.
  • an isolated or purified nucleic acid e.g., DNA and RNA
  • a given DNA sequence e.g., a gene
  • a specific RNA e.g., a specific mRNA encoding a specific protein
  • the isolated or purified polynucleotide or nucleic acid may be present in single-stranded or double- stranded form.
  • a “cap” or a “cap nucleotide” means a nucleoside-5 '-triphosphate that, under suitable reaction conditions, is used as a substrate by a capping enzyme system and that is thereby joined to the 5 '-end of an uncapped RNA comprising primary RNA transcripts or RNA having a 5'- diphosphate.
  • the nucleotide that is so joined to the RNA is also referred to as a "cap nucleotide” herein.
  • a “cap nucleotide” is a guanine nucleotide that is joined through its 5' end to the 5' end of a primary RNA transcript.
  • RNA that has the cap nucleotide joined to its 5' end is referred to as "capped RNA” or “capped RNA transcript” or “capped transcript.”
  • a common cap nucleoside is 7-methylguanosine or N 7 -methylguanosine (sometimes referred to as “standard cap”), which has a structure designated as "m 7 G,” in which case the capped RNA or “m 7 G-capped RNA” has a structure designated as m G(5')ppp(5')Ni(pN) x -OH(3'), or more simply, as m GpppNi(pN) x or m 7 G[5']ppp[5']N, wherein m 7 G represents the 7-methylguanosine cap nucleoside, ppp represents the triphosphate bridge between the 5' carbons of the cap nucleoside and the first nucleotide of the primary RNA transcript, ⁇ ( ⁇ ) ⁇ - ⁇ (3') represents the primary RNA transcript
  • RNA that has any cap nucleotide is referred to as "capped RNA.”
  • the capped RNA can be naturally occurring from a biological sample or it can be obtained by in vitro capping of RNA that has a 5' triphosphate group or RNA that has a 5' diphosphate group with a capping enzyme system (e.g., vaccinia capping enzyme system or Saccharomyces cerevisiae capping enzyme system).
  • a capping enzyme system e.g., vaccinia capping enzyme system or Saccharomyces cerevisiae capping enzyme system.
  • the capped RNA can be obtained by in vitro transcription (IVT) of a DNA template that contains an RNA polymerase promoter, wherein, in addition to the GTP, the IVT reaction also contains a dinucleotide cap analog (e.g., a m 7 GpppG cap analog or an N 7 -methyl, 2'-0-methyl-GpppG ARCA cap analog or an N 7 -methyl, 3'-0-methyl-GpppG ARCA cap analog) using methods known in the art (e.g., using an AMPLICAPTM T7 capping kit or a MESSAGEMAXTM T7 ARCA-CAPPED MESSAGE Transcription Kit, EPICENTRE or CellScript).
  • IVTT in vitro transcription
  • Capping of a 5'-triphosphorylated primary mRNA transcript in vivo occurs via several enzymatic steps (Higman et al. 1992, Martin et al. 1975, Myette and Niles 1996).
  • RNA triphosphatase cleaves the 5 '-triphosphate of mRNA to a diphosphate, ⁇ ( ⁇ ) ⁇ ⁇ - ⁇ (3') ⁇ ⁇ ( ⁇ ) ⁇ - ⁇ (3') + Pi; and then
  • RNA guanyltransferase catalyzes joining of GTP to the 5 '-diphosphate of the most 5' nucleotide (Ni) of the mRNA
  • guanine-7-methyltransferase using S-adenosyl-methionine (AdoMet) as a co-factor, catalyzes methylation of the 7-nitrogen of guanine in the cap nucleotide, G(5 * )ppp(5 * )Ni(pN) x -OH(3 * ) + AdoMet ⁇ + AdoHyc.
  • AdoMet S-adenosyl-methionine
  • RNA that results from the action of the RNA triphosphatase and the RNA guanyltransferase enzymatic activities, as well as RNA that is additionally methylated by the guanine-7- methyltransferase enzymatic activity is referred to herein as "5' capped RNA” or “capped RNA”, and a “capping enzyme system” or, more simply, a “capping enzyme” herein means any combination of one or more polypeptides having the enzymatic activities that result in "capped RNA.”
  • Capping enzyme systems including cloned forms of such enzymes, have been identified and purified from many sources and are well known in the art (Banerjee 1980, Higman et al.
  • capping enzyme system that can convert uncapped RNA that has a 5 ' polyphosphate to capped RNA can be used to provide a capped RNA for any of the embodiments of the present invention.
  • the capping enzyme system is a poxvirus capping enzyme system.
  • the capping enzyme system is vaccinia virus capping enzyme.
  • the capping enzyme system is
  • Saccharomyces cerevisiae capping enzyme in view of the fact that genes encoding RNA triphosphatase, RNA guanyltransferase and guanine-7-methyltransferase from one source can complement deletions in one or all of these genes from another source, the capping enzyme system can originate from one source, or one or more of the RNA triphosphatase, RNA guanyltransferase, and/or guanine-7-methyltransferase activities can comprise a polypeptide from a different source.
  • a “modified cap nucleotide” of the present invention means a cap nucleotide wherein the sugar, the nucleic acid base, or the internucleoside linkage is chemically modified compared to the corresponding canonical 7-methylguanosine cap nucleotide.
  • a modified cap nucleotide examples include a cap nucleotide comprising: (i) a modified 2'- or 3'- deoxyguanosine-5'- triphosphate (or guanine 2'- or 3'- deoxyribonucleic acid-5 '-triphosphate) wherein the 2'- or 3'- deoxy position of the deoxyribose sugar moiety is substituted with a group comprising an amino group, an azido group, a fluorine group, a methoxy group, a thiol (or mercapto) group or a methylthio (or methylmercapto) group; or (ii) a modified guanosine-5 '-triphosphate, wherein the O 6 oxygen of the guanine base is methylated; or (iii) 3'-deoxyguanosine.
  • an "alkoxy-substituted deoxyguanosine-5'-triphosphate” can also be referred to as an "O-alkyl-substituted guanosine-5 '-triphosphate”; by way of example, but without limitation, 2'-methoxy-2'-deoxyguanosine-5 '-triphosphate (2'-methoxy-2'-dGTP) and 3'- methoxy-3'-deoxyguanosine-5 '-triphosphate (3'-methoxy-3'-dGTP) can also be referred to herein as 2'-0-methylguanosine-5 '-triphosphate (2'-OMe-GTP) and 3'-0-methylguanosine-5'- triphosphate (3'-OMe-GTP), respectively.
  • modified cap nucleoside i.e., without referring to the phosphate groups to which it is joined
  • modified cap nucleotide i.e., without referring to the phosphate groups to which it is joined
  • a “modified-nucleotide-capped RNA” is a capped RNA molecule that is synthesized using a capping enzyme system and a modified cap nucleotide, wherein the cap nucleotide on its 5' terminus comprises the modified cap nucleotide, or a capped RNA that is synthesize co- transcriptionally in an in vitro transcription reaction that contains a modified dinucleotide cap analog wherein the dinucleotide cap analog contains the chemical modification in the cap nucleotide.
  • the modified dinucleotide cap analog is an anti-reverse cap analog or ARCA (Grudzien et al. 2004, Jemielity et al. 2003, Grudzien-Nogalska et al. 2007, Peng et al. 2002, Stepinski et al. 2001).
  • a “primary RNA” or “primary RNA transcript” means an RNA molecule that is synthesized by an RNA polymerase in vivo or in vitro and which RNA molecule has a triphosphate on the 5'-carbon of its most 5' nucleotide.
  • RNA amplification reaction or an “RNA amplification method” means a method for increasing the amount of RNA corresponding to one or multiple desired RNA sequences in a sample.
  • the RNA amplification method comprises: (a) synthesizing first-strand cDNA complementary to the one or more desired RNA molecules by RNA-dependent DNA polymerase extension of one or more primers that anneal to the desired RNA molecules; (b) synthesizing double-stranded cDNA from the first-strand cDNA using a process wherein a functional RNA polymerase promoter is joined thereto; and (c) contacting the double-stranded cDNA with an RNA polymerase that binds to said promoter under transcription conditions whereby RNA corresponding to the one or more desired RNA molecules is obtained.
  • an RNA amplification reaction means a sense RNA amplification reaction, meaning an RNA amplification reaction that synthesizes sense RNA (e.g., RNA having the same sequence as an mRNA or other primary RNA transcript, rather than the complement of that sequence).
  • Sense RNA amplification reactions known in the art, which are encompassed within this definition include, but are not limited to, the methods which synthesize sense RNA described in Ozawa et al. (Ozawa et al. 2006) and in U.S. Patent Application Nos. 20090053775;
  • RNA amplification method described in U.S. Patent Application No. 20090053775 is a preferred method for obtaining amplified RNA derived from one or more cells, which amplified RNA is then used to make mRNA for use in the methods of the present invention.
  • PAP poly-A polymerase
  • RNA polymerase a template-independent RNA polymerase found in most eukaryotes, prokaryotes, and eukaryotic viruses that selectively uses ATP to incorporate AMP residues to 3'-hydroxylated ends of RNA. Since PAP enzymes that have been studied from plants, animals, bacteria and viruses all catalyze the same overall reaction (Edmonds 1990) are highly conserved structurally (Gershon 2000)and lack intrinsic specificity for particular sequences or sizes of RNA molecules if the PAP is separated from proteins that recognize AAUAAA polyadenylation signals (Wilusz and Shenk 1988), purified wild-type and
  • recombinant PAP enzymes from any of a variety of sources can be used for the present invention.
  • a PAP enzyme from Saccharomyces e.g., from S. cerevisiae
  • Saccharomyces e.g., from S. cerevisiae
  • a PAP enzyme from E. coli is used for polyadenylation to make purified RNA preparations comprising or consisting of one or more modified mRNAs, each of which encodes a reprogramming factor (e.g., an iPS cell induction factor).
  • a PAP enzyme from E. coli is used for polyadenylation to make purified RNA preparations comprising or consisting of one or more modified mRNAs, each of which encodes a reprogramming factor (e.g., an iPS cell induction factor).
  • a “reprogramming factor” means a protein, polypeptide, or other biomolecule that, when used alone or in combination with other factors or conditions, causes a change in the state of differentiation of a cell in which the reprogramming factor is introduced or expressed.
  • the reprogramming factor is a protein or polypeptide that is encoded by an mRNA that is introduced into a cell, thereby generating a cell that exhibits a changed state of differentiation compared to the cell in which the mRNA was introduced.
  • the reprogramming factor is a transcription factor.
  • One embodiment of a reprogramming factor used in a method of the present invention is an "iPS cell induction factor.”
  • iPS cell induction factor or "iPSC induction factor” is a protein, polypeptide, or other biomolecule that, when used alone or in combination with other reprogramming factors, causes the generation of iPS cells from somatic cells.
  • iPS cell induction factors include OCT4, SOX2, c-MYC, KLF4, NANOG and LIN28.
  • iPS cell induction factors include full length polypeptide sequences or biologically active fragments thereof.
  • an mRNA encoding an iPS cell induction factor may encode a full length polypeptide or biologically active fragments thereof.
  • the present invention employs the sequences or similar sequences shown in these figures, including mRNA molecules that additionally comprise, joined to these mRNA sequences, oligoribonucleotides which exhibit any of the 5' and 3' UTR sequences, Kozak sequences, IRES sequences, cap nucleotides, and/or poly(A) sequences used in the experiments described herein, or which are generally known in the art and which can be used in place of those used herein by joining them to these protein-coding mRNA sequences for the purpose of optimizing translation of the respective mRNA molecules in the cells and improving their stability in the cell in order to accomplish the methods described herein.
  • “Differentiation” or “cellular differentiation” means the naturally occurring biological process by which a cell that exhibits a less specialized state of differentiation or cell type (e.g., a fertilized egg cell, a cell in an embryo, or a cell in a eukaryotic organism) becomes a cell that exhibits a more specialized state of differentiation or cell type.
  • a cell that exhibits a less specialized state of differentiation or cell type e.g., a fertilized egg cell, a cell in an embryo, or a cell in a eukaryotic organism
  • a cell is defined, described, or categorized with respect to its "cell type,” “differentiated state,” or “state of differentiation” based on one or more phenotypes exhibited by that cell, which phenotypes can include shape, a biochemical or metabolic activity or function, the presence of certain biomolecules in the cell (e.g., based on stains that react with specific biomolecules), or on the cell (e.g., based on binding of one or more antibodies that react with specific biomolecules on the cell surface).
  • phenotypes can include shape, a biochemical or metabolic activity or function, the presence of certain biomolecules in the cell (e.g., based on stains that react with specific biomolecules), or on the cell (e.g., based on binding of one or more antibodies that react with specific biomolecules on the cell surface).
  • FACS fluorescent-activated cell sorter
  • reprogramming means differentiation or cellular
  • RNA preparation of the present invention which comprises one or more mR A molecules, each of which encodes a reprogramming factor
  • maintaining the cells under conditions (e.g., medium, temperature, oxygen and C0 2 levels, matrix, and other environmental conditions) that are conducive for differentiation.
  • reprogramming when used herein is not intended to mean or refer to a specific direction or path of differentiation (e.g., from a less specialized cell type to a more specialized cell type) and does not exclude processes that proceed in a direction or path of differentiation than what is normally observed in nature.
  • a specific direction or path of differentiation e.g., from a less specialized cell type to a more specialized cell type
  • reprogramming means and includes any and all of the following:
  • Dedifferentiation meaning a process of a cell that exhibits a more specialized state of differentiation or cell type (e.g., a mammalian fibroblast, a keratinocyte, a muscle cell, or a neural cell) going to a cell that exhibits a less specialized state of differentiation or cell type (e.g., an iPS cell);
  • a more specialized state of differentiation or cell type e.g., a mammalian fibroblast, a keratinocyte, a muscle cell, or a neural cell
  • Transdifferentiation meaning a process of a cell that exhibits a more specialized state of differentiation or cell type (e.g., a mammalian fibroblast, a keratinocyte, or a neural cell) going to another more specialized state of differentiation or cell type (e.g., from a fibroblast or keratinocyte to a muscle cell); and
  • the present invention provides compositions and methods for reprogramming the state of differentiation of eukaryotic cells, including human or other animal cells, by contacting the cells with purified RNA preparations comprising or consisting of one or more different single-strand mRNA molecules that each encode a reprogramming factor (e.g., an iPS cell induction factor).
  • the purified single-stranded mRNA molecules preferably comprise at least one modified nucleoside selected from the group consisting of a pseudouridine ( ⁇ ), 5-methylcytosine (m 5 C),
  • the single-stranded mRNA molecules are preferably purified to be substantially free of RNA contaminant molecules that would activate an unintended response, decrease expression of the single-stranded mRNA, and/or activate RNA sensors in the cells.
  • the purified RNA preparations are substantially free of RNA contaminant molecules that are: shorter or longer than the full-length single-stranded mRNA molecules, double-stranded, and/or uncapped RNA.
  • the invention provides compositions and methods for reprogramming differentiated eukaryotic cells, including human or other animal somatic cells, by contacting the cells with purified RNA preparations comprising or consisting of one or more different single-strand mRNA molecules that each encode an iPS cell induction factor.
  • the mRNA used in the purified RNA preparations is purified to remove substantially, essentially, or virtually all of the contaminants, including substantially, essentially, or virtually all of the RNA contaminants.
  • the present invention is not limited with respect to the purification methods used to purify the mRNA, and the invention includes use of any method that is known in the art or developed in the future in order to purify the mRNA and remove contaminants, including RNA contaminants, that interfere with the intended use of the mRNA.
  • the purification of the mRNA removes contaminants that are toxic to the cells (e.g., by inducing an innate immune response in the cells, or, in the case of RNA contaminants comprising double-stranded RNA, by inducing RNA interference (RNAi), e.g., via siRNA or long RNAi molecules) and contaminants that directly or indirectly decrease translation of the mRNA in the cells).
  • RNAi RNA interference
  • the mRNA is purified by HPLC using a method described herein, including in the Examples.
  • the mRNA is purified using on a polymeric resin substrate comprising a CI 8 derivatized styrene-divinylbenzene copolymer and a triethylamine acetate (TEAA) ion pairing agent is used in the column buffer along with the use of an acetonitrile gradient to elute the mRNA and separate it from the RNA contaminants in a size-dependent manner; in some embodiments, the mRNA purification is performed using HPLC, but in some other embodiments a gravity flow column is used for the purification. In some embodiments, the mRNA is purified using a method described in the book entitled "RNA Purification and Analysis" by Douglas T.
  • TEAA triethylamine acetate
  • the mRNA purification is carried out in a non-denaturing mode (e.g., at a temperature less than about 50 degrees C, e.g., at ambient temperature). In some embodiments, the mRNA purification is carried out in a partially denaturing mode (e.g., at a temperature less than about 50 degrees C and 72 degrees C). In some embodiments, the mRNA purification is carried out in a denaturing mode (e.g., at a temperature greater than about 72 degrees C).
  • a non-denaturing mode e.g., at a temperature less than about 50 degrees C, e.g., at ambient temperature.
  • the mRNA purification is carried out in a partially denaturing mode (e.g., at a temperature less than about 50 degrees C and 72 degrees C).
  • the mRNA purification is carried out in a denaturing mode (e.g., at a temperature greater than about 72 degrees C).
  • the temperature depends on the melting temperature (Tm) of the mRNA that is being purified as well as on the melting temperatures of RNA, DNA, or RNA/DNA hybrids which contaminate the mRNA.
  • Tm melting temperature
  • the mRNA is purified as described by Mellits KH et al. (Removal of double-stranded contaminants from RNA transcripts: synthesis of adenovirus VA RNA1 from a T7 vector. Nucleic Acids Research 18: 5401-5406, 1990, herein incorporated by reference in its entirety). These authors used a three step purification to remove the
  • Step 1 was 8% polyacrylamide gel electrophoresis in 7M urea (denaturing conditions).
  • the major RNA band was excised from the gel slice and subjected to 8% polyacrylamide gel electrophoresis under nondenaturing condition (no urea) and the major band recovered from the gel slice. Further purification was done on a cellulose CF-11 column using an ethanol-salt buffer mobile phase which separates double stranded RNA from single stranded RNA (Franklin RM. 1966. Proc. Natl. Acad. Sci. USA 55: 1504-1511; Barber R. 1966. Biochem. Biophys.
  • the mRNA is purified using an hydroxylapatite (HAP) column under either non- denaturing conditions or at higher temperatures (e.g., as described by Pays E. 1977. Biochem. J. 165: 237-245; Lewandowski LJ et al. 1971. J. Virol. 8: 809-812; Clawson GA and Smuckler EA. 1982. Cancer Research 42: 3228-3231; and/or Andrews-Pfannkoch C et al. 2010. Applied and Environmental Microbiology 76: 5039-5045, all of which are herein incorporated by reference).
  • the mRNA is purified by weak anion exchange liquid
  • the mRNA is purified using a combination of any of the above methods or another method known in the art or developed in the future.
  • the mRNA used in the compositions and methods of the present invention is purified using a process which comprises treating the mRNA with an enzyme that specifically acts (e.g., digests) one or more contaminant RNA or contaminant nucleic acids (e.g., including DNA), but which does not act on (e.g., does not digest) the desired mRNA.
  • the mRNA used in the compositions and methods of the present invention is purified using a process which comprises treating the mRNA with a ribonuclease III (RNase III) enzyme (e.g., E. coli RNase III) and the mRNA is then purified away from the RNase III digestion products.
  • RNase III ribonuclease III
  • a ribonuclease III (RNase III) enzyme herein means an enzyme that digests double-stranded RNA greater than about twelve basepairs to shore double-stranded RNA fragments.
  • the mRNA used in the compositions and methods of the present invention is purified using a process which comprises treating the mRNA with one or more other enzymes that specifically digest one or more contaminant RNAs or contaminant nucleic acids (e.g., including DNA).
  • one or more other enzymes that specifically digest one or more contaminant RNAs or contaminant nucleic acids (e.g., including DNA).
  • This invention provides RNA, oligoribonucleotide, and polyribonucleotide molecules comprising pseudouridine or a modified nucleoside, gene therapy vectors comprising same, gene therapy methods and gene transcription silencing methods comprising same, methods of reducing an immunogenicity of same, and methods of synthesizing same.
  • modified sequences are preferably present in the purified RNA preparations described herein.
  • the present invention provides a messenger RNA comprising a pseudouridine residue.
  • the messenger RNA encodes a protein of interest.
  • the present invention provides an RNA molecule encoding a protein of interest, said RNA molecule comprising a pseudouridine residue.
  • the present invention provides in vzYro-transcribed RNA molecule, comprising a pseudouridine.
  • the present invention provides an in vzYro-transcribed RNA molecule, comprising a modified nucleoside.
  • the present invention provides methods for synthesizing in vitro- transcribed RNA molecules, comprising pseudouridine and/or modified nucleosides.
  • the present invention provides a messenger RNA molecule comprising a pseudouridine residue.
  • an in vzYro-transcribed RNA molecule of methods and compositions of the present invention is synthesized by T7 phage RNA polymerase.
  • the molecule is synthesized by SP6 phage RNA polymerase.
  • the molecule is synthesized by T3 phage RNA polymerase.
  • the molecule is synthesized by a polymerase selected from the above polymerases.
  • the in vztro-transcribed RNA molecule is an oligoribonucleotide.
  • the in vz ' tro-transcribed RNA molecule is a polyribonucleotide.
  • the present invention provides an in vztro-synthesized oligoribonucleotide, comprising a pseudouridine or a modified nucleoside, wherein the modified nucleoside is m 5 C, m 5 U, m 6 A, s 2 U, ⁇ , or 2'-0-methyl-U.
  • the present invention provides an in vitro- synthesized polyribonucleotide, comprising a pseudouridine or a modified nucleoside, wherein the modified nucleoside is m 5 C, m 5 U, m 6 A, s 2 U, ⁇ , or 2'-0-methyl-U.
  • polyribonucleotide is a short hairpin (sh)RNA.
  • the in vztro-synthesized oligoribonucleotide is a small interfering RNA (siRNA).
  • the in vitro- synthesized oligoribonucleotide is any other type of oligoribonucleotide known in the art. Each possibility represents a separate embodiment of the present invention.
  • an RNA, oligoribonucleotide, or polyribonucleotide molecule of methods and compositions of the present invention further comprises an open reading frame that encodes a functional protein.
  • the RNA molecule or oligoribonucleotide molecule functions without encoding a functional protein (e.g. in transcriptional silencing), as an RNzyme, etc.
  • a functional protein e.g. in transcriptional silencing
  • the RNA, oligoribonucleotide, or polyribonucleotide molecule further comprises a poly-A tail.
  • the RNA, oligoribonucleotide, or polyribonucleotide molecule does not comprise a poly-A tail.
  • Each possibility represents a separate embodiment of the present invention.
  • the RNA, oligoribonucleotide, or polyribonucleotide molecule further comprises an m7GpppG cap. In another embodiment, the RNA, oligoribonucleotide, or polyribonucleotide molecule does not comprise an m7GpppG cap.
  • the RNA, oligoribonucleotide, or polyribonucleotide molecule further comprises a cap-independent translational enhancer.
  • the RNA, oligoribonucleotide, or polyribonucleotide molecule molecule does not comprise a cap- independent translational enhancer.
  • the cap-independent translational enhancer is a tobacco etch virus (TEV) cap-independent translational enhancer.
  • TEV tobacco etch virus
  • the cap-independent translational enhancer is any other cap-independent translational enhancer known in the art. Each possibility represents a separate embodiment of the present invention.
  • the present invention provides a gene-therapy vector, comprising an in vz ' tro-synthesized polyribonucleotide molecule, wherein the polyribonucleotide molecule comprises a pseudouridine or a modified nucleoside.
  • an RNA, oligoribonucleotide, or polyribonucleotide molecule of methods and compositions of the present invention comprises a pseudouridine.
  • the RNA molecule or oligoribonucleotide molecule comprises a modified nucleoside.
  • the RNA molecule or oligoribonucleotide molecule is an in vz ' tro-synthesized RNA molecule or oligoribonucleotide.
  • Pseudouridine refers, in another embodiment, to m x acp 3 Y (l-methyl-3-(3-amino-3- carboxypropyl) pseudouridine.
  • the term refers to m l K (1— methylpseudouridine).
  • the term refers to Ym (2'-0- methylpseudouridine.
  • the term refers to m 5 D (5-methyldihydrouridine).
  • the term refers to m 3 Y (3 -methylpseudouridine).
  • the term refers to a pseudouridine moiety that is not further modified.
  • the term refers to a monophosphate, diphosphate, or triphosphate of any of the above pseudouridines.
  • the term refers to any other pseudouridine known in the art. Each possibility represents a separate embodiment of the present invention.
  • an RNA, oligoribonucleotide, or polyribonucleotide molecule of methods and compositions of the present invention is a therapeutic oligoribonucleotide.
  • the present invention provides a method for delivering a recombinant protein to a subject, the method comprising the step of contacting the subject with an RNA, oligoribonucleotide, polyribonucleotide molecule, or a gene -therapy vector of the present invention, thereby delivering a recombinant protein to a subject.
  • the present invention provides a double-stranded RNA (dsRNA) molecule comprising a pseudouridine or a modified nucleoside and further comprising an siRNA or short hairpin RNA (shRNA).
  • dsRNA double-stranded RNA
  • shRNA short hairpin RNA
  • the dsRNA molecule is greater than 50 nucleotides in length.
  • the pseudouridine or a modified nucleoside is within the siRNA sequence. In another embodiment, the pseudouridine or a modified nucleoside is outside the siRNA sequence. In another embodiment, 1 or more pseudouridine and/or a modified nucleoside residues are present both within and outside the siRNA sequence. Each possibility represents a separate embodiment of the present invention.
  • the siRNA or shRNA is contained internally in the dsRNA molecule. In another embodiment, the siRNA or shRNA is contained on one end of the dsRNA molecule. In another embodiment, one or more siRNA or shRNA is contained on one end of the dsRNA molecule, while another one or more is contained internally.
  • the siRNA or shRNA is contained internally in the dsRNA molecule. In another embodiment, the siRNA or shRNA is contained on one end of the dsRNA molecule. In another embodiment, one or more siRNA or shRNA is contained on one end of the dsRNA molecule, while another one or more is contained internally.
  • RNA, oligoribonucleotide, or polyribonucleotide molecule e.g. a single-stranded RNA (ssRNA) or dsRNA molecule
  • compositions of the present invention is greater than 30 nucleotides in length.
  • the RNA molecule or oligoribonucleotide is greater than 35 nucleotides in length.
  • the length is at least 40 nucleotides.
  • the length is at least 45 nucleotides.
  • the length is at least 55 nucleotides.
  • the length is at least 60 nucleotides.
  • the length is at least 60 nucleotides.
  • the length is at least 80 nucleotides.
  • the length is at least 90 nucleotides.
  • the length is at least 100 nucleotides.
  • the length is at least 120 nucleotides. In another embodiment, the length is at least 140 nucleotides. In another embodiment, the length is at least 160 nucleotides. In another embodiment, the length is at least 180 nucleotides. In another embodiment, the length is at least 200 nucleotides. In another embodiment, the length is at least 250 nucleotides. In another embodiment, the length is at least 300 nucleotides. In another embodiment, the length is at least 350 nucleotides. In another embodiment, the length is at least 400 nucleotides. In another embodiment, the length is at least 450 nucleotides. In another embodiment, the length is at least 500 nucleotides.
  • the length is at least 600 nucleotides. In another embodiment, the length is at least 700 nucleotides. In another embodiment, the length is at least 800 nucleotides. In another embodiment, the length is at least 900 nucleotides. In another embodiment, the length is at least 1000 nucleotides. In another embodiment, the length is at least 1100 nucleotides. In another embodiment, the length is at least 1200 nucleotides. In another embodiment, the length is at least 1300 nucleotides. In another embodiment, the length is at least 1400 nucleotides. In another embodiment, the length is at least 1500 nucleotides. In another embodiment, the length is at least 1600 nucleotides.
  • the length is at least 1800 nucleotides. In another embodiment, the length is at least 2000 nucleotides. In another embodiment, the length is at least 2500 nucleotides. In another embodiment, the length is at least 3000 nucleotides. In another embodiment, the length is at least 4000 nucleotides. In another embodiment, the length is at least 5000 nucleotides. Each possibility represents a separate embodiment of the present invention.
  • a dsR A molecule of methods and compositions of the present invention is manufactured by in vzYro-transcription.
  • the step of in vitro- transcription utilizes T7 phage RNA polymerase.
  • the in vitro- transcription utilizes SP6 phage RNA polymerase.
  • the in vitro- transcription utilizes T3 phage RNA polymerase.
  • the in vitro- transcription utilizes an RNA polymerase selected from the above polymerases.
  • the in vzYro-transcription utilizes any other RNA polymerase known in the art. Each possibility represents a separate embodiment of the present invention.
  • the dsRNA molecule is capable of being processed by a cellular enzyme to yield the siRNA or shRNA.
  • the cellular enzyme is an endonuclease.
  • the cellular enzyme is Dicer. Dicer is an RNase Ill-family nuclease that initiates RNA interference (RNAi) and related phenomena by generation of the small RNAs that determine the specificity of these gene silencing pathways (Bernstein E, Caudy AA et al, Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 2001; 409(6818): 363-6).
  • the cellular enzyme is any other cellular enzyme known in the art that is capable of cleaving a dsRNA molecule. Each possibility represents a separate embodiment of the present invention.
  • the dsRNA molecule contains two siRNA or shRNA. In another embodiment, the dsRNA molecule contains three siRNA or shRNA. In another embodiment, the dsRNA molecule contains more than three siRNA or shRNA. In another embodiment, the siRNA and/or shRNA are liberated from the dsRNA molecule by a cellular enzyme. Each possibility represents a separate embodiment of the present invention.
  • the present invention provides a method for administering an siRNA or shRNA to a cell, comprising administering a dsRNA molecule of the present invention, wherein the cell processes the dsRNA molecule to yield the siRNA or shRNA, thereby administering a siRNA or shRNA to a cell.
  • the nucleoside that is modified in an RNA, oligoribonucleotide, or polyribonucleotide molecule of methods and compositions of the present invention is uridine (U).
  • the modified nucleoside is cytidine (C).
  • the modified nucleoside is adenosine (A).
  • the modified nucleoside is guanosine (G).
  • the modified nucleoside of methods and compositions of the present invention is m 5 C (5-methylcytidine). In another embodiment, the modified nucleoside is m 5 U (5-methyluridine). In another embodiment, the modified nucleoside is m 6 A (N 6 - methyladenosine). In another embodiment, the modified nucleoside is s 2 U (2-thiouridine). In another embodiment, the modified nucleoside is ⁇ (pseudouridine). In another embodiment, the modified nucleoside is Um (2'-0-methyluridine).
  • the modified nucleoside is m A (1-methyladenosine); m A (2- methyladenosine); Am(2'-0-methyladenosine); ms 2 m G A (2-methylthio-N 6 -methyladenosine); i G A( ⁇ isopentenyladenosine); ms z i6A (2-methyIthio-N 6 isopentenyladenosine); io 6 A (N 6 -(cis- hydroxyisopentenyl)adenosine); ms 2 io 6 A (2-methylthio-N 6" (cis-hydroxyisopentenyl)adenosine); g 6 A (1Si 6 -glycinylcarbamoyladenosine); t 6 A (N 6 -threonylcarbamoyladenosine); ms 2 t 6 A (2- methylthio-N 6 -threony
  • OHyW* undermodified hydroxywybutosine
  • imG wyosine
  • mimG mimG
  • Q queuosine
  • oQ epoxyqueuosine
  • galQ galactosyl-queuosine
  • manQ mannosylqueuosine
  • preQo 7.cyano-7-deazaguanosine
  • preQi 7.aminomethyl-7-deazaguanosine
  • G + archaeosine
  • D (dihydrouridine); m 5 Um (5,2'-0-dimethyluridine); S 4 U (4-thiouridine); mVu (5-methyl-2- thiouridine); s 2 Um (2-thio-2'-0-methyluridine); acp 3 U (3-(3-amino-3-carboxypropyl)uridine); ho 5 U (5-hydroxyuridine); mo 5 U (5-methoxyuridine); cmo 5 U (uridine 5-oxyacetic acid);
  • cmnm 5 Um (5-carboxymethylaminomethyl-2' ⁇ methyluridine); cmnm 5 s 2 U (5- carboxymethylaminomethyl-2-thiouridine); m 6 2 A (N 6 ,N 6 -dimethyladenosine); Im (2'-0- methylinosine); m 4 C (N 4 -methylcytidine); m 4 Cm (N 4 ,2'-0-dimethylcytidine); hm 5 C (5- hydroxymethylcytidine); m 3 U (3-methyluridine); cm 5 U (5-carboxymethyluridine); m 6 Am (N 6 ,2 * -Odimethyladenosine); m 6 2 Am (N 6 ,N 6 , 2 * -0-trimethyladenosine); m 2 ' 7 G(N 2 ,7- 2 2 7 2 3
  • Tm5s2U (5-taurinomethyl-2-thiouridine)); imG-14 (4-demethylwyosine); imG2 (isowyosine); or ac 6 A (N 6 -acetyl adenosine).
  • imG-14 (4-demethylwyosine); imG2 (isowyosine); or ac 6 A (N 6 -acetyl adenosine).
  • an RNA, oligoribonucleotide, or polyribonucleotide molecule of methods and compositions of the present invention comprises a combination of 2 or more of the above modifications.
  • the RNA molecule or oligoribonucleotide molecule comprises a combination of 3 or more of the above modifications.
  • the RNA molecule or oligoribonucleotide molecule comprises a combination of more than 3 of the above modifications.
  • oligoribonucleotide, or polyribonucleotide molecule of methods and compositions of the present invention are modified (e.g. either by the presence of pseudouridine or a modified nucleoside base).
  • 0.1 % of the residues are modified.
  • the fraction is 0.3%.
  • the fraction is 0.4%.
  • the fraction is 0.5%.
  • the fraction is 0.6%.
  • the fraction is 0.8%.
  • the fraction is 1%.
  • the fraction is 1.5* 3 ⁇ 4>.
  • the fraction is 2%.
  • the fraction is 2.5* Vo.
  • the fraction is 3%.
  • the fraction is 4%.
  • the fraction is 5%. In another embodiment, the fraction is 6%. . In another embodiment, the fraction is 8%. In another embodiment, the fraction is 10°/ o. In another embodiment, the fraction is 12%. , In another embodiment, the fraction is 14°/ o. In another embodiment, the fraction is 16%. , In another embodiment, the fraction is 18°/ o. In another embodiment, the fraction is 20%. , In another embodiment, the fraction is 25°/ o. In another embodiment, the fraction is 30%. , In another embodiment, the fraction is 35°/ o. In another embodiment, the fraction is 40%. , In another embodiment, the fraction is 45°/ o. In another embodiment, the fraction is 50%. , In another embodiment, the fraction is 60%. In another embodiment, the fraction is 70%. In another embodiment, the fraction is 80%. In another embodiment, the fraction is 90%. In another embodiment, the fraction is 100%.
  • the fraction is less than 5%. In another embodiment, the fraction is less than 3%. In another embodiment, the fraction is less than 1%. In another embodiment, the fraction is less than 2%. In another embodiment, the fraction is less than 4%. In another embodiment, the fraction is less than 6%. In another embodiment, the fraction is less than 8%. In another embodiment, the fraction is less than 10%. In another embodiment, the fraction is less than 12%. In another embodiment, the fraction is less than 15%. In another embodiment, the fraction is less than 20%. In another embodiment, the fraction is less than 30%. In another embodiment, the fraction is less than 40%. In another embodiment, the fraction is less than 50%. In another embodiment, the fraction is less than 60%. In another embodiment, the fraction is less than 70%.
  • 0.1 % of the residues of a given nucleotide are modified.
  • the fraction of the nucleotide is 0.2%. In another embodiment, the fraction is 0.3%. In another embodiment, the fraction is 0.4%. In another embodiment, the fraction is 0.5%. In another embodiment, the fraction is 0.6%. In another embodiment, the fraction is 0.8%. In another embodiment, the fraction is 1%. In another embodiment, the fraction is 1.5* 3 ⁇ 4>. In another embodiment, the fraction is 2%. In another embodiment, the fraction is 2.5* Vo. In another embodiment, the fraction is 3%. In another embodiment, the fraction is 4%. . In another embodiment, the fraction is 5%.
  • the fraction is 6%. . In another embodiment, the fraction is 8%. In another embodiment, the fraction is 10°/ o. In another embodiment, the fraction is 12%. , In another embodiment, the fraction is 14°/ o. In another embodiment, the fraction is 16%. , In another embodiment, the fraction is 18°/ o. In another embodiment, the fraction is 20%. , In another embodiment, the fraction is 25°/ o. In another embodiment, the fraction is 30%. , In another embodiment, the fraction is 35°/ o. In another embodiment, the fraction is 40%. , In another embodiment, the fraction is 45°/ o. In another embodiment, the fraction is 50%. , In another embodiment, the fraction is 60°/ o. In another embodiment, the fraction is 70%.
  • the fraction is 80°/ o. In another embodiment, the fraction is 90%. , In another embodiment, the fraction is 100 '%. In another embodiment, the fraction of the given nucleotide is less than 8%. In another embodiment, the fraction is less than 10%. In another embodiment, the fraction is less than 5%. In another embodiment, the fraction is less than 3%. In another embodiment, the fraction is less than 1%. In another embodiment, the fraction is less than 2%. In another embodiment, the fraction is less than 4%. In another embodiment, the fraction is less than 6%. In another embodiment, the fraction is less than 12%. In another embodiment, the fraction is less than 15%. In another embodiment, the fraction is less than 20%. In another embodiment, the fraction is less than 30%. In another embodiment, the fraction is less than 40%. In another embodiment, the fraction is less than 50%. In another embodiment, the fraction is less than 60%. In another embodiment, the fraction is less than 70%.
  • ribonucleotide In another embodiment, the terms “ribonucleotide,” “oligoribonucleotide,” and
  • polyribonucleotide refers to a string of at least 2 base-sugar-phosphate combinations.
  • the term includes, in another embodiment, compounds comprising nucleotides in which the sugar moiety is ribose. In another embodiment, the term includes both RNA and RNA derivatives in which the backbone is modified.
  • Nucleotides refers, in another embodiment, to the monomeric units of nucleic acid polymers.
  • RNA may be, in another embodiment, in the form of a tRNA (transfer RNA), snRNA (small nuclear RNA), rRNA (ribosomal RNA), mRNA (messenger RNA), anti- sense RNA, small interfering RNA (siRNA), micro RNA (miRNA) and ribozymes.
  • transfer RNA transfer RNA
  • snRNA small nuclear RNA
  • rRNA ribosomal RNA
  • mRNA messenger RNA
  • anti- sense RNA small interfering RNA
  • siRNA small interfering RNA
  • miRNA micro RNA
  • the artificial nucleic acid is a PNA (peptide nucleic acid).
  • PNA peptide nucleic acid
  • PNA contain peptide backbones and nucleotide bases and are able to bind, in another embodiment, to both DNA and RNA molecules.
  • the nucleotide is oxetane modified.
  • the nucleotide is modified by replacement of one or more phosphodiester bonds with a phosphorothioate bond.
  • the artificial nucleic acid contains any other variant of the phosphate backbone of native nucleic acids known in the art.
  • phosphothiorate nucleic acids and PNA are known to those skilled in the art, and are described in, for example, Neilsen PE, Curr Opin Struct Biol 9:353-57 ⁇ and Raz NK et al Biochem Biophys Res Commun. 297: 1075-84.
  • the production and use of nucleic acids is known to those skilled in art and is described, for example, in Molecular Cloning, (2001), Sambrook and Russell, eds. and Methods in Enzymology:
  • oligoribonucleotide refers to a string comprising fewer than 25 nucleotides (nt). In another embodiment, “oligoribonucleotide” refers to a string of fewer than 24 nucleotides. In another embodiment, “oligoribonucleotide” refers to a string of fewer than 23 nucleotides. In another embodiment, “oligoribonucleotide” refers to a string of fewer than 22 nucleotides. In another embodiment, “oligoribonucleotide” refers to a string of fewer than 21 nucleotides. In another embodiment, “oligoribonucleotide” refers to a string of fewer than 20 nucleotides.
  • oligoribonucleotide refers to a string of fewer than 19 nucleotides. In another embodiment, “oligoribonucleotide” refers to a string of fewer than 18 nucleotides. In another embodiment, “oligoribonucleotide” refers to a string of fewer than 17 nucleotides. In another embodiment, “oligoribonucleotide” refers to a string of fewer than 16 nucleotides. Each possibility represents a separate embodiment of the present invention.
  • polyribonucleotide refers to a string comprising more than 25 nucleotides (nt). In another embodiment, “polyribonucleotide” refers to a string of more than 26 nucleotides. In another embodiment, “polyribonucleotide” refers to a string of more than 28 nucleotides. In another embodiment, “the term” refers to a string of more than 30 nucleotides. In another embodiment, “the term” refers to a string of more than 32 nucleotides. In another embodiment, “the term” refers to a string of more than 35 nucleotides.
  • the term refers to a string of more than 40 nucleotides. In another embodiment, “the term” refers to a string of more than 50 nucleotides. In another embodiment, “the term” refers to a string of more than 60 nucleotides. In another embodiment, “the term” refers to a string of more than 80 nucleotides. In another embodiment, “the term” refers to a string of more than 100 nucleotides. In another embodiment, “the term” refers to a string of more than 120 nucleotides. In another embodiment, “the term” refers to a string of more thanl50 nucleotides.
  • the term refers to a string of more than 200 nucleotides. In another embodiment, “the term” refers to a string of more than 300 nucleotides. In another embodiment, “the term” refers to a string of more than 400 nucleotides. In another embodiment, “the term” refers to a string of more than 500 nucleotides. In another embodiment, “the term” refers to a string of more than600 nucleotides. In another embodiment, “the term” refers to a string of more than 800 nucleotides. In another embodiment, “the term” refers to a string of more than 1000 nucleotides.
  • the term refers to a string of more than 1200 nucleotides. In another embodiment, “the term” refers to a string of more than 1400 nucleotides. In another embodiment, “the term” refers to a string of more than 1600 nucleotides. In another embodiment, “the term” refers to a string of more thanl800 nucleotides. In another embodiment, “the term” refers to a string of more than 2000 nucleotides. Each possibility represents a separate embodiment of the present invention.
  • the present invention provides a method for inducing a mammalian cell to produce a protein of interest, comprising contacting the mammalian cell with an in vzYro-synthesized R A molecule encoding the recombinant protein, the in vzYro-synthesized R A molecule comprising a pseudouridine or a modified nucleoside, thereby inducing a mammalian cell to produce a protein of interest.
  • the protein of interest is a recombinant protein.
  • Encoding refers, in another embodiment, to an RNA molecule that encodes the protein of interest.
  • the RNA molecule comprises an open reading frame that encodes the protein of interest.
  • one or more other proteins is also encoded.
  • the protein of interest is the only protein encoded.
  • the present invention provides a method of inducing a mammalian cell to produce a recombinant protein, comprising contacting the mammalian cell with an in vztro-transcribed RNA molecule encoding the recombinant protein, the in vitro- transcribed RNA molecule further comprising a pseudouridine or a modified nucleoside, thereby inducing a mammalian cell to produce a recombinant protein.
  • an RNA, oligoribonucleotide, or polyribonucleotide molecule of methods and compositions of the present invention is translated in the cell more efficiently than an unmodified RNA molecule with the same sequence.
  • the RNA, oligoribonucleotide, or polyribonucleotide molecule exhibits enhanced ability to be translated by a target cell.
  • translation is enhanced by a factor of 2-fold relative to its unmodified counterpart.
  • translation is enhanced by a 3 -fold factor.
  • translation is enhanced by a 5 -fold factor.
  • translation is enhanced by a 7-fold factor.
  • translation is enhanced by a 10-fold factor.
  • translation is enhanced by a 15 -fold factor. In another embodiment, translation is enhanced by a 20-fold factor. In another embodiment, translation is enhanced by a 50-fold factor. In another embodiment, translation is enhanced by a 100-fold factor. In another embodiment, translation is enhanced by a 200-fold factor. In another embodiment, translation is enhanced by a 500-fold factor. In another embodiment, translation is enhanced by a 1000-fold factor. In another embodiment, translation is enhanced by a 2000-fold factor. In another embodiment, the factor is 10-1000-fold. In another embodiment, the factor is 10-100-fold. In another embodiment, the factor is 10-200-fold. In another embodiment, the factor is 10-300-fold. In another embodiment, the factor is 10-500-fold. In another embodiment, the factor is 20-1000-fold. In another embodiment, the factor is 30-1000-fold. In another
  • the factor is 50-1000-fold. In another embodiment, the factor is 100-1000-fold. In another embodiment, the factor is 200-1000-fold. In another embodiment, translation is enhanced by any other significant amount or range of amounts. Each possibility represents a separate embodiment of the present invention.
  • Methods of determining translation efficiency include, e.g. measuring the activity of an encoded reporter protein (e.g. luciferase or renilla [Examples herein] or green fluorescent protein [Wall AA, Phillips AM et al, Effective translation of the second cistron in two Drosophila dicistronic transcripts is determined by the absence of in-frame AUG codons in the first cistron.
  • an encoded reporter protein e.g. luciferase or renilla [Examples herein] or green fluorescent protein [Wall AA, Phillips AM et al
  • RNA complexed to Lipofectin® (Gibco BRL, Gaithersburg, MD, USA) and injected into the tail vein of mice.
  • Lipofectin® Gaithersburg, MD, USA
  • pseudouridine-modified RNA was translated significantly more efficiently than unmodified RNA ( Figure 17B).
  • efficiency of transfection-based methods of the present invention correlates with the ability of the transfection reagent to penetrate into tissues, providing an explanation for why the effect was most pronounced in spleen cells.
  • Splenic blood flow is an open system, with blood contents directly contacting red and white pulp elements including lymphoid cells.
  • PKR recombinant human PKR and its substrate, eIF2(X in the presence of capped, renilla-encoding mRNA (0.5 and 0.05 ng/ ⁇ ) .
  • mRNA containing pseudouridine ( ⁇ ) did not activate PKR, as detected by lack of both self-phosphorylation of PKR and phosphorylation of eIF2(X, while RNA without nucleoside modification and mRNA with m5C modification activated PKR.
  • Phosphorylated eIF2(X is known to block initiation of mRNA translation, therefore lack of phosphorylation enables, in another embodiment, enhanced translation of the mRNA containing pseudouridine ( ⁇ ).
  • the enhanced translation is in a cell (relative to translation in the same cell of an unmodified RNA molecule with the same sequence; Examples 13-14).
  • the enhanced translation is in vitro (e.g. in an in vitro translation mix or a reticulocyte lysate; Examples 13-14.
  • the enhanced translation is in vivo (Example 13). In each case, the enhanced translation is relative to an unmodified RNA molecule with the same sequence, under the same conditions.
  • the RNA, oligoribonucleotide, or polyribonucleotide molecule of methods and compositions of the present invention is significantly less immunogenic than an unmodified in vzYro-synthesized RNA molecule with the same sequence.
  • the modified RNA molecule is 2-fold less immunogenic than its unmodified counterpart.
  • immunogenicity is reduced by a 3 -fold factor.
  • immunogenicity is reduced by a 5 -fold factor.
  • immunogenicity is reduced by a 7-fold factor.
  • immunogenicity is reduced by a 10-fold factor.
  • immunogenicity is reduced by a 15 -fold factor.
  • immunogenicity is reduced by a 20-fold factor. In another embodiment, immunogenicity is reduced by a 50-fold factor. In another embodiment, immunogenicity is reduced by a 100-fold factor. In another embodiment, immunogenicity is reduced by a 200-fold factor. In another embodiment, immunogenicity is reduced by a 500-fold factor. In another embodiment, immunogenicity is reduced by a 1000-fold factor. In another embodiment, immunogenicity is reduced by a 2000-fold factor. In another embodiment, immunogenicity is reduced by another fold difference.
  • "significantly less immunogenic” refers to a detectable decrease in immunogenicity.
  • the term refers to a fold decrease in immunogenicity (e.g. one of the fold decreases enumerated above).
  • the term refers to a decrease such that an effective amount of the RNA, oligoribonucleotide, or polyribonucleotide molecule can be administered without triggering a detectable immune response.
  • the term refers to a decrease such that the RNA, oligoribonucleotide, or
  • polyribonucleotide molecule can be repeatedly administered without eliciting an immune response sufficient to detectably reduce expression of the recombinant protein.
  • the decrease is such that the RNA, oligoribonucleotide, or polyribonucleotide molecule can be repeatedly administered without eliciting an immune response sufficient to eliminate detectable expression of the recombinant protein.
  • Effective amount of the RNA, oligoribonucleotide, or polyribonucleotide molecule refers, in another embodiment, to an amount sufficient to exert a therapeutic effect. In another embodiment, the term refers to an amount sufficient to elicit expression of a detectable amount of the recombinant protein. Each possibility represents a separate embodiment of the present invention.
  • RNA, oligoribonucleotide, and polyribonucleotide molecules of the present invention is demonstrated herein (Examples 4-11).
  • Methods of determining immunogenicity include, e.g. measuring secretion of cytokines (e.g. IL-12, IFN-a, TNF-a, RANTES, ⁇ -la or ⁇ , IL-6, IFN- ⁇ , or IL-8; Examples herein), measuring expression of DC activation markers (e.g. CD83, HLA- DR, CD80 and CD86; Examples herein), or measuring ability to act as an adjuvant for an adaptive immune response.
  • cytokines e.g. IL-12, IFN-a, TNF-a, RANTES, ⁇ -la or ⁇ , IL-6, IFN- ⁇ , or IL-8; Examples herein
  • DC activation markers e.g. CD83, HLA- DR, CD80 and CD86; Examples herein
  • Each method represents a separate embodiment of the present invention.
  • the relative immunogenicity of the modified nucleotide and its unmodified counterpart are determined by determining the quantity of the modified nucleotide required to elicit one of the above responses to the same degree as a given quantity of the unmodified nucleotide. For example, if twice as much modified nucleotide is required to elicit the same response, than the modified nucleotide is two-fold less immunogenic than the unmodified nucleotide.
  • the relative immunogenicity of the modified nucleotide and its unmodified counterpart are determined by determining the quantity of cytokine (e.g. IL-12, IFN-
  • a method of present invention further comprises mixing the R A, oligoribonucleotide, or polyribonucleotide molecule with a transfection reagent prior to the step of contacting.
  • a method of present invention further comprises administering the RNA, oligoribonucleotide, or polyribonucleotide molecule together with the transfection reagent.
  • the transfection reagent is a cationic lipid reagent (Example 6).
  • the transfection reagent is a lipid-based transfection reagent. In another embodiment, the transfection reagent is a protein-based transfection reagent. In another embodiment, the transfection reagent is a polyethyleneimine based transfection reagent. In another embodiment, the transfection reagent is calcium phosphate. In another embodiment, the transfection reagent is Lipofectin® or Lipofectamine®. In another embodiment, the transfection reagent is any other transfection reagent known in the art.
  • the transfection reagent forms a liposome.
  • Liposomes in another embodiment, increase intracellular stability, increase uptake efficiency and improve biological activity.
  • liposomes are hollow spherical vesicles composed of lipids arranged in a similar fashion as those lipids which make up the cell membrane. They have, in another embodiment, an internal aqueous space for entrapping water soluble compounds and range in size from 0.05 to several microns in diameter.
  • liposomes can deliver RNA to cells in a biologically active form.
  • Each type of transfection reagent represents a separate embodiment of the present invention.
  • the target cell of methods of the present invention is an antigen-presenting cell.
  • the cell is an animal cell.
  • the cell is a dendritic cell (Example 14).
  • the cell is a neural cell.
  • the cell is a brain cell (Example 16).
  • the cell is a spleen cell.
  • the cell is a lymphoid cell.
  • the cell is a lung cell (Example 16).
  • the cell is a skin cell.
  • the cell is a keratinocyte.
  • the cell is an endothelial cell.
  • the cell is an astrocyte, a microglial cell, or a neuron (Example 16). In another embodiment, the cell is an alveolar cell (Example 16). In another embodiment, the cell is a surface alveolar cell (Example 16). In another embodiment, the cell is an alveolar macrophage. In another
  • the cell is an alveolar pneumocyte. In another embodiment, the cell is a vascular endothelial cell. In another embodiment, the cell is a mesenchymal cell. In another embodiment, the cell is an epithelial cell. In another embodiment, the cell is a hematopoietic cell. In another embodiment, the cell is colonic epithelium cell. In another embodiment, the cell is a lung epithelium cell. In another embodiment, the cell is a bone marrow cell.
  • the target cell is a Claudius' cell, Hensen cell, Merkel cell, Muller cell, Paneth cell, Purkinje cell, Schwann cell, Sertoli cell, acidophil cell, acinar cell, adipoblast, adipocyte, brown or white alpha cell, amacrine cell, beta cell, capsular cell, cementocyte, chief cell, chondroblast, chondrocyte, chromaffin cell, chromophobic cell, corticotroph, delta cell, Langerhans cell, follicular dendritic cell, enterochromaffin cell, ependymocyte, epithelial cell, basal cell, squamous cell, endothelial cell, transitional cell, erythroblast, erythrocyte, fibroblast, fibrocyte, follicular cell, germ cell, gamete, ovum, spermatozoon, oocyte, primary oocyte, secondary oocyte, spermatid, spermatocyte, primary
  • oligodendrocyte glioblast, goblet cell, gonadotroph, granulosa cell, haemocytoblast, hair cell, hepatoblast, hepatocyte, hyalocyte, interstitial cell,' juxtaglomerular cell, keratinocyte, keratocyte, lemmal cell, leukocyte, granulocyte, basophil, eosinophil, neutrophil, lymphoblast, B-lymphoblast, T-lymphoblast, lymphocyte, B-lymphocyte, T-lymphocyte, helper induced T- lymphocyte, Thl T-lymphocyte, Th2 T-lymphocyte, natural killer cell, thymocyte, macrophage, Kupffer cell, alveolarmacrophage, foam cell, histiocyte, luteal cell, lymphocytic stem cell, lymphoid cell, lymphoid stem cell, macroglial cell, mammotroph, mast cell, medulloblast, megakaryoblast,
  • a variety of disorders may be treated by employing methods of the present invention including, inter alia, monogenic disorders, infectious diseases, acquired disorders, cancer, and the like.
  • monogenic disorders include ADA deficiency, cystic fibrosis, familial- hypercholesterolemia, hemophilia, chronic ganulomatous disease, Duchenne muscular dystrophy, Fanconi anemia, sickle-cell anemia, Gaucher's disease, Hunter syndrome, X-linked SCID, and the like.
  • the disorder treated involves one of the proteins listed below. Each possibility represents a separate embodiment of the present invention.
  • RNA In another embodiment, the recombinant protein encoded by an RNA
  • oligoribonucleotide, or polyribonucleotide molecule of methods and compositions of the present invention is ecto-nucleoside triphosphate diphosphohydrolase.
  • the recombinant protein is erythropoietin (EPO).
  • EPO erythropoietin
  • the encoded recombinant protein is ABCA4; ABCD3; AC ADM; AGL; AGT; ALDH4AI; ALPL; AMPD1; APOA2; AVSD1; BRCD2; C1QA; C1QB; C1QG; C8A; C8B; CACNA1S; CCV; CD3Z; CDC2L1; CHML; CHS1; CIAS1; CLCNKB; CMD1A; CMH2;
  • GLC3B HF1; HMGCL; HPC1; HRD; HRPT2; HSD3B2; HSPG2; KCNQ4; KCS; KIF1B;
  • PHA2A PHGDH; PKLR; PKP1; PLA2G2A; PLOD; PPOX; PPT1; PRCC; PRG4; PSEN2;
  • PTOS1 REN; RFX5; RHD; RMD1; RPE65; SCCD; SERPINC1; SJS1; SLC19A2; SLC2A1;
  • GYPC HADHA; HADHB; HOXD13; HPE2; IGKC; IHH; IRSI; ITGA6; KHK; KYNU; LCT; LHCGR; LSFC; MSH2; MSH6; NEB; NMTC; NPHP1; PAFAH1P1; PAX3; PAX8; PMS1;
  • PNKD PPH1; PROC; REG1A; SAG; SFTPB; SLC11A1; SLC3A1; SOS1; SPG4; SRD5A2;
  • PPARG PROSl; PTHRl; RCAl; RHO; SCA7; SCLCl; SCN5A; SI; SLC25A20; SLC2A2; TF;
  • LTC4S LTC4S; MAN2A1; MCC; MCCC2; MSH3; MSX2; NR3C1; PCSK1; PDE6A; PFBI; RASAI;
  • SCZDI SDHA; SGCD; SLC22A5; SLC26A2; SLC6A3; SMI; SMA@; SMN1; SMN2;
  • MCDR1 MCDR1; MOCS1; MUT; MYB; NEU1; NKS1 ; NYS2; OA3; ODDD; OFC1; PARK2; PBCA;
  • PBCRA1 PBCRA1; PDB1; PEX3; PEX6; PEX7; PKHD1; PLA2G7; PLG; POLH; PPAC; PSORS1;
  • ACHE ACHE; AQP1; ASL; ASNS; AUTS1; BPGM; BRAF; C7orf2; CACNA2D1; CCM1; CD36;
  • SERPINE1 SERPINE1; SGCE; SHFM1; SHH; SLC26A3; SLC26A4; SLOS; SMAD1; TBXAS1; TWIST;
  • PIP5K1B PTCH; PTGS1; RLN1; RLN2; RMRP; ROR2; RPD1; SARDH; SPTLC1; STOM;
  • TDFA TDFA
  • TEK TMC1; TRIM32; TSC1; TYRP1; XPA; CACNB2; COL17A1; CUBN; CXCL12;
  • LIP A MATIA; MBL2; MKI67; MXll; NODAL; OAT; OATL3; PAX2; PCBD; PEOl; PHYH; PNLIP; PSAP; PTEN; RBP4; RDPA; RET; SFTPA1; SFTPD; SHFM3; SIAL; THC2; TLX1;
  • TNFRSF6 TNFRSF6
  • UFS UFS
  • UROS AA
  • ABCC8 ACAT1
  • ALX4 ALX4
  • AMPD3 ANC
  • APOA1 APOA4;
  • APOC3 ATM; BSCL2; BWS; CALCA; CAT; CCND1; CD3E; CD3G; CD59; CDKN1C;
  • TSG101 TSG101; TYR; USH1C; VMD2; VRNI; WT1; WT2; ZNF145; A2M; AAAS; ACADS; ACLS;
  • ACVRLl ALDH2; AMHR2; AOM; AQP2; ATD; ATP2A2; BDC; C1R; CD4; CDK4; CNA1 ; COL2A1; CYP27B1; DRPLA; ENUR2; FEOM1; FGF23; FPF; GNB3; GNS; HAL; HBP1;
  • SPSMA SPSMA; TBX3; TBX5; TCF1; TPI1; TSC3; ULR; VDR; VWF; ATP7B; BRCA2; BRCD1; CLN5; CPB2; ED2; EDNRB; ENUR1; ERCC5; F10; F7; GJB2; GJB6; IPF1; MBS1; MCOR;
  • IGHC group IGHG1; IGHM; IGHR; IV; LTBP2; MCOP; MJD; MNG1; MPD1; MPS3C;
  • FANCA neutrophilin; GALNS; GAN; HAGH; HBA1; HBA2; HBHR; HBQ1; HBZ; HBZP; HP; HSD11B2;
  • IL4R IL4R
  • LIPB MC1R
  • MEFV MHC2TA
  • MLYCD MMVP1; PHKB; PHKG2; PKD1; PKDTS;
  • G6PC GAA; GALK1; GCGR; GFAP; GH1; GH2; GP1BA; GPSC; GUCY2D; ITGA2B;
  • VBCH ATP8B1; BCL2; CNSN; CORD1I; CYB5; DCC; F5F8D; FECH; FEO; LAMA3;
  • LCFS2 LCFS2; MADH4; MAFD1; MC2R; MCL; MYP2; NPC1; SPPK; TGFBRE; TGIF; TTR; AD2;
  • CEACAM5 COMP; CRX; DBA; DDU; DFNA4; DLL3; DM1; DM WD; El IS; ELA2; EPOR;
  • ERCC2 ERCC2; ETFB; EXT3; EYCLI; FTL; FUTl; FUT2; FUT6; GAMT; GCDH; GPI; GUSM; HBl;
  • PPCD PPCD
  • PPGB PRNP
  • THBD TOPI
  • AIRE APP
  • CBS CBS
  • COL6A1; COL6A2; CSTB DCR;
  • DSCR1 DSCR1; FPDMM; HLCS; HPE1; ITGB2; KCNE1; KM); PRSS7; RUNX1; SOD1; TAM;
  • ADSL ADSL; ARSA; BCR; CECR; CHEK2; COMT; CRYBB2; CSF2RB; CTHM;
  • VCF ABCD1; ACTL1 ; ADFN; AGMX2; AHDS; AIC; AIED; AIH3; ALAS2; AMCD;
  • MAOB MAOB; MCF2; MCS; MEAX; MECP2; MF4; MGCI; MIC5; MIDI; MLLT7; MLS; MRSD;
  • MRX14 MRX1; MRX20; MRX2; MRX3; MRX40; MRXA; MSD; MTMI; MYCL2; MYPI;
  • NDP NDP; NHS; NPHLI; NROBI; NSX; NYSI; NYX; OAI; OASD; OCRL; ODTI; OFD1; OPA2;
  • PGK1P1 PGS; PHEX; PHKA1; PHKA2; PHP; PIGA; PLP1; POF1; POLA; POU3F4; PPMX;
  • PRD PRD; PRPSI; PRPS2; PRS; RCCP2; RENBP; RENSl; RP2; RP6; RPGR; RPS4X; RPS6KA3; RSI; Sl l; SDYS; SEDL; SERPINA7; SH2D1A; SHFM2; SLC25A5; SMAX2; SRPX; SRS;
  • TNFSF5 TNFSF5; UBE1; UBE2A; WAS; WSN; WTS; WWS; XIC; XIST; XK; XM; XS; ZFX; ZIC3;
  • ZNF261 ZNF41; ZNF6; AMELY; ASSP6; AZFI; AZF2; DAZ; GCY; RPS4Y; SMCY; SRY; ZFY; ABAT; AEZ; AFA; AFD1; ASAH1; ASD1; ASMT; CCAT; CECR9; CEP A; CLA3;
  • FANCB FANCB; GCSH; GCSL; GIP; GTS; HHG; HMI; HO AC; HOKPP2; HRPTl; HSD3B3; HTCl;
  • MANBB MCPH2; MEB; MELAS; MIC2; MPFD; MS; MSS; MTATP6; MTCOI; MTC03; MTCYB; MTND1; MTND2; MTND4; MTND5; MTND6; MTRNRl; MTRNR2; MTTE;
  • MTTG MTTI; MTTK; MTTL1; MTTL2; MTTN; MTTP; MTTS1; NAMSD; OCD1; OPD2;
  • the present invention provides a method for treating anemia in a subject, comprising contacting a cell of the subject with an in vz ' tro-synthesized RNA molecule, the in vitro synthesized RNA molecule encoding erythropoietin, thereby treating anemia in a subject.
  • the in vzYro-synthesized RNA molecule further comprises a pseudouridine or a modified nucleoside.
  • the cell is a subcutaneous tissue cell.
  • the cell is a lung cell.
  • the cell is a fibroblast.
  • the cell is a lymphocyte.
  • the cell is a smooth muscle cell.
  • the cell is any other type of cell known in the art.
  • Each possibility represents a separate embodiment of the present invention.
  • the present invention provides a method for treating a vasospasm in a subject, comprising contacting a cell of the subject with an in vztro-synthesized RNA molecule, the in vztro-synthesized RNA molecule encoding inducible nitric oxide synthase
  • iNOS vasospasm
  • the present invention provides a method for improving a survival rate of a cell in a subject, comprising contacting the cell with an in vztro-synthesized RNA molecule, the in vzYro-synthesized RNA molecule encoding a heat shock protein, thereby improving a survival rate of a cell in a subject.
  • the cell whose survival rate is improved is an ischemic cell. In another embodiment, the cell is not ischemic. In another embodiment, the cell has been exposed to an ischemic environment. In another embodiment, the cell has been exposed to an ischemic cell.
  • the present invention provides a method for decreasing an incidence of a restenosis of a blood vessel following a procedure that enlarges the blood vessel, comprising contacting a cell of the blood vessel with an in vzYro-synthesized RNA molecule, the in vzYro-synthesized RNA molecule encoding a heat shock protein, thereby decreasing an incidence of a restenosis in a subject.
  • the procedure is an angioplasty.
  • the procedure is any other procedure known in the art that enlarges the blood vessel. Each possibility represents a separate embodiment of the present invention.
  • the present invention provides a method for increasing a hair growth from a hair follicle is a scalp of a subject, comprising contacting a cell of the scalp with an in vz ' tro-synthesized RNA molecule, the in vztro-synthesized RNA molecule encoding a telomerase or an immunosuppressive protein, thereby increasing a hair growth from a hair follicle.
  • the immunosuppressive protein is a-melanocyte-stimulating hormone ((X-MSH). In another embodiment, the immunosuppressive protein is transforming growth factor- ⁇ 1 (TGF- ⁇ 1). In another embodiment, the immunosuppressive protein is insulinlike growth factor-I (IGF-I). In another embodiment, the immunosuppressive protein is any other immunosuppressive protein known in the art. Each possibility represents a separate embodiment of the present invention.
  • the present invention provides a method of inducing expression of an enzyme with antioxidant activity in a cell, comprising contacting the cell with an in vitro- synthesized RNA molecule, the in vztro-synthesized RNA molecule encoding the enzyme, thereby inducing expression of an enzyme with antioxidant activity in a cell.
  • the enzyme is catalase.
  • the enzyme is glutathione peroxidase.
  • the enzyme is phospholipid hydroperoxide glutathione peroxidase.
  • the enzyme is superoxide dismutase-1.
  • the enzyme is superoxide dismutase-2.
  • the enzyme is any other enzyme with antioxidant activity that is known in the art. Each possibility represents a separate embodiment of the present invention.
  • the present invention provides a method for treating cystic fibrosis in a subject, comprising contacting a cell of the subject with an in vitro- synthesized R A molecule, the in vzYro-synthesized RNA molecule encoding Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), thereby treating cystic fibrosis in a subject.
  • CFTR Cystic Fibrosis Transmembrane Conductance Regulator
  • the present invention provides a method for treating an X-linked agammaglobulinemia in a subject, comprising contacting a cell of the subject with an in vitro synthesized RNA molecule, the in vz ' tro-synthesized RNA molecule encoding a Bruton's tyrosine kinase, thereby treating an X-linked agammaglobulinemia.
  • the present invention provides a method for treating an adenosine deaminase severe combined immunodeficiency (ADA SCID) in a subject, comprising contacting a cell of the subject with an in vzYro-synthesized RNA molecule, the in vitro- synthesized RNA molecule encoding an ADA, thereby treating an ADA SCID.
  • ADA SCID adenosine deaminase severe combined immunodeficiency
  • the present invention provides a method for reducing immune responsiveness of the skin and improving skin pathology, comprising contacting a cell of the subject with an in vitro-synthesized RNA molecule, the in vz ' tro-synthesized RNA molecule encoding an ecto-nucleoside triphosphate diphosphohydrolase, thereby reducing immune responsiveness of the skin and improving skin pathology.
  • an RNA molecule or ribonucleotide molecule of the present invention is encapsulated in a nanoparticle.
  • Methods for nanoparticle packaging are well known in the art, and are described, for example, in Bose S, et al (Role of Nucleolin in Human
  • the dosage is in the range of 1-10 ⁇ g/day. In another embodiment, the dosage is 2-10 ⁇ g/day. In another embodiment, the dosage is 3-10 ⁇ g/day. In another embodiment, the dosage is 5-10 ⁇ g/day. In another embodiment, the dosage is 2-20 ⁇ g/day. In another embodiment, the dosage is 3-20 ⁇ g/day. In another
  • the dosage is 5-20 ⁇ g/day. In another embodiment, the dosage is 10-20 ⁇ g/day. In another embodiment, the dosage is 3-40 ⁇ g/day. In another embodiment, the dosage is 5-40 ⁇ g/day. In another embodiment, the dosage is 10-40 ⁇ g/day. In another embodiment, the dosage is 20-40 ⁇ g/day. In another embodiment, the dosage is 5-50 ⁇ g/day. In another embodiment, the dosage is 10-50 ⁇ g/day. In another embodiment, the dosage is 20-50 ⁇ g/day. In one embodiment, the dosage is 1-100 ⁇ g/day. In another embodiment, the dosage is 2-100 ⁇ g/day. In another embodiment, the dosage is 3-100 ⁇ g/day.
  • the dosage is 5-100 ⁇ g/day. In another embodiment the dosage is 10-100 ⁇ g/day. In another embodiment the dosage is 20-100 ⁇ g/day. In another embodiment the dosage is 40-100 ⁇ g/day. In another embodiment the dosage is 60-100 ⁇ g/day.
  • the dosage is 0.1 ⁇ g/day. In another embodiment, the dosage is 0.2 ⁇ g/day. In another embodiment, the dosage is 0.3 ⁇ g/day. In another embodiment, the dosage is 0.5 ⁇ g/day. In another embodiment, the dosage is 1 ⁇ g/day. In another embodiment, the dosage is 2 mg/day. In another embodiment, the dosage is 3 ⁇ g/day. In another embodiment, the dosage is 5 ⁇ g/day. In another embodiment, the dosage is 10 ⁇ g/day. In another embodiment, the dosage is 15 ⁇ g/day. In another embodiment, the dosage is 20 ⁇ g/day. In another embodiment, the dosage is 30 ⁇ g/day. In another embodiment, the dosage is 40 ⁇ g/day. In another
  • the dosage is 60 ⁇ g/day. In another embodiment, the dosage is 80 ⁇ g/day. In another embodiment, the dosage is 100 ⁇ g/day. In another embodiment, the dosage is 10 ⁇ g/dose. In another embodiment, the dosage is 20 ⁇ g/dose. In another embodiment, the dosage is 30 ⁇ g/dose. In another embodiment, the dosage is 40 ⁇ g/dose. In another embodiment, the dosage is 60 ⁇ g/dose. In another embodiment, the dosage is 80 ⁇ g/dose. In another embodiment, the dosage is 100 ⁇ g/dose. In another embodiment, the dosage is 150 ⁇ g/dose. In another embodiment, the dosage is 200 ⁇ g/dose. In another embodiment, the dosage is 300 ⁇ g/dose.
  • the dosage is 400 ⁇ g/dose. In another embodiment, the dosage is 600 ⁇ g/dose. In another embodiment, the dosage is 800 ⁇ g/dose. In another embodiment, the dosage is 1000 ⁇ g/dose. In another embodiment, the dosage is 1.5 mg/dose. In another embodiment, the dosage is 2 mg/dose. In another embodiment, the dosage is 3 mg/dose. In another embodiment, the dosage is 5 mg/dose. In another
  • the dosage is 10 mg/dose. In another embodiment, the dosage is 15 mg/dose. In another embodiment, the dosage is 20 mg/dose. In another embodiment, the dosage is 30 mg/dose. In another embodiment, the dosage is 50 mg/dose. In another embodiment, the dosage is 80 mg/dose. In another embodiment, the dosage is 100 mg/dose.
  • the dosage is 10-20 ⁇ g/dose. In another embodiment, the dosage is 20-30 ⁇ g/dose. In another embodiment, the dosage is 20-40 ⁇ g/dose. In another embodiment, the dosage is 30-60 ⁇ g/dose. In another embodiment, the dosage is 40-80 ⁇ g/dose. In another embodiment, the dosage is 50-100 ⁇ g/dose. In another embodiment, the dosage is 50-150 ⁇ g/dose. In another embodiment, the dosage is 100-200 ⁇ g/dose. In another embodiment, the dosage is 200-300 ⁇ g/dose. In another embodiment, the dosage is 300-400 ⁇ g/dose. In another embodiment, the dosage is 400-600 ⁇ g/dose. In another embodiment, the dosage is 500-800 ⁇ g/dose.
  • the dosage is 800-1000 ⁇ g/dose. In another embodiment, the dosage is 1000-1500 ⁇ g/dose. In another embodiment, the dosage is 1500-2000 ⁇ g/dose. In another embodiment, the dosage is 2-3 mg/dose. In another embodiment, the dosage is 2-5 mg/dose. In another embodiment, the dosage is 2-10 mg/dose. In another embodiment, the dosage is 2-20 mg/dose. In another embodiment, the dosage is 2-30 mg/dose. In another embodiment, the dosage is 2-50 mg/dose. In another embodiment, the dosage is 2-80 mg/dose. In another embodiment, the dosage is 2-100 mg/dose. In another embodiment, the dosage is 3-10 mg/dose. In another embodiment, the dosage is 3-20 mg/dose. In another embodiment, the dosage is 3-30 mg/dose.
  • the dosage is 3-50 mg/dose. In another embodiment, the dosage is 3-80 mg/dose. In another embodiment, the dosage is 3-100 mg/dose. In another embodiment, the dosage is 5-10 mg/dose. In another embodiment, the dosage is 5-20 mg/dose. In another embodiment, the dosage is 5-30 mg/dose. In another embodiment, the dosage is 5-50 mg/dose. In another embodiment, the dosage is 5-80 mg/dose. In another embodiment, the dosage is 5-100 mg/dose. In another embodiment, the dosage is 10-20 mg/dose. In another embodiment, the dosage is 10-30 mg/dose. In another embodiment, the dosage is 10- 50 mg/dose. In another embodiment, the dosage is 10-80 mg/dose. In another embodiment, the dosage is 10-100 mg/dose.
  • the dosage is a daily dose. In another embodiment, the dosage is a weekly dose. In another embodiment, the dosage is a monthly dose. In another embodiment, the dosage is an annual dose. In another embodiment, the dose is one is a series of a defined number of doses. In another embodiment, the dose is a one-time dose. As described below, in another embodiment, an advantage of R A, oligoribonucleotide, or polyribonucleotide molecules of the present invention is their greater potency, enabling the use of smaller doses.
  • the present invention provides a method for producing a recombinant protein, comprising contacting an in vitro translation apparatus with an in vitro- synthesized oligoribonucleotide, the in vz ' tro-synthesized oligoribonucleotide comprising a pseudouridine or a modified nucleoside, thereby producing a recombinant protein.
  • the present invention provides a method for producing a recombinant protein, comprising contacting an in vitro translation apparatus with an in vitro- transcribed RNA molecule of the present invention, the in vzYro-transcribed RNA molecule comprising a pseudouridine or a modified nucleoside, thereby producing a recombinant protein.
  • the present invention provides an in vitro transcription apparatus, comprising: an unmodified nucleotide, a nucleotide containing a pseudouridine or a modified nucleoside, and a polymerase.
  • the present invention provides an in vitro transcription kit, comprising: an unmodified nucleotide, a nucleotide containing a pseudouridine or a modified nucleoside, and a polymerase.
  • the in vitro translation apparatus comprises a reticulocyte lysate.
  • the reticulocyte lysate is a rabbit reticulocyte lysate.
  • the present invention provides a method of reducing an immunogenicity of an oligoribonucleotide molecule or RNA molecule, the method comprising the step of replacing a nucleotide of the oligoribonucleotide molecule or RNA molecule with a modified nucleotide that contains a modified nucleoside or a pseudouridine, thereby reducing an immunogenicity of an oligoribonucleotide molecule or RNA molecule.
  • the present invention provides a method of reducing an immunogenicity of a gene -therapy vector comprising a polyribonucleotide molecule or RNA molecule, the method comprising the step of replacing a nucleotide of the polyribonucleotide molecule or RNA molecule with a modified nucleotide that contains a modified nucleoside or a pseudouridine, thereby reducing an immunogenicity of a gene-therapy vector.
  • the present invention provides a method of enhancing in vitro translation from an oligoribonucleotide molecule or RNA molecule, the method comprising the step of replacing a nucleotide of the oligoribonucleotide molecule or RNA molecule with a modified nucleotide that contains a modified nucleoside or a pseudouridine, thereby enhancing in vitro translation from an oligoribonucleotide molecule or RNA molecule.
  • the present invention provides a method of enhancing in vivo translation from a gene-therapy vector comprising a polyribonucleotide molecule or RNA molecule, the method comprising the step of replacing a nucleotide of the polyribonucleotide molecule or RNA molecule with a modified nucleotide that contains a modified nucleoside or a pseudouridine, thereby enhancing in vivo translation from a gene-therapy vector.
  • the present invention provides a method of increasing efficiency of delivery of a recombinant protein by a gene therapy vector comprising a polyribonucleotide molecule or RNA molecule, the method comprising the step of replacing a nucleotide of the polyribonucleotide molecule or RNA molecule with a modified nucleotide that contains a modified nucleoside or a pseudouridine, thereby increasing efficiency of delivery of a recombinant protein by a gene therapy vector.
  • the present invention provides a method of increasing in vivo stability of gene therapy vector comprising a polyribonucleotide molecule or RNA molecule, the method comprising the step of replacing a nucleotide of the polyribonucleotide molecule or RNA molecule with a modified nucleotide that contains a modified nucleoside or a pseudouridine, thereby increasing in vivo stability of gene therapy vector.
  • the present invention provides a method of synthesizing an in vztro-transcribed RNA molecule comprising a pseudouridine nucleoside, comprising contacting an isolated polymerase with a mixture of unmodified nucleotides and the modified nucleotide (Examples 5 and 10).
  • in vitro transcription methods of the present invention utilize an extract from an animal cell.
  • the extract is from a reticulocyte or cell with similar efficiency of in vitro transcription.
  • the extract is from any other type of cell known in the art. Each possibility represents a separate embodiment of the present invention.
  • RNA molecules or oligoribonucleotide molecules of the present invention may be used, in another embodiment, in any of the methods of the present invention.
  • the present invention provides a method of enhancing an immune response to an antigen, comprising administering the antigen in combination with mitochondrial (mt) RNA (Examples 4 and 8).
  • the present invention provides a method of reducing the ability of an RNA molecule to stimulate a dendritic cell (DC), comprising modifying a nucleoside of the RNA molecule by a method of the present invention (e.g., see EXAMPLES).
  • DC dendritic cell
  • the DC is a DC1 cell. In another embodiment, the DC is a DC2 cell. In another embodiment, the DC is a subtype of a DC1 cell or DC2 cell. Each possibility represents a separate embodiment of the present invention.
  • the present invention provides a method of reducing the ability of an RNA molecule to stimulate signaling by TLR3, comprising modifying a nucleoside of the RNA molecule by a method of the present invention.
  • the present invention provides a method of reducing the ability of an RNA molecule to stimulate signaling by TLR7, comprising modifying a nucleoside of the RNA molecule by a method of the present invention.
  • the present invention provides a method of reducing the ability of an RNA molecule to stimulate signaling by TLR8, comprising modifying a nucleoside of the RNA molecule by a method of the present invention.
  • all of the internucleoside or internucleotide linkages in the RNA, oligoribonucleotide, or polyribonucleotide molecule are phosphodiester.
  • the inter-nucleotide linkages are predominantly phosphodiester.
  • most of the internucleotide linkages are phosphorothioate.
  • most the inter- nucleotide linkages are phosphodiester.
  • the percentage of the inter-nucleotide linkages in the RNA, oligoribonucleotide, or polyribonucleotide molecule that are phosphodiester is above 50%. In another embodiment, the percentage is above 10%. In another embodiment, the percentage is above 15%. In another embodiment, the percentage is above 20%. In another embodiment, the percentage is above 25%. In another embodiment, the percentage is above 30%. In another embodiment, the percentage is above 35%. In another embodiment, the percentage is above 40%. In another embodiment, the percentage is above 45%. In another embodiment, the percentage is above 55%. In another embodiment, the percentage is above 60%. In another embodiment, the percentage is above 65%. In another embodiment, the percentage is above 70%. In another embodiment, the percentage is above75%. In another embodiment, the percentage is above 80%.In another embodiment, the percentage is above 85%. In another embodiment, the percentage is above 90%. In another embodiment, the percentage is above 95%.
  • a method of the present invention comprises increasing the number, percentage, or frequency of modified nucleosides in the RNA molecule to decrease immunogenicity or increase efficiency of translation. As provided herein (e.g., see
  • polyribonucleotide molecule determines, in another embodiment, the magnitude of the effects observed in the present invention.
  • the present invention provides a method for introducing a recombinant protein into a cell of a subject, comprising contacting the subject with an in vitro- transcribed RNA molecule encoding the recombinant protein, the in vzYro-transcribed RNA molecule further comprising a pseudouridine or another modified nucleoside, thereby
  • the present invention provides a method for decreasing TNF-CX production in response to a gene therapy vector in a subject, comprising the step of engineering the vector to contain a pseudouridine or a modified nucleoside base, thereby decreasing TNF-CX production in response to a gene therapy vector in a subject.
  • the present invention provides a method for decreasing IL-12 production in response to a gene therapy vector in a subject, comprising the step of engineering the vector to contain a pseudouridine or a modified nucleoside base, thereby decreasing IL-12 production in response to a gene therapy vector in a subject.
  • the present invention provides a method of reducing an immunogenicity of a gene therapy vector, comprising introducing a modified nucleoside into said gene therapy vector, thereby reducing an immunogenicity of a gene therapy vector.
  • findings of the present invention show that primary DC have an additional RNA signaling entity that recognizes m5C-and m6A-modified RNA and whose signaling is inhibited by modification of U residues.
  • polyribonucleotide molecules of the present invention is that RNA does not incorporate to the genome (as opposed to DNA-based vectors).
  • an advantage is that translation of RNA, and therefore appearance of the encoded product, is instant.
  • an advantage is that the amount of protein generated from the mRNA can be regulated by delivering more or less RNA.
  • an advantage is that repeated delivery of purified pseudouridine or other modified RNA, oligoribnucleotide, or
  • polyribonucleotide molecules does not induce an immune response, whereas repeated delivery of unmodified RNA could induce signaling pathways though RNA sensors.
  • an advantage is lack of immunogenicity, enabling repeated delivery without generation of inflammatory cytokines.
  • stability of RNA is increased by circularization, decreasing degradation by exonucleases.
  • the present invention provides a method of treating a subject with a disease that comprises an immune response against a self-RNA molecule, comprising administering to the subject an antagonist of a TLR-3 molecule, thereby treating a subject with a disease that comprises an immune response against a self-RNA molecule.
  • the present invention provides a method of treating a subject with a disease that comprises an immune response against a self-RNA molecule, comprising administering to the subject an antagonist of a TLR-7 molecule, thereby treating a subject with a disease that comprises an immune response against a self-RNA molecule.
  • the present invention provides a method of treating a subject with a disease that comprises an immune response against a self-RNA molecule, comprising administering to the subject an antagonist of a TLR-8 molecule, thereby treating a subject with a disease that comprises an immune response against a self-RNA molecule.
  • the disease that comprises an immune response against a self-
  • RNA molecule is an auto-immune disease.
  • the disease is systemic lupus erythematosus (SLE).
  • the disease is another disease known in the art that comprises an immune response against a self-RNA molecule. Each possibility represents a separate embodiment of the present invention.
  • the present invention provides a kit comprising a reagent utilized in performing a method of the present invention. In another embodiment, the present invention provides a kit comprising a composition, tool, or instrument of the present invention.
  • the present invention provides a kit for measuring or studying signaling by a TLR-3, TLR-7 and TLR-8 receptor, as exemplified in Example 7.
  • a treatment protocol of the present invention is therapeutic. In another embodiment, the protocol is prophylactic. Each possibility represents a separate embodiment of the present invention.
  • the phrase "contacting a cell” or “contacting a population” refers to a method of exposure, which can be direct or indirect.
  • such contact comprises direct injection of the cell through any means well known in the art, such as microinjection.
  • supply to the cell is indirect, such as via provision in a culture medium that surrounds the cell, or administration to a subject, or via any route known in the art.
  • the term "contacting" means that the molecule of the present invention is introduced into a subject receiving treatment, and the molecule is allowed to come in contact with the cell in vivo. Each possibility represents a separate embodiment of the present invention.
  • compositions of the present invention can be, in another embodiment, administered to a subject by any method known to a person skilled in the art, such as parenterally, paracancerally, transmucosally, transdermally, intramuscularly, intravenously, intra-dermally, subcutaneously, intraperitoneally, intraventricularly, intra-cranially, intra-vaginally or intra-tumorally.
  • compositions are administered orally, and are thus formulated in a form suitable for oral administration, i.e. as a solid or a liquid preparation.
  • suitable solid oral formulations include tablets, capsules, pills, granules, pellets and the like.
  • Suitable liquid oral formulations include solutions, suspensions, dispersions, emulsions, oils and the like.
  • the active ingredient is formulated in a capsule.
  • the compositions of the present invention comprise, in addition to the active compound and the inert carrier or diluent, a hard gelating capsule.
  • the pharmaceutical compositions are administered by intravenous, intra-arterial, or intra-muscular injection of a liquid preparation.
  • suitable liquid formulations include solutions, suspensions, dispersions, emulsions, oils and the like.
  • the pharmaceutical compositions are administered intravenously and are thus formulated in a form suitable for intravenous administration.
  • the pharmaceutical compositions are administered intra-arterially and are thus formulated in a form suitable for intra-arterial administration.
  • the pharmaceutical compositions are administered intra-muscularly and are thus formulated in a form suitable for intra-muscular administration.
  • the pharmaceutical compositions are administered topically to body surfaces and are thus formulated in a form suitable for topical administration.
  • suitable topical formulations include gels, ointments, creams, lotions, drops and the like.
  • the compositions or their physiologically tolerated derivatives are prepared and applied as solutions, suspensions, or emulsions in a physiologically acceptable diluent with or without a pharmaceutical carrier.
  • the composition is administered as a suppository, for example a rectal suppository or a urethral suppository.
  • the pharmaceutical composition is administered by subcutaneous implantation of a pellet.
  • the pellet provides for controlled release of agent over a period of time.
  • the active compound is delivered in a vesicle, e.g. a liposome
  • carrier or diluents are well known to those skilled in the art.
  • the carrier or diluent may be may be, in various embodiments, a solid carrier or diluent for solid formulations, a liquid carrier or diluent for liquid formulations, or mixtures thereof.
  • solid carriers/diluents include, but are not limited to, a gum, a starch (e.g. com starch, pregeletanized starch), a sugar (e.g., lactose, mannitol, sucrose, dextrose), a cellulosic material (e.g. microcrystalline cellulose), an acrylate (e.g.
  • polymethylacrylate polymethylacrylate
  • calcium carbonate calcium carbonate
  • magnesium oxide magnesium oxide
  • talc magnesium oxide
  • pharmaceutically acceptable carriers for liquid formulations may be aqueous or non-aqueous solutions, suspensions, emulsions or oils.
  • non-aqueous solvents are propylene glycol, polyethylene glycol, and injectable organic esters such as ethyl oleate.
  • Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media.
  • oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, mineral oil, olive oil, sunflower oil, and fish-liver oil.
  • Parenteral vehicles for subcutaneous, intravenous, intra-arterial, or intramuscular injection
  • Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers such as those based on Ringer's dextrose, and the like.
  • sterile liquids such as water and oils, with or without the addition of a surfactant and other pharmaceutically acceptable adjuvants.
  • water, saline, aqueous dextrose and related sugar solutions, and glycols such as propylene glycols or polyethylene glycol are preferred liquid carriers, particularly for injectable solutions.
  • oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, mineral oil, olive oil, sunflower oil, and fish-liver oil.
  • compositions further comprise binders (e.g. acacia, cornstarch, gelatin, carbomer, ethyl cellulose, guar gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, povidone), disintegrating agents (e.g.
  • binders e.g. acacia, cornstarch, gelatin, carbomer, ethyl cellulose, guar gum, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, povidone
  • disintegrating agents e.g.
  • cornstarch potato starch, alginic acid, silicon dioxide, croscarmelose sodium, crospovidone, guar gum, sodium starch glycolate), buffers (e.g., Tris-HCL, acetate, phosphate) of various pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Pluronic F68, bile acid salts), protease inhibitors, surfactants (e.g.
  • sodium lauryl sulfate sodium lauryl sulfate
  • permeation enhancers solubilizing agents (e.g., glycerol, polyethylene glycerol), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite, butylated hydroxyanisole), stabilizers (e.g.
  • hydroxypropyl cellulose hydroxypropyl cellulose, hyroxypropylmethyl cellulose
  • viscosity increasing agents e.g.
  • carbomer colloidal silicon dioxide, ethyl cellulose, guar gum
  • sweeteners e.g. aspartame, citric acid
  • preservatives e.g., Thimerosal, benzyl alcohol, parabens
  • lubricants e.g. stearic acid, magnesium stearate, polyethylene glycol, sodium lauryl sulfate
  • flow-aids e.g. colloidal silicon dioxide
  • plasticizers e.g. diethyl phthalate, triethyl citrate
  • emulsifiers e.g.
  • carbomer hydroxypropyl cellulose, sodium lauryl sulfate
  • polymer coatings e.g., poloxamers or poloxamines
  • coating and film forming agents e.g. ethyl cellulose, acrylates
  • the pharmaceutical compositions provided herein are controlled- release compositions, i.e. compositions in which the compound is released over a period of time after 15 administration.
  • Controlled-or sustained-release compositions include formulation in lipophilic depots (e.g. fatty acids, waxes, oils).
  • the composition is an immediate-release composition, i.e. a composition in which the entire compound is released immediately after administration.
  • molecules of the present invention are modified by the covalent attachment of water-soluble polymers such as polyethylene glycol, copolymers of polyethylene glycol and polypropylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinylpyrrolidone or polyproline.
  • water-soluble polymers such as polyethylene glycol, copolymers of polyethylene glycol and polypropylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinylpyrrolidone or polyproline.
  • Pharmaceutically acceptable salts include the acid addition salts (e.g., formed with the free amino groups of a polypeptide or antibody molecule), which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed from the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, histidine, procaine, and the like.
  • inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like.
  • Salts formed from the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or
  • Newborn human foreskin fibroblast 1079 cells (Cat# CRL-2097, ATCC, Manassas, VA) and human IMR90 cells (Cat# CCL-186, ATCC) were cultured in Advanced MEM Medium (Invitrogen, Carlsbad, CA) supplemented with 10% heat-inactivated fetal bovine serum (FBS, Hyclone Laboratories, Logan, UT), 2mM Glutamax (Invitrogen), O.lmM ⁇ - mercaptoethanol (Sigma, St. Louis, MO), and Penicillin/Streptomycin (Invitrogen). All cells were grown at 37°C and 5% C0 2 .
  • Advanced MEM Medium Invitrogen, Carlsbad, CA
  • FBS heat-inactivated fetal bovine serum
  • 2mM Glutamax Invitrogen
  • O.lmM ⁇ - mercaptoethanol (Sigma, St. Louis, MO)
  • Penicillin/Streptomycin Invitrogen
  • human iPS cells that were induced using methods described herein were maintained on irradiated mouse embryonic fibroblasts (MEFs) (R&D Systems, Minneapolis, MN) on 10-cm plates pre-coated with 0.1% gelatin (Millipore, Phillipsburg, NJ) in DMEM/F12 medium supplemented with 20% KnockOut serum replacer, O. lmM L-glutamine (all from Invitrogen), O. lmM ⁇ -mercaptoethanol (Sigma) and lOOng/ml basic fibroblast growth factor (Invitrogen).
  • human iPS cells that were induced using methods described herein were maintained in MEF-conditioned medium that had been collected as previously described (Xu et al. 2001).
  • LIN28, NANOG, and OCT4 were PCR amplified from cDNA clones (Open Biosystems, Huntsville, AL), cloned into a plasmid vector downstream of a T7 RNA polymerase promoter (Mackie 1988, Studier and Moffatt 1986) (e.g., various pBluescriptTM, Agilent, La Jolla, CA or pGEMTM, Promega, Madison, WI, vectors) and sequenced.
  • the ORF of SOX2 was PCR amplified from a cDNA clone (Invitrogen) and the ORF of c-MYC was isolated by RT-PCR from HeLa cell total RNA. Both SOX2 and c-MYC ORF were also cloned into a plasmid vector downstream of a T7 RNA polymerase promoter and sequenced.
  • EcoRV/Spel (KLF4, LIN28, NANOG, OCT4, and SOX2) sites between the 5 ' and 3 ' Xenopus laevis beta-globin untranslated regions described (Krieg and Melton 1984).
  • T7 RNA polymerase promoter-containing plasmid contructs pT7-KLF4, pT7-LIN28, pT7-c-MYC, pT7-OCT4, pT7-SOX2, or pT7-XBg-KLF4, pT7-XBg- LIN28, pT7-XBg-c-MYC, pT7-XBg-OCT4, and pT7-XBg-SOX2
  • pT7-KLF4 pT7-LIN28, pT7-XBg-c-MYC, pT7-XBg-OCT4, and pT7-XBg-SOX2
  • the mSCRIPTTM mRNA production system (EPICENTRE or CellScript, Madison, WI, USA) was used to produce mRNA with a 5' Capl structure and a 3' Poly (A) tail (e.g., with approximately 150 A residues), except that pseudouridine-5 '-triphosphate (TRILINK, San Diego, CA) was used in place of uridine-5'- triphosphate in the T7 RNA polymerase in vitro transcription reactions.
  • RNA Purification and Analysis In some experimental embodiments, the mRNA was purified by HPLC, column fractions were collected, and the mRNA fractions were analyzed for purity an immunogenicity as described in "Materials and Methods for Examples 35-38" and/or as described and shown for Figures 22-24. In some experimental embodiments, purified RNA preparations comprising or consisting of mRNAs encoding one or more reprogramming factors which exhibited little or no immunogenicity were used for the experiments for reprogramming human somatic cells to iPS cells.
  • 1079 fibroblasts were plated at 1 x 10 5 cells/well of a 6-well dish pre-coated with 0.1% gelatin (Millipore) and grown overnight.
  • the 1079 fibroblasts were transfected with equal amounts of each reprogramming factor mRNA (KLF4, LIN28, c-MYC, NANOG, OCT4, and SOX2) using TransIT mRNA transfection reagent (MirusBio, Madison, WI). A total of three transfections were performed, with one transfection being performed every other day, with media changes the day after the first and second transfection.
  • MEFs were plated at 1.25 x 10 5 cells/well of a 0.1% gelatin pre-coated 6 well dish and incubated overnight in complete fibroblast media.
  • 1079 or IMR90 fibroblasts were plated at 3 x 10 4 cells/well of a 6 well dish seeded with MEFs the previous day and grown overnight at 37°C/5%C0 2 .
  • reprogramming mRNAs were diluted to 100 ng/ ⁇ of each mRNA. Equal molarity of each mRNA was added together using the following conversion factors (OCT4 is set at 1 and all of the other mRNAs are multiplied by these conversion factors to obtain equal molarity in each mRNA mix).
  • OCT4 is set at 1 and all of the other mRNAs are multiplied by these conversion factors to obtain equal molarity in each mRNA mix).
  • KLF 1.32
  • LIN28 0.58
  • c-MYC 1.26
  • NANOG 0.85
  • SOX2 0.88.
  • 58 ⁇ of LIN28, 126 ⁇ of c-MYC, 85 ⁇ of NANOG, 100 ⁇ of OCT4 and 88 ⁇ of SOX2 mRNA (each at lOOng/ ⁇ ) would be added together.
  • a 600 ⁇ g total dose for transfections would mean that lOOng (using molarity conversions above) of each of six reprogramming mRNAs was used.
  • Trans-IT mRNA transfection reagent was used to transfect these mRNA doses. For all transfections, mRNA pools were added to 250 ⁇ 1 of either DMEM/F12 media without additives or Advanced MEM media without additives.
  • 1079 or IMR90 fibroblasts were plated at 3 x 10 5 cells per 10cm dishes pre-coated with 0.1% gelatin (Millipore) and grown overnight.
  • the 1079 or IMR90 fibroblasts were transfected with equal amounts of reprogramming factor mRNA (KLF4, LIN28, c-MYC, NANOG, OCT4, and SOX2) using TransIT mRNA transfection reagent (MirusBio, Madison, WI).
  • each reprogramming mRNA KLF4, LIN28, c-MYC, NANOG, OCT4, and SOX2
  • a total of three transfections were performed, with one transfection being performed every other day with the medium being changed the day after each of the first and second transfections. All transfections were performed in MEF-conditioned medium.
  • the day after the third transfection the cells were trypsinized and 3 x 10 5 cells were plated on new 10-cm dishes pre-coated with 0.1% gelatin (Millipore). The cells were grown in MEF-conditioned medium for the duration of the experiment.
  • the 1079 cells or 1079-derived iPS cell plates were washed with PBS and fixed in 4% paraformaldehyde in PBS for 30 minutes at room temperature. The iPS cells were then washed 3 times for 5 minutes each wash with PBS followed by three washes in PBS + 0.1% Triton X-100. The iPS cells were then blocked in blocking buffer (PBS + 0.1% Triton, 2% FBS, and 1% BSA) for 1 hour at room temperature.
  • blocking buffer PBS + 0.1% Triton, 2% FBS, and 1% BSA
  • the cells were then incubated for 2 hours at room temperature with the primary antibody (mouse anti-human OCT4 Cat# sc- 5279, Santa Cruz Biotechnology, Santa Cruz, CA), (rabbit anti-human NANOG Cat #3580, rabbit anti-human KLF4 Cat # 4038, mouse anti-human LIN28 Cat# 5930, rabbit anti-human c- MYC Cat# 5605, rabbit anti-human SOX2 Cat# 3579, and mouse anti-TRA-1-60 all from Cell Signaling Technology, Beverly, MA) at a 1 :500 dilution in blocking buffer.
  • the primary antibody mouse anti-human OCT4 Cat# sc- 5279, Santa Cruz Biotechnology, Santa Cruz, CA
  • rabbit anti-human NANOG Cat #3580 rabbit anti-human KLF4 Cat # 4038
  • mouse anti-human LIN28 Cat# 5930 mouse anti-human c- MYC Cat# 5605
  • rabbit anti-human SOX2 Cat# 3579 rabbit anti-TRA-1-60 all from Cell Signaling Technology, Beverly
  • the iPS cells were incubated for 2 hours with the anti-rabbit Alexa Fluor 488 antibody (Cat # 4412, Cell Signaling Technology), anti-mouse FITC secondary (Cat# F5262, Sigma), or an anti-mouse Alexa Fluor 555 (Cat# 4409, Cell Signaling Technology) at 1 : 1000 dilutions in blocking buffer. Images were taken on a Nikon TS100F inverted microscope (Nikon, Tokyo, Japan) with a 2-megapixel monochrome digital camera (Nikon) using NIS-elements software (Nikon). EXAMPLE 1
  • This Example describes tests to determine if transfections with mRNA encoding KLF4, LIN28, c-MYC, NANOG, OCT4 and SOX2 resulted in expression and proper subcellular localization of each respective protein product in newborn fetal foreskin 1079 fibroblasts.
  • the mRNAs used in the experiments were made with pseudouridine-5 '-triphosphate substituting for uridine-5 '-triphosphate (Kariko et al. 2008).
  • the 1079 fibroblasts were transfected with 4 ⁇ g of each mRNA per well of a 6-well dish and immunofluorescence analysis was performed 24 hours post-transfection. Endogenous KLF4, LIN28, NANOG, OCT4 and SOX2 protein levels were undetectable by immunoflourescence in untransfected 1079 cells (Fig.l : B, F, N, R, V).
  • this Example describes development of a protocol for iPS cell generation from somatic fibroblasts. Equal amounts (by weight) of KLF4, LIN28, c-MYC, NANOG, OCT4, and SOX2 mRNAs were transfected into 1079 fibroblasts three times (once every other day). The day after the third transfection, the cells were plated onto irradiated MEF feeder cells and grown in iPS cell medium.
  • NANOG expression arising from the mRNAs that were transfected 12 days earlier would be negligible based on previous reports on the duration of mRNA stability and expression (Kariko et al. 2008). Staining for NANOG showed that both of the two iPS cell colonies were NANOG positive (Fig. 2 B, D, and not shown). The surrounding fibroblasts that were not part of the iPS cell colony were NANOG negative, suggesting that they were not reprogrammed into iPS cells.
  • iPS colonies generated from 1079 fibroblasts (Fig. 3 A-F) and from IMR90 fibroblasts (Fig. 3 G-I) were positive for both NANOG and TRA-1-60, indicating that these colonies are fully reprogrammed type III iPS cell colonies.
  • This protocol comprising three transfections of mRNAs encoding all six
  • a protocol was used that comprised transfecting 1079 or IMR90 fibroblasts three times (once every other day) with the mRNAs encoding the six reprogramming factors in MEF-conditioned medium rather than in fibroblast medium and then growing the treated 1079 fibroblasts in MEF-conditioned medium rather than plating them on a MEF feeder layer after the treatments.
  • 208 iPS cell colonies were detected three days after the final transfection ( Figure A-F).
  • this protocol was over 7-40 times more efficient than the published protocol comprising delivery of reprogramming factors with lentiviruses, based on the published data that lentiviral delivery of reprogramming factors into 1079 newborn fibroblasts, which resulted in approximately 57 iPS cell colonies per 6 x 10 5 input cells (Aoi et al. 2008). This protocol is also much faster than the published methods.
  • Plasmids pT7T3D-MART- 1 and pUNO-hTLR3 were obtained from the ATCC
  • pTEVluc was obtained from Dr Daniel Gallie (UC Riverside),contains pT7-TEV (the leader sequence of the tobacco etch viral genomic RNA)-luciferase-A50, and is described in Gallie, DR et al, 1995. The tobacco etch viral 5' leader and poly(A) tail are functionally synergistic regulators of translation.
  • Gene 165:233) pSVren was generated from p21uc (Grentzmann G, Ingram JA, et al, A dual-luciferase reporter system for studying recoding signals. RNA 1998;4(4): 479-86) by removal of the firefly luciferase coding sequence with BamHI and Notl digestions, end-filling, and religation.
  • Human TLR3 -specific siRNA, pTLR3-sh was constructed by inserting synthetic ODN encoding shRNA with 20-nt-long homology to human TLR3 (nt 703-722, accession:
  • pCMV-hTLR3 was obtained by first cloning hTLR3 -specific PCR product (nt 80-2887; Accession NM 003265) into pCRII-TOPO (Invitrogen, Carlsbad, CA), then released with Nhe I-Hind III cutting and subcloning to the corresponding sites of pcDNA3.1 (Invitrogen).
  • LPS E. coli 055 :B5 was obtained from Sigma Chemical Co, St. Louis, MO.
  • CpG ODN2006 and R-848 were obtained from InvivoGen.
  • Human embryonic kidney 293 cells were propagated in DMEM supplemented with glutamine (Invitrogen) and 10% FCS (Hyclone, Ogden, UT) (complete medium).
  • “293 cells” refers to human embryonic kidney (HEK) 293 cells.
  • 293-hTLR3 cell line was generated by transforming 293 cells with pUNO-hTLR3.
  • Cell lines 293-hTLR7, 293- hTLR8 and 293-hTLR9 were grown in complete medium supplemented with blasticidin (10 ⁇ g/ml) (Invivogen).
  • Cell lines 293-ELAM-Iuc and TLR7-293 M.
  • TLR3-293 cells were cultured as described (Kariko et al, 2004, mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem 279: 12542- 12550).
  • Cell lines 293, 293-hTLR7 and 293-hTLR8 were stably transfected with pTLR3-sh and selected with G-418 (400 ⁇ / ⁇ 1) (Invitrogen). Neo-resistant colonies were screened and only those that did not express TLR3, determined as lack of IL-8 secretion loin response to poly(I):(C), were used in further studies.
  • Leukopheresis samples were obtained from HIV- uninfected volunteers through an IRB-approved protocol.
  • Murine DCs were generated by collecting bone marrow cells from the tibia and femurs of 6-8-week-old C57BL/6 mice and lysing the red blood cells. Cells were seeded in 6-well plates at 10 6 cells/well in 2 ml DMEM + 10% FCS and 20 ng/ml muGM-CSF (R & D Systems). On day 3, 2 ml of fresh medium with muGM-CSF was added. On day 6, 2 ml medium/well was collected, and cells were pelleted and resuspended in fresh medium with muGM-CSF. On day 7 of the culture, the muDC were harvested, washed.
  • Mitochondria were isolated from platelets obtained from the University of Pennsylvania Blood Bank using a fractionation lyses procedure (Mitochondria isolation kit; Pierce, Rockford, IL). RNA was isolated from the purified mitochondria, cytoplasmic and nuclear fractions of 293 cells, un-fractioned 293 cells, rat liver, mouse cell line TUBO, and DH5alpha strain of E. coli by Master Blaster® (BioRad, Hercules, CA). Bovine tRNA, wheat tRNA, yeast tRNA, E. coli tRNA, poly(A)+ mRNA from mouse heart and poly(I):(C) were purchased from Sigma, total RNA from human spleen and E. coli RNA were purchased from Ambion. Oligoribonucleotide- 5 '-monophosphates were synthesized chemically (Dharmacon, Lafayette, CO).
  • RNA samples were incubated in the presence of Benzonase nuclease (1 U per 5 ⁇ of RNA at 1 microgram per microliter ( ⁇ / ⁇ ) for 1 h) (Novagen, Madison, WI). Aliquots of RNA-730 were digested with alkaline phosphatase (New England Biolabs). RNA samples were analyzed by denaturing agarose or polyacrylamide gel electrophoresis for quality assurance. Assays for LPS in RNA preparations using the Limulus Amebocyte Lysate gel clot assay were negative with a sensitivity of 3 picograms per milliliter (pg/ml) (University of Pennsylvania, Core Facility).
  • RNA samples were separated and visualized via HPLC.
  • 5 ⁇ g aliquots of RNA were digested with 0.1 U RNase T2 (Invitrogen) in 10 ⁇ of 50 mM NaOAc and 2 mM EDTA buffer (pH 4.5) overnight, then the samples were injected into an Agilent 1100 HPLC using a Waters Symmetry C 18 column (Waters, Milford, MA).
  • Dendritic cells in 96-well plates were treated with R- 848, Lipofectin®, or Lipofectin®-RNA for 1 h, then the medium was changed. At the end of 8 h (unless otherwise indicated), cells were harvested for either RNA isolation or flow cytometry, while the collected culture medium was subjected to cytokine ELISA. The levels of IL-12 (p70)
  • RNA was isolated from different subcellular compartments-i.e. cytoplasm, nucleus and mitochondria. These RNA fractions, as well as total RNA, tRNA and polyA-tail-selected mRNA, all from mammalian sources, were complexed to Lipofectin® and added to MDDC. While mammalian total, nuclear and cytoplasmic RNA all stimulated MDDC, as evidenced by detectable TNF-a secretion, the TNF-a levels were much lower than those induced by in vzYro-synthesized mRNA ( Figure 6).
  • mammalian tRNA did not induce any detectable level of TNF-a, while mitochondrial (mt) RNA induced much more TNF-a than the other mammalian RNA subtypes.
  • Bacterial total RNA was also a potent activator of MDDC; by contrast, bacterial tRNA induced only a low level of TNF-CX.
  • tRNA from other sources yeast, wheat germ, bovine were non- stimulatory. Similar results were observed when RNA from other mammalian sources was tested.
  • RNA signaling was abolished in MDDC, verifying that TNF-CX secretion was due to the RNA in the preparations.
  • the activation potentials of the RNA types tested exhibited an inverse correlation with the extent of nucleoside modification. Similar results were obtained in the experiments described in this Example for both types of cytokine-generated DC.
  • RNA- 1866 Nde I- linearized pTEVluc encodes firefly luciferase and a 50 nt-long polyA-tail.
  • RNA-1571 (Ssp I- linearized pSVren) encodes Renilla luciferase.
  • RNA-730 Hind Ill-linearized pT7T3D-MART-l encodes the human melanoma antigen MART-I.
  • RNA-713 (EcoR I-linearized pTIT3D-MART-l) corresponds to antisense sequence of MART- 1, RNA497 (Bgl II-linearized pCMV-hTLR3) encodes a partial 5' fragment of hTLR3. Sequences of the RNA molecules are as follows:
  • modified RNA the transcription reaction was assembled with the replacement of one (or two) of the basic NTPs with the corresponding triphosphate-derivative(s) of the modified nucleotide 5-methylcytidine, 5-methyluridine, 2-thiouridine, N 6 -methyladenosine or pseudouridine (TriLink, San Diego, CA).
  • TriLink San Diego, CA
  • all 4 nucleotides or their derivatives were present at 7.5 millimolar (mM) concentration.
  • 6 mM m7GpppG cap analog New England BioLabs, Beverly, MA
  • ORN5 and ORN6 were generated using DNA oligodeoxynucleotide templates and T7 RNAP (Silencer® siRNA construction kit, Ambion).
  • RNA polymerases In vitro transcription reactions were performed in which 1 or 2 of the 4 nucleotide triphosphates (NTP) were substituted with a corresponding nucleoside-modified NTP.
  • NTP nucleotide triphosphate
  • RNA Several sets of RNA with different primary sequences ranging in length between 0.7-1.9 kb, and containing either none, 1 or 2 types of modified nucleosides were transcribed. Modified RNAs were indistinguishable from their non-modified counterparts in their mobility in denaturing gel electrophoresis, showing that they were intact and otherwise unmodified (Figure 7A). This procedure worked efficiently with any of T7, SP6, and T3 phage polymerases, and therefore is generalizable to a wide variety of RNA polymerases.
  • TLR3-293 Parental-293; 293-hTLR7 and 293-hTLR8 cells, all expressing TLR3-specific siRNA, and 293hTLR9, TLR3-293 were seeded into 96-well plates (5 x 10 4 cells/well) and cultured without antibiotics. On the subsequent day, the cells were exposed to R-848 or RNA complexed to Lipofectin® (Invitrogen) as described (Kariko et al, 1998, ibid). RNA was removed after one hour (h), and cells were further incubated in complete medium for 7 h. Supernatants were collected for IL-8 measurement.
  • RNA-mediated activation of TLRs human embryonic kidney 293 cells were stably transformed to express human TLR3. The cell lines were treated with Lipofectin®-complexed RNA, and TLR activation was monitored as indicated 10 by interleukin (IL)-8 release.
  • IL interleukin
  • RNA molecules were tested. Unmodified, in vitro transcribed RNA elicted a high level of IL-8 secretion. RNA containing m6A or s2U nucleoside modifications, but contrast, did not induce detectable IL-8 secretion (Figure 7B).
  • the other nucleoside modifications tested i.e. m5C, m5U, ⁇ , and m5CW
  • had a smaller suppressive effect on TLR3 stimulation Figure 7B.
  • " ⁇ " refers to pseudouridine.
  • nucleoside modifications such as m 6 A S 2 U, m 5 C, m 5 U, ⁇ , reduce the
  • endogenous TLR3 that interfere with assessing effects of RNA on specific TLR receptors
  • expression of endogenous TLR3 was eliminated from the 293-TLR8 cell line by stably trans fecting the cells with a plasmid expressing TLR3 -specific short hairpin (sh)RNA (also known as siRNA).
  • sh short hairpin
  • This cell line was used for further study, since it did not respond to poly(I):(C), LPS, and CpG-containing oligodeoxynucleotides (ODNs), indicating the absence o TLR3, TLR4 and TLR9, but did respond to R-848, the cognate ligand of human TLR8 (Figure 7B).
  • RNA containing most of the nucleoside modifications (m 5 C, m 5 U,
  • TLR3, TLR7 and TLR8 ; and (b) nucleoside modifications such as m6A, m5C, m5U, s2U and ⁇ , alone and in combination, reduce the immunogenicity of RNA as mediated by TLR3, TLR7 and TLR8 signaling.
  • these results provide a novel system for studying signaling by specific TLR receptors.
  • RNA isolated from natural sources were transfected into the TLR3, TLR7 and TLR8-expressing 293 cell lines described in the previous Example. None of the mammalian RNA samples induced IL-8 secretion above the level of the negative control. By contrast, bacterial total RNA obtained from two different E. coli sources induced robust IL-8 secretion in cells trans fected with TLR3, TLR7 and TLR8, but not TLR9 ( Figure 7C). Neither LPS nor unmethylated DNA (CpG ODN) (the potential contaminants in bacterial RNA isolates) activated the tested TLR3, TLR7 or TLR8. Mitochondrial RNA isolated from human platelets stimulated human TLR8, but not TLR3 or TLR7.
  • DCs were stained with CD83-phycoerythrin mAb (Research Diagnostics Inc, Flanders, NJ), HLA-DR-Cy5PE, and CD80 or CD86-fluorescein isothiocyanate mAb and analyzed on a FACScalibur® flow cytometer using CellQuest® software (BD Biosciences). Cell culture supernatants were harvested at the end of a 20 h incubation and subjected to cytokine ELISA. The levels of IL-12 (p70) (BD Biosciences
  • RNA containing modified or unmodified nucleosides were tested the ability of RNA containing modified or unmodified nucleosides to stimulate cytokine-generated MDDC.
  • Nucleoside modifications reproducibly diminished the ability of 5 RNA to induce TNF-CX and IL-12 secretion by both GM-CSF/1L-4- generated MDDC and (GMCSF)/IFN-C -generated MDDC, in most cases to levels no greater than the negative control (Figures 8 A and B). Results were similar when other sets of RNA with the same base modifications but different primary sequences and lengths were tested, or when the RNA was further modified by adding a 5' cap structure and/or 3'-end polyA-tail or by removing the 5' triphosphate moiety. RNAs of different length and sequence induced varying amounts of TNF-a from DC, typically less than a two-fold difference (Figure 8C).
  • RNA- 1571 cell surface expression of CD80, CD83, CD86 and MHC class II molecules, and secretion of TNF-a were measured by FACS analysis of MDDC treated with RNA- 1571 and its modified versions. Modification of RNA with
  • RNA's capacity to induce DCs to mature and secrete cytokines depends on the subtype of DC as well as on the characteristics of nucleoside modification present in the RNA. An increasing amount of modification decreases the immunogenicity of RNA.
  • monocytes were purified from PBMC by discontinuous Percoll gradient centrifugation.
  • the low density fraction was depleted of B, T, and, NK cells using magnetic beads (Dynal, Lake Success, NY) specific for CD2, CD 16, CD 19, and CD56, yielding highly purified monocytes as determined by flow cytometry using anti-CD14 (>95%) or antiCDl lc (>98%) mAb.
  • monocyte-derived DC monocyte- derived DC
  • AIM V serum-free medium Life Technologies
  • GM-CSF 50 ng/ml
  • IL-4 100 ng/ml
  • AIM V medium Invitrogen
  • MDDC monocyte- derived DC
  • DC were also generated by treatment with GM-CSF (50 ng/ml) + IFN-CX (1,000 V/ml) (R & D
  • IFN-CX MDDC IFN-CX MDDC
  • DC1 and DC2 Primary myeloid and plasmacytoid DCs (DC1 and DC2) were obtained from peripheral blood using BDCA-1 and BDCA-4 cell isolation kits (Miltenyi Biotec Auburn, CA), respectively.
  • RNA molecules with limited numbers of modified nucleosides were generated.
  • RNA was transcribed in vitro in the presence of varying ratios of m6A, ⁇ (pseudouridine) or m5C to their corresponding unmodified NTPs.
  • RNA yields obtained with T7 RNAP showed the enzyme utilizes NTPs of m6A, ⁇ or m5C almost as efficiently as the basic NTPs.
  • RNA transcribed in the presence of UTP:Y in a 50:50 ratio was digested and found to contain UMP and ⁇ in a nearly 50:50 ratio ( Figure 10A).
  • RNA molecules with increasing modified nucleoside content were transfected into
  • TNF-CX secretion proportionally to the fraction of modified bases. Even the smallest amounts of modified bases tested (0.2-0.4%, corresponding to 3-6 modified nucleosides per 1571 nt molecule), was sufficient to measurably inhibit cytokine secretion (Figure 10B). RNA with of 1.7-3.2% modified nucleoside levels (14-29 modifications per molecule) exhibited a 50%> reduction in induction of TNF-CX expression. In TLR-expressing 293 cells, a higher percentage
  • pseudouridine and modified nucleosides reduce the immunogenicity of RNA molecules, even when present as a small fraction of the residues.
  • ODN increased TNF-CX mRNA levels, while ORNs containing a single modified nucleoside were significantly less stimulatory; ORN2-Um exhibited the greatest decrease TNF-CX production
  • RNA in vivo 0.25 ⁇ g RNA was complexed to Lipofectin® and injected intra-tracheally into mice, mice were bled 24 h later, and circulating levels of TNF-CX and IFN-CX were assayed from serum samples. Capped, pseudouridine-modified mRNA induced significantly less TNF-CX. and IFN-CX mRNA than was elicited by unmodified mRNA ( Figure 12A-B).
  • pseudouridine, m6A, m5U) and dsRNA were tested.
  • Human recombinant eIF2a (Bio Source) was added, and samples were further incubated for 5 min, 30°C. Reactions were stopped by adding NuPage LDS sample buffer with reducing reagent (Invitrogen), denatured for 10 min, 70° C, and analyzed on 10% PAGE. Gels were dried and exposed to film. Heparin (1 U/ ⁇ ), a PKR activator, was used as positive control.
  • PKR and its substrate eIF2(X (eukaryotic initiation factor 2 alpha) in the presence of capped, renilla-encoding mRNA (0.5 and 0.05 ng/ ⁇ ).
  • mRNA containing pseudouridine ( ⁇ ) did not activate PKR, as detected by lack of both self-phosphorylation of PKR and phosphorylation of eIF2(X, while RNA without nucleoside modification and mRNA with m 5 C modification activated PKR ( Figure 13).
  • pseudouridine modification decreases RNA immunogenicity.
  • 293 cells were transfected with in vz ' tro-transcribed, nucleoside-modified, capped mRNA encoding the reporter protein renilla. Cells were lysed 3 h after initiation of transfection, and levels of renilla were measured by enzymatic assays. In 293 cells, pseudouridine-and m5C- modified DNA were translated almost 10 times and 4 times more efficiently, respectively, than unmodified mRNA ( Figure 15 A).
  • RNA containing the pseudouridine modification was translated 15-30 times more efficiently than unmodified RNA ( Figure 15B).
  • pseudouridine modification increased RNA translation efficiency in all cell types tested, including different types of both professional antigen-presenting cells and non- professional antigen-presenting cells, providing further evidence that pseudouridine modification increases the efficiency of R A translation.
  • RNA structural elements were synthesized that contained combinations of the following modifications: 1) a unique 5' untranslated sequence (TEV, a cap independent translational enhancer), 2) cap and 3) polyA-tail. The ability of these modifications to enhance translation of pmRNA or conventional mRNA was assessed (Figure
  • capTEVlucA50 (containing TEV, cap, and an extended poly(A) tail) was next examined over 24 hours in 293 cells ( Figure 16B).
  • mRNA produced more protein at every time point tested and conferred more persistent luciferase expression than equivalent conventional mRNA constructs, showing that ⁇ -modifications stabilize mRNA.
  • caplacZ- mRNA constructs with or without extended polyA-tails (A n ) and encoding ⁇ -galactosidase (lacZ) were generated and used to transfect 293 cells. 24 h after mRNA delivery, significant increases in ⁇ -galactosidase levels were detected by X-gal visualization, in both caplacZ and caplacZ-A n , compared to the corresponding control
  • Intra-cerebral injections were made using a 25 ⁇ syringe (Hamilton, Reno, NV) with a 30 gauge, 1 inch sterile needle (Beckton 25 Dickinson Labware, Franklin Lakes, NJ) which was fixed to a large probe holder and stereotactic arm. To avoid air space in the syringe, the needle hub was filled with 55 ⁇ complex before the needle was attached, and the remainder of the sample was drawn through the needle. Injection depth (2 mm) was determined relative to the surface of the dura, and 4 ⁇ complex (32 ng mRNA) was administered in a single, rapid bolus infusion. 3 hours (h) later, rats were euthanized with halothane, and brains were removed into chilled phosphate buffered saline.
  • Tail veins of female BALB/c mice (Charles River Laboratories) were injected (bolus) with 60 ⁇ Lipofectin®-complexed RNA (0.26 ⁇ g). Organs were removed and homogenized in luciferase or Renilla lysis buffer in microcentrifuge tubes using a pestle. Homogenates were centrifuged, and supernatants were analyzed for activity.
  • mice Female BALB/c mice were anaesthetized using ketamine (100 mg/kg) and xylasine (20 mg/kg). Small incisions were made in the skin adjacent to the trachea. When the trachea was exposed, 501-11 of Lipofectin®-complexed RNA (0.2 ⁇ g) was instilled into the trachea towards the lung. Incisions were closed, and animals allowed to recover. 3 hours after RNA delivery, mice were sacrificed by cervical dislocation and lungs were removed, homogenized in luciferase or Renilla lysis buffer (250 ⁇ ), and assayed for activity.
  • blood samples 100 ⁇ /animal were collected from tail veins, clotted, and centrifuged. Serum fractions were used to determine levels of TNF and IFNCX by ELISA as described in the Examples above, using mouse-specific antibodies.
  • RNA Lipofectin®-complexed was injected into mice (intravenous (i.v.) tail vein). A range of organs were surveyed for luciferase activity to determine the optimum measurement site. Administration of 0.3 ⁇ g capTEVlucAn mRNA induced high luciferase expression in spleen and moderate expression in bone marrow, but little expression in lung, liver, heart, kidney or brain ( Figure 17B). In subsequent studies, spleens were studied.
  • mRNAs were administered to mice at 0.015- 0.150 mg/kg (0.3-3.0 ⁇ g capTEVlucAn per animal) and spleens were analyzed 6 hours later as described above. Luciferase expression correlated quantitatively with the amount of injected RNA (Figure 18) and at each concentration.
  • can be delivered by inhalation without activating the innate immune response.
  • modified RNA molecules of the present invention are efficacious at delivering recombinant proteins to cells.
  • EPO coding sequence is cloned using restriction enzyme techniques to generate 2 new plasmids, pTEV-EPO and pT7TS-EPO, that are used as templates for EPO-l mRNA production.
  • EPO-l mRNAs are produced from these templates by in vitro transcription
  • RNA polymerase T7 RNA polymerase
  • nucleosides at equimolar (7.5mM) concentrations.
  • TriLink a triphosphate (TriLink, San Diego, CA) replaces UTP in the transcription reaction.
  • a non-reversible cap-analog 6 mM 3'-0-Me- m7GpppG (New England BioLabs, Beverly, MA) is also included.
  • the ⁇ are poly(A)- tailed in a reaction of -1.5 ⁇ g/ ⁇ l RNA,5 mM ATP, and 60 U/ ⁇ yeast poly(A) polymerase (USB, Cleveland, OH) mixed at 30°C for 3 to 24 h. Quality of pmRNAs is assessed by denaturing agarose gel electrophoresis. Assays for LPS in mRNA preparations using the Limulus Amebocyte Lysate gel clot assay with a sensitivity of 3 pg/ml are also performed.
  • the proximal 3 '-untranslated region (3'UTR) of EPO-l mRNA preserves a ⁇ 90 nt-long pyrimidine-rich stabilizing element from the nascent EPO mRNA, which stabilizes EPO mRNA by specific association with a ubiquitous protein, erythropoietin mRNA-binding protein (ERBP).
  • ERBP erythropoietin mRNA-binding protein
  • EPO-l mRNA 2 alterations are incorporated into the EPO plasmid to improve the stability and translational efficiency of the transcribed mRNA: 1) A 5'UTR sequence of the tobacco etch virus (TEV) is incorporated upstream of the EPO coding sequence to generate pTEV-EPO. 2) A plasmid, pT7TS-EPO, is generated, wherein the EPO cDNA is flanked by sequences corresponding to 5' and 3' UTRs of Xenopus beta-globin mRNA.
  • TSV tobacco etch virus
  • the length of the poly(A) tail during the production of ⁇ from these plasmid templates is extended, by increasing the incubation period of the poly(A) polymerase reaction.
  • the longer poly(A) tail diminishes the rate at which prnRNA degrades during translation.
  • Leukopheresis samples are obtained from HIV-uninfected volunteers through an IRB-approved protocol. DCs are produced as described above and cultured with GM-CSF (50 ng/ml) + IL-4 (100 ng/ml) (R & D Systems) in AIM V medium® (Invitrogen).
  • Murine spleen cells and DC are obtained by published procedures. Briefly, spleens from BALB/c mice are aseptically removed and minced with forceps in complete medium. Tissue fragments are sedimented by gravity and the single cell suspension washed and lysed with AKC lysis buffer (Sigma). Murine DCs are derived from bone marrow cells collected from femurs and tibia of 6-9-weekold BALB/c mice. Cells are cultured in DMEM containing 10% FCS
  • EPO-lpmRNA (0.25 ⁇ ; 100,000 cells) is added to each cell type in triplicate for 1 hour, and supernatant replaced with fresh medium. 24 hours later, supernatant is collected for ELISA measurement of EPO, IFN-CX or ⁇ and TNF-CX.
  • EPO-lpmRNA containing, or not containing, each improvement (5' TEV element, ( ⁇ - globin 5' and 3' UTRs) with long poly(A) tails are tested for in vitro protein production and in vitro immune activation using EPO mRNA containing conventional nucleosides as controls. Efficiency of protein production from each mRNA is assessed in mammalian cell lines,
  • HEK293, CHO human and murine primary DCs, and spleen cells for each mRNA.
  • mice All animal studies described herein are performed in accordance with the NIH Guide for Care and Use of Laboratory Animals and approved by the Institutional Animal Care and Use Committee of the University of Pennsylvania.
  • EPO ⁇ mRNA-lipofectin complexes (constructed by mixing varying amounts of nucleic acid with 1 ⁇ lipofectin in 60 ⁇ final volume are injected into the lateral tail vein. Blood samples are collected 3 times a day for 3 days post mRNA injection during the time- course study, at 1 optimal time point in dose-response studies, and daily from days 2-6 in studies for reticulocytosis.
  • EPO- pmRNA Time course of EPO production after a single injection of EPO- pmRNA. Following intravenous administration of 1 ⁇ g ⁇ - ⁇ , hEPO is measured serially from 1-96 h after ⁇ - ⁇ administration by ELISA, to determine the half-life of EPO protein in the serum. This half- life is a result of both the half- life of EPO protein and the functional half- life of the ⁇ - ⁇ . The resulting optimal time point for measuring EPO protein after EPO-lpmRNA administration is utilized in subsequent studies.
  • EPO-response of EPO production after a single injection of EPO-ijimR A Dose-response of EPO production after a single injection of EPO-ijimR A. To determine the correlation between the amount of EPO protein produced and the amount of EPO-lpmRNA administered, increasing concentrations of EPO-lpmRNA (0.01 to 1 ⁇ g/animal) are administered and EPO is measured at the optimal time point.
  • EPO-lpmRNA on a biological correlate of EPO activity flow cytometry is used to determine reticulocyte frequency in blood). Flow cytometry has a coefficient of variation of ⁇ 3%. Mice receive a single dose of ⁇ - ⁇ , and blood is collected from mice daily from days 2-6. The relationship between EPO-lpmRNA dose and reticulocyte frequency is then evaluated at the time point of maximal reticulocytosis. The dose of EPO-lpmRNA that leads to at least a 5% increase in reticulocyte count is used in subsequent studies. Serum hEPO concentrations in mice of an estimated 50 mU/ml and/or an increase in reticulocyte frequency of an estimated 5% are obtained.
  • Serum samples obtained from blood collected at different times during and after 7 daily lipofectin-complexed mRNA administrations are analyzed for mouse IFN-CX, TNF-a, and IL-12 using ELISA kits.
  • RNA samples isolated from spleen are separated by denaturing 1.4% agarose gel electrophoresis, transferred to charged membranes (Schleicher and Schuell) and hybridized in MiracleHyb® (Stratagene).
  • Membranes are probed for TNF-a, down-stream IFN signaling molecules (e.g. IRF7, IL-12 p35 and p40, and GAPDH) and other markers of immune activation. Specificity of all probes is confirmed by sequencing.
  • 50 ng of DNA is labeled using Redivue [alpha- 32 P] dCTP® (Amersham) with a random prime labeling kit (Roche).
  • Hybridized membranes are exposed to Kodak BioMax MS film using an MS intensifier screen at -70°C.
  • Spleens from EPO-l mRNA-treated and positive and negative control-treated mice are harvested, fixed, sectioned, stained with hematoxylin and eosin and examined by a veterinary pathologist for signs of immune activation.
  • mice receive daily doses of ⁇ - ⁇ for 7 days, then are evaluated for immune- mediated adverse events, as indicated by serum cytokine concentrations, splenic expression of mRNAs encoding inflammatory proteins, and pathologic examination. Maximum administered doses are 3 ⁇ g or 5 x the effective single dose as determined above. Unmodified mRNA and Lipofectin® alone are used as positive and negative controls, respectively.
  • PEI polyethylenimine
  • mRNA complexes are made by addition of 25 volumes of mRNA to 1 volume of PEI in water with no mixing for 15 minutes.
  • PLL-PEG rod-like poly-L-lysine -polyethylene glycol
  • mice are anesthetized with 3% halothane (70% N 2 0 + 30% 0 2 ) in an anesthetic chamber and maintained with 1% halothane (70% N 2 0 + 30% 0 2 ) during operation using a nose cone. Trachea os exposed, and 50 ⁇ of mRNA complex is infused with 150 ⁇ air into the lung through the trachea using 250 ⁇ Hamilton syringe (Hamilton, Reno, NV) with a 27 G 1/2" needle.
  • Hamilton syringe Hamilton syringe
  • Nanoparticle packaging involves condensing and encapsulating DNA (for example) into particles that are smaller than the pore of the nuclear membrane, using chemicals including poly-L-lysine and polyethylene glycol.
  • RNA is packaged into 4 different nanoparticle formulations (PEI, PLL,PAE, and
  • RNA is administered to the carotid artery of rats by intra-arterial injection near the time of balloon angioplasty, after which blood flow is reinstated. Rats are sacrificed 3 h following injection, carotid artery sections are excised, vascular endothelial cells are harvested and homogenized, and luciferase activity is determined as described in above Examples.
  • Luciferase-encoding pseudouridine-modified RNA is administered to rat carotid arteries.
  • luciferase RNA can be detected at the delivery site but not the adjacent sites.
  • this protocol is used to prevent restenosis of a blood vessel following balloon angioplasty in an animal restenosis model, by delivery of modified RNA encoding a heat shock protein, e.g. HSP70; a growth factor (e.g. platelet-derived growth factor (PDGF), vascular endothelial growth factor (V-EGF), or insulin-like growth factor (IGF); or a protein that down- regulates or antagonizes growth factor signaling.
  • a heat shock protein e.g. HSP70
  • a growth factor e.g. platelet-derived growth factor (PDGF), vascular endothelial growth factor (V-EGF), or insulin-like growth factor (IGF)
  • a protein that down- regulates or antagonizes growth factor signaling e.g. a protein that down- regulates or antagonizes growth factor signaling.
  • PDGF platelet-derived growth factor
  • V-EGF vascular endothelial growth factor
  • IGF insulin-like
  • CFTR-encoding pseudouridine- or nucleoside -modified RNA is delivered, as described in Example 16, to the lungs of a cystic fibrosis animal model, and its effect on the disease is assessed as described in Scholte BJ, et al (Animal models of cystic fibrosis. J Cyst Fibros 2004; 3 Suppl2: 183-90) or Copreni E, et al, Lentivirus-mediated gene transfer to the respiratory epithelium: a promising approach to gene therapy of cystic fibrosis. GeneTher 2004; 11 Suppl 1 : S67-75). Administration of the RNA ameliorates cystic fibrosis.
  • modified mRNA molecules of the present invention are used to deliver to the lungs, other recombinant proteins of therapeutic value, e.g. via an inhaler that delivers RNA.
  • RNA is delivered to the hematopoietic cells of an X-linked agammaglobulinemia animal model, and its effect on the disease is assessed as described in Tanaka M, Gunawan F, et al, Inhibition of heart transplant injury and graft coronary artery disease after prolonged organ ischemia by selective protein kinase C regulators. J Thorac Cardiovasc Surg 2005;129(5): 1160-7) or Zonta S, Lovisetto F, et al, Uretero-neocystostomy in a swine model of kidney transplantation: a new technique. J Surg Res. 2005 Apr;124(2):250-5). Administration of the RNA is found to improve XLA.
  • Pseudouridine-or nucleoside-modified RNA encoding a cytokine, a chemokine, or an interferon IS (e.g. IL-4, IL-13, IL-I0, or TGF- ⁇ ) is delivered to the transplant site of an organ transplant rejection animal model, and its effect on the incidence of rejection is assessed as described in Yu PW, Tabuchi R S et al, Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer. Blood.
  • XLA X-linked agammaglobulinemia
  • Sphingomyelinase-encoding pseudouridine-or nucleoside-modified RNA is delivered to the lung, brain, or other tissue of Niemann-Pick disease Type A and B animal models, and its effect on the disease is assessed as described in Passini MA, Macauley SL, et al, AAV vector- mediated correction of brain pathology in a mouse model of Niemann-Pick A disease. Mol Ther 2005;11(5): 754-62) or Buccoliero R, Ginzburg L, et al, Elevation of lung surfactant
  • RNA phosphatidylcholine in mouse models of Sandhoff and of Niemann-Pick A disease. J Inherit Metab Dis 2004;27(5): 641-8). Administration of the RNA is found to improve the disease.
  • Pseudouridine-or nucleoside-modified RNA encoding alpha-L-iduronidase, iduronate-2— sulfatase, or a related enzyme is delivered to the body tissues of a mucopolysaccharidosis animal model of, and its effect on the disease is assessed as described in Simonaro CM, DAngelo M, et al, Joint and bone disease in mucopolysaccharidoses VI and VII: identification of new
  • modified mRNA molecules of the present invention are used to provide clotting factors (e.g. for hemophiliacs).
  • modified mRNA molecules of the present invention are used to provide acid-b-glucosidase for treating Gaucher's.
  • modified mRNA molecules of the present invention are used to provide alpha-galactosidase A for treating Fabry's diseases.
  • modified mRNA molecules of the present invention are used to provide cytokines for treatment of infectious diseases.
  • modified mRNA molecules of the present invention are used to correct other inborn errors of metabolism, by administration of mRNA molecules encoding, e.g. ABCA4; ABCD3; ACADM; AGL; AGT; ALDH4A1; ALPL; AMPD1; APOA2; AVSD1; BRCD2; C1QA; CIQB; CIQG; C8A; C8B; CACNAIS; CCV; CD3Z; CDC2L1; CHML; CHSl; CIAS1; CLCNKB; CMD1A; CMH2; CMM; COL11AI; COL8A2; COL9A2; CPT2; CRB1; CSE; CSF3R; CTPA; CTSK; DBT; DIOl; DISCI; DP YD; EKV; ENOl; ENOIP; EPB41;
  • mRNA molecules encoding e.g. ABCA4; ABCD3; ACADM; AGL; AGT; ALDH4
  • GALE GBA; GFND; GJA8; GJB3; GLC3B; HF1; HMGCL; HPC1; HRD; HRPT2; HSD3B2;
  • CMCWTD CNGA3; COL3A1; COL4A3; COL4A4; COL6A3; CPS1; CRYGA; CRYGEP1;
  • GLC1B GPD2; GYPC; HADHA; HADHB; HOXD13; HPE2; IGKC; IHH; IRS1; ITGA6;
  • PCCB PCCB; POU1FI; PPARG; PROS1; PTHR1; RCA1; RHO; SCA7; SCLC1; SCN5A; SI;
  • BFHD CNGA1; CRBM; DCK; DSPP; DTDP2; ELONG; ENAM; ETFDH; EVC; Fl l; FABP2; FGA;FGB; FGFR3; FGG; FSHMD1A; GC; GNPTA; GNRHR; GYP A; HCA; HCL2; HD;
  • ARSB B4GALT7; BHRl; C6; C7; CCAL2; CKNl; CMDJ; CRHBP; CSFIR; DHFR; DIAPHl; DTR; EOS; EPD; ERVR; F12; FBN2; GDNF; GHR; GLRA1; GM2A; HEXB; HSD17B4;
  • ELOVL4 ELOVL4; EPM2A; ESRl; EYA4; F13A1; FANCE; GCLC; GJAl; GLYSl; GMPR; GSE; HCR; HFE; HLA-A; HLA-DPB 1 ; HLA-DRA; HPFH; ICS 1 ; IDDM 1 ; IFNGR1 ; IGAD 1 ; IGF2R;
  • COL1A2 CRS; CYMD; DFNA5; DLD; DYT11; EEC1; ELN; ETV1; FKBP6; GCK; GHRHR;
  • GHS GLI3; GPDS1; GUSB; HLXB9; HOXA13; HPFH2; HRX; IAB; IMMP2L; KCNH2;
  • LGCR LGCR; LPL; MCPH1; MOS; MYC; NAT1; NAT2; NBS1; PLAT; PLEC1; PRKDC; PXMP3; RP1; SCZD6; SFTPC; SGM1; SPG5A; STAR; TG; TRPS1; TTPA; VMD1; WRN; ABCA1;
  • BDMF BDMF
  • BSCL C5; CDKN2A; CHAC; CLAl; CMDIB; COL5A1; CRAT; DBH; DNAll; DYS;
  • FGFR2 FGFR2; HK1; HPSI; IL2RA; LGI1; LIPA; MAT1A; MBL2; MKI67; MXI1; NODAL; OAT;
  • HBBPl HBBPl
  • HBD HBEl
  • HBGl HBG2
  • HMBS HND
  • HRAS HVBSl
  • IDDM2 IGER
  • NNOl NNOl; OPPG; OPTB1; PAX6; PC; PDX1; PGL2; PGR; PORC; PTH; PTS; PVRL1; PYGM;
  • RAGl RAG2; ROMl; RRAS2; SAAl; SCA5; SCZD2; SDHD; SERPINGI; SMPDl; TCIRGI;
  • BDC BDC; C1R; CD4; CDK4; CNA1; COL2A1; CYP27B1; DRPLA; ENUR2; FEOM1; FGF23; FPF; GNB3; GNS; HAL; HBP1; HMGA2; HMN2; HPD; IGF1; KCNA1 ; KERA; KRAS2;
  • MPE Mobility Enhanced Polyethylene
  • MVK Mobility Enhanced Kinetic Key
  • MYL2 OAP
  • PAH PAH
  • PPKB PRB3
  • PTPN11 PXR1; RLS; RSN; SAS; SAX1;
  • CARD 15 CATM; CDHl; CETP; CHST6; CLN3; CREBBP; CTH; CTM; CYBA; CYLD; DHS; DNASE1; DPEP1; ERCC4; FANCA; GALNS; GAN; HAGH; HBA1; HBA2; HBHR; HBQ1;
  • HBZ HBZ
  • HP HSD11B2
  • IL4R LIPB
  • MC2R MEFV
  • MHC2TA MLYCD
  • MMVP1 MMVP1
  • MAPT MAPT; MDB; MDCR; MGI; MHS2; MKS1; MPO; MY015A; NAGLU; NAPB; NF1; NME1;
  • P4HB PAFAH1B1; PECAM1; PEX12; PHB; PMP22; PRKAR1A; PRKCA; PRKWNK4;
  • MLLTl NOTCH3; NPHSl; OFC3; OP A3; PEPD; PRPF31; PRTN3; PRX; PSGl; PVR; RYRl;
  • GSS HNF4A; JAG1; KCNQ2; MKKS; NBIA1; PCK1; PI3; PPCD; PPGB; PRNP; THBD;
  • COMT COMT; CRYBB2; CSF2RB; CTHM; CYP2D6; CYP2D7P1; DGCR; DIA1; EWSR1; GGT1; MGCR; MN1; NAGA; NF2; OGS2; PDGFB; PPARA; PRODH; SC02; SCZD4; SERPIND1;
  • AIED AIED
  • AIH3 ALAS2
  • AMCD AMELX
  • ANOP1 AR
  • AR ARAF1
  • ARSC2 ARSE
  • ARTS ARX
  • ASAT ASAT; ASSP5; ATP7A; ATRX; AVPR2; BFLS; BGN; BTK; BZX; C1HR; CACNA1F;
  • EMD EVR2; F8; F9; FCP1; FDPSL5; FGD1; FGS1; FMR1; FMR2; G6PD; GABRA3;
  • TFE3 TFE3; THAS; THC; TIMM8A; TIMP1; TKCR; TNFSF5; UBE1; UBE2A; WAS; WSN; WTS;
  • HMI HMI; HOAC; HOKPP2; HRPT1; HSD3B3; HTC1; HV1S; ICHQ; ICR1; ICR5; IL3RA; KAL2;
  • PROl PROl; PROP1; RBS; RFXAP; RP; SHOX; SLC25A6; SPG5B; STO; SUOX; THM; or TTD.
  • RNA Inducible nitric oxide synthase (iNOS)-encoding pseudouridine-or nucleoside-modified RNA is delivered to the vascular endothelium of vasospasm animals models (e.g. subarachnoid hemorrhage), and its effect on the disease is assessed as described in Pradilla G, Wang PP, et al, Prevention of vasospasm by anti-CD 11/CD 18 monoclonal antibody therapy following subarachnoid hemorrhage in rabbits. J Neurosurg 2004;101(1): 88-92) or Park S, Yamaguchi M, et al, Neurovascular protection reduces early brain injury after subarachnoid hemorrhage. Stroke 2004;35(10): 2412-7). Administration of the RNA ameliorates the disease.
  • iNOS Inducible nitric oxide synthase
  • immunosuppressive protein e.g. (X-MSH, TGF- ⁇ 1, or IGF-I is delivered to hair follicles of animals used as models of hair loss or balding, and its effect on hair growth is assessed as described in Jiang J, Tsuboi R, et al, Topical application of ketoconazole stimulates hair growth in C3H/HeN mice.
  • a double-stranded RNA (dsRNA) molecule comprising pseudouridine or a modified nucleoside and further comprising a small interfering RNA (siRNA) or short hairpin RNA (shRNA) is synthesized by the following procedure: Complementary RNA strands with the desired sequence containing uridine or 1 or more modified nucleosides are synthesized by in vitro transcription (e.g. by T7, SP6, or T3 phage RNA polymerase) as described in Example 5. dsRNA molecules exhibit reduced immunogenicity. In other experiments, the dsRNA molecules are designed to be processed by a cellular enzyme to yield the desired siRNA or shRNA.
  • siRNA small interfering RNA
  • shRNA short hairpin RNA
  • each dsRNA may also be designed to contain several siRNA or shRNA molecules, to facilitate delivery of multiple siRNA or shRNA to a single target cell.
  • the dsR A molecule of the previous Example is complexed with a transfection reagent (e.g a cationic transfection reagent, a lipid-based transfection reagent, a protein-based
  • transfection reagent a polyethyleneimine based transfection reagent, or calcium phosphate
  • Enzymes in or on the surface of the target cell degrade the dsRNA to the desired siRNA or shRNA molecule(s). This method effectively silences transcription of 1 or more cellular genes corresponding to the siRNA or shRNA sequence(s).
  • nucleoside modifications are introduced into in vz ' tro-transcribed RNA, using the methods described above in Examples 5 and 10, and their effects on immunogenicity translation efficiency are tested as described in Examples 4-11 and 12-18, respectively. Certain additional modifications are found to decrease immunogenicity and enhance translation. These modifications are additional embodiments of methods and compositions ofthe present invention.
  • Triethylammonium acetate (TEAA) with an acetonitrile gradient.
  • Buffer A contained 0.1 M TEAA and Buffer B contained 0.1 M TEAA and 25% acetonitrile.
  • Columns were equilibrated with 38% Buffer B in Buffer A, loaded with RNA, and then run with a linear gradient to 55% Buffer B over 30 minutes at 5 ml/minute. Fractions corresponding to the desired peak were collected.
  • RNA analyses were performed with the same column matrix and buffer system, but using a 7.8 mm x 50 mm column at 1.0 ml/min and a gradient duration of 25 minutes.
  • RNA isolation from column fractions Collected fractions were combined, and first their RNA content was concentrated using Amicon Ultra- 15 centrifugal filter units with 3 OK membrane (Millipore). The filter device was filled with 15 ml sample and spin at 4,000x g for 10 min (4°C) in a Thermo Scientific Sorvall ST16R centrifuge using swinging bucket rotor. Under these conditions, -98% of the solvent volume can be removed. When the collected fractions had a volume over 15 ml, the filter unit was reused by filling up with additional column fractions and centrifuging again until all of the RNA was in one tube.
  • nuclease free water was added (up to 15 ml) and the filter device was spun again. The process of "washing out” was repeated until the concentration of the acetonitrile was ⁇ 0.001%.
  • the desalted and solvent- free sample was removed from the filtering device and the RNA was recovered by overnight precipitation at -20 °C in NaOAc (0.3 M, pH 5.5), isopropanol (1 volume) and glycogen (3 ⁇ ). The precipitated RNA was collected, washed twice with ice- cold 75% ethanol and reconstituted in water.
  • RNA 25-100 ng was blotted onto a nitrocellulose membrane, allowed to dry, blocked with 5% non-fat dried milk in TBS buffer supplemented with 0.05%> Tween-20 (TBS- T), and incubated with dsRNA-specific mAb J2 or Kl (English & Scientific Consulting) for 60 minutes. Membranes were washed 6 times with TBS-T and then reacted with HRP-conjugated donkey anti-mouse antibody (Jackson Immunology). After washing 6 times, dsRNA was detected with the addition of SuperSignal West Pico Chemiluminescent substrate (Pierce) and image capture for 30 seconds to 2 minutes on a Fujifilm LAS 1000 digital imaging system.
  • TBS- T Tween-20
  • Dendritic cell generation Monocytopheresis samples were obtained from normal volunteers through an IRB-approved protocol. Human DCs were produced by treating monocytes with GM- CSF (50 ng/ml) + IL-4 (100 ng/ml) (R&D Systems) in AIM V medium (Invitrogen) for 7 days. On days 3 and 6, a 50% volume of new medium with cytokines was added.
  • Murine DC were generated by isolating bone marrow mononuclear cells from Balb/c mice and culturing in RPMI + 10% FBS medium supplemented with murine GM-CSF (20 ng/ml, Peprotech). On days 3 and 6, a 50%> volume of new medium with GM-CSF was added. Nonadherent cells were used after 7 days of culture.
  • Lipofectin complexing of RNA Stock phosphate buffer was added to serum- free DMEM to give final concentrations of 20 mM potassium phosphate and 100 ng/ml BSA, pH 6.4. For 3 wells of a 96-well plate, lipofectin complexed RNA was prepared in the following ratios: 2.4 ⁇ of lipofectin was added to 21.3 ⁇ serum- free DMEM medium with phosphate buffer and incubated at room temperature for 10 minutes. Then, 0.75 ⁇ g of RNA in 9.9 ⁇ serum- free DMEM was added and the mixture was incubated for 10 additional minutes at room temperature. Lastly, 116.4 ml serum- free DMEM was added to bring up the final volume to 150 ml. The mixture was vortexed.
  • TranslT complexing of RNA For each well of a 96-well plate, 0.25 ⁇ g of RNA was added to 17.3 ⁇ of serum- free DMEM on ice. TranslT mRNA reagent (0.3 ul) was added with vortexing followed by 0.2 ⁇ of mRNA boost reagent and vortexing. Complexed RNA was added within 5 minutes of formation.
  • RNA transfections For lipofectin complexed RNA, 50 ⁇ (0.25 Mg RNA/well) was added directly to cells, 5 x 10 5 per well. Transfected cells were incubated for 1 h at 37°C in a 5% C02 incubator. The lipofectin-RNA mixture was removed and replaced with 200 ⁇ pre-warmed serum containing medium. For TranslT complexed RNA, 17 ⁇ of complex was added to cells, 5 x 10 5 per well, in 200 ⁇ of serum containing medium. Cells were lysed in specific lysis media, 3 to 24 hr after transfection and firefly or renilla luciferase activity was measured with specific substrates in a luminometer.
  • RNA immunogenicity analysis DCs (murine or human) in 96-well plates (5 x 10 5 cells/well) were treated with medium, or lipofectin or TransIT complexed RNA. Supernatant was harvested after 24 hr and subjected to analysis. The levels of IFN-CX (TransIT delivered RNA) or TNF-CX (Lipofectin delivered RNA) (Biosource International, Camarillo, CA) were measured in supernatants by ELISA. Cultures were performed in triplicate to quadruplicate and measured in duplicate.
  • This example examines the sequence and cell type dependency of translation of ⁇ -, m5C, and Y/m5C-modified mRNA relative to the unmodified (U) RNA.
  • Firefly or Renilla luciferase encoding mRNA with the indicated modifications were complexed to lipofectin and delivered to murine dendritic (A) and HEK293T (B) cells.
  • Human DC were transfected with firefly or renilla luciferase-encoding mRNA with the indicated modifications complexed with TransIT (C).
  • C TransIT
  • Phage polymerase transcription reactions used for the generation of mRNA results in large quantities of RNA of the correct size, but also contains contaminants. This is visualized by application of RNA to a reverse phase HPLC column that separates RNA based on size under denaturing conditions. Y-modified TEV-luciferase-A51 RNA was applied to the HPLC column in 38% Buffer B and subjected to a linear gradient of increasing Buffer B to 55%. The profile demonstrated both smaller than expected and larger than expected contaminants. These results are shown in Figure 22.
  • HPLC purification increases translation of all types of modified or unmodified RNA, but
  • Y, m5C, and Y/m5C-modified mRNA have low levels of immunogenicity that is reduced to control levels with HPLC purification.
  • the results are shown in Figure 24:
  • Y-modified RNA had unmeasurable levels of IFN-a similar to control treated DCs.
  • Neonatal human epidermal keratinocytes (HEKn) cells were cultured in EpiLife Medium supplemented with keratinocyte growth supplement and
  • Penicillin/Streptomycin (Invitrogen). All cells were grown at 37°C and 5% C0 2 . The human iPS cells that were induced using methods described herein were transferred to hESC-qualified matrigel matrix (BD Biosciences) coated 6-well plates after transfection.
  • RNA Purification and Analysis In some experimental embodiments, the mRNA was purified by HPLC, column fractions were collected, and the mRNA fractions were analyzed for purity an immunogenicity as described in "Materials and Methods for Examples 35-38" and/or as described and shown for Figures 22-24. In some preferred experimental embodiments, purified RNA preparations comprising or consisting of mRNAs encoding one or more reprogramming factors which exhibited little or no immunogenicity were used for the experiments for reprogramming human somatic cells to iPS cells.
  • HEKn cells were plated at 1 x 10 5 cells/well of a 6-well dish in EpiLife medium and grown overnight. The cells were transfected with equal amounts of each reprogramming factor mRNA (KLF4, LIN28, c-MYC, NANOG, OCT4, and SOX2) or a subset of the factors using TransITTM mRNA transfection reagent (MirusBio, Madison, WI). Three transfections were performed, every other day, with media changes every day. The day after the third transfection, the cells were trypsinized and plated in mTeSRl medium (StemCell Technologies) onto matrigel-coated 6-well plates. The mTeSR cell medium was changed daily. Cells were maintained at 37°C with 5% C0 2 . Plates were screened for morphology changes using an inverted microscope.
  • KLF4, LIN28, c-MYC, NANOG, OCT4, and SOX2 TransITTM mRNA transfection reagent
  • HEKn cells were also reprogrammed by a single transfection by electroporation with equal amounts of each reprogramming factor mRNA.
  • the cells were plated directly onto matrigel-coated plates at a density of 1 x 10 5 cells per 6-well dish or 7.5 x 10 5 cells per 10 cm dish in mTeSRl medium which was changed daily.

Abstract

La présente invention concerne des compositions et des procédés de reprogrammation de cellules somatiques à l'aide de préparations d'ARN purifié comprenant de l'ARNm simple brin codant pour une certaine induction cellulaire iPS. Les préparations d'ARN purifié sont de préférence sensiblement exemptes de molécules contaminantes d'ARN qui : i) activeraient une réponse immunitaire dans les cellules somatiques, ii) diminueraient l'expression de l'ARNm simple brin dans les cellules somatiques, et/ou iii) des capteurs d'ARN actifs dans les cellules somatiques. Dans certains modes de réalisation, les préparations d'ARN purifié sont sensiblement exemptes d'ARNm partiels, d'ARN double brin, de molécules d'ARN non coiffées et/ou d'ARNm simple brin en cours de transcription.
PCT/US2010/059305 2009-12-07 2010-12-07 Préparations d'arn comprenant de l'arn modifié purifié pour la reprogrammation de cellules WO2011071931A2 (fr)

Priority Applications (21)

Application Number Priority Date Filing Date Title
EP19203636.6A EP3623474A1 (fr) 2009-12-07 2010-12-07 Préparations d'arn comprenant de l'arn modifié purifié de reprogrammation de cellules
AU2010328310A AU2010328310B2 (en) 2009-12-07 2010-12-07 RNA preparations comprising purified modified RNA for reprogramming cells
KR1020187019421A KR102171849B1 (ko) 2009-12-07 2010-12-07 세포 리프로그래밍을 위한 정제된 변형 rna를 포함하는 rna 제제
CA2783032A CA2783032C (fr) 2009-12-07 2010-12-07 Preparations d'arn comprenant de l'arn modifie purifie pour la reprogrammation de cellules
CN202111349447.6A CN114317612A (zh) 2009-12-07 2010-12-07 用于重编程细胞的包含纯化的经修饰的rna的rna制剂
BR112012013875A BR112012013875B8 (pt) 2009-12-07 2010-12-07 método in vitro para reprogramar células somáticas humanas ou de outros mamíferos para células tronco pluripotentes induzidas (células ips ou ipscs) e composição
JP2012543206A JP2013512690A (ja) 2009-12-07 2010-12-07 細胞を再プログラム化するための精製された修飾rnaを含むrna調製物
CN201080063294.2A CN102947450B (zh) 2009-12-07 2010-12-07 用于重编程细胞的包含纯化的经修饰的rna的rna制剂
NO10836557A NO2510099T3 (fr) 2009-12-07 2010-12-07
KR1020127017473A KR101878502B1 (ko) 2009-12-07 2010-12-07 세포 리프로그래밍을 위한 정제된 변형 rna를 포함하는 rna 제제
EP10836557.8A EP2510099B1 (fr) 2009-12-07 2010-12-07 Préparations d'arn comprenant de l'arn modifié purifié pour la reprogrammation de cellules
EP17195966.1A EP3287525B1 (fr) 2009-12-07 2010-12-07 Préparations d'arn comprenant de l'arn modifié purifié de reprogrammation de cellules
PL17195966T PL3287525T3 (pl) 2009-12-07 2010-12-07 Preparaty RNA zawierające oczyszczony zmodyfikowany RNA do przeprogramowywania komórek
KR1020207030639A KR102505097B1 (ko) 2009-12-07 2010-12-07 세포 리프로그래밍을 위한 정제된 변형 rna를 포함하는 rna 제제
SG2012041950A SG181564A1 (en) 2009-12-07 2010-12-07 Rna preparations comprising purified modified rna for reprogramming cells
PL10836557T PL2510099T3 (pl) 2009-12-07 2010-12-07 Preparaty RNA zawierające oczyszczony zmodyfikowany RNA do przeprogramowywania komórek
KR1020237006482A KR20230035422A (ko) 2009-12-07 2010-12-07 세포 리프로그래밍을 위한 정제된 변형 rna를 포함하는 rna 제제
IL220219A IL220219A0 (en) 2009-12-07 2012-06-06 Rna preparations comprising purified modified rna for reprogramming cells
AU2015215938A AU2015215938B2 (en) 2009-12-07 2015-08-21 RNA preparations comprising purified modified RNA for reprogramming cells
AU2018202479A AU2018202479B2 (en) 2009-12-07 2018-04-09 RNA preparations comprising purified modified RNA for reprogramming cells
AU2020286202A AU2020286202A1 (en) 2009-12-07 2020-12-08 RNA preparations comprising purified modified RNA for reprogramming cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26731209P 2009-12-07 2009-12-07
US61/267,312 2009-12-07

Publications (2)

Publication Number Publication Date
WO2011071931A2 true WO2011071931A2 (fr) 2011-06-16
WO2011071931A3 WO2011071931A3 (fr) 2011-11-17

Family

ID=44143383

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2010/059317 WO2011071936A2 (fr) 2009-12-07 2010-12-07 Compositions et procédés destinés à reprogrammer des cellules eucaryotes
PCT/US2010/059305 WO2011071931A2 (fr) 2009-12-07 2010-12-07 Préparations d'arn comprenant de l'arn modifié purifié pour la reprogrammation de cellules

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2010/059317 WO2011071936A2 (fr) 2009-12-07 2010-12-07 Compositions et procédés destinés à reprogrammer des cellules eucaryotes

Country Status (22)

Country Link
US (6) US8808982B2 (fr)
EP (4) EP3112467B1 (fr)
JP (5) JP2013512690A (fr)
KR (4) KR102505097B1 (fr)
CN (3) CN114317612A (fr)
AU (1) AU2010328310B2 (fr)
BR (1) BR112012013875B8 (fr)
CA (2) CA3170391A1 (fr)
CY (1) CY1120237T1 (fr)
DK (2) DK3287525T3 (fr)
ES (2) ES2769129T3 (fr)
HK (1) HK1251259B (fr)
HR (2) HRP20180737T1 (fr)
HU (2) HUE036684T2 (fr)
IL (1) IL220219A0 (fr)
LT (2) LT3287525T (fr)
NO (2) NO3112467T3 (fr)
PL (3) PL3112467T3 (fr)
PT (1) PT3112467T (fr)
SG (2) SG10201408129XA (fr)
SI (2) SI3112467T1 (fr)
WO (2) WO2011071936A2 (fr)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102203A1 (fr) * 2011-12-30 2013-07-04 Cellscript, Inc. FABRICATION ET UTILISATION D'ARNss SYNTHÉTISÉS IN VITRO POUR INTRODUCTION DANS DES CELLULES MAMMALIENNES AFIN D'INDUIRE UN EFFET BIOLOGIQUE OU BIOCHIMIQUE
WO2013151665A2 (fr) 2012-04-02 2013-10-10 modeRNA Therapeutics Polynucléotides modifiés destinés à la production de protéines associées à une maladie humaine
WO2013151666A2 (fr) 2012-04-02 2013-10-10 modeRNA Therapeutics Polynucléotides modifiés destinés à la production de produits biologiques et de protéines associées à une maladie humaine
US8664194B2 (en) 2011-12-16 2014-03-04 Moderna Therapeutics, Inc. Method for producing a protein of interest in a primate
WO2014039768A1 (fr) 2012-09-07 2014-03-13 Genentech, Inc. Procédés et compositions pour produire des hépatocytes induits
US8710200B2 (en) 2011-03-31 2014-04-29 Moderna Therapeutics, Inc. Engineered nucleic acids encoding a modified erythropoietin and their expression
US8808982B2 (en) 2009-12-07 2014-08-19 Cellscript, Llc Compositions and methods for reprogramming eukaryotic cells
US8822663B2 (en) 2010-08-06 2014-09-02 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EP2791159A1 (fr) * 2011-12-14 2014-10-22 Moderna Therapeutics, Inc. Acides nucléiques modifiés, et utilisations en soins de courte durée de ceux-ci
JP2014530601A (ja) * 2011-10-03 2014-11-20 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. 修飾型のヌクレオシド、ヌクレオチドおよび核酸、ならびにそれらの使用方法
WO2015034928A1 (fr) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Polynucléotides chimériques
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
JP2015510495A (ja) * 2011-12-21 2015-04-09 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. 器官または器官移植片の生存可能性または寿命を延長する方法
US9012219B2 (en) 2005-08-23 2015-04-21 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
WO2015062738A1 (fr) 2013-11-01 2015-05-07 Curevac Gmbh Arn modifié à propriétés immunostimulantes réduites
JP2015520195A (ja) * 2012-06-08 2015-07-16 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド 非肺標的細胞へのmRNAの経肺送達
US9107886B2 (en) 2012-04-02 2015-08-18 Moderna Therapeutics, Inc. Modified polynucleotides encoding basic helix-loop-helix family member E41
CN104955951A (zh) * 2012-10-16 2015-09-30 麻省理工学院 稳定的非多腺苷酸化rna的产生
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9334328B2 (en) 2010-10-01 2016-05-10 Moderna Therapeutics, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
US9371511B2 (en) 2005-08-23 2016-06-21 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
US9376669B2 (en) 2012-11-01 2016-06-28 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US9512456B2 (en) 2012-08-14 2016-12-06 Modernatx, Inc. Enzymes and polymerases for the synthesis of RNA
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9597380B2 (en) 2012-11-26 2017-03-21 Modernatx, Inc. Terminally modified RNA
US9605277B2 (en) 2011-12-05 2017-03-28 Factor Bioscience, Inc. Methods and products for transfecting cells
US9751925B2 (en) 2014-11-10 2017-09-05 Modernatx, Inc. Alternative nucleic acid molecules containing reduced uracil content and uses thereof
US9770489B2 (en) 2014-01-31 2017-09-26 Factor Bioscience Inc. Methods and products for nucleic acid production and delivery
WO2017180587A2 (fr) 2016-04-11 2017-10-19 Obsidian Therapeutics, Inc. Systèmes de biocircuits régulés
US9872900B2 (en) 2014-04-23 2018-01-23 Modernatx, Inc. Nucleic acid vaccines
US10023626B2 (en) 2013-09-30 2018-07-17 Modernatx, Inc. Polynucleotides encoding immune modulating polypeptides
US10077439B2 (en) 2013-03-15 2018-09-18 Modernatx, Inc. Removal of DNA fragments in mRNA production process
US10138507B2 (en) 2013-03-15 2018-11-27 Modernatx, Inc. Manufacturing methods for production of RNA transcripts
US10137206B2 (en) 2016-08-17 2018-11-27 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
US10286086B2 (en) 2014-06-19 2019-05-14 Modernatx, Inc. Alternative nucleic acid molecules and uses thereof
US10323076B2 (en) 2013-10-03 2019-06-18 Modernatx, Inc. Polynucleotides encoding low density lipoprotein receptor
US10385088B2 (en) 2013-10-02 2019-08-20 Modernatx, Inc. Polynucleotide molecules and uses thereof
US10407683B2 (en) 2014-07-16 2019-09-10 Modernatx, Inc. Circular polynucleotides
EP3542802A1 (fr) 2013-11-01 2019-09-25 CureVac AG Arn modifié avec des propriétés immunostimulatrices réduites
US10501404B1 (en) 2019-07-30 2019-12-10 Factor Bioscience Inc. Cationic lipids and transfection methods
US10501513B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
WO2019241315A1 (fr) 2018-06-12 2019-12-19 Obsidian Therapeutics, Inc. Constructions régulatrices dérivées de pde5 et procédés d'utilisation en immunothérapie
US10525075B2 (en) 2013-02-22 2020-01-07 The Board Of Trustees Of The Leland Stanford Junior University Compounds, compositions, methods, and kits relating to telomere extension
US10590161B2 (en) 2013-03-15 2020-03-17 Modernatx, Inc. Ion exchange purification of mRNA
WO2020086742A1 (fr) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Régulation de protéine accordable par er
US10653712B2 (en) 2016-09-14 2020-05-19 Modernatx, Inc. High purity RNA compositions and methods for preparation thereof
US10730924B2 (en) 2016-05-18 2020-08-04 Modernatx, Inc. Polynucleotides encoding relaxin
US10849920B2 (en) 2015-10-05 2020-12-01 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
US11027025B2 (en) 2013-07-11 2021-06-08 Modernatx, Inc. Compositions comprising synthetic polynucleotides encoding CRISPR related proteins and synthetic sgRNAs and methods of use
WO2021182917A1 (fr) 2020-03-12 2021-09-16 기초과학연구원 Composition pour induire l'apoptose de cellules ayant une variation de séquence génomique et procédé pour induire l'apoptose de cellules à l'aide de la composition
EP3445850B1 (fr) 2016-04-22 2021-10-27 BioNTech SE Procédés de production d'arn simple brin
US11241505B2 (en) 2015-02-13 2022-02-08 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US20220125723A1 (en) 2010-07-06 2022-04-28 Glaxosmithkline Biologicals Sa Lipid formulations with viral immunogens
US11377470B2 (en) 2013-03-15 2022-07-05 Modernatx, Inc. Ribonucleic acid purification
US11434486B2 (en) 2015-09-17 2022-09-06 Modernatx, Inc. Polynucleotides containing a morpholino linker
US11471525B2 (en) 2020-02-04 2022-10-18 Curevac Ag Coronavirus vaccine
US11479768B2 (en) 2015-06-30 2022-10-25 Ethris Gmbh ATP-binding cassette family coding polyribonucleotides and formulations thereof
WO2023288285A1 (fr) * 2021-07-15 2023-01-19 Turn Biotechnologies, Inc. Vecteurs d'expression polycistronique
US11596645B2 (en) 2010-07-06 2023-03-07 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
EP4159741A1 (fr) 2014-07-16 2023-04-05 ModernaTX, Inc. Procédé de production d'un polynucléotide chimérique pour coder un polypeptide ayant une liaison internucléotidique contenant un triazole
US11639370B2 (en) 2010-10-11 2023-05-02 Glaxosmithkline Biologicals Sa Antigen delivery platforms
US11655475B2 (en) 2010-07-06 2023-05-23 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11701413B2 (en) 2017-04-11 2023-07-18 BioNTech SE RNA for treatment of autoimmune diseases
US11744801B2 (en) 2017-08-31 2023-09-05 Modernatx, Inc. Methods of making lipid nanoparticles
US11759422B2 (en) 2010-08-31 2023-09-19 Glaxosmithkline Biologicals Sa Pegylated liposomes for delivery of immunogen-encoding RNA
US11786607B2 (en) 2017-06-15 2023-10-17 Modernatx, Inc. RNA formulations
US11866696B2 (en) 2017-08-18 2024-01-09 Modernatx, Inc. Analytical HPLC methods
US11865159B2 (en) 2017-02-28 2024-01-09 Sanofi Therapeutic RNA
US11872280B2 (en) 2020-12-22 2024-01-16 CureVac SE RNA vaccine against SARS-CoV-2 variants
US11896636B2 (en) 2011-07-06 2024-02-13 Glaxosmithkline Biologicals Sa Immunogenic combination compositions and uses thereof
US11912982B2 (en) 2017-08-18 2024-02-27 Modernatx, Inc. Methods for HPLC analysis

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9249423B2 (en) * 2007-02-02 2016-02-02 Yale University Method of de-differentiating and re-differentiating somatic cells using RNA
US10155038B2 (en) 2007-02-02 2018-12-18 Yale University Cells prepared by transient transfection and methods of use thereof
US8859229B2 (en) * 2007-02-02 2014-10-14 Yale University Transient transfection with RNA
PL3338765T3 (pl) 2009-12-01 2019-06-28 Translate Bio, Inc. Pochodna steroidowa dla dostarczania mrna w ludzkich chorobach genetycznych
EP3072961A1 (fr) 2010-04-16 2016-09-28 Children's Medical Center Corporation Expression de polypeptides prolongée à partir d'arn modifiés, synthétiques et leurs utilisations
WO2012075040A2 (fr) 2010-11-30 2012-06-07 Shire Human Genetic Therapies, Inc. Arnm pour l'utilisation dans le traitement de maladies génétiques humaines
EP4043025A1 (fr) 2011-06-08 2022-08-17 Translate Bio, Inc. Compositions de nanoparticules lipidiques et procédés d'administration d'arnm
US8497124B2 (en) 2011-12-05 2013-07-30 Factor Bioscience Inc. Methods and products for reprogramming cells to a less differentiated state
ES2951822T3 (es) * 2012-05-13 2023-10-25 Allele Biotechnology & Pharmaceuticals Inc Derivación sin alimentadores de células madre pluripotentes inducidas humanas con ARN mensajero sintético
EP2859102A4 (fr) 2012-06-08 2016-05-11 Shire Human Genetic Therapies Polynucléotides résistant à la nucléase et leurs utilisations
US20160024181A1 (en) 2013-03-13 2016-01-28 Moderna Therapeutics, Inc. Long-lived polynucleotide molecules
PT2968586T (pt) 2013-03-14 2018-11-13 Ethris Gmbh Composições de arnm de cftr e métodos e utilizações relacionados
EP2970955B1 (fr) 2013-03-14 2018-11-14 Translate Bio, Inc. Procédés de purification d'arn messager
WO2014160243A1 (fr) * 2013-03-14 2014-10-02 The Trustees Of The University Of Pennsylvania Purification et évaluation de la pureté de molécules d'arn synthétisées comprenant des nucléosides modifiés
JP6625521B2 (ja) 2013-05-15 2020-01-08 リボカイン,エルエルシー 環状rnaの細胞内翻訳
CA2919324A1 (fr) * 2013-07-26 2015-01-29 Kenta Yamamoto Osteoblaste et son procede de preparation
KR20230074639A (ko) * 2013-08-28 2023-05-30 벡톤 디킨슨 앤드 컴퍼니 대량의 동시 단일 세포 분석
WO2015061491A1 (fr) 2013-10-22 2015-04-30 Shire Human Genetic Therapies, Inc. Thérapie à l'arnm pour la phénylcétonurie
AU2014340092B2 (en) 2013-10-22 2019-09-19 Translate Bio, Inc. mRNA therapy for Argininosuccinate Synthetase Deficiency
KR101665165B1 (ko) * 2013-12-04 2016-10-12 단국대학교 산학협력단 신규한 rna 앱타머 및 그의 용도
EP3104889B1 (fr) 2014-02-10 2021-10-13 The Board of Trustees of the Leland Stanford Junior University Activation de l'immunité innée pour améliorer la reprogrammation nucléaire de cellules somatiques avec un arnm
SG11201608725YA (en) 2014-04-25 2016-11-29 Shire Human Genetic Therapies Methods for purification of messenger rna
WO2017044853A1 (fr) * 2015-09-09 2017-03-16 Trustees Of Tufts College Procédés de génération de cellules souches neuronales
JP2019517531A (ja) * 2016-06-03 2019-06-24 ステムジェニクス, インコーポレイテッド 機能化ナノ粒子によるヒト体細胞の選択された(所定の)分化細胞への直接リプログラミング
CN106226524B (zh) * 2016-07-07 2018-10-09 福建省农业科学院食用菌研究所 一种食用菌dsRNA病毒的检测方法
BR112019005144A2 (pt) * 2016-09-16 2019-06-04 Icahn School Med Mount Sinai sistema regulador de expressão, composição, métodos para expressar uma proteína, para induzir/reativar a proliferação de cardiomiócitos neonatais ou adultos e para expressar um gene de interesse, vetor, kit regulador de expressão, e, uso.
WO2018157154A2 (fr) 2017-02-27 2018-08-30 Translate Bio, Inc. Nouvel arnm cftr à codons optimisés
EP3624824A1 (fr) 2017-05-16 2020-03-25 Translate Bio, Inc. Traitement de la fibrose kystique par administration d'arnm à codons optimisés codant pour la cftr
US10034951B1 (en) 2017-06-21 2018-07-31 New England Biolabs, Inc. Use of thermostable RNA polymerases to produce RNAs having reduced immunogenicity
CN107563149B (zh) * 2017-08-21 2020-10-23 上海派森诺生物科技股份有限公司 全长转录本的结构注释和比对结果评估方法
US20200362313A1 (en) * 2017-09-13 2020-11-19 Biontech Rna Pharmaceuticals Gmbh Method of enhancing rna expression in a cell
BR112020018602A2 (pt) * 2018-03-13 2020-12-29 The Board Of Trustees Of The Leland Stanford Junior University Reprogramação celular transiente para reversão de envelhecimento celular
CN108676855B (zh) * 2018-07-24 2021-09-28 内蒙古赛科星家畜种业与繁育生物技术研究院有限公司 标准曲线法荧光定量pcr鉴定牛转基因拷贝数的方法及引物
AU2019325702A1 (en) 2018-08-24 2021-02-25 Translate Bio, Inc. Methods for purification of messenger RNA
EP3861108A1 (fr) 2018-10-04 2021-08-11 New England Biolabs, Inc. Procédés et compositions pour augmenter l'efficacité de coiffage d'un arn transcrit
US11072808B2 (en) 2018-10-04 2021-07-27 New England Biolabs, Inc. Methods and compositions for increasing capping efficiency of transcribed RNA
US20220034872A1 (en) * 2018-10-31 2022-02-03 National Cancer Center Composition comprising material for regulating oct4 modification to repress stemness
WO2020168466A1 (fr) * 2019-02-19 2020-08-27 Stemirna Therapeutics Co., Ltd. Nucléoside modifié et procédés de synthèse associés
CN112390838A (zh) * 2019-08-14 2021-02-23 斯微(上海)生物科技有限公司 一种改性核苷及其合成方法
CN110894493A (zh) * 2019-10-28 2020-03-20 吉林大学 一种重编程间充质干细胞及其制备方法
US20230055044A1 (en) * 2020-01-24 2023-02-23 I Peace, Inc. Method for manufacturing induced pluripotent stem cells
WO2021205077A1 (fr) 2020-04-09 2021-10-14 Finncure Oy Nanoparticules mimétiques pour prévenir la propagation et diminuer le taux d'infection de nouveaux coronavirus
GB2618225A (en) * 2020-11-13 2023-11-01 Egenesis Inc Cells, tissues, organs and animals having one or more modified genes for enhanced xenograft survival and tolerance
WO2023288287A2 (fr) 2021-07-15 2023-01-19 Turn Biotechnologies, Inc. Constructions d'arn synthétiques, persistants et procédés d'utilisation pour le rajeunissement de cellules et pour le traitement
WO2023288288A1 (fr) 2021-07-15 2023-01-19 Turn Biotechnologies, Inc. Constructions d'arn synthétiques persistants dotées d'un mécanisme de mise en marche/arrêt pour l'expression régulée et procédés d'utilisation
CN113408945B (zh) * 2021-07-15 2023-03-24 广西中烟工业有限责任公司 一种烤烟纯度的检测方法、装置、电子设备及存储介质
CN114196676B (zh) * 2021-11-29 2023-07-18 中国农业科学院北京畜牧兽医研究所 Itga2基因在调控猪米色脂肪形成中的应用
CN114561381A (zh) * 2022-03-14 2022-05-31 桂林医学院 免疫mRNA及其制备方法和应用
AU2023274159A1 (en) 2022-09-07 2024-03-21 Eyegene Inc. COMPOSITION FOR IN-VIVO DELIVERING mRNA CONTAINING MODIFIED NUCLEOTIDE
CN117511947B (zh) * 2024-01-08 2024-03-29 艾斯拓康医药科技(北京)有限公司 一种优化的5`utr序列及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077134A2 (fr) 2007-12-14 2009-06-25 Johannes Gutenberg-Universität Mainz Utilisation de l'arn pour la reprogrammation de cellules somatiques

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5824497A (en) * 1995-02-10 1998-10-20 Mcmaster University High efficiency translation of mRNA molecules
WO1998059076A1 (fr) * 1997-06-25 1998-12-30 Promega Corporation Procede d'isolement d'arn
AU9319398A (en) * 1997-09-19 1999-04-05 Sequitur, Inc. Sense mrna therapy
JP2004527236A (ja) 2001-02-14 2004-09-09 ベイラー カレッジ オブ メディスン Rna増幅の方法及び組成物
FR2822164B1 (fr) 2001-03-19 2004-06-18 Centre Nat Rech Scient Polypeptides derives des arn polymerases, et leurs utilisations
US20050137155A1 (en) * 2001-05-18 2005-06-23 Sirna Therapeutics, Inc. RNA interference mediated treatment of Parkinson disease using short interfering nucleic acid (siNA)
US8137911B2 (en) 2001-05-22 2012-03-20 Cellscript, Inc. Preparation and use of single-stranded transcription substrates for synthesis of transcription products corresponding to target sequences
AU2003294447A1 (en) 2002-11-21 2004-06-18 Epicentre Technologies Preparation and use of single-stranded transcription substrates for synthesis of transcription products corresponding to target sequences
US9567591B2 (en) * 2003-05-15 2017-02-14 Mello Biotechnology, Inc. Generation of human embryonic stem-like cells using intronic RNA
US20050153333A1 (en) 2003-12-02 2005-07-14 Sooknanan Roy R. Selective terminal tagging of nucleic acids
JP2008504827A (ja) * 2004-07-02 2008-02-21 プロチバ バイオセラピューティクス インコーポレイティッド 免疫賦活性siRNA分子およびその使用方法
US9012219B2 (en) 2005-08-23 2015-04-21 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
ES2937245T3 (es) 2005-08-23 2023-03-27 Univ Pennsylvania ARN que contiene nucleósidos modificados y métodos de uso del mismo
US20070087437A1 (en) * 2005-10-14 2007-04-19 Jifan Hu Methods for rejuvenating cells in vitro and in vivo
US20070281336A1 (en) 2006-04-14 2007-12-06 Epicentre Technologies Kits and methods for generating 5' capped RNA
DE102006051516A1 (de) * 2006-10-31 2008-05-08 Curevac Gmbh (Basen-)modifizierte RNA zur Expressionssteigerung eines Proteins
KR101107256B1 (ko) 2007-03-27 2012-01-19 삼성전자주식회사 모션 벡터에 기반한 적응적 프레임율 변환 방법 및 장치 및적응적 프레임율 변환 기능을 가지는 디스플레이 장치
US20100184051A1 (en) * 2007-05-30 2010-07-22 The General Hospital Corporation Methods of generating pluripotent cells from somatic cells
EP2173872B1 (fr) 2007-06-29 2014-04-02 CellScript, Inc. Adn de copie et arn sens
GB0801215D0 (en) * 2008-01-23 2008-02-27 Univ Sheffield Cell re-programming
EP2250252A2 (fr) * 2008-02-11 2010-11-17 Cambridge Enterprise Limited Reprogrammation perfectionnée de cellules de mammifère et cellules ainsi obtenues
WO2009127230A1 (fr) * 2008-04-16 2009-10-22 Curevac Gmbh Arn(m) modifié pour supprimer ou éviter une réponse immunostimulante et composition immunosuppressive
WO2010008486A2 (fr) * 2008-06-24 2010-01-21 Parkinsons Institute Lignées cellulaires pluripotentes et procédés d’utilisation de celles-ci
GB0905507D0 (en) 2009-03-31 2009-05-13 Dow Corning Organopol Ysiloxane Compositions Containing An Active Material
WO2010123501A1 (fr) 2009-04-22 2010-10-28 Massachusetts Institute Of Technology Suppression immunitaire innée permettant la distribution répétée de longues molécules d'arn
EP2459231B1 (fr) * 2009-07-31 2016-06-08 Ethris Gmbh Arn ayant une combinaison de nucléotides non modifiés et modifiés pour l'expression protéique
US20130189741A1 (en) 2009-12-07 2013-07-25 Cellscript, Inc. Compositions and methods for reprogramming mammalian cells
KR102505097B1 (ko) 2009-12-07 2023-03-02 더 트러스티스 오브 더 유니버시티 오브 펜실베니아 세포 리프로그래밍을 위한 정제된 변형 rna를 포함하는 rna 제제
EP3072961A1 (fr) * 2010-04-16 2016-09-28 Children's Medical Center Corporation Expression de polypeptides prolongée à partir d'arn modifiés, synthétiques et leurs utilisations
EP3578205A1 (fr) * 2010-08-06 2019-12-11 ModernaTX, Inc. Compositions pharmaceutiques a base d'acides nucléiques modifiés et leur utilisation medicale
US20120237975A1 (en) 2010-10-01 2012-09-20 Jason Schrum Engineered nucleic acids and methods of use thereof
US8765414B2 (en) * 2011-03-15 2014-07-01 The Board Of Trustees Of The Leland Stanford Junior University GPCR fusion protein containing an N-terminal autonomously folding stable domain, and crystals of the same
EP2691101A2 (fr) * 2011-03-31 2014-02-05 Moderna Therapeutics, Inc. Administration et formulation d'acides nucléiques génétiquement modifiés
WO2013003475A1 (fr) 2011-06-27 2013-01-03 Cellscript, Inc. Inhibition d'une réponse immunitaire innée
PL3421601T3 (pl) 2011-12-30 2020-06-01 Cellscript, Llc Wytwarzanie i stosowanie zsyntetyzowanego in vitro ssRNA do wprowadzania do ssaczych komórek w celu indukcji efektu biologicznego lub biochemicznego

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077134A2 (fr) 2007-12-14 2009-06-25 Johannes Gutenberg-Universität Mainz Utilisation de l'arn pour la reprogrammation de cellules somatiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WARREN ET AL.: "Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA", CELL STEM CELL, vol. 7, 5 November 2010 (2010-11-05), pages 618 - 630, XP002693059, DOI: doi:10.1016/J.STEM.2010.08.012

Cited By (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371511B2 (en) 2005-08-23 2016-06-21 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
US9163213B2 (en) 2005-08-23 2015-10-20 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
US9012219B2 (en) 2005-08-23 2015-04-21 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
US8808982B2 (en) 2009-12-07 2014-08-19 Cellscript, Llc Compositions and methods for reprogramming eukaryotic cells
US10006007B2 (en) 2009-12-07 2018-06-26 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
US11028370B2 (en) 2009-12-07 2021-06-08 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
US9371544B2 (en) 2009-12-07 2016-06-21 The Trustees Of The University Of Pennsylvania Compositions and methods for reprogramming eukaryotic cells
US11739300B2 (en) 2009-12-07 2023-08-29 The Trustees Of The University Of Pennsylvania RNA preparations comprising purified modified RNA for reprogramming cells
US11655475B2 (en) 2010-07-06 2023-05-23 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11707482B2 (en) 2010-07-06 2023-07-25 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11690863B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11638693B2 (en) 2010-07-06 2023-05-02 Glaxosmithkline Biologicals Sa Vaccine for eliciting immune response comprising RNA encoding an immunogen and lipid formulations comprising mole percentage of lipids
US11913001B2 (en) 2010-07-06 2024-02-27 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11883534B2 (en) 2010-07-06 2024-01-30 Glaxosmithkline Biologicals Sa Immunisation with lipid formulations with RNA encoding immunogens
US11865080B2 (en) 2010-07-06 2024-01-09 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11857681B2 (en) 2010-07-06 2024-01-02 Glaxosmithkline Biologicals Sa Lipid formulations with RNA encoding immunogens
US11857562B2 (en) 2010-07-06 2024-01-02 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US20220125723A1 (en) 2010-07-06 2022-04-28 Glaxosmithkline Biologicals Sa Lipid formulations with viral immunogens
US11690864B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11839686B2 (en) 2010-07-06 2023-12-12 Glaxosmithkline Biologicals Sa Lipid formulations with viral immunogens
US11786467B2 (en) 2010-07-06 2023-10-17 Glaxosmithkline Biologicals Sa Lipid formulations with immunogens
US11773395B1 (en) 2010-07-06 2023-10-03 Glaxosmithkline Biologicals Sa Immunization of large mammals with low doses of RNA
US11766401B2 (en) 2010-07-06 2023-09-26 Glaxosmithkline Biologicals Sa Methods of administering lipid formulations with immunogens
US11690862B1 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11759475B2 (en) 2010-07-06 2023-09-19 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11739334B2 (en) 2010-07-06 2023-08-29 Glaxosmithkline Biologicals Sa Immunisation of large mammals with low doses of RNA
US11891608B2 (en) 2010-07-06 2024-02-06 Glaxosmithkline Biologicals Sa Immunization of large mammals with low doses of RNA
US11730754B2 (en) 2010-07-06 2023-08-22 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11717529B2 (en) 2010-07-06 2023-08-08 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11596645B2 (en) 2010-07-06 2023-03-07 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11690865B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11905514B2 (en) 2010-07-06 2024-02-20 Glaxosmithkline Biological Sa Immunisation of large mammals with low doses of RNA
US11638694B2 (en) 2010-07-06 2023-05-02 Glaxosmithkline Biologicals Sa Vaccine for eliciting immune response comprising lipid formulations and RNA encoding multiple immunogens
US11690861B2 (en) 2010-07-06 2023-07-04 Glaxosmithkline Biologicals Sa Delivery of RNA to trigger multiple immune pathways
US11696923B2 (en) 2010-07-06 2023-07-11 Glaxosmithkline Biologicals, Sa Delivery of RNA to trigger multiple immune pathways
US11666534B2 (en) 2010-07-06 2023-06-06 Glaxosmithkline Biologicals Sa Methods of administering lipid formulations with viral immunogens
US9937233B2 (en) 2010-08-06 2018-04-10 Modernatx, Inc. Engineered nucleic acids and methods of use thereof
US9447164B2 (en) 2010-08-06 2016-09-20 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US8822663B2 (en) 2010-08-06 2014-09-02 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US11759422B2 (en) 2010-08-31 2023-09-19 Glaxosmithkline Biologicals Sa Pegylated liposomes for delivery of immunogen-encoding RNA
US9657295B2 (en) 2010-10-01 2017-05-23 Modernatx, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
US9334328B2 (en) 2010-10-01 2016-05-10 Moderna Therapeutics, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
US10064959B2 (en) 2010-10-01 2018-09-04 Modernatx, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
EP3590949B1 (fr) 2010-10-01 2022-05-18 ModernaTX, Inc. Acides ribonucléiques contenant des n1-methyl-pseudouracils et leurs utilisations
US11639370B2 (en) 2010-10-11 2023-05-02 Glaxosmithkline Biologicals Sa Antigen delivery platforms
US10898574B2 (en) 2011-03-31 2021-01-26 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
US9950068B2 (en) 2011-03-31 2018-04-24 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
US11911474B2 (en) 2011-03-31 2024-02-27 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
US9533047B2 (en) 2011-03-31 2017-01-03 Modernatx, Inc. Delivery and formulation of engineered nucleic acids
US8710200B2 (en) 2011-03-31 2014-04-29 Moderna Therapeutics, Inc. Engineered nucleic acids encoding a modified erythropoietin and their expression
US11896636B2 (en) 2011-07-06 2024-02-13 Glaxosmithkline Biologicals Sa Immunogenic combination compositions and uses thereof
US10751386B2 (en) 2011-09-12 2020-08-25 Modernatx, Inc. Engineered nucleic acids and methods of use thereof
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
US10022425B2 (en) 2011-09-12 2018-07-17 Modernatx, Inc. Engineered nucleic acids and methods of use thereof
US9428535B2 (en) 2011-10-03 2016-08-30 Moderna Therapeutics, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
EP3682905B1 (fr) 2011-10-03 2021-12-01 ModernaTX, Inc. Nucléosides, nucléotides et acides nucléiques modifiés et leurs utilisations
JP2017113029A (ja) * 2011-10-03 2017-06-29 モデルナティエックス インコーポレイテッドModernaTX,Inc. 修飾型のヌクレオシド、ヌクレオチドおよび核酸、ならびにそれらの使用方法
JP2019208511A (ja) * 2011-10-03 2019-12-12 モデルナティエックス インコーポレイテッドModernaTX,Inc. 修飾型のヌクレオシド、ヌクレオチドおよび核酸、ならびにそれらの使用方法
JP2014530601A (ja) * 2011-10-03 2014-11-20 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. 修飾型のヌクレオシド、ヌクレオチドおよび核酸、ならびにそれらの使用方法
JP2018166528A (ja) * 2011-10-03 2018-11-01 モデルナティエックス インコーポレイテッドModernaTX,Inc. 修飾型のヌクレオシド、ヌクレオチドおよび核酸、ならびにそれらの使用方法
JP7019639B2 (ja) 2011-10-03 2022-02-15 モデルナティエックス インコーポレイテッド 修飾型のヌクレオシド、ヌクレオチドおよび核酸、ならびにそれらの使用方法
US10662410B1 (en) 2011-12-05 2020-05-26 Factor Bioscience Inc. Methods and products for transfecting cells
US11692203B2 (en) 2011-12-05 2023-07-04 Factor Bioscience Inc. Methods and products for transfecting cells
US10472611B2 (en) 2011-12-05 2019-11-12 Factor Bioscience Inc. Methods and products for transfecting cells
US9605277B2 (en) 2011-12-05 2017-03-28 Factor Bioscience, Inc. Methods and products for transfecting cells
US9605278B2 (en) 2011-12-05 2017-03-28 Factor Bioscience Inc. Methods and products for transfecting cells
US11708586B2 (en) 2011-12-05 2023-07-25 Factor Bioscience Inc. Methods and products for transfecting cells
US10829738B2 (en) 2011-12-05 2020-11-10 Factor Bioscience Inc. Methods and products for transfecting cells
US10982229B2 (en) 2011-12-05 2021-04-20 Factor Bioscience Inc. Methods and products for transfecting cells
US11466293B2 (en) 2011-12-05 2022-10-11 Factor Bioscience Inc. Methods and products for transfecting cells
EP2791159A1 (fr) * 2011-12-14 2014-10-22 Moderna Therapeutics, Inc. Acides nucléiques modifiés, et utilisations en soins de courte durée de ceux-ci
EP2791159A4 (fr) * 2011-12-14 2015-10-14 Moderna Therapeutics Inc Acides nucléiques modifiés, et utilisations en soins de courte durée de ceux-ci
US8680069B2 (en) 2011-12-16 2014-03-25 Moderna Therapeutics, Inc. Modified polynucleotides for the production of G-CSF
US8664194B2 (en) 2011-12-16 2014-03-04 Moderna Therapeutics, Inc. Method for producing a protein of interest in a primate
EP2791160B1 (fr) 2011-12-16 2022-03-02 ModernaTX, Inc. Compositions de mrna modifiés
US9186372B2 (en) 2011-12-16 2015-11-17 Moderna Therapeutics, Inc. Split dose administration
US9271996B2 (en) 2011-12-16 2016-03-01 Moderna Therapeutics, Inc. Formulation and delivery of PLGA microspheres
US9295689B2 (en) 2011-12-16 2016-03-29 Moderna Therapeutics, Inc. Formulation and delivery of PLGA microspheres
JP2015510495A (ja) * 2011-12-21 2015-04-09 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. 器官または器官移植片の生存可能性または寿命を延長する方法
EP3421601A1 (fr) * 2011-12-30 2019-01-02 Cellscript, Llc Fabrication et utilisation d'un arnss synthétisé in vitro à introduire dans des cellules de mammifères pour induire un effet biologique ou biochimique
US10201620B2 (en) 2011-12-30 2019-02-12 Cellscript, Llc Making and using in vitro-synthesized ssRNA for introducing into mammalian cells to induce a biological or biochemical effect
EP3677678A1 (fr) * 2011-12-30 2020-07-08 Cellscript, Llc Fabrication et utilisation d'un arnss synthétisé in vitro à introduire dans des cellules de mammifères pour induire un effet biologique ou biochimique
WO2013102203A1 (fr) * 2011-12-30 2013-07-04 Cellscript, Inc. FABRICATION ET UTILISATION D'ARNss SYNTHÉTISÉS IN VITRO POUR INTRODUCTION DANS DES CELLULES MAMMALIENNES AFIN D'INDUIRE UN EFFET BIOLOGIQUE OU BIOCHIMIQUE
US11135314B2 (en) 2011-12-30 2021-10-05 Cellscript, Llc Making and using in vitro-synthesized ssRNA for introducing into mammalian cells to induce a biological or biochemical effect
EP3144389A1 (fr) * 2011-12-30 2017-03-22 Cellscript, Llc Fabrication et utilisation d'un arnss synthétisé in vitro à introduire dans des cellules de mammifères pour induire un effet biologique ou biochimique
US10463751B2 (en) 2012-04-02 2019-11-05 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US9221891B2 (en) 2012-04-02 2015-12-29 Moderna Therapeutics, Inc. In vivo production of proteins
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
JP2018023373A (ja) * 2012-04-02 2018-02-15 モデルナティエックス インコーポレイテッドModernaTX,Inc. 細胞質および細胞骨格タンパク質の産生のための修飾ポリヌクレオチド
US9828416B2 (en) 2012-04-02 2017-11-28 Modernatx, Inc. Modified polynucleotides for the production of secreted proteins
US9827332B2 (en) 2012-04-02 2017-11-28 Modernatx, Inc. Modified polynucleotides for the production of proteins
WO2013151665A2 (fr) 2012-04-02 2013-10-10 modeRNA Therapeutics Polynucléotides modifiés destinés à la production de protéines associées à une maladie humaine
WO2013151666A2 (fr) 2012-04-02 2013-10-10 modeRNA Therapeutics Polynucléotides modifiés destinés à la production de produits biologiques et de protéines associées à une maladie humaine
WO2013151736A2 (fr) 2012-04-02 2013-10-10 modeRNA Therapeutics Production in vivo de protéines
US9814760B2 (en) 2012-04-02 2017-11-14 Modernatx, Inc. Modified polynucleotides for the production of biologics and proteins associated with human disease
WO2013151668A2 (fr) 2012-04-02 2013-10-10 modeRNA Therapeutics Polynucléotides modifiés destinés à la production de protéines sécrétées
CN104411338A (zh) * 2012-04-02 2015-03-11 现代治疗公司 用于产生与人类疾病相关的生物制剂和蛋白质的修饰多核苷酸
JP2017197545A (ja) * 2012-04-02 2017-11-02 モデルナティエックス インコーポレイテッドModernaTX,Inc. 腫瘍学関連タンパク質およびペプチドの産生のための修飾ポリヌクレオチド
US8999380B2 (en) 2012-04-02 2015-04-07 Moderna Therapeutics, Inc. Modified polynucleotides for the production of biologics and proteins associated with human disease
US9050297B2 (en) 2012-04-02 2015-06-09 Moderna Therapeutics, Inc. Modified polynucleotides encoding aryl hydrocarbon receptor nuclear translocator
US9061059B2 (en) 2012-04-02 2015-06-23 Moderna Therapeutics, Inc. Modified polynucleotides for treating protein deficiency
JP2015519040A (ja) * 2012-04-02 2015-07-09 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. 細胞質および細胞骨格タンパク質の産生のための修飾ポリヌクレオチド
US9089604B2 (en) 2012-04-02 2015-07-28 Moderna Therapeutics, Inc. Modified polynucleotides for treating galactosylceramidase protein deficiency
US9095552B2 (en) 2012-04-02 2015-08-04 Moderna Therapeutics, Inc. Modified polynucleotides encoding copper metabolism (MURR1) domain containing 1
CN108949772A (zh) * 2012-04-02 2018-12-07 现代泰克斯公司 用于产生与人类疾病相关的生物制剂和蛋白质的修饰多核苷酸
US9782462B2 (en) 2012-04-02 2017-10-10 Modernatx, Inc. Modified polynucleotides for the production of proteins associated with human disease
US9107886B2 (en) 2012-04-02 2015-08-18 Moderna Therapeutics, Inc. Modified polynucleotides encoding basic helix-loop-helix family member E41
JP2019033757A (ja) * 2012-04-02 2019-03-07 モデルナティエックス インコーポレイテッドModernaTX,Inc. 核タンパク質の産生のための修飾ポリヌクレオチド
US9114113B2 (en) 2012-04-02 2015-08-25 Moderna Therapeutics, Inc. Modified polynucleotides encoding citeD4
JP2019054813A (ja) * 2012-04-02 2019-04-11 モデルナティエックス インコーポレイテッドModernaTX,Inc. ヒト疾患に関連するタンパク質の産生のための修飾ポリヌクレオチド
CN104870022A (zh) * 2012-04-02 2015-08-26 现代治疗公司 蛋白质的体内产生
US9149506B2 (en) 2012-04-02 2015-10-06 Moderna Therapeutics, Inc. Modified polynucleotides encoding septin-4
US9192651B2 (en) 2012-04-02 2015-11-24 Moderna Therapeutics, Inc. Modified polynucleotides for the production of secreted proteins
US9216205B2 (en) 2012-04-02 2015-12-22 Moderna Therapeutics, Inc. Modified polynucleotides encoding granulysin
EP3501550A1 (fr) 2012-04-02 2019-06-26 Moderna Therapeutics, Inc. Polynucléotides modifiés pour la production de protéines associées à une maladie humaine
US9220755B2 (en) 2012-04-02 2015-12-29 Moderna Therapeutics, Inc. Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders
US9220792B2 (en) 2012-04-02 2015-12-29 Moderna Therapeutics, Inc. Modified polynucleotides encoding aquaporin-5
US9233141B2 (en) 2012-04-02 2016-01-12 Moderna Therapeutics, Inc. Modified polynucleotides for the production of proteins associated with blood and lymphatic disorders
US10385106B2 (en) 2012-04-02 2019-08-20 Modernatx, Inc. Modified polynucleotides for the production of secreted proteins
US9254311B2 (en) 2012-04-02 2016-02-09 Moderna Therapeutics, Inc. Modified polynucleotides for the production of proteins
US9255129B2 (en) 2012-04-02 2016-02-09 Moderna Therapeutics, Inc. Modified polynucleotides encoding SIAH E3 ubiquitin protein ligase 1
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9301993B2 (en) 2012-04-02 2016-04-05 Moderna Therapeutics, Inc. Modified polynucleotides encoding apoptosis inducing factor 1
US9303079B2 (en) 2012-04-02 2016-04-05 Moderna Therapeutics, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US11564998B2 (en) 2012-04-02 2023-01-31 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
US10493167B2 (en) 2012-04-02 2019-12-03 Modernatx, Inc. In vivo production of proteins
US10501512B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides
EP3978030A1 (fr) 2012-04-02 2022-04-06 ModernaTX, Inc. Polynucléotides modifiés pour la production de protéines associées à une maladie humaine
US10501513B2 (en) 2012-04-02 2019-12-10 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
JP6971953B6 (ja) 2012-04-02 2022-01-17 モデルナティエックス インコーポレイテッド 修飾ポリヌクレオチドを封入する脂質ナノ粒子を含む組成物
JP6953135B6 (ja) 2012-04-02 2022-01-14 モデルナティエックス インコーポレイテッド タンパク質のインビボ産生
US9587003B2 (en) 2012-04-02 2017-03-07 Modernatx, Inc. Modified polynucleotides for the production of oncology-related proteins and peptides
US9675668B2 (en) 2012-04-02 2017-06-13 Moderna Therapeutics, Inc. Modified polynucleotides encoding hepatitis A virus cellular receptor 2
US10577403B2 (en) 2012-04-02 2020-03-03 Modernatx, Inc. Modified polynucleotides for the production of secreted proteins
US10583203B2 (en) 2012-04-02 2020-03-10 Modernatx, Inc. In vivo production of proteins
CN112390871A (zh) * 2012-04-02 2021-02-23 现代泰克斯公司 蛋白质的体内产生
JP2017121239A (ja) * 2012-04-02 2017-07-13 モデルナティエックス インコーポレイテッドModernaTX,Inc. タンパク質のインビボ産生
JP2017121240A (ja) * 2012-04-02 2017-07-13 モデルナティエックス インコーポレイテッドModernaTX,Inc. 膜タンパク質の産生のための修飾ポリヌクレオチド
US10772975B2 (en) 2012-04-02 2020-09-15 Modernatx, Inc. Modified Polynucleotides for the production of biologics and proteins associated with human disease
JP2017121244A (ja) * 2012-04-02 2017-07-13 モデルナティエックス インコーポレイテッドModernaTX,Inc. ヒト疾患に関連する生物製剤およびタンパク質の産生のための修飾ポリヌクレオチド
JP2017123847A (ja) * 2012-04-02 2017-07-20 モデルナティエックス インコーポレイテッドModernaTX,Inc. 核タンパク質の産生のための修飾ポリヌクレオチド
US10703789B2 (en) 2012-04-02 2020-07-07 Modernatx, Inc. Modified polynucleotides for the production of secreted proteins
JP2017123853A (ja) * 2012-04-02 2017-07-20 モデルナティエックス インコーポレイテッドModernaTX,Inc. 分泌タンパク質の産生のための修飾ポリヌクレオチド
JP2017206567A (ja) * 2012-06-08 2017-11-24 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド 非肺標的細胞へのmRNAの経肺送達
JP2019065052A (ja) * 2012-06-08 2019-04-25 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド 非肺標的細胞へのmRNAの経肺送達
US10245229B2 (en) 2012-06-08 2019-04-02 Translate Bio, Inc. Pulmonary delivery of mRNA to non-lung target cells
US11090264B2 (en) 2012-06-08 2021-08-17 Translate Bio, Inc. Pulmonary delivery of mRNA to non-lung target cells
JP2015520195A (ja) * 2012-06-08 2015-07-16 シャイアー ヒューマン ジェネティック セラピーズ インコーポレイテッド 非肺標的細胞へのmRNAの経肺送達
US9512456B2 (en) 2012-08-14 2016-12-06 Modernatx, Inc. Enzymes and polymerases for the synthesis of RNA
WO2014039768A1 (fr) 2012-09-07 2014-03-13 Genentech, Inc. Procédés et compositions pour produire des hépatocytes induits
CN104955951A (zh) * 2012-10-16 2015-09-30 麻省理工学院 稳定的非多腺苷酸化rna的产生
US9717749B2 (en) 2012-10-16 2017-08-01 Massachusetts Institute Of Technology Production of stable non-polyadenylated RNAs
JP2015536647A (ja) * 2012-10-16 2015-12-24 マサチューセッツ インスティテュート オブ テクノロジー 安定な非ポリアデニル化rnaの生成
US10946035B2 (en) 2012-10-16 2021-03-16 Massachusetts Institute Of Technology Production of stable non-polyadenylated RNAs
JP2021090435A (ja) * 2012-11-01 2021-06-17 ファクター バイオサイエンス インコーポレイテッド 細胞中でタンパク質を発現するための方法および生成物
US11332759B2 (en) 2012-11-01 2022-05-17 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US9376669B2 (en) 2012-11-01 2016-06-28 Factor Bioscience Inc. Methods and products for expressing proteins in cells
JP2018113985A (ja) * 2012-11-01 2018-07-26 ファクター バイオサイエンス インコーポレイテッド 細胞中でタンパク質を発現するための方法および生成物
JP2018115207A (ja) * 2012-11-01 2018-07-26 ファクター バイオサイエンス インコーポレイテッド 細胞中でタンパク質を発現するための方法および生成物
US9758797B2 (en) 2012-11-01 2017-09-12 Factor Bioscience, Inc. Methods and products for expressing proteins in cells
US10590437B2 (en) 2012-11-01 2020-03-17 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US9447395B2 (en) 2012-11-01 2016-09-20 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10415060B2 (en) 2012-11-01 2019-09-17 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US11339410B2 (en) 2012-11-01 2022-05-24 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US11339409B2 (en) 2012-11-01 2022-05-24 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US9657282B2 (en) 2012-11-01 2017-05-23 Factor Bioscience, Inc. Methods and products for expressing proteins in cells
US9464285B2 (en) 2012-11-01 2016-10-11 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10767195B2 (en) 2012-11-01 2020-09-08 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US11332758B2 (en) 2012-11-01 2022-05-17 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US9487768B2 (en) 2012-11-01 2016-11-08 Factor Bioscience Inc. Methods and products for expressing proteins in cells
JP7436406B2 (ja) 2012-11-01 2024-02-21 ファクター バイオサイエンス インコーポレイテッド 細胞中でタンパク質を発現するための方法および生成物
US10724053B2 (en) 2012-11-01 2020-07-28 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10752918B2 (en) 2012-11-01 2020-08-25 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10752917B2 (en) 2012-11-01 2020-08-25 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US10752919B2 (en) 2012-11-01 2020-08-25 Factor Bioscience Inc. Methods and products for expressing proteins in cells
US9597380B2 (en) 2012-11-26 2017-03-21 Modernatx, Inc. Terminally modified RNA
US10525075B2 (en) 2013-02-22 2020-01-07 The Board Of Trustees Of The Leland Stanford Junior University Compounds, compositions, methods, and kits relating to telomere extension
US11872243B2 (en) 2013-02-22 2024-01-16 The Board Of Trustees Of The Leland Stanford Junior University Compounds, compositions, methods, and kits relating to telomere extension
US11007210B2 (en) 2013-02-22 2021-05-18 The Board Of Trustees Of The Leland Stanford Junior University Compounds, compositions, methods, and kits relating to telomere extension
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
US11377470B2 (en) 2013-03-15 2022-07-05 Modernatx, Inc. Ribonucleic acid purification
US10077439B2 (en) 2013-03-15 2018-09-18 Modernatx, Inc. Removal of DNA fragments in mRNA production process
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
US11845772B2 (en) 2013-03-15 2023-12-19 Modernatx, Inc. Ribonucleic acid purification
US10590161B2 (en) 2013-03-15 2020-03-17 Modernatx, Inc. Ion exchange purification of mRNA
US10858647B2 (en) 2013-03-15 2020-12-08 Modernatx, Inc. Removal of DNA fragments in mRNA production process
US10138507B2 (en) 2013-03-15 2018-11-27 Modernatx, Inc. Manufacturing methods for production of RNA transcripts
US11027025B2 (en) 2013-07-11 2021-06-08 Modernatx, Inc. Compositions comprising synthetic polynucleotides encoding CRISPR related proteins and synthetic sgRNAs and methods of use
WO2015034928A1 (fr) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Polynucléotides chimériques
US10023626B2 (en) 2013-09-30 2018-07-17 Modernatx, Inc. Polynucleotides encoding immune modulating polypeptides
US10815291B2 (en) 2013-09-30 2020-10-27 Modernatx, Inc. Polynucleotides encoding immune modulating polypeptides
US10385088B2 (en) 2013-10-02 2019-08-20 Modernatx, Inc. Polynucleotide molecules and uses thereof
US10323076B2 (en) 2013-10-03 2019-06-18 Modernatx, Inc. Polynucleotides encoding low density lipoprotein receptor
WO2015062738A1 (fr) 2013-11-01 2015-05-07 Curevac Gmbh Arn modifié à propriétés immunostimulantes réduites
EP3542802A1 (fr) 2013-11-01 2019-09-25 CureVac AG Arn modifié avec des propriétés immunostimulatrices réduites
US9770489B2 (en) 2014-01-31 2017-09-26 Factor Bioscience Inc. Methods and products for nucleic acid production and delivery
US10124042B2 (en) 2014-01-31 2018-11-13 Factor Bioscience Inc. Methods and products for nucleic acid production and delivery
US10022435B2 (en) 2014-04-23 2018-07-17 Modernatx, Inc. Nucleic acid vaccines
US10709779B2 (en) 2014-04-23 2020-07-14 Modernatx, Inc. Nucleic acid vaccines
EP3134131B1 (fr) 2014-04-23 2021-12-22 ModernaTX, Inc. Vaccins à base d'acide nucléique
US9872900B2 (en) 2014-04-23 2018-01-23 Modernatx, Inc. Nucleic acid vaccines
US10286086B2 (en) 2014-06-19 2019-05-14 Modernatx, Inc. Alternative nucleic acid molecules and uses thereof
EP4159741A1 (fr) 2014-07-16 2023-04-05 ModernaTX, Inc. Procédé de production d'un polynucléotide chimérique pour coder un polypeptide ayant une liaison internucléotidique contenant un triazole
US10407683B2 (en) 2014-07-16 2019-09-10 Modernatx, Inc. Circular polynucleotides
US10072057B2 (en) 2014-11-10 2018-09-11 Modernatx, Inc. Alternative nucleic acid molecules containing reduced uracil content and uses thereof
US9751925B2 (en) 2014-11-10 2017-09-05 Modernatx, Inc. Alternative nucleic acid molecules containing reduced uracil content and uses thereof
US11241505B2 (en) 2015-02-13 2022-02-08 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US11479768B2 (en) 2015-06-30 2022-10-25 Ethris Gmbh ATP-binding cassette family coding polyribonucleotides and formulations thereof
US11434486B2 (en) 2015-09-17 2022-09-06 Modernatx, Inc. Polynucleotides containing a morpholino linker
US10849920B2 (en) 2015-10-05 2020-12-01 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
US11590157B2 (en) 2015-10-05 2023-02-28 Modernatx, Inc. Methods for therapeutic administration of messenger ribonucleic acid drugs
WO2017180587A2 (fr) 2016-04-11 2017-10-19 Obsidian Therapeutics, Inc. Systèmes de biocircuits régulés
EP3445850B1 (fr) 2016-04-22 2021-10-27 BioNTech SE Procédés de production d'arn simple brin
US10730924B2 (en) 2016-05-18 2020-08-04 Modernatx, Inc. Polynucleotides encoding relaxin
US11904023B2 (en) 2016-08-17 2024-02-20 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10350304B2 (en) 2016-08-17 2019-07-16 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10363321B2 (en) 2016-08-17 2019-07-30 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10369233B2 (en) 2016-08-17 2019-08-06 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10137206B2 (en) 2016-08-17 2018-11-27 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10576167B2 (en) 2016-08-17 2020-03-03 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10894092B2 (en) 2016-08-17 2021-01-19 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10888627B2 (en) 2016-08-17 2021-01-12 Factor Bioscience Inc. Nucleic acid products and methods of administration thereof
US10653712B2 (en) 2016-09-14 2020-05-19 Modernatx, Inc. High purity RNA compositions and methods for preparation thereof
US11202793B2 (en) 2016-09-14 2021-12-21 Modernatx, Inc. High purity RNA compositions and methods for preparation thereof
US11865159B2 (en) 2017-02-28 2024-01-09 Sanofi Therapeutic RNA
US11701413B2 (en) 2017-04-11 2023-07-18 BioNTech SE RNA for treatment of autoimmune diseases
US11786607B2 (en) 2017-06-15 2023-10-17 Modernatx, Inc. RNA formulations
US11912982B2 (en) 2017-08-18 2024-02-27 Modernatx, Inc. Methods for HPLC analysis
US11866696B2 (en) 2017-08-18 2024-01-09 Modernatx, Inc. Analytical HPLC methods
US11744801B2 (en) 2017-08-31 2023-09-05 Modernatx, Inc. Methods of making lipid nanoparticles
WO2019241315A1 (fr) 2018-06-12 2019-12-19 Obsidian Therapeutics, Inc. Constructions régulatrices dérivées de pde5 et procédés d'utilisation en immunothérapie
WO2020086742A1 (fr) 2018-10-24 2020-04-30 Obsidian Therapeutics, Inc. Régulation de protéine accordable par er
US10611722B1 (en) 2019-07-30 2020-04-07 Factor Bioscience Inc. Cationic lipids and transfection methods
US10501404B1 (en) 2019-07-30 2019-12-10 Factor Bioscience Inc. Cationic lipids and transfection methods
US10752576B1 (en) 2019-07-30 2020-08-25 Factor Bioscience Inc. Cationic lipids and transfection methods
US10556855B1 (en) 2019-07-30 2020-02-11 Factor Bioscience Inc. Cationic lipids and transfection methods
US11242311B2 (en) 2019-07-30 2022-02-08 Factor Bioscience Inc. Cationic lipids and transfection methods
US11814333B2 (en) 2019-07-30 2023-11-14 Factor Bioscience Inc. Cationic lipids and transfection methods
US11471525B2 (en) 2020-02-04 2022-10-18 Curevac Ag Coronavirus vaccine
US11576966B2 (en) 2020-02-04 2023-02-14 CureVac SE Coronavirus vaccine
US11596686B2 (en) 2020-02-04 2023-03-07 CureVac SE Coronavirus vaccine
US11964012B2 (en) 2020-02-04 2024-04-23 CureVac SE Coronavirus vaccine
US11964011B2 (en) 2020-02-04 2024-04-23 CureVac SE Coronavirus vaccine
WO2021182917A1 (fr) 2020-03-12 2021-09-16 기초과학연구원 Composition pour induire l'apoptose de cellules ayant une variation de séquence génomique et procédé pour induire l'apoptose de cellules à l'aide de la composition
US11872280B2 (en) 2020-12-22 2024-01-16 CureVac SE RNA vaccine against SARS-CoV-2 variants
US11918643B2 (en) 2020-12-22 2024-03-05 CureVac SE RNA vaccine against SARS-CoV-2 variants
WO2023288285A1 (fr) * 2021-07-15 2023-01-19 Turn Biotechnologies, Inc. Vecteurs d'expression polycistronique

Also Published As

Publication number Publication date
HK1251259B (zh) 2020-07-03
JP6842495B2 (ja) 2021-03-17
AU2010328310A1 (en) 2012-06-28
JP2024041917A (ja) 2024-03-27
CN102947450B (zh) 2016-11-23
JP2019162125A (ja) 2019-09-26
CN114317612A (zh) 2022-04-12
EP3112467A1 (fr) 2017-01-04
SI3287525T1 (sl) 2020-03-31
LT3287525T (lt) 2020-02-10
DK3112467T3 (en) 2018-04-23
EP2510099B1 (fr) 2017-08-09
ES2665681T3 (es) 2018-04-26
HRP20180737T1 (hr) 2018-06-29
ES2769129T3 (es) 2020-06-24
US20180265848A1 (en) 2018-09-20
KR20180081836A (ko) 2018-07-17
US20160251629A1 (en) 2016-09-01
BR112012013875B1 (pt) 2020-04-14
SG181564A1 (en) 2012-07-30
IL220219A0 (en) 2012-07-31
LT3112467T (lt) 2018-06-25
CA2783032A1 (fr) 2011-06-16
CA2783032C (fr) 2022-08-30
PL3287525T3 (pl) 2020-05-18
KR101878502B1 (ko) 2018-07-13
US9371544B2 (en) 2016-06-21
NO2510099T3 (fr) 2018-01-06
WO2011071936A2 (fr) 2011-06-16
EP3287525A1 (fr) 2018-02-28
BR112012013875B8 (pt) 2020-06-23
JP2021078516A (ja) 2021-05-27
EP3623474A1 (fr) 2020-03-18
KR20200124331A (ko) 2020-11-02
DK3287525T3 (da) 2020-01-20
KR102171849B1 (ko) 2020-10-30
HUE047165T2 (hu) 2020-04-28
JP2022185047A (ja) 2022-12-13
US10006007B2 (en) 2018-06-26
SI3112467T1 (en) 2018-06-29
CN102947450A (zh) 2013-02-27
KR20130009944A (ko) 2013-01-24
HUE036684T2 (hu) 2018-07-30
PT3112467T (pt) 2018-04-16
JP2016171804A (ja) 2016-09-29
US20110143436A1 (en) 2011-06-16
AU2010328310B2 (en) 2015-05-21
JP2013512690A (ja) 2013-04-18
JP7152541B2 (ja) 2022-10-12
CN107090436B (zh) 2021-11-30
SG10201408129XA (en) 2015-02-27
EP2510099A4 (fr) 2014-06-11
EP3112467B1 (fr) 2018-02-14
CA3170391A1 (fr) 2011-06-16
WO2011071931A3 (fr) 2011-11-17
US20140315988A1 (en) 2014-10-23
PL3112467T3 (pl) 2018-07-31
EP2510099A2 (fr) 2012-10-17
BR112012013875A2 (pt) 2015-11-03
KR102505097B1 (ko) 2023-03-02
US8808982B2 (en) 2014-08-19
WO2011071936A3 (fr) 2011-10-13
US20210024895A1 (en) 2021-01-28
US11739300B2 (en) 2023-08-29
US11028370B2 (en) 2021-06-08
CN107090436A (zh) 2017-08-25
HRP20200246T1 (hr) 2020-05-29
EP3287525B1 (fr) 2019-10-23
US20160369243A1 (en) 2016-12-22
NO3112467T3 (fr) 2018-07-14
PL2510099T3 (pl) 2018-01-31
KR20230035422A (ko) 2023-03-13
CY1120237T1 (el) 2019-07-10

Similar Documents

Publication Publication Date Title
US11739300B2 (en) RNA preparations comprising purified modified RNA for reprogramming cells
US9371511B2 (en) RNA preparations comprising purified modified RNA for reprogramming cells
US9163213B2 (en) RNA preparations comprising purified modified RNA for reprogramming cells
AU2018202479B2 (en) RNA preparations comprising purified modified RNA for reprogramming cells
JP7475406B2 (ja) 細胞を再プログラム化するための精製された修飾rnaを含むrna調製物
US20240018486A1 (en) Rna preparations comprising purified modified rna for reprogramming cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063294.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10836557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2783032

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010328310

Country of ref document: AU

Ref document number: 220219

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2012543206

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5497/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2010328310

Country of ref document: AU

Date of ref document: 20101207

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010836557

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010836557

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127017473

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012013875

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012013875

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120608