WO2011071086A1 - Euvリソグラフィ用光学部材 - Google Patents
Euvリソグラフィ用光学部材 Download PDFInfo
- Publication number
- WO2011071086A1 WO2011071086A1 PCT/JP2010/072047 JP2010072047W WO2011071086A1 WO 2011071086 A1 WO2011071086 A1 WO 2011071086A1 JP 2010072047 W JP2010072047 W JP 2010072047W WO 2011071086 A1 WO2011071086 A1 WO 2011071086A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- reflective
- euv
- substrate
- film
- Prior art date
Links
- 238000001900 extreme ultraviolet lithography Methods 0.000 title claims abstract description 28
- 230000003287 optical effect Effects 0.000 title abstract description 20
- 239000010410 layer Substances 0.000 claims abstract description 457
- 239000011241 protective layer Substances 0.000 claims abstract description 146
- 239000000758 substrate Substances 0.000 claims abstract description 81
- 150000001875 compounds Chemical class 0.000 claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 claims abstract description 18
- 239000006096 absorbing agent Substances 0.000 claims description 88
- 238000000034 method Methods 0.000 claims description 68
- 238000007689 inspection Methods 0.000 claims description 38
- 230000003746 surface roughness Effects 0.000 claims description 28
- 238000005530 etching Methods 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 24
- 229910052715 tantalum Inorganic materials 0.000 claims description 11
- 239000004065 semiconductor Substances 0.000 claims description 10
- 238000001312 dry etching Methods 0.000 claims description 8
- 238000000059 patterning Methods 0.000 claims description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 3
- 239000000460 chlorine Substances 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 abstract description 21
- 238000007254 oxidation reaction Methods 0.000 abstract description 21
- 230000007423 decrease Effects 0.000 abstract description 20
- 238000002310 reflectometry Methods 0.000 abstract description 6
- 230000001681 protective effect Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 53
- 238000004544 sputter deposition Methods 0.000 description 22
- 239000000203 mixture Substances 0.000 description 20
- 230000015572 biosynthetic process Effects 0.000 description 17
- 238000001659 ion-beam spectroscopy Methods 0.000 description 17
- 230000007547 defect Effects 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 13
- 239000011521 glass Substances 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 10
- 238000000576 coating method Methods 0.000 description 10
- 229910052710 silicon Inorganic materials 0.000 description 10
- 238000001755 magnetron sputter deposition Methods 0.000 description 9
- 229910052707 ruthenium Inorganic materials 0.000 description 9
- 239000011651 chromium Substances 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 6
- 238000000151 deposition Methods 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 230000007261 regionalization Effects 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000001579 optical reflectometry Methods 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000012937 correction Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 238000001459 lithography Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007687 exposure technique Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000003064 anti-oxidating effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- GPTXWRGISTZRIO-UHFFFAOYSA-N chlorquinaldol Chemical compound ClC1=CC(Cl)=C(O)C2=NC(C)=CC=C21 GPTXWRGISTZRIO-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000003304 ruthenium compounds Chemical class 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/08—Mirrors
- G02B5/0891—Ultraviolet [UV] mirrors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/22—Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/22—Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
- G03F1/24—Reflection masks; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70316—Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70983—Optical system protection, e.g. pellicles or removable covers for protection of mask
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
- G21K1/062—Devices having a multilayer structure
Definitions
- the present invention relates to an optical member for EUV (Extreme Ultraviolet: hereinafter, abbreviated as EUV) used in semiconductor manufacturing or the like, specifically, a substrate with a reflective layer for EUV lithography (hereinafter referred to as “ EUV Lithographic Reflective Layer Substrate “or simply” Reflective Layer Substrate “), EUV Lithographic Reflective Mask Blanks (hereinafter also referred to as” EUV Mask Blank "), and EUV Mask Blank Patterned reflective mask for EUV lithography (hereinafter referred to as “EUV mask” in the present specification), reflective mirror for EUV lithography (hereinafter referred to as “EUV mirror” in the present specification) (hereinafter collectively referred to as “EUV mirror”) Also referred to as an optical member for EUV lithography.
- EUV mask reflective mask for EUV lithography
- EUV mirror reflective mirror for EUV lithography
- EUV mirror also referred to as an optical member for EUV lithography.
- a photolithography method using visible light or ultraviolet light has been used as a technique for transferring a fine pattern necessary for forming an integrated circuit having a fine pattern on a silicon substrate or the like.
- the limits of conventional photolithography methods have been approached.
- the resolution limit of the pattern is about 1 ⁇ 2 of the exposure wavelength, and it is said that the immersion wavelength is about 1 ⁇ 4 of the exposure wavelength, and the immersion of ArF laser (193 nm) is used. Even if the method is used, the limit of about 45 nm is expected.
- EUV lithography which is an exposure technique using EUV light having a shorter wavelength than an ArF laser, is promising as a next-generation exposure technique using an exposure wavelength shorter than 45 nm.
- EUV light refers to light having a wavelength in the soft X-ray region or vacuum ultraviolet region, and specifically refers to light having a wavelength of about 10 to 20 nm, particularly about 13.5 nm ⁇ 0.3 nm.
- a conventional refractive optical system such as photolithography using visible light or ultraviolet light may be used. Can not. For this reason, in the EUV light lithography, a reflective optical system, that is, a reflective photomask and a mirror are used.
- the mask blank is a laminated body before patterning used for photomask manufacturing.
- a reflective layer that reflects EUV light and an absorber layer that absorbs EUV light are formed in this order on a glass substrate or the like.
- a molybdenum (Mo) layer which is a low refractive layer
- a silicon (Si) layer which is a high refractive layer
- Mo / Si multilayer reflective film is usually used.
- the absorber layer a material having a high absorption coefficient for EUV light, specifically, a material mainly composed of chromium (Cr) or tantalum (Ta) is used.
- Patent Document 1 proposes the use of ruthenium (Ru) as a material for the protective layer.
- Patent Document 2 proposes a protective layer made of a ruthenium compound (Ru content of 10 to 95 at%) containing Ru and at least one selected from Mo, Nb, Zr, Y, B, Ti and La. Has been.
- Patent Document 3 proposes a multilayer protective layer of Ru / Si pairs.
- a mirror used in EUV lithography has a structure in which a reflective layer that reflects EUV light is formed on a substrate such as a glass substrate.
- a reflective layer since a high EUV light reflectance can be achieved, a multilayer reflective film in which a high refractive layer and a low refractive index layer are alternately laminated a plurality of times is usually used. Therefore, as a mirror used in EUV light lithography, a multilayer mirror in which a multilayer reflective film is formed on such a substrate is usually used (see Patent Document 4).
- a protective layer protection capping layer
- Patent Document 4 describes that a specific capping layer (protective layer) is provided on a reflective layer because the EUV mirror can withstand chemical and physical attack.
- the multilayer mirror described in Patent Document 4 includes a protective capping layer made of a material selected from ruthenium (Ru) and rhodium (Rh), and compounds and alloys thereof.
- the steps performed when manufacturing the mask blank and mirror, and the steps performed when manufacturing a photomask from the mask blank for example, cleaning, defect inspection, heating step, In each step of dry etching and defect correction
- the Ru protective layer, and further the uppermost layer of the multilayer reflective film in the case of Mo / Si multilayer reflective film, Si layer
- the EUV light reflectance is reduced when EUV light is irradiated on the surface of the protective layer.
- the decrease in the EUV light reflectivity during EUV exposure is a problem because it progresses over time, so that it is necessary to change the exposure conditions in the middle, and the life of the photomask and mirror is shortened.
- a process performed when manufacturing a mask blank or a mirror or a process performed when manufacturing a photomask from the mask blank for example, cleaning, defect inspection, heating process, dry etching, defect correction
- the Ru protective layer and further the uppermost layer of the multilayer reflective film are oxidized, and the EUV light reflectance when the protective layer surface is irradiated with EUV light is reduced. May be simply referred to as “reduction in EUV light reflectance due to oxidation of the Ru protective layer”.
- the protective layer described in Patent Document 2 is described as being capable of sufficiently obtaining the anti-oxidation effect of the multilayer reflective film without causing a decrease in the reflectance of the multilayer reflective film.
- the decrease in the reflectance is caused by the Si layer and the Ru protective layer, which are the uppermost layers of the multilayer reflective film, during the Ru protective layer film formation or the subsequent heat treatment or the like.
- Si layer and the Ru protective layer which are the uppermost layers of the multilayer reflective film, during the Ru protective layer film formation or the subsequent heat treatment or the like.
- the EUV light reflectivity is reduced by oxidation of the Ru protective layer as described above.
- the protective layer described in Patent Document 3 is a Ru / Si pair multilayer protective layer, which causes a problem of a decrease in reflectance due to oxidation of the Si layer, and the Ru layer has an EUV light absorption coefficient higher than that of the Si layer. It is intended to solve both of the problems that the film thickness cannot be increased due to its high thickness, but is it intended to reduce the EUV light reflectance due to oxidation of the Ru protective layer as described above? Is unknown.
- the present invention provides an optical member such as an EUV mask blank or an EUV mirror in which a decrease in EUV light reflectance due to oxidation of the Ru protective layer is suppressed, and a functional film used for manufacturing the optical member.
- An object is to provide an attached substrate.
- the present inventors can suppress a decrease in EUV light reflectance due to oxidation of the Ru protective layer by inserting a thin Mo layer between the Ru protective layers. I found. The inventors have found that it is effective to set the film thickness of the Mo intermediate layer in the protective layer within a specific range.
- the present invention has been made based on the above-mentioned findings of the present inventors, and an EUV in which a reflective layer that reflects EUV light and a protective layer that protects the reflective layer are formed on a substrate in this order.
- a substrate with a reflective layer for lithography The reflective layer is a Mo / Si multilayer reflective film;
- the protective layer is laminated from the reflective layer side in the order of a first layer made of a Ru layer or a Ru compound layer, a second layer made of a Mo layer, and a third layer made of a Ru layer or a Ru compound layer.
- a substrate with a reflective layer for EUV lithography (hereinafter also referred to as “substrate with a reflective layer of the present invention”) having a three-layer structure is provided. It is preferable that the uppermost layer of the reflective layer made of the Mo / Si multilayer reflective film is a Si film, and the protective layer is formed in contact with the Si film surface.
- the film thickness of the second layer is 0.2 nm or more and 2 nm or less, or 1/2 or less of the total film thickness of the protective layer, whichever is smaller. It is preferable to satisfy
- the total thickness of the protective layer is preferably 1 to 10 nm.
- the surface roughness rms of the protective layer surface is 0.5 nm0.5 or less.
- the present invention is a reflective mask blank for EUV lithography in which an absorber layer is formed on the protective layer of the above-described substrate with a reflective layer of the present invention (hereinafter also referred to as “EUV mask blank of the present invention”). I will provide a.
- the absorber layer is preferably formed of a material mainly composed of tantalum (Ta).
- the etching selectivity between the protective layer and the absorber layer when dry etching is performed using a chlorine-based gas as an etching gas is preferably 10 or more.
- a low reflection layer for inspection light used for inspection of a mask pattern which is formed of a material mainly containing tantalum (Ta), is provided on the absorber layer. preferable.
- the reflected light on the surface of the protective layer with respect to the wavelength of light used for inspection of the pattern formed on the absorber layer, and the surface on the surface of the low reflection layer is preferably 30% or more.
- the present invention also provides a reflective mask for EUV lithography (hereinafter also referred to as “the EUV mask of the present invention”) obtained by patterning the EUV mask blank of the present invention described above.
- EUV mirror of the present invention using the substrate with a reflective layer for EUV lithography is provided.
- the present invention also provides a method for manufacturing a semiconductor integrated circuit, wherein a semiconductor integrated circuit is manufactured by exposing an object to be exposed using the EUV mask of the present invention described above.
- the EUV mask produced using the EUV mask blank of the present invention is a highly reliable EUV mask in which the change in EUV light reflectance with time is small during EUV exposure, and is an integrated pattern consisting of fine patterns. Useful for the manufacture of circuits.
- FIG. 1 is a schematic cross-sectional view showing an embodiment of an EUV mask blank of the present invention.
- FIG. 2 is a schematic cross-sectional view showing an embodiment in which a low reflection layer is formed on the absorber layer of the EUV mask blank of FIG.
- FIG. 3 is a schematic cross-sectional view showing a state in which the absorber layer 14 and the low reflective layer 15 of the EUV mask blank 1 ′ of FIG.
- FIG. 4 is a schematic cross-sectional view showing an embodiment of the EUV mirror of the present invention.
- FIG. 1 is a schematic cross-sectional view showing an embodiment of the EUV mask blank of the present invention.
- a reflective layer 12 that reflects EUV light and a protective layer 13 for protecting the reflective layer 12 are formed on a substrate 11 in this order.
- the protective layer 13 includes, from the reflective layer 12 side, the first layer 13a made of the Ru layer or the Ru compound layer, the second layer 13b made of the Mo layer, and the Ru layer or the Ru compound. It has a three-layer structure in which the third layer 13c composed of layers is laminated in this order.
- An absorber layer 14 is formed on the protective layer 13 having a three-layer structure.
- FIG. 4 is a schematic sectional view showing an embodiment of the EUV mirror of the present invention.
- a reflective layer 12 that reflects EUV light and a protective layer 13 that protects the reflective layer 12 are formed on a substrate 11 in this order.
- the protective layer 13 includes, from the reflective layer 12 side, the first layer 13a made of the Ru layer or the Ru compound layer, the second layer 13b made of the Mo layer, and the Ru layer or Ru. It has a three-layer structure in which the third layer 13c made of a compound layer is laminated in this order.
- a member having a multilayer film that reflects EUV light such as a mask blank or a mirror, is also referred to as an “EUV optical member”.
- the substrate 11 is required to satisfy the characteristics as a substrate for an EUV mask blank. Therefore, it is important that the substrate 11 has a low thermal expansion coefficient.
- the thermal expansion coefficient of the substrate 11 is preferably 0 ⁇ 1.0 ⁇ 10 ⁇ 7 / ° C., more preferably 0 ⁇ 0.3 ⁇ 10 ⁇ 7 / ° C., further preferably 0 ⁇ It is 0.2 ⁇ 10 ⁇ 7 / ° C., more preferably 0 ⁇ 0.1 ⁇ 10 ⁇ 7 / ° C., particularly preferably 0 ⁇ 0.05 ⁇ 10 ⁇ 7 / ° C.
- the substrate preferably has excellent smoothness, flatness, and resistance to a cleaning liquid used for cleaning a mask blank or a photomask after pattern formation.
- the substrate 11 is made of glass having a low thermal expansion coefficient, such as SiO 2 —TiO 2 glass, but is not limited to this. Crystallized glass, quartz glass, silicon, A substrate made of metal or the like can also be used. A film such as a stress correction film may be formed on the substrate 11. Since the substrate 11 has a smooth surface with a surface roughness rms of 0.15 nm or less and a flatness of 100 nm or less, high reflectivity and transfer accuracy can be obtained in a photomask after pattern formation. preferable. The size, thickness, etc.
- the substrate 11 are appropriately determined by the design value of the mask.
- SiO 2 —TiO 2 glass having an outer diameter of 6 inches (152.4 mm) square and a thickness of 0.25 inches (6.3 mm) was used.
- the size of the substrate used for the mirror is appropriately determined depending on the design value of the exposure machine, and a substrate having a diameter of about 50 to 500 mm is usually used.
- the mask blank substrate has a rectangular shape such as a square in plan view.
- the mirror substrate has many circular, elliptical and polygonal planar shapes. It is preferable that the surface of the substrate 11 on the side where the reflective layer 12 is formed has no defects.
- the depth of the concave defect and the height of the convex defect are not more than 2 nm so that the phase defect does not occur due to the concave defect and / or the convex defect. It is preferable that the half width of the defect and the convex defect is 60 nm or less.
- the characteristic of the reflective layer 12 of the EUV optical member is a high EUV light reflectance. Specifically, when the surface of the reflective layer 12 is irradiated with light in the wavelength region of EUV light at an incident angle of 6 degrees, the maximum value of light reflectance near a wavelength of 13.5 nm is preferably 60% or more, More preferably, it is 65% or more. Even when the protective layer 13 is provided on the reflective layer 12, the maximum value of the light reflectance near the wavelength of 13.5 nm is preferably 60% or more, and more preferably 65% or more. preferable.
- the reflective layer since a high reflectance can be achieved in the EUV wavelength region, a multilayer reflective film in which a high refractive index film and a low refractive index film are alternately laminated a plurality of times is used.
- the EUV optical member of the present invention uses a Mo / Si multilayer reflective film in which a Mo film as a low refractive index film and a Si film as a high refractive index film are alternately laminated a plurality of times.
- the uppermost layer of the laminated Mo / Si multilayer reflective film is preferably a Si film.
- a Mo / Si multilayer reflective film in order to obtain the reflective layer 12 having a maximum EUV light reflectance of 60% or more, a Mo layer having a film thickness of 2.3 ⁇ 0.1 nm, a film thickness of 4.5 ⁇ A 0.1 nm Si layer may be stacked so that the number of repeating units is 30 to 60.
- each layer which comprises Mo / Si multilayer reflective film so that it may become desired thickness using film-forming methods, such as a magnetron sputtering method and an ion beam sputtering method.
- film-forming methods such as a magnetron sputtering method and an ion beam sputtering method.
- a Mo target is used as a target and Ar gas (gas pressure 1.3 ⁇ 10 ⁇ 2 Pa to 2.7 ⁇ 10 ⁇ as a sputtering gas). 2 Pa)
- an Mo layer is formed to have a thickness of 2.3 nm at an ion acceleration voltage of 300 to 1500 V and a film formation rate of 0.03 to 0.30 nm / sec.
- the Si layer is formed so that the thickness is 4.5 nm at 30 nm / sec. With this as one period, the Mo / Si multilayer reflective film is formed by laminating the Mo layer and the Si layer for 40 to 50 periods.
- the protective layer 13 is provided for the purpose of protecting the reflective layer 12 so that the reflective layer 12 is not damaged by the etching process when the absorber layer 14 is patterned by an etching process, usually a dry etching process. Therefore, as the material of the protective layer 13, a material that is not easily affected by the etching process of the absorber layer 14, that is, the etching rate is slower than that of the absorber layer 14 and is not easily damaged by the etching process is selected. Moreover, it is preferable that the protective layer 13 itself also has a high EUV light reflectivity so that the EUV light reflectivity at the reflective layer 12 is not impaired even after the protective layer 13 is formed.
- Ru is used as a constituent material of the protective layer of the EUV optical member.
- the first layer 13a and the third layer 13c of the protective layer 13 having a three-layer structure are Ru layers or Ru compound layers.
- both the first layer 13a and the third layer 13c may be Ru layers or Ru compound layers.
- one of the first layer 13a and the third layer 13c may be a Ru layer and the other may be a Ru compound layer.
- the Ru compound is preferably at least one selected from the group consisting of RuB, RuNb and RuZr.
- the content rate of Ru is 50 at% or more, 80 at% or more, especially 90 at% or more.
- the Nb content is preferably about 10 to 40 at%.
- the first layer 13a and the third layer 13c preferably have a Si content of 5 at% or less, more preferably 3 at% or less, and even more preferably 1 at% or less.
- the second layer 13b of the three-layer protective layer 13 is a Mo layer, thereby suppressing a decrease in EUV light reflectance due to oxidation of the Ru protective layer.
- the reason why the EUV light reflectance lowering due to oxidation of the Ru protective layer is suppressed by using the Mo layer as the second layer 13b of the protective layer 13 having a three-layer structure is considered as follows.
- a process performed when manufacturing a photomask from the mask blank for example, cleaning, defect inspection, heating process, dry etching, defect correction process
- the protective layer 13 having a three-layer structure is oxidized from the third layer 13c, which is the uppermost layer, followed by the second layer 13b and the second layer 13b. Oxidation proceeds in the order of the first layer 13a.
- each Ru layer can be reduced to about 1/2, A Ru layer having low crystallinity and few crystal grain boundaries can be obtained. Thereby, the diffusion of oxygen through the grain boundaries in the Ru layer can be effectively suppressed.
- the Mo / Si multilayer reflective film below the first layer 13a is oxidized, more specifically, the uppermost Si film of the Mo / Si multilayer reflective film is oxidized. As a result, it is considered that the decrease in EUV light reflectance due to oxidation of the Ru protective layer is suppressed.
- Mo constituting the second layer 13b is a material having a high EUV light reflectivity so as to be used also for the Mo / Si multilayer reflective film, and the film thickness of the second layer 13b is small as will be described later. Therefore, the decrease in EUV light reflectance due to oxidation of the second layer (Mo layer) (reduction in EUV light reflectance when the surface of the protective layer 13 is irradiated with EUV light) is slight and can be ignored.
- a Ru protective layer is formed on the Mo / Si multilayer reflective film, Si in the Si film that is the uppermost layer of the Mo / Si multilayer reflective film may diffuse into the Ru protective layer, which may be a problem.
- the EUV optical member of the present invention even when a situation occurs in which Si in the Si film diffuses into the Ru layer that is the first layer 13a or the Ru compound layer, the Mo that is the second layer 13b. Due to the presence of the layer, Si is suppressed from diffusing into the third layer 13c above the second layer 13b. Therefore, even when a situation occurs in which Si in the Si film diffuses into the Ru protective layer when the Ru protective layer is formed, Si diffuses into the Ru protective layer, more specifically, the uppermost layer of the Ru protective layer. Si diffusion into the third layer 13c can be suppressed to a minimum.
- the content of Si in the Mo layer forming the second layer 13b is preferably 5 at% or less, more preferably 3 at% or less, and even more preferably 1 at% or less.
- the Mo layer forming the second layer 13b preferably has a Mo content of 60 at% or more, particularly 80 at% or more, and more preferably 90 at% or more.
- the thickness of the second layer 13b is preferably 0.2 nm or more. If the film thickness is less than 0.2 nm, the formation of the second layer 13b may be incomplete depending on the film formation conditions, and the effect of suppressing the decrease in EUV light reflectance due to oxidation of the Ru protective layer may be insufficient. . On the other hand, the film thickness of the second layer 13b preferably satisfies the smaller one of 2 nm or less or 1/2 or less of the total film thickness of the protective layer 13 in consideration of the influence on the EUV characteristics.
- the Ru layer or the Ru compound exhibits a function as a protective layer of the EUV optical member, that is, a function of protecting the reflective layer 12 so as not to be damaged by the etching process.
- the first layer 13a and the third layer 13c are layers. If the film thickness of the second layer 13b is larger than 1 ⁇ 2 of the total film thickness of the protective layer 13, the film thickness of the first layer 13a and the third layer 13c becomes small. There is a risk that the function of will not be able to be demonstrated.
- the film thickness of the second layer 13b is more preferably 0.3 nm to 1 nm, and further preferably 0.3 nm to 0.6 nm.
- the total film thickness of the protective layer 13 having a three-layer structure is preferably 1 to 10 nm because the EUV light reflectance can be increased and etching resistance can be obtained.
- the total thickness of the protective layer 13 is more preferably 1 to 5 nm, and further preferably 2 to 4 nm.
- the thicknesses of the first layer 13a and the third layer 13c are not particularly limited, and the preferred range of the total thickness of the protective layer 13 described above and the second layer 13b It can select suitably in the range with which the suitable range of a film thickness is satisfy
- the films of the first layer 13a and the third layer 13c The thickness is preferably 0.6 to 3 nm, and more preferably 0.8 to 1.8 nm. Moreover, it is preferable that the difference of the film thickness of the 1st layer 13a and the 3rd layer 13c is 0.5 nm or less.
- the surface roughness of the protective layer 13 surface is preferably 0.5 nm or less.
- the surface roughness rms of 0.5 nm or less means that the root mean square surface roughness is 0.5 nm or less. If the surface roughness of the surface of the protective layer 13 is large, the surface roughness of the absorber layer 14 formed on the protective layer 13 increases, and the edge roughness of the pattern formed on the absorber layer 14 increases. The dimensional accuracy of the pattern deteriorates. Since the influence of edge roughness becomes more prominent as the pattern becomes finer, the surface of the absorber layer 14 is required to be smooth.
- the surface roughness rms of the surface of the protective layer 13 is 0.5 nm or less, the surface of the absorber layer 14 formed on the protective layer 13 is sufficiently smooth, and the dimensional accuracy of the pattern deteriorates due to the influence of edge roughness. There is no fear.
- the surface roughness rms of the surface of the protective layer 13 is more preferably 0.4 nm or less, and further preferably 0.3 nm or less.
- Each layer of the protective layer 13 having a three-layer structure can be formed using a film forming method such as a magnetron sputtering method or an ion beam sputtering method.
- a film forming method such as a magnetron sputtering method or an ion beam sputtering method.
- the Ru layer is formed as the first layer 13a and the third layer 13c using the ion beam sputtering method
- the Ru target may be used as a target and discharged in an argon (Ar) atmosphere.
- ion beam sputtering may be performed under the following conditions.
- Sputtering gas Ar (gas pressure: 1.0 ⁇ 10 ⁇ 1 to 10 ⁇ 10 ⁇ 1 Pa, preferably 1.0 ⁇ 10 ⁇ 1 to 5.0 ⁇ 10 ⁇ 1 Pa, more preferably 1.0 ⁇ 10 ⁇ 1 to 3.0 ⁇ 10 ⁇ 1 Pa).
- Input power (for each target): 30 to 1000 W, preferably 50 to 750 W, more preferably 80 to 500 W.
- Film forming speed 0.1 to 6 nm / sec, preferably 0.1 to 4.5 nm / sec, more preferably 0.1 to 3 nm / sec.
- the Mo target when forming the Mo layer as the second layer 13b using the ion beam sputtering method, the Mo target may be used as a target and discharged in an argon (Ar) atmosphere.
- ion beam sputtering may be performed under the following conditions.
- Sputtering gas Ar (gas pressure: 1.3 ⁇ 10 ⁇ 2 Pa to 2.7 ⁇ 10 ⁇ 2 Pa).
- -Ion acceleration voltage 300-1500V.
- Film forming speed 0.005 to 0.3 nm / sec, preferably 0.01 to 0.2 nm / sec, more preferably 0.02 to 0.1 nm / sec.
- the substrate with a reflective layer of the present invention in which the multilayer reflective film 12 and the protective layer 13 are formed in this order on the film forming surface of the substrate 11 is obtained.
- the substrate with a reflective layer of the present invention is a precursor of an EUV mask blank, and an absorber layer according to the procedure described later on the protective layer of the substrate with a reflective layer of the present invention, and further, if necessary, The EUV mask blank of the present invention is obtained by forming a low reflection layer on the absorber layer.
- the substrate with a reflective layer of the present invention can also be used as an EUV mirror.
- the decrease in EUV light reflectance before and after the heat-treatment is 7% or less, 6% The following is more preferable.
- it heated on conditions severer than the heating process implemented at the time of the heating process implemented at the time of mask blank and mirror manufacture, and a mask blank at the time of manufacture. Processing was carried out.
- the characteristic particularly required for the absorber layer 14 is that the EUV light reflectance is extremely low. Specifically, when the surface of the absorber layer 14 is irradiated with light in the wavelength region of EUV light, the maximum light reflectance near a wavelength of 13.5 nm is preferably 0.5% or less, 0.1% The following is more preferable.
- the material is composed of a material having a high EUV light absorption coefficient, and it is preferable that the material is mainly composed of tantalum (Ta).
- the absorber layer 14 include those containing Ta, B, Si, and nitrogen (N) in the ratios described below (TaBSiN film).
- B content 1 at% or more and less than 5 at%, preferably 1 to 4.5 at%, more preferably 1.5 to 4 at%.
- Si content 1 to 25 at%, preferably 1 to 20 at%, more preferably 2 to 12 at%.
- the absorber layer 14 having the above composition has an amorphous crystal state and excellent surface smoothness.
- the absorber layer 14 having the above composition preferably has a surface roughness of 0.5 nm or less. If the surface roughness of the surface of the absorber layer 14 is large, the edge roughness of the pattern formed on the absorber layer 14 increases, and the dimensional accuracy of the pattern deteriorates. Since the influence of edge roughness becomes more prominent as the pattern becomes finer, the surface of the absorber layer 14 is required to be smooth. If the surface roughness of the surface of the absorber layer 14 is 0.5 nm or less, the surface of the absorber layer 14 is sufficiently smooth, so that the dimensional accuracy of the pattern does not deteriorate due to the influence of edge roughness.
- the surface roughness of the surface of the absorber layer 14 is more preferably 0.4 nm or less, and further preferably 0.3 nm or less.
- the etching rate when performing dry etching using a chlorine-based gas as an etching gas is high, and the etching selectivity with the protective layer 13 is 10 or more.
- the etching selectivity can be calculated using the following equation (1).
- Etching selectivity (etching rate of absorber layer 14) / (etching rate of protective layer 13) (1)
- the etching selection ratio is preferably 10 or more, more preferably 11 or more, and further preferably 12 or more.
- the thickness of the absorber layer 14 is preferably 50 to 100 nm.
- the absorption layer 14 having the above-described configuration can be formed using a film forming method such as a sputtering method such as a magnetron sputtering method or an ion beam sputtering method.
- a low reflection layer 15 for inspection light used for inspection of a mask pattern is preferably formed on the absorber layer 14 like an EUV mask blank 1 ′ shown in FIG.
- an inspection machine that normally uses light of about 257 nm as inspection light is used. That is, the difference in reflectance of light of about 257 nm, specifically, the surface where the absorber layer 14 is removed by pattern formation and the surface of the absorber layer 14 that remains without being removed by pattern formation, It is inspected by the difference in reflectance.
- the former is the surface of the protective layer 13. Therefore, if the difference in reflectance between the surface of the protective layer 13 and the surface of the absorber layer 14 with respect to the wavelength of the inspection light is small, the contrast at the time of inspection deteriorates and accurate inspection cannot be performed.
- the absorber layer 14 having the above-described configuration has extremely low EUV light reflectance, and has excellent characteristics as an absorption layer of an EUV mask blank.
- the light reflectance is not always sufficient. It's not low.
- the difference between the reflectance of the surface of the absorber layer 14 and the reflectance of the surface of the protective layer 13 at the wavelength of the inspection light becomes small, and there is a possibility that sufficient contrast during inspection cannot be obtained. If sufficient contrast at the time of inspection is not obtained, pattern defects cannot be sufficiently determined in mask inspection, and accurate defect inspection cannot be performed.
- the low reflection layer 15 is formed on the absorber layer 14 to improve the contrast at the time of inspection.
- the light reflectance is extremely low.
- the low reflection layer 15 formed for such a purpose has a maximum light reflectance of 15% or less, preferably 10% or less when irradiated with light in the wavelength region of inspection light. More preferably, it is 5% or less. If the light reflectance at the wavelength of the inspection light in the low reflection layer 15 is 15% or less, the contrast at the time of the inspection is good. Specifically, the contrast between the reflected light having the wavelength of the inspection light on the surface of the protective layer 13 and the reflected light having the wavelength of the inspection light on the surface of the low reflective layer 15 is 30% or more.
- R 2 at the wavelength of the inspection light is a reflectance at the surface of the protective layer 13
- R 1 is a reflectance at the surface of the low reflective layer 15.
- the R 1 and R 2 are measured in a state where patterns are formed on the absorber layer 14 and the low reflection layer 15 of the EUV mask blank 1 ′ shown in FIG. 2 (that is, the state shown in FIG. 3).
- the R 2 is a value measured on the surface of the protective layer 13 exposed to the outside after the absorber layer 14 and the low reflection layer 15 are removed by pattern formation in FIG. 3, and R 1 is not removed by pattern formation. It is a value measured on the surface of the remaining low reflection layer 15.
- the contrast represented by the above formula (2) is more preferably 45% or more, further preferably 60% or more, and particularly preferably 80% or more.
- the low reflection layer 15 is preferably made of a material whose refractive index at the wavelength of the inspection light is lower than that of the absorber layer 14, and its crystal state is preferably amorphous.
- a low reflection layer 15 include those containing Ta, B, Si and oxygen (O) in the ratios described below (low reflection layer (TaBSiO)).
- B content 1 at% or more and less than 5 at%, preferably 1 to 4.5 at%, more preferably 1.5 to 4 at%.
- -Si content 1 to 25 at%, preferably 1 to 20 at%, more preferably 2 to 10 at%.
- the low reflective layer 15 include those containing Ta, B, Si, O, and N in the ratios described below (low reflective layer (TaBSiON)).
- B content 1 at% or more and less than 5 at%, preferably 1 to 4.5 at%, more preferably 2 to 4.0 at%.
- -Si content 1 to 25 at%, preferably 1 to 20 at%, more preferably 2 to 10 at%.
- the low reflective layer (TaBSiO) or (TaBSiON) has the above-described configuration, its crystal state is amorphous and its surface is excellent in smoothness.
- the surface roughness rms of the surface of the low reflective layer (TaBSiO) or (TaBSiON) is preferably 0.5 nm or less.
- the surface of the absorber layer 14 is required to be smooth in order to prevent deterioration in the dimensional accuracy of the pattern due to the influence of edge roughness. Since the low reflection layer 15 is formed on the absorber layer 14, the surface thereof is required to be smooth for the same reason.
- the surface roughness rms of the surface of the low reflection layer 15 is 0.5 nm or less, the surface of the low reflection layer 15 is sufficiently smooth, and there is no possibility that the dimensional accuracy of the pattern is deteriorated due to the influence of edge roughness.
- the surface roughness rms of the surface of the low reflective layer 15 is more preferably 0.4 nm or less, and further preferably 0.3 nm or less.
- the total thickness of the absorber layer 14 and the low reflection layer 15 is preferably 55 to 130 nm. Further, if the thickness of the low reflection layer 15 is larger than the thickness of the absorber layer 14, the EUV light absorption characteristics in the absorber layer 14 may be deteriorated. Therefore, the thickness of the low reflection layer 15 is determined by the absorber layer. It is preferred that the thickness be less than 14. For this reason, the thickness of the low reflective layer 15 is preferably 5 to 30 nm, and more preferably 10 to 20 nm.
- the low reflection layer (TaBSiO) or (TaBSiON) can be formed using a film forming method such as a magnetron sputtering method or a sputtering method such as an ion beam sputtering method.
- the reason why the low reflection layer 15 is preferably formed on the absorber layer 14 as in the EUV mask blank 1 'shown in FIG. 2 is that the wavelength of the inspection light for the pattern and the wavelength of the EUV light are different. is there. Therefore, when EUV light (around 13.5 nm) is used as the pattern inspection light, it is considered unnecessary to form the low reflection layer 15 on the absorber layer 14.
- the wavelength of the inspection light tends to shift to the short wavelength side as the pattern size becomes smaller, and it is conceivable that it will shift to 193 nm and further to 13.5 nm in the future.
- the wavelength of the inspection light is 13.5 nm, it is considered unnecessary to form the low reflection layer 15 on the absorber layer 14.
- the EUV mask blank of the present invention may have a functional film known in the field of EUV mask blanks.
- a functional film for example, in order to promote electrostatic chucking of a substrate as described in JP-A-2003-501823 (incorporated as the disclosure of the present specification), Examples include a high dielectric coating applied to the back side of the substrate.
- the back surface of the substrate refers to the surface of the substrate 11 in FIG. 1 opposite to the side on which the reflective layer 12 is formed.
- the electrical conductivity and thickness of the constituent material are selected so that the sheet resistance is 100 ⁇ / ⁇ or less.
- the constituent material of the high dielectric coating can be widely selected from those described in known literature.
- a high dielectric constant coating described in JP-A-2003-501823 specifically, a coating made of silicon, TiN, molybdenum, chromium, or TaSi can be applied.
- the thickness of the high dielectric coating can be, for example, 10 to 1000 nm.
- the high dielectric coating can be formed using a known film formation method, for example, a sputtering method such as a magnetron sputtering method or an ion beam sputtering method, a CVD method, a vacuum evaporation method, or an electrolytic plating method.
- a sputtering method such as a magnetron sputtering method or an ion beam sputtering method
- CVD method a vacuum evaporation method
- electrolytic plating method an electrolytic plating method.
- the EUV mirror of the present invention may also have the above-described high dielectric coating.
- the EUV mask of the present invention is manufactured by patterning at least the absorber layer of the EUV mask blank of the present invention (when the low reflection layer is formed on the absorber layer, the absorber layer and the low reflection layer). It becomes possible.
- the patterning method of the absorber layer (when the low-reflection layer is formed on the absorber layer, the absorber layer and the low-reflection layer) is not particularly limited.
- the absorber layer (low reflection on the absorber layer)
- a resist is applied on the absorber layer and the low reflection layer to form a resist pattern, and this is used as a mask to form the absorber layer (the low reflection layer on the absorber layer).
- a method of etching the absorber layer and the low reflection layer can be employed.
- the resist material and resist pattern drawing method can be selected as appropriate in consideration of the material of the absorber layer (in the case where a low reflection layer is formed on the absorber layer, the absorber layer and the low reflection layer). Good.
- the etching method of the absorber layer is not particularly limited, and dry etching such as reactive ion etching or wet etching is employed. it can. After patterning the absorber layer (when the low reflection layer is formed on the absorber layer, the absorber layer and the low reflection layer), the resist is stripped with a stripping solution to obtain the EUV mask of the present invention. It is done.
- the present invention can be applied to a method for manufacturing a semiconductor integrated circuit by a photolithography method using EUV light as an exposure light source.
- a substrate such as a silicon wafer coated with a resist is placed on a stage, and the EUV mask is installed in a reflective exposure apparatus configured by combining a reflecting mirror.
- the EUV light is irradiated from the light source to the EUV mask through the reflecting mirror, and the EUV light is reflected by the EUV mask and irradiated to the substrate coated with the resist.
- the circuit pattern is transferred onto the substrate.
- the substrate on which the circuit pattern has been transferred is subjected to development to etch the photosensitive portion or the non-photosensitive portion, and then the resist is peeled off.
- a semiconductor integrated circuit is manufactured by repeating such steps.
- Example 1 a mask blank 1 ′ shown in FIG. 2 was produced.
- a SiO 2 —TiO 2 glass substrate (outer dimensions 6 inches (152.4 mm) square, thickness 6.3 mm) was used.
- This glass substrate has a thermal expansion coefficient of 0.2 ⁇ 10 ⁇ 7 / ° C., a Young's modulus of 67 GPa, a Poisson's ratio of 0.17, and a specific rigidity of 3.07 ⁇ 10 7 m 2 / s 2 .
- This glass substrate was polished to form a smooth surface with a surface roughness rms of 0.15 nm or less and a flatness of 100 nm or less.
- a high dielectric coating (not shown) having a sheet resistance of 100 ⁇ / ⁇ was applied to the back surface of the substrate 11 by depositing a Cr film having a thickness of 100 nm using a magnetron sputtering method.
- a substrate 11 (outer dimensions 6 inches (152.4 mm) square, thickness 6.3 mm) is fixed to a normal electrostatic chuck having a flat plate shape by using the formed Cr film, and ions are formed on the surface of the substrate 11.
- the Mo / Si multilayer reflective film (reflective layer) having a total film thickness of 340 nm ((2.3 nm + 4.5 nm) ⁇ 50) is obtained by repeating 50 cycles of alternately forming the Mo film and the Si film by using the beam sputtering method. 12) was formed.
- the uppermost layer of the Mo / Si multilayer reflective film is a Si film.
- the conditions for forming the Mo film and the Si film are as follows.
- Mo film formation conditions -Target: Mo target.
- Sputtering gas Ar gas (gas pressure: 0.02 Pa).
- Film forming speed 0.064 nm / sec.
- -Film thickness 2.3 nm.
- Target Si target (boron doped).
- Sputtering gas Ar gas (gas pressure: 0.02 Pa).
- -Voltage 700V.
- Film forming speed 0.077 nm / sec. -Film thickness: 4.5 nm.
- a Ru layer was formed as a first layer 13a of the protective layer 13 on the reflective layer 12 by using an ion beam sputtering method.
- the conditions for forming the first layer 13a are as follows.
- Target Ru target.
- Sputtering gas Ar gas (gas pressure: 0.02 Pa).
- -Voltage 700V.
- Film forming speed 0.052 nm / sec.
- -Film thickness 1.25 nm.
- a Mo layer was formed as the second layer 13b of the protective layer 13 by using an ion beam sputtering method.
- the conditions for forming the second layer 13b are as follows. -Target: Mo target. Sputtering gas: Ar gas (gas pressure: 0.02 Pa). -Voltage: 700V. Film forming speed: 0.064 nm / sec. -Film thickness: 0.5 nm.
- a Ru layer was formed as the third layer 13c of the protective layer 13 by ion beam sputtering.
- the formation conditions of the third layer 13c are as follows.
- a TaBSiN layer is formed as the absorber layer 14 on the protective layer 13, more specifically, on the third layer 13 c of the protective layer 13 by using a magnetron sputtering method.
- the conditions for forming the TaBSiN layer are as follows.
- Target TaBSi compound target (composition ratio: Ta 80 at%, B 10 at%, Si 10 at%).
- Sputtering gas Mixed gas of Ar and N 2 (Ar: 86% by volume, N 2 : 14% by volume, gas pressure: 0.3 Pa).
- -Input power 150W.
- Film forming speed 0.12 nm / sec.
- -Film thickness 60 nm.
- TaBSiON layer deposition conditions Target: TaBSi target (composition ratio: Ta 80 at%, B 10 at%, Si 10 at%).
- Sputtering gas Ar, N 2 and O 2 mixed gas (Ar: 60% by volume, N 2 : 20% by volume, O 2 : 20% by volume, gas pressure: 0.3 Pa).
- -Input power 150W.
- Film forming speed 0.18 nm / sec.
- -Film thickness 10 nm.
- the surface roughness rms of the protective layer 13 was 0.15 nm.
- (3) Heat treatment resistance The sample formed up to the protective layer 13 by the above procedure was subjected to heat treatment (atmosphere) at 210 ° C. for 10 minutes. Before and after this treatment, the surface of the protective layer 13 was irradiated with EUV light (wavelength 13.5 nm), and the EUV reflectivity was measured using an EUV reflectometer (MBR (product name) manufactured by AIXUV). The decrease in EUV reflectance before and after this treatment was 5.4%.
- Reflection characteristics About the sample formed to the protective layer 13 by said procedure, the reflectance of the pattern test
- the EUV light (wavelength 13.5nm) is irradiated to the surface of the low reflection layer 15, and the reflectance of EUV light is measured. As a result, the reflectance of EUV light is 0.4%, and it is confirmed that the EUV absorption characteristics are excellent.
- Comparative Example 1 Comparative Example 1 was carried out in the same procedure as in Example 1 except that a single Ru layer was formed as the protective layer 13 on the reflective layer 12 using the ion beam sputtering method.
- the deposition conditions for the Ru layer are as follows. (Ru layer deposition conditions) Target: Ru target.
- Sputtering gas Ar gas (gas pressure: 0.02 Pa).
- -Voltage 700V.
- Film forming speed 0.052 nm / sec.
- -Film thickness 3 nm.
- the surface roughness rms of the protective layer 13 was 0.15 nm.
- (3) Heat treatment resistance The sample formed up to the protective layer 13 by the above procedure was subjected to heat treatment (atmosphere) at 210 ° C. for 10 minutes. Before and after this treatment, the surface of the protective layer 13 was irradiated with EUV light (wavelength 13.5 nm), and the EUV reflectivity was measured using an EUV reflectometer. The decrease in EUV reflectance before and after this treatment was 7.8%. From this result, it was confirmed that the mask blank of Comparative Example 1 was inferior in heat treatment resistance compared to the mask blank of Example 1.
- Example 2 In this example, the EUV mirror 2 shown in FIG. 4 was produced.
- a SiO 2 —TiO 2 glass substrate (outer dimensions 6 inches (152.4 mm) square, thickness 6.3 mm) was used.
- This glass substrate has a thermal expansion coefficient of 0.2 ⁇ 10 ⁇ 7 / ° C., a Young's modulus of 67 GPa, a Poisson's ratio of 0.17, and a specific rigidity of 3.07 ⁇ 10 7 m 2 / s 2 .
- This glass substrate was polished to form a smooth surface with a surface roughness rms of 0.15 nm or less and a flatness of 100 nm or less.
- a high dielectric coating (not shown) having a sheet resistance of 100 ⁇ / ⁇ was applied to the back surface of the substrate 11 by depositing a Cr film having a thickness of 100 nm using a magnetron sputtering method.
- a substrate 11 (outer dimensions 6 inches (152.4 mm) square, thickness 6.3 mm) is fixed to a normal electrostatic chuck having a flat plate shape by using the formed Cr film, and ions are formed on the surface of the substrate 11.
- the Mo / Si multilayer reflective film (reflective layer) having a total film thickness of 340 nm ((2.3 nm + 4.5 nm) ⁇ 50) is obtained by repeating 50 cycles of alternately forming the Mo film and the Si film by using the beam sputtering method. 12) was formed.
- the uppermost layer of the Mo / Si multilayer reflective film is a Si film.
- the conditions for forming the Mo film and the Si film are as follows.
- Mo film formation conditions -Target: Mo target.
- Sputtering gas Ar gas (gas pressure: 0.02 Pa).
- Film forming speed 0.064 nm / sec.
- -Film thickness 2.3 nm.
- Target Si target (boron doped).
- Sputtering gas Ar gas (gas pressure: 0.02 Pa).
- -Voltage 700V.
- Film forming speed 0.077 nm / sec. -Film thickness: 4.5 nm.
- a Ru layer was formed as a first layer 13a of the protective layer 13 on the reflective layer 12 by using an ion beam sputtering method.
- the conditions for forming the first layer 13a are as follows.
- Target Ru target.
- Sputtering gas Ar gas (gas pressure: 0.02 Pa).
- -Voltage 700V.
- Film forming speed 0.052 nm / sec.
- -Film thickness 1.25 nm.
- a Mo layer was formed as the second layer 13b of the protective layer 13 by using an ion beam sputtering method.
- the conditions for forming the second layer 13b are as follows. -Target: Mo target. Sputtering gas: Ar gas (gas pressure: 0.02 Pa). -Voltage: 700V. Film forming speed: 0.064 nm / sec. -Film thickness: 0.5 nm.
- a Ru layer was formed as the third layer 13c of the protective layer 13 by ion beam sputtering.
- the formation conditions of the third layer 13c are as follows.
- the surface of the protective layer 13 was irradiated with EUV light (wavelength 13.5 nm), and the EUV reflectivity was measured using an EUV reflectometer (MBR (product name) manufactured by AIXUV). The decrease in EUV reflectance before and after this treatment was 5.4%.
- the decrease in EUV light reflectance due to oxidation of the Ru protective layer is suppressed. Further, by suppressing the progress of the EUV light reflectance over time during EUV exposure, it is not necessary to change the exposure conditions in the middle, and the life of the EUV mask or EUV mirror can be prolonged.
- the EUV mask produced using the EUV mask blank of the present invention is a highly reliable EUV mask in which the change in EUV light reflectance with time is small during EUV exposure, and is an integrated pattern consisting of fine patterns. Useful for the manufacture of circuits. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2009-279401 filed on Dec. 9, 2009 are cited here as disclosure of the specification of the present invention. Incorporated.
- EUV mask blank 2 EUV mirror 11: Substrate 12: Multilayer reflective film 13: Protective layer 13a: First layer 13b: Second layer 13c: Third layer 14: Absorber layer 15: Low reflective layer
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Public Health (AREA)
- Crystallography & Structural Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
吸収体層には、EUV光に対する吸収係数の高い材料、具体的にはたとえば、クロム(Cr)やタンタル(Ta)を主成分とする材料が用いられる。
このような多層膜ミラーでは、多層反射膜を化学的、物理的な侵蝕から保護する目的で保護層(保護キャッピング層)が該多層反射膜上に形成されることが多い。特許文献4には、EUVミラーの構成として、化学的、物理的な侵蝕に耐えうるため、反射層の上に特定のキャッピング層(保護層)を設けることが記載されている。特許文献4に記載の多層膜ミラーの場合、ルテニウム(Ru)およびロジウム(Rh)並びにそれらの化合物や合金の中から選択される材料からなる保護キャッピング層を備えている。
しかしながら、保護層の材料としてRuを用いた場合、マスクブランクやミラー製造時に実施される工程や該マスクブランクからフォトマスクを製造する際に実施される工程(例えば、洗浄、欠陥検査、加熱工程、ドライエッチング、欠陥修正の各工程)において、あるいは該EUV露光時において、Ru保護層、さらには多層反射膜の最上層(Mo/Si多層反射膜の場合、Si層)が酸化されることによって、保護層表面にEUV光を照射した際のEUV光線反射率が低下するという問題がある。
特に、EUV露光時のEUV光線反射率の低下は、経時的に進行するので、露光条件を途中で変更する必要が生じたり、フォトマスクやミラーの寿命の短縮につながるので問題である。
以下、本明細書において、マスクブランクやミラー製造時に実施される工程や該マスクブランクからフォトマスクを製造する際に実施される工程(例えば、洗浄、欠陥検査、加熱工程、ドライエッチング、欠陥修正の各工程)において、あるいは該EUV露光時において、Ru保護層、さらには多層反射膜の最上層が酸化されることによって、保護層表面にEUV光を照射した際のEUV光線反射率が低下することを、単に「Ru保護層の酸化によるEUV光線反射率の低下」と言う場合がある。
そして、本発明者らは、保護層中のMo中間層の膜厚を特定の範囲とするのが効果的であることを見出した。
前記反射層が、Mo/Si多層反射膜であり、
前記保護層が、前記反射層の側から、Ru層またはRu化合物層からなる第1層、Mo層からなる第2層、および、Ru層またはRu化合物層からなる第3層の順に積層された3層構造であることを特徴とするEUVリソグラフィ用反射層付基板(以下、本明細書において、「本発明の反射層付基板」ともいう。)を提供する。
前記Mo/Si多層反射膜からなる反射層の最上層がSi膜であり、前記保護層が当該Si膜面に接して形成されていることが好ましい。
また、本発明のEUVマスクブランクを用いて作成されるEUVマスクは、EUV露光時において、EUV光線反射率の経時的な変化が小さい、信頼性の高いEUVマスクであり、微細なパターンからなる集積回路の製造に有用である。
図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。図1に示すマスクブランク1は、基板11上にEUV光を反射する反射層12と、該反射層12を保護するための保護層13が、この順に形成されている。本発明のEUVマスクブランクでは、保護層13が、前記反射層12の側から、Ru層またはRu化合物層からなる第1層13a、Mo層からなる第2層13b、および、Ru層またはRu化合物層からなる第3層13cの順に積層された3層構造をなしている。該3層構造の保護層13上には、吸収体層14が形成されている。
図4は、本発明のEUVミラーの1実施形態を示す概略断面図である。図4に示すEUVミラー2は、基板11上にEUV光を反射する反射層12と、該反射層12を保護するための保護層13が、この順に形成されている。但し、本発明のEUVミラーでは、保護層13が、前記反射層12の側から、Ru層またはRu化合物層からなる第1層13a、Mo層からなる第2層13b、および、Ru層またはRu化合物層からなる第3層13cの順に積層された3層構造をなしている。
以下、マスクブランク1およびミラー2の個々の構成要素について説明する。なお、マスクブランクやミラーなどのEUV光を反射する多層膜を有する部材を「EUV光学部材」ともいう。
基板11は、表面粗さrmsが、0.15nm以下の平滑な表面と、100nm以下の平坦度を有していることがパターン形成後のフォトマスクにおいて高反射率および転写精度が得られるために好ましい。
基板11の大きさや厚みなどはマスクの設計値等により適宜決定されるものである。後で示す実施例では外形6インチ(152.4mm)角で、厚さ0.25インチ(6.3mm)のSiO2-TiO2系ガラスを用いた。ミラーに用いられる基板のサイズは露光機の設計値等により適宜決定され、直径50~500mm程度の大きさの基板が通常用いられる。
マスクブランク用の基板は平面形状が正方形等の矩形である。一方、ミラー用の基板は平面形状が円形や楕円形、多角形が多い。
基板11の反射層12が形成される側の表面には欠点が存在しないことが好ましい。しかし、存在している場合であっても、凹状欠点および/または凸状欠点によって位相欠点が生じないように、凹状欠点の深さおよび凸状欠点の高さが2nm以下であり、かつこれら凹状欠点および凸状欠点の半値幅が60nm以下であることが好ましい。
Mo/Si多層反射膜の場合に、EUV光線反射率の最大値が60%以上の反射層12とするには、膜厚2.3±0.1nmのMo層と、膜厚4.5±0.1nmのSi層とを繰り返し単位数が30~60になるように積層させればよい。
また、保護層13は、保護層13を形成した後であっても反射層12でのEUV光線反射率を損なうことがないように、保護層13自体もEUV光線反射率が高いことが好ましい。
このような観点から、特許文献1~3に記載されているように、EUV光学部材の保護層の構成材料として、Ruが用いられている。
本発明のEUV光学部材においても、3層構造の保護層13のうち、第1層13aおよび第3層13cは、Ru層、またはRu化合物層である。ここで、第1層13aおよび第3層13cの両方がRu層であってもよく、Ru化合物層であってもよい。また、第1層13aおよび第3層13cのうち、一方がRu層で、他方がRu化合物層であってもよい。上記Ru化合物としては、RuB、RuNbおよびRuZrからなる群から選ばれる少なくとも1種が好ましい。
なお、第1層13aおよび第3層13cがRu化合物層である場合、Ruの含有率は50at%以上、80at%以上、特に90at%以上であることが好ましい。但し、第1層13aおよび第3層13cがRuNb層の場合、Nbの含有率が10~40at%程度であることが好ましい。
第1層13aおよび第3層13cは、Siの含有量が5at%以下であることが好ましく、3at%以下であることがより好ましく、1at%以下であることがさらに好ましい。
マスクブランクやミラー製造時に実施される工程や該マスクブランクからフォトマスクを製造する際に実施される工程(例えば、洗浄、欠陥検査、加熱工程、ドライエッチング、欠陥修正の各工程)において、あるいは該EUV露光時において、保護層13が酸化されるような状況が生じた場合、3層構造の保護層13は、最上層である第3層13cから酸化され、続いて第2層13b、さらに第1層13aの順に酸化が進行することとなる。
また、Ru単膜(またはRu化合物単膜)で保護層を形成する場合と比較した場合、個々のRu層(またはRu化合物層)の膜厚を1/2程度に薄くすることができるので、結晶性が低く結晶粒界の少ないRu層とすることができる。これにより、Ru層において結晶粒界を通した酸素の拡散を効果的に抑制することができる。
これらの作用によって、第1層13aよりも下にあるMo/Si多層反射膜が酸化されること、より具体的には、Mo/Si多層反射膜の最上層のSi膜が酸化されることが抑制されると考えられ、その結果、Ru保護層の酸化によるEUV光線反射率の低下が抑制されると考えられる。
また、Mo/Si多層反射膜上にRu保護層を形成する際、Mo/Si多層反射膜の最上層であるSi膜中のSiがRu保護層中に拡散する場合があり、問題となる可能性があるが、本発明のEUV光学部材では、Si膜中のSiが第1層13aであるRu層中またはRu化合物層中に拡散する状況が発生した場合でも、第2層13bであるMo層の存在により、第2層13bよりも上にある第3層13c中にSiが拡散することが抑制される。したがって、Ru保護層の形成時にSi膜中のSiがRu保護層中に拡散する状況が発生した場合でも、Ru保護層中へのSiの拡散、より具体的には、Ru保護層の最上層である第3層13c中へのSiの拡散、を最小限に抑制することができる。
また、第2層13bをなすMo層は、Moの含有率が60at%以上、特に80at%以上、さらには90at%以上であることが好ましい。
一方、第2層13bの膜厚は、EUV特性への影響を考慮すると、2nm以下、または、保護層13の合計膜厚の1/2以下のうち、いずれか小さいほうを満たすことが好ましい。
3層構造の保護層13のうち、EUV光学部材の保護層としての機能、すなわち、エッチングプロセスによるダメージを受けないように反射層12を保護する機能、を発揮するのは、Ru層またはRu化合物層である第1層13aおよび第3層13cである。
第2層13bの膜厚が保護層13の合計膜厚の1/2よりも大きいと、第1層13aおよび第3層13cの膜厚が小さくなるので、上述したEUV光学部材の保護層としての機能を発揮できなくなるおそれがある。
第2層13bの膜厚が2nm超だと、上述したEUV光学部材の保護層としての機能を発揮するために必要となる保護層13の合計膜厚が増加し、EUV光線反射率の低下につながるおそれがあるうえ、第2層13bの酸化によるEUV光線反射率の低下が無視できなくなるおそれがある。
第2層13bの膜厚は、0.3nm~1nmであることがより好ましく、0.3nm~0.6nmであることがさらに好ましい。
保護層13表面の表面粗さrmsが0.5nm以下であれば、該保護層13上に形成される吸収体層14表面が十分平滑であるため、エッジラフネスの影響によってパターンの寸法精度が悪化するおそれがない。保護層13表面の表面粗さrmsは0.4nm以下であることがより好ましく、0.3nm以下であることがさらに好ましい。
イオンビームスパッタリング法を用いて、第1層13aおよび第3層13cとしてRu層を形成する場合、ターゲットとしてRuターゲットを用い、アルゴン(Ar)雰囲気中で放電させればよい。具体的には、以下の条件でイオンビームスパッタリングを実施すればよい。
・スパッタガス:Ar(ガス圧:1.0×10-1~10×10-1Pa、好ましくは1.0×10-1~5.0×10-1Pa、より好ましくは1.0×10-1~3.0×10-1Pa)。
・投入電力(各ターゲットについて):30~1000W、好ましくは50~750W、より好ましくは80~500W。
・成膜速度:0.1~6nm/sec、好ましくは0.1~4.5nm/sec、より好ましくは0.1~3nm/sec。
一方、イオンビームスパッタリング法を用いて、第2層13bとしてのMo層を形成する場合、ターゲットとしてMoターゲットを用い、アルゴン(Ar)雰囲気中で放電させればよい。具体的には、以下の条件でイオンビームスパッタリングを実施すればよい。
・スパッタガス:Ar(ガス圧:1.3×10-2Pa~2.7×10-2Pa)。
・イオン加速電圧:300~1500V。
・成膜速度:0.005~0.3nm/sec、好ましくは0.01~0.2nm/sec、より好ましくは0.02~0.1nm/sec。
なお、後述する実施例では、本発明による効果を確認するために、マスクブランクやミラー製造時に実施される加熱工程やマスクブランクからフォトマスクを製造時に実施される加熱工程よりも過酷な条件で加熱処理を実施した。
上記の特性を達成するため、EUV光の吸収係数が高い材料で構成されることが好ましく、タンタル(Ta)を主成分とする材料で形成されていることが好ましい。
このような吸収体層14としては、Ta、B、Siおよび窒素(N)を以下に述べる比率で含有するもの(TaBSiN膜)が挙げられる。
・Bの含有率:1at%以上5at%未満、好ましくは1~4.5at%、より好ましくは1.5~4at%。
・Siの含有率:1~25at%、好ましくは1~20at%、より好ましくは2~12at%。
・TaとNとの組成比(Ta:N)(原子比): 8:1~1:1。
・Taの含有率:好ましくは50~90at%、より好ましくは60~80at%
・Nの含有率:好ましくは5~30at%、より好ましくは10~25at%
上記組成の吸収体層14は、表面粗さが0.5nm以下であることが好ましい。吸収体層14表面の表面粗さが大きいと、吸収体層14に形成されるパターンのエッジラフネスが大きくなり、パターンの寸法精度が悪くなる。パターンが微細になるに従いエッジラフネスの影響が顕著になるため、吸収体層14表面は平滑であることが要求される。
吸収体層14表面の表面粗さが0.5nm以下であれば、吸収体層14表面が十分平滑であるため、エッジラフネスの影響によってパターンの寸法精度が悪化するおそれがない。吸収体層14表面の表面粗さは0.4nm以下であることがより好ましく、0.3nm以下であることがさらに好ましい。
・エッチング選択比
=(吸収体層14のエッチング速度)/(保護層13のエッチング速度)…(1)
エッチング選択比は、10以上が好ましく、11以上であることがさらに好ましく、12以上であることがさらに好ましい。
EUVマスクを作製する際、吸収体層にパターンを形成した後、このパターンが設計通りに形成されているかどうか検査する。このマスクパターンの検査では、検査光として通常257nm程度の光を使用した検査機が使用される。つまり、この257nm程度の光の反射率の差、具体的には、吸収体層14がパターン形成により除去されて露出した面と、パターン形成により除去されずに残った吸収体層14表面と、の反射率の差によって検査される。ここで、前者は保護層13表面である。したがって、検査光の波長に対する保護層13表面と吸収体層14表面との反射率の差が小さいと検査時のコントラストが悪くなり、正確な検査が出来ないことになる。
図2に示すEUVマスクブランク1´のように、吸収体層14上に低反射層15を形成することにより、検査時のコントラストが良好となる、別の言い方をすると、検査光の波長での光線反射率が極めて低くなる。このような目的で形成する低反射層15は、検査光の波長領域の光線を照射した際に、該検査光の波長の最大光線反射率が15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましい。
低反射層15における検査光の波長の光線反射率が15%以下であれば、該検査時のコントラストが良好である。具体的には、保護層13表面における検査光の波長の反射光と、低反射層15表面における検査光の波長の反射光と、のコントラストが、30%以上となる。
・コントラスト(%)=((R2-R1)/(R2+R1))×100…(2)
ここで、検査光の波長におけるR2は保護層13表面での反射率であり、R1は低反射層15表面での反射率である。なお、上記R1およびR2は、図2に示すEUVマスクブランク1´の吸収体層14および低反射層15にパターンを形成した状態(つまり、図3に示す状態)で測定する。上記R2は、図3中、パターン形成によって吸収体層14および低反射層15が除去され、外部に露出した保護層13表面で測定した値であり、R1はパターン形成によって除去されずに残った低反射層15表面で測定した値である。
本発明において、上記(2)式で表されるコントラストが45%以上であることがより好ましく、60%以上であることがさらに好ましく、80%以上であることが特に好ましい。
このような低反射層15の具体例としては、Ta、B、Siおよび酸素(O)を以下に述べる比率で含有するもの(低反射層(TaBSiO))が挙げられる。
・Bの含有率:1at%以上5at%未満、好ましくは1~4.5at%、より好ましくは1.5~4at%。
・Siの含有率:1~25at%、好ましくは1~20at%、より好ましくは2~10at%。
・TaとOとの組成比(Ta:O)(原子比):7:2~1:2、好ましくは7:2~1:1、より好ましくは2:1~1:1。
・Bの含有率:1at%以上5at%未満、好ましくは1~4.5at%、より好ましくは2~4.0at%。
・Siの含有率:1~25at%、好ましくは1~20at%、より好ましくは2~10at%。
・TaとO及びNの組成比(Ta:(O+N))(原子比): 7:2~1:2、好ましくは7:2~1:1、より好ましくは2:1~1:1。
上記したように、エッジラフネスの影響によってパターンの寸法精度の悪化が防止するため、吸収体層14表面は平滑であることが要求される。低反射層15は、吸収体層14上に形成されるため、同様の理由から、その表面は平滑であることが要求される。
低反射層15表面の表面粗さrmsが0.5nm以下であれば、低反射層15表面が十分平滑であるため、エッジラフネスの影響によってパターンの寸法精度が悪化するおそれがない。低反射層15表面の表面粗さrmsは0.4nm以下であることがより好ましく、0.3nm以下であることがさらに好ましい。
高誘電性コーティングは、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法、CVD法、真空蒸着法、または電解メッキ法を用いて形成することができる。
なお、本発明のEUVミラーについても、上述した高誘電性コーティングを有していてもよい。
(実施例1)
本実施例では、図2に示すマスクブランク1´を作製した。
成膜用の基板11として、SiO2-TiO2系のガラス基板(外形6インチ(152.4mm)角、厚さが6.3mm)を使用した。このガラス基板の熱膨張率は0.2×10-7/℃、ヤング率は67GPa、ポアソン比は0.17、比剛性は3.07×107m2/s2である。このガラス基板を研磨により、表面粗さrmsが0.15nm以下の平滑な表面と、100nm以下の平坦度に形成した。
平板形状をした通常の静電チャックに、形成したCr膜を用いて基板11(外形6インチ(152.4mm)角、厚さ6.3mm)を固定して、該基板11の表面上にイオンビームスパッタ法を用いてMo膜およびSi膜を交互に成膜することを50周期繰り返すことにより、合計膜厚340nm((2.3nm+4.5nm)×50)のMo/Si多層反射膜(反射層12)を形成した。なお、Mo/Si多層反射膜の最上層はSi膜である。
(Mo膜の成膜条件)
・ターゲット:Moターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.064nm/sec。
・膜厚:2.3nm。
(Si膜の成膜条件)
・ターゲット:Siターゲット(ホウ素ドープ)。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.077nm/sec。
・膜厚:4.5nm。
第1層13aの形成条件は以下の通りである。
・ターゲット:Ruターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.052nm/sec。
・膜厚:1.25nm。
第2層13bの形成条件は以下の通りである。
・ターゲット:Moターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.064nm/sec。
・膜厚:0.5nm。
第3層13cの形成条件は以下の通りである。
・ターゲット:Ruターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.052nm/sec。
・膜厚:1.25nm。
TaBSiN層の成膜条件は以下の通りである。
(TaBSiN層の成膜条件)
・ターゲット:TaBSi化合物ターゲット(組成比:Ta 80at%、B 10at%、Si 10at%)。
・スパッタガス:ArとN2の混合ガス(Ar:86体積%、N2:14体積%、ガス圧:0.3Pa)。
・投入電力:150W。
・成膜速度:0.12nm/sec。
・膜厚:60nm。
TaBSiON層の成膜条件は以下の通りである。
(TaBSiON層の成膜条件)
・ターゲット:TaBSiターゲット(組成比:Ta 80at%、B 10at%、Si 10at%)。
・スパッタガス:ArとN2とO2の混合ガス(Ar:60体積%、N2:20体積%、O2:20体積%、ガス圧:0.3Pa)。
・投入電力:150W。
・成膜速度:0.18nm/sec。
・膜厚:10nm。
(1)膜組成
上記の手順で保護層13まで形成したサンプルについて、保護層13の表面から反射層(Mo/Si多層反射膜)12までの深さ方向組成を、X線光電子分光装置(X-ray Photoelectron Spectrometer)(アルバック・ファイ社製:Quantera SXM)を用いて測定することによって、該保護層13が下記3層構造であることを確認した。
・第1層13a:Ru層。
・第2層13b:Mo層。
・第3層13c:Ru層。
また、X線光電子分光装置による測定結果から、保護層13の全組成に対するMoの組成が20%であることが確認された。この結果は、上記成膜条件における保護層13の合計膜厚(1.25+0.5+1.25=3nm)と、第2層13bの膜厚(0.5nm)と、の関係に対して、矛盾しない組成量のMoが保護層13中に含まれていることを示している。
(2)表面粗さ
保護層13の表面粗さを、JIS-B0601(1994年)にしたがって、原子間力顕微鏡(Atomic Force Microscope)(セイコーインスツルメンツ社製:番号SPI3800)を用いて確認した。保護層13の表面粗さrmsは0.15nmであった。
(3)加熱処理耐性
上記の手順で保護層13まで形成したサンプルに対して、210℃で10分間の加熱処理(大気中)をした。この処理の前後に保護層13表面にEUV光(波長13.5nm)を照射し、EUV反射率をEUV反射率計(AIXUV社製MBR(製品名))を用いて測定した。この処理前後での、EUV反射率の低下は5.4%であった。
(4)反射特性(コントラスト評価)
上記の手順で保護層13まで形成したサンプルについて、保護層13表面におけるパターン検査光(波長257nm)の反射率を分光光度計を用いて測定する。また、低反射層15まで形成したサンプルについて、低反射層15表面におけるパターン検査光の反射率を測定する。その結果、保護層13層表面での反射率は60.0%であり、低反射層15表面の反射率は6.9%である。これらの結果と上述した(2)式を用いてコントラストを求めると79.4%となる。
得られるEUVマスクブランク1´について、低反射層15表面にEUV光(波長13.5nm)を照射してEUV光の反射率を測定する。その結果、EUV光の反射率は0.4%であり、EUV吸収特性に優れていることが確認される。
比較例1は、反射層12上に、保護層13として単層のRu層をイオンビームスパッタ法を用いて形成した以外は実施例1と同様の手順で実施した。
Ru層の成膜条件は以下の通りである。
(Ru層の成膜条件)
・ターゲット:Ruターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.052nm/sec。
・膜厚:3nm。
(1)膜組成
上記の手順で保護層13まで形成したサンプルについて、保護層13の表面から多層反射膜12までの深さ方向組成を、X線光電子分光装置(X-ray Photoelectron Spectrometer)(アルバック・ファイ社製:Quantera SXM)を用いて測定した。保護層13は単層のRu層であり、該保護層13中にMo組成は検出されなかった。
(2)表面粗さ
上記の手順で保護層13まで形成したサンプルについて、保護層13の表面粗さを、JIS-B0601(1994年)にしたがって、原子間力顕微鏡(Atomic Force Microscope)(セイコーインスツルメンツ社製:番号SPI3800)を用いて確認した。保護層13の表面粗さrmsは0.15nmであった。
(3)加熱処理耐性
上記の手順で保護層13まで形成したサンプルに対して、210℃で10分間の加熱処理(大気中)をした。この処理の前後に保護層13表面にEUV光(波長13.5nm)を照射し、EUV反射率をEUV反射率計を用いて測定した。この処理前後での、EUV反射率の低下は7.8%であった。
この結果から、比較例1のマスクブランクは、実施例1のマスクブランクに比べて加熱処理耐性に劣ることが確認された。
本実施例では、図4に示すEUVミラー2を作製した。
成膜用の基板11として、SiO2-TiO2系のガラス基板(外形6インチ(152.4mm)角、厚さが6.3mm)を使用した。このガラス基板の熱膨張率は0.2×10-7/℃、ヤング率は67GPa、ポアソン比は0.17、比剛性は3.07×107m2/s2である。このガラス基板を研磨により、表面粗さrmsが0.15nm以下の平滑な表面と、100nm以下の平坦度に形成した。
平板形状をした通常の静電チャックに、形成したCr膜を用いて基板11(外形6インチ(152.4mm)角、厚さ6.3mm)を固定して、該基板11の表面上にイオンビームスパッタ法を用いてMo膜およびSi膜を交互に成膜することを50周期繰り返すことにより、合計膜厚340nm((2.3nm+4.5nm)×50)のMo/Si多層反射膜(反射層12)を形成した。なお、Mo/Si多層反射膜の最上層はSi膜である。
(Mo膜の成膜条件)
・ターゲット:Moターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.064nm/sec。
・膜厚:2.3nm。
(Si膜の成膜条件)
・ターゲット:Siターゲット(ホウ素ドープ)。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.077nm/sec。
・膜厚:4.5nm。
第1層13aの形成条件は以下の通りである。
・ターゲット:Ruターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.052nm/sec。
・膜厚:1.25nm。
第2層13bの形成条件は以下の通りである。
・ターゲット:Moターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.064nm/sec。
・膜厚:0.5nm。
第3層13cの形成条件は以下の通りである。
・ターゲット:Ruターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.052nm/sec。
・膜厚:1.25nm。
(1)膜組成
保護層13の表面から反射層(Mo/Si多層反射膜)12までの深さ方向組成を、X線光電子分光装置(X-ray Photoelectron Spectrometer)(アルバック・ファイ社製:Quantera SXM)を用いて測定することによって、該保護層13が下記3層構造であることを確認した。
・第1層13a:Ru層。
・第2層13b:Mo層。
・第3層13c:Ru層。
また、X線光電子分光装置による測定結果から、保護層13の全組成に対するMoの組成が20%であることが確認された。この結果は、上記成膜条件における保護層13の合計膜厚(1.25+0.5+1.25=3nm)と、第2層13bの膜厚(0.5nm)と、の関係に対して、矛盾しない組成量のMoが保護層13中に含まれていることを示している。
(2)表面粗さ
保護層13の表面粗さを、JIS-B0601(1994年)にしたがって、原子間力顕微鏡(Atomic Force Microscope)(セイコーインスツルメンツ社製:番号SPI3800)を用いて確認した。保護層13の表面粗さrmsは0.15nmであった。
(3)加熱処理耐性
EUVミラーを210℃で10分間の加熱処理(大気中)した。この処理の前後に保護層13表面にEUV光(波長13.5nm)を照射し、EUV反射率をEUV反射率計(AIXUV社製MBR(製品名))を用いて測定した。この処理前後での、EUV反射率の低下は5.4%であった。
また、本発明のEUVマスクブランクを用いて作成されるEUVマスクは、EUV露光時において、EUV光線反射率の経時的な変化が小さい、信頼性の高いEUVマスクであり、微細なパターンからなる集積回路の製造に有用である。
なお、2009年12月9日に出願された日本特許出願2009-279401号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
2:EUVミラー
11:基板
12:多層反射膜
13:保護層
13a:第1層
13b:第2層
13c:第3層
14:吸収体層
15:低反射層
Claims (13)
- 基板上に、EUV光を反射する反射層と、該反射層を保護する保護層とがこの順に形成されたEUVリソグラフィ用反射層付基板であって、
前記反射層が、Mo/Si多層反射膜であり、
前記保護層が、前記反射層の側から、Ru層またはRu化合物層からなる第1層、Mo層からなる第2層、および、Ru層またはRu化合物層からなる第3層の順に積層された3層構造であることを特徴とするEUVリソグラフィ用反射層付基板。 - 前記Mo/Si多層反射膜からなる反射層の最上層がSi膜であり、前記保護層が当該Si膜面に接して形成されている、請求項1に記載のEUVリソグラフィ用反射層付基板。
- 前記第2層の膜厚が、0.2nm以上であり、かつ、2nm以下、または、前記保護層の合計膜厚の1/2以下のうち、いずれか小さいほうを満たす、請求項1または2に記載のEUVリソグラフィ用反射層付基板。
- 前記保護層の合計膜厚が1~10nmである、請求項1~3のいずれか1項に記載のEUVリソグラフィ用反射層付基板。
- 前記保護層表面の表面粗さrmsが0.5nm以下である、請求項1~4のいずれか1項に記載のEUVリソグラフィ用反射層付基板。
- 請求項1~5のいずれか1項に記載の反射層付基板の保護層上に吸収体層を形成してなるEUVリソグラフィ用反射型マスクブランク。
- 前記吸収体層がタンタル(Ta)を主成分とする材料で形成される、請求項6に記載のEUVリソグラフィ用反射型マスクブランク。
- エッチングガスとして塩素系ガスを用いてドライエッチングを実施した際の前記保護層と前記吸収体層とのエッチング選択比が10以上である、請求項6または7に記載のEUVリソグラフィ用反射型マスクブランク。
- 前記吸収体層上に、タンタル(Ta)を主成分とする材料で形成された、マスクパターンの検査に使用する検査光における低反射層が設けられている、請求項6~8のいずれか1項に記載のEUVリソグラフィ用反射型マスクブランク。
- 吸収体層に形成されるパターンの検査に用いられる光の波長に対する前記保護層表面での反射光と、前記低反射層表面での反射光と、のコントラストが、30%以上である、請求項9に記載のEUVリソグラフィ用反射型マスクブランク。
- 請求項6~10のいずれか1項に記載のEUVマスクブランクをパターニングしたEUVリソグラフィ用反射型マスク。
- 請求項11に記載のEUVリソグラフィ用反射型マスクを用いて、被露光体に露光を行うことにより半導体集積回路を製造することを特徴とする半導体集積回路の製造方法。
- 請求項1~5のいずれか1項に記載のEUVリソグラフィ用反射層付基板を用いたEUVリソグラフィ用反射型ミラー。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127008116A KR20130007533A (ko) | 2009-12-09 | 2010-12-08 | Euv 리소그래피용 광학 부재 |
JP2011545229A JP5590044B2 (ja) | 2009-12-09 | 2010-12-08 | Euvリソグラフィ用光学部材 |
EP10836006.6A EP2511943A4 (en) | 2009-12-09 | 2010-12-08 | OPTICAL ELEMENT FOR USE IN EUV LITHOGRAPHY |
US13/472,002 US8986910B2 (en) | 2009-12-09 | 2012-05-15 | Optical member for EUV lithography |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-279401 | 2009-12-09 | ||
JP2009279401 | 2009-12-09 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/472,002 Continuation US8986910B2 (en) | 2009-12-09 | 2012-05-15 | Optical member for EUV lithography |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011071086A1 true WO2011071086A1 (ja) | 2011-06-16 |
Family
ID=44145631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/072047 WO2011071086A1 (ja) | 2009-12-09 | 2010-12-08 | Euvリソグラフィ用光学部材 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8986910B2 (ja) |
EP (1) | EP2511943A4 (ja) |
JP (1) | JP5590044B2 (ja) |
KR (1) | KR20130007533A (ja) |
TW (1) | TWI467317B (ja) |
WO (1) | WO2011071086A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014170931A (ja) * | 2013-02-11 | 2014-09-18 | Hoya Corp | 多層反射膜付き基板及びその製造方法、反射型マスクブランクの製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法 |
JP2015501528A (ja) * | 2011-09-27 | 2015-01-15 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 安定した組成を有する酸窒化物キャッピング層を備えたeuvミラー、euvリソグラフィ装置、及び作動方法 |
WO2015012151A1 (ja) * | 2013-07-22 | 2015-01-29 | Hoya株式会社 | 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法 |
WO2015037564A1 (ja) * | 2013-09-11 | 2015-03-19 | Hoya株式会社 | 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法 |
JP2015122468A (ja) * | 2013-12-25 | 2015-07-02 | Hoya株式会社 | 反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法 |
JP2015222783A (ja) * | 2014-05-23 | 2015-12-10 | 凸版印刷株式会社 | 反射型マスクブランクおよび反射型マスク |
JP2016500449A (ja) * | 2012-12-06 | 2016-01-12 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Euvリソグラフィー用反射性光学素子及びその製造方法 |
JP2017146601A (ja) * | 2016-02-16 | 2017-08-24 | 旭硝子株式会社 | マスクブランク用の反射部材およびマスクブランク用の反射部材の製造方法 |
JP2021056502A (ja) * | 2019-09-30 | 2021-04-08 | Hoya株式会社 | 多層反射膜付き基板、反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法 |
JP2022045940A (ja) * | 2020-09-10 | 2022-03-23 | 信越化学工業株式会社 | Euvマスクブランク用多層反射膜付き基板、その製造方法及びeuvマスクブランク |
WO2023127799A1 (ja) * | 2021-12-28 | 2023-07-06 | Agc株式会社 | 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012014904A1 (ja) | 2010-07-27 | 2012-02-02 | 旭硝子株式会社 | Euvリソグラフィ用反射層付基板、およびeuvリソグラフィ用反射型マスクブランク |
JP6125772B2 (ja) | 2011-09-28 | 2017-05-10 | Hoya株式会社 | 反射型マスクブランク、反射型マスクおよび反射型マスクの製造方法 |
DE102012202057B4 (de) * | 2012-02-10 | 2021-07-08 | Carl Zeiss Smt Gmbh | Projektionsobjektiv für EUV-Mikrolithographie, Folienelement und Verfahren zur Herstellung eines Projektionsobjektivs mit Folienelement |
JP6069919B2 (ja) | 2012-07-11 | 2017-02-01 | 旭硝子株式会社 | Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびに該マスクブランク用の反射層付基板およびその製造方法 |
KR102402767B1 (ko) | 2017-12-21 | 2022-05-26 | 삼성전자주식회사 | 극자외선 마스크 블랭크, 극자외선 마스크 블랭크를 이용하여 제조된 포토마스크, 포토마스크를 이용한 리소그래피 장치 및 포토마스크를 이용한 반도체 장치 제조 방법 |
JP6556885B2 (ja) * | 2018-02-22 | 2019-08-07 | Hoya株式会社 | 反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法 |
DE102019212910A1 (de) * | 2019-08-28 | 2021-03-04 | Carl Zeiss Smt Gmbh | Optisches Element und EUV-Lithographiesystem |
JP7318565B2 (ja) | 2020-03-03 | 2023-08-01 | 信越化学工業株式会社 | 反射型マスクブランクの製造方法 |
JP2022045936A (ja) * | 2020-09-10 | 2022-03-23 | 信越化学工業株式会社 | Euvマスクブランク用多層反射膜付き基板、その製造方法及びeuvマスクブランク |
JP2024089128A (ja) * | 2022-12-21 | 2024-07-03 | 信越化学工業株式会社 | 反射型マスクブランク、反射型マスク及びその製造方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1065568A2 (en) | 1999-07-02 | 2001-01-03 | Asm Lithography B.V. | EUV-Lithographic projection apparatus comprising an optical element with a capping layer |
JP2001523007A (ja) * | 1997-11-10 | 2001-11-20 | ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア | 極紫外リソグラフィー用の多重層反射性コーティング用不動態化オーバーコート二重層 |
JP2002122981A (ja) | 2000-10-13 | 2002-04-26 | Samsung Electronics Co Ltd | 反射型フォトマスク |
JP2003501823A (ja) | 1999-06-07 | 2003-01-14 | ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア | 反射マスク基板のコーティング |
JP2005516182A (ja) * | 2001-07-03 | 2005-06-02 | ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニア | 不動態化保護膜二重層 |
JP2005268750A (ja) | 2004-02-19 | 2005-09-29 | Hoya Corp | 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法 |
JP2006170916A (ja) * | 2004-12-17 | 2006-06-29 | Nikon Corp | 光学素子及びこれを用いた投影露光装置 |
US7300724B2 (en) | 2004-06-09 | 2007-11-27 | Intel Corporation | Interference multilayer capping design for multilayer reflective mask blanks |
WO2008090988A1 (ja) * | 2007-01-25 | 2008-07-31 | Nikon Corporation | 光学素子、これを用いた露光装置、及びデバイス製造方法 |
JP2009279401A (ja) | 2008-05-02 | 2009-12-03 | Tyco Healthcare Group Lp | 外科用機器のための流体送達システム |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5928817A (en) | 1997-12-22 | 1999-07-27 | Intel Corporation | Method of protecting an EUV mask from damage and contamination |
US6355381B1 (en) | 1998-09-25 | 2002-03-12 | Intel Corporation | Method to fabricate extreme ultraviolet lithography masks |
US6596465B1 (en) | 1999-10-08 | 2003-07-22 | Motorola, Inc. | Method of manufacturing a semiconductor component |
US6410193B1 (en) | 1999-12-30 | 2002-06-25 | Intel Corporation | Method and apparatus for a reflective mask that is inspected at a first wavelength and exposed during semiconductor manufacturing at a second wavelength |
US6479195B1 (en) | 2000-09-15 | 2002-11-12 | Intel Corporation | Mask absorber for extreme ultraviolet lithography |
US6645679B1 (en) | 2001-03-12 | 2003-11-11 | Advanced Micro Devices, Inc. | Attenuated phase shift mask for use in EUV lithography and a method of making such a mask |
US6583068B2 (en) | 2001-03-30 | 2003-06-24 | Intel Corporation | Enhanced inspection of extreme ultraviolet mask |
US6610447B2 (en) | 2001-03-30 | 2003-08-26 | Intel Corporation | Extreme ultraviolet mask with improved absorber |
US6593037B1 (en) | 2001-05-02 | 2003-07-15 | Advanced Micro Devices, Inc. | EUV mask or reticle having reduced reflections |
US6830851B2 (en) | 2001-06-30 | 2004-12-14 | Intel Corporation | Photolithographic mask fabrication |
US20030008148A1 (en) | 2001-07-03 | 2003-01-09 | Sasa Bajt | Optimized capping layers for EUV multilayers |
US6593041B2 (en) | 2001-07-31 | 2003-07-15 | Intel Corporation | Damascene extreme ultraviolet lithography (EUVL) photomask and method of making |
US6607862B2 (en) | 2001-08-24 | 2003-08-19 | Intel Corporation | Damascene extreme ultraviolet lithography alternative phase shift photomask and method of making |
US6653053B2 (en) | 2001-08-27 | 2003-11-25 | Motorola, Inc. | Method of forming a pattern on a semiconductor wafer using an attenuated phase shifting reflective mask |
US6818357B2 (en) | 2001-10-03 | 2004-11-16 | Intel Corporation | Photolithographic mask fabrication |
DE10150874A1 (de) | 2001-10-04 | 2003-04-30 | Zeiss Carl | Optisches Element und Verfahren zu dessen Herstellung sowie ein Lithographiegerät und ein Verfahren zur Herstellung eines Halbleiterbauelements |
EP1306698A1 (en) * | 2001-10-26 | 2003-05-02 | Nikon Corporation | Multilayer reflective mirrors for EUV, wavefront-aberration-correction methods for the same, and EUV optical systems comprising the same |
US6627362B2 (en) | 2001-10-30 | 2003-09-30 | Intel Corporation | Photolithographic mask fabrication |
DE10156366B4 (de) | 2001-11-16 | 2007-01-11 | Infineon Technologies Ag | Reflexionsmaske und Verfahren zur Herstellung der Reflexionsmaske |
JP3939167B2 (ja) * | 2002-02-28 | 2007-07-04 | Hoya株式会社 | 露光用反射型マスクブランク、その製造方法及び露光用反射型マスク |
KR100455383B1 (ko) | 2002-04-18 | 2004-11-06 | 삼성전자주식회사 | 반사 포토마스크, 반사 포토마스크의 제조방법 및 이를이용한 집적회로 제조방법 |
DE10223113B4 (de) | 2002-05-21 | 2007-09-13 | Infineon Technologies Ag | Verfahren zur Herstellung einer photolithographischen Maske |
US20040130693A1 (en) * | 2002-10-31 | 2004-07-08 | Asml Netherlands B.V. | Lithographic apparatus, optical element and device manufacturing method |
US6913706B2 (en) | 2002-12-28 | 2005-07-05 | Intel Corporation | Double-metal EUV mask absorber |
US6905801B2 (en) | 2002-12-28 | 2005-06-14 | Intel Corporation | High performance EUV mask |
US7118832B2 (en) | 2003-01-08 | 2006-10-10 | Intel Corporation | Reflective mask with high inspection contrast |
US6908713B2 (en) | 2003-02-05 | 2005-06-21 | Intel Corporation | EUV mask blank defect mitigation |
US7169514B2 (en) | 2003-12-31 | 2007-01-30 | Intel Corporation | Extreme ultraviolet mask with molybdenum phase shifter |
JP2006332153A (ja) * | 2005-05-24 | 2006-12-07 | Hoya Corp | 反射型マスクブランク及び反射型マスク並びに半導体装置の製造方法 |
TWI444757B (zh) | 2006-04-21 | 2014-07-11 | Asahi Glass Co Ltd | 用於極紫外光(euv)微影術之反射性空白光罩 |
TWI417647B (zh) | 2006-06-08 | 2013-12-01 | Asahi Glass Co Ltd | Euv微影術用之反射性空白遮光罩及用於彼之具有功能性薄膜的基板 |
WO2008093534A1 (ja) * | 2007-01-31 | 2008-08-07 | Asahi Glass Company, Limited | Euvリソグラフィ用反射型マスクブランク |
WO2008129908A1 (ja) | 2007-04-17 | 2008-10-30 | Asahi Glass Company, Limited | Euvリソグラフィ用反射型マスクブランク |
-
2010
- 2010-12-08 WO PCT/JP2010/072047 patent/WO2011071086A1/ja active Application Filing
- 2010-12-08 JP JP2011545229A patent/JP5590044B2/ja active Active
- 2010-12-08 KR KR1020127008116A patent/KR20130007533A/ko not_active Application Discontinuation
- 2010-12-08 EP EP10836006.6A patent/EP2511943A4/en not_active Withdrawn
- 2010-12-09 TW TW99143003A patent/TWI467317B/zh not_active IP Right Cessation
-
2012
- 2012-05-15 US US13/472,002 patent/US8986910B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001523007A (ja) * | 1997-11-10 | 2001-11-20 | ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア | 極紫外リソグラフィー用の多重層反射性コーティング用不動態化オーバーコート二重層 |
JP2003501823A (ja) | 1999-06-07 | 2003-01-14 | ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア | 反射マスク基板のコーティング |
EP1065568A2 (en) | 1999-07-02 | 2001-01-03 | Asm Lithography B.V. | EUV-Lithographic projection apparatus comprising an optical element with a capping layer |
JP4068285B2 (ja) | 1999-07-02 | 2008-03-26 | エーエスエムエル ネザーランズ ビー.ブイ. | 極端紫外光学素子用のキャッピング層 |
JP2002122981A (ja) | 2000-10-13 | 2002-04-26 | Samsung Electronics Co Ltd | 反射型フォトマスク |
JP2005516182A (ja) * | 2001-07-03 | 2005-06-02 | ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニア | 不動態化保護膜二重層 |
JP2005268750A (ja) | 2004-02-19 | 2005-09-29 | Hoya Corp | 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法 |
US7300724B2 (en) | 2004-06-09 | 2007-11-27 | Intel Corporation | Interference multilayer capping design for multilayer reflective mask blanks |
JP2006170916A (ja) * | 2004-12-17 | 2006-06-29 | Nikon Corp | 光学素子及びこれを用いた投影露光装置 |
WO2008090988A1 (ja) * | 2007-01-25 | 2008-07-31 | Nikon Corporation | 光学素子、これを用いた露光装置、及びデバイス製造方法 |
JP2009279401A (ja) | 2008-05-02 | 2009-12-03 | Tyco Healthcare Group Lp | 外科用機器のための流体送達システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2511943A4 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015501528A (ja) * | 2011-09-27 | 2015-01-15 | カール・ツァイス・エスエムティー・ゲーエムベーハー | 安定した組成を有する酸窒化物キャッピング層を備えたeuvミラー、euvリソグラフィ装置、及び作動方法 |
JP2016500449A (ja) * | 2012-12-06 | 2016-01-12 | カール・ツァイス・エスエムティー・ゲーエムベーハー | Euvリソグラフィー用反射性光学素子及びその製造方法 |
JP2014170931A (ja) * | 2013-02-11 | 2014-09-18 | Hoya Corp | 多層反射膜付き基板及びその製造方法、反射型マスクブランクの製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法 |
WO2015012151A1 (ja) * | 2013-07-22 | 2015-01-29 | Hoya株式会社 | 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法 |
JPWO2015012151A1 (ja) * | 2013-07-22 | 2017-03-02 | Hoya株式会社 | 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法 |
US9740091B2 (en) | 2013-07-22 | 2017-08-22 | Hoya Corporation | Substrate with multilayer reflective film, reflective mask blank for EUV lithography, reflective mask for EUV lithography, and method of manufacturing the same, and method of manufacturing a semiconductor device |
WO2015037564A1 (ja) * | 2013-09-11 | 2015-03-19 | Hoya株式会社 | 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法 |
JPWO2015037564A1 (ja) * | 2013-09-11 | 2017-03-02 | Hoya株式会社 | 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法 |
US9720317B2 (en) | 2013-09-11 | 2017-08-01 | Hoya Corporation | Substrate with a multilayer reflective film, reflective mask blank for EUV lithography, reflective mask for EUV lithography and method of manufacturing the same, and method of manufacturing a semiconductor device |
US10481484B2 (en) | 2013-12-25 | 2019-11-19 | Hoya Corporation | Reflective mask blank, reflective mask, method for manufacturing reflective mask blank, and method for manufacturing semiconductor device |
JP2015122468A (ja) * | 2013-12-25 | 2015-07-02 | Hoya株式会社 | 反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法 |
JP2015222783A (ja) * | 2014-05-23 | 2015-12-10 | 凸版印刷株式会社 | 反射型マスクブランクおよび反射型マスク |
JP2017146601A (ja) * | 2016-02-16 | 2017-08-24 | 旭硝子株式会社 | マスクブランク用の反射部材およびマスクブランク用の反射部材の製造方法 |
JP2021056502A (ja) * | 2019-09-30 | 2021-04-08 | Hoya株式会社 | 多層反射膜付き基板、反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法 |
JP2022045940A (ja) * | 2020-09-10 | 2022-03-23 | 信越化学工業株式会社 | Euvマスクブランク用多層反射膜付き基板、その製造方法及びeuvマスクブランク |
US11860529B2 (en) | 2020-09-10 | 2024-01-02 | Shin-Etsu Chemical Co., Ltd. | Substrate with multilayer reflection film for EUV mask blank, manufacturing method thereof, and EUV mask blank |
JP7420027B2 (ja) | 2020-09-10 | 2024-01-23 | 信越化学工業株式会社 | Euvマスクブランク用多層反射膜付き基板、その製造方法及びeuvマスクブランク |
WO2023127799A1 (ja) * | 2021-12-28 | 2023-07-06 | Agc株式会社 | 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法 |
JPWO2023127799A1 (ja) * | 2021-12-28 | 2023-07-06 | ||
JP7416343B2 (ja) | 2021-12-28 | 2024-01-17 | Agc株式会社 | 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法 |
US12105412B2 (en) | 2021-12-28 | 2024-10-01 | AGC Inc. | Reflective mask blank, reflective mask, method of manufacturing reflective mask blank, and method of manufacturing reflective mask |
Also Published As
Publication number | Publication date |
---|---|
US20120225375A1 (en) | 2012-09-06 |
TWI467317B (zh) | 2015-01-01 |
EP2511943A4 (en) | 2015-09-09 |
KR20130007533A (ko) | 2013-01-18 |
US8986910B2 (en) | 2015-03-24 |
EP2511943A1 (en) | 2012-10-17 |
JP5590044B2 (ja) | 2014-09-17 |
JPWO2011071086A1 (ja) | 2013-04-22 |
TW201131284A (en) | 2011-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5590044B2 (ja) | Euvリソグラフィ用光学部材 | |
JP5696666B2 (ja) | Euvリソグラフィ用光学部材およびeuvリソグラフィ用反射層付基板の製造方法 | |
JP5673555B2 (ja) | Euvリソグラフィ用反射層付基板、euvリソグラフィ用反射型マスクブランク、euvリソグラフィ用反射型マスク、および該反射層付基板の製造方法 | |
JP5067483B2 (ja) | Euvリソグラフィ用反射型マスクブランク | |
JP6287099B2 (ja) | Euvリソグラフィ用反射型マスクブランク | |
WO2013077430A1 (ja) | Euvリソグラフィ用反射型マスクブランクおよびその製造方法 | |
WO2011004850A1 (ja) | Euvリソグラフィ用反射型マスクブランク | |
JP5348141B2 (ja) | Euvリソグラフィ用反射型マスクブランク | |
JP4910856B2 (ja) | Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板 | |
JP6069919B2 (ja) | Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびに該マスクブランク用の反射層付基板およびその製造方法 | |
US20130196255A1 (en) | Reflective mask blank for euv lithography and reflective mask for euv lithography | |
KR20140085350A (ko) | Euv 리소그래피용 반사형 마스크 블랭크 및 그 제조 방법 | |
KR20160034315A (ko) | 다층 반사막을 구비한 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크 및 그 제조 방법과 반도체 장치의 제조 방법 | |
JP2015073013A (ja) | Euvリソグラフィ用反射型マスクブランクの製造方法 | |
JP6604134B2 (ja) | Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびに該マスクブランク用の反射層付基板およびその製造方法 | |
KR20160054458A (ko) | 다층 반사막을 구비한 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크 및 그 제조 방법과 반도체 장치의 제조 방법 | |
JP6186996B2 (ja) | Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク | |
JP6186962B2 (ja) | Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク | |
JP2014160752A (ja) | Euvリソグラフィ用反射型マスクブランクおよび該マスクブランク用反射層付基板 | |
JP5494164B2 (ja) | Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板 | |
JP5333016B2 (ja) | Euvリソグラフィ用反射型マスクブランク | |
JP6451884B2 (ja) | Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク | |
JP6288327B2 (ja) | Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク | |
JP2009252788A (ja) | Euvリソグラフィ用反射型マスクブランク |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10836006 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011545229 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010836006 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20127008116 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |