WO2011004850A1 - Euvリソグラフィ用反射型マスクブランク - Google Patents

Euvリソグラフィ用反射型マスクブランク Download PDF

Info

Publication number
WO2011004850A1
WO2011004850A1 PCT/JP2010/061560 JP2010061560W WO2011004850A1 WO 2011004850 A1 WO2011004850 A1 WO 2011004850A1 JP 2010061560 W JP2010061560 W JP 2010061560W WO 2011004850 A1 WO2011004850 A1 WO 2011004850A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
absorber layer
mask blank
film
euv
Prior art date
Application number
PCT/JP2010/061560
Other languages
English (en)
French (fr)
Inventor
和幸 林
俊之 宇野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2011521949A priority Critical patent/JPWO2011004850A1/ja
Priority to EP10797161A priority patent/EP2453464A1/en
Publication of WO2011004850A1 publication Critical patent/WO2011004850A1/ja
Priority to US13/346,026 priority patent/US8288062B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a reflective mask blank for EUV (Extreme Ultra Violet) lithography (hereinafter referred to as “EUV mask blank” in the present specification) used for semiconductor manufacturing and the like, and the EUV mask blank.
  • EUV mask blank Extreme Ultra Violet
  • the present invention relates to a reflective mask for EUV lithography (hereinafter referred to as “EUV mask” in the present specification) formed on an absorber layer.
  • a photolithography method using visible light or ultraviolet light has been used as a technique for transferring a fine pattern necessary for forming an integrated circuit having a fine pattern on a Si substrate or the like.
  • the limits of conventional photolithography methods have been approached.
  • the resolution limit of the pattern is about 1 ⁇ 2 of the exposure wavelength, and it is said that the immersion wavelength is about 1 ⁇ 4 of the exposure wavelength, and the immersion of ArF laser (193 nm) is used. Even if the method is used, the limit of about 45 nm is expected.
  • EUV lithography which is an exposure technique using EUV light having a wavelength shorter than that of an ArF laser, is promising as an exposure technique for 45 nm and beyond.
  • EUV light refers to light having a wavelength in the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 10 to 20 nm, particularly about 13.5 nm ⁇ 0.3 nm.
  • EUV mask a reflective photomask (hereinafter referred to as “EUV mask”) and a mirror are used.
  • the mask blank is a laminate before forming a mask pattern on the photomask.
  • a reflective layer that reflects EUV light and an absorber layer that absorbs EUV light are formed in this order on a substrate such as glass (see Patent Document 1).
  • the absorber layer a material having a high absorption coefficient for EUV light, specifically, for example, a material mainly composed of Ta is used.
  • Patent Document 1 discloses that a tantalum boron alloy nitride (TaBN), a tantalum boron alloy oxide (TaBO), and a tantalum boron alloy oxynitride (TaBNO) have a high absorption coefficient for EUV light. Since the reflectivity of deep ultraviolet light in the wavelength region (190 nm to 260 nm) of pattern inspection light is low, it is considered preferable as a material for the absorber layer.
  • TaBN tantalum boron alloy nitride
  • TaBO tantalum boron alloy oxide
  • TaBNO tantalum boron alloy oxynitride
  • a material having a high absorption coefficient for EUV light is used for the absorber layer of the EUV mask blank.
  • the irradiated EUV light is completely absorbed by the absorber layer.
  • the film thickness should be absorbed.
  • the irradiated EUV light cannot be completely absorbed by the absorber layer, and part of it becomes reflected light. .
  • What is required when forming a transfer pattern on a resist on a substrate by EUV lithography is the contrast of reflected light from the EUV mask, that is, the portion where the absorber layer is removed and the reflective layer is exposed when the mask pattern is formed.
  • an EUV mask using the principle of phase shift has been proposed in order to reduce the thickness of the absorber layer (see Patent Documents 2 and 3).
  • the reflected light from the part where the absorber layer was not removed at the time of mask pattern formation has a reflectance of 5 to 15%, and the absorber layer was removed at the time of mask pattern formation and the reflection layer was exposed. It is characterized by having a phase difference of 175 to 185 degrees with respect to the reflected light from the part. Since this EUV mask can sufficiently maintain the contrast with the reflective layer by utilizing the principle of phase shift with respect to the reflected light from the absorber layer, the thickness of the absorber layer is reduced. It is described that it is possible.
  • JP 2004-6798 A (US Pat. No. 7,390,596) JP 2006-228766 A Japanese Patent No. 3078163 (US Pat. No. 5,641,593)
  • the minimum film thickness of the absorber layer is limited to 50 to 60 nm.
  • retardation
  • n refractive index of absorber layer
  • d film thickness of absorber layer
  • incident angle of EUV light
  • wavelength of EUV light.
  • the refractive index is n ⁇ 0.945. Therefore, if the refractive index of the absorber layer is less than 0.945, the film can be further thinned. It will be.
  • Patent Document 2 describes a range of optical constants that are optimal for a halftone film, but does not describe specific materials.
  • Patent Document 3 V, Cr, Mn, Fe, Co, Ag, Cd, In, Sn, Sb, lanthanoid elements, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb , Bi selected from the group consisting of one kind of simple substance or a material containing at least one element among them.
  • the characteristics required of the absorption layer are not only the optical characteristics with respect to EUV light, but also “surface roughness”, “film stress”, “crystal state of the layer”, “optical characteristics with respect to the wavelength region of pattern inspection light”, etc. Because of the wide variety, it is difficult to satisfy all the characteristics with only one kind of metal, and it is important to make an alloy combining several metals. Patent Document 3 does not describe a specific combination of materials.
  • the present invention is excellent in properties as an EUV mask blank, and particularly includes an absorber layer having an optical constant that can be expected to be thinner than a conventional absorber layer.
  • EUV mask blanks that satisfy various characteristics such as “surface roughness”, “film stress”, “crystal state of the layer”, and “optical characteristics with respect to the wavelength range of pattern inspection light” required for the absorber layer are provided. The purpose is to do.
  • the absorber layer is made of molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb), and titanium (Ti). It has been found that by containing at least one selected from palladium (Pd), a desired optical constant can be obtained, and various properties required for an absorber layer for an EUV mask blank are satisfied.
  • the present invention has been made on the basis of the above knowledge, and a reflective type for EUV lithography in which a reflective layer that reflects EUV light and an absorber layer that absorbs EUV light are formed in this order on a substrate.
  • a mask blank, The absorber layer contains at least one selected from the group consisting of molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb), and titanium (Ti), and palladium (Pd).
  • Mo molybdenum
  • Sn tin
  • Ag silver
  • Nb niobium
  • Ti titanium
  • Pd palladium
  • a reflective mask blank for EUV lithography hereinafter referred to as “the EUV mask blank of the present invention”).
  • the total content of the molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb) and titanium (Ti) in the absorber layer is 20 to 90 at%
  • the palladium (Pd) content is preferably 10 to 80 at%
  • the total content of Mo, Sn, Ag, Nb, Ti, and Pd is preferably 95 to 100 at%.
  • “to” is used in the sense that numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the absorber layer further contains nitrogen (N).
  • N nitrogen
  • the total content of the molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb) and titanium (Ti) is 20 to 90 at%, and the content of the palladium (Pd)
  • the nitrogen (N) content is 30 to 70 at%, and the total content of Mo, Sn, Ag, Nb, Ti, Pd, and N is 95 to 100 at%. It is preferable that
  • the absorber layer further contains hydrogen (H).
  • H the total content of the molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb) and titanium (Ti) is 20 to 90 at%, and the content of the palladium (Pd)
  • the hydrogen (H) content is 0.1 to 10 at%, and the total content of Mo, Sn, Ag, Nb, Ti, Pd, and H is 95 to 80 at%. It is preferable that it is 100 at%.
  • the absorber layer preferably further contains nitrogen (N) and hydrogen (H).
  • N nitrogen
  • H hydrogen
  • the total content of the molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb) and titanium (Ti) is 20 to 90 at%
  • the content of the palladium (Pd) The nitrogen (N) content is 30 to 70 at%
  • the hydrogen (H) content is 0.1 to 10 at%
  • the Mo, Sn, Ag The total content of Nb, Ti, Pd, N, and H is preferably 95 to 100 at%.
  • the crystalline state of the absorber layer is amorphous.
  • the surface roughness (rms) of the absorber layer surface is 0.5 nm or less.
  • the absorber layer has a thickness of 20 to 50 nm.
  • a low reflection layer in inspection light used for inspection of a mask pattern is formed on the absorber layer,
  • the low reflective layer includes at least one selected from the group consisting of molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb), and titanium (Ti), palladium (Pd), and oxygen (O). It is preferable to contain.
  • the total content of the molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb) and titanium (Ti) is 10 to 55 at%, and the content of the palladium (Pd)
  • the oxygen (O) content is 20 to 70 at%, and the total content of Mo, Sn, Ag, Nb, Ti, Pd, and O is 95 to 100 at%. It is preferable that
  • a low reflection layer in inspection light used for inspection of a mask pattern is formed on the absorber layer,
  • the low reflective layer includes at least one selected from the group consisting of molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb), and titanium (Ti), palladium (Pd), and oxygen (O). And nitrogen (N).
  • the total content of the molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb) and titanium (Ti) is 10 to 55 at%, and the content of the palladium (Pd)
  • the total content of Mo, Sn, Ag, Nb, Ti, Pd, O, and N is preferably 95 to 100 at%.
  • the surface roughness (rms) of the surface of the low reflection layer is preferably 0.5 nm or less.
  • the thickness of the low reflection layer is preferably 5 to 30 nm.
  • a protective layer is formed between the reflective layer and the absorber layer to protect the reflective layer when forming a pattern on the absorber layer.
  • the contrast between the reflected light on the surface of the protective layer and the reflected light on the surface of the low reflective layer with respect to the wavelength of the light used for the inspection of the pattern formed on the absorber layer is preferably 30% or more. .
  • the protective layer is preferably formed of any one of Ru, Ru compound and SiO 2 .
  • the reflectance of the surface of the low reflection layer with respect to the wavelength of light used for inspection of the pattern formed on the absorber layer is 15% or less. preferable.
  • the EUV mask blank of the present invention can be made thinner than the conventional absorber layer by making the refractive index value smaller than the conventional Ta-based absorber layer and further having a desired extinction coefficient. It is expected to improve the shape accuracy and dimensional accuracy of the mask transfer pattern transferred to a resist on a substrate such as a Si wafer.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the EUV mask blank of the present invention.
  • FIG. 2 shows a state where a pattern is formed on the absorber layer 14 (and the low reflective layer 15) of the EUV mask blank 1 shown in FIG.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the EUV mask blank of the present invention.
  • a reflective layer 12 that reflects EUV light and an absorber layer 14 that absorbs EUV light are formed on a substrate 11 in this order.
  • a protective layer 13 is formed between the reflective layer 12 and the absorber layer 14 to protect the reflective layer 12 when forming a pattern on the absorber layer 14.
  • On the absorber layer 14, a low reflection layer 15 for inspection light used for inspection of a mask pattern is formed.
  • the protective layer 13 and the low reflective layer 15 are optional components. .
  • individual components of the mask blank 1 will be described.
  • the substrate 11 is required to satisfy the characteristics as a substrate for an EUV mask blank. Therefore, the substrate 11, the low thermal expansion coefficient (specifically, it is preferable that the thermal expansion coefficient at 20 ° C. is 0 ⁇ 0.05 ⁇ 10 -7 / °C , particularly preferably 0 ⁇ 0.03 ⁇ 10 - 7 / ° C.) and excellent in smoothness, flatness, and resistance to a cleaning liquid used for cleaning a mask blank or a photomask after pattern formation.
  • the substrate 11 is made of glass having a low thermal expansion coefficient, such as SiO 2 —TiO 2 glass, but is not limited to this. Crystallized glass, quartz glass, silicon or the like on which ⁇ quartz solid solution is precipitated is used.
  • a substrate made of metal or the like can also be used.
  • the substrate 11 preferably has a smooth surface with a surface roughness (rms) of 0.15 nm or less and a flatness of 100 nm or less in order to obtain high reflectivity and transfer accuracy in a photomask after pattern formation. .
  • the size, thickness, etc. of the substrate 11 are appropriately determined by the design value of the mask. In the examples described later, SiO 2 —TiO 2 glass having an outer shape of 6 inches (152 mm) square and a thickness of 0.25 inches (6.3 mm) was used. It is preferable that the surface of the substrate 11 on the side where the reflective layer 12 is formed has no defects.
  • the depth of the concave defect and the height of the convex defect are not more than 2 nm so that the phase defect does not occur due to the concave defect and / or the convex defect. It is preferable that the half width of the defect and the convex defect is 60 nm or less.
  • the reflective layer 12 is not particularly limited as long as it has desired characteristics as a reflective layer of an EUV mask blank.
  • the characteristic particularly required for the reflective layer 12 is a high EUV light reflectance.
  • the maximum value of light reflectance near a wavelength of 13.5 nm is preferably 60% or more, More preferably, it is 65% or more.
  • the maximum value of the light reflectance near the wavelength of 13.5 nm is preferably 60% or more, and more preferably 65% or more. preferable.
  • the reflective layer 12 can achieve high EUV light reflectance, a multilayer reflective film in which a high refractive layer and a low refractive index layer are alternately laminated a plurality of times is usually used as the reflective layer 12.
  • a multilayer reflective film in which a high refractive layer and a low refractive index layer are alternately laminated a plurality of times is usually used as the reflective layer 12.
  • Mo is widely used for the high refractive index layer
  • Si is widely used for the low refractive index layer. That is, the Mo / Si multilayer reflective film is the most common.
  • the multilayer reflective film is not limited to this, and Ru / Si multilayer reflective film, Mo / Be multilayer reflective film, Mo compound / Si compound multilayer reflective film, Si / Mo / Ru multilayer reflective film, Si / Mo / Ru / A Mo multilayer reflective film and a Si / Ru / Mo / Ru multilayer reflective film can also be used.
  • each layer constituting the multilayer reflective film constituting the reflective layer 12 and the number of repeating units of the layers can be appropriately selected according to the film material used and the EUV light reflectance required for the reflective layer.
  • the multilayer reflective film is composed of a Mo layer having a film thickness of 2.3 ⁇ 0.1 nm, A Si layer having a thickness of 4.5 ⁇ 0.1 nm may be stacked so that the number of repeating units is 30 to 60.
  • each layer which comprises the multilayer reflective film which comprises the reflective layer 12 so that it may become desired thickness using well-known film-forming methods, such as a magnetron sputtering method and an ion beam sputtering method.
  • film-forming methods such as a magnetron sputtering method and an ion beam sputtering method.
  • an Si / Mo multilayer reflective film is formed by ion beam sputtering
  • an Si target is used as a target and Ar gas (gas pressure 1.3 ⁇ 10 ⁇ 2 Pa to 2.7 ⁇ 10 ⁇ as a sputtering gas). 2 Pa)
  • an Si film is formed to have a thickness of 4.5 nm at an ion acceleration voltage of 300 to 1500 V and a film formation rate of 0.03 to 0.30 nm / sec.
  • the Si / Mo multilayer reflective film is formed by laminating the Si film and the Mo film for 40 to 50 periods.
  • the uppermost layer of the multilayer reflective film forming the reflective layer 12 is preferably a layer made of a material that is not easily oxidized.
  • the layer of material that is not easily oxidized functions as a cap layer of the reflective layer 12.
  • a Si layer can be exemplified.
  • the uppermost layer can be made to function as a cap layer by making the uppermost layer an Si layer. In that case, the thickness of the cap layer is preferably 11 ⁇ 2 nm.
  • the protective layer 13 is provided for the purpose of protecting the reflective layer 12 so that the reflective layer 12 is not damaged by the etching process when the absorption layer 14 is patterned by an etching process, usually a dry etching process. Therefore, as the material of the protective layer 13, a material that is not easily affected by the etching process of the absorber layer 14, that is, the etching rate is slower than that of the absorbing layer 14 and is not easily damaged by this etching process is selected. Examples of the material satisfying this condition include Al and nitrides thereof, Ru and Ru compounds (RuB, RuSi, etc.), SiO 2 , Si 3 N 4 , Al 2 O 3 and mixtures thereof.
  • Ru and Ru compounds (RuB, RuSi, etc.) and SiO 2 are preferable.
  • Ru and Ru compounds are particularly preferable from the viewpoint of etching resistance. That is, as in the absorber layer 14 of the present invention, a dry etching process using a fluorine-based gas (CF 4 , CF 3 H) is preferably used for etching the absorber layer containing Pd.
  • the protective layer 13 made of a Ru compound is preferable because it has a sufficient etching resistance against such a dry etching process using a fluorine-based gas, so that the etching damage is small.
  • the protective layer 13 does not contain Ta and Cr for the purpose of preventing an increase in film stress.
  • the content of Ta and Cr in the protective layer 13 is preferably 5 at% or less, particularly preferably 3 at% or less, and further preferably does not contain Ta and Cr.
  • the thickness of the protective layer 13 is preferably 1 to 60 nm, particularly 1 to 10 nm.
  • the protective layer 13 is formed using a known film formation method such as magnetron sputtering or ion beam sputtering.
  • a Ru film is formed by magnetron sputtering
  • a Ru target is used as a target
  • Ar gas gas pressure: 1.0 ⁇ 10 ⁇ 2 Pa to 10 ⁇ 10 ⁇ 1 Pa
  • an input voltage is 30 V. It is preferable to form a film at a thickness of 2 to 5 nm at a film thickness of 0.01 to 1500 V and a film formation rate of 0.02 to 1.0 nm / sec.
  • the characteristic particularly required for the absorber layer 14 is that the contrast between the EUV light reflected by the reflective layer 12 and the EUV light reflected by the absorber layer 14 is high.
  • the refractive index of the absorber layer It is necessary to make n and the extinction coefficient k have desired values, and n is preferably less than 0.945, more preferably less than 0.930, and still more preferably less than 0.920.
  • k is preferably 0.020 to 0.080, more preferably 0.025 to 0.078, and even more preferably 0.030 to 0.075.
  • the absorber layer 14 of the EUV mask blank 1 of the present invention includes at least one selected from the group consisting of molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb), and titanium (Ti), and palladium ( The above-mentioned characteristics are achieved by containing Pd).
  • Mo, Sn, Nb, and Ti are preferable because of the mechanical strength of the absorber layer.
  • the reflectance of the EUV reflected light from the surface of the absorber layer 14 specifically, the light in the wavelength region of the EUV light is incident on the surface of the absorber layer 14 at an incident angle of 6 degrees.
  • the maximum value of the light reflectance around the wavelength of 13.5 nm is preferably 5 to 15%.
  • the reflectance of the EUV reflected light from the surface of the low reflection layer 15 satisfies said range.
  • the Pd content in the absorber layer 14 is 10 to 80 at%, particularly 15 to 75 at%, and more preferably 15 to 70 at%.
  • at least one selected from the group consisting of molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb), and titanium (Ti) has a total content in the absorber layer 14, 20 to 90 at%, particularly 25 to 85 at%, and further 30 to 85 at% are the optical characteristics of the absorber layer surface roughness, film stress, crystal state of the layer, and wavelength region of pattern inspection light Is preferable because it can be controlled within a desired range described later.
  • the total content of Mo, Sn, Ag, Nb, Ti, and Pd in the absorber layer 14 is preferably 95 to 100 at%, more preferably 97 to 100 at%, and 99 to 100 at%. % Is more preferable. Further, it is preferable that the absorber layer 14 does not contain Ta and Cr for the purpose of preventing an increase in film stress.
  • the content of Ta and Cr in the absorber layer 14 is preferably 5 at% or less, particularly preferably 3 at% or less, and further preferably does not contain Ta and Cr.
  • the absorber layer 14 may further contain nitrogen (N), and the effect of improving the surface roughness can be obtained by containing N.
  • N nitrogen
  • the N content is preferably 30 to 70 at%, particularly 35 to 60 at% for the reason of smoothing the surface of the absorber layer.
  • the absorber layer 14 contains N the total content of Mo, Sn, Ag, Nb, Ti, Pd, and N in the absorber layer 14 is preferably 95 to 100 at%, and 97 to 100 at% is more preferable, and 99 to 100 at% is more preferable.
  • the absorber layer 14 may further contain hydrogen (H). By containing H, an effect of making the crystal state amorphous can be obtained.
  • H the content of H is 0.1 to 10 at%, and particularly 0.1 to 5 at%, the crystal structure of the absorber layer can be made amorphous. It is preferable because the surface roughness can be smoothed.
  • the absorber layer 14 contains H the total content of Mo, Sn, Ag, Nb, Ti, Pd, and H in the absorber layer 14 is preferably 95 to 100 at%, and 97 to 100 at% is more preferable, and 99 to 100 at% is more preferable.
  • the absorber layer 14 contains N and H, the total content of both is 30 to 70 at%, particularly 35 to 60 at%, the crystal structure of the absorber layer can be made amorphous. It is preferable because the surface roughness can be smoothed.
  • the absorber layer 14 contains N and H, the total content of Mo, Sn, Ag, Nb, Ti, Pd, N, and H in the absorber layer 14 is 95 to 100 at%. It is preferably 97 to 100 at%, more preferably 99 to 100 at%.
  • the oxygen content in the absorber layer 14 is 5 at% or less, particularly 3 at% or less, in order to prevent the absorber layer from becoming insulating. Furthermore, the oxygen content in the protective layer 13 is also preferably 5 at% or less, particularly 3 at% or less.
  • the crystalline state thereof is preferably amorphous.
  • the phrase “crystalline state is amorphous” includes a microcrystalline structure other than an amorphous structure having no crystal structure. If the absorber layer 14 is a film having an amorphous structure or a film having a microcrystalline structure, the surface of the absorber layer 14 is excellent in smoothness.
  • the absorber layer according to the present invention includes at least one selected from the group consisting of molybdenum (Mo), tin (Sn), silver (Ag), niobium (Nb), and titanium (Ti), and palladium (Pd).
  • the surface roughness (rms) of the surface of the absorber layer 14 is 0.5 nm or less because the absorber layer 14 is an amorphous structure film or a microcrystalline structure film. preferable.
  • the surface roughness of the surface of the absorber layer 14 can be measured using an atomic force microscope (Atomic Force Microscope).
  • the surface of the absorber layer 14 is required to be smooth. If the surface roughness (rms) of the surface of the absorber layer 14 is 0.5 nm or less, the surface of the absorber layer 14 is sufficiently smooth, and there is no possibility that the dimensional accuracy of the pattern is deteriorated due to the influence of edge roughness.
  • the surface roughness (rms) of the surface of the absorber layer 14 is more preferably 0.4 nm or less, and further preferably 0.3 nm or less.
  • the surface roughness of the surface of the absorber layer represents the surface roughness of the absorber layer before the low reflective layer is formed.
  • the low reflection layer is formed on the surface of the absorber layer, it may be considered that the surface roughness of the surface of the absorber layer itself is maintained without substantially changing. Therefore, the value obtained by measuring the roughness of the surface of the absorber layer with the low reflection layer by an atomic force microscope is substantially equivalent to the surface roughness of the surface of the absorber layer itself. You can consider it to be.
  • the crystalline state of the absorber layer 14 is amorphous, that is, an amorphous structure or a microcrystalline structure. If the crystalline state of the absorber layer 14 is an amorphous structure or a microcrystalline structure, a sharp peak is not observed in a diffraction peak obtained by XRD measurement.
  • XRD X-ray diffraction
  • the film stress of the absorber layer 14 is preferably within ⁇ 200 MPa, particularly within ⁇ 180 MPa, because the shape accuracy and dimensional accuracy of the mask transfer pattern transferred to the resist on the substrate such as the Si wafer are not deteriorated.
  • the thickness of the absorber layer 14 is 20 to 50 nm, particularly 20 to 45 nm, and more preferably 20 to 40 nm, which improves the shape accuracy and dimensional accuracy of the mask transfer pattern transferred to the resist on the substrate such as a Si wafer. This is preferable because it is expected.
  • the absorber layer 14 having the above-described configuration can be formed by performing a sputtering method using a target containing at least one selected from the group consisting of Mo, Sn, Ag, Nb, and Ti and Pd. .
  • a target containing at least one selected from the group consisting of Mo, Sn, Ag, Nb and Ti and Pd two or more kinds of metal targets, that is, Mo, Sn, Ag, Nb, are used.
  • at least one metal target selected from the group consisting of Ti and Pd target, and at least one selected from the group consisting of Mo, Sn, Ag, Nb and Ti, and Pd Any of using a compound target is included.
  • the use of two or more types of metal targets is convenient for adjusting the constituent components of the absorber layer 14.
  • the sputtering method using the above target is performed in an inert gas atmosphere containing at least one of helium (He), argon (Ar), neon (Ne), krypton (Kr), and xenon (Xe).
  • the sputtering method is performed in an inert gas atmosphere containing at least one of He, Ar, Ne, Kr, and Xe and nitrogen (N 2 ).
  • the sputtering method is performed in a gas atmosphere containing at least one of He, Ar, Ne, Kr, and Xe inert gas and hydrogen (H 2 ). To do.
  • the absorber layer containing H and N when forming the absorber layer containing H and N, it contains at least one of inert gases of He, Ar, Ne, Kr, and Xe, and hydrogen (H 2 ) and nitrogen (N 2 ). Sputtering is performed in a gas atmosphere.
  • Absorber layer formation conditions Sputtering gas: Ar (gas pressure 1.0 ⁇ 10 ⁇ 1 Pa to 50 ⁇ 10 ⁇ 1 Pa, preferably 1.0 ⁇ 10 ⁇ 1 Pa to 40 ⁇ 10 ⁇ 1 Pa, more preferably Is 1.0 ⁇ 10 ⁇ 1 Pa to 30 ⁇ 10 ⁇ 1 Pa.)
  • Input power 30 to 1000 W, preferably 50 to 750 W, more preferably 80 to 500 W.
  • Film forming speed 0.5 to 60 nm / min, preferably 1.0 to 45 nm / min, more preferably 1.5 to 30 nm / min.
  • the sputtering gas is Ar
  • an inert gas other than Ar or a plurality of inert gases is used as the sputtering gas
  • the total concentration of the inert gas is the same as the Ar gas concentration described above. Set the concentration range.
  • the low reflection layer 15 is composed of a film that exhibits low reflection in inspection light used for inspection of a mask pattern.
  • an inspection machine that normally uses light of about 257 nm as inspection light is used. That is, the difference in reflectance of light of about 257 nm, specifically, the surface where the absorber layer 14 is removed by pattern formation and the surface of the absorber layer 14 that remains without being removed by pattern formation, It is inspected by the difference in reflectance.
  • the former is the surface of the reflective layer 12 or the surface of the protective layer 13, and is usually the surface of the protective layer 13.
  • the low reflection layer is preferably adjacent to the absorber layer, and is preferably the outermost layer from the viewpoint of pattern inspection.
  • the absorber layer 14 having the above-described configuration has extremely low EUV light reflectance, and has excellent characteristics as the absorber layer of the EUV mask blank 1, but when viewed with respect to the wavelength of inspection light, the light reflectance is low. It is not necessarily low enough. As a result, the difference between the reflectance of the surface of the absorber layer 14 at the wavelength of the inspection light and the reflectance of the surface of the reflective layer 12 or the surface of the protective layer 13 becomes small, and sufficient contrast during inspection may not be obtained. There is. If sufficient contrast at the time of inspection is not obtained, pattern defects cannot be sufficiently determined in mask inspection, and accurate defect inspection cannot be performed.
  • the light reflectance at the wavelength of the inspection light becomes extremely low, and the contrast at the time of inspection becomes good.
  • the maximum light reflectance of the wavelength of the inspection light is preferably 15% or less, and preferably 10% or less. Is more preferable, and it is further more preferable that it is 5% or less. If the light reflectance at the wavelength of the inspection light in the low reflection layer 15 is 15% or less, the contrast at the time of the inspection is good. Specifically, the contrast between the reflected light with the wavelength of the inspection light on the surface of the reflective layer 12 or the protective layer 13 and the reflected light with the wavelength of the inspection light on the surface of the low reflective layer 15 is 30% or more.
  • Contrast (%) ((R 2 ⁇ R 1 ) / (R 2 + R 1 )) ⁇ 100
  • R 2 at the wavelength of the inspection light is a reflectance on the surface of the reflective layer 12 or the protective layer 13
  • R 1 is a reflectance on the surface of the low reflective layer 15.
  • the above R 1 and R 2 are, as shown in FIG. 2, it is measured in a state of forming a pattern on the absorber layer 14 of the EUV mask blank 1 (and the low reflective layer 15) shown in FIG.
  • R 2 is a value measured on the surface of the reflective layer 12 or the protective layer 13 exposed to the outside after the absorber layer 14 and the low reflective layer 15 are removed by pattern formation
  • R 1 is the pattern formation. This is a value measured on the surface of the low reflective layer 15 remaining without being removed by.
  • the contrast represented by the above formula is more preferably 45% or more, further preferably 60% or more, and more preferably 80% or more. Particularly preferred.
  • the low reflection layer 15 is preferably made of a material whose refractive index at the wavelength of the inspection light is lower than that of the absorber layer 14, and its crystal state is preferably amorphous.
  • the low reflective layer 15 of the EUV mask blank 1 of the present invention contains at least one selected from the group consisting of Mo, Sn, Ag, Nb and Ti, and Pd and oxygen (O), or O and N.
  • the above characteristics can be achieved.
  • the content of Pd in the low reflection layer 15 is preferably 10 to 60 at%, particularly 10 to 50 at%, because the optical characteristics with respect to the wavelength region of the pattern inspection light can be controlled.
  • At least one selected from the group consisting of Mo, Sn, Ag, Nb, and Ti has a low reflection when the total content in the low reflection layer is 10 to 55 at%, particularly 10 to 45 at%. This is preferable because the surface roughness and crystal structure of the layer can be controlled.
  • the low reflective layer 15 contains O it is preferable that the O content is 20 to 70 at%, particularly 20 to 60 at%, because the optical characteristics with respect to the wavelength region of the pattern inspection light can be controlled.
  • the total content of Mo, Sn, Ag, Nb, Ti, Pd, and O in the low reflective layer 15 is preferably 95 to 100 at%. It is more preferably 97 to 100 at%, further preferably 99 to 100 at%.
  • the low reflective layer 15 contains O and N
  • the total content of Mo, Sn, Ag, Nb, Ti, Pd, N, and O in the low reflective layer 15 is 95 to 100 at%. It is preferably 97 to 100 at%, more preferably 99 to 100 at%.
  • the low reflective layer includes at least one selected from the group consisting of tantalum (Ta), silicon (Si), and hafnium (Hf), and at least one selected from the group consisting of oxygen (O) and nitrogen (N). It is preferable to contain.
  • the total content of the tantalum (Ta), silicon (Si), and hafnium (Hf) is 10 to 55 at%, and the content of oxygen (O) and nitrogen (N) is 45 to 90 at%.
  • the total content of Ta, Si, Hf, O and N is preferably 95 to 100 at%.
  • the low reflection layer 15 Since the low reflection layer 15 has the above-described configuration, its crystal state is amorphous and its surface is excellent in smoothness. Specifically, the surface roughness (rms) of the surface of the low reflective layer 15 is 0.5 nm or less. As described above, the surface of the absorber layer 14 is required to be smooth in order to prevent deterioration in the dimensional accuracy of the pattern due to the influence of edge roughness. Since the low reflection layer 15 is formed on the absorber layer 14, the surface thereof is required to be smooth for the same reason.
  • the surface roughness (rms) of the surface of the low reflection layer 15 is 0.5 nm or less, the surface of the low reflection layer 15 is sufficiently smooth, and there is no possibility that the dimensional accuracy of the pattern is deteriorated due to the influence of edge roughness.
  • the surface roughness (rms) of the surface of the low reflective layer 15 is more preferably 0.4 nm or less, and further preferably 0.3 nm or less. In terms of reducing the surface roughness, it is preferable that the low reflective layer 15 contains N.
  • the crystal state of the low reflection layer 15 is amorphous, that is, an amorphous structure or a microcrystalline structure. If the crystal state of the low reflective layer 15 is an amorphous structure or a microcrystalline structure, a sharp peak is not observed in a diffraction peak obtained by XRD measurement.
  • XRD X-ray diffraction
  • the total film thickness of the absorber layer 14 and the low reflection layer 15 is preferably 25 to 80 nm. Further, if the thickness of the low reflective layer 15 is larger than the thickness of the absorber layer 14, the EUV light absorption characteristics in the absorber layer 14 may be deteriorated. It is preferably smaller than the film thickness of the layer. For this reason, the thickness of the low reflective layer 15 is preferably 5 to 30 nm, and more preferably 10 to 20 nm.
  • the low reflection layer 15 having the above-described configuration can be formed by performing a sputtering method using a target containing at least one selected from the group consisting of Mo, Sn, Ag, Nb, and Ti and Pd. .
  • a target any of the above-described two or more types of metal targets and compound targets can be used.
  • Use of two or more kinds of metal targets is convenient for adjusting the constituent components of the low reflective layer 15.
  • the sputtering method using the above target is carried out in an inert gas atmosphere in the same manner as the sputtering method for forming the absorber layer.
  • the low reflective layer 15 contains oxygen (O)
  • the sputtering method is performed in a gas atmosphere containing at least one of an inert gas of He, Ar, Ne, Kr, and Xe and O.
  • the low reflective layer 15 contains O and N
  • the sputtering method is performed in a gas atmosphere containing at least one of He, Ar, Ne, Kr, and Xe inert gases and O and N.
  • Specific conditions for performing the sputtering method vary depending on the target to be used and the composition of the inert gas atmosphere in which the sputtering method is performed. In any case, the sputtering method may be performed under the following conditions.
  • the conditions for forming the low reflective layer are shown below, taking as an example the case where the inert gas atmosphere is a mixed gas atmosphere of Ar and O 2 . Formation conditions and atmospheric pressure of the low reflection layer : 1.0 ⁇ 10 ⁇ 1 Pa to 50 ⁇ 10 ⁇ 1 Pa, preferably 1.0 ⁇ 10 ⁇ 1 Pa to 40 ⁇ 10 ⁇ 1 Pa, more preferably 1.0 ⁇ 10 ⁇ 1 Pa to 30 ⁇ 10 ⁇ 1 Pa.
  • Sputtering gas Ar and O 2 mixed gas (O 2 gas concentration: 3 to 80 vol%, preferably 5 to 60 vol%, more preferably 10 to 40 vol%).
  • Input power 30 to 1000 W, preferably 50 to 750 W, more preferably 80 to 500 W.
  • Film forming speed 0.01 to 60 nm / min, preferably 0.05 to 45 nm / min, more preferably 0.1 to 30 nm / min.
  • the low reflection layer 15 on the absorber layer 14 because the wavelength of the pattern inspection light and the wavelength of the EUV light are different. Therefore, when EUV light (around 13.5 nm) is used as the pattern inspection light, it is considered unnecessary to form the low reflection layer 15 on the absorber layer 14.
  • the wavelength of the inspection light tends to shift to the short wavelength side as the pattern size becomes smaller, and it is conceivable that it will shift to 193 nm and further to 13.5 nm in the future.
  • the wavelength of the inspection light is 13.5 nm, it is considered unnecessary to form the low reflection layer 15 on the absorber layer 14.
  • the EUV mask blank 1 of the present invention may have a functional film known in the field of EUV mask blanks in addition to the reflective layer 12, the protective layer 13, the absorber layer 14, and the low reflective layer 15.
  • a functional film for example, as described in JP-A-2003-501823, a high dielectric material applied to the back side of the substrate in order to promote electrostatic chucking of the substrate.
  • a functional coating here, the back surface of the substrate refers to the surface of the substrate 11 in FIG. 1 opposite to the side on which the reflective layer 12 is formed.
  • the electrical conductivity and thickness of the constituent material are selected so that the sheet resistance is 100 ⁇ / ⁇ or less.
  • the constituent material of the high dielectric coating can be widely selected from those described in known literature.
  • a high dielectric constant coating described in JP-A-2003-501823 specifically, a coating made of silicon, TiN, molybdenum, chromium, or TaSi can be applied.
  • the thickness of the high dielectric coating can be, for example, 10 to 1000 nm.
  • the high dielectric coating can be formed using a known film forming method, for example, a sputtering method such as a magnetron sputtering method or an ion beam sputtering method, a CVD method, a vacuum evaporation method, or an electrolytic plating method.
  • An EUV mask can be manufactured by patterning at least the absorption layer of the mask blank of the present invention.
  • the patterning method of the absorber layer is not particularly limited, and for example, a method of applying a resist on the absorber layer to form a resist pattern and etching the absorber layer using this as a mask can be employed.
  • the resist material and the resist pattern drawing method may be appropriately selected in consideration of the material of the absorber layer and the like.
  • the method for etching the absorber layer is not particularly limited, and dry etching such as reactive ion etching or wet etching can be employed. After patterning the absorber layer, the EUV mask is obtained by stripping the resist with a stripping solution.
  • the present invention can be applied to a method for manufacturing a semiconductor integrated circuit by a photolithography method using EUV light as an exposure light source.
  • a substrate such as a silicon wafer coated with a resist is placed on a stage, and the EUV mask is installed in a reflective exposure apparatus configured by combining a reflecting mirror.
  • the EUV light is irradiated from the light source to the EUV mask through the reflecting mirror, and the EUV light is reflected by the EUV mask and irradiated to the substrate coated with the resist.
  • the circuit pattern is transferred onto the substrate.
  • the substrate on which the circuit pattern has been transferred is subjected to development to etch the photosensitive portion or the non-photosensitive portion, and then the resist is removed.
  • a semiconductor integrated circuit is manufactured by repeating such steps.
  • Example 1 the EUV mask blank 1 shown in FIG. 1 was produced.
  • a SiO 2 —TiO 2 glass substrate (outer diameter 6 inches (152 mm) square, thickness 6.3 mm) was used.
  • This glass substrate has a thermal expansion coefficient of 0.2 ⁇ 10 ⁇ 7 / ° C., a Young's modulus of 67 GPa, a Poisson's ratio of 0.17, and a specific rigidity of 3.07 ⁇ 10 7 m 2 / s 2 .
  • This glass substrate was polished to form a smooth surface with a surface roughness (rms) of 0.15 nm or less and a flatness of 100 nm or less.
  • a high dielectric coating having a sheet resistance of 100 ⁇ / ⁇ was applied to the back side of the substrate 11 by depositing a Cr film having a thickness of 100 nm using a magnetron sputtering method.
  • a substrate 11 (outer diameter 6 inches (152 mm) square, thickness 6.3 mm) is fixed to a flat electrostatic chuck having a flat plate shape by using the formed Cr film, and ion beam sputtering is performed on the surface of the substrate 11.
  • the Si / Mo multilayer having a total film thickness of 272 nm ((Si film: 4.5 nm + Mo film: 2.3 nm) ⁇ 40 layers) is obtained by repeating 40 cycles of alternately forming Si films and Mo films using the method.
  • a reflective film (reflective layer 12) was formed. Further, a protective layer 13 was formed by forming a Ru film (film thickness: 2.5 nm) on the Si / Mo multilayer reflective film (reflective layer 12) using an ion beam sputtering method.
  • the deposition conditions for the Si film, the Mo film, and the Ru film are as follows.
  • Si film deposition conditions and target Si target (boron doped) Sputtering gas: Ar gas (gas pressure 0.02 Pa) ⁇ Voltage: 700V ⁇ Deposition rate: 0.077 nm / sec ⁇ Film thickness: 4.5nm Mo film formation conditions ⁇
  • the absorber layer 14 was formed by the following method.
  • the film composition includes an X-ray Photoelectron Spectrometer (manufactured by PERKIN ELEMER-PHI), a secondary ion mass spectrometer (Secondary Ion Mass Spectrometer) (manufactured by PHI-ATOMIKA), and Rutherford backscattering spectrometer (manufactured by Rutherford). Measurement is performed using Ruferford Back Scattering Spectroscopy (manufactured by Kobe Steel).
  • Film formation conditions of absorber layer 14 (PdMo film) Target: Pd target and Mo target Sputtering gas: Ar gas (gas pressure: 0.3 Pa) -Input power: Pd target 50W, Mo target 100W ⁇ Deposition rate: 18.9 nm / min ⁇ Film thickness: 50nm
  • the surface roughness of the absorber layer 14 was measured by a dynamic force mode using an atomic force microscope (SII, SPI-3800).
  • the surface roughness measurement area is 1 ⁇ m ⁇ 1 ⁇ m, and SI-DF40 (manufactured by SII) is used as the cantilever.
  • the surface roughness (rms) of the absorber layer 14 was 0.28 nm.
  • the film stress of the absorber layer 14 (PdMo film) is formed on a 4-inch wafer under the same conditions as those described above, and the change in the amount of warpage of the substrate before and after film formation is measured. It was evaluated by. The amount of warpage of the substrate was measured using a stress measurement device (FLX-2320 manufactured by KLA-Tencor). The film stress of the absorber layer 14 was 188 Mpa, which was a film stress range (within ⁇ 200 MPa) required as an EUV mask blank.
  • the optical constants in the EUV wavelength region of the absorber layer 14 are formed on a 4-inch wafer under the same conditions as those described above.
  • the reflectance was evaluated by measuring the “angle dependency”.
  • the EUV reflectance, the incident angle of EUV light, and the optical constant are expressed by the following equations.
  • a low reflection layer 15 (PdMoON film) containing Pd, Mo, O and N is formed on the absorber layer 14 by using a magnetron sputtering method, whereby the reflection layer 12 and the protection layer are formed on the substrate 11.
  • the EUV mask blank 1 in which the layer 13, the absorber layer 14, and the low reflection layer 15 were formed in this order was obtained.
  • the film forming conditions of the low reflective layer 15 (PdMoON film) are as follows.
  • the following evaluations (1) to (4) were performed on the low reflective layer 15 (PdMoON film) of the EUV mask blank obtained by the above procedure.
  • the surface roughness of the low reflective layer 15 (PdMoON film) is measured with a dynamic force mode using an atomic force microscope (SII, SPI-3800).
  • the surface roughness measurement area is 1 ⁇ m ⁇ 1 ⁇ m, and SI-DF40 (manufactured by SII) is used as the cantilever.
  • the surface roughness (rms) of the low reflection layer is 0.30 nm.
  • the reflectance with respect to the wavelength of 257 nm on the surface of the low reflective layer 15 is 8.9%, which is 15% or less.
  • the contrast at a wavelength of 257 nm is 72.6%.
  • the contrast between the surface of the protective layer 13 and the surface of the low reflection layer 15 is 70% or more with respect to the wavelength of the inspection light of the mask pattern, and a sufficient contrast is obtained.
  • the EUV light (wavelength 13.5nm) is irradiated to the surface of the low reflection layer 15, and the reflectance of EUV light is measured. As a result, the reflectivity of EUV light is 4.3%, and the EUV reflectivity is sufficient to obtain a phase shift effect.
  • Example 2 is the same as Example 1 except that the absorber layer 14 is a PdAg film.
  • the crystalline state of the absorber layer 14 (PdAg film) of the EUV mask blank obtained by the above procedure was examined by the same method as in Example 1, the crystalline state of the absorber layer 14 was an amorphous structure or a fine structure. The crystal structure was confirmed. Further, the surface roughness of the absorber layer 14 is examined in the same manner as in Example 1. The surface roughness (rms) of the absorber layer 14 is 0.30 nm.
  • the film stress of the absorber layer 14 was examined by the same method as in Example 1, the film stress was ⁇ 46.8 MPa, and the film stress range required for the EUV mask blank ( ⁇ 200 MPa) Within).
  • a low reflection layer 15 (PdAgON film) containing Pd, Ag, O and N is formed on the absorber layer 14 by using a magnetron sputtering method, whereby the reflection layer 12 and the protection layer are formed on the substrate 11.
  • the EUV mask blank 1 in which the layer 13, the absorber layer 14, and the low reflection layer 15 are formed in this order is obtained.
  • the film forming conditions of the low reflective layer 15 (PdAgON film) are as follows.
  • the film composition of the low reflective layer 15 (PdAgON film) of the EUV mask blank obtained by the above procedure is measured by the same method as in Example 1.
  • the crystal state of the low reflection layer 15 (PdAgON film) is examined by the same method as in Example 1.
  • the crystalline state of the low reflective layer 15 is an amorphous structure or a microcrystalline structure.
  • the surface roughness of the low reflective layer 15 is examined in the same manner as in Example 1.
  • the surface roughness (rms) of the low reflective layer 15 is 0.32 nm.
  • the reflection characteristics of the low reflection layer 15 can be examined by the same method as in the first embodiment.
  • the reflectance of the mask pattern inspection light (wavelength 257 nm) is 8.1%, which is 15% or less. Since the reflectance of the surface of the protective layer 13 at a wavelength of 257 nm is 56.0%, the contrast at a wavelength of 257 nm is 74.7%.
  • the contrast between the surface of the protective layer 13 and the surface of the low reflection layer 15 is 70% or more with respect to the wavelength of the inspection light of the mask pattern, and a sufficient contrast is obtained.
  • the EUV light (wavelength 13.5nm) is irradiated to the surface of the low reflection layer 15 (PdSnON film), and the reflectance of EUV light is measured. As a result, the reflectance of EUV light is 2.4%, which is sufficient for obtaining the phase shift effect.
  • Example 3 is the same as Example 1 except that the absorber layer 14 is a PdSn film.
  • Deposition conditions of absorber layer 14 (PdSn film) Target: Pd target and Sn target Sputtering gas: Ar gas (gas pressure: 0.3 Pa) -Input power: Pd target 100W, Sn target 150W ⁇ Deposition rate: 46.9 nm / min ⁇ Film thickness: 50nm
  • the film stress of the absorber layer 14 (PdSn film) was examined by the same method as in Example 1, the film stress was ⁇ 100.6 MPa, and the film stress range required for the EUV mask blank ( ⁇ 200 MPa) Within).
  • a low reflection layer 15 (PdSnON film) containing Pd, Sn, O and N is formed on the absorber layer 14 by using a magnetron sputtering method, whereby the reflection layer 12 and the protection layer are formed on the substrate 11.
  • the EUV mask blank 1 in which the layer 13, the absorber layer 14, and the low reflection layer 15 are formed in this order is obtained.
  • the film formation conditions of the low reflection layer 15 (PdSnON film) are as follows.
  • the film composition of the low reflective layer 15 (PdSnON film) of the EUV mask blank obtained by the above procedure is measured by the same method as in Example 1.
  • the crystal state of the low reflective layer 15 (PdSnON film) is examined by the same method as in Example 1.
  • the crystalline state of the low reflective layer 15 is an amorphous structure or a microcrystalline structure.
  • the surface roughness of the low reflection layer 15 (PdSnON film) is examined in the same manner as in Example 1.
  • the surface roughness (rms) of the low reflective layer 15 is 0.28 nm.
  • the reflection characteristics of the low reflection layer 15 can be examined by the same method as in the first embodiment.
  • the reflectance of the mask pattern inspection light (wavelength 257 nm) is 14%, which is 15% or less. Since the reflectance of the surface of the protective layer 13 layer at a wavelength of 257 nm is 56.0%, the contrast at a wavelength of 257 nm is 60%.
  • the contrast between the surface of the protective layer 13 and the surface of the low reflection layer 15 is 60% or more with respect to the wavelength of the inspection light of the mask pattern, and a sufficient contrast can be obtained.
  • the EUV light (wavelength 13.5nm) is irradiated to the surface of the low reflection layer 15 (PdSnON film), and the reflectance of EUV light is measured.
  • the reflectance of EUV light is 2.3%, and it has a sufficient EUV reflectance to obtain a phase shift effect.
  • Example 4 is the same as Example 1 except that the absorber layer 14 is a PdSnN film.
  • the crystalline state of the absorber layer 14 (PdSnN film) of the EUV mask blank obtained by the above procedure was examined in the same manner as in Example 1, the crystalline state of the absorber layer 14 was found to be amorphous or fine. The crystal structure was confirmed. Further, when the surface roughness of the absorber layer 14 was examined in the same manner as in Example 1, the surface roughness (rms) of the absorber layer 14 was 0.13 nm.
  • the film stress of the absorber layer 14 (PdSnN film) was examined by the same method as in Example 1, the film stress was -83.2 MPa, and the film stress range required for the EUV mask blank ( ⁇ 200 MPa) Within).
  • a low reflection layer 15 (PdSnON film) is formed on the absorber layer 14 in the same procedure as in Example 3, and the reflection layer 12, the protective layer 13, the absorber layer 14, and the low reflection layer are formed on the substrate 11.
  • the EUV mask blank 1 in which the layers 15 are formed in this order is obtained.
  • the film composition and crystal structure of the low reflection layer 15 are the same as in Example 3. Further, the surface roughness of the low reflective layer 15 is examined in the same manner as in Example 1. The surface roughness (rms) of the low reflective layer 15 is 0.27 nm.
  • the reflection characteristics of the low reflection layer 15 can be examined by the same method as in the first embodiment.
  • the reflectance of the mask pattern inspection light (wavelength 257 nm) is 14%, which is 15% or less. Since the reflectance of the surface of the protective layer 13 layer at a wavelength of 257 nm is 56.0%, the contrast at a wavelength of 257 nm is 60%.
  • the contrast between the surface of the protective layer 13 and the surface of the low reflection layer 15 is 60% or more with respect to the wavelength of the inspection light of the mask pattern, and a sufficient contrast can be obtained.
  • the EUV light (wavelength 13.5nm) is irradiated to the surface of the low reflection layer 15 (PdSnON film), and the reflectance of EUV light is measured.
  • the reflectivity of EUV light is 2.1%, and the EUV reflectivity is sufficient to obtain a phase shift effect.
  • Example 5 is the same as Example 3 except that the low reflective layer 15 is TaON.
  • a low reflection layer 15 (TaON film) containing Ta, O and N is formed on the absorber layer 14 (PdSn) by using a magnetron sputtering method, whereby the reflection layer 12 and the protective layer 13 are formed on the substrate 11.
  • the EUV mask blank 1 in which the absorber layer 14 and the low reflection layer 15 are formed in this order is obtained.
  • the film forming conditions for the low reflective layer 15 are as follows.
  • Film formation conditions of the low reflection layer 15 (TaON film)
  • Target Ta target Sputtering gas: Mixed gas of Ar, N 2 and O 2 (Ar: 36 vol%, N 2 : 14 vol%, O 2 : 50 vol%, gas Pressure: 0.3Pa) -Input power: 450W ⁇ Deposition rate: 0.28 nm / min ⁇ Film thickness: 10nm
  • the composition ratio (at%) of the low reflective layer was measured by the same method as in Example 1.
  • Ta: N: O 22.1: 4.4: 73.5.
  • the crystal state of the low reflective layer 15 (TaON film) is examined by the same method as in Example 1.
  • the crystalline state of the low reflective layer 15 is an amorphous structure or a microcrystalline structure.
  • the surface roughness of the low reflection layer 15 (TaON film) is examined in the same manner as in Example 1.
  • the surface roughness (rms) of the low reflective layer 15 is 0.28 nm.
  • the reflection characteristics of the low reflection layer 15 (TaON) can be examined by the same method as in the first embodiment.
  • the reflectance of the mask pattern inspection light (wavelength 257 nm) is 3.3%, which is 15% or less. Since the reflectance of the surface of the protective layer 13 layer at a wavelength of 257 nm is 56.0%, the contrast at a wavelength of 257 nm is 89.0%.
  • the contrast between the surface of the protective layer 13 and the surface of the low reflection layer 15 is 70% or more with respect to the wavelength of the inspection light of the mask pattern, and a sufficient contrast can be obtained.
  • the EUV light (wavelength 13.5nm) is irradiated to the surface of the low reflection layer 15 (TaON film), and the reflectance of EUV light is measured.
  • the reflectance of EUV light is 2.3%, and it has a sufficient EUV reflectance to obtain a phase shift effect.
  • Example 6 is the same as Example 3 except that the low reflective layer 15 is made of SiN.
  • the low reflective layer 15 is made of SiN.
  • the reflection layer 12 the protective layer 13
  • the absorption layer are formed on the substrate 11.
  • the EUV mask blank 1 in which the body layer 14 and the low reflection layer 15 are formed in this order is obtained.
  • the film forming conditions for the low reflective layer 15 are as follows.
  • Low reflective layer 15 deposition conditions targets of (SiN film): Si target sputtering gas: Ar and N 2 mixed gas (Ar: 20vol%, N 2 : 80vol%, gas pressure: 0.3 Pa) -Input power: 150W ⁇ Deposition rate: 2 nm / min ⁇ Film thickness: 12nm
  • the crystal state of the low reflective layer 15 (SiN film) is examined by the same method as in Example 1.
  • the crystalline state of the low reflective layer 15 is an amorphous structure or a microcrystalline structure.
  • the surface roughness of the low reflection layer 15 is examined in the same manner as in Example 1.
  • the surface roughness (rms) of the low reflective layer 15 is 0.30 nm.
  • the reflection characteristics of the low reflection layer 15 (SiN film) can be examined by the same method as in the first embodiment.
  • the reflectance of the mask pattern inspection light (wavelength 257 nm) is 8.4%, which is 15% or less. Since the reflectance of the surface of the protective layer 13 layer at a wavelength of 257 nm is 56.0%, the contrast at a wavelength of 257 nm is 73.9%.
  • the contrast between the surface of the protective layer 13 and the surface of the low reflection layer 15 is 70% or more with respect to the wavelength of the inspection light of the mask pattern, and a sufficient contrast can be obtained.
  • the EUV light (wavelength 13.5nm) is irradiated to the surface of the low reflection layer 15 (SiN film), and the reflectance of EUV light is measured.
  • the reflectivity of EUV light is 3.3%, and the EUV reflectivity is sufficient to obtain a phase shift effect.
  • Example 7 is the same as Example 3 except that the low reflective layer 15 is HfON.
  • the low reflective layer 15 is HfON.
  • the reflection layer 12 and the protective layer 13 are formed on the substrate 11.
  • the EUV mask blank 1 in which the absorber layer 14 and the low reflection layer 15 are formed in this order is obtained.
  • the film forming conditions for the low reflective layer 15 are as follows.
  • Hf target Sputtering gas Mixed gas of Ar, N 2 and O 2 (Ar: 45 vol%, N 2 : 23 vol%, O 2 : 32 vol%, gas Pressure: 0.3Pa)
  • -Input power 150W ⁇
  • Deposition rate 7.8 nm / min -Film thickness: 13 nm
  • the crystal state of the low reflection layer 15 (HfON film) is examined by the same method as in Example 1.
  • the crystalline state of the low reflective layer 15 is an amorphous structure or a microcrystalline structure.
  • the surface roughness of the low reflection layer 15 is examined in the same manner as in Example 1.
  • the surface roughness (rms) of the low reflective layer 15 is 0.29 nm.
  • the reflection characteristics of the low reflection layer 15 (HfON film) can be examined by the same method as in the first embodiment.
  • the reflectance of the mask pattern inspection light (wavelength 257 nm) is 10.9%, which is 15% or less. Since the reflectance of the surface of the protective layer 13 at a wavelength of 257 nm is 56.0%, the contrast at a wavelength of 257 nm is 67.4%.
  • the contrast between the surface of the protective layer 13 and the surface of the low reflection layer 15 is 60% or more with respect to the wavelength of the inspection light of the mask pattern, and a sufficient contrast can be obtained.
  • the EUV light (wavelength 13.5nm) is irradiated to the surface of the low reflection layer 15 (SiN film), and the reflectance of EUV light is measured.
  • the reflectivity of EUV light is 2.5%, and the EUV reflectivity is sufficient to obtain a phase shift effect.
  • Comparative Example 1 is the same as Example 1 except that the absorber layer 14 is a TaN film.
  • the film stress of the absorber layer 14 was examined by the same method as in Example 1, the film stress was -3456 MPa, and the film stress range required as an EUV mask blank (within ⁇ 200 MPa) There is a concern that the shape accuracy and dimensional accuracy of a mask transfer pattern transferred to a resist on a substrate such as a Si wafer deteriorate.
  • the absorber layer 14 contains Ta, it is not desirable in that the film stress is large and the effect of thinning is small.
  • Comparative Example 2 is the same as Example 1 except that the absorber layer 14 is a PdTa film.
  • the crystalline state of the absorber layer 14 (PdTa film) of the EUV mask blank obtained by the above procedure was examined by the same method as in Example 1, the crystalline state of the absorber layer 14 was found to be amorphous or fine. The crystal structure was confirmed. Further, when the surface roughness of the absorber layer 14 was examined in the same manner as in Example 1, the surface roughness (rms) of the absorber layer 14 was 0.28 nm.
  • the film stress of the absorber layer 14 was examined by the same method as in Example 1, the film stress was ⁇ 867.8 MPa, and the film stress range required for the EUV mask blank ( ⁇ 200 MPa). There is a concern that the shape accuracy and dimensional accuracy of a mask transfer pattern transferred to a resist on a substrate such as a Si wafer deteriorate.
  • the absorber layer 14 contains Ta, it is not desirable in that the film stress is large and the effect of thinning is small.
  • the EUV mask blank of the present invention can have a refractive index smaller than that of a conventional Ta-based absorber layer, can have a desired extinction coefficient, and is thinner than the conventional absorber layer.
  • EUV lithography it is expected to improve the shape accuracy and dimensional accuracy of a mask transfer pattern transferred to a resist on a substrate such as a Si wafer.
  • EUV mask blank 11 Substrate 12: Reflective layer (multilayer reflective film) 13: Protective layer 14: Absorber layer 15: Low reflective layer

Abstract

 薄膜化に適した光学定数を有する吸収体層を具備するEUVリソグラフィ用反射型マスクブランクの提供。 基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層と、がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、前記吸収体層が、モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)からなる群から選ばれる少なくとも1つと、パラジウム(Pd)と、を含有することを特徴とするEUVリソグラフィ用反射型マスクブランク。

Description

EUVリソグラフィ用反射型マスクブランク
 本発明は、半導体製造等に使用されるEUV(Extreme Ultra Violet:極端紫外)リソグラフィ用反射型マスクブランク(以下、本明細書において、「EUVマスクブランク」という。)、および、該EUVマスクブランクの吸収体層に形成してなるEUVリソグラフィ用反射型マスク(以下、本明細書において、「EUVマスク」という。)に関する。
 従来、半導体産業において、Si基板等に微細なパターンからなる集積回路を形成する上で必要な微細パターンの転写技術として、可視光や紫外光を用いたフォトリソグラフィ法が用いられてきた。しかし、半導体デバイスの微細化が加速している一方で、従来のフォトリソグラフィ法の限界に近づいてきた。フォトリソグラフィ法の場合、パターンの解像限界は露光波長の1/2程度であり、液浸法を用いても露光波長の1/4程度と言われており、ArFレーザ(193nm)の液浸法を用いても45nm程度が限界と予想される。そこで45nm以降の露光技術として、ArFレーザよりさらに短波長のEUV光を用いた露光技術であるEUVリソグラフィが有望視されている。本明細書において、EUV光とは、軟X線領域または真空紫外線領域の波長の光線をさし、具体的には波長10~20nm程度、特に13.5nm±0.3nm程度の光線を指す。
 EUV光は、あらゆる物質に対して吸収されやすく、かつこの波長で物質の屈折率が1に近いため、従来の可視光または紫外光を用いたフォトリソグラフィのような屈折光学系を使用することができない。このため、EUV光リソグラフィでは、反射光学系、すなわち反射型フォトマスク(以下、「EUVマスク」という。)とミラーとが用いられる。
 マスクブランクは、フォトマスクにマスクパターンを形成する前の積層体である。EUVマスクブランクの場合、ガラス等の基板上にEUV光を反射する反射層と、EUV光を吸収する吸収体層とがこの順で形成された構造を有している(特許文献1参照)。吸収体層には、EUV光に対する吸収係数の高い材料、具体的にはたとえば、Taを主成分とする材料が用いられる。
 特許文献1には、タンタルホウ素合金の窒化物(TaBN)、タンタルホウ素合金の酸化物(TaBO)、及びタンタルホウ素合金の酸窒化物(TaBNO)が、EUV光に対する吸収係数が高いことに加えて、パターン検査光の波長域(190nm~260nm)の深紫外光の反射率が低いことから、吸収体層の材料として好ましいとされている。
 近年、EUVマスクブランクでは、吸収体層の膜厚を薄くすることが望まれている。EUVリソグラフィでは、露光光はEUVマスクに対して垂直方向から照射されるのではなく、垂直方向より数度、通常は6度傾斜した方向から照射される。吸収体層の膜厚が厚いと、EUVリソグラフィの際に、該吸収体層の一部をエッチングにより除去して形成したマスクパターンに露光光による影が生じ、該EUVマスクを用いてSiウエハなどの基板上のレジストに転写されるマスクパターン(以下、「転写パターン」という。)の形状精度や寸法精度が悪化しやすくなる。この問題は、EUVマスク上に形成されるマスクパターンの線幅が小さくなるほど顕著となるため、EUVマスクブランクの吸収体層の膜厚をより薄くすることが求められる。
 EUVマスクブランクの吸収体層には、EUV光に対する吸収係数の高い材料が用いられ、その膜厚も該吸収体層表面にEUV光を照射した際に、照射したEUV光が吸収体層で全て吸収されるような膜厚とすることが理想である。しかし、上記したように、吸収体層の膜厚を薄くすることが求められているため、照射されたEUV光を吸収体層ですべて吸収することはできず、その一部は反射光となる。
 EUVリソグラフィにより、基板上レジスト上に転写パターンを形成する際に要求されるのは、EUVマスクでの反射光のコントラスト、すなわち、マスクパターン形成時に吸収体層が除去され、反射層が露出した部位からの反射光と、マスクパターン形成時に吸収体が除去されなかった部位からの反射光と、のコントラストである。よって、反射光のコントラストが十分確保できる限り、照射されたEUV光が吸収体層で全て吸収されなくても全く問題ないと考えられていた。
 上記の考えに基づき、吸収体層の膜厚をより薄くするために、位相シフトの原理を利用したEUVマスクが提案されている(特許文献2、3参照)。これらは、マスクパターン形成時に吸収体層が除去されなかった部位からの反射光が、5~15%の反射率を有し、かつ、マスクパターン形成時に吸収体層が除去され反射層が露出した部位からの反射光に対して175~185度の位相差を有すること、を特徴としている。このEUVマスクは、吸収体層からの反射光に対して、位相シフトの原理を利用することによって、反射層とのコントラストを十分維持することが可能であるため、吸収体層の膜厚を薄くすることが可能である、と記載されている。
特開2004-6798号公報(米国特許第7390596号明細書) 特開2006-228766号公報 特許第3078163号明細書(米国特許第5641593号明細書)
 しかしながら、特許文献1に記載されているようなTaを主成分とした吸収体層の場合、吸収体層の最小膜厚は50~60nmが限界とされている。吸収体層を薄膜化する場合に限界となる膜厚は、主成分となる金属の屈折率nと消衰係数kに大きく依存する。
 一般的に、反射層と吸収体層の位相差は、下記の式で表される。
  φ=4π(1-n)×d×cosθ/λ
 ここで、φ:位相差、n:吸収体層の屈折率、d:吸収体層の膜厚、θ:EUV光の入射角度、λ:EUV光の波長、である。
 上記位相差φが180度(=π)となるとき、反射コントラストは最大となる。そのときの膜厚は下記の式で表される。
  d=λ/4(1-n)×cosθ
 すなわち、吸収体層の屈折率nが小さいほど、吸収体層の薄膜化には有利である。例えば、Taを主成分とした吸収体層の場合、その屈折率は、n≒0.945であるため、吸収体層の屈折率が、0.945未満であれば、さらに薄膜化が可能ということになる。また、消衰係数kは、k=0.020~0.080であることが2~30%の反射率を得るためには好ましい。
 したがって、吸収体層は、屈折率が0.945未満であって、かつ、消衰係数kが0.020~0.080であることが、薄膜化にとって好ましいことになる。
 特許文献2においては、ハーフトーン膜として、最適とされる光学定数の範囲を記載しているが、具体的な材料の記載はない。一方、特許文献3においては、V,Cr,Mn,Fe,Co,Ag,Cd,In,Sn,Sb,ランタノイド元素,Hf,Ta,W,Re,Os,Ir,Pt,Au,Tl,Pb,Biの中から選ばれた1種の単体、あるいはこれらの中の少なくとも1つの元素を含む物質からなる材料が好ましいと記載されている。しかしながら、吸収層に求められる特性は、EUV光に対する光学特性だけではなく、「表面粗さ」、「膜応力」、「該層の結晶状態」、「パターン検査光の波長域に対する光学特性」など多岐に渡るため、1種類の金属だけで全ての特性を満足することは困難であり、いくつかの金属を組み合わせた合金にすることが重要である。特許文献3には、その具体的な材料の組み合わせに関する記載はない。
 本発明は、上記した従来技術の問題点を解決するため、EUVマスクブランクとしての特性に優れ、特に、従来の吸収体層より、さらに薄膜化が期待できる光学定数を有する吸収体層を具備し、さらに吸収体層に求められる「表面粗さ」、「膜応力」、「該層の結晶状態」、「パターン検査光の波長域に対する光学特性」などの諸特性を満足するEUVマスクブランクを提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討した結果、吸収体層が、モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)からなる群から選ばれる少なくとも1つと、パラジウム(Pd)と、を含有することにより、所望の光学定数を得られ、さらにEUVマスクブランク用の吸収体層に求められる諸特性を満足することを見出した。
 本発明は、上記の知見に基づいてなされたものであり、基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層と、がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
 前記吸収体層が、モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)からなる群から選ばれる少なくとも1つと、パラジウム(Pd)と、を含有することを特徴とするEUVリソグラフィ用反射型マスクブランク(以下、「本発明のEUVマスクブランク」という。)を提供する。
 本発明のEUVマスクブランクにおいて、前記吸収体層における前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が20~90at%であり、前記パラジウム(Pd)の含有率が10~80at%であり、前記Mo、Sn、Ag、Nb、Ti、および、Pdの合計含有率が95~100at%であることが好ましい。
 本明細書において、「~」とは、特段の定めがない限り、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本発明のEUVマスクブランクにおいて、前記吸収体層が、さらに窒素(N)を含有することが好ましい。
 前記吸収体層において、前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が20~90at%であり、前記パラジウム(Pd)の含有率が10~80at%であり、前記窒素(N)の含有率が30~70at%であり、前記Mo、Sn、Ag、Nb、Ti、Pd、および、Nの合計含有率が95~100at%であることが好ましい。
 本発明のEUVマスクブランクにおいて、前記吸収体層が、さらに水素(H)を含有することが好ましい。
 前記吸収体層において、前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が20~90at%であり、前記パラジウム(Pd)の含有率が10~80at%であり、前記水素(H)の含有率が0.1~10at%であり、前記Mo、Sn、Ag、Nb、Ti、Pd、および、Hの合計含有率が95~100at%であることが好ましい。
 本発明のEUVマスクブランクにおいて、前記吸収体層は、さらに窒素(N)および水素(H)を含有することが好ましい。
 前記吸収体層において、前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が20~90at%であり、前記パラジウム(Pd)の含有率が10~80at%であり、前記窒素(N)の含有率が30~70at%であり、前記水素(H)の含有率が0.1~10at%であり、前記Mo、Sn、Ag、Nb、Ti、Pd、N、および、Hの合計含有率が95~100at%であることが好ましい。
 本発明のEUVマスクブランクにおいて、前記吸収体層の結晶状態が、アモルファスであることが好ましい。
 また、本発明のEUVマスクブランクにおいて、前記吸収体層表面の表面粗さ(rms)が0.5nm以下であることが好ましい。
 また、本発明のEUVマスクブランクにおいて、前記吸収体層の膜厚が、20~50nmであることが好ましい。
 本発明のEUVマスクブランクは、前記吸収体層上に、マスクパターンの検査に使用する検査光における低反射層が形成されており、
 前記低反射層が、モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)からなる群から選ばれる少なくとも1つと、パラジウム(Pd)と、酸素(O)と、を含有することが好ましい。
 前記低反射層において、前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が10~55at%であり、前記パラジウム(Pd)の含有率が10~60at%であり、前記酸素(O)の含有率が20~70at%であり、前記Mo、Sn、Ag、Nb、Ti、Pd、および、Oの合計含有率が95~100at%であることが好ましい。
 また、本発明のEUVマスクブランクは、前記吸収体層上に、マスクパターンの検査に使用する検査光における低反射層が形成されており、
 前記低反射層が、モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)からなる群から選ばれる少なくとも1つと、パラジウム(Pd)と、酸素(O)と、窒素(N)と、を含有することが好ましい。
 前記低反射層において、前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が10~55at%であり、前記パラジウム(Pd)の含有率が10~60at%であり、前記酸素(O)および窒素(N)の合計含有率が20~70at%であり、前記OとNの組成(原子)比がO:N=9:1~1:9であり、前記Mo、Sn、Ag、Nb、Ti、Pd、O、および、Nの合計含有率が95~100at%であることが好ましい。
 また、吸収体層上に低反射層が形成されている場合、前記低反射層表面の表面粗さ(rms)が0.5nm以下であることが好ましい。
 また、吸収体層上に低反射層が形成されている場合、前記低反射層の膜厚が5~30nmであることが好ましい。
 また、本発明のEUVマスクブランクは、前記反射層と前記吸収体層との間に、前記吸収体層へのパターン形成時に前記反射層を保護するための保護層が形成されており、
 吸収体層に形成されるパターンの検査に用いられる光の波長に対する前記保護層表面での反射光と、前記低反射層表面での反射光と、のコントラストが、30%以上であることが好ましい。
 反射層と吸収体層との間に保護層が形成されている場合、前記保護層が、Ru、Ru化合物およびSiO2のいずれか1つで形成されることが好ましい。
 吸収体層上に低反射層が形成されている場合、前記吸収体層に形成されるパターンの検査に用いられる光の波長に対する、前記低反射層表面の反射率が15%以下であることが好ましい。
 本発明のEUVマスクブランクは、従来のTaを主成分とした吸収体層より、屈折率の値を小さくし、さらに所望の消衰係数を有することにより、従来の吸収体層より薄膜化することが可能であり、Siウエハなどの基板上レジストに転写されるマスク転写パターンの形状精度や寸法精度を向上することが期待される。
図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。 図2は、図1に示すEUVマスクブランク1の吸収体層14(および低反射層15)にパターン形成した状態を示している。
 以下、図面を参照して本発明のEUVマスクブランクを説明する。
 図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。図1に示すマスクブランク1は、基板11上にEUV光を反射する反射層12と、EUV光を吸収する吸収体層14とがこの順に形成されている。反射層12と吸収体層14との間には、吸収体層14へのパターン形成時に反射層12を保護するための保護層13が形成されている。吸収体層14上には、マスクパターンの検査に使用する検査光における低反射層15が形成されている。但し、本発明のEUVマスクブランク1において、図1に示す構成中、基板11、反射層12および吸収体層14のみが必須であり、保護層13および低反射層15は任意の構成要素である。
 以下、マスクブランク1の個々の構成要素について説明する。
 基板11は、EUVマスクブランク用の基板としての特性を満たすことが要求される。そのため、基板11は、低熱膨張係数(具体的には、20℃における熱膨張係数が0±0.05×10-7/℃であることが好ましく、特に好ましくは0±0.03×10-7/℃)を有し、平滑性、平坦度、およびマスクブランクまたはパターン形成後のフォトマスクの洗浄等に用いる洗浄液への耐性に優れたものが好ましい。基板11としては、具体的には低熱膨張係数を有するガラス、例えばSiO2-TiO2系ガラス等を用いるが、これに限定されず、β石英固溶体を析出した結晶化ガラスや石英ガラスやシリコンや金属などの基板を用いることもできる。
 基板11は、表面粗さ(rms)0.15nm以下の平滑な表面と100nm以下の平坦度を有していることがパターン形成後のフォトマスクにおいて高反射率および転写精度が得られるために好ましい。
 基板11の大きさや厚みなどはマスクの設計値等により適宜決定されるものである。後で示す実施例では外形6インチ(152mm)角で、厚さ0.25インチ(6.3mm)のSiO2-TiO2系ガラスを用いた。
 基板11の反射層12が形成される側の表面には欠点が存在しないことが好ましい。しかし、存在している場合であっても、凹状欠点および/または凸状欠点によって位相欠点が生じないように、凹状欠点の深さおよび凸状欠点の高さが2nm以下であり、かつこれら凹状欠点および凸状欠点の半値幅が60nm以下であることが好ましい。
 反射層12は、EUVマスクブランクの反射層として所望の特性を有するものである限り特に限定されない。ここで、反射層12に特に要求される特性は、高EUV光線反射率であることである。具体的には、EUV光の波長領域の光線を入射角6度で反射層12表面に照射した際に、波長13.5nm付近の光線反射率の最大値が60%以上であることが好ましく、65%以上であることがより好ましい。また、反射層12の上に保護層13を設けた場合であっても、波長13.5nm付近の光線反射率の最大値が60%以上であることが好ましく、65%以上であることがより好ましい。
 反射層12は、高EUV光線反射率を達成できることから、通常は高屈折層と低屈折率層を交互に複数回積層させた多層反射膜が反射層12として用いられる。反射層12をなす多層反射膜において、高屈折率層には、Moが広く使用され、低屈折率層にはSiが広く使用される。すなわち、Mo/Si多層反射膜が最も一般的である。但し、多層反射膜はこれに限定されず、Ru/Si多層反射膜、Mo/Be多層反射膜、Mo化合物/Si化合物多層反射膜、Si/Mo/Ru多層反射膜、Si/Mo/Ru/Mo多層反射膜、Si/Ru/Mo/Ru多層反射膜も用いることができる。
 反射層12をなす多層反射膜を構成する各層の膜厚および層の繰り返し単位の数は、使用する膜材料および反射層に要求されるEUV光線反射率に応じて適宜選択することができる。Mo/Si反射膜を例にとると、EUV光線反射率の最大値が60%以上の反射層12とするには、多層反射膜は膜厚2.3±0.1nmのMo層と、膜厚4.5±0.1nmのSi層とを繰り返し単位数が30~60になるように積層させればよい。
 なお、反射層12をなす多層反射膜を構成する各層は、マグネトロンスパッタリング法、イオンビームスパッタリング法など、周知の成膜方法を用いて所望の厚さになるように成膜すればよい。例えば、イオンビームスパッタリング法を用いてSi/Mo多層反射膜を形成する場合、ターゲットとしてSiターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa~2.7×10-2Pa)を使用して、イオン加速電圧300~1500V、成膜速度0.03~0.30nm/secで厚さ4.5nmとなるようにSi膜を成膜し、次に、ターゲットとしてMoターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10-2Pa~2.7×10-2Pa)を使用して、イオン加速電圧300~1500V、成膜速度0.03~0.30nm/secで厚さ2.3nmとなるようにMo膜を成膜することが好ましい。これを1周期として、Si膜およびMo膜を40~50周期積層させることによりSi/Mo多層反射膜が成膜される。
 反射層12表面が酸化されるのを防止するため、反射層12をなす多層反射膜の最上層は酸化されにくい材料の層とすることが好ましい。酸化されにくい材料の層は反射層12のキャップ層として機能する。キャップ層として機能する酸化されにくい材料の層の具体例としては、Si層を例示することができる。反射層12をなす多層反射膜がSi/Mo膜である場合、最上層をSi層とすることによって、該最上層をキャップ層として機能させることができる。その場合キャップ層の膜厚は、11±2nmであることが好ましい。
 保護層13は、エッチングプロセス、通常はドライエッチングプロセスにより吸収層14にパターン形成する際に、反射層12がエッチングプロセスによるダメージを受けないよう、反射層12を保護することを目的として設けられる。したがって保護層13の材質としては、吸収体層14のエッチングプロセスによる影響を受けにくい、つまりこのエッチング速度が吸収層14よりも遅く、しかもこのエッチングプロセスによるダメージを受けにくい物質が選択される。この条件を満たす物質としては、たとえばAl及びその窒化物、Ru及びRu化合物(RuB、RuSi等)、ならびにSiO2、Si34、Al23やこれらの混合物が例示される。これらの中でも、Ru及びRu化合物(RuB、RuSi等)およびSiO2が好ましい。なお、後述するように、本発明のEUVマスクブランクは、吸収体層がPdを含有するので、エッチング耐性の理由から、Ru及びRu化合物(RuB、RuSi等)が特に好ましい。すなわち、本発明の吸収体層14のように、Pdを含む吸収体層のエッチングには、フッ素系ガス(CF4、CF3H)を用いたドライエッチングプロセスが好ましく使用されるが、Ru及びRu化合物を構成材料とする保護層13は、このようなフッ素系ガスを用いたドライエッチングプロセスに対して十分なエッチング耐性を有するため、エッチングダメージが少ないため好ましい。
 また、保護層13中には、TaおよびCrを含まないことが、膜応力が大きくなるのを防ぐという理由で好ましい。保護層13中のTa、Crの含有率は、それぞれ5at%以下、特に3at%以下が好ましく、さらにはTaおよびCrを含まないことが好ましい。
 保護層13の厚さは1~60nm、特に1~10nmであることが好ましい。
 保護層13は、マグネトロンスパッタリング法、イオンビームスパッタリング法など周知の成膜方法を用いて成膜する。マグネトロンスパッタリング法によりRu膜を成膜する場合、ターゲットとしてRuターゲットを用い、スパッタガスとしてArガス(ガス圧1.0×10-2Pa~10×10-1Pa)を使用して投入電圧30V~1500V、成膜速度0.02~1.0nm/secで厚さ2~5nmとなるように成膜することが好ましい。
 吸収体層14に特に要求される特性は、反射層12で反射されるEUV光と、吸収体層14で反射されるEUV光とのコントラストが高いことである。吸収体層14のみでEUV光線を吸収するのではなく、位相シフトの原理を利用することで、反射層12とのコントラストを維持するEUVマスクの場合、上述したように、吸収体層の屈折率nと消衰係数kを所望の値にする必要があり、nは0.945未満が好ましく、0.930未満がさらに好ましく、0.920未満がさらに好ましい。kは0.020~0.080が好ましく、0.025~0.078がさらに好ましく、0.030~0.075がさらに好ましい。
 本発明のEUVマスクブランク1の吸収体層14は、モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)からなる群から選ばれる少なくとも1つと、パラジウム(Pd)と、を含有することで上記の特性を達成する。なお、これらの元素の中でも、Mo、Sn、NbおよびTiが吸収体層の機械的強度という理由で好ましい。
 また、位相シフトの原理を利用するためには、吸収体層14表面からのEUV反射光の反射率、具体的には、EUV光の波長領域の光線を入射角6度で吸収体層14表面に照射した際に、波長13.5nm付近の光線反射率の最大値が5~15%であることが好ましい。
 なお、吸収体層14上に低反射層15を形成する場合、低反射層15表面からのEUV反射光の反射率が上記の範囲を満たすことが好ましい。
 吸収体層14中のPdの含有率は、10~80at%、特に15~75at%、さらには15~70at%であることが、吸収体層の薄膜化に適した光学定数(n<0.945、k=0.030~0.080)に制御できるという理由で好ましい。
 また、モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)からなる群から選ばれる少なくとも1つは、吸収体層14中におけるそれらの合計含有率が、20~90at%、特に25~85at%、さらには30~85at%であることが、吸収体層の表面粗さ、膜応力、該層の結晶状態、および、パターン検査光の波長領域に対する光学特性を後述する所望の範囲に制御できるという理由で好ましい。
 なお、吸収体層14中のMo、Sn、Ag、Nb、Ti、および、Pdの合計含有率は95~100at%であることが好ましく、97~100at%であることがより好ましく、99~100at%であることがさらに好ましい。
 また、吸収体層14中には、TaおよびCrを含まないことが、膜応力が大きくなるのを防ぐという理由で好ましい。吸収体層14中のTa、Crの含有率は、それぞれ5at%以下、特に3at%以下が好ましく、さらにはTaおよびCrを含まないことが好ましい。
 吸収体層14は、さらに窒素(N)を含有してもよく、Nを含有することにより、表面粗さを良好にする効果が得られる。吸収体層14がNを含有する場合、Nの含有率は、30~70at%、特に35~60at%であることが吸収体層の表面を平滑にするという理由で好ましい。
 吸収体層14がNを含有する場合、該吸収体層14中のMo、Sn、Ag、Nb、Ti、Pd、および、Nの合計含有率は95~100at%であることが好ましく、97~100at%であることがより好ましく、99~100at%であることがさらに好ましい。
 吸収体層14は、さらに水素(H)を含有してもよく、Hを含有することにより、結晶状態をアモルファスとする効果が得られる。吸収体層14がHを含有する場合、Hの含有率は、0.1~10at%、特に0.1~5at%であることが吸収体層の結晶構造をアモルファスにできる、吸収体層の表面粗さを平滑にできるという理由で好ましい。
 吸収体層14がHを含有する場合、該吸収体層14中のMo、Sn、Ag、Nb、Ti、Pd、および、Hの合計含有率は95~100at%であることが好ましく、97~100at%であることがより好ましく、99~100at%であることがさらに好ましい。
 吸収体層14が、NおよびHを含有する場合、両者の合計含有率が、30~70at%、特に35~60at%であることが吸収体層の結晶構造をアモルファスにできる、吸収体層の表面粗さを平滑にできるという理由で好ましい。
 また、NとHの組成(原子)比がN:H=14:1~9:1、特に13:2~9:1であることが、吸収体層の結晶構造をアモルファスにできる、吸収体層の表面粗さを平滑にできるという理由で好ましい。
 吸収体層14がNおよびHを含有する場合、該吸収体層14中のMo、Sn、Ag、Nb、Ti、Pd、N、および、Hの合計含有率は95~100at%であることが好ましく、97~100at%であることがより好ましく、99~100at%であることがさらに好ましい。
 また、吸収体層14中の酸素の含有量は、5at%以下、特に3at%以下であることが、吸収体層が絶縁性になるのを防ぐという理由で好ましい。さらに、保護層13中の酸素の含有量も、5at%以下、特に3at%以下であることが好ましい。
 吸収体層14は、上記の構成であることにより、その結晶状態はアモルファスであることが好ましい。本明細書において、「結晶状態がアモルファスである」と言った場合、全く結晶構造を持たないアモルファス構造となっているもの以外に、微結晶構造のものを含む。吸収体層14が、アモルファス構造の膜または微結晶構造の膜であれば、吸収体層14の表面が平滑性に優れている。
 なお、本発明に係る吸収体層は、モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)からなる群から選ばれる少なくとも1つと、パラジウム(Pd)といった金属だけを含有する膜であっても(つまり、BやSiといった膜質をアモルファスとしやすい材料を含有しなくとも)、膜の結晶状態をアモルファスとすることが可能となるため好ましい。
 本発明のEUVマスクブランク1では、吸収体層14がアモルファス構造の膜または微結晶構造の膜であることにより、吸収体層14表面の表面粗さ(rms)が0.5nm以下であることが好ましい。ここで、吸収体層14表面の表面粗さは原子間力顕微鏡(Atomic Force Microscope)を用いて測定することができる。吸収体層14表面の表面粗さが大きいと、吸収体層14に形成されるパターンのエッジラフネスが大きくなり、パターンの寸法精度が悪くなる。パターンが微細になるに従いエッジラフネスの影響が顕著になるため、吸収体層14表面は平滑であることが要求される。
 吸収体層14表面の表面粗さ(rms)が0.5nm以下であれば、吸収体層14表面が十分平滑であるため、エッジラフネスの影響によってパターンの寸法精度が悪化するおそれがない。吸収体層14表面の表面粗さ(rms)は0.4nm以下であることがより好ましく、0.3nm以下であることがさらに好ましい。
 なお、基板上に、EUV光を反射する反射層と、上記したように本発明特有なEUV光を吸収する吸収体層とをこの順に形成した本発明のEUVリソグラフィ用反射型マスクブランクにおいて、さらに吸収体層の表面に低反射層を形成する場合には、上記吸収体層表面の表面粗さとは、かかる低反射層を形成する前の吸収体層の表面粗さを表す。吸収体層の表面に低反射層を形成した場合、吸収体層自体の表面の表面粗さは、実質的に変化することなく維持されると看做してよい。従って、上記吸収体層の表面に低反射層が形成された表面の粗さを、原子間力顕微鏡によって測定して得られた値は、吸収体層自体の表面の表面粗さと実質的に同等であると看做してよい。
 なお、吸収体層14の結晶状態がアモルファスであること、すなわち、アモルファス構造であること、または微結晶構造であることは、X線回折(XRD)法によって確認することができる。吸収体層14の結晶状態がアモルファス構造であるか、または微結晶構造であれば、XRD測定により得られる回折ピークにシャープなピークが見られない。
 吸収体層14の膜応力は、±200MPa以内、特に、±180MPa以内であることが、Siウエハなどの基板上レジストに転写されるマスク転写パターンの形状精度や寸法精度が悪化しないので好ましい。
 吸収体層14の厚さは、20~50nm、特に20~45nm、さらには20~40nmであることがSiウエハなどの基板上レジストに転写されるマスク転写パターンの形状精度や寸法精度を向上することが期待されるという理由で好ましい。
 上記した構成の吸収体層14は、Mo、Sn、Ag、NbおよびTiからなる群から選ばれる少なくとも1つと、Pdと、を含有するターゲットを用いてスパッタリング法を行うことにより形成することができる。ここで、Mo、Sn、Ag、NbおよびTiからなる群から選ばれる少なくとも1つと、Pdと、を含有するターゲットの使用といった場合、2種類以上の金属ターゲット、すなわち、Mo、Sn、Ag、NbおよびTiからなる群から選ばれる少なくとも1つの金属ターゲットと、Pdターゲットと、を使用すること、および、Mo、Sn、Ag、NbおよびTiからなる群から選ばれる少なくとも1つと、Pdと、を含む化合物ターゲットを使用することのいずれも含む。
 なお、2種類以上の金属ターゲットの使用は、吸収体層14の構成成分を調整するのに好都合である。一方、化合物ターゲットを使用する場合、形成される吸収体層14が所望の組成となるように、ターゲット組成をあらかじめ調整することが好ましい。
 上記のターゲットを用いたスパッタリング法は、ヘリウム(He)、アルゴン(Ar)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)のうち少なくともひとつを含む不活性ガス雰囲気中で実施する。但し、Nを含有する吸収体層を形成する場合、He、Ar、Ne、Kr、Xeのうち少なくともひとつと、窒素(N2)と、を含む不活性ガス雰囲気中でスパッタリング法を実施する。また、Hを含有する吸収体層を形成する場合、He、Ar、Ne、Kr、Xeの不活性ガスのうち少なくともひとつと、水素(H2)と、を含むガス雰囲気中でスパッタリング法を実施する。また、HおよびNを含有する吸収体層を形成する場合、He、Ar、Ne、Kr、Xeの不活性ガスのうち少なくともひとつと、水素(H2)および窒素(N2)と、を含むガス雰囲気中でスパッタリング法を実施する。
 不活性ガス雰囲気がArガス雰囲気の場合を例に吸収体層の形成条件を以下に示す。
吸収体層の形成条件
  ・スパッタガス:Ar(ガス圧1.0×10-1Pa~50×10-1Pa、好ましくは1.0×10-1Pa~40×10-1Pa、より好ましくは1.0×10-1Pa~30×10-1Pa。)。
  ・投入電力:30~1000W、好ましくは50~750W、より好ましくは80~500W。
  ・成膜速度:0.5~60nm/min、好ましくは1.0~45nm/min、より好ましくは1.5~30nm/min。
 なお、上記ではスパッタガスがArの場合について記載したが、スパッタガスとしてAr以外の不活性ガスあるいは複数の不活性ガスを使用する場合、その不活性ガスの合計濃度が上記したArガス濃度と同じ濃度範囲にする。
 低反射層15はマスクパターンの検査に使用する検査光において、低反射となるような膜で構成される。EUVマスクを作製する際、吸収体層にパターンを形成した後、このパターンが設計通りに形成されているかどうか検査する。このマスクパターンの検査では、検査光として通常257nm程度の光を使用した検査機が使用される。つまり、この257nm程度の光の反射率の差、具体的には、吸収体層14がパターン形成により除去されて露出した面と、パターン形成により除去されずに残った吸収体層14表面と、の反射率の差によって検査される。ここで、前者は反射層12表面または保護層13表面であり、通常は保護層13表面である。したがって、検査光の波長に対する反射層12表面または保護層13表面と、吸収体層14表面と、の反射率の差が小さいと検査時のコントラストが悪くなり、正確な検査が出来ないことになる。低反射層は吸収体層と隣接していることが好ましく、また最外層であることが、パターンの検査の点で好ましい。
 上記した構成の吸収体層14は、EUV光線反射率が極めて低く、EUVマスクブランク1の吸収体層として優れた特性を有しているが、検査光の波長について見た場合、光線反射率が必ずしも十分低いとは言えない。この結果、検査光の波長での吸収体層14表面の反射率と、反射層12表面または保護層13表面の反射率と、の差が小さくなり、検査時のコントラストが十分得られない可能性がある。検査時のコントラストが十分得られないと、マスク検査においてパターンの欠陥を十分判別できず、正確な欠陥検査を行えないことになる。
 本発明のEUVマスクブランク1では、吸収体層14上に検査光における低反射層15を形成することにより、検査光の波長での光線反射率が極めて低くなり、検査時のコントラストが良好となる。具体的には、検査光の波長領域の光線を低反射層15表面に照射した際に、該検査光の波長の最大光線反射率が15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましい。
 低反射層15における検査光の波長の光線反射率が15%以下であれば、該検査時のコントラストが良好である。具体的には、反射層12表面または保護層13表面における検査光の波長の反射光と、低反射層15表面における検査光の波長の反射光と、のコントラストが、30%以上となる。
 本明細書において、コントラストは下記式を用いて求めることができる。
コントラスト(%)=((R2-R)/(R2+R))×100
 ここで、検査光の波長におけるR2は反射層12表面または保護層13表面での反射率であり、Rは低反射層15表面での反射率である。なお、上記RおよびR2は、図2に示すように、図1に示すEUVマスクブランク1の吸収体層14(および低反射層15)にパターンを形成した状態で測定する。上記R2は、図2中、パターン形成によって吸収体層14および低反射層15が除去され、外部に露出した反射層12表面または保護層13表面で測定した値であり、Rはパターン形成によって除去されずに残った低反射層15表面で測定した値である。
 本発明のEUVマスクブランクが低反射層を有する場合、上記式で表されるコントラストが、45%以上であることがより好ましく、60%以上であることがさらに好ましく、80%以上であることが特に好ましい。
 低反射層15は、上記の特性を達成するため、検査光の波長の屈折率が吸収体層14よりも低い材料で構成され、その結晶状態がアモルファスであることが好ましい。
 本発明のEUVマスクブランク1の低反射層15では、Mo、Sn、Ag、NbおよびTiからなる群から選ばれる少なくとも1つと、Pdと、酸素(O)、あるいは、OおよびNを含有することで上記の特性を達成することが可能である。低反射層15中のPdの含有量は、10~60at%、特に10~50at%であることがパターン検査光の波長領域に対する光学特性を制御できるという理由で好ましい。
 また、Mo、Sn、Ag、NbおよびTiからなる群から選ばれる少なくとも1つは、低反射層中におけるそれらの合計含有率が、10~55at%、特に10~45at%であることが低反射層の表面粗さ、結晶構造を制御できるという理由で好ましい。
 また、低反射層15がOを含有する場合、Oの含有量が20~70at%、特に20~60at%であることが、パターン検査光の波長領域に対する光学特性を制御できるという理由で好ましい。なお、低反射層15がOを含有する場合、該低反射層15中のMo、Sn、Ag、Nb、Ti、Pd、および、Oの合計含有率は95~100at%であることが好ましく、97~100at%であることがより好ましく、99~100at%であることがさらに好ましい。
 また、低反射層15がOおよびNを含有する場合、OおよびNの合計含有率が20~70at%、特に20~60at%であることが、パターン検査光の波長領域に対する光学特性を制御できるという理由で好ましい。また、OとNの組成(原子)比がO:N=9:1~1:9であることが、パターン検査光の波長領域に対する光学特性を制御できるという理由で好ましい。なお、低反射層15がOおよびNを含有する場合、該低反射層15中のMo、Sn、Ag、Nb、Ti、Pd、N、および、Oの合計含有率は95~100at%であることが好ましく、97~100at%であることがより好ましく、99~100at%であることがさらに好ましい。
 また、低反射層は、タンタル(Ta)、珪素(Si)およびハフニウム(Hf)からなる群から選ばれる少なくとも1つと、酸素(O)および窒素(N)からなる群から選ばれる少なくとも1つと、を含有することが好ましい。また、前記タンタル(Ta)、珪素(Si)およびハフニウム(Hf)の合計含有率が10~55at%であり、前記酸素(O)および窒素(N)の含有率が45~90at%であり、前記Ta、Si、Hf、OおよびNの合計含有率が95~100at%であることが好ましい。このような低反射層とすることで、より低反射なマスクを作成することが可能となる。
 低反射層15は、上記の構成であることにより、その結晶状態はアモルファスであり、その表面が平滑性に優れている。具体的には、低反射層15表面の表面粗さ(rms)が0.5nm以下である。
 上記したように、エッジラフネスの影響によってパターンの寸法精度の悪化が防止するため、吸収体層14表面は平滑であることが要求される。低反射層15は、吸収体層14上に形成されるため、同様の理由から、その表面は平滑であることが要求される。
 低反射層15表面の表面粗さ(rms)が0.5nm以下であれば、低反射層15表面が十分平滑であるため、エッジラフネスの影響によってパターンの寸法精度が悪化するおそれがない。低反射層15表面の表面粗さ(rms)は0.4nm以下であることがより好ましく、0.3nm以下であることがさらに好ましい。
 なお、表面粗さの低減という点では、低反射層15にNを含有させることが好ましい。
 なお、低反射層15の結晶状態がアモルファスであること、すなわち、アモルファス構造であること、または微結晶構造であることは、X線回折(XRD)法によって確認することができる。低反射層15の結晶状態がアモルファス構造であるか、または微結晶構造であれば、XRD測定により得られる回折ピークにシャープなピークが見られない。
 吸収体層14上に低反射層15を形成する場合、吸収体層14と低反射層15との合計膜厚が25~80nmであることが好ましい。また、低反射層15の膜厚が吸収体層14の膜厚よりも大きいと、吸収体層14でのEUV光吸収特性が低下するおそれがあるので、低反射層15の膜厚は吸収体層の膜厚よりも小さいことが好ましい。このため、低反射層15の厚さは5~30nmであることが好ましく、10~20nmであることがより好ましい。
 上記した構成の低反射層15は、Mo、Sn、Ag、NbおよびTiからなる群から選ばれる少なくとも1つと、Pdと、を含有するターゲットを用いてスパッタリング法を行うことにより形成することができる。ここで、ターゲットとしては、上述した2種類以上の金属ターゲット、および、化合物ターゲットのいずれも使用することができる。
 なお、2種類以上の金属ターゲットの使用は、低反射層15の構成成分を調整するのに好都合である。一方、化合物ターゲットを使用する場合、形成される低反射層15が所望の組成となるように、ターゲット組成をあらかじめ調整することが好ましい。
 上記のターゲットを用いたスパッタリング法は、吸収体層の形成を目的とするスパッタリング法と同様、不活性ガス雰囲気中で実施する。
 但し、低反射層15が酸素(O)を含有する場合、He、Ar、Ne、Kr、Xeの不活性ガスのうち少なくともひとつと、Oと、を含むガス雰囲気中でスパッタリング法を実施する。低反射層15がOおよびNを含有する場合、He、Ar、Ne、Kr、Xeの不活性ガスのうち少なくともひとつと、OおよびNと、を含むガス雰囲気中でスパッタリング法を実施する。
 具体的なスパッタリング法の実施条件は、使用するターゲットやスパッタリング法を実施する不活性ガス雰囲気の組成によっても異なるが、いずれの場合においても以下の条件でスパッタリング法を実施すればよい。
 不活性ガス雰囲気がArとO2の混合ガス雰囲気の場合を例に低反射層の形成条件を以下に示す。
低反射層の形成条件
  ・雰囲気圧力:1.0×10-1Pa~50×10-1Pa、好ましくは1.0×10-1Pa~40×10-1Pa、より好ましくは1.0×10-1Pa~30×10-1Pa。
  ・スパッタガス:ArとO2の混合ガス(O2ガス濃度3~80vol%、好ましくは5~60vol%、より好ましくは10~40vol%。
  ・投入電力:30~1000W、好ましくは50~750W、より好ましくは80~500W。
  ・成膜速度:0.01~60nm/min、好ましくは0.05~45nm/min、より好ましくは0.1~30nm/min。
 なお、アルゴン以外の不活性ガスあるいは複数の不活性ガスを使用する場合、その不活性ガスの合計濃度が上記したArガス濃度と同じ濃度範囲にする。また、不活性ガス雰囲気が、N2およびO2を含有する場合、その合計濃度を上記した酸素濃度と同じ濃度範囲にする。
 なお、本発明のEUVマスクブランク1において、吸収体層14上に低反射層15を形成することが好ましいのは、パターンの検査光の波長とEUV光の波長とが異なるからである。したがって、パターンの検査光としてEUV光(13.5nm付近)を使用する場合、吸収体層14上に低反射層15層を形成する必要はないと考えられる。検査光の波長は、パターン寸法が小さくなるに伴い短波長側にシフトする傾向があり、将来的には193nm、さらには13.5nmにシフトすることも考えられる。検査光の波長が13.5nmである場合、吸収体層14上に低反射層15を形成する必要はないと考えられる。
 本発明のEUVマスクブランク1は、反射層12、保護層13、吸収体層14および低反射層15以外に、EUVマスクブランクの分野において公知の機能膜を有していてもよい。このような機能膜の具体例としては、例えば、特表2003-501823号公報に記載されているものように、基板の静電チャッキングを促すために、基板の裏面側に施される高誘電性コーティングが挙げられる。ここで、基板の裏面とは、図1の基板11において、反射層12が形成されている側とは反対側の面を指す。このような目的で基板の裏面に施す高誘電性コーティングは、シート抵抗が100Ω/□以下となるように、構成材料の電気伝導率と厚さを選択する。高誘電性コーティングの構成材料としては、公知の文献に記載されているものから広く選択することができる。例えば、特表2003-501823号公報に記載の高誘電率のコーティング、具体的には、シリコン、TiN、モリブデン、クロム、TaSiからなるコーティングを適用することができる。高誘電性コーティングの厚さは、例えば10~1000nmとすることができる。
 高誘電性コーティングは、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法、CVD法、真空蒸着法、電解メッキ法を用いて形成することができる。
 本発明のマスクブランクの吸収層を少なくともパターニングすることで、EUVマスクを製造することが可能となる。吸収体層のパターニング方法は特に限定されず、例えば、吸収体層上にレジストを塗布してレジストパターンを形成し、これをマスクとして吸収体層をエッチングする方法を採用できる。レジストの材料やレジストパターンの描画法は、吸収体層の材質等を考慮して適宜選択すればよい。吸収体層のエッチング方法も特に限定されず、反応性イオンエッチング等のドライエッチングまたはウエットエッチングが採用できる。吸収体層をパターニングした後、レジストを剥離液で剥離することにより、EUVマスクが得られる。
 本発明に係るEUVマスクを用いた半導体集積回路の製造方法について説明する。本発明は、EUV光を露光用光源として用いるフォトリソグラフィ法による半導体集積回路の製造方法に適用できる。具体的には、レジストを塗布したシリコンウェハ等の基板をステージ上に配置し、反射鏡を組み合わせて構成した反射型の露光装置に上記EUVマスクを設置する。そして、EUV光を光源から反射鏡を介してEUVマスクに照射し、EUV光をEUVマスクによって反射させてレジストが塗布された基板に照射する。このパターン転写工程により、回路パターンが基板上に転写される。回路パターンが転写された基板は、現像によって感光部分または非感光部分をエッチングした後、レジストを剥離する。半導体集積回路は、このような工程を繰り返すことで製造される。
 以下、実施例を用いて本発明をさらに説明する。
実施例1
 本実施例では、図1に示すEUVマスクブランク1を作製した。
 成膜用の基板11として、SiO2-TiO2系のガラス基板(外形6インチ(152mm)角、厚さが6.3mm)を使用した。このガラス基板の熱膨張率は0.2×10-7/℃、ヤング率は67GPa、ポアソン比は0.17、比剛性は3.07×1072/s2である。このガラス基板を研磨により、表面粗さ(rms)が0.15nm以下の平滑な表面と100nm以下の平坦度に形成した。
 基板11の裏面側には、マグネトロンスパッタリング法を用いて厚さ100nmのCr膜を成膜することによって、シート抵抗100Ω/□の高誘電性コーティングを施した。
 平板形状をした通常の静電チャックに、形成したCr膜を用いて基板11(外形6インチ(152mm)角、厚さ6.3mm)を固定して、該基板11の表面上にイオンビームスパッタリング法を用いてSi膜およびMo膜を交互に成膜することを40周期繰り返すことにより、合計膜厚272nm((Si膜:4.5nm+Mo膜:2.3nm)×40層)のSi/Mo多層反射膜(反射層12)を形成した。
 さらに、Si/Mo多層反射膜(反射層12)上に、イオンビームスパッタリング法を用いてRu膜(膜厚2.5nm)と成膜することにより、保護層13を形成した。
 Si膜、Mo膜およびRu膜の成膜条件は以下の通りである。
Si膜の成膜条件
  ・ターゲット:Siターゲット(ホウ素ドープ)
  ・スパッタガス:Arガス(ガス圧0.02Pa)
  ・電圧:700V
  ・成膜速度:0.077nm/sec
  ・膜厚:4.5nm
Mo膜の成膜条件
  ・ターゲット:Moターゲット
  ・スパッタガス:Arガス(ガス圧0.02Pa)
  ・電圧:700V
  ・成膜速度:0.064nm/sec
  ・膜厚:2.3nm
Ru膜の成膜条件
  ・ターゲット:Ruターゲット
  ・スパッタガス:Arガス(ガス圧0.02Pa)
  ・電圧:500V
  ・成膜速度:0.023nm/sec
  ・膜厚:2.5nm
 次に、保護層13上に、吸収体層14としてPdおよびMoを含むPdMo膜を、マグネトロンスパッタリング法を用いて形成した。
 吸収体層14(PdMo膜)は以下の方法で成膜した。膜組成は、X線光電子分光装置(X-ray Photoelectron Spectrometer)(PERKIN ELEMER-PHI社製)、二次イオン質量分析装置(Secondary Ion Mass Spectrometer)(PHI-ATOMIKA製)、ラザフォード後方散乱分光装置(Rutherford Back Scattering Spectroscopy)(神戸製鋼社製)を用いて測定する。吸収体層14の組成は、Pd:Mo=62:38である。吸収体層14の組成において、OおよびTaは検出されない。
吸収体層14(PdMo膜)の成膜条件
  ・ターゲット:PdターゲットおよびMoターゲット
  ・スパッタガス:Arガス(ガス圧:0.3Pa)
  ・投入電力:Pdターゲット=50W、Moターゲット100W
  ・成膜速度:18.9nm/min
  ・膜厚:50nm
 上記の手順で得られたEUVマスクブランクの吸収体層14(PdMo膜)に対して、下記の評価(1)~(4)を実施した。
(1)結晶状態
 吸収体層14(PdMo膜)の結晶状態を、X線回折装置(X-Ray Diffractmeter)(RIGAKU社製)で確認した。得られる回折ピークにはシャープなピークが見られないことから、吸収体層14の結晶状態がアモルファス構造または微結晶構造であることを確認した。
(2)表面粗さ
 吸収体層14(PdMo膜)の表面粗さは、原子間力顕微鏡(SII製、SPI-3800)を用いて、dynamic force modeで測定した。表面粗さの測定領域は1μm×1μmであり、カンチレバーには、SI-DF40(SII製)を用いる。
吸収体層14の表面粗さ(rms)は0.28nmであった。
(3)膜応力
 吸収体層14(PdMo膜)の膜応力は、前記の成膜条件と同条件で、4inchウエハ上に成膜して、成膜前後の基板のそり量変化を測定することにより評価した。基板のそり量は、応力測定装置(KLA-Tencor社製 FLX-2320)を用いて測定した。吸収体層14の膜応力は188Mpaであり、EUVマスクブランクとして要求される膜応力範囲(±200MPa以内)であった。
(4)EUV波長領域の光学定数
 吸収体層14(PdMo膜)のEUV波長領域の光学定数は、前記の成膜条件と同条件で、4inchウエハ上に成膜して、13.5nm領域の反射率の「角度依存性」を測定することにより評価した。EUV反射率とEUV光の入射角度、および光学定数は、以下の式で表される。
 R=|(sinθ-√((n+ik)2-cos2θ))/(sinθ+√((n+ik)2-cos2θ))|
 ここで、θはEUV光の入射角度、Rは入射角度θにおけるEUV反射率、nは吸収体層14の屈折率、kは吸収体層14の消衰係数である。各EUV入射角度における反射率測定値を、前式を用いてフィッティングすることにより、光学定数(nおよびk)を見積もることができる。測定した結果、吸収体層14の光学定数は、n=0.8911、k=0.0322であり、吸収体層の薄膜化に望ましい範囲であることが確認された。
 次に、吸収体層14上に、Pd、Mo、OおよびNを含有する低反射層15(PdMoON膜)を、マグネトロンスパッタリング法を用いて形成することにより、基板11上に反射層12、保護層13、吸収体層14、低反射層15がこの順で形成されたEUVマスクブランク1を得た。
 低反射層15(PdMoON膜)の成膜条件は以下の通りである。
低反射層15(PdMoON膜)の成膜条件
  ・ターゲット:PdターゲットおよびMoターゲット
  ・スパッタガス:ArとO2とN2混合ガス(Ar:50vol%、O2:36vol%、N2:14vol%、ガス圧:0.3Pa)
  ・投入電力:Pdターゲット=50W、Moターゲット=100W
  ・成膜速度:10.0nm/min
  ・膜厚:10nm
 上記の手順で得られたEUVマスクブランクの低反射層15(PdMoON膜)に対し下記の評価(1)~(4)を実施した。
(1)膜組成
 低反射層15(PdMoON膜)の組成を、X線光電子分光装置(X-ray Photoelectron Spectrometer)(PERKIN ELEMER-PHI社製)、ラザフォード後方散乱分光装置(Rutherford Back Scattering Spectroscopy)(神戸製鋼社製)を用いて測定する。低反射層の組成比(at%)は、Pd:Mo:O:N=21:14:55:10である。
(2)結晶状態
 低反射層15(PdMoON膜)の結晶状態を、X線回折装置(X-Ray Diffractmeter)(RIGAKU社製)で確認した。得られる回折ピークにはシャープなピークが見られないことから、低反射層15(PdMoON膜)の結晶状態がアモルファス構造または微結晶構造であることを確認した。
(3)表面粗さ
 低反射層15(PdMoON膜)の表面粗さは、原子間力顕微鏡(SII製、SPI-3800)を用いて、dynamic force modeで測定する。表面粗さの測定領域は1μm×1μmであり、カンチレバーには、SI-DF40(SII製)を用いる。低反射層の表面粗さ(rms)は0.30nmである。
(4)反射特性評価(コントラスト評価)
 本実施例では、保護層13(Ru膜)まで形成した段階で、該保護層13表面におけるマスクパターンの検査光(波長257nm)の反射率を分光光度計(HITACH UV-4100)を用いて測定する。また、低反射層15(PdMoON膜)を形成した後、該低反射層表面におけるマスクパターンの検査光の反射率を測定する。その結果、保護層13層表面での波長257nmに対する反射率は、56.0%である。一方、低反射層15(PdMoON膜)表面での波長257nmに対する反射率は、8.9%であり、15%以下である。これらの結果と上記した式を用いてコントラストを求めると、波長257nmにおけるコントラストは72.6%となる。
 マスクパターンの検査光の波長に対して、保護層13表面と低反射層15表面のコントラストは70%以上であり、十分なコントラストが得られる。得られたEUVマスクブランク1について、低反射層15表面にEUV光(波長13.5nm)を照射してEUV光の反射率を測定する。その結果、EUV光の反射率は4.3%であり、位相シフト効果を得るのに十分なEUV反射率を有している。
実施例2
 実施例2は、吸収体層14をPdAg膜とする以外は実施例1と同様である。吸収体層14(PdAg膜)の成膜条件は以下の通りである。膜組成は実施例1と同様の方法で測定する。吸収体層14の組成は、Pd:Ag=42:58である。吸収体層14の組成において、OおよびTaは検出されない。
吸収体層14(PdAg膜)の成膜条件
  ・ターゲット:PdターゲットおよびAgターゲット
  ・スパッタガス:Arガス(ガス圧:0.3Pa)
  ・投入電力:Pdターゲット=100W、Snターゲット100W
  ・成膜速度:42.1nm/min
  ・膜厚:50nm
 上記の手順で得られたEUVマスクブランクの吸収体層14(PdAg膜)に対して、実施例1と同様の方法で結晶状態を調べたところ、吸収体層14の結晶状態がアモルファス構造または微結晶構造であることを確認した。
 また、吸収体層14の表面粗さを、実施例1と同様に調べる。吸収体層14の表面粗さ(rms)は0.30nmである。
 また、吸収体層14(PdAg膜)の膜応力を、実施例1と同様の方法で調べたところ、膜応力は-46.8MPaであり、EUVマスクブランクとして要求される膜応力範囲(±200MPa以内)であった。
 また、吸収体層14(PdAg膜)のEUV波長領域の光学定数を実施例1と同様の方法で調べたところ、n=0.8806、k=0.0601であり、吸収体層の薄膜化に望ましい範囲であることが確認された。
 次に、吸収体層14上に、Pd、Ag、OおよびNを含有する低反射層15(PdAgON膜)を、マグネトロンスパッタリング法を用いて形成することにより、基板11上に反射層12、保護層13、吸収体層14、低反射層15がこの順で形成されたEUVマスクブランク1を得る。
 低反射層15(PdAgON膜)の成膜条件は以下の通りである。
低反射層15(PdAgON膜)の成膜条件
  ・ターゲット:PdターゲットおよびAgターゲット
  ・スパッタガス:ArとO2とN2混合ガス(Ar:50vol%、O2:36vol%、N2:14vol%、ガス圧:0.3Pa)
  ・投入電力:Pdターゲット=100W、Agターゲット=100W
  ・成膜速度:20.1nm/min
  ・膜厚:10nm
 上記の手順で得られたEUVマスクブランクの低反射層15(PdAgON膜)の膜組成は実施例1と同様の方法で測定する。低反射層15の膜組成は、Pd:Ag:O:N=18:23:47:12である。
 低反射層15(PdAgON膜)の結晶状態は、実施例1と同様の方法で調べる。低反射層15の結晶状態がアモルファス構造または微結晶構造である。また、低反射層15の表面粗さは、実施例1と同様に調べる。低反射層15の表面粗さ(rms)は0.32nmである。
 低反射層15(PdAgON)の反射特性は、実施例1と同様の方法でしらべる。マスクパターンの検査光(波長257nm)の反射率は8.1%であり、15%以下である。
 波長257nmにおける保護層13層表面の反射率が56.0%であることから、波長257nmにおけるコントラストは74.7%である。マスクパターンの検査光の波長に対して、保護層13表面と低反射層15表面のコントラストは70%以上であり、十分なコントラストが得られる。得られたEUVマスクブランク1について、低反射層15(PdSnON膜)表面にEUV光(波長13.5nm)を照射してEUV光の反射率を測定する。その結果、EUV光の反射率は2.4%であり、位相シフト効果を得るのに十分なEUV反射率を有している。
実施例3
 実施例3は、吸収体層14をPdSn膜とする以外は実施例1と同様である。吸収体層14(PdSn膜)の成膜条件は以下の通りである。膜組成は実施例1と同様の方法で測定する。吸収体層14の組成は、Pd:Sn=18:82である。吸収体層14の組成において、OおよびTaは検出されない。
吸収体層14(PdSn膜)の成膜条件
  ・ターゲット:PdターゲットおよびSnターゲット
  ・スパッタガス:Arガス(ガス圧:0.3Pa)
  ・投入電力:Pdターゲット=100W、Snターゲット150W
  ・成膜速度:46.9nm/min
  ・膜厚:50nm
 上記の手順で得られたEUVマスクブランクの吸収体層14(PdSn膜)に対して、実施例1と同様の方法で結晶状態を調べたところ、吸収体層14(PdSn膜)の結晶状態がアモルファス構造または微結晶構造であることを確認した。
 また、吸収体層14(PdSn膜)の表面粗さを、実施例1と同様に調べたところ、吸収体層14の表面粗さ(rms)は0.19nmであった。
 また、吸収体層14(PdSn膜)の膜応力を、実施例1と同様の方法で調べたところ、膜応力は-100.6MPaであり、EUVマスクブランクとして要求される膜応力範囲(±200MPa以内)であった。
 また、吸収体層14(PdSn膜)のEUV波長領域の光学定数を実施例1と同様の方法で調べたところ、n=0.8951、k=0.0625であり、吸収体層の薄膜化に望ましい範囲であることが確認された。
 次に、吸収体層14上に、Pd、Sn、OおよびNを含有する低反射層15(PdSnON膜)を、マグネトロンスパッタリング法を用いて形成することにより、基板11上に反射層12、保護層13、吸収体層14、低反射層15がこの順で形成されたEUVマスクブランク1を得る。
 低反射層15(PdSnON膜)の成膜条件は以下の通りである。
低反射層15(PdSnON膜)の成膜条件
  ・ターゲット:PdターゲットおよびSnターゲット
  ・スパッタガス:ArとO2とN2混合ガス(Ar:50vol%、O2:36vol%、N2:14vol%、ガス圧:0.3Pa)
  ・投入電力:Pdターゲット=100W、Snターゲット=150W
  ・成膜速度:30.2nm/min
  ・膜厚:10nm
 上記の手順で得られたEUVマスクブランクの低反射層15(PdSnON膜)の膜組成は実施例1と同様の方法で測定する。低反射層15の膜組成は、Pd:Sn:O:N=10:25:50:15である。
 低反射層15(PdSnON膜)の結晶状態は、実施例1と同様の方法で調べる。低反射層15の結晶状態がアモルファス構造または微結晶構造である。
 また、低反射層15(PdSnON膜)の表面粗さは、実施例1と同様に調べる。低反射層15の表面粗さ(rms)は0.28nmである。
 低反射層15(PdSnON)の反射特性は、実施例1と同様の方法でしらべる。マスクパターンの検査光(波長257nm)の反射率は14%であり、15%以下である。
 波長257nmにおける保護層13層表面の反射率が56.0%であることから、波長257nmにおけるコントラストは60%である。マスクパターンの検査光の波長に対して、保護層13表面と低反射層15表面のコントラストは60%以上であり、十分なコントラストが得られる。得られたEUVマスクブランク1について、低反射層15(PdSnON膜)表面にEUV光(波長13.5nm)を照射してEUV光の反射率を測定する。その結果、EUV光の反射率は2.3%であり、位相シフト効果を得るのに十分なEUV反射率を有している。
実施例4
 実施例4は、吸収体層14をPdSnN膜とする以外は実施例1と同様である。吸収体層14(PdSnN膜)の成膜条件は以下の通りである。膜組成は実施例1と同様の方法で測定する。吸収体層14の組成は、Pd:Sn:N=12:41:47である。吸収体層14の組成において、OおよびTaは検出されない。
吸収体層14(PdSnN膜)の成膜条件
  ・ターゲット:PdターゲットおよびSnターゲット
  ・スパッタガス:ArおよびN2の混合ガス(Ar:86.0vol%、N2:14vol%、ガス圧:0.3Pa)
  ・投入電力:Pdターゲット=100W、Snターゲット150W
  ・成膜速度:28.4nm/min
  ・膜厚:50nm
 上記の手順で得られたEUVマスクブランクの吸収体層14(PdSnN膜)に対して、実施例1と同様の方法で結晶状態を調べたところ、吸収体層14の結晶状態がアモルファス構造または微結晶構造であることを確認した。
 また、吸収体層14の表面粗さを、実施例1と同様に調べたところ、吸収体層14の表面粗さ(rms)は0.13nmであった。
 また、吸収体層14(PdSnN膜)の膜応力を、実施例1と同様の方法で調べたところ、膜応力は-83.2MPaであり、EUVマスクブランクとして要求される膜応力範囲(±200MPa以内)であった。
 また、吸収体層14(PdSnN膜)のEUV波長領域の光学定数を実施例1と同様の方法で調べたところ、n=0.8990、k=0.0709であり、吸収体層の薄膜化に望ましい範囲であることが確認された。
 次に、吸収体層14上に、低反射層15(PdSnON膜)を、実施例3と同様の手順で形成し、基板11上に反射層12、保護層13、吸収体層14、低反射層15がこの順で形成されたEUVマスクブランク1を得る。
 低反射層15(PdSnON膜)の膜組成および結晶構造は実施例3と同様である。また、低反射層15の表面粗さは、実施例1と同様に調べる。低反射層15の表面粗さ(rms)は0.27nmである。
 低反射層15(PdSnON)の反射特性は、実施例1と同様の方法でしらべる。マスクパターンの検査光(波長257nm)の反射率は14%であり、15%以下である。
 波長257nmにおける保護層13層表面の反射率が56.0%であることから、波長257nmにおけるコントラストは60%である。マスクパターンの検査光の波長に対して、保護層13表面と低反射層15表面のコントラストは60%以上であり、十分なコントラストが得られる。得られたEUVマスクブランク1について、低反射層15(PdSnON膜)表面にEUV光(波長13.5nm)を照射してEUV光の反射率を測定する。その結果、EUV光の反射率は2.1%であり、位相シフト効果を得るのに十分なEUV反射率を有している。
実施例5
 実施例5は、低反射層15をTaONとする以外は実施例3と同様である。吸収体層14(PdSn)上に、Ta、OおよびNを含有する低反射層15(TaON膜)を、マグネトロンスパッタリング法を用いて形成することにより、基板11上に反射層12、保護層13、吸収体層14、低反射層15がこの順で形成されたEUVマスクブランク1を得る。
 低反射層15の成膜条件は以下の通りである。
低反射層15(TaON膜)の成膜条件
  ・ターゲット:Taターゲット
  ・スパッタガス:ArとN2とO2の混合ガス(Ar:36vol%、N2:14vol%、O2:50vol%、ガス圧:0.3Pa)
  ・投入電力:450W
  ・成膜速度:0.28nm/min
  ・膜厚:10nm
 低反射層の組成比(at%)は、実施例1と同様の方法で測定した結果、Ta:N:O=22.1:4.4:73.5である。
 低反射層15(TaON膜)の結晶状態は、実施例1と同様の方法で調べる。低反射層15の結晶状態がアモルファス構造または微結晶構造である。
 また、低反射層15(TaON膜)の表面粗さは、実施例1と同様に調べる。低反射層15の表面粗さ(rms)は0.28nmである。
 低反射層15(TaON)の反射特性は、実施例1と同様の方法でしらべる。マスクパターンの検査光(波長257nm)の反射率は3.3%であり、15%以下である。
 波長257nmにおける保護層13層表面の反射率が56.0%であることから、波長257nmにおけるコントラストは89.0%である。マスクパターンの検査光の波長に対して、保護層13表面と低反射層15表面のコントラストは70%以上であり、十分なコントラストが得られる。得られたEUVマスクブランク1について、低反射層15(TaON膜)表面にEUV光(波長13.5nm)を照射してEUV光の反射率を測定する。その結果、EUV光の反射率は2.3%であり、位相シフト効果を得るのに十分なEUV反射率を有している。
実施例6
 実施例6は、低反射層15をSiNとする以外は実施例3と同様である。吸収体層14(PdSn)上に、SiおよびNを含有する低反射層15(SiN膜)を、マグネトロンスパッタリング法を用いて形成することにより、基板11上に反射層12、保護層13、吸収体層14、低反射層15がこの順で形成されたEUVマスクブランク1を得る。
 低反射層15の成膜条件は以下の通りである。
低反射層15(SiN膜)の成膜条件
  ・ターゲット:Siターゲット
  ・スパッタガス:ArとN2混合ガス(Ar:20vol%、N2:80vol%、ガス圧:0.3Pa)
  ・投入電力:150W
  ・成膜速度:2nm/min
  ・膜厚:12nm
 低反射層の組成比(at%)は、実施例1と同様の方法で測定した結果、Si:N=34:66である。
 低反射層15(SiN膜)の結晶状態は、実施例1と同様の方法で調べる。低反射層15の結晶状態がアモルファス構造または微結晶構造である。
 また、低反射層15(SiN膜)の表面粗さは、実施例1と同様に調べる。低反射層15の表面粗さ(rms)は0.30nmである。
 低反射層15(SiN膜)の反射特性は、実施例1と同様の方法でしらべる。マスクパターンの検査光(波長257nm)の反射率は8.4%であり、15%以下である。
 波長257nmにおける保護層13層表面の反射率が56.0%であることから、波長257nmにおけるコントラストは73.9%である。マスクパターンの検査光の波長に対して、保護層13表面と低反射層15表面のコントラストは70%以上であり、十分なコントラストが得られる。得られたEUVマスクブランク1について、低反射層15(SiN膜)表面にEUV光(波長13.5nm)を照射してEUV光の反射率を測定する。その結果、EUV光の反射率は3.3%であり、位相シフト効果を得るのに十分なEUV反射率を有している。
実施例7
 実施例7は、低反射層15をHfONとする以外は実施例3と同様である。吸収体層14(PdSn)上に、Hf、NおよびOを含有する低反射層15(HfON膜)を、マグネトロンスパッタリング法を用いて形成することにより、基板11上に反射層12、保護層13、吸収体層14、低反射層15がこの順で形成されたEUVマスクブランク1を得る。
 低反射層15の成膜条件は以下の通りである。
低反射層15(HfON膜)の成膜条件
  ・ターゲット:Hfターゲット
  ・スパッタガス:ArとN2とO2の混合ガス(Ar:45vol%、N2:23vol%、O2:32vol%、ガス圧:0.3Pa)
  ・投入電力:150W
  ・成膜速度:7.8nm/min
  ・膜厚:13nm
 低反射層の組成比(at%)は、実施例1と同様の方法で測定した結果、Hf:N:O=50:15:35である。
 低反射層15(HfON膜)の結晶状態は、実施例1と同様の方法で調べる。低反射層15の結晶状態がアモルファス構造または微結晶構造である。
 また、低反射層15(HfON膜)の表面粗さは、実施例1と同様に調べる。低反射層15の表面粗さ(rms)は0.29nmである。
 低反射層15(HfON膜)の反射特性は、実施例1と同様の方法でしらべる。マスクパターンの検査光(波長257nm)の反射率は10.9%であり、15%以下である。
 波長257nmにおける保護層13層表面の反射率が56.0%であることから、波長257nmにおけるコントラストは67.4%である。マスクパターンの検査光の波長に対して、保護層13表面と低反射層15表面のコントラストは60%以上であり、十分なコントラストが得られる。得られたEUVマスクブランク1について、低反射層15(SiN膜)表面にEUV光(波長13.5nm)を照射してEUV光の反射率を測定する。その結果、EUV光の反射率は2.5%であり、位相シフト効果を得るのに十分なEUV反射率を有している。
比較例1
 比較例1は、吸収体層14をTaN膜とする以外は実施例1と同様である。吸収体層14(TaN膜)の成膜条件は以下の通りである。膜組成は実施例1と同様の方法で測定する。吸収体層14の組成は、Ta:N=55:45である。
TaN層の成膜条件
  ・ターゲット:Taターゲット
  ・スパッタガス:ArとN2の混合ガス(Ar:86vol%、N2:14vol%、ガス圧:0.37Pa)
  ・投入電力:300W
  ・成膜速度:1.1nm/min
  ・膜厚:60nm
 上記の手順で得られたEUVマスクブランクの吸収体層14(TaN膜)に対して、実施例1と同様の方法で結晶状態を調べたところ、得られる回折ピークにシャープなピークが見られることから、吸収体層が結晶質であることが確認された。また、吸収体層14の表面粗さを、実施例1と同様に調べたところ、吸収体層14の表面粗さ(rms)は0.35nmであった。
 また、吸収体層14(TaN膜)の膜応力を、実施例1と同様の方法で調べたところ、膜応力は-3456MPaであり、EUVマスクブランクとして要求される膜応力範囲(±200MPa以内)と比較して大きく、Siウエハなどの基板上レジストに転写されるマスク転写パターンの形状精度や寸法精度が悪化することが懸念される。
 また、吸収体層14(TaN膜)のEUV波長領域の光学定数を実施例1と同様の方法で調べたところ、n=0.947、k=0.0351であり、現在、一般的に用いられているTaを主成分とした吸収体層の光学定数(n=0.945、k=0.351)と比較して、nの値が大きいため、吸収体層14の薄膜化の効果は得られない。
 上記のように、吸収体層14において、Taを含む場合、膜応力が大きいという点および、薄膜化の効果が小さいという点で望ましくない。
比較例2
 比較例2は、吸収体層14をPdTa膜とする以外は実施例1と同様である。吸収体層14(PdTa膜)の成膜条件は以下の通りである。膜組成は実施例1と同様の方法で測定する。吸収体層14の組成は、Pd:Ag=35:65である。
吸収体層14(PdTa膜)の成膜条件
  ・ターゲット:PdターゲットおよびTaターゲット
  ・スパッタガス:Arガス(ガス圧:0.3Pa)
  ・投入電力:Pdターゲット=30W、Taターゲット150W
  ・成膜速度:16.1nm/min
  ・膜厚:50nm
 上記の手順で得られたEUVマスクブランクの吸収体層14(PdTa膜)に対して、実施例1と同様の方法で結晶状態を調べたところ、吸収体層14の結晶状態がアモルファス構造または微結晶構造であることを確認した。また、吸収体層14の表面粗さを、実施例1と同様に調べたところ、吸収体層14の表面粗さ(rms)は0.28nmであった。
 また、吸収体層14(PdTa膜)の膜応力を、実施例1と同様の方法で調べたところ、膜応力は-867.8MPaであり、EUVマスクブランクとして要求される膜応力範囲(±200MPa以内)と比較して大きく、Siウエハなどの基板上レジストに転写されるマスク転写パターンの形状精度や寸法精度が悪化することが懸念される。
 また、吸収体層14(PdTa膜)のEUV波長領域の光学定数を実施例1と同様の方法で調べたところ、n=0.9321、k=0.0373であり、現在、一般的に用いられているTaを主成分とした吸収体層の光学定数(n=0.945、k=0.351)と大きな差はなく、吸収体層14の薄膜化の効果は小さい。
 上記のように、吸収体層14において、Taを含む場合、膜応力が大きいという点および、薄膜化の効果が小さいという点で望ましくない。
産業上の利用の可能性
 本発明のEUVマスクブランクは、従来のTaを主成分とした吸収体層より、屈折率の値を小さくし、さらに所望の消衰係数にすることができ、従来の吸収体層より薄膜化することが可能であり、EUVリソグラフィにおいて、Siウエハなどの基板上レジストに転写されるマスク転写パターンの形状精度や寸法精度を向上することが期待される。
 なお、2009年7月8日に出願された日本特許出願2009-161607号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
  1:EUVマスクブランク
 11:基板
 12:反射層(多層反射膜)
 13:保護層
 14:吸収体層
 15:低反射層

Claims (23)

  1.  基板上に、EUV光を反射する反射層と、EUV光を吸収する吸収体層と、がこの順に形成されたEUVリソグラフィ用反射型マスクブランクであって、
     前記吸収体層が、モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)からなる群から選ばれる少なくとも1つと、パラジウム(Pd)と、を含有することを特徴とするEUVリソグラフィ用反射型マスクブランク。
  2.  前記吸収体層において、前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が20~90at%であり、前記パラジウム(Pd)の含有率が10~80at%であり、前記Mo、Sn、Ag、Nb、Ti、および、Pdの合計含有率が95~100at%である請求項1に記載のEUVリソグラフィ用反射型マスクブランク。
  3.  前記吸収体層が、さらに窒素(N)を含有することを特徴とする請求項1に記載のEUVリソグラフィ用反射型マスクブランク。
  4.  前記吸収体層において、前記吸収体層における前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が20~90at%であり、前記パラジウム(Pd)の含有率が10~80at%であり、前記窒素(N)の含有率が30~70at%であり、前記Mo、Sn、Ag、Nb、Ti、Pd、および、Nの合計含有率が95~100at%である請求項3に記載のEUVリソグラフィ用反射型マスクブランク。
  5.  前記吸収体層が、さらに水素(H)を含有することを特徴とする請求項1に記載のEUVリソグラフィ用反射型マスクブランク。
  6.  前記吸収体層において、前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が20~90at%であり、前記パラジウム(Pd)の含有率が10~80at%であり、前記水素(H)の含有率が0.1~10at%であり、前記Mo、Sn、Ag、Nb、Ti、Pd、および、Hの合計含有率が95~100at%である請求項5に記載のEUVリソグラフィ用反射型マスクブランク。
  7.  前記吸収体層が、さらに窒素(N)および水素(H)を含有することを特徴とする請求項1に記載のEUVリソグラフィ用反射型マスクブランク。
  8.  前記吸収体層において、前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が20~90at%であり、前記パラジウム(Pd)の含有率が10~80at%であり、前記窒素(N)の含有率が30~70at%であり、前記水素(H)の含有率が0.1~10at%であり、前記Mo、Sn、Ag、Nb、Ti、Pd、N、および、Hの合計含有率が95~100at%である請求項7に記載のEUVリソグラフィ用反射型マスクブランク。
  9.  前記吸収体層の結晶状態が、アモルファスであることを特徴とする請求項1~8のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  10.  前記吸収体層表面の表面粗さ(rms)が、0.5nm以下であることを特徴とする請求項1~9のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  11.  前記吸収体層の膜厚が、20~50nmであることを特徴とする請求項1~10のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  12.  前記吸収体層上に、マスクパターンの検査に使用する検査光における低反射層が形成されており、
     前記低反射層が、モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)からなる群から選ばれる少なくとも1つと、パラジウム(Pd)と、酸素(O)と、を含有することを特徴とする請求項1~11のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  13.  前記低反射層において、前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が10~55at%であり、前記パラジウム(Pd)の含有率が10~60at%であり、前記酸素(O)の含有率が20~70at%であり、前記Mo、Sn、Ag、Nb、Ti、Pd、および、Oの合計含有率が95~100at%である請求項12に記載のEUVリソグラフィ用反射型マスクブランク。
  14.  前記吸収体層上に、マスクパターンの検査に使用する検査光における低反射層が形成されており、
     前記低反射層が、モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)からなる群から選ばれる少なくとも1つと、パラジウム(Pd)と、窒素(N)と、酸素(O)と、を含有することを特徴とする請求項1~11のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  15.  前記低反射層において、前記モリブデン(Mo)、錫(Sn)、銀(Ag)、ニオブ(Nb)およびチタン(Ti)の合計含有率が10~55at%であり、前記パラジウム(Pd)の含有率が10~60at%であり、前記窒素(N)および酸素(O)の合計含有率が20~70at%であり、前記NとOの組成(原子)比がN:O=9:1~1:9であり、前記Mo、Sn、Ag、Nb、Ti、Pd、N、および、Oの合計含有率が95~100at%である請求項14に記載のEUVリソグラフィ用反射型マスクブランク。
  16.  前記吸収体層上に、マスクパターンの検査に使用する検査光における低反射層が形成されており、
     前記低反射層が、タンタル(Ta)、珪素(Si)およびハフニウム(Hf)からなる群から選ばれる少なくとも1つと、酸素(O)および窒素(N)からなる群から選ばれる少なくとも1つと、を含有することを特徴とする請求項1~11のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  17.  前記低反射層において、前記タンタル(Ta)、珪素(Si)およびハフニウム(Hf)の合計含有率が10~55at%であり、前記酸素(O)および窒素(N)の含有率が45~90at%であり、前記Ta、Si、Hf、OおよびNの合計含有率が95~100at%である請求項16に記載のEUVリソグラフィ用反射型マスクブランク。
  18.  前記低反射層表面の表面粗さ(rms)が、0.5nm以下であることを特徴とする請求項12~17のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  19.  前記低反射層の膜厚が、5~30nmであることを特徴とする請求項12~18のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  20.  前記反射層と前記吸収体層との間に、前記吸収体層へのパターン形成時に前記反射層を保護するための保護層が形成されており、
     吸収体層に形成されるパターンの検査に用いられる光の波長に対する前記保護層表面での反射光と、前記低反射層表面での反射光と、のコントラストが、30%以上であることを特徴とする請求項12~19のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  21.  前記吸収体層に形成されるパターンの検査に用いられる光の波長に対する、前記低反射層表面の反射率が15%以下であることを特徴とする請求項12~20のいずれかに記載のEUVリソグラフィ用反射型マスクブランク。
  22.  請求項1~21のいずれかに記載のEUVリソグラフィ用反射型マスクブランクの吸収体層および低反射層にパターニングを施したことを特徴とするEUVリソグラフィ用反射型マスク。
  23.  請求項22に記載のEUVリソグラフィ用反射型マスクを用いて、被露光体に露光を行うことにより半導体集積回路を製造することを特徴とする半導体集積回路の製造方法。
PCT/JP2010/061560 2009-07-08 2010-07-07 Euvリソグラフィ用反射型マスクブランク WO2011004850A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011521949A JPWO2011004850A1 (ja) 2009-07-08 2010-07-07 Euvリソグラフィ用反射型マスクブランク
EP10797161A EP2453464A1 (en) 2009-07-08 2010-07-07 Euv-lithography reflection-type mask blank
US13/346,026 US8288062B2 (en) 2009-07-08 2012-01-09 Reflective mask blank for EUV lithography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-161607 2009-07-08
JP2009161607 2009-07-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/346,026 Continuation US8288062B2 (en) 2009-07-08 2012-01-09 Reflective mask blank for EUV lithography

Publications (1)

Publication Number Publication Date
WO2011004850A1 true WO2011004850A1 (ja) 2011-01-13

Family

ID=43429274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061560 WO2011004850A1 (ja) 2009-07-08 2010-07-07 Euvリソグラフィ用反射型マスクブランク

Country Status (6)

Country Link
US (1) US8288062B2 (ja)
EP (1) EP2453464A1 (ja)
JP (1) JPWO2011004850A1 (ja)
KR (1) KR20120034074A (ja)
TW (1) TW201122721A (ja)
WO (1) WO2011004850A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9097976B2 (en) 2011-02-01 2015-08-04 Asahi Glass Company, Limited Reflective mask blank for EUV lithography
US9239515B2 (en) 2013-05-31 2016-01-19 Asahi Glass Company, Limited Reflective mask blank for EUV lithography
JP2019056898A (ja) * 2017-09-21 2019-04-11 Agc株式会社 反射型マスクブランク、反射型マスク及び反射型マスクブランクの製造方法
JP2019086802A (ja) * 2019-03-15 2019-06-06 Hoya株式会社 反射型マスクブランク及び反射型マスク
US10481484B2 (en) 2013-12-25 2019-11-19 Hoya Corporation Reflective mask blank, reflective mask, method for manufacturing reflective mask blank, and method for manufacturing semiconductor device
JP2019219651A (ja) * 2018-06-13 2019-12-26 Agc株式会社 反射型マスクブランク、反射型マスク及び反射型マスクブランクの製造方法
WO2020054527A1 (ja) * 2018-09-12 2020-03-19 Hoya株式会社 マスクブランク、転写用マスク、及び半導体デバイスの製造方法
WO2020100632A1 (ja) * 2018-11-15 2020-05-22 凸版印刷株式会社 反射型フォトマスクブランク及び反射型フォトマスク
JP2021101258A (ja) * 2017-03-03 2021-07-08 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
WO2021161792A1 (ja) * 2020-02-12 2021-08-19 Hoya株式会社 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
JP6966013B1 (ja) * 2020-10-14 2021-11-10 凸版印刷株式会社 反射型マスク及び反射型マスクの製造方法
WO2021230297A1 (ja) * 2020-05-14 2021-11-18 凸版印刷株式会社 反射型マスクブランク及び反射型マスク
KR20220002621A (ko) 2019-05-31 2022-01-06 도판 인사츠 가부시키가이샤 반사형 포토마스크 블랭크 및 반사형 포토마스크
JP2022003417A (ja) * 2017-07-05 2022-01-11 凸版印刷株式会社 反射型フォトマスクブランク及び反射型フォトマスク
WO2022172916A1 (ja) * 2021-02-15 2022-08-18 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク
KR20220115937A (ko) 2019-12-18 2022-08-19 가부시키가이샤 토판 포토마스크 반사형 마스크 블랭크, 반사형 마스크, 반사형 마스크의 제조 방법 및 반사형 마스크의 수정 방법
KR20220157439A (ko) 2020-04-30 2022-11-29 가부시키가이샤 토판 포토마스크 반사형 포토마스크 블랭크 및 반사형 포토마스크
US11880130B2 (en) 2017-03-03 2024-01-23 Hoya Corporation Reflective mask blank, reflective mask and method of manufacturing semiconductor device
JP7475154B2 (ja) 2020-02-13 2024-04-26 Hoya株式会社 反射型マスクブランク、反射型マスク、導電膜付き基板、及び半導体装置の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130007537A (ko) 2010-03-02 2013-01-18 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크 및 그 제조 방법
KR20140004057A (ko) 2010-08-24 2014-01-10 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크
KR101172698B1 (ko) * 2011-10-17 2012-09-13 주식회사 에스앤에스텍 블랭크 마스크, 포토마스크 및 그의 제조방법
JP6060636B2 (ja) 2012-01-30 2017-01-18 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
KR101862166B1 (ko) * 2012-03-14 2018-05-29 호야 가부시키가이샤 마스크 블랭크, 및 전사용 마스크의 제조방법
US20150079502A1 (en) * 2012-03-14 2015-03-19 Hoya Corporation Mask blank and method of manufacturing a transfer mask
JP6332032B2 (ja) * 2012-11-16 2018-05-30 コニカミノルタ株式会社 透光性電極、及び、電子デバイス
CN107428127B (zh) * 2015-03-27 2019-11-19 株式会社Lg化学 导电结构体、其制造方法以及包括导电结构体的电极
KR20180057813A (ko) 2016-11-22 2018-05-31 삼성전자주식회사 극자외선 리소그래피용 위상 반전 마스크
JP6729508B2 (ja) * 2017-06-29 2020-07-22 信越化学工業株式会社 フォトマスクブランク及びフォトマスク
EP3454120A1 (en) * 2017-09-09 2019-03-13 IMEC vzw Method for manufacturing euv reticles and reticles for euv lithography
EP3454119B1 (en) * 2017-09-09 2023-12-27 IMEC vzw Euv absorbing alloys
US10890842B2 (en) * 2017-09-21 2021-01-12 AGC Inc. Reflective mask blank, reflective mask, and process for producing reflective mask blank
JP6556885B2 (ja) * 2018-02-22 2019-08-07 Hoya株式会社 反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928158A (ja) * 1982-08-07 1984-02-14 Konishiroku Photo Ind Co Ltd 露光マスク素材の製造方法
JPH0378163B2 (ja) 1985-03-13 1991-12-12 Kawasaki Steel Co
JPH07114173A (ja) * 1993-10-15 1995-05-02 Canon Inc リソグラフィ用反射型マスクおよび縮小投影露光装置
JPH09281692A (ja) * 1996-04-09 1997-10-31 Nikon Corp 電子線転写装置用レチクル
JP2002299227A (ja) * 2001-04-03 2002-10-11 Nikon Corp 反射マスクとその製造方法及び露光装置
JP2003501823A (ja) 1999-06-07 2003-01-14 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア 反射マスク基板のコーティング
JP2003243292A (ja) * 2002-02-18 2003-08-29 Nikon Corp 反射マスク、露光装置及びその清掃方法
JP2004006798A (ja) 2002-04-11 2004-01-08 Hoya Corp 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法
JP2006228766A (ja) 2005-02-15 2006-08-31 Toppan Printing Co Ltd 極端紫外線露光用マスク、マスクブランク、及び露光方法
US7390596B2 (en) 2002-04-11 2008-06-24 Hoya Corporation Reflection type mask blank and reflection type mask and production methods for them
JP2009161607A (ja) 2007-12-28 2009-07-23 Kao Corp 1液型液状レオロジー改質剤

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070054651A (ko) 2004-09-17 2007-05-29 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크스 및 그 제조방법
TWI444757B (zh) 2006-04-21 2014-07-11 Asahi Glass Co Ltd 用於極紫外光(euv)微影術之反射性空白光罩
TWI417647B (zh) 2006-06-08 2013-12-01 Asahi Glass Co Ltd Euv微影術用之反射性空白遮光罩及用於彼之具有功能性薄膜的基板
JP2008101246A (ja) 2006-10-19 2008-05-01 Asahi Glass Co Ltd Euvリソグラフィ用反射型マスクブランクを製造する際に使用されるスパッタリングターゲット
EP1973147B1 (en) 2006-12-27 2011-09-28 Asahi Glass Company, Limited Reflective mask blanc for euv lithography
EP2028681B1 (en) 2007-01-31 2014-04-23 Asahi Glass Company, Limited Reflective mask blank for euv lithography
KR101409642B1 (ko) 2007-04-17 2014-06-18 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크
CN101978468B (zh) 2008-03-18 2013-03-20 旭硝子株式会社 Euv光刻用反射型掩模基板及其制造方法
WO2009154238A1 (ja) 2008-06-19 2009-12-23 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
CN102089860B (zh) 2008-07-14 2014-03-12 旭硝子株式会社 Euv光刻用反射型掩模基板及euv光刻用反射型掩模
CN102203907B (zh) 2008-10-30 2014-03-26 旭硝子株式会社 Euv光刻用反射型掩模基板
JP5348141B2 (ja) 2008-10-30 2013-11-20 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5928158A (ja) * 1982-08-07 1984-02-14 Konishiroku Photo Ind Co Ltd 露光マスク素材の製造方法
JPH0378163B2 (ja) 1985-03-13 1991-12-12 Kawasaki Steel Co
JPH07114173A (ja) * 1993-10-15 1995-05-02 Canon Inc リソグラフィ用反射型マスクおよび縮小投影露光装置
US5641593A (en) 1993-10-15 1997-06-24 Canon Kabushiki Kaisha Lithographic mask and exposure apparatus using the same
JPH09281692A (ja) * 1996-04-09 1997-10-31 Nikon Corp 電子線転写装置用レチクル
JP2003501823A (ja) 1999-06-07 2003-01-14 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア 反射マスク基板のコーティング
JP2002299227A (ja) * 2001-04-03 2002-10-11 Nikon Corp 反射マスクとその製造方法及び露光装置
JP2003243292A (ja) * 2002-02-18 2003-08-29 Nikon Corp 反射マスク、露光装置及びその清掃方法
JP2004006798A (ja) 2002-04-11 2004-01-08 Hoya Corp 反射型マスクブランクス及び反射型マスク及びそれらの製造方法並びに半導体の製造方法
US7390596B2 (en) 2002-04-11 2008-06-24 Hoya Corporation Reflection type mask blank and reflection type mask and production methods for them
JP2006228766A (ja) 2005-02-15 2006-08-31 Toppan Printing Co Ltd 極端紫外線露光用マスク、マスクブランク、及び露光方法
JP2009161607A (ja) 2007-12-28 2009-07-23 Kao Corp 1液型液状レオロジー改質剤

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9097976B2 (en) 2011-02-01 2015-08-04 Asahi Glass Company, Limited Reflective mask blank for EUV lithography
US9239515B2 (en) 2013-05-31 2016-01-19 Asahi Glass Company, Limited Reflective mask blank for EUV lithography
US10481484B2 (en) 2013-12-25 2019-11-19 Hoya Corporation Reflective mask blank, reflective mask, method for manufacturing reflective mask blank, and method for manufacturing semiconductor device
US11880130B2 (en) 2017-03-03 2024-01-23 Hoya Corporation Reflective mask blank, reflective mask and method of manufacturing semiconductor device
JP2021101258A (ja) * 2017-03-03 2021-07-08 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
JP7263424B2 (ja) 2017-03-03 2023-04-24 Hoya株式会社 反射型マスクブランク、反射型マスク及び半導体装置の製造方法
US11480867B2 (en) 2017-03-03 2022-10-25 Hoya Corporation Reflective mask blank, reflective mask and method of manufacturing semiconductor device
JP2022003417A (ja) * 2017-07-05 2022-01-11 凸版印刷株式会社 反射型フォトマスクブランク及び反射型フォトマスク
JP7279131B2 (ja) 2017-07-05 2023-05-22 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク
JP2019056898A (ja) * 2017-09-21 2019-04-11 Agc株式会社 反射型マスクブランク、反射型マスク及び反射型マスクブランクの製造方法
JP2019219651A (ja) * 2018-06-13 2019-12-26 Agc株式会社 反射型マスクブランク、反射型マスク及び反射型マスクブランクの製造方法
JP7263908B2 (ja) 2018-06-13 2023-04-25 Agc株式会社 反射型マスクブランク、反射型マスク及び反射型マスクブランクの製造方法
WO2020054527A1 (ja) * 2018-09-12 2020-03-19 Hoya株式会社 マスクブランク、転写用マスク、及び半導体デバイスの製造方法
WO2020100632A1 (ja) * 2018-11-15 2020-05-22 凸版印刷株式会社 反射型フォトマスクブランク及び反射型フォトマスク
US11906896B2 (en) 2018-11-15 2024-02-20 Toppan Photomask Co., Ltd. Reflective photomask blank and reflective photomask
JPWO2020100632A1 (ja) * 2018-11-15 2021-05-20 凸版印刷株式会社 反射型フォトマスクブランク及び反射型フォトマスク
JP2019086802A (ja) * 2019-03-15 2019-06-06 Hoya株式会社 反射型マスクブランク及び反射型マスク
KR20220002621A (ko) 2019-05-31 2022-01-06 도판 인사츠 가부시키가이샤 반사형 포토마스크 블랭크 및 반사형 포토마스크
KR20220115937A (ko) 2019-12-18 2022-08-19 가부시키가이샤 토판 포토마스크 반사형 마스크 블랭크, 반사형 마스크, 반사형 마스크의 제조 방법 및 반사형 마스크의 수정 방법
JP7354005B2 (ja) 2020-02-12 2023-10-02 Hoya株式会社 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
WO2021161792A1 (ja) * 2020-02-12 2021-08-19 Hoya株式会社 反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
JP7475154B2 (ja) 2020-02-13 2024-04-26 Hoya株式会社 反射型マスクブランク、反射型マスク、導電膜付き基板、及び半導体装置の製造方法
KR20220157439A (ko) 2020-04-30 2022-11-29 가부시키가이샤 토판 포토마스크 반사형 포토마스크 블랭크 및 반사형 포토마스크
WO2021230297A1 (ja) * 2020-05-14 2021-11-18 凸版印刷株式会社 反射型マスクブランク及び反射型マスク
JP6966013B1 (ja) * 2020-10-14 2021-11-10 凸版印刷株式会社 反射型マスク及び反射型マスクの製造方法
JP2022064811A (ja) * 2020-10-14 2022-04-26 凸版印刷株式会社 反射型マスク及び反射型マスクの製造方法
WO2022172916A1 (ja) * 2021-02-15 2022-08-18 株式会社トッパンフォトマスク 反射型フォトマスクブランク及び反射型フォトマスク

Also Published As

Publication number Publication date
US20120107733A1 (en) 2012-05-03
TW201122721A (en) 2011-07-01
JPWO2011004850A1 (ja) 2012-12-20
KR20120034074A (ko) 2012-04-09
EP2453464A1 (en) 2012-05-16
US8288062B2 (en) 2012-10-16

Similar Documents

Publication Publication Date Title
WO2011004850A1 (ja) Euvリソグラフィ用反射型マスクブランク
JP5708651B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5067483B2 (ja) Euvリソグラフィ用反射型マスクブランク
KR101335077B1 (ko) Euv 리소그래피용 반사형 마스크 블랭크
JP6287099B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5348141B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5018789B2 (ja) Euvリソグラフィ用反射型マスクブランク
TWI418926B (zh) Reflective mask substrate for EUV photolithography
JP4978626B2 (ja) Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板
US8828627B2 (en) Reflective mask blank for EUV lithography and reflective mask for EUV lithography
JP5590044B2 (ja) Euvリソグラフィ用光学部材
JP5040996B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5971122B2 (ja) Euvリソグラフィ用反射型マスクブランク
WO2011108470A1 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法
JP4867695B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP5381441B2 (ja) Euvリソグラフィ用反射型マスクブランクの製造方法
JP5333016B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP2009252788A (ja) Euvリソグラフィ用反射型マスクブランク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10797161

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011521949

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010797161

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117028831

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE