JP5590044B2 - Euvリソグラフィ用光学部材 - Google Patents

Euvリソグラフィ用光学部材 Download PDF

Info

Publication number
JP5590044B2
JP5590044B2 JP2011545229A JP2011545229A JP5590044B2 JP 5590044 B2 JP5590044 B2 JP 5590044B2 JP 2011545229 A JP2011545229 A JP 2011545229A JP 2011545229 A JP2011545229 A JP 2011545229A JP 5590044 B2 JP5590044 B2 JP 5590044B2
Authority
JP
Japan
Prior art keywords
layer
reflective
euv
substrate
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011545229A
Other languages
English (en)
Other versions
JPWO2011071086A1 (ja
Inventor
正樹 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2011545229A priority Critical patent/JP5590044B2/ja
Publication of JPWO2011071086A1 publication Critical patent/JPWO2011071086A1/ja
Application granted granted Critical
Publication of JP5590044B2 publication Critical patent/JP5590044B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70316Details of optical elements, e.g. of Bragg reflectors, extreme ultraviolet [EUV] multilayer or bilayer mirrors or diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70983Optical system protection, e.g. pellicles or removable covers for protection of mask
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Public Health (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、半導体製造等に使用されるEUV(Extreme Ultraviolet:極端紫外。以下EUVと略称する。)用光学部材、具体的にはEUVリソグラフィ用反射層付基板(以下、本明細書において、「EUVリソグラフィ用反射層付基板」、または単に「反射層付き基板」ともいう)、EUVリソグラフィ用反射型マスクブランクス(以下、本明細書において、「EUVマスクブランク」ともいう)、該EUVマスクブランクをパターニングしたEUVリソグラフィ用反射型マスク(以下、本明細書において、「EUVマスク」という)、EUVリソグラフィ用反射型ミラー(以下、本明細書において、「EUVミラー」という)(以下これらを総称してEUVリソグラフィ用光学部材ともいう)に関する。
従来、半導体産業において、シリコン基板等に微細なパターンからなる集積回路を形成する上で必要な微細パターンの転写技術として、可視光や紫外光を用いたフォトリソグラフィ法が用いられてきた。しかし、半導体デバイスの微細化が加速している一方で、従来のフォトリソグラフィ法の限界に近づいてきた。フォトリソグラフィ法の場合、パターンの解像限界は露光波長の1/2程度であり、液浸法を用いても露光波長の1/4程度と言われており、ArFレーザ(193nm)の液浸法を用いても45nm程度が限界と予想される。そこで45nmよりも短い露光波長を用いた次世代の露光技術として、ArFレーザよりさらに短波長のEUV光を用いた露光技術であるEUVリソグラフィが有望視されている。本明細書において、EUV光とは、軟X線領域または真空紫外線領域の波長の光線を指し、具体的には波長10〜20nm程度、特に13.5nm±0.3nm程度の光線を指す。
EUV光は、あらゆる物質に対して吸収されやすく、かつこの波長で物質の屈折率が1に近いため、従来の可視光または紫外光を用いたフォトリソグラフィのような屈折光学系を使用することができない。このため、EUV光リソグラフィでは、反射光学系、すなわち反射型フォトマスクとミラーとが用いられる。
マスクブランクは、フォトマスク製造に用いられるパターニング前の積層体である。EUVマスクブランクの場合、ガラス製等の基板上にEUV光を反射する反射層と、EUV光を吸収する吸収体層とがこの順で形成された構造を有している。反射層としては、低屈折層であるモリブデン(Mo)層と高屈折層であるケイ素(Si)層とを交互に積層することで、EUV光を層表面に照射した際の光線反射率が高められたMo/Si多層反射膜が通常使用される。
吸収体層には、EUV光に対する吸収係数の高い材料、具体的にはたとえば、クロム(Cr)やタンタル(Ta)を主成分とする材料が用いられる。
上記反射層と吸収体層の間には、通常、保護層が形成される。該保護層は、吸収体層にパターン形成する目的で実施されるエッチングプロセスによって、反射層がダメージを受けないように、該反射層を保護する目的で設けられるものである。特許文献1には保護層の材料として、ルテニウム(Ru)の使用が提案されている。特許文献2には、Ruと、Mo、Nb、Zr、Y、B、TiおよびLaから選ばれる少なくとも1種と、を含有するルテニウム化合物(Ru含有量10〜95at%)からなる保護層が提案されている。特許文献3には、Ru/Siペアの多層保護層が提案されている。
EUVリソグラフィに用いられるミラーは、ガラス基板等の基板上にEUV光を反射する反射層が形成された構造を有している。反射層としては、高EUV光線反射率を達成できることから、通常は高屈折層と低屈折率層を交互に複数回積層させた多層反射膜が用いられる。したがって、EUV光リソグラフィに用いられるミラーとしては、このような基板上に多層反射膜が形成された多層膜ミラーが通常用いられる(特許文献4参照)。
このような多層膜ミラーでは、多層反射膜を化学的、物理的な侵蝕から保護する目的で保護層(保護キャッピング層)が該多層反射膜上に形成されることが多い。特許文献4には、EUVミラーの構成として、化学的、物理的な侵蝕に耐えうるため、反射層の上に特定のキャッピング層(保護層)を設けることが記載されている。特許文献4に記載の多層膜ミラーの場合、ルテニウム(Ru)およびロジウム(Rh)並びにそれらの化合物や合金の中から選択される材料からなる保護キャッピング層を備えている。
特開2002−122981号公報 特開2005−268750号公報 米国特許第7300724号明細書 日本特許第4068285号公報(欧州公開特許1065568号公報)
保護層の材料としてRuを用いた場合、吸収体層に対して高いエッチング選択比が得られるとともに、反射層上に保護層を形成した場合でも、保護層表面にEUV光を照射した際に高反射率が得られる。
しかしながら、保護層の材料としてRuを用いた場合、マスクブランクやミラー製造時に実施される工程や該マスクブランクからフォトマスクを製造する際に実施される工程(例えば、洗浄、欠陥検査、加熱工程、ドライエッチング、欠陥修正の各工程)において、あるいは該EUV露光時において、Ru保護層、さらには多層反射膜の最上層(Mo/Si多層反射膜の場合、Si層)が酸化されることによって、保護層表面にEUV光を照射した際のEUV光線反射率が低下するという問題がある。
特に、EUV露光時のEUV光線反射率の低下は、経時的に進行するので、露光条件を途中で変更する必要が生じたり、フォトマスクやミラーの寿命の短縮につながるので問題である。
以下、本明細書において、マスクブランクやミラー製造時に実施される工程や該マスクブランクからフォトマスクを製造する際に実施される工程(例えば、洗浄、欠陥検査、加熱工程、ドライエッチング、欠陥修正の各工程)において、あるいは該EUV露光時において、Ru保護層、さらには多層反射膜の最上層が酸化されることによって、保護層表面にEUV光を照射した際のEUV光線反射率が低下することを、単に「Ru保護層の酸化によるEUV光線反射率の低下」と言う場合がある。
特許文献2に記載の保護層は、多層反射膜の反射率の低下を招かずに、しかも十分に多層反射膜の酸化防止効果が得られると記載されているが、ここで言う多層反射膜の反射率の低下は、同文献の段落番号[0006]の記載から明らかなように、Ru保護層成膜時やその後の加熱処理等によって、多層反射膜の最上層であるSi層とRu保護層とが拡散層を形成することで反射率が低下することを意図したものであり、上述したような、Ru保護層の酸化によるEUV光線反射率の低下を意図しているかは不明である。
特許文献3に記載の保護層は、Ru/Siペアの多層保護層とすることによって、Si層の酸化による反射率の低下という問題点と、Ru層はSi層よりもEUV光の吸収係数が高いため、膜厚を大きくすることができないという問題点の両方を解決することを意図したものであるが、上述したような、Ru保護層の酸化によるEUV光線反射率の低下を意図しているかは不明である。
上述した点を鑑みて、本発明は、Ru保護層の酸化によるEUV光線反射率の低下が抑制されたEUVマスクブランクやEUVミラーなどの光学部材、および該光学部材の製造に使用される機能膜付基板を提供することを目的とする。
本発明者らは、上記課題を解決するため鋭意検討した結果、Ru保護層の間に薄いMo層を挿入させることにより、Ru保護層の酸化によるEUV光線反射率の低下を抑制することができることを見出した。
そして、本発明者らは、保護層中のMo中間層の膜厚を特定の範囲とするのが効果的であることを見出した。
本発明は、上記した本発明者らの知見に基づいてなされたものであり、基板上に、EUV光を反射する反射層と、該反射層を保護する保護層とがこの順に形成されたEUVリソグラフィ用反射層付基板であって、
前記反射層が、Mo/Si多層反射膜であり、
前記保護層が、前記反射層の側から、Ru層またはRu化合物層からなる第1層、Mo層からなる第2層、および、Ru層またはRu化合物層からなる第3層の順に積層された3層構造であることを特徴とするEUVリソグラフィ用反射層付基板(以下、本明細書において、「本発明の反射層付基板」ともいう。)を提供する。
前記Mo/Si多層反射膜からなる反射層の最上層がSi膜であり、前記保護層が当該Si膜面に接して形成されていることが好ましい。
本発明の反射層付基板において、前記第2層の膜厚が、0.2nm以上であり、かつ、2nm以下、または、前記保護層の合計膜厚の1/2以下のうち、いずれか小さいほうを満たすことが好ましい。
本発明の反射層付基板において、前記保護層の合計膜厚が1〜10nmであることが好ましい。
本発明の反射層付基板において、前記保護層表面の表面粗さrmsが0.5nm 以下であることが好ましい。
また、本発明は、上記した本発明の反射層付基板の保護層上に吸収体層を形成してなるEUVリソグラフィ用反射型マスクブランク(以下、「本発明のEUVマスクブランク」ともいう。)を提供する。
本発明のEUVマスクブランクにおいて、前記吸収体層がタンタル(Ta)を主成分とする材料で形成されることが好ましい。
本発明のEUVマスクブランクにおいて、エッチングガスとして塩素系ガスを用いてドライエッチングを実施した際の前記保護層と前記吸収体層とのエッチング選択比が10以上であることが好ましい。
本発明のEUVマスクブランクにおいて、前記吸収体層上に、タンタル(Ta)を主成分とする材料で形成された、マスクパターンの検査に使用する検査光における低反射層が設けられていることが好ましい。
吸収体層上に低反射層が形成されている場合において、吸収体層に形成されるパターンの検査に用いられる光の波長に対する前記保護層表面での反射光と、前記低反射層表面での反射光と、のコントラストが、30%以上であることが好ましい。
また、本発明は、上記した本発明のEUVマスクブランクをパターニングしたEUVリソグラフィ用反射型マスク(以下、「本発明のEUVマスク」ともいう。)を提供する。
さらに、上記EUVリソグラフィ用反射層付基板を用いたEUVリソグラフィ用反射型ミラー(以下、「本発明のEUVミラー」ともいう。)を提供する。
また、本発明は、上記した本発明のEUVマスクを用いて、被露光体に露光を行うことにより半導体集積回路を製造することを特徴とする半導体集積回路の製造方法を提供する。
本発明の反射層付基板、および、該反射層付基板を用いたEUVマスクブランクやEUVミラーでは、Ru保護層の酸化によるEUV光線反射率の低下が抑制されている。そして、EUV露光時のEUV光線反射率の経時的な進行の抑制により、露光条件を途中で変更する必要が少なくなり、EUVマスクやEUVミラーの寿命の長期化を図ることができる。
また、本発明のEUVマスクブランクを用いて作成されるEUVマスクは、EUV露光時において、EUV光線反射率の経時的な変化が小さい、信頼性の高いEUVマスクであり、微細なパターンからなる集積回路の製造に有用である。
図1は、本発明のEUVマスクブランクの実施形態を示す概略断面図である。 図2は、図1のEUVマスクブランクの吸収体層上に低反射層を形成した実施形態を示す概略断面図である。 図3は、図2のEUVマスクブランク1´の吸収体層14および低反射層15にパターン形成した状態を示している概略断面図である。 図4は、本発明のEUVミラーの実施形態を示す概略断面図である。
以下、図面を参照して本発明を説明する。
図1は、本発明のEUVマスクブランクの1実施形態を示す概略断面図である。図1に示すマスクブランク1は、基板11上にEUV光を反射する反射層12と、該反射層12を保護するための保護層13が、この順に形成されている。本発明のEUVマスクブランクでは、保護層13が、前記反射層12の側から、Ru層またはRu化合物層からなる第1層13a、Mo層からなる第2層13b、および、Ru層またはRu化合物層からなる第3層13cの順に積層された3層構造をなしている。該3層構造の保護層13上には、吸収体層14が形成されている。
図4は、本発明のEUVミラーの1実施形態を示す概略断面図である。図4に示すEUVミラー2は、基板11上にEUV光を反射する反射層12と、該反射層12を保護するための保護層13が、この順に形成されている。但し、本発明のEUVミラーでは、保護層13が、前記反射層12の側から、Ru層またはRu化合物層からなる第1層13a、Mo層からなる第2層13b、および、Ru層またはRu化合物層からなる第3層13cの順に積層された3層構造をなしている。
以下、マスクブランク1およびミラー2の個々の構成要素について説明する。なお、マスクブランクやミラーなどのEUV光を反射する多層膜を有する部材を「EUV光学部材」ともいう。
基板11は、EUVマスクブランク用の基板としての特性を満たすことが要求される。そのため、基板11は、低熱膨張係数を有することが重要である。具体的には、基板11の熱膨張係数は、0±1.0×10−7/℃であることが好ましく、より好ましくは0±0.3×10−7/℃、さらに好ましくは0±0.2×10−7/℃、さらに好ましくは0±0.1×10−7/℃、特に好ましくは0±0.05×10−7/℃である。また、基板は、平滑性、平坦度、およびマスクブランクまたはパターン形成後のフォトマスクの洗浄等に用いる洗浄液への耐性に優れたものが好ましい。基板11としては、具体的には低熱膨張係数を有するガラス、例えばSiO−TiO系ガラス等を用いるが、これに限定されず、β石英固溶体を析出した結晶化ガラスや石英ガラスやシリコンや金属などの基板を用いることもできる。また、基板11上に応力補正膜のような膜を形成してもよい。
基板11は、表面粗さrmsが、0.15nm以下の平滑な表面と、100nm以下の平坦度を有していることがパターン形成後のフォトマスクにおいて高反射率および転写精度が得られるために好ましい。
基板11の大きさや厚みなどはマスクの設計値等により適宜決定されるものである。後で示す実施例では外形6インチ(152.4mm)角で、厚さ0.25インチ(6.3mm)のSiO−TiO系ガラスを用いた。ミラーに用いられる基板のサイズは露光機の設計値等により適宜決定され、直径50〜500mm程度の大きさの基板が通常用いられる。
マスクブランク用の基板は平面形状が正方形等の矩形である。一方、ミラー用の基板は平面形状が円形や楕円形、多角形が多い。
基板11の反射層12が形成される側の表面には欠点が存在しないことが好ましい。しかし、存在している場合であっても、凹状欠点および/または凸状欠点によって位相欠点が生じないように、凹状欠点の深さおよび凸状欠点の高さが2nm以下であり、かつこれら凹状欠点および凸状欠点の半値幅が60nm以下であることが好ましい。
EUV光学部材の反射層12の特性は、高EUV光線反射率であることである。具体的には、EUV光の波長領域の光線を反射層12表面に入射角度6度で照射した際に、波長13.5nm付近の光線反射率の最大値が60%以上であることが好ましく、65%以上であることがより好ましい。また、反射層12の上に保護層13を設けた場合であっても、波長13.5nm付近の光線反射率の最大値が60%以上であることが好ましく、65%以上であることがより好ましい。
反射層としては、EUV波長域において高反射率を達成できることから、高屈折率膜と低屈折率膜とを交互に複数回積層させた多層反射膜が用いられる。本発明のEUV光学部材では、低屈折率膜としてのMo膜と、高屈折率膜としてのSi膜とを交互に複数回積層させたMo/Si多層反射膜を用いる。このMo/Si多層反射膜において、積層されたMo/Si多層反射膜の最上層はSi膜となるようにするのが好ましい。
Mo/Si多層反射膜の場合に、EUV光線反射率の最大値が60%以上の反射層12とするには、膜厚2.3±0.1nmのMo層と、膜厚4.5±0.1nmのSi層とを繰り返し単位数が30〜60になるように積層させればよい。
なお、Mo/Si多層反射膜を構成する各層は、マグネトロンスパッタリング法、イオンビームスパッタリング法などの成膜方法を用いて所望の厚さになるように成膜すればよい。例えば、イオンビームスパッタリング法を用いてMo/Si多層反射膜を形成する場合、ターゲットとしてMoターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10−2Pa〜2.7×10−2Pa)を使用して、イオン加速電圧300〜1500V、成膜速度0.03〜0.30nm/secで厚さ2.3nmとなるようにMo層を成膜し、次に、ターゲットとしてSiターゲットを用い、スパッタガスとしてArガス(ガス圧1.3×10−2Pa〜2.7×10−2Pa)を使用して、イオン加速電圧300〜1500V、成膜速度0.03〜0.30nm/secで厚さ4.5nmとなるようにSi層を成膜することが好ましい。これを1周期として、Mo層およびSi層を40〜50周期積層させることによりMo/Si多層反射膜が成膜される。
保護層13は、エッチングプロセス、通常はドライエッチングプロセスにより吸収体層14にパターン形成する際に、反射層12がエッチングプロセスによるダメージを受けないよう反射層12を保護する目的で設けられる。したがって保護層13の材質としては、吸収体層14のエッチングプロセスによる影響を受けにくい、つまりこのエッチング速度が吸収体層14よりも遅く、しかもこのエッチングプロセスによるダメージを受けにくい物質が選択される。
また、保護層13は、保護層13を形成した後であっても反射層12でのEUV光線反射率を損なうことがないように、保護層13自体もEUV光線反射率が高いことが好ましい。
このような観点から、特許文献1〜3に記載されているように、EUV光学部材の保護層の構成材料として、Ruが用いられている。
本発明のEUV光学部材においても、3層構造の保護層13のうち、第1層13aおよび第3層13cは、Ru層、またはRu化合物層である。ここで、第1層13aおよび第3層13cの両方がRu層であってもよく、Ru化合物層であってもよい。また、第1層13aおよび第3層13cのうち、一方がRu層で、他方がRu化合物層であってもよい。上記Ru化合物としては、RuB、RuNbおよびRuZrからなる群から選ばれる少なくとも1種が好ましい。
なお、第1層13aおよび第3層13cがRu化合物層である場合、Ruの含有率は50at%以上、80at%以上、特に90at%以上であることが好ましい。但し、第1層13aおよび第3層13cがRuNb層の場合、Nbの含有率が10〜40at%程度であることが好ましい。
第1層13aおよび第3層13cは、Siの含有量が5at%以下であることが好ましく、3at%以下であることがより好ましく、1at%以下であることがさらに好ましい。
本発明のEUV光学部材において、3層構造の保護層13のうち、第2層13bをMo層とすることによって、Ru保護層の酸化によるEUV光線反射率の低下を抑制する。3層構造の保護層13のうち、第2層13bをMo層とすることによって、Ru保護層の酸化によるEUV光線反射率の低下が抑制される理由は以下によると考えられる。
マスクブランクやミラー製造時に実施される工程や該マスクブランクからフォトマスクを製造する際に実施される工程(例えば、洗浄、欠陥検査、加熱工程、ドライエッチング、欠陥修正の各工程)において、あるいは該EUV露光時において、保護層13が酸化されるような状況が生じた場合、3層構造の保護層13は、最上層である第3層13cから酸化され、続いて第2層13b、さらに第1層13aの順に酸化が進行することとなる。
ここで、第2層13bを構成するMoと、第1層13aを構成するRuまたはRu化合物と、を比較した場合、Moのほうが、RuまたはRu化合物よりも酸化されやすいため、第2層13bの酸化が開始された場合、下層である第1層13aへ酸化が進行するよりも、第2層13bのさらなる酸化のほうが積極的に行われると考えられる。別の言い方をすると、RuまたはRu化合物よりも酸化されやすい第2層13bが酸化されることで、第1層13aへの酸化の進行が抑制されると考えられる。また、第2層13bから第1層13aへと拡散する酸素は、第2層13bと第1層13aとの界面方向に優先的に拡散されるので、第2層13bと第1層13aとの界面よりも下方への拡散が効果的に抑制される。
また、Ru単膜(またはRu化合物単膜)で保護層を形成する場合と比較した場合、個々のRu層(またはRu化合物層)の膜厚を1/2程度に薄くすることができるので、結晶性が低く結晶粒界の少ないRu層とすることができる。これにより、Ru層において結晶粒界を通した酸素の拡散を効果的に抑制することができる。
これらの作用によって、第1層13aよりも下にあるMo/Si多層反射膜が酸化されること、より具体的には、Mo/Si多層反射膜の最上層のSi膜が酸化されることが抑制されると考えられ、その結果、Ru保護層の酸化によるEUV光線反射率の低下が抑制されると考えられる。
第2層13bを構成するMoは、Mo/Si多層反射膜にも用いられるように、EUV光線反射率が高い材料であること、および、後述するように第2層13bの膜厚が小さいことから、第2層(Mo層)の酸化によるEUV光線反射率の低下(保護層13表面にEUV光を照射した際のEUV光線反射率の低下)は軽微であり、無視できる。
また、Mo/Si多層反射膜上にRu保護層を形成する際、Mo/Si多層反射膜の最上層であるSi膜中のSiがRu保護層中に拡散する場合があり、問題となる可能性があるが、本発明のEUV光学部材では、Si膜中のSiが第1層13aであるRu層中またはRu化合物層中に拡散する状況が発生した場合でも、第2層13bであるMo層の存在により、第2層13bよりも上にある第3層13c中にSiが拡散することが抑制される。したがって、Ru保護層の形成時にSi膜中のSiがRu保護層中に拡散する状況が発生した場合でも、Ru保護層中へのSiの拡散、より具体的には、Ru保護層の最上層である第3層13c中へのSiの拡散、を最小限に抑制することができる。
本発明のEUV光学部材において、第2層13bをなすMo層におけるSiの含有量が5at%以下であることが好ましく、3at%以下であることがより好ましく、1at%以下であることがさらに好ましい。
また、第2層13bをなすMo層は、Moの含有率が60at%以上、特に80at%以上、さらには90at%以上であることが好ましい。
本発明のEUV光学部材において、第2層13bの膜厚は、0.2nm以上であることが好ましい。膜厚が0.2nm未満だと、成膜条件によっては第2層13bの形成が不完全となり、Ru保護層の酸化によるEUV光線反射率の低下を抑制する効果が不十分となるおそれがある。
一方、第2層13bの膜厚は、EUV特性への影響を考慮すると、2nm以下、または、保護層13の合計膜厚の1/2以下のうち、いずれか小さいほうを満たすことが好ましい。
3層構造の保護層13のうち、EUV光学部材の保護層としての機能、すなわち、エッチングプロセスによるダメージを受けないように反射層12を保護する機能、を発揮するのは、Ru層またはRu化合物層である第1層13aおよび第3層13cである。
第2層13bの膜厚が保護層13の合計膜厚の1/2よりも大きいと、第1層13aおよび第3層13cの膜厚が小さくなるので、上述したEUV光学部材の保護層としての機能を発揮できなくなるおそれがある。
第2層13bの膜厚が2nm超だと、上述したEUV光学部材の保護層としての機能を発揮するために必要となる保護層13の合計膜厚が増加し、EUV光線反射率の低下につながるおそれがあるうえ、第2層13bの酸化によるEUV光線反射率の低下が無視できなくなるおそれがある。
第2層13bの膜厚は、0.3nm〜1nmであることがより好ましく、0.3nm〜0.6nmであることがさらに好ましい。
3層構造の保護層13の合計膜厚は、1〜10nmであることが、EUV光線反射率を高め、かつ耐エッチング特性を得られるという理由から好ましい。保護層13の合計膜厚は、1〜5nmであることがより好ましく、2〜4nmであることがさらに好ましい。
3層構造の保護層13のうち、第1層13a、および、第3層13cの膜厚は特に限定されず、上述した保護層13の合計膜厚の好適範囲、および、第2層13bの膜厚の好適範囲を満たす範囲で適宜選択することができる。第2層13bの形成による上述した効果、すなわち、Ru保護層の酸化によるEUV光線反射率の低下を抑制する効果、を発揮するためには、第1層13a、および、第3層13cの膜厚は0.6〜3nmであることが好ましく、0.8〜1.8nmであることがより好ましい。また、第1層13a、および、第3層13cの膜厚は、その差が0.5nm以下であることが好ましい。
本発明において、保護層13表面の表面粗さが0.5nm以下であることが好ましい。なお、表面粗さrmsが0.5nm以下とは、二乗平均平方根表面粗さが0.5nm以下であることを意味する。保護層13表面の表面粗さが大きいと、該保護層13上に形成される吸収体層14の表面粗さが大きくなり、該吸収体層14に形成されるパターンのエッジラフネスが大きくなり、パターンの寸法精度が悪くなる。パターンが微細になるに従いエッジラフネスの影響が顕著になるため、吸収体層14表面は平滑であることが要求される。
保護層13表面の表面粗さrmsが0.5nm以下であれば、該保護層13上に形成される吸収体層14表面が十分平滑であるため、エッジラフネスの影響によってパターンの寸法精度が悪化するおそれがない。保護層13表面の表面粗さrmsは0.4nm以下であることがより好ましく、0.3nm以下であることがさらに好ましい。
3層構造の保護層13の各層は、マグネトロンスパッタリング法、イオンビームスパッタリング法などの成膜方法を用いて成膜することができる。
イオンビームスパッタリング法を用いて、第1層13aおよび第3層13cとしてRu層を形成する場合、ターゲットとしてRuターゲットを用い、アルゴン(Ar)雰囲気中で放電させればよい。具体的には、以下の条件でイオンビームスパッタリングを実施すればよい。
・スパッタガス:Ar(ガス圧:1.0×10−1〜10×10−1Pa、好ましくは1.0×10−1〜5.0×10−1Pa、より好ましくは1.0×10−1〜3.0×10−1Pa)。
・投入電力(各ターゲットについて):30〜1000W、好ましくは50〜750W、より好ましくは80〜500W。
・成膜速度:0.1〜6nm/sec、好ましくは0.1〜4.5nm/sec、より好ましくは0.1〜3nm/sec。
一方、イオンビームスパッタリング法を用いて、第2層13bとしてのMo層を形成する場合、ターゲットとしてMoターゲットを用い、アルゴン(Ar)雰囲気中で放電させればよい。具体的には、以下の条件でイオンビームスパッタリングを実施すればよい。
・スパッタガス:Ar(ガス圧:1.3×10−2Pa〜2.7×10−2Pa)。
・イオン加速電圧:300〜1500V。
・成膜速度:0.005〜0.3nm/sec、好ましくは0.01〜0.2nm/sec、より好ましくは0.02〜0.1nm/sec。
以上の手順により、基板11の成膜面上に多層反射膜12、および、保護層13がこの順に形成された本発明の反射層付基板が得られる。本発明の反射層付基板は、EUVマスクブランクの前駆体をなすものであり、本発明の反射層付基板の保護層上に後述する手順にしたがって吸収体層、さらには必要に応じて、該吸収体層上に低反射層を形成したものが本発明のEUVマスクブランクである。本発明の反射層付基板はEUVミラーとして用いることも可能である。
本発明の反射層付基板は、後述する実施例に記載する手順にしたがって加熱処理をした場合に、加熱処理の前後でのEUV光線反射率の低下が7%以下であることが好ましく、6%以下であることがより好ましい。
なお、後述する実施例では、本発明による効果を確認するために、マスクブランクやミラー製造時に実施される加熱工程やマスクブランクからフォトマスクを製造時に実施される加熱工程よりも過酷な条件で加熱処理を実施した。
吸収体層14に特に要求される特性は、EUV光線反射率が極めて低いことである。具体的には、EUV光の波長領域の光線を吸収体層14表面に照射した際に、波長13.5nm付近の最大光線反射率が0.5%以下であることが好ましく、0.1%以下であることがより好ましい。
上記の特性を達成するため、EUV光の吸収係数が高い材料で構成されることが好ましく、タンタル(Ta)を主成分とする材料で形成されていることが好ましい。
このような吸収体層14としては、Ta、B、Siおよび窒素(N)を以下に述べる比率で含有するもの(TaBSiN膜)が挙げられる。
・Bの含有率:1at%以上5at%未満、好ましくは1〜4.5at%、より好ましくは1.5〜4at%。
・Siの含有率:1〜25at%、好ましくは1〜20at%、より好ましくは2〜12at%。
・TaとNとの組成比(Ta:N)(原子比): 8:1〜1:1。
・Taの含有率:好ましくは50〜90at%、より好ましくは60〜80at%
・Nの含有率:好ましくは5〜30at%、より好ましくは10〜25at%
上記組成の吸収体層14は、その結晶状態はアモルファスであり、表面の平滑性に優れている。
上記組成の吸収体層14は、表面粗さが0.5nm以下であることが好ましい。吸収体層14表面の表面粗さが大きいと、吸収体層14に形成されるパターンのエッジラフネスが大きくなり、パターンの寸法精度が悪くなる。パターンが微細になるに従いエッジラフネスの影響が顕著になるため、吸収体層14表面は平滑であることが要求される。
吸収体層14表面の表面粗さが0.5nm以下であれば、吸収体層14表面が十分平滑であるため、エッジラフネスの影響によってパターンの寸法精度が悪化するおそれがない。吸収体層14表面の表面粗さは0.4nm以下であることがより好ましく、0.3nm以下であることがさらに好ましい。
吸収体層14は、上記の構成であることにより、エッチングガスとして塩素系ガスを用いてドライエッチングを実施した際のエッチング速度が速く、保護層13とのエッチング選択比は10以上を示す。本明細書において、エッチング選択比は、下記(1)式を用いて計算できる。
・エッチング選択比
=(吸収体層14のエッチング速度)/(保護層13のエッチング速度)…(1)
エッチング選択比は、10以上が好ましく、11以上であることがさらに好ましく、12以上であることがさらに好ましい。
吸収体層14の厚さは、50〜100nmであることが好ましい。上記した構成の吸収層14は、マグネトロンスパッタリング法やイオンビームスパッタリング法のようなスパッタリング法などの成膜方法を用いて形成することができる。
本発明のEUVマスクブランクは、図2に示すEUVマスクブランク1´のように、吸収体層14上にマスクパターンの検査に使用する検査光における低反射層15が形成されていることが好ましい。
EUVマスクを作製する際、吸収体層にパターンを形成した後、このパターンが設計通りに形成されているかどうか検査する。このマスクパターンの検査では、検査光として通常257nm程度の光を使用した検査機が使用される。つまり、この257nm程度の光の反射率の差、具体的には、吸収体層14がパターン形成により除去されて露出した面と、パターン形成により除去されずに残った吸収体層14表面と、の反射率の差によって検査される。ここで、前者は保護層13表面である。したがって、検査光の波長に対する保護層13表面と吸収体層14表面との反射率の差が小さいと検査時のコントラストが悪くなり、正確な検査が出来ないことになる。
上記した構成の吸収体層14は、EUV光線反射率が極めて低く、EUVマスクブランクの吸収層として優れた特性を有しているが、検査光の波長について見た場合、光線反射率が必ずしも十分低いとは言えない。この結果、検査光の波長での吸収体層14表面の反射率と保護層13表面の反射率との差が小さくなり、検査時のコントラストが十分得られない可能性がある。検査時のコントラストが十分得られないと、マスク検査においてパターンの欠陥を十分判別できず、正確な欠陥検査を行えないことになる。
図2に示すEUVマスクブランク1´のように、吸収体層14上に低反射層15を形成することにより、検査時のコントラストが良好となる、別の言い方をすると、検査光の波長での光線反射率が極めて低くなる。このような目的で形成する低反射層15は、検査光の波長領域の光線を照射した際に、該検査光の波長の最大光線反射率が15%以下であることが好ましく、10%以下であることがより好ましく、5%以下であることがさらに好ましい。
低反射層15における検査光の波長の光線反射率が15%以下であれば、該検査時のコントラストが良好である。具体的には、保護層13表面における検査光の波長の反射光と、低反射層15表面における検査光の波長の反射光と、のコントラストが、30%以上となる。
本明細書において、コントラストは下記(2)式を用いて求めることができる。
・コントラスト(%)=((R−R)/(R+R))×100…(2)
ここで、検査光の波長におけるRは保護層13表面での反射率であり、Rは低反射層15表面での反射率である。なお、上記RおよびRは、図2に示すEUVマスクブランク1´の吸収体層14および低反射層15にパターンを形成した状態(つまり、図3に示す状態)で測定する。上記R2は、図3中、パターン形成によって吸収体層14および低反射層15が除去され、外部に露出した保護層13表面で測定した値であり、Rはパターン形成によって除去されずに残った低反射層15表面で測定した値である。
本発明において、上記(2)式で表されるコントラストが45%以上であることがより好ましく、60%以上であることがさらに好ましく、80%以上であることが特に好ましい。
低反射層15は、上記の特性を達成するため、検査光の波長の屈折率が吸収体層14よりも低い材料で構成され、その結晶状態がアモルファスであることが好ましい。
このような低反射層15の具体例としては、Ta、B、Siおよび酸素(O)を以下に述べる比率で含有するもの(低反射層(TaBSiO))が挙げられる。
・Bの含有率:1at%以上5at%未満、好ましくは1〜4.5at%、より好ましくは1.5〜4at%。
・Siの含有率:1〜25at%、好ましくは1〜20at%、より好ましくは2〜10at%。
・TaとOとの組成比(Ta:O)(原子比):7:2〜1:2、好ましくは7:2〜1:1、より好ましくは2:1〜1:1。
また、低反射層15の具体例としては、Ta、B、Si、OおよびNを以下に述べる比率で含有するもの(低反射層(TaBSiON))が挙げられる。
・Bの含有率:1at%以上5at%未満、好ましくは1〜4.5at%、より好ましくは2〜4.0at%。
・Siの含有率:1〜25at%、好ましくは1〜20at%、より好ましくは2〜10at%。
・TaとO及びNの組成比(Ta:(O+N))(原子比): 7:2〜1:2、好ましくは7:2〜1:1、より好ましくは2:1〜1:1。
低反射層(TaBSiO)、または(TaBSiON)は、上記の構成であることにより、その結晶状態はアモルファスであり、その表面が平滑性に優れている。具体的には、低反射層(TaBSiO),または(TaBSiON)表面の表面粗さrmsが0.5nm以下であることが好ましい。
上記したように、エッジラフネスの影響によってパターンの寸法精度の悪化が防止するため、吸収体層14表面は平滑であることが要求される。低反射層15は、吸収体層14上に形成されるため、同様の理由から、その表面は平滑であることが要求される。
低反射層15表面の表面粗さrmsが0.5nm以下であれば、低反射層15表面が十分平滑であるため、エッジラフネスの影響によってパターンの寸法精度が悪化するおそれがない。低反射層15表面の表面粗さrmsは0.4nm以下であることがより好ましく、0.3nm以下であることがさらに好ましい。
吸収体層14上に低反射層15を形成する場合、吸収体層14と低反射層15との合計厚さが55〜130nmであることが好ましい。また、低反射層15の厚さが吸収体層14の厚さよりも大きいと、吸収体層14でのEUV光吸収特性が低下するおそれがあるので、低反射層15の厚さは吸収体層14の厚さよりも小さいことが好ましい。このため、低反射層15の厚さは5〜30nmであることが好ましく、10〜20nmであることがより好ましい。
低反射層(TaBSiO),または(TaBSiON)は、マグネトロンスパッタリング法やイオンビームスパッタリング法のようなスパッタリング法などの成膜方法を用いて形成することができる。
なお、図2に示すEUVマスクブランク1´のように、吸収体層14上に低反射層15を形成することが好ましいのは、パターンの検査光の波長とEUV光の波長とが異なるからである。したがって、パターンの検査光としてEUV光(13.5nm付近)を使用する場合、吸収体層14上に低反射層15を形成する必要はないと考えられる。検査光の波長は、パターン寸法が小さくなるに伴い短波長側にシフトする傾向があり、将来的には193nm、さらには13.5nmにシフトすることも考えられる。検査光の波長が13.5nmである場合、吸収体層14上に低反射層15を形成する必要はないと考えられる。
本発明のEUVマスクブランクは、反射層12、保護層13、吸収体層14、低反射層15以外に、EUVマスクブランクの分野において公知の機能膜を有していてもよい。このような機能膜の具体例としては、例えば、特表2003−501823号公報(本願明細書の開示として組み入れられる)に記載されているものように、基板の静電チャッキングを促すために、基板の裏面側に施される高誘電性コーティングが挙げられる。ここで、基板の裏面とは、図1の基板11において、反射層12が形成されている側とは反対側の面を指す。このような目的で基板の裏面に施す高誘電性コーティングは、シート抵抗が100Ω/□以下となるように、構成材料の電気伝導率と厚さを選択する。高誘電性コーティングの構成材料としては、公知の文献に記載されているものから広く選択することができる。例えば、特表2003−501823号公報に記載の高誘電率のコーティング、具体的には、シリコン、TiN、モリブデン、クロム、またはTaSiからなるコーティングを適用することができる。高誘電性コーティングの厚さは、例えば10〜1000nmとすることができる。
高誘電性コーティングは、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法、CVD法、真空蒸着法、または電解メッキ法を用いて形成することができる。
なお、本発明のEUVミラーについても、上述した高誘電性コーティングを有していてもよい。
本発明のEUVマスクブランクの吸収体層(吸収体層上に低反射層が形成されている場合は、吸収体層および低反射層)を少なくともパターニングすることで、本発明のEUVマスクを製造することが可能となる。吸収体層(吸収体層上に低反射層が形成されている場合は、吸収体層および低反射層)のパターニング方法は特に限定されず、例えば、吸収体層(吸収体層上に低反射層が形成されている場合は、吸収体層および低反射層)上にレジストを塗布してレジストパターンを形成し、これをマスクとして吸収体層(吸収体層上に低反射層が形成されている場合は、吸収体層および低反射層)をエッチングする方法を採用できる。レジストの材料やレジストパターンの描画法は、吸収体層(吸収体層上に低反射層が形成されている場合は、吸収体層および低反射層)の材質等を考慮して適宜選択すればよい。吸収体層(吸収体層上に低反射層が形成されている場合は、吸収体層および低反射層)のエッチング方法も特に限定されず、反応性イオンエッチング等のドライエッチングまたはウエットエッチングが採用できる。吸収体層(吸収体層上に低反射層が形成されている場合は、吸収体層および低反射層)をパターニングした後、レジストを剥離液で剥離することにより、本発明のEUVマスクが得られる。
本発明に係るEUVマスクを用いた半導体集積回路の製造方法について説明する。本発明は、EUV光を露光用光源として用いるフォトリソグラフィ法による半導体集積回路の製造方法に適用できる。具体的には、レジストを塗布したシリコンウェハ等の基板をステージ上に配置し、反射鏡を組み合わせて構成した反射型の露光装置に上記EUVマスクを設置する。そして、EUV光を光源から反射鏡を介してEUVマスクに照射し、EUV光をEUVマスクによって反射させてレジストが塗布された基板に照射する。このパターン転写工程により、回路パターンが基板上に転写される。回路パターンが転写された基板は、現像によって感光部分または非感光部分をエッチングした後、レジストを剥離する。半導体集積回路は、このような工程を繰り返すことで製造される。
以下、実施例を用いて本発明をさらに説明する。
(実施例1)
本実施例では、図2に示すマスクブランク1´を作製した。
成膜用の基板11として、SiO−TiO系のガラス基板(外形6インチ(152.4mm)角、厚さが6.3mm)を使用した。このガラス基板の熱膨張率は0.2×10−7/℃、ヤング率は67GPa、ポアソン比は0.17、比剛性は3.07×10/sである。このガラス基板を研磨により、表面粗さrmsが0.15nm以下の平滑な表面と、100nm以下の平坦度に形成した。
基板11の裏面側には、マグネトロンスパッタリング法を用いて厚さ100nmのCr膜を成膜することによって、シート抵抗100Ω/□の高誘電性コーティング(図示していない)を施した。
平板形状をした通常の静電チャックに、形成したCr膜を用いて基板11(外形6インチ(152.4mm)角、厚さ6.3mm)を固定して、該基板11の表面上にイオンビームスパッタ法を用いてMo膜およびSi膜を交互に成膜することを50周期繰り返すことにより、合計膜厚340nm((2.3nm+4.5nm)×50)のMo/Si多層反射膜(反射層12)を形成した。なお、Mo/Si多層反射膜の最上層はSi膜である。
Mo膜およびSi膜の成膜条件は以下の通りである。
(Mo膜の成膜条件)
・ターゲット:Moターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.064nm/sec。
・膜厚:2.3nm。
(Si膜の成膜条件)
・ターゲット:Siターゲット(ホウ素ドープ)。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.077nm/sec。
・膜厚:4.5nm。
次に、反射層12上に、保護層13の第1層13aとしてRu層をイオンビームスパッタ法を用いて形成した。
第1層13aの形成条件は以下の通りである。
・ターゲット:Ruターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.052nm/sec。
・膜厚:1.25nm。
次に、保護層13の第2層13bとしてMo層を、イオンビームスパッタ法を用いて形成した。
第2層13bの形成条件は以下の通りである。
・ターゲット:Moターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.064nm/sec。
・膜厚:0.5nm。
次に、保護層13の第3層13cとしてRu層をイオンビームスパッタ法を用いて形成した。
第3層13cの形成条件は以下の通りである。
・ターゲット:Ruターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.052nm/sec。
・膜厚:1.25nm。
次に、保護層13上、より具体的には、保護層13の第3層13c上に、吸収体層14としてTaBSiN層を、マグネトロンスパッタリング法を用いて形成する。
TaBSiN層の成膜条件は以下の通りである。
(TaBSiN層の成膜条件)
・ターゲット:TaBSi化合物ターゲット(組成比:Ta 80at%、B 10at%、Si 10at%)。
・スパッタガス:ArとNの混合ガス(Ar:86体積%、N:14体積%、ガス圧:0.3Pa)。
・投入電力:150W。
・成膜速度:0.12nm/sec。
・膜厚:60nm。
次に、吸収体層14上に、低反射層15としてTaBSiON層を、マグネトロンスパッタリング法を用いて形成することにより、図2に示すマスクブランク1´を作製する。
TaBSiON層の成膜条件は以下の通りである。
(TaBSiON層の成膜条件)
・ターゲット:TaBSiターゲット(組成比:Ta 80at%、B 10at%、Si 10at%)。
・スパッタガス:ArとNとOの混合ガス(Ar:60体積%、N2:20体積%、O2:20体積%、ガス圧:0.3Pa)。
・投入電力:150W。
・成膜速度:0.18nm/sec。
・膜厚:10nm。
上記の手順で得られるマスクブランクに対し下記の評価を実施する。
(1)膜組成
上記の手順で保護層13まで形成したサンプルについて、保護層13の表面から反射層(Mo/Si多層反射膜)12までの深さ方向組成を、X線光電子分光装置(X−ray Photoelectron Spectrometer)(アルバック・ファイ社製:Quantera SXM)を用いて測定することによって、該保護層13が下記3層構造であることを確認した。
・第1層13a:Ru層。
・第2層13b:Mo層。
・第3層13c:Ru層。
また、X線光電子分光装置による測定結果から、保護層13の全組成に対するMoの組成が20%であることが確認された。この結果は、上記成膜条件における保護層13の合計膜厚(1.25+0.5+1.25=3nm)と、第2層13bの膜厚(0.5nm)と、の関係に対して、矛盾しない組成量のMoが保護層13中に含まれていることを示している。
(2)表面粗さ
保護層13の表面粗さを、JIS−B0601(1994年)にしたがって、原子間力顕微鏡(Atomic Force Microscope)(セイコーインスツルメンツ社製:番号SPI3800)を用いて確認した。保護層13の表面粗さrmsは0.15nmであった。
(3)加熱処理耐性
上記の手順で保護層13まで形成したサンプルに対して、210℃で10分間の加熱処理(大気中)をした。この処理の前後に保護層13表面にEUV光(波長13.5nm)を照射し、EUV反射率をEUV反射率計(AIXUV社製MBR(製品名))を用いて測定した。この処理前後での、EUV反射率の低下は5.4%であった。
(4)反射特性(コントラスト評価)
上記の手順で保護層13まで形成したサンプルについて、保護層13表面におけるパターン検査光(波長257nm)の反射率を分光光度計を用いて測定する。また、低反射層15まで形成したサンプルについて、低反射層15表面におけるパターン検査光の反射率を測定する。その結果、保護層13層表面での反射率は60.0%であり、低反射層15表面の反射率は6.9%である。これらの結果と上述した(2)式を用いてコントラストを求めると79.4%となる。
得られるEUVマスクブランク1´について、低反射層15表面にEUV光(波長13.5nm)を照射してEUV光の反射率を測定する。その結果、EUV光の反射率は0.4%であり、EUV吸収特性に優れていることが確認される。
(比較例1)
比較例1は、反射層12上に、保護層13として単層のRu層をイオンビームスパッタ法を用いて形成した以外は実施例1と同様の手順で実施した。
Ru層の成膜条件は以下の通りである。
(Ru層の成膜条件)
・ターゲット:Ruターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.052nm/sec。
・膜厚:3nm。
上記の手順で得られるマスクブランクに対し下記の評価を実施した。
(1)膜組成
上記の手順で保護層13まで形成したサンプルについて、保護層13の表面から多層反射膜12までの深さ方向組成を、X線光電子分光装置(X−ray Photoelectron Spectrometer)(アルバック・ファイ社製:Quantera SXM)を用いて測定した。保護層13は単層のRu層であり、該保護層13中にMo組成は検出されなかった。
(2)表面粗さ
上記の手順で保護層13まで形成したサンプルについて、保護層13の表面粗さを、JIS−B0601(1994年)にしたがって、原子間力顕微鏡(Atomic Force Microscope)(セイコーインスツルメンツ社製:番号SPI3800)を用いて確認した。保護層13の表面粗さrmsは0.15nmであった。
(3)加熱処理耐性
上記の手順で保護層13まで形成したサンプルに対して、210℃で10分間の加熱処理(大気中)をした。この処理の前後に保護層13表面にEUV光(波長13.5nm)を照射し、EUV反射率をEUV反射率計を用いて測定した。この処理前後での、EUV反射率の低下は7.8%であった。
この結果から、比較例1のマスクブランクは、実施例1のマスクブランクに比べて加熱処理耐性に劣ることが確認された。
(実施例2)
本実施例では、図4に示すEUVミラー2を作製した。
成膜用の基板11として、SiO−TiO系のガラス基板(外形6インチ(152.4mm)角、厚さが6.3mm)を使用した。このガラス基板の熱膨張率は0.2×10−7/℃、ヤング率は67GPa、ポアソン比は0.17、比剛性は3.07×10/sである。このガラス基板を研磨により、表面粗さrmsが0.15nm以下の平滑な表面と、100nm以下の平坦度に形成した。
基板11の裏面側には、マグネトロンスパッタリング法を用いて厚さ100nmのCr膜を成膜することによって、シート抵抗100Ω/□の高誘電性コーティング(図示していない)を施した。
平板形状をした通常の静電チャックに、形成したCr膜を用いて基板11(外形6インチ(152.4mm)角、厚さ6.3mm)を固定して、該基板11の表面上にイオンビームスパッタ法を用いてMo膜およびSi膜を交互に成膜することを50周期繰り返すことにより、合計膜厚340nm((2.3nm+4.5nm)×50)のMo/Si多層反射膜(反射層12)を形成した。なお、Mo/Si多層反射膜の最上層はSi膜である。
Mo膜およびSi膜の成膜条件は以下の通りである。
(Mo膜の成膜条件)
・ターゲット:Moターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.064nm/sec。
・膜厚:2.3nm。
(Si膜の成膜条件)
・ターゲット:Siターゲット(ホウ素ドープ)。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.077nm/sec。
・膜厚:4.5nm。
次に、反射層12上に、保護層13の第1層13aとしてRu層をイオンビームスパッタ法を用いて形成した。
第1層13aの形成条件は以下の通りである。
・ターゲット:Ruターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.052nm/sec。
・膜厚:1.25nm。
次に、保護層13の第2層13bとしてMo層を、イオンビームスパッタ法を用いて形成した。
第2層13bの形成条件は以下の通りである。
・ターゲット:Moターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.064nm/sec。
・膜厚:0.5nm。
次に、保護層13の第3層13cとしてRu層をイオンビームスパッタ法を用いて形成した。
第3層13cの形成条件は以下の通りである。
・ターゲット:Ruターゲット。
・スパッタガス:Arガス(ガス圧:0.02Pa)。
・電圧:700V。
・成膜速度:0.052nm/sec。
・膜厚:1.25nm。
上記の手順で得られたEUVミラーに対し下記の評価を実施した。
(1)膜組成
保護層13の表面から反射層(Mo/Si多層反射膜)12までの深さ方向組成を、X線光電子分光装置(X−ray Photoelectron Spectrometer)(アルバック・ファイ社製:Quantera SXM)を用いて測定することによって、該保護層13が下記3層構造であることを確認した。
・第1層13a:Ru層。
・第2層13b:Mo層。
・第3層13c:Ru層。
また、X線光電子分光装置による測定結果から、保護層13の全組成に対するMoの組成が20%であることが確認された。この結果は、上記成膜条件における保護層13の合計膜厚(1.25+0.5+1.25=3nm)と、第2層13bの膜厚(0.5nm)と、の関係に対して、矛盾しない組成量のMoが保護層13中に含まれていることを示している。
(2)表面粗さ
保護層13の表面粗さを、JIS−B0601(1994年)にしたがって、原子間力顕微鏡(Atomic Force Microscope)(セイコーインスツルメンツ社製:番号SPI3800)を用いて確認した。保護層13の表面粗さrmsは0.15nmであった。
(3)加熱処理耐性
EUVミラーを210℃で10分間の加熱処理(大気中)した。この処理の前後に保護層13表面にEUV光(波長13.5nm)を照射し、EUV反射率をEUV反射率計(AIXUV社製MBR(製品名))を用いて測定した。この処理前後での、EUV反射率の低下は5.4%であった。
本発明の反射層付基板、および該反射層付基板を用いたEUVマスクブランクやEUVミラーでは、Ru保護層の酸化によるEUV光線反射率の低下が抑制されている。そして、EUV露光時のEUV光線反射率の経時的な進行の抑制により、露光条件を途中で変更する必要が少なくなり、EUVマスクやEUVミラーの寿命の長期化を図ることができる。
また、本発明のEUVマスクブランクを用いて作成されるEUVマスクは、EUV露光時において、EUV光線反射率の経時的な変化が小さい、信頼性の高いEUVマスクであり、微細なパターンからなる集積回路の製造に有用である。
なお、2009年12月9日に出願された日本特許出願2009−279401号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
1,1´:EUVマスクブランク
2:EUVミラー
11:基板
12:多層反射膜
13:保護層
13a:第1層
13b:第2層
13c:第3層
14:吸収体層
15:低反射層

Claims (13)

  1. 基板上に、EUV光を反射する反射層と、該反射層を保護する保護層とがこの順に形成されたEUVリソグラフィ用反射層付基板であって、
    前記反射層が、Mo/Si多層反射膜であり、
    前記保護層が、前記反射層の側から、Ru層またはRu化合物層からなる第1層、Mo層からなる第2層、および、Ru層またはRu化合物層からなる第3層の順に積層された3層構造であることを特徴とするEUVリソグラフィ用反射層付基板。
  2. 前記Mo/Si多層反射膜からなる反射層の最上層がSi膜であり、前記保護層が当該Si膜面に接して形成されている、請求項1に記載のEUVリソグラフィ用反射層付基板。
  3. 前記第2層の膜厚が、0.2nm以上であり、かつ、2nm以下、または、前記保護層の合計膜厚の1/2以下のうち、いずれか小さいほうを満たす、請求項1または2に記載のEUVリソグラフィ用反射層付基板。
  4. 前記保護層の合計膜厚が1〜10nmである、請求項1〜3のいずれか1項に記載のEUVリソグラフィ用反射層付基板。
  5. 前記保護層表面の表面粗さrmsが0.5nm以下である、請求項1〜4のいずれか1項に記載のEUVリソグラフィ用反射層付基板。
  6. 請求項1〜5のいずれか1項に記載の反射層付基板の保護層上に吸収体層を形成してなるEUVリソグラフィ用反射型マスクブランク。
  7. 前記吸収体層がタンタル(Ta)を主成分とする材料で形成される、請求項6に記載のEUVリソグラフィ用反射型マスクブランク。
  8. エッチングガスとして塩素系ガスを用いてドライエッチングを実施した際の前記保護層と前記吸収体層とのエッチング選択比が10以上である、請求項6または7に記載のEUVリソグラフィ用反射型マスクブランク。
  9. 前記吸収体層上に、タンタル(Ta)を主成分とする材料で形成された、マスクパターンの検査に使用する検査光における低反射層が設けられている、請求項6〜8のいずれか1項に記載のEUVリソグラフィ用反射型マスクブランク。
  10. 吸収体層に形成されるパターンの検査に用いられる光の波長に対する前記保護層表面での反射光と、前記低反射層表面での反射光と、のコントラストが、30%以上である、請求項9に記載のEUVリソグラフィ用反射型マスクブランク。
  11. 請求項6〜10のいずれか1項に記載のEUVマスクブランクをパターニングしたEUVリソグラフィ用反射型マスク。
  12. 請求項11に記載のEUVリソグラフィ用反射型マスクを用いて、被露光体に露光を行うことにより半導体集積回路を製造することを特徴とする半導体集積回路の製造方法。
  13. 請求項1〜5のいずれか1項に記載のEUVリソグラフィ用反射層付基板を用いたEUVリソグラフィ用反射型ミラー。
JP2011545229A 2009-12-09 2010-12-08 Euvリソグラフィ用光学部材 Active JP5590044B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011545229A JP5590044B2 (ja) 2009-12-09 2010-12-08 Euvリソグラフィ用光学部材

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009279401 2009-12-09
JP2009279401 2009-12-09
PCT/JP2010/072047 WO2011071086A1 (ja) 2009-12-09 2010-12-08 Euvリソグラフィ用光学部材
JP2011545229A JP5590044B2 (ja) 2009-12-09 2010-12-08 Euvリソグラフィ用光学部材

Publications (2)

Publication Number Publication Date
JPWO2011071086A1 JPWO2011071086A1 (ja) 2013-04-22
JP5590044B2 true JP5590044B2 (ja) 2014-09-17

Family

ID=44145631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011545229A Active JP5590044B2 (ja) 2009-12-09 2010-12-08 Euvリソグラフィ用光学部材

Country Status (6)

Country Link
US (1) US8986910B2 (ja)
EP (1) EP2511943A4 (ja)
JP (1) JP5590044B2 (ja)
KR (1) KR20130007533A (ja)
TW (1) TWI467317B (ja)
WO (1) WO2011071086A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012014904A1 (ja) 2010-07-27 2012-02-02 旭硝子株式会社 Euvリソグラフィ用反射層付基板、およびeuvリソグラフィ用反射型マスクブランク
DE102011083462A1 (de) * 2011-09-27 2013-03-28 Carl Zeiss Smt Gmbh EUV-Spiegel mit einer Oxynitrid-Deckschicht mit stabiler Zusammensetzung
JP6125772B2 (ja) 2011-09-28 2017-05-10 Hoya株式会社 反射型マスクブランク、反射型マスクおよび反射型マスクの製造方法
DE102012202057B4 (de) * 2012-02-10 2021-07-08 Carl Zeiss Smt Gmbh Projektionsobjektiv für EUV-Mikrolithographie, Folienelement und Verfahren zur Herstellung eines Projektionsobjektivs mit Folienelement
JP6069919B2 (ja) 2012-07-11 2017-02-01 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびに該マスクブランク用の反射層付基板およびその製造方法
DE102012222466A1 (de) * 2012-12-06 2014-06-12 Carl Zeiss Smt Gmbh Reflektives optisches Element für die EUV-Lithographie
JP6377361B2 (ja) * 2013-02-11 2018-08-22 Hoya株式会社 多層反射膜付き基板及びその製造方法、反射型マスクブランクの製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
WO2015012151A1 (ja) * 2013-07-22 2015-01-29 Hoya株式会社 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
KR102239726B1 (ko) * 2013-09-11 2021-04-12 호야 가부시키가이샤 다층 반사막을 구비한 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크 및 그 제조 방법과 반도체 장치의 제조 방법
JP6301127B2 (ja) 2013-12-25 2018-03-28 Hoya株式会社 反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
JP6361283B2 (ja) * 2014-05-23 2018-07-25 凸版印刷株式会社 反射型マスクブランクおよび反射型マスク
US10254640B2 (en) * 2016-02-16 2019-04-09 AGC Inc. Reflective element for mask blank and process for producing reflective element for mask blank
KR102402767B1 (ko) 2017-12-21 2022-05-26 삼성전자주식회사 극자외선 마스크 블랭크, 극자외선 마스크 블랭크를 이용하여 제조된 포토마스크, 포토마스크를 이용한 리소그래피 장치 및 포토마스크를 이용한 반도체 장치 제조 방법
JP6556885B2 (ja) * 2018-02-22 2019-08-07 Hoya株式会社 反射型マスクブランク及び反射型マスク、並びに半導体装置の製造方法
DE102019212910A1 (de) * 2019-08-28 2021-03-04 Carl Zeiss Smt Gmbh Optisches Element und EUV-Lithographiesystem
JP2021056502A (ja) * 2019-09-30 2021-04-08 Hoya株式会社 多層反射膜付き基板、反射型マスクブランク、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP7318565B2 (ja) 2020-03-03 2023-08-01 信越化学工業株式会社 反射型マスクブランクの製造方法
JP2022045936A (ja) * 2020-09-10 2022-03-23 信越化学工業株式会社 Euvマスクブランク用多層反射膜付き基板、その製造方法及びeuvマスクブランク
JP7420027B2 (ja) * 2020-09-10 2024-01-23 信越化学工業株式会社 Euvマスクブランク用多層反射膜付き基板、その製造方法及びeuvマスクブランク
JP7416343B2 (ja) * 2021-12-28 2024-01-17 Agc株式会社 反射型マスクブランク、反射型マスク、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP2024089128A (ja) * 2022-12-21 2024-07-03 信越化学工業株式会社 反射型マスクブランク、反射型マスク及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523007A (ja) * 1997-11-10 2001-11-20 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア 極紫外リソグラフィー用の多重層反射性コーティング用不動態化オーバーコート二重層
JP2005516182A (ja) * 2001-07-03 2005-06-02 ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニア 不動態化保護膜二重層
JP2006170916A (ja) * 2004-12-17 2006-06-29 Nikon Corp 光学素子及びこれを用いた投影露光装置
WO2008090988A1 (ja) * 2007-01-25 2008-07-31 Nikon Corporation 光学素子、これを用いた露光装置、及びデバイス製造方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5928817A (en) 1997-12-22 1999-07-27 Intel Corporation Method of protecting an EUV mask from damage and contamination
US6355381B1 (en) 1998-09-25 2002-03-12 Intel Corporation Method to fabricate extreme ultraviolet lithography masks
AU5597000A (en) 1999-06-07 2000-12-28 Regents Of The University Of California, The Coatings on reflective mask substrates
TWI267704B (en) 1999-07-02 2006-12-01 Asml Netherlands Bv Capping layer for EUV optical elements
US6596465B1 (en) 1999-10-08 2003-07-22 Motorola, Inc. Method of manufacturing a semiconductor component
US6410193B1 (en) 1999-12-30 2002-06-25 Intel Corporation Method and apparatus for a reflective mask that is inspected at a first wavelength and exposed during semiconductor manufacturing at a second wavelength
US6479195B1 (en) 2000-09-15 2002-11-12 Intel Corporation Mask absorber for extreme ultraviolet lithography
JP5371162B2 (ja) 2000-10-13 2013-12-18 三星電子株式会社 反射型フォトマスク
US6645679B1 (en) 2001-03-12 2003-11-11 Advanced Micro Devices, Inc. Attenuated phase shift mask for use in EUV lithography and a method of making such a mask
US6583068B2 (en) 2001-03-30 2003-06-24 Intel Corporation Enhanced inspection of extreme ultraviolet mask
US6610447B2 (en) 2001-03-30 2003-08-26 Intel Corporation Extreme ultraviolet mask with improved absorber
US6593037B1 (en) 2001-05-02 2003-07-15 Advanced Micro Devices, Inc. EUV mask or reticle having reduced reflections
US6830851B2 (en) 2001-06-30 2004-12-14 Intel Corporation Photolithographic mask fabrication
US20030008148A1 (en) 2001-07-03 2003-01-09 Sasa Bajt Optimized capping layers for EUV multilayers
US6593041B2 (en) 2001-07-31 2003-07-15 Intel Corporation Damascene extreme ultraviolet lithography (EUVL) photomask and method of making
US6607862B2 (en) 2001-08-24 2003-08-19 Intel Corporation Damascene extreme ultraviolet lithography alternative phase shift photomask and method of making
US6653053B2 (en) 2001-08-27 2003-11-25 Motorola, Inc. Method of forming a pattern on a semiconductor wafer using an attenuated phase shifting reflective mask
US6818357B2 (en) 2001-10-03 2004-11-16 Intel Corporation Photolithographic mask fabrication
DE10150874A1 (de) 2001-10-04 2003-04-30 Zeiss Carl Optisches Element und Verfahren zu dessen Herstellung sowie ein Lithographiegerät und ein Verfahren zur Herstellung eines Halbleiterbauelements
EP1306698A1 (en) * 2001-10-26 2003-05-02 Nikon Corporation Multilayer reflective mirrors for EUV, wavefront-aberration-correction methods for the same, and EUV optical systems comprising the same
US6627362B2 (en) 2001-10-30 2003-09-30 Intel Corporation Photolithographic mask fabrication
DE10156366B4 (de) 2001-11-16 2007-01-11 Infineon Technologies Ag Reflexionsmaske und Verfahren zur Herstellung der Reflexionsmaske
JP3939167B2 (ja) * 2002-02-28 2007-07-04 Hoya株式会社 露光用反射型マスクブランク、その製造方法及び露光用反射型マスク
KR100455383B1 (ko) 2002-04-18 2004-11-06 삼성전자주식회사 반사 포토마스크, 반사 포토마스크의 제조방법 및 이를이용한 집적회로 제조방법
DE10223113B4 (de) 2002-05-21 2007-09-13 Infineon Technologies Ag Verfahren zur Herstellung einer photolithographischen Maske
TW200411339A (en) * 2002-10-31 2004-07-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US6913706B2 (en) 2002-12-28 2005-07-05 Intel Corporation Double-metal EUV mask absorber
US6905801B2 (en) 2002-12-28 2005-06-14 Intel Corporation High performance EUV mask
US7118832B2 (en) 2003-01-08 2006-10-10 Intel Corporation Reflective mask with high inspection contrast
US6908713B2 (en) 2003-02-05 2005-06-21 Intel Corporation EUV mask blank defect mitigation
US7169514B2 (en) 2003-12-31 2007-01-30 Intel Corporation Extreme ultraviolet mask with molybdenum phase shifter
JP4693395B2 (ja) 2004-02-19 2011-06-01 Hoya株式会社 反射型マスクブランクス及び反射型マスク並びに半導体装置の製造方法
US7300724B2 (en) * 2004-06-09 2007-11-27 Intel Corporation Interference multilayer capping design for multilayer reflective mask blanks
JP2006332153A (ja) * 2005-05-24 2006-12-07 Hoya Corp 反射型マスクブランク及び反射型マスク並びに半導体装置の製造方法
TWI444757B (zh) 2006-04-21 2014-07-11 Asahi Glass Co Ltd 用於極紫外光(euv)微影術之反射性空白光罩
TWI417647B (zh) 2006-06-08 2013-12-01 Asahi Glass Co Ltd Euv微影術用之反射性空白遮光罩及用於彼之具有功能性薄膜的基板
EP2028681B1 (en) * 2007-01-31 2014-04-23 Asahi Glass Company, Limited Reflective mask blank for euv lithography
KR101409642B1 (ko) 2007-04-17 2014-06-18 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사형 마스크 블랭크
US8128642B2 (en) 2008-05-02 2012-03-06 Tyco Healthcare Group Lp Fluid delivery system for surgical instruments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523007A (ja) * 1997-11-10 2001-11-20 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア 極紫外リソグラフィー用の多重層反射性コーティング用不動態化オーバーコート二重層
JP2005516182A (ja) * 2001-07-03 2005-06-02 ザ リージェンツ オブ ザ ユニヴァーシティ オブ カリフォルニア 不動態化保護膜二重層
JP2006170916A (ja) * 2004-12-17 2006-06-29 Nikon Corp 光学素子及びこれを用いた投影露光装置
WO2008090988A1 (ja) * 2007-01-25 2008-07-31 Nikon Corporation 光学素子、これを用いた露光装置、及びデバイス製造方法

Also Published As

Publication number Publication date
KR20130007533A (ko) 2013-01-18
US20120225375A1 (en) 2012-09-06
EP2511943A4 (en) 2015-09-09
US8986910B2 (en) 2015-03-24
TWI467317B (zh) 2015-01-01
EP2511943A1 (en) 2012-10-17
JPWO2011071086A1 (ja) 2013-04-22
TW201131284A (en) 2011-09-16
WO2011071086A1 (ja) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5590044B2 (ja) Euvリソグラフィ用光学部材
JP5696666B2 (ja) Euvリソグラフィ用光学部材およびeuvリソグラフィ用反射層付基板の製造方法
JP5673555B2 (ja) Euvリソグラフィ用反射層付基板、euvリソグラフィ用反射型マスクブランク、euvリソグラフィ用反射型マスク、および該反射層付基板の製造方法
WO2013077430A1 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法
JP4910856B2 (ja) Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板
WO2011004850A1 (ja) Euvリソグラフィ用反射型マスクブランク
KR20140085350A (ko) Euv 리소그래피용 반사형 마스크 블랭크 및 그 제조 방법
JPWO2010007955A1 (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
KR20160034315A (ko) 다층 반사막을 구비한 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크 및 그 제조 방법과 반도체 장치의 제조 방법
JP2015073013A (ja) Euvリソグラフィ用反射型マスクブランクの製造方法
JP2015008265A (ja) Euvリソグラフィ用反射型マスクブランク
KR20160054458A (ko) 다층 반사막을 구비한 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크 및 그 제조 방법과 반도체 장치의 제조 방법
JP6604134B2 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびに該マスクブランク用の反射層付基板およびその製造方法
JPWO2010050520A1 (ja) Euvリソグラフィ用反射型マスクブランク
JP6186996B2 (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP2014160752A (ja) Euvリソグラフィ用反射型マスクブランクおよび該マスクブランク用反射層付基板
JP6186962B2 (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP5381441B2 (ja) Euvリソグラフィ用反射型マスクブランクの製造方法
JP6223756B2 (ja) 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP5494164B2 (ja) Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板
JP5333016B2 (ja) Euvリソグラフィ用反射型マスクブランク
JP6451884B2 (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP6288327B2 (ja) Euvリソグラフィ用反射型マスクブランク、および、euvリソグラフィ用反射型マスク
JP2024011445A (ja) 反射型マスクブランク、反射型マスク、反射型マスクの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R150 Certificate of patent or registration of utility model

Ref document number: 5590044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250