WO2011066674A1 - 聚合物共混质子交换膜及其制备方法 - Google Patents

聚合物共混质子交换膜及其制备方法 Download PDF

Info

Publication number
WO2011066674A1
WO2011066674A1 PCT/CN2009/001372 CN2009001372W WO2011066674A1 WO 2011066674 A1 WO2011066674 A1 WO 2011066674A1 CN 2009001372 W CN2009001372 W CN 2009001372W WO 2011066674 A1 WO2011066674 A1 WO 2011066674A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
sulfonated
exchange membrane
proton exchange
sulfuric acid
Prior art date
Application number
PCT/CN2009/001372
Other languages
English (en)
French (fr)
Inventor
黄绵延
赵延龄
李琳琳
Original Assignee
北京普能世纪科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2009324261A priority Critical patent/AU2009324261B2/en
Application filed by 北京普能世纪科技有限公司 filed Critical 北京普能世纪科技有限公司
Priority to EP09833907.0A priority patent/EP2508554A4/en
Priority to PCT/CN2009/001372 priority patent/WO2011066674A1/zh
Priority to CA2784974A priority patent/CA2784974A1/en
Priority to KR1020127015761A priority patent/KR20120114271A/ko
Priority to BR112012012886A priority patent/BR112012012886A2/pt
Priority to MX2012006266A priority patent/MX2012006266A/es
Priority to CN2009801626645A priority patent/CN102639614A/zh
Priority to JP2011543962A priority patent/JP5599819B2/ja
Priority to US12/821,961 priority patent/US8486579B2/en
Publication of WO2011066674A1 publication Critical patent/WO2011066674A1/zh
Priority to CL2012001427A priority patent/CL2012001427A1/es
Priority to US13/934,046 priority patent/US10923754B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1081Polymeric electrolyte materials characterised by the manufacturing processes starting from solutions, dispersions or slurries exclusively of polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/72Derivatisation
    • C08G2261/722Sulfonation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a polymer blended proton exchange membrane and a process for the preparation thereof, and more particularly to a polymer blend shield exchange membrane comprising a soluble polymer and a sulfonated polymer having a proton exchange function,
  • the polymer blended proton exchange membrane of the present invention can be used in redox flow batteries, especially in all-vanadium redox flow batteries.
  • VRB Voladium Redox Battery
  • the vanadium ion solution of vanadium battery with different valence states is the reactive substance of the battery, wherein the positive electrode of the battery is v 4+ /v 5+ electric pair, and the negative electrode is v 2+ /v 3+ electric pair.
  • the positive electrode v 4+ becomes v 5+
  • the negative electrode v 3+ becomes v 2+
  • the positive electrode v 5+ becomes v 4+
  • the negative electrode V 2+ becomes V 3+ .
  • the vanadium battery unit consists of a double 3 ⁇ 4, electrode and diaphragm.
  • the separator of the vanadium battery must be able to prevent the mutual penetration of vanadium ions of different valence states of the positive and negative electrolytes, and allow the transfer of the hydrogen shield. This requires that the diaphragm not only has an ideal shield conductivity, but also a high selective permeability. In addition, the membrane must have good long-term chemical stability and mechanical properties to meet the long-life requirements of vanadium batteries.
  • the perfluorosulfonic acid proton exchange membranes such as the DuPont Nafion series are more commonly used in vanadium batteries.
  • Perfluorosulfonic acid membrane has excellent chemical stability and conductivity Different, can meet the requirements of the use of vanadium batteries.
  • the permeability of the perfluorosulfonic acid membrane is poor, and when the electrode is passed, vanadium ions can permeate through the membrane to cause vanadium ion permeation, resulting in self-discharge and capacity decay of the battery.
  • the expensive price of perfluorosulfonate is a factor that hinders the commercialization of vanadium batteries. Therefore, the development of a proton exchange membrane which is suitable for use in vanadium batteries at low cost, high chemical stability, good electrical conductivity, selective permeability and high mechanical strength is an important step in the commercialization of vanadium batteries.
  • non-fluorine hydrocarbon polymers In order to reduce the cost of proton exchange membranes, in the field of fuel cells, some non-fluorine hydrocarbon polymers have been extensively studied as membrane materials after sulfonation. These polymers are generally characterized by high chemical, thermal stability, and low cost, such as polyethersulfone, polyether ketone, polyimide, polyphosphazene, polybenzimidazole, and the like.
  • the sulfonation of these polymers into a proton exchange membrane has a characteristic that the membrane's proton conductivity and other properties depend on the degree of sulfonation of the polymer.
  • the degree of sulfonation of the polymer In order to obtain the desired conductivity, the degree of sulfonation of the polymer must be high enough, and when the degree of sulfonation of the polymer is high, the mechanical properties, size and chemical stability of the film are poor and cannot meet the requirements for use.
  • Proton exchange membranes for vanadium batteries can also be produced from these sulfonated polymers. These membranes also face the same problem when used in vanadium batteries, namely how to balance sulfonation degree, electrical conductivity and chemical stability, mechanical strength, vanadium ions. The contradiction between penetration.
  • the Applicant has unexpectedly discovered that a blend of a polymer having a higher degree of sulfonation and a soluble polymer can produce a shield exchange membrane having excellent overall properties.
  • a polymer proton exchange membrane comprising a soluble polymer and a sulfonated polymer selected from the group consisting of polysulfones
  • the sulfonated polymer is selected from the group consisting of sulfonated polyetheretherketone (SPEEK), sulfonated polyetheretherketoneketoneketone (SPEKEKK) ), sulfonated naphthalene biphenyl polyether ketone (SPPEK), sulfonated phenolphthalein polyethersulfone, sulfonated polyimide (SPI), sulfonated polyphosphazene, and sulfonated polybenzimidazole
  • the "soluble polymer, which can be dissolved in organic In the solvent includes, but is not limited to, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, triethyl phosphate, cyclopentanone, N-mercapto-2-pyrrolidone, tetramethyl One or more of urea and propylene carbonate.
  • the organic solvent is selected from one or more of the group consisting of hydrazine, hydrazine-dimercaptocarboxamide, hydrazine, hydrazine-dimercaptoacetamide, and fluorenyl-mercapto-2-pyrrolidone.
  • the sulfonated polymer has a degree of sulfonation of from 98 to 116%, preferably from 100 to 114%, more preferably from 106 to 110%.
  • the sulfonated polymer has a melt viscosity at 300 500 ° C of from 100 to 550 cps, preferably from 300 to 450 cps, more preferably from 350 to 400 cps. Made of sulfonated polymer.
  • the sulfonated polymer is sulfonated by dissolving the unsulfonated polymer directly in concentrated sulfuric acid, fuming sulfuric acid or chlorosulfonic acid.
  • the sulfonated polymer is sulfonated by directly dissolving the unsulfonated polymer in concentrated sulfuric acid, and the concentrated sulfuric acid is used in an amount of 2 to 15 liters of concentrated sulfur sulfonated polymer, preferably 5 ⁇ 7 ⁇ ⁇ « ⁇ ⁇ sulfonated polymer.
  • the preparation process of the sulfonated polymer is divided into two stages, the first stage is to react at 20 to 40 ° C for 3 to 5 hours, and the second stage is to react at 70 to 100 ° C for 1 to 4 hours. .
  • the obtained sulfonated polymer is subjected to water-cooling molding, preferably by water-cooling molding by the following process: pouring the slurry obtained by the reaction into a fine sieve having a mesh opening diameter of 1 to 4 mm, and the slurry is along the sieve hole ⁇ The mixture was stirred in deionized water to obtain a strip of sulfonated polymer.
  • the resulting strip of the sulfonated polymer is washed to remove the attached sulfuric acid at 100 to 120. Dry at C temperature for at least 1 hour, preferably at least 4 hours, to adequately remove moisture.
  • the soluble polymer has a weight average molecular weight of from 35,000 to 65,000, preferably from 45,000 to 55,000, more preferably from 48,000 to 52,000.
  • the soluble polymer is contained The amount is from 10 to 50%, preferably from 13 to 38%, more preferably from 18 to 35 %, most preferably from 22 to 32%, based on the total weight of the film.
  • the thickness of the polymer blending meyer exchange membrane of the present invention is not particularly limited and may be determined according to the use requirements, and is preferably 30 to 200 ⁇ m, more preferably 50 to 100 ⁇ m.
  • Another object of the present invention is to provide a method of preparing a polymer proton exchange membrane, the method comprising the steps of:
  • soluble polymer selected from at least one of polysulfone, polyethersulfone, and polyvinylidene fluoride;
  • the sulfonated polymer is selected from the group consisting of a sulfonated polyether ether ketone, a sulfonated polyether ketone ether ketone ketone, At least one of a sulfonated naphthalene biphenyl polyether ketone, a sulfonated phenolphthalein type polyether sulfone, a sulfonated polyimide, a sulfonated polyphosphazene, and a sulfonated polybenzimidazole, and wherein the sulfonated polymerization
  • the degree of cross-sectionality of the object is 96 ⁇ 118%.
  • the method of the present invention may further comprise the step of d) immersing the film in an aqueous solution of sulfuric acid for one day and then taking it out, thereby allowing complete protonation.
  • the concentration of the aqueous sulfuric acid solution used in step d) of the process of the invention is from 0.5 to 1.5 M, and the soaking time is preferably from 15 to 30 hours.
  • the organic solvent includes, but is not limited to, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, triethyl phosphate, cyclopentanone, N-methyl- One or more of 2-pyrrolidone, tetramethylurea, and propylene carbonate.
  • the organic solvent is selected from one or more of N,N-dimethylformamide, N,N-dimethylacetamide and N-methyl-2-pyrrolidone.
  • the sulfonated polymer has a degree of sulfonation of from 98 to 116%, preferably from 100 to 114%, more preferably from 106 to 110%.
  • the sulfonated polymer has a melt viscosity at 300-500"C in the range of 100-550 centipoise, preferably 300-450 centipoise, more preferably 350-400 centipoise.
  • the sulfonated polymer is sulfonated by dissolving the unsulfonated polymer directly in ML acid, fuming sulfuric acid or chlorosulfonic acid.
  • the sulfonated polymer is sulfonated by directly dissolving the unsulfonated polymer in concentrated sulfuric acid, and the concentrated sulfuric acid is used in an amount of 2 to 15 liters of concentrated sulfur per gram of unsulfonated polymer. Preferably, 5 ⁇ 7 liters ⁇ » grams of sulfonated polymer.
  • the preparation process of the sulfonated polymer is divided into two stages, and the first stage is between 20 and 40.
  • the reaction in C is 3 to 5 hours, and the second phase is in 70 to 100. Reaction under C for 1 ⁇ 4 hours.
  • the obtained sulfonated polymer hydrazine is formed by water-cooling in a manner of water-cooling.
  • the slurry obtained by the reaction is poured into a fine sieve having a mesh opening diameter of 1 to 4 mm, and the slurry is sieved along the sieve.
  • the mixture was stirred in deionized water to obtain a strip of sulfonated polymer.
  • the resulting strip of the sulfonated polymer is washed to remove the attached sulfuric acid at 100 to 120. Dry at C temperature for at least 1 hour, preferably at least 4 hours, to adequately remove moisture.
  • the soluble polymer has a weight average molecular weight of from 35,000 to 65,000, preferably from 45,000 to 55,000, more preferably from 48,000 to 52,000.
  • the soluble polymer is present in an amount of from 10 to 50%, preferably from 13 to 38%, more preferably from 18 to 35 %, most preferably from 22 to 32%, based on the total weight of the film.
  • the thickness of the polymer blended proton exchange membrane of the present invention is not particularly limited and may be determined according to the use requirements, and is preferably 30 to 200 ⁇ m, more preferably 50 to 100 ⁇ m.
  • the proton exchange membrane of the present invention can be produced by a known membrane formation technique, and there is no specific requirement for the membrane formation method.
  • it can be prepared by casting, casting, or the like.
  • the proton exchange membranes of the present invention can also be used in proton exchange membrane fuel cells, particularly direct methanol fuel cells. Preparation and selection of sulfonated polymers
  • the present invention uses a polymer having a higher degree of sulfonation to be blended with a soluble polymer to obtain a proton exchange membrane having excellent comprehensive properties.
  • a sulfonated polymer having a high degree of sulfonation has excellent proton conductivity, but generally has poor mechanical properties and dimensional stability.
  • the sulfonated polymer of the present invention may be crosslinked with the soluble polymer incorporated, and by this crosslinking, the swelling of the sulfonated polymer may be restricted, thereby improving the mechanical properties and dimensional stability of the film. And improve the ability of the proton exchange membrane to block the penetration of vanadium ions.
  • the sulfonated polymer of the present invention has a degree of sulfonation (DS) of from 96 to 118%, from 98 to 116%, preferably from 100 to 114%, more preferably from 106 to 110%, thereby ensuring that these sulfonated polymers are formed.
  • the electrical conductivity of the film refers to the number of sulfones contained in 100 repeating units.
  • the sulfonated polymer used in the proton exchange membrane of the present invention may also be a mixture of the same polymers having different degrees of sulfonation.
  • the high sulfonation degree sulfonated polymer used in the proton exchange membrane of the present invention is composed of
  • an unsulfonated polymer having a melt viscosity of from 300 to 550 cps, preferably from 300 to 450 cps, more preferably from 350 to 400 cps, at 300-500"C.
  • the sulfonated polymer is sulfonated by dissolving the unsulfonated polymer directly in acid, fuming sulfuric acid or chlorosulfonic acid.
  • the sulfonated polymer is sulfonated by directly dissolving the unsulfonated polymer in concentrated sulfuric acid, and the concentrated sulfuric acid is used in an amount of 2 to 15 liters of concentrated sulfur per gram of unsulfonated polymer. Preferably, 5 to 7 liters of unsulfonated polymer is obtained.
  • the preparation process of the sulfonated polymer is divided into two stages, the first stage is a reaction at 20 to 40 ° C for 3 to 5 hours, and the second stage is at 70 to 100.
  • the reaction under C is 1 ⁇ 4 hours.
  • the obtained sulfonated polymer is subjected to water-cooling molding, preferably by water-cooling molding.
  • the slurry obtained by the reaction is poured into a fine sieve having a mesh opening diameter of 1 to 4 mm, and the slurry flows along the sieve hole.
  • the mixture was stirred in deionized water to obtain a strip of sulfonated polymer.
  • the resulting neat sulfonated polymer is washed at 100 to 120 after removal of the attached sulfuric acid. Drying at C temperature for at least 1 hour, preferably at least 4 hours, to charge Remove water.
  • the degree of sulfonation can be controlled by controlling the amount of sulfuric acid used per unit mass of the polymer at the time of sulfonation, the sulfonation temperature, and the sulfonation time.
  • the degree of sulfonation can be measured by acid-base titration.
  • the sulfonated polymers used in the present invention can also be prepared by other techniques known to those skilled in the art.
  • the polymer blended proton exchange membrane of the present invention can be prepared by the following steps:
  • the soluble polymer is dissolved in a quantity of solvent and heated to obtain a homogeneous solution.
  • the depolymerized polymer is dissolved in the above solution, and after heating and stirring, a uniform film forming solution is obtained.
  • the film forming liquid was poured into a glass film bath and cast into a film. The cast film was placed in an oven, dried at 50-90 ° C for 8-16 hours, and then treated at 80-120 ° C for 2-6 hours. After cooling, the dried proton exchange membrane is immersed in deionized water and removed from the glass membrane cell.
  • the different thicknesses of the proton exchange membrane are obtained by controlling the casting thickness of the membrane forming liquid.
  • the polymer blended proton exchange membrane of the present invention can also be made by other similar procedures within the scope of the present invention.
  • the polymer blended proton exchange membrane according to the present invention can be used in redox flow batteries, especially all-vanadium redox flow batteries.
  • the polymer proton exchange membrane of the present invention has good proton conductivity and excellent P and vanadium ion permeability, and has good mechanical properties, dimensional stability and chemical stability, and is inexpensive.
  • the raw material polymers used are basically commercial products, and the sulfonation process is also simple and easy to operate. 2. Chemical stability, thermal stability, high mechanical strength, the polymer raw materials used are mostly engineering thermoplastics, with good chemical and thermal stability; due to the use of sulfonated polymers with higher degree of sulfonation Film formation, the film has good electrical conductivity.
  • the selected mixed polymer has the characteristics of low price, good chemical stability and good film forming properties.
  • the barrier film will penetrate more vanadium ion than the perfluorosulfonate.
  • the slurry obtained by the reaction in the three-necked flask was poured into a polypropylene sieve cylinder having a mesh opening diameter of 2 mm, and the slurry was linearly introduced into the cold deionized water along the sieve holes.
  • the slurry forms a linear polymer material when it is cold water.
  • the strip of polymer in the water was removed and washed repeatedly with deionized water to remove the free acid in the polymer until the pH of the wash water was 7.
  • the washed linear polymer was placed in an oven and dried at 120 ° C for 4 hours until the polymer appeared reddish brown.
  • the dried sulfonated polyether ketone 1 is pulverized and used.
  • the degree of sulfonation of the deuterated polyether ketone 1 was measured by titration to be 105%.
  • 10 g of polyether ketone (2 g, 22 G, melt viscosity at 400 ° C, 110 Pa.s) was added to a three-necked flask containing 90 ml of fc-acid (98%) at room temperature, and electrically stirred. Subsequently, the three-necked flask was set in a constant temperature water bath at a temperature of 30 ° C for 3.5 hours; then the temperature of the constant temperature water bath was raised to 65. C, reacted at this temperature for 2.5 hours.
  • the slurry obtained by the reaction in the three-necked flask was poured into a polypropylene sieve cylinder having a mesh opening diameter of 2 mm, and the slurry was linearly introduced into the cold deionized water along the sieve holes.
  • the slurry forms a linear polymer material when it is cold water.
  • the strip of polymer in the water was removed and washed repeatedly with deionized water to remove the free acid in the polymer until the pH of the wash water was 7.
  • the washed linear polymer was placed in an oven and dried at 120 Torr for 4 hours until the polymer appeared reddish brown.
  • the dried sulfonated polyether ketone 2 is pulverized and used. The degree of sulfonation of the sulfonated polyether ketone 2 was determined by titration to be 85%.
  • the slurry obtained by the reaction in the three-necked flask was poured into a polypropylene sieve cylinder having a mesh opening diameter of 2 mm, and the slurry was linearly introduced into the cold deionized water along the sieve holes.
  • the slurry encounters cold water, it forms a linear polymer material.
  • the strip of polymer in the water was removed and rinsed repeatedly with deionized water to remove the free acid in the polymer until the pB of the wash water [7].
  • the washed linear polymer was placed in an oven and dried at 120 ° C for 4 hours until the polymer appeared reddish brown.
  • the dried sulfonated polyetheretherketone 1 is pulverized and used. The degree of sulfonation of the sulfonated polyetheretherketone 1 was determined by titration to be 98%.
  • the slurry obtained by the reaction in the three-necked flask was poured into a polypropylene sieve cylinder having a mesh opening diameter of 2 mm, and the slurry was linearly formed along the sieve hole.
  • the slurry forms a linear polymer material when it is cold water.
  • the strip of polymer in the water was removed and washed repeatedly with deionized water to remove the free acid in the polymer until the pH of the wash water was 7.
  • the washed linear polymer was placed in an oven and dried at 120 ° C for 4 hours until the polymer appeared reddish brown.
  • the dried sulfonated polyetheretherketone 2 is pulverized and used. The degree of sulfonation of the sulfonated polyetheretherketone 2 was determined by titration to be 68%.
  • the polymer blended proton exchange membranes of Examples 1 to 10 and Comparative Examples 1 to 4 were prepared using sulfonated polymers having different degrees of sulfonation prepared according to the above sulfonated polymer preparation examples, respectively.
  • PVDF powder 0.10 g was placed in a vial containing 7.8 mL of N,N-dimethylformamide and dissolved by magnetic stirring at room temperature for 30 minutes to form a homogeneous solution. Filter the solution to remove any tiny particles that may be present. 0.90 g of the sulfonated polyether ketone 1 (degree of sulfonation 105%) prepared according to the above sulfonated polymer Preparation Example 1 was weighed into a solution. In order to completely dissolve the polymer, it was placed in an oven at 60 ° C, completely dissolved and taken out, and then repeatedly stirred to obtain a uniform 12 wt % of the film forming solution.
  • the film forming solution into a glass film cell and cast it into a film at 60. It was kept at C for 12 hours until it was dried, and then kept at 100 ° C for 4 hours. Then, it was naturally cooled to room temperature, and the membrane was immersed in deionized water to remove the membrane. The membrane was immersed in 1 M sulfuric acid for one day, then rinsed repeatedly with deionized water, and finally the membrane was bubbled in deionized water for later use. The resulting film had a dry thickness of 85 ⁇ m and a PVDF content of 10% by weight.
  • sulfonated polyether ketone 1 (sulfonation degree: 105%) prepared according to the above sulfonated polymer Preparation Example 1 was weighed and placed in 60 to completely dissolve the polymer. In the C oven, it was completely dissolved and taken out, and then repeatedly stirred and ultrasonically stirred to obtain a uniform 12 wt% of the film forming solution. Pour the film forming solution into a glass film cell and cast it into a film at 60.
  • the resulting film had a dry thickness of 82 ⁇ m and a PS content of 15% by weight.
  • sulfonated polyether ketone 1 (sulfonation degree: 105%) prepared according to the above sulfonated polymer preparation example 1 was weighed and placed in 60 to completely dissolve the polymer. In the C oven, it was completely dissolved and taken out, and then repeatedly stirred and ultrasonically stirred to obtain a uniform 12 wt% of the film forming solution.
  • the film forming solution was poured into a glass film forming bath and cast into a film, which was kept at 60 ° C for 12 hours to dry, and then kept at 100 ° C for 4 hours. Then, it was naturally cooled to room temperature, and the membrane was immersed in deionized water to remove the membrane. The membrane was immersed in 1 M sulfuric acid for one day, then rinsed repeatedly with deionized water, and finally the membrane was bubbled in deionized water for use.
  • the obtained film had a thickness of 81 ⁇ m and a PES content of 20% by weight.
  • sulfonated polyether ketone 1 (sulfonation degree: 105%) prepared according to the above sulfonated polymer preparation example 1 was weighed and placed in a dispersion. To completely dissolve the polymer, it was placed in an oven at 60 ° C. After 2 hours, completely dissolved and taken out, and then repeated stirring and ultrasonic stirring ⁇ *t ⁇ , a uniform 12% by weight of the film forming liquid was obtained.
  • the obtained film had a dry thickness of 80 ⁇ m, a PVDF content of 10% by weight, and a PES content of 15% by weight.
  • Example 5 Take 0.05g PVDF, O.lSgPES, O.lOgPS powder ⁇ 7.8 mL
  • the film forming liquid was poured into a glass film forming bath and cast into a film, and kept at a temperature of 60 ° C for 12 hours until it was dried, and then at 100. Keep it for 4 hours under C. Then, it was naturally cooled to room temperature, and the membrane was immersed in deionized water to remove the membrane. The membrane was immersed in 1 M sulfuric acid for one day, then rinsed repeatedly with deionized water, and finally the membrane was bubbled in deionized water for use.
  • the obtained film had a dry thickness of 80 ⁇ m, a PVDF content of 5 wt%, a PES content of 15 wt%, and a PS content of 10 wt%.
  • PVDF powder 0.10 g was placed in a vial containing 7.8 mL of N,N-dimethylformamide and dissolved by magnetic stirring at room temperature for 30 minutes to form a homogeneous solution. Filter the solution to remove any tiny particles that may be present. 0.90 g of the sulfonated polyetheretherketone 2 (having a degree of sulfonation of 98%) prepared according to the above sulfonated polymer Preparation Example 2 was weighed into a solution. In order to completely dissolve the polymer, it was placed in an oven at 60 ° C, completely dissolved, taken out, and repeatedly stirred to obtain a uniform 12 wt% of a film forming solution.
  • the film forming solution into a glass film cell and cast it into a film at 60. Hold under C for 12 hours to dry and then at 100. Hold for 4 hours under C. Then, it was naturally cooled to room temperature, and the membrane was immersed in deionized water to remove the membrane. The membrane was immersed in 1 M sulfuric acid for one day, then rinsed repeatedly with deionized water, and finally the membrane was bubbled in deionized water for later use.
  • the resulting film had a dry thickness of 85 ⁇ m and a PVDF content of 10% by weight.
  • sulfonated polyetheretherketone 1 (sulfonation degree: 98%) prepared according to the above sulfonated polymer preparation example 2 was weighed and placed in 60 in order to completely dissolve the polymer. In the C oven, it was completely dissolved and taken out, and after repeated stirring and ultrasonic stirring, a uniform 12 wt% of the film forming liquid was obtained.
  • the film forming solution was poured into a glass film bath and cast into a film, which was kept at 60 ° C for 12 hours until it was dried, and then at 100. Hold for 4 hours under C. Then, it was naturally cooled to room temperature, and the membrane was immersed in deionized water to remove the membrane. The membrane was immersed in 1 M sulfuric acid for one day, then rinsed repeatedly with deionized water, and finally the membrane was bubbled in deionized water for later use.
  • the resulting film had a dry thickness of 82 ⁇ m and a PS content of 15% by weight.
  • the obtained film had a dry thickness of 83 ⁇ m and a PES content of 20% by weight.
  • the film forming solution was poured into a glass film forming bath and cast into a film, which was kept at 60 ° C for 12 hours until it was dried, and then kept at 100 ° C for 4 hours. Then, it was naturally cooled to room temperature, and the membrane was immersed in deionized water to remove the membrane. The membrane was immersed in 1 M sulfuric acid for one day, then rinsed repeatedly with deionized water, and finally the membrane was bubbled in deionized water for later use.
  • the obtained film had a dry thickness of 80 ⁇ m, a PVDF content of 10% by weight, and a PES content of 15% by weight.
  • Example 10 Take 0.05g PVDF, 0.15g PES> O.lOgPS powder ⁇ loaded with 7.8 mL
  • a magnetic solution was stirred for 30 minutes to form a homogeneous solution. Filter the solution to remove any tiny particles that may be present.
  • 0.70 g of the sulfonated polyetheretherketone 1 (sulfonation degree: 98%) prepared according to the above sulfonated polymer preparation example 2 was weighed, in order to completely dissolve the polymer, it was placed in an oven at 60 ° C After 2 hours, completely dissolved and taken out, and then repeatedly stirred and ultrasonically stirred ⁇ *J to obtain a uniform 12 wt% of the film forming solution.
  • the film forming liquid was poured into a glass film forming bath and cast into a film, which was kept at 60 ° C for 12 hours until it was dried, and then kept at 100 ° C for 4 hours. Then, it was naturally cooled to room temperature, and the membrane was immersed in deionized water to remove the membrane. The membrane was immersed in 1 M sulfuric acid for one day, then rinsed repeatedly with deionized water, and finally the membrane was bubbled in deionized water for use.
  • the obtained film had a dry thickness of 80 ⁇ m, a content of 5 wt%, a PES content of 15 wt%, and a PS content of 10 wt%.
  • PVDF powder 0.10 g was taken; a vial containing 7.8 mL of N,N-dimethylformamide was dissolved by magnetic stirring at room temperature for 30 minutes to form a homogeneous solution. Filter the solution to remove any tiny particles that may be present. 0.90 g of the sulfonated polyether ketone 2 (sulfonation degree: 85%) prepared according to the above sulfonated polymer Preparation Example 1 was weighed. In order to completely dissolve the polymer, it was placed in an oven at 60 ° C, completely dissolved and taken out, and then repeatedly stirred to obtain a uniform 12 wt % of the film forming solution. Pour the film forming solution into a glass film cell and cast it into a film at 60.
  • the resulting film had a dry thickness of 85 ⁇ m and a PVDF content of 10% by weight.
  • the film forming solution was poured into a glass film forming bath and cast into a film.
  • the film was kept at 60 ° C for 12 hours until it was dried, and then kept at 10 (TC for 4 hours). Then it was naturally cooled to room temperature, and the film cell was immersed in deionized water. In the water, remove the film. Soak the film in 1M sulfuric acid for one day, then rinse it repeatedly with deionized water, and finally bubble the film in deionized water.
  • the thickness of the obtained film is 81 ⁇ m
  • the PVDF content is 5 wt %
  • the PES content is 15 wt%
  • PS content was 10 wt%.
  • PVDF powder 0.10 g was placed in a vial containing 7.8 mL of N,N-dimercaptocarboxamide and dissolved by magnetic stirring at room temperature for 30 minutes to form a homogeneous solution. Filter the solution to remove any tiny particles that may be present. 0.90 g of the sulfonated polyetheretherketone 2 (having a traceability of 68%) prepared according to the above sulfonated polymer Preparation Example 2 was weighed into a solution. In order to completely dissolve the polymer, it was placed in an oven at 60 ° C, completely dissolved and taken out, and then repeatedly stirred to obtain a uniform 12 wt % of the film forming solution.
  • the film forming solution was poured into a glass film bath and cast into a film, which was kept at 60 ° C for 12 hours until it was dried, and then at 100. Hold for 4 hours under C. Then, it was naturally cooled to room temperature, and the membrane was immersed in deionized water to remove the membrane. The membrane was immersed in 1 M sulfuric acid for one day, then rinsed repeatedly with deionized water, and finally the membrane was bubbled in deionized water for later use.
  • the resulting film had a dry thickness of 85 ⁇ m and a PVDF content of 10% by weight.
  • a magnetic solution was stirred for 30 minutes to form a homogeneous solution. Filter the solution to remove any tiny particles that may be present. 0.80 g of the sulfonated polyetheretherketone 2 (sulfonation degree of 68%) ⁇ L dispersion prepared according to the above sulfonated polymer preparation example 2 was weighed, and the polymer was thoroughly dissolved, and placed in a 60-inch oven. , completely dissolved and taken out, and then repeatedly stirred and ultrasonically stirred to obtain a uniform 12 wt% of the film forming solution.
  • the film forming liquid was poured into a glass film forming bath and cast into a film, and kept at a temperature of 60 ° C for 12 hours to a thousand and then at 100. Hold for 4 hours under C. Then, it was naturally cooled to room temperature, and the membrane was immersed in deionized water to remove the membrane. The membrane was immersed in 1 M sulfuric acid for one day, then rinsed repeatedly with deionized water, and finally the membrane was bubbled in deionized water for later use.
  • the resulting film has a thickness of 81 microns and a PVDF content of 5 wt.
  • the %, PES content was 15% by weight, and the PS content was 10% by weight.
  • the membrane was sandwiched between two halves of the permeate cell, one of which was filled with a vanadium battery electrolyte and the other half of which was filled with an aqueous sulfuric acid solution having the same concentration as the electrolyte.
  • the solution in the two half cells was agitated simultaneously with a power agitator. After a period of time, the vanadium ions in the electrolyte half-cell will pass through the membrane side of the sulfuric acid solution and cause a change in the absorbance of the sulfuric acid solution side.
  • vanadium ion permeability is characterized by the absorbance measured after 100 h of sulfuric acid solution.
  • the degree of swelling of the film is characterized by the area change rate s of the film.
  • the rectangular film sample was immersed in water for 12 hours at room temperature, and the area (S w ) of the wet film was measured.
  • the film was dried at 80 Torr for 12 hours, and the area (S d ) of the dry film was measured.
  • the AS of the membrane is calculated as follows:
  • the polymer blended proton exchange membrane according to Examples 1 to 10 of the present invention is compared with Comparative Examples 1 to 4 in which the degree of sulfonation of the sulfonated polymer is not within the scope of the present invention.
  • Better conductivity can be obtained with a higher proportion of soluble polymer mixed.
  • Examples 5 and 10 of the present invention can still obtain higher electrical conductivity, while the electrical conductivity of Comparative Examples 2 and 4 sharply decreases, that is, the surface resistance sharply rises.
  • a polymer blended proton exchange membrane excellent in overall performance can be obtained, and in particular, excellent properties can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

聚合物共混质子交换膜及其制备方法
技术领域
本发明涉及一种聚合物共混质子交换膜及其制备方法,更具 体地,本发明涉及一种包含可溶性聚合物与具有质子交换功能的 磺化聚合物的聚合物共混盾子交换膜,本发明的聚合物共混质子 交换膜可用于氧化还原液流电池, 尤其是全钒氧化还原液流电 池。
背景技术
能源危机和环境污染是全球经济实现可持续发展的两大难 题。解决这两大难题的有效途径是加强风能、 太阳能、 潮汐能等 可再生能源的开发。为保证风能、太阳能等可再生能源的稳定供 给, 就必须开发出价廉、 高效、 可靠性高、 无污染大容量储能技 术。因此,开发大容量储能系统是目前全球能源领域的一个热点。
在众多的大容量的储能技术中, 全钒氧化还原液流电池
( Vanadium Redox Battery, VRB )由于具有寿命长、 可靠性高、 操作及维护费用低等独特优点,而已经被国外相关机构在风力发 电、 太阳能发电、 电网储能调峰等场合进行示范运行。
钒电池以不同价态的钒离子溶液为电池的反应活性物质,其 中电池正极为 v4+/v5+电对, 负极为 v2+/v3+电对。 充电时,正极 v4+变为 v5+, 负极 v3+变为 v2+; 放电时, 正极 v5+变为 v4+, 负 极 V2+变为 V3+。 钒电池的单电池由双¾ 、 电极和隔膜构成。 其中钒电池的隔膜必须能阻止正负极电解液不同价态钒离子的 相互渗透、 而允许氢盾子的传递。这要求隔膜不仅需具有理想的 盾子电导率, 还需具有很高的选择透过性。 另外, 膜必须具有很 好的长期化学稳定性及机械性能才能满足钒电池长寿命的要求。
目前, 钒电池中较普遍使用的是如杜邦公司 Nafion系列的 全氟磺酸质子交换膜。 全氟磺酸膜的化学稳定性及导电性能优 异, 能满足钒电池的使用要求。 但全氟磺酸膜的选择透过性差, 电^行时,钒离子能透过膜而发生钒离子渗透,导致电池发生 自放电和容量衰减。 另夕卜,全氟磺 昂贵的价^ L是阻碍钒电 池大规 商业化的一个因素。 因此,开发适合钒电池使用的价格 低廉、化学稳定性高、导电性能好、选择透过性及机械强度高的 质子交换膜是钒电池商业化的重要一步。
为降低质子交换膜的成本,在燃料电池领域,一些非氟的碳 氢聚合物磺化后被广泛研究用作制膜材料。这些聚合物通常具有 化学、 热稳定性高, 价廉易得等特点, 如聚醚砜、 聚醚酮、 聚酰 亚胺、 聚膦腈、 聚苯并咪唑等。 这些聚合物磺化后制成质子交换 膜时都有一个特点,即膜的质子导电能力等性能均取决于聚合物 的磺化度。要想获得理想的电导率,聚合物的磺化度就必须足够 高, 而当聚合物的磺化度较高时, 膜的机械性能、尺寸及化学稳 定性都会较差而满足不了使用要求。由这些磺化聚合物也可制得 钒电池用质子交换膜,这些膜在钒电池中使用时也面临相同的难 题, 即如何平衡磺化度、 导电率和化学稳定性、机械强度、 钒离 子渗透之间的矛盾。
发明内容
本申请人出乎意料地发现,采用具有较高磺化度的聚合物与 可溶性聚合物共混可以制得综合性能优异的盾子交换膜。
因此, 本发明的一个目的是提供一种聚合物质子交换膜, 其 包含可溶性聚合物和磺化聚合物, 所述可溶性聚合物选自聚砜
( PS 聚醚砜 ( PES )和聚偏氟乙烯(PVDF ) 中的至少一种, 所述磺化聚合物选自磺化聚醚醚酮(SPEEK )、 磺化聚醚酮醚酮 酮( SPEKEKK )、磺化杂萘联苯聚醚酮( SPPEK )、磺化酚酞型 聚醚砜、 磺化聚酰亚胺( SPI )、 磺化聚膦腈和磺化聚苯并咪唑
( PBI ) 中的至少一种, 其中所述磺化聚合物的磺化度为 96 ~ 118%。
在本发明的上下文中,所述"可溶性聚合物,,可以溶解在有机 溶剂中,所述有机溶剂包括但不限于二甲基乙酰胺、二甲基甲酰 胺、 二甲基亚砜、 磷酸三乙酯、 环戊酮、 N-曱基 -2-吡咯烷酮、 四甲基脲、碳酸丙烯酯中的一种或多种。优选地, 所述有机溶剂 选自 Ν,Ν-二曱基甲酰胺、 Ν,Ν-二曱基乙酰胺和 Ν-曱基 -2-吡咯烷 酮中的一种或多种。
在本发明的一个优选实施方案中,所述磺化聚合物的磺化度 为 98 ~ 116%, 优选 100 ~ 114%, 更优选 106 ~ 110%。
在本发明的另一个优选实施方案中, 所述磺化聚合物由 300 500 °C下熔融粘度在 100-550厘泊、优选 300 - 450厘泊、更 优选 350〜400厘泊范围内的未磺化聚合物制成。
优选地,所述磺化聚合物通过将所述未磺化聚合物直接溶解 在浓硫酸、 发烟硫酸或氯磺酸中来磺化。
优选地,所述磺化聚合物通过将所述未磺化聚合物直接溶解 在浓硫酸中来磺化, 所述浓硫酸使用量是 2~15亳升浓硫 克未 磺化聚合物, 优选 5 ~ 7 亳升^ « 克未磺化聚合物。
优选地,所述磺化聚合物的制备过程分为两阶段, 第一阶段 是在 20 ~ 40°C下反应 3 ~ 5小时, 第二阶段是在 70 ~ 100°C下反 应 1 ~ 4小时。
优选地,对制得的磺化聚合物采用水冷成型的方式,优选通 过以下过程进行水冷成型: 将反应所得浆料倒入筛孔直径为 1 ~ 4mm 的细筛中, 浆料沿筛孔^去离子水中, 搅拌成型, 得到 条状磺化聚合物。
优选地, 所得到的条状磺化聚合物经洗涤除去附着硫酸后, 在 100 ~ 120。C温度下干燥至少 1小时, 优选至少 4小时, 以充 分除去水分。
在本发明的另一个优选实施方案中,所述可溶性聚合物的重 均分子量是 35000-65000, 优选 45000〜55000 , 更优选 48000〜52000。
在本发明的又一个优选实施方案中,所述可溶性聚合物的含 量为所述膜总重量的 10 - 50 % , 优选 13 ~ 38 % , 更优选 18 - 35 % , 最优选 22 ~ 32 %。
本发明的聚合物共混庸子交换膜的厚度没有具体限定,可以 根据使用要求确定, 优选为 30〜200μιη, 更优选 50 ~ 100μιη。
本发明的另一个目的是提供一种制备聚合物质子交换膜的 方法, 所述方法包括以下步骤:
a)将可溶性聚合物溶解在有机溶剂中, 制备成均匀的溶液, 其中所述可溶性聚合物选自聚砜、聚醚砜和聚偏氟乙烯中的至少 一种;
b)将磺化聚合物溶解在步骤 a)中所制得的溶液中 ,得到制膜 液,其中所述磺化聚合物选自磺化聚醚醚酮、磺化聚醚酮醚酮酮、 磺化杂萘联苯聚醚酮、磺化酚酞型聚醚砜、磺化聚酰亚胺、磺化 聚膦腈和磺化聚苯并咪唑中的至少一种,以及其中所述磺化聚合 物的橫化度为 96 ~ 118%。
c)将所述制膜液流延成型, 经烘干和热处理后将膜揭下。 优选地,本发明的方法还可以包括步驟 d)将所述的膜在硫酸 水溶液中浸泡一天后取出备用,从而使得完全质子化。进一步优 选地, 才艮据本发明方法的步骤 d)中所用的硫酸水溶液的浓度为 0.5-1.5M, 浸泡时间优选为 15-30小时。
在本发明的一个优选实施方案中,所述有机溶剂包括但不限 于二甲基乙酰胺、 二甲基甲酰胺、二甲基亚砜、磷酸三乙酯、 环 戊酮、 N-甲基 -2-吡咯綻酮、 四甲基脲、 碳酸丙烯酯中的一种或 多种。 优选地, 所述有机溶剂选自 N,N-二甲基甲酰胺、 N,N-二 甲基乙酰胺和 N-甲基 -2-吡咯焼酮中的一种或多种。
在本发明的一个优选实施方案中,所述磺化聚合物的磺化度 为 98 ~ 116%, 优选 100 ~ 114%, 更优选 106 ~ 110%。
在本发明的另一个优选实施方案中, 所述磺化聚合物由 300-500 "C下熔融粘度在 100-550厘泊、优选 300 ~ 450厘泊、更 优选 350〜400厘泊范围内的未磺化聚合物制成。 优选地,所述磺化聚合物通过将所述未磺化聚合物直接溶解 在、 ML酸、 发烟硫酸或氯磺酸中来磺化。
优选地,所述磺化聚合物通过将所述未磺化聚合物直接溶解 在浓硫酸中来磺化, 所述浓硫酸使用量是 2 ~ 15亳升浓硫^/克 未磺化聚合物, 优选 5~7 亳升^ »克未磺化聚合物。
优选地, 所述磺化聚合物的制备过程分为两阶段, 第一阶段 是在 20~40。C下反应 3~5小时, 笫二阶段是在 70~100。C下反 应 1~4小时。
优选地,对制得的磺化聚合物釆用水冷成型的方式,优选通 过以下过程进行水冷成型: 将反应所得浆料倒入筛孔直径为 1~ 4mm的细筛中, 浆料沿筛孔 去离子水中, 搅拌成型, 得到 条状磺化聚合物。
优选地, 所得到的条状磺化聚合物经洗涤除去附着硫酸后, 在 100 ~ 120。C温度下干燥至少 1小时, 优选至少 4小时, 以充 分除去水分。
在本发明的另一个优选实施方案中,所述可溶性聚合物的重 均分子量是 35000-65000 , 优选 45000-55000, 更优选 48000〜52000。
在本发明的又一个优选实施方案中,所述可溶性聚合物的含 量为所述膜总重量的 10 ~ 50%, 优选 13 ~ 38%, 更优选 18 ~ 35 %, 最优选 22~32%。
本发明的聚合物共混质子交换膜的厚度没有具体限定,可以 根据使用要求确定, 优选 30〜200μιη, 更优选 50 ~ 100μιη。
本发明的质子交换膜可以采用已知的制膜技术制得,对于制 膜方法没有具体要求。 例如可以采用流延、 浇注等方法来制备。
除了用于氧化还原液流电池,尤其是全钒氧化还原液流电池 以外,本发明的质子交换膜还可以用于质子交换膜燃料电池,特 别是直接甲醇燃料电池。 磺化聚合物的制备及选择
本发明采用具有较高磺化度的聚合物与可溶性聚合物共混 制得了综合性能优异的质子交换膜。磺化度高的磺化聚合物具有 优良的质子电导率,但是通常机械性能和尺寸稳定性差。不限于 任何理论,本发明的磺化聚合物与所混入的可溶性聚合物可以发 生交联, 通过这种交联作用, 可以限制磺化聚合物的溶胀, 从而 提高膜的机械性能和尺寸稳定性,并且提高质子交换膜阻挡钒离 子渗透的能力。 优选地, 本发明的磺化聚合物的磺化度 (DS)为 96 - 118%, 98 - 116%, 优选 100 ~ 114%, 更优选 106 ~ 110%, 从而保证这些磺化聚合物所成膜的导电性能。 所述磺化度是指 100个重复单元中所含的磺 个数。
本发明的质子交换膜中所用的磺化聚合物还可以是具有不 同磺化度的同种聚合物的混合物。
本发明的质子交换膜中所用的高磺化度磺化聚合物由
300-500 "C下熔融粘度在 100-550厘泊、优选 300 - 450厘泊、更 优选 350〜400厘泊范围内的未磺化聚合物制成。
优选地,所述磺化聚合物通过将所述未磺化聚合物直接溶解 在 酸、 发烟硫酸或氯磺酸中来磺化。
优选地,所述磺化聚合物通过将所述未磺化聚合物直接溶解 在浓硫酸中来磺化, 所述浓硫酸使用量是 2 ~ 15亳升浓硫 ^/克 未磺化聚合物, 优选 5 ~ 7 亳升 克未磺化聚合物。
优选地, 所述磺化聚合物的制备过程分为两阶段, 第一阶段 是在 20 ~ 40°C下反应 3 ~ 5小时, 第二阶段是在 70 - 100。C下反 应 1 ~ 4小时。
优选地,对制得的磺化聚合物采用水冷成型的方式,优选通 过以下过程进行水冷成型: 将反应所得浆料倒入筛孔直径为 1 ~ 4mm的细筛中, 浆料沿筛孔流入去离子水中, 搅拌成型, 得到 条状磺化聚合物。
优选地, 所得到的奈状磺化聚合物经洗涤除去附着硫酸后, 在 100 ~ 120。C温度下干燥至少 1小时, 优选至少 4小时, 以充 分除去水分。
可以通过控制磺化时的单位质量聚合物所用硫酸的量、磺化 温度及磺化时间来控制磺化度。 磺化度可通过酸碱滴定法测得。
本发明所用的磺化聚合物还可以采用本领域技术人员公知 的其他技术来制备。
共混质子交换膜的制备
根据本发明的方法,可以通过以下步驟制备本发明的聚合物 共混质子交换膜:
把可溶性聚合物溶解在一定量的溶剂中,经过加热搅拌后得 到均匀的溶液。 fe 化聚合物溶解在上述溶液中,经加热搅拌后, 得到均匀的制膜液。将制膜液倒在玻璃膜池内流延成膜。把流延 后的膜放在烘箱中, 50-90°C下干燥 8-16小时, 然后在 80-120°C 下处理 2-6小时。 待冷却后, 把干燥的质子交换膜浸入去离子水 中, 从玻璃膜池上揭下。 室温下, 于 0.5-1.5M ¾S04水溶液中 浸泡 20-30小时后取出,用去离子水多次洗涤以除去膜中残留的 ¾so4后浸泡在去离子水中。质子交换膜的不同厚度通过控制制 膜液的流延厚度来获得。
本发明的聚合物共混质子交换膜也可以通过本发明范围内 的其他类似程序制得。
根据本发明的聚合物共混质子交换膜可用于氧化还原液流 电池,尤其是全钒氧化还原液流电池。本发明的聚合物质子交换 膜具有良好的质子传导性能和优良的 P且钒离子渗透性能,并且机 械性能、 尺寸稳定性及化学稳定性好, 价格低廉。
根据本发明的共混质子交换膜具有以下优点中的至少一 个:
1.价 廉、易得,所使用的原料聚合物基本都是商业化产品, 且磺化工艺也较简单易操作。 2.化学稳定性、 热稳定性很好、 机械强度高, 所使用的聚合物 原料大都是工程热塑料, 具有很好的化学、 热稳定性; 由于 选用磺化度较高的磺化聚合物成膜, 膜具有良好的导电性 能。
3.所选用的混入聚合物具有价格低廉、 化学稳定性好、 成膜性 能好的特点。
4. 由于聚合物间的交联作用, 共混膜的溶胀被有效限制, 膜的 机械性能及尺寸稳定性得到极大提高。
5. 由于磺化聚合物本身的离子通道要小于全氟磺 «,再加上 混入聚合物的交联效应,共混膜的阻挡钒离子渗透能力会大 于全氟磺 。
6.与全氟磺 ^^相比,用该种方法制备的共混膜成本要低廉很 多, 这将对全钒液流电池的商品化起积极的推动作用。
具体实施方式 磺化聚合物制备例:
1.制备横化聚醚酮
将 10 g聚醚酮(威^公司, 22G,400°C下熔融粘度为 110 Pa.s )于室温下加入到装有 120 ml 浓硫酸(98% ) 的三口烧瓶 中, 电动搅拌。 随后将三口烧瓶^ A殳定温度为 30。C的恒温水 浴槽中, 反应 3.5小时; 然后将恒温水浴槽的温度升至 75°C, 在 此温度下反应 2小时。反应结束后,将三口烧瓶中反应所得浆料 倒入筛孔直径为 2mm的聚丙烯筛筒中, 浆料沿筛孔呈线状进入 冷去离子水中。浆料遇冷水后即形成线条状聚合物材料。将水中 的条状聚合物捞出,并用去离子水反复冲洗以除去聚合物内的游 离酸, 直至洗下水的 pH为 7。 将洗净的线条状聚合物放进烘箱 中, 120°C下烘干 4小时至聚合物呈现红褐色即可。 烘干后的磺 化聚醚酮 1粉碎后备用。通过滴定法,测得该磽化聚醚酮 1的磺 化度为 105 %。 将 10 g聚醚酮(威^公司, 22G, 400 °C下熔融粘度为 110 Pa.s )于室温下加入到装有 90 ml fc^酸( 98% )的三口烧瓶中, 电动搅拌。 随后将三口烧瓶^ 设定温度为 30 °C的恒温水浴槽 中, 反应 3.5 小时; 然后将恒温水浴槽的温度升至 65。C, 在此 温度下反应 2.5小时。 反应结束后, 将三口烧瓶中反应所得浆料 倒入筛孔直径为 2mm的聚丙烯筛筒中, 浆料沿筛孔呈线状进入 冷去离子水中。浆料遇冷水后即形成线条状聚合物材料。将水中 的条状聚合物捞出,并用去离子水反复冲洗以除去聚合物内的游 离酸, 直至洗下水的 pH为 7。 将洗净的线条状聚合物放进烘箱 中, 120Ό下烘干 4小时至聚合物呈现红褐色即可。 烘干后的磺 化聚醚酮 2粉碎后备用。通过滴定法, 测得该磺化聚醚酮 2的磺 化度为 85 %。
2.制备磺化聚醚醚酮
将 10 g 聚醚醚酮(威格斯公司, 381G, 400°C下熔融粘度 为 381 Pa.s )于室温下加入到装有 100 ml 浓疏酸(98% ) 的三 口烧瓶中, 电动搅拌。 随后将三口烧瓶^ 殳定温度为 35°C的 恒温水浴槽中, 反应 3 小时; 然后将恒温水浴槽的温度升至 75°C , 在此温度下反应 3.5小时。 反应结束后, 将三口烧瓶中反 应所得浆料倒入筛孔直径为 2mm的聚丙烯筛筒中, 浆料沿筛孔 呈线状进入冷去离子水中。浆料遇冷水后即形成线条状聚合物材 料。将水中的条状聚合物捞出,并用去离子水反复冲洗以除去聚 合物内的游离酸, 直至洗下水的 pB [为 7。 将洗净的线条状聚合 物放进烘箱中, 120°C下烘干 4小时至聚合物呈现红褐色即可。 烘干后的磺化聚醚醚酮 1粉碎后备用。通过滴定法, 测得该磺化 聚醚醚酮 1的磺化度为 98 %。
将 10 g 聚醚醚酮(威^公司, 381G, 400 °C下熔融粘度 为 381 Pa.s )于室温下加入到装有 80 ml 浓硫酸( 98% )的三口 烧瓶中, 电动搅拌。 随后将三口烧瓶 ϋ殳定温度为 35。C的恒 温水浴槽中,反应 3 小时; 然后将恒温水浴槽的温度升至 65°C , 在此温度下反应 3小时。反应结束后,将三口烧瓶中反应所得浆 料倒入筛孔直径为 2mm的聚丙烯筛筒中, 浆料沿筛孔呈线状进 入冷去离子水中。浆料遇冷水后即形成线条状聚合物材料。将水 中的条状聚合物捞出,并用去离子水反复冲洗以除去聚合物内的 游离酸, 直至洗下水的 pH为 7。 将洗净的线条状聚合物放进烘 箱中, 120°C下烘干 4小时至聚合物呈现红褐色即可。 烘干后的 磺化聚醚醚酮 2粉碎后备用。通过滴定法,测得该磺化聚醚醚酮 2的磺化度为 68 %。
分别采用根据以上磺化聚合物制备例制得的具有不同磺化 度的磺化聚合物制备实施例 1〜10和对比例 1〜4中的聚合物共混 质子交换膜。
实施例 1:
取 0.10g PVDF粉料 t^装有 7.8 mLN,N-二甲基甲酰胺的 小瓶中, 室温下磁力搅拌溶解 30分钟, 形成均匀的溶液。 把溶 液过滤, 去除可能存在的微小颗粒。 称取 0.90g根据上述磺化聚 合物制备例 1制备的磺化聚醚酮 1 (磺化度为 105% )放入溶液 中。 为把聚合物彻底溶解, 把它放在 60°C烘箱中, 完全溶解后 拿出, 再经反复的搅拌, 得到均匀的 12wt %的制膜液。 把制膜 液倒入玻璃膜池内流延成膜, 在 60。C下保持 12小时至烘干, 再 在 100°C下保持 4小时。 然后自然冷却到室温, 把膜池浸入去离 子水中, 揭下膜。 把膜在 1M硫酸中浸泡一天, 然后用去离子水 反复冲洗, 最后把膜泡在去离子水中备用。 所得膜的干厚度为 85微米, PVDF含量为 10wt %。
实施例 2:
取 0.15g PS装有 7.8 mLN,N-二甲基甲酰胺的小瓶中, 室温 下磁力搅拌 30分钟后, 形成均匀的溶液。 把溶液过滤, 去除可 能存在的微小颗粒。 称取 0.85 g根据上述磺化聚合物制备例 1 制备的磺化聚醚酮 1 (磺化度为 105% ) 液中, 为把聚 合物彻底溶解, 把它放在 60。C烘箱中, 完全溶解后拿出, 再经 反复的搅拌和超声波搅拌^ U ,得到均匀的 12wt%的制膜液。 把制膜液倒入玻璃膜池内流延成膜, 在 60。C下保持 12小时至烘 干, 再在 100°C下保持 4小时。 然后自然冷却到室温, 把膜池浸 入去离子水中, 揭下膜。 把膜在 1M硫酸中浸泡一天, 然后用去 离子水反复冲洗,最后把膜泡在去离子水中备用。所得膜干厚度 为 82微米、 PS含量为 15wt %。
实施例 3:
取 0.20g PES粉料^装有 7.8 mL N,N-二曱基甲酰胺的小 瓶中, 磁力搅拌 30分钟后形成均匀的溶液。 把溶液过滤, 去除 可能存在的微小颗粒。称取 0.80g根据上述磺化聚合物制备例 1 制备的磺化聚醚酮 1 (磺化度为 105% ) ¾液中, 为把聚 合物彻底溶解, 把它放在 60。C烘箱中, 完全溶解后拿出, 再经 反复的搅拌和超声波搅拌^ U^,得到均匀的 12wt%的制膜液。 把制膜液倒入玻璃制膜池内流延成膜, 在 60°C下保持水平 12小 时至烘干, 再在 100 °C下保持 4小时。 然后自然冷却到室温, 把 膜池浸入去离子水中, 揭下膜。 把膜在 1M硫酸中浸泡一天, 然 后用去离子水反复冲洗,最后把膜泡在去离子水中备用。所得膜 的厚度为 81微米、 PES含量为 20wt%。
实施例 4:
取 0.10g PVDF, 0.15g PES粉料^ ^装有 7.8 mLN,N-二曱 基甲酰胺的小瓶中, 磁力搅拌 30分钟后, 形成均匀的溶液。 把 溶液过滤,去除可能存在的微小颗粒。称取 0.75g根据上述磺化 聚合物制备例 1制备的磺化聚醚酮 1 (磺化度为 105% )放入分 散液中, 为把聚合物彻底溶解, 把它放在 60°C烘箱中 2小时, 完全溶解后拿出,再经反复的搅拌和超声波搅拌 ^*t^,得到均 匀的 12wt%的制膜液。 把制膜液倒入玻璃制膜池内流延成膜, 在 60。C下保持水平 12小时至烘干, 再在 100°C下保持 4小时。 然后自然冷却到室温, 把膜池浸入去离子水中, 揭下膜。把膜在 1M硫酸中浸泡一天, 然后用去离子水反复冲洗, 最后把膜泡在 去离子水中备用。所得膜的干厚度为 80微米, PVDF含量为 lOwt %、 PES含量为 15wt%。
实施例 5: 取 0.05g PVDF、 O.lSgPES, O.lOgPS粉料 ^装有 7.8 mL
N,N-二甲基曱酰胺的小瓶中, 磁力搅拌 30分钟后, 形成均匀的 溶液。把溶液过滤, 去除可能存在的微小颗粒。称取 0.70g根据 上述磺化聚合物制备例 1制备的磺化聚醚酮 1(磺化度为 105% ) 分散液中, 为把聚合物彻底溶解, 把它放在 60°C烘箱中 2 小时, 完全溶解后拿出, 再经反复的搅拌和超声波搅拌^ L^, 得到均匀的 12wt%的制膜液。 把制膜液倒入玻璃制膜池内流延 成膜, 在 60 °C下保持水平 12小时至烘干, 再在 100。C下保持 4 小时。 然后自然冷却到室温, 把膜池浸入去离子水中, 揭下膜。 把膜在 1M硫酸中浸泡一天, 然后用去离子水反复冲洗, 最后把 膜泡在去离子水中备用。 所得膜的干厚度为 80微米, PVDF含 量为 5wt %、 PES含量为 15wt %、 PS含量为 10wt %。
实施例 6:
取 0.10g PVDF粉料 ^装有 7.8 mLN,N-二甲基甲酰胺的 小瓶中, 室温下磁力搅拌溶解 30分钟, 形成均匀的溶液。 把溶 液过滤, 去除可能存在的微小颗粒。 称取 0.90g根据上述磺化聚 合物制备例 2制备的磺化聚醚醚酮 2 (磺化度为 98% )放入溶液 中。 为把聚合物彻底溶解, 把它放在 60°C烘箱中, 完全溶解后 拿出, 再经反复的搅拌, 得到均匀的 12wt%的制膜液。 把制膜 液倒入玻璃膜池内流延成膜, 在 60。C下保持 12小时至烘干, 再 在 100。C下保持 4小时。 然后自然冷却到室温, 把膜池浸入去离 子水中, 揭下膜。 把膜在 1M硫酸中浸泡一天, 然后用去离子水 反复冲洗, 最后把膜泡在去离子水中备用。 所得膜的干厚度为 85微米, PVDF含量为 10wt %。
实施例 7:
取 0.15g PS装有 7.8 mLN,N-二甲基甲酰胺的小瓶中, 室温 下磁力搅拌 30分钟后, 形成均匀的溶液。 把溶液过滤, 去除可 能存在的微小颗粒。 称取 0.85 根据上述磺化聚合物制备例 2 制备的磺化聚醚醚酮 1 (磺化度为 98% ) 練液中, 为把聚 合物彻底溶解, 把它放在 60。C烘箱中, 完全溶解后拿出, 再经 反复的搅拌和超声波搅拌^ ^,得到均匀的 12wt%的制膜液。 把制膜液倒入玻璃膜池内流延成膜, 在 60°C下保持 12小时至烘 干, 再在 100。C下保持 4小时。 然后自然冷却到室温, 把膜池浸 入去离子水中, 揭下膜。 把膜在 1M硫酸中浸泡一天, 然后用去 离子水反复冲洗,最后把膜泡在去离子水中备用。所得膜干厚度 为 82微米、 PS含量为 15wt%。
实施例 8:
取 0.20g PES粉料 tA^装有 7.8 mL N,N-二甲基甲酰胺的小 瓶中, 磁力搅拌 30分钟后, 形成均匀的溶液。 把溶液过滤, 去 除可能存在的微小颗粒。称取 0.80 根据上述磺化聚合物制备例 2制备的磺化聚醚醚酮 1 (磺化度为 98% ) 液中, 为把 聚合物彻底溶解, 把它放在 60°C烘箱中 2小时, 完全溶解后拿 出, 再经反复的搅拌和超声波搅拌^ *后, 得到均匀的 12wt% 的制膜液。 把制膜液倒入玻璃制膜池内流延成膜, 在 60。C下保 持水平 12小时至烘干, 再在 100°C下保持 4小时。 然后自然冷 却到室温, 把膜池浸入去离子水中, 揭下膜。 把膜在 1M硫酸中 浸泡一天, 然后用去离子水反复冲洗,最后把膜泡在去离子水中 备用。 所得膜的干厚度为 83微米, PES含量为 20wt%。
实施例 9:
取 0.10g PVDF, 0.15gPES粉料^装有 7.8 mL N,N-二曱 基甲酰胺的小瓶中, 磁力搅拌 30分钟后, 形成均匀的溶液。 把 溶液过滤,去除可能存在的微小颗粒。称取 0.75g根据上述磺化 聚合物制备例 2制备的磺化聚醚醚酮 1 (磺化度为 98% )放入分 散液中, 为把聚合物彻底溶解, 把它放在 60°C烘箱中 2小时, 完全溶解后拿出,再经反复的搅拌和超声波搅拌^ ½,得到均 匀的 12wt%的制膜液。 把制膜液倒入玻璃制膜池内流延成膜, 在 60°C下保持水平 12小时至烘干, 再在 100°C下保持 4小时。 然后自然冷却到室温, 把膜池浸入去离子水中, 揭下膜。把膜在 1M硫酸中浸泡一天, 然后用去离子水反复冲洗, 最后把膜泡在 去离子水中备用。所得膜的干厚度为 80微米, PVDF含量为 10wt %、 PES含量为 15wt%。
实施例 10: 取 0.05g PVDF、 0.15gPES> O.lOgPS粉料^装有 7.8 mL
N,N-二甲基甲酰胺的小瓶中, 磁力搅拌 30分钟后, 形成均匀的 溶液。把溶液过滤, 去除可能存在的微小颗粒。 称取 0.70g根据 上述磺化聚合物制备例 2制备的磺化聚醚醚酮 1(磺化度为 98% ) ^t液中, 为把聚合物彻底溶解, 把它放在 60°C烘箱中 2 小时, 完全溶解后拿出, 再经反复的搅拌和超声波搅拌^ *J , 得到均匀的 12wt%的制膜液。 把制膜液倒入玻璃制膜池内流延 成膜, 在 60 °C下保持水平 12小时至烘干, 再在 100°C下保持 4 小时。 然后自然冷却到室温, 把膜池浸入去离子水中, 揭下膜。 把膜在 1M硫酸中浸泡一天, 然后用去离子水反复冲洗, 最后把 膜泡在去离子水中备用。 所得膜的干厚度为 80微米, 含 量为 5wt %、 PES含量为 15wt %、 PS含量为 10wt %。
对比例 1:
取 0.10g PVDF粉料; 装有 7.8 mLN,N -二甲基曱酰胺的 小瓶中, 室温下磁力搅拌溶解 30分钟, 形成均匀的溶液。 把溶 液过滤, 去除可能存在的微小颗粒。 称取 0.90g根据上述磺化聚 合物制备例 1制备的磺化聚醚酮 2(磺化度为 85% ) 溶液中。 为把聚合物彻底溶解, 把它放在 60 °C烘箱中, 完全溶解后拿出, 再经反复的搅拌, 得到均匀的 12wt %的制膜液。 把制膜液倒入 玻璃膜池内流延成膜,在 60。C下保持 12小时至烘干,再在 100 °C 下保持 4小时。 然后自然冷却到室温, 把膜池浸入去离子水中, 揭下膜。把膜在 1M硫酸中浸泡一天,然后用去离子水反复冲洗, 最后把膜泡在去离子水中备用。 所得膜的干厚度为 85微米, PVDF含量为 10wt%。
对比例 2:
取 0.05g PVDF、 0.15gPES、 O.lOgPS粉料 ¾t 装有 7.8 mL Ν,Ν-二甲基甲酰胺的小瓶中, 磁力搅拌 30分钟后形成均匀的溶 液。把溶液过滤, 去除可能存在的微小颗粒。 称取 0.80g根据上 述磺化聚合物制备例 1制备的磺化聚醚酮 2 (磺化度为 85% )放 入^:液中, 为把聚合物彻底溶解, 把它放在 60°C烘箱中, 完 全溶解后拿出,再经反复的搅拌和超声波搅拌^ ½,得到均匀 的 12wt%的制膜液。 把制膜液倒入玻璃制膜池内流延成膜, 在 60°C下保持水平 12小时至烘干, 再在 10(TC下保持 4小时。 然 后自然冷却到室温, 把膜池浸入去离子水中, 揭下膜。 把膜在 1M硫酸中浸泡一天, 然后用去离子水反复冲洗, 最后把膜泡在 去离子水中备用。 所得膜的厚度为 81微米, PVDF含量为 5wt %、 PES含量为 15wt %、 PS含量为 10wt %。
对比例 3:
取 0.10g PVDF粉料 ^装有 7.8 mL N,N-二曱基甲酰胺的 小瓶中, 室温下磁力搅拌溶解 30分钟, 形成均匀的溶液。 把溶 液过滤, 去除可能存在的微小颗粒。 称取 0.90g根据上述磺化聚 合物制备例 2制备的磺化聚醚醚酮 2 (蹟化度为 68% )放入溶液 中。 为把聚合物彻底溶解, 把它放在 60°C烘箱中, 完全溶解后 拿出, 再经反复的搅拌, 得到均匀的 12wt %的制膜液。 把制膜 液倒入玻璃膜池内流延成膜, 在 60 °C下保持 12小时至烘干, 再 在 100。C下保持 4小时。 然后自然冷却到室温, 把膜池浸入去离 子水中, 揭下膜。 把膜在 1M硫酸中浸泡一天, 然后用去离子水 反复冲洗, 最后把膜泡在去离子水中备用。 所得膜的干厚度为 85微米, PVDF含量为 10wt%。
对比例 4:
取 0.05g PVDF、 0.15gPES O.lOgPS粉料 ^装有 7.8 mL
N,N-二曱基甲酰胺的小瓶中, 磁力搅拌 30分钟后形成均匀的溶 液。把溶液过滤, 去除可能存在的微小颗粒。 称取 0.80g根据上 述磺化聚合物制备例 2制备的磺化聚醚醚酮 2 (磺化度为 68% ) ^L 分散液中, 为把聚合物彻底溶解, 把它放在 60Ό烘箱中, 完全溶解后拿出,再经反复的搅拌和超声波搅拌分 得到均 匀的 12wt %的制膜液。 把制膜液倒入玻璃制膜池内流延成膜, 在 60°C下保持水平 12小时至烘千, 再在 100。C下保持 4小时。 然后自然冷却到室温, 把膜池浸入去离子水中, 揭下膜。把膜在 1M硫酸中浸泡一天, 然后用去离子水反复冲洗, 最后把膜泡在 去离子水中备用。 所得膜的厚度为 81微米, PVDF含量为 5wt %、 PES含量为 15wt %、 PS含量为 lOwt %。
对 Nafion 115 (可购自美国杜邦公司) 以及本发明的实施 例 1〜10和对比例 1〜4中得到的聚合物共混质子交换膜进行以下 性能测试。
1.质子交换膜的钒离子渗透性能测试
采用渗透池装置测试, 将膜夹在渗透池的两个半池中间, 其 中一个半池装有钒电池电解液,另一个半池装有具有与电解液相 同浓度的硫酸水溶液。测试时,采用电动搅拌器同时搅动两个半 池中的溶液。一段时间后, 电解液半池中的钒离子会通过膜€^ 硫酸溶液侧,并引起硫酸溶液侧吸光度变化。用紫外可见分光光 度计测量硫酸溶液侧的吸光度,可以测出硫酸溶液侧的钒离子相 对含量,从而可以比较不同膜的钒离子渗透性能大小。在本说明 书中, 钒离子渗透性能以 100 h后硫酸溶液测的吸光度表征。
2.质子交换膜的溶胀性能测试
膜的溶胀度用膜的面积变化率 s )表征。 在室温下, 把 长方形的膜试样放入水中浸泡 12h, 测定湿膜的面积(Sw ); 再 将膜于 80Ό干燥 12h, 测定干膜的面积(Sd )。 膜的 AS按下式计 算:
AS=( Sw-Sd)/Sd*100%
3.质子交换膜的机械性能测试
根据 GB1039-79和 GB1040-79在室温环境下测试。
4.质子交换膜的面电阻测试
用交流电池内阻测试仪来测量膜的面电阻。测试时将膜夹在 渗透池的两个半池中间,两个半池夹膜面的对面均固定有一块石 墨电极板。 在两个半电池中均注入 V3'5+电解液(电解液为 1.7M V3'5+,2.6 M H2S04 )至固定高度, 械定后, 用内阻测试仪测试 两个石墨电 ¾ 之间即渗透池的内阻 R2。 而相同情况下测得无 膜时的内阻为 。 膜的有效测试面积或渗透池的开口面积为 S。 膜的面电阻为 R ( Ω,《!12 )按公式 R= (¾ - R2)*S计算。
各项性能测试的结果汇总于表 1中。
表 1
Figure imgf000019_0001
由表 1可知, ^据本发明的聚合物共混质子交换膜 (实施例 1〜10 )的机械强度、尺寸稳定性和阻钒离子渗透性能要明显好于 Nafion 115膜。
根据本发明的实施例 1~10可知, 对具有相同磺化度的同种 聚合物而言,混入可溶性聚合物的比例越高,膜的尺寸稳定性及 阻挡钒离子渗透性能越好。
此夕卜,还可以看出, 与磺化聚合物的磺化度不在本发明范围 内的对比例 1~4相比, 根据本发明的实施例 1~10中的聚合物共 混质子交换膜在混入更高比例可溶性聚合物的情况下,可以获得 更好的导电性能。 例如, 在混入 30%的可溶性聚合物的情况下, 本发明的实施例 5和 10仍能获得较高的导电性能, 而对比例 2 和 4的导电性能急剧下降, 即面电阻急剧升高。
因此,根据本发明,通过在非氟高分子材料磺化后所得到的 聚合物中混入特定种类的可溶性聚合物,可以获得综合性能优异 的聚合物共混质子交换膜,尤其是可以获得优异的机械性能、尺 寸稳定性、 阻挡钒离子渗透性能和导电性能之间的平衡。
虽然以上结合具体实施例描述了本发明,但是,本领域技术 人员在阅读前述内容之后, 能够对前面提到的方案进行改变、等 效替换或其他类型的变化。本发明的范围包括所附的权利要求及 其等效变化的所有方案。

Claims

权 利 要 求
1. 一种聚合物共混质子交换膜, 其包含可溶性聚合物和磺化聚 合物,所述可溶性聚合物选自聚砜、聚醚砜和聚偏氟乙烯中的至 少一种,所述磺化聚合物选自磺化聚醚醚酮、磺化聚醚酮醚酮酮、 磺化杂萘联苯聚醚酮、磺化酚酞型聚醚砜、磺化聚酰亚胺、磺化 聚膦腈和磺化聚苯并咪唾中的至少一种,其中所述磺化聚合物的 磺化度为 96 ~ 118%。
2.根据权利要求 1 的聚合物共混质子交换膜, 其中所述磺化聚 合物的磺化度为 98 ~ 116%, 优选 100 ~ 114%, 更优选 106 ~ 110%。
3.根据权利要求 1或 2的聚合物共混质子交换膜, 其中所述磺 化聚合物由 300〜500°C下熔融粘度在 100-550厘泊、 优选 300 ~ 450厘泊、 更优选 350〜400厘泊范围内的未磺化聚合物制成。
4.根据权利要求 1〜3 中任一项的聚合物共混质子交换膜, 其中 所述磺化聚合物通过将所述未磺化聚合物直接溶解在浓硫酸、发 烟硫酸或氯磺酸中来磺化。
5.根据权利要求 1〜4 中任一项的聚合物共混质子交换膜, 其中 所述磺化聚合物通过将所述未磺化聚合物直接溶解在浓硫酸中 来磺化 ,所述¾«酸使用量是 2〜15亳升 Mi /克未磺化聚合物, 优选 5 ~ 7 亳升浓硫^ /克未磺化聚合物。
6.根据权利要求 4或 5的聚合物共混质子交换膜, 其中所述磺 化聚合物的制备过程分为两阶段, 第一阶段是在 20 ~ 40。C下反 应 3 ~ 5小时, 第二阶段是在 70 - 100 °C下反应 1 ~ 4小时。
7.根据权利要求 6的聚合物共混质子交换膜, 其中对制得的磺 化聚合物采用水冷成型的方式, 优选通过以下过程进行水冷成 型: 将反应所得浆料倒入筛孔直径为 l ~ 4mm 的细筛中, 浆料 沿筛孔流入去离子水中, 搅拌成型, 得到奈状磺化聚合物。
8.根据权利要求 Ί的聚合物共混质子交换膜, 其中所得到的条 状磺化聚合物经洗涤除去附着硫酸后, 在 100 ~ 120 °C温度下干 燥至少 1小时, 优选至少 4小时。
9.根据权利要求 1〜8 中任一项的聚合物共混庸子交换膜, 其中 所述可溶性聚合物的重均分子量是 35000-65000 , 优选 45000-55000, 更优选 48000〜52000。
10.根据权利要求 1〜9中任一项的聚合物共混质子交换膜, 其中 所述可溶性聚合物的含量为所述膜总重量的 10 ~ 50 %, 优选 13 ~ 38 % , 更优选 18 ~ 35 %, 最优选 22 ~ 32 %。
11.根据权利要求 1-10 中任一项的聚合物共混质子交换膜, 其 中所述聚合物共混质子交换膜的厚度为 30〜200μιη, 优选 50 ~ 100μιη。
12. 一种制备聚合物共混质子交换膜的方法, 所述方法包括以下 a)将可溶性聚合物溶解在有机溶剂中, 制备成均匀的溶液, 其中所述可溶性聚合物选自聚砜、聚醚砜和聚偏氟乙烯中的至少 一种;
b)将磺化聚合物溶解在步驟 a)中所制得的溶液中,得到制膜 液,其中所述磺化聚合物选自磺化聚醚醚酮、磺化聚醚酮醚酮酮、 磺化杂萘联苯聚醚酮、磺化酚酞型聚醚砜、磺化聚酰亚胺、磺化 聚膦腈和横化聚苯并咪唑中的至少一种,以及其中所述磺化聚合 物的磺化度为 96 - 118%。
c)将所述制膜液流延成型, 经烘干和热处理后将膜揭下。
13.根据权利要求 12的方法, 其中所述方法还包括步骤 d)将所 述的膜在硫酸水溶液中浸泡一天后取出备用。
14.根据权利要求 12或 13的方法, 其中所述磺化聚合物的橫化 度为 98 ~ 116%, 优选 100 ~ 114%, 更优选 106 ~ 110%。
15.根据权利要求 12〜14中任一项的方法, 其中所述磺化聚合物 由 300~500°C下熔融粘度在 100-550厘泊、优选 300 - 450厘泊、 更优选 350 400厘泊范围内的未磺化聚合物制成。
16.根据权利要求 12〜15中任一项的方法, 其中所述磺化聚合物 通过将所述未磺化聚合物直接溶解在浓硫酸、发烟硫酸或氯磺酸 中来磺化。
17.根据权利要求 12〜16中任一项的方法, 其中所述磺化聚合物 通过将所述未磺化聚合物直接溶解在浓硫酸中来磺化,所述浓硫 酸使用量是 2-15亳升浓硫酸 /克未磺化聚合物, 优选 5 ~ 7 亳升 克未磺錄合物。
18.根据权利要求 16或 17的方 k", 其中所述磺化聚合物的制备 过程分为两阶段, 第一阶段是在 20~40。C下反应 3~5小时, 第 二阶段是在 70~100。C下反应 1~4小时。
19.根据权利要求 18的方法, 其中对制得的磺化聚合物采用水 冷成型的方式,优选通过以下过程进行水冷成型:将反应所得浆 料倒入筛孔直径为 l~4mm 的细筛中, 浆料沿筛孔流入去离子 水中, 搅拌成型, 得到条状磺化聚合物。
20.根据权利要求 19的方法, 其中所得到的条状磺化聚合物经 洗涤除去附着硫酸后, 在 100~120。C温度下干燥至少 1小时, 优选至少 4小时。
21.根据权利要求 12〜20中任一项的方法, 其中所述可溶性聚合 物的重均分子量是 35000-65000, 优选 45000-55000, 更优选
Figure imgf000023_0001
22.根据权利要求 12~21中任一项的方法, 其中所述可溶性聚合 物的含量为所述膜总重量的 10 ~ 50 %, 优选 13 - 38 %, 更优选 18-35%, 最优选 22~32%。
PCT/CN2009/001372 2009-12-04 2009-12-04 聚合物共混质子交换膜及其制备方法 WO2011066674A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
BR112012012886A BR112012012886A2 (pt) 2009-12-04 2009-12-04 Membrana de mistura polimérica de troca de próton e processo de preparação da mesma
EP09833907.0A EP2508554A4 (en) 2009-12-04 2009-12-04 POLYMERMAL PROTEIN REPLACEMENT MEMBRANE AND METHOD FOR THE PRODUCTION THEREOF
PCT/CN2009/001372 WO2011066674A1 (zh) 2009-12-04 2009-12-04 聚合物共混质子交换膜及其制备方法
CA2784974A CA2784974A1 (en) 2009-12-04 2009-12-04 Polymer blend proton exchange membrane and preparation method thereof
KR1020127015761A KR20120114271A (ko) 2009-12-04 2009-12-04 폴리머 혼합 양성자 교환막 및 이의 제조방법
AU2009324261A AU2009324261B2 (en) 2009-12-04 2009-12-04 Polymer blend proton exchange membrane and method for manufacturing the same
MX2012006266A MX2012006266A (es) 2009-12-04 2009-12-04 Membrana de cambio de protones, de mezcla polimerica y metodo para su preparacion.
CN2009801626645A CN102639614A (zh) 2009-12-04 2009-12-04 聚合物共混质子交换膜及其制备方法
JP2011543962A JP5599819B2 (ja) 2009-12-04 2009-12-04 ポリマーブレンドプロトン交換膜及びこれを製造する方法
US12/821,961 US8486579B2 (en) 2009-12-04 2010-06-23 Polymer blend proton exchange membrane and method for manufacturing the same
CL2012001427A CL2012001427A1 (es) 2009-12-04 2012-05-31 Membrana de intercambio de protones de mezcla de polimeros, que comprende un polimero soluble seleccionado del grupo que consiste de polisulfona, polietersulfona y floruro de polivinilideno, y un polimero sulfonatado con un grado de sulfonatacion esta entre 96 a 118%; y metodo para fabricar dicha membrana
US13/934,046 US10923754B2 (en) 2009-12-04 2013-07-02 Polymer blend proton exchange membrane and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/001372 WO2011066674A1 (zh) 2009-12-04 2009-12-04 聚合物共混质子交换膜及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/821,961 Continuation US8486579B2 (en) 2009-12-04 2010-06-23 Polymer blend proton exchange membrane and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2011066674A1 true WO2011066674A1 (zh) 2011-06-09

Family

ID=44082356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001372 WO2011066674A1 (zh) 2009-12-04 2009-12-04 聚合物共混质子交换膜及其制备方法

Country Status (11)

Country Link
US (2) US8486579B2 (zh)
EP (1) EP2508554A4 (zh)
JP (1) JP5599819B2 (zh)
KR (1) KR20120114271A (zh)
CN (1) CN102639614A (zh)
AU (1) AU2009324261B2 (zh)
BR (1) BR112012012886A2 (zh)
CA (1) CA2784974A1 (zh)
CL (1) CL2012001427A1 (zh)
MX (1) MX2012006266A (zh)
WO (1) WO2011066674A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219532A (zh) * 2013-04-02 2013-07-24 清华大学深圳研究生院 液流电池用磺化聚醚醚酮基共混离子交换膜及其制备方法
CN107899422A (zh) * 2017-11-09 2018-04-13 常州大学 一种共混离子交换膜的制备和应用方法
CN109309241A (zh) * 2017-07-26 2019-02-05 北京普能世纪科技有限公司 聚合物共混质子交换膜及其制备方法
CN111393695A (zh) * 2020-05-21 2020-07-10 西南科技大学 一种自交联磺化聚酰亚胺膜的制备方法
US10923754B2 (en) 2009-12-04 2021-02-16 Beijing Pu Neng Century Sci & Tech Co. Ltd. Polymer blend proton exchange membrane and method for manufacturing the same

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820476B (zh) * 2011-12-29 2015-08-05 马志啟 一种质子交换膜在铁-铬系液相流体电池中的应用
US9559374B2 (en) 2012-07-27 2017-01-31 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring large negative half-cell potentials
US8691413B2 (en) 2012-07-27 2014-04-08 Sun Catalytix Corporation Aqueous redox flow batteries featuring improved cell design characteristics
US10164284B2 (en) 2012-07-27 2018-12-25 Lockheed Martin Energy, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US9865893B2 (en) 2012-07-27 2018-01-09 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring optimal membrane systems
US9692077B2 (en) 2012-07-27 2017-06-27 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising matched ionomer membranes
US9768463B2 (en) 2012-07-27 2017-09-19 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries comprising metal ligand coordination compounds
US8753761B2 (en) 2012-07-27 2014-06-17 Sun Catalytix Corporation Aqueous redox flow batteries comprising metal ligand coordination compounds
US9382274B2 (en) 2012-07-27 2016-07-05 Lockheed Martin Advanced Energy Storage, Llc Aqueous redox flow batteries featuring improved cell design characteristics
US9899694B2 (en) 2012-07-27 2018-02-20 Lockheed Martin Advanced Energy Storage, Llc Electrochemical energy storage systems and methods featuring high open circuit potential
EP3021395A4 (en) * 2013-07-09 2017-02-08 JSR Corporation Electrolyte membrane, membrane-electrode assembly, and solid polymer fuel cell
SI3154667T1 (sl) 2014-06-16 2020-07-31 Core Energy Recovery Solutions Inc. Zmes membran za transport vodne pare in postopki za pripravo teh
MX2017004888A (es) 2014-11-26 2017-07-27 Lockheed Martin Advanced Energy Storage Llc Complejos de metales de catecolatos sustituidos y baterias de flujo redox que los contienen.
US10253051B2 (en) 2015-03-16 2019-04-09 Lockheed Martin Energy, Llc Preparation of titanium catecholate complexes in aqueous solution using titanium tetrachloride or titanium oxychloride
CN105646174B (zh) * 2016-01-27 2017-08-25 吉林大学 双四苯甲烷取代封端单体、制备方法及在制备封端型聚醚砜材料和后磺化处理中的应用
US10316047B2 (en) 2016-03-03 2019-06-11 Lockheed Martin Energy, Llc Processes for forming coordination complexes containing monosulfonated catecholate ligands
US10644342B2 (en) 2016-03-03 2020-05-05 Lockheed Martin Energy, Llc Coordination complexes containing monosulfonated catecholate ligands and methods for producing the same
US9938308B2 (en) 2016-04-07 2018-04-10 Lockheed Martin Energy, Llc Coordination compounds having redox non-innocent ligands and flow batteries containing the same
CN105932317B (zh) * 2016-04-22 2019-01-29 深圳市益达兴科技股份有限公司 一种钒电池用离子交换膜的制备方法
US10343964B2 (en) 2016-07-26 2019-07-09 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10377687B2 (en) 2016-07-26 2019-08-13 Lockheed Martin Energy, Llc Processes for forming titanium catechol complexes
US10603639B2 (en) * 2016-09-02 2020-03-31 Hossein Beydaghi Nanocomposite blend membrane
US10065977B2 (en) 2016-10-19 2018-09-04 Lockheed Martin Advanced Energy Storage, Llc Concerted processes for forming 1,2,4-trihydroxybenzene from hydroquinone
CN106543458B (zh) * 2016-11-08 2019-10-25 辽宁石油化工大学 一种基于反相胶束构筑oh-传输通道的阴离子膜制备方法
US10930937B2 (en) 2016-11-23 2021-02-23 Lockheed Martin Energy, Llc Flow batteries incorporating active materials containing doubly bridged aromatic groups
US10497958B2 (en) 2016-12-14 2019-12-03 Lockheed Martin Energy, Llc Coordinatively unsaturated titanium catecholate complexes and processes associated therewith
US10741864B2 (en) 2016-12-30 2020-08-11 Lockheed Martin Energy, Llc Aqueous methods for forming titanium catecholate complexes and associated compositions
US10320023B2 (en) 2017-02-16 2019-06-11 Lockheed Martin Energy, Llc Neat methods for forming titanium catecholate complexes and associated compositions
CN106898811B (zh) * 2017-05-08 2019-07-23 北京化工大学 一种具有双重导离子网络的固态电解质及其制备方法
CN108493388A (zh) * 2018-05-11 2018-09-04 合肥国轩高科动力能源有限公司 一种钒电池用阳离子交换膜及其制备方法
CN108666602B (zh) * 2018-05-17 2020-07-24 北京化工大学 一种负载取代咪唑单元的耐碱性阴离子交换膜及其制备方法
CN110433670A (zh) * 2019-08-15 2019-11-12 温州大学 高水通量磺化聚醚砜-聚酰胺复合膜及其制备方法
US11183700B2 (en) 2019-09-16 2021-11-23 Saudi Arabian Oil Company Ion exchange membrane for a redox flow battery
CN112290085B (zh) * 2020-10-27 2022-02-01 四川东为氢源科技有限公司 复合固态电解质及其制备方法
CN112952160A (zh) * 2021-01-29 2021-06-11 上海神力科技有限公司 一种确定膜含水量与膜内阻之间关系的方法
CN113437435B (zh) * 2021-06-23 2023-05-26 江苏星源新材料科技有限公司 涂覆浆料、涂覆隔膜及其制备方法
CN114597463A (zh) * 2022-03-11 2022-06-07 南京工业大学 一种基于微孔骨架共混膜制备方法和用途
CN115566238B (zh) * 2022-10-20 2023-08-22 重庆星际氢源科技有限公司 一种具有高抗硬水能力的复合质子交换膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312839A (zh) * 1998-08-13 2001-09-12 纽约州立大学研究基金会 用于性能改进的聚合物电化学电池的磺化聚苯醚基共混膜
US20070231556A1 (en) * 2006-03-07 2007-10-04 Korea Advanced Institute Of Science And Technology Method for manufacturing composite membrane for polymer electrolyte fuel cell
US20080241626A1 (en) * 2007-03-29 2008-10-02 Korea Advanced Institute Of Science And Technology Polymer blend membranes for fuel cells and fuel cells comprising the same
CN101575446A (zh) * 2008-05-08 2009-11-11 现代自动车株式会社 用于燃料电池的聚合mea

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0041780A1 (en) * 1980-06-10 1981-12-16 Imperial Chemical Industries Plc Sulphonated polyaryletherketones
GB2216134B (en) * 1988-03-29 1992-08-12 Paterson Candy Int Membranes and methods of preparation thereof
DE4422158A1 (de) * 1994-06-24 1996-01-04 Hoechst Ag Homogene Polymerlegierungen auf der Basis von sulfonierten, aromatischen Polyetherketonen
US5725967A (en) 1995-08-15 1998-03-10 Micron Communications, Inc. Battery container and method of manufacture
GB9526577D0 (en) 1995-12-28 1996-02-28 Nat Power Plc Method for the fabrication of electrochemical cells
US6248469B1 (en) * 1997-08-29 2001-06-19 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
DE19754305A1 (de) * 1997-12-08 1999-06-10 Hoechst Ag Verfahren zur Herstellung einer Membran zum Betrieb von Brennstoffzellen und Elektrolyseuren
DE19817374A1 (de) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Engineering-Ionomerblends und Engineering-Ionomermembranen
DE19847782A1 (de) * 1998-10-16 2000-04-20 Aventis Res & Tech Gmbh & Co Verfahren zum Betrieb einer Brennstoffzelle
RU2214653C2 (ru) 1999-07-01 2003-10-20 Сквиррел Холдингз Лтд. Разделенный мембранами биполярный многокамерный электрохимический реактор
JP3820888B2 (ja) * 2001-01-31 2006-09-13 Jsr株式会社 スルホン酸基を有するポリエーテル系共重合体およびプロトン伝導膜
US20020160272A1 (en) * 2001-02-23 2002-10-31 Kabushiki Kaisha Toyota Chuo Process for producing a modified electrolyte and the modified electrolyte
CA2473907A1 (en) * 2002-01-23 2003-07-31 Polyfuel, Inc. Acid-base proton conducting polymer blend membrane
US20050053818A1 (en) * 2002-03-28 2005-03-10 Marc St-Arnaud Ion exchange composite material based on proton conductive functionalized inorganic support compounds in a polymer matrix
DE10220818A1 (de) * 2002-05-10 2003-11-20 Celanese Ventures Gmbh Verfahren zur Herstellung einer gepfropften Polymerelektrolytmembran und deren Anwendung in Brennstoffzellen
DE10309135A1 (de) * 2003-02-28 2004-09-09 Basf Ag Verfahren zur Herstellung eines zum Protonenaustausch befähigten Polymersystems auf der Basis von Polyaryletherketonen
JP4828112B2 (ja) * 2004-10-22 2011-11-30 Necトーキン株式会社 プロトン伝導性高分子材料並びにこれを用いた固体電解質膜、電気化学セル及び燃料電池
JP2006193709A (ja) * 2004-12-17 2006-07-27 Toyobo Co Ltd 複合イオン交換膜およびその製造方法
US7598337B2 (en) * 2005-12-20 2009-10-06 General Electric Company Mixed-sulfonation block copolymers
WO2008095509A1 (en) * 2007-02-05 2008-08-14 Redstack B.V. Reinforced ion-exchange membrane comprised of a support, and laminated thereon, a polymeric film
DE602008002572D1 (de) * 2007-04-05 2010-10-28 Advent Technologies Protonen-leitfähige aromatische polyether-copolymere mit haupt- und seitenketten-pyridingruppen sowiennstoffzellen
CN100468847C (zh) * 2007-04-20 2009-03-11 北京交通大学 一种抗降解燃料电池用多层阻醇复合膜及其制备方法
US8034857B2 (en) * 2007-07-12 2011-10-11 Sabic Innovative Plastics Ip B.V. Polyetherimide/polyphenylene ether sulfone blends
KR20120114271A (ko) 2009-12-04 2012-10-16 프루덴트 에너지 인코포레이티드 폴리머 혼합 양성자 교환막 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1312839A (zh) * 1998-08-13 2001-09-12 纽约州立大学研究基金会 用于性能改进的聚合物电化学电池的磺化聚苯醚基共混膜
US20070231556A1 (en) * 2006-03-07 2007-10-04 Korea Advanced Institute Of Science And Technology Method for manufacturing composite membrane for polymer electrolyte fuel cell
US20080241626A1 (en) * 2007-03-29 2008-10-02 Korea Advanced Institute Of Science And Technology Polymer blend membranes for fuel cells and fuel cells comprising the same
CN101575446A (zh) * 2008-05-08 2009-11-11 现代自动车株式会社 用于燃料电池的聚合mea

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GAO,PING ET AL.: "Study on the Preparation and Properties of Blend Membranes of Sulfonated Polyetheretherketone and polyethersulfone", CHEMICAL INDUSTRY TIMES, vol. 20, no. 10, October 2006 (2006-10-01), XP008166575 *
See also references of EP2508554A4 *
SONG, WENSHENG ET AL.: "Study on Conductivity and Mass Transfer of Blend Membranes of Sulfonated polyetherether ketone and polysulfone", MEMBRANE SCIENCE AND TECHNOLOGY, vol. 24, no. 3, June 2004 (2004-06-01), pages 15 - 19, XP008166550 *
YANG,WUBING ET AL.: "Preparation and Characterization of Poly(ether sulfone)/Sulfonated Poly(ether ether ketone) Blend Membranes", CHINA SYNTHETIC RESIN AND PLASTICS, vol. 24, no. 3, 2007, pages 51 - 54, XP008166551 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10923754B2 (en) 2009-12-04 2021-02-16 Beijing Pu Neng Century Sci & Tech Co. Ltd. Polymer blend proton exchange membrane and method for manufacturing the same
CN103219532A (zh) * 2013-04-02 2013-07-24 清华大学深圳研究生院 液流电池用磺化聚醚醚酮基共混离子交换膜及其制备方法
CN109309241A (zh) * 2017-07-26 2019-02-05 北京普能世纪科技有限公司 聚合物共混质子交换膜及其制备方法
CN107899422A (zh) * 2017-11-09 2018-04-13 常州大学 一种共混离子交换膜的制备和应用方法
CN107899422B (zh) * 2017-11-09 2021-01-29 常州大学 一种共混离子交换膜的制备和应用方法
CN111393695A (zh) * 2020-05-21 2020-07-10 西南科技大学 一种自交联磺化聚酰亚胺膜的制备方法

Also Published As

Publication number Publication date
US20130295487A1 (en) 2013-11-07
KR20120114271A (ko) 2012-10-16
JP5599819B2 (ja) 2014-10-01
AU2009324261A1 (en) 2011-06-23
CA2784974A1 (en) 2011-06-09
JP2012506945A (ja) 2012-03-22
CL2012001427A1 (es) 2013-02-15
MX2012006266A (es) 2012-06-19
CN102639614A (zh) 2012-08-15
EP2508554A4 (en) 2013-11-20
US10923754B2 (en) 2021-02-16
BR112012012886A2 (pt) 2017-10-03
AU2009324261B2 (en) 2011-08-11
US20110136016A1 (en) 2011-06-09
US8486579B2 (en) 2013-07-16
EP2508554A1 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2011066674A1 (zh) 聚合物共混质子交换膜及其制备方法
CN110336052B (zh) 一种混合基质型阳离子交换膜及其制备方法
CN105131289B (zh) 一种新型磺化聚苯并咪唑共聚物、交联膜、制备方法及其应用
CN104659395B (zh) 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法
US10854890B2 (en) Cross-linked porous membrane from hydrolysis of ester-containing side chain and preparation method thereof
CN102146204A (zh) 一种酸碱交联质子交换膜及其制备
Mu et al. Novel ether-free membranes based on poly (p-terphenylene methylimidazole) for vanadium redox flow battery applications
CN104098896A (zh) 一种燃料电池用芳香族磺化聚苯并咪唑质子交换膜及其制备方法
Jiang et al. Improvement of proton conductivity and efficiency of SPEEK-based composite membrane influenced by dual-sulfonated flexible comb-like polymers for vanadium flow battery
Li et al. Stable covalent cross-linked polyfluoro sulfonated polyimide membranes with high proton conductance and vanadium resistance for application in vanadium redox flow batteries
CN107383404A (zh) 一种含氟支化磺化聚酰亚胺质子导电膜的制备方法
Zhang et al. Covalent/ionic co-crosslinking constructing ultra-densely functionalized ether-free poly (biphenylene piperidinium) amphoteric membranes for vanadium redox flow batteries
Che et al. The effect of grafted alkyl side chains on the properties of poly (terphenyl piperidinium) based high temperature proton exchange membranes
CN103319741B (zh) 一种磺化聚酰亚胺/二氧化钛复合质子导电膜的制备方法
CN102093585B (zh) 交联型杂环聚芳醚碱性电解质膜及其制备方法
CN107903416B (zh) 含二氮杂萘酮结构聚芳醚酮两性离子交换膜及其制备方法
Zhang et al. Synergistic effect and ionic conductivity of crosslinked imidazole ionic liquids and piperidine cations on poly (biphenyl-piperidine) anion exchange membranes
CN109309241A (zh) 聚合物共混质子交换膜及其制备方法
CN114883618B (zh) 一种磺化聚醚醚酮基质子交换膜及其制备方法与应用
KR100752072B1 (ko) 연료전지용 유기-무기 복합체 고분자 전해질막 및 이의제조방법
CN107546399B (zh) 主链与离子交换基团分离的离子交换膜及其制备和应用
CN102195060B (zh) 一种质子交换膜燃料电池的制备方法
CN112447994B (zh) 一种含有氯化聚氯乙烯的离子传导膜在液流电池中的应用
CN109103483B (zh) 一种用于全钒液流电池的两性离子膜
CN111048813B (zh) 一种铁铬液流电池用有机-无机复合膜及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980162664.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 586382

Country of ref document: NZ

ENP Entry into the national phase

Ref document number: 2011543962

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2009833907

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009833907

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2784974

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012001427

Country of ref document: CL

Ref document number: MX/A/2012/006266

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127015761

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1543/MUMNP/2012

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012012886

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012012886

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120529