CN102195060B - 一种质子交换膜燃料电池的制备方法 - Google Patents

一种质子交换膜燃料电池的制备方法 Download PDF

Info

Publication number
CN102195060B
CN102195060B CN2010101221183A CN201010122118A CN102195060B CN 102195060 B CN102195060 B CN 102195060B CN 2010101221183 A CN2010101221183 A CN 2010101221183A CN 201010122118 A CN201010122118 A CN 201010122118A CN 102195060 B CN102195060 B CN 102195060B
Authority
CN
China
Prior art keywords
exchange membrane
proton exchange
hour
film
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101221183A
Other languages
English (en)
Other versions
CN102195060A (zh
Inventor
王立全
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2010101221183A priority Critical patent/CN102195060B/zh
Publication of CN102195060A publication Critical patent/CN102195060A/zh
Application granted granted Critical
Publication of CN102195060B publication Critical patent/CN102195060B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)

Abstract

六元环SPI质子交换膜燃料电池堆。该电池堆关键技术以磺化聚酰亚胺膜(简称SPI)为核心制备质子交换膜,其方法是将磺化的化合物作为聚合单体进行聚合,调整磺酸基团浓度,控制磺酸基团在聚酰亚胺分子链中的位置,提高质子电导率。该电池堆属清洁能源,是替代传统能源的最佳选择,可广泛用于国防、航天、汽车、工厂、医疗、家电等领域。

Description

一种质子交换膜燃料电池的制备方法
所属技术领域
本发明涉及一种通过质子交换膜化学反应产生电能的燃料电池堆装置。质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,简称PEMFC)采用可传导离子的聚合膜作为电解质,故也叫聚合物电解质燃料电池(PEFC)、固体聚合物燃料电池(SPFC)或固体聚合物电解质燃料电池(SPEFC)。与其它种类的燃料电池相比,它具有输出比功率高、操作温度低、腐蚀性低和寿命长等优点。 
背景技术
PEMFC核心部件是质子交换膜,在电池中充当固态电解质,阳极室与阴极室的隔膜及电子绝缘体,传递反应离子及水。目前,在PEMFC中广泛采用的质子交换膜是全氟磺酸膜(以美国Dupont公司的Nafion膜为典型代表),该膜虽具有较好的热稳定性、出色的抗电化学氧化性、良好的机械性能及较高的电导率等优点,但由于其甲醇渗透率较高、在高温或湿度较低时电导率明显下降、制备工艺复杂、价格昂贵,使其在实际应用中受到限制,不能满足未来高效率、高能量密度电池的要求。为克服上述缺点,诸多研究机构开始研究开发新型的质子交换膜,如磺化聚酰亚胺膜、磺化聚砜膜、磺化聚苯硫醚膜、磺化聚醚醚酮膜、磺化聚苯并咪唑膜和磺化聚磷腈膜等。 
发明内容
本发明是以磺化聚酰亚胺膜(Sulfonated Polyimide Membrane简称:SPI)为核心制备六元环质子交换膜,然后生产质子交换膜燃料电池堆。其所制备的六元环SPI膜相对五元环SPI膜存在的抗水解能力差,短时间内容易被水解而破坏,变得很脆而无法使用等问题,六元环SPI膜将以磺化的化合物作为聚合单体进行聚合,先磺化后聚合可以调整磺酸基团的浓度,控制磺酸基团在聚酰亚胺分子链中的位置,采用NTDA为二酐单体,用已磺化的二胺单体将磺酸基团引入到聚酰亚胺分析链中。使之形成侧链型磺化聚酰亚胺,其电导率与吸水率曲线与Nafion类 似,分子链柔性大,二胺单体碱性高,化学性能更加稳定,抗水解能力强。 
本发明解决其技术问题所采用的技术方案:由于本发明是以磺化聚酰亚胺膜(Sulfonated Polyimide Membrane简称SPI)为核心制备质子交换膜,然后生产质子交换膜燃料电池,其特征是:与五元环SPI膜相比,五元环SPI抗水解能力差,短时间容易被水解而破坏,变得很脆而无法使用;本发明六元环SPI膜由于改变化学合成方式和链式结构从而化学性能更加稳定,抗水解能力强。具体方案为:①.改变化学合成方式。将磺酸基因引入到聚酰亚胺中的方式其传统方法是将聚酰亚胺直接进行磺化,然而将聚酰亚胺在强酸性条件下直接进行磺化易导致聚酰亚胺主链断裂,不易形成膜;本发明是将以磺化的化合物作为聚合单体进行聚合,先磺化后聚合可以调整磺酸基团的浓度,控制磺酸基团在聚酰亚胺分子链中的位置,采用NTDA为二酐单体,用已磺化的二胺单体将磺酸基团引入到聚酰亚胺分析链中。在SPI的合成过程中,磺化度可以通过调整磺化二胺与非磺化二胺的比例准确控制,通过实验膜的磺化度超过33%时,就具有较高的质子电导率,与Nafion膜在同一数量级,当磺化程度达到50%时,其质子传导率可达0.031S/cm,当磺化度为100%,质子传导率为0.072S/cm,相当于Nafion的84%。②.改变链式结构,磺酸基团在主链中的位置会影响质子交换膜的性质,尤其是质子电导率。将磺酸基团位于聚酰亚胺主链上的磺化聚酰亚胺称为主链型的,相应地,将磺酸基团位于聚酰亚胺侧链上的称为侧链型。磺酸基团连在聚合物的主链上,磺化二胺单体4,4’-二氨基二苯醚-2,2’-二磺酸和9,9双(4-氨基苯基)芴-2,7-二磺酸的磺酸基团直接连在苯环上,会产生均一的相形态,没有Nafion膜所具有易于质子通过的离子簇通道,因此在相对湿度低于100%时,其磺化聚酰亚胺的质子电导率低于Nafion;而磺酸基团连在聚合物的侧链上,磺化二胺体2,2’-双(3-磺基丙氧基)联苯胺(2,2’-BSPB)和3-(2’,4’-二氨基苯氧基)丙烷磺酸合成的磺化的聚酰亚胺在聚合物中会产生离子簇作用相同的分离结构,易于质子通过,因此可以提高质子电导率,其磺化聚酰亚胺的质子电导率高于Nafion。 
本发明的有益效果是:以六元环SPI膜制备的质子交换膜燃料电池堆较之传统膜具有性能稳定、工艺简单、价格低廉,便于推广和使用。传统膜为全氟磺酸膜(以美国Dupont公司的Nafion膜为典型代表),该膜具有较好的热稳定性、出 色的抗电化学氧化性、良好的机械性能和较高的电导率。然而,由于其甲醇渗透率较高、在高温或湿度较低时电导率明显下降、制备工艺复杂、价格昂贵,使其应用受到限制,不能满足未来高效率、高能量密度电池的要求。为了克服这些缺点,本发明以六元环SPI膜制备的质子交换膜燃料电池堆,具有很强的化学惰性,不溶于任何已知的有机溶剂,不会熔化、烧焦,具有耐高、低温性能,良好的电学能力,SPI的磺酸基图分解温度达到270℃,溶胀率则表现出明显的各向异性。SPI-25膜室温下的电导率可达6.0×10-3/cm,接近相同条件下的Nafion^R117膜的质子电导率(9.8×10-3/cm),高温及湿度较低时电导率稳定,制备工艺简单,价格低廉,利于质子交换膜燃料电池的推广及普及。 
附图说明
附图给出了本发明的磺化聚酰亚胺膜的制备及质子交换膜燃料电池堆的结构图: 
图1:六元环磺化聚酰亚胺的合成过程
图2:六元环磺化聚酰亚胺的成膜过程 
图3:六元环SPI质子交换膜燃料电池堆 
具体实施方式
本发明重点技术是磺化聚酰亚胺膜的制备。在图2中,使用装有聚四氟乙烯搅拌系统、惰性气体入口、样品入口的250ml反应器被用来实施聚酰亚胺缩合反应,具体实施过程为①将其放入油温浴以不断维持反应温度;②向反应器装入二氨基苯甲酸并加入N-甲基吡咯烷酮以作为溶剂;③完全溶解之后,向溶液中慢慢加入二苯酮四羧酸二酐粉末;④反应持续大约一小时之后,再加入氧化二苯胺;⑤反应持续三小时后,得到深棕色粘稠溶液;⑥向该溶液中加入N,N-二(2-羟乙基)-2-氨基乙磺酸粉末,在N-甲基吡咯烷酮中的溶液需在60~90℃保持1小时;⑦将溶液浇注在玻璃板上,在烘箱中依次在110℃下老化2小时,在150℃下老化1小时,在200℃下老化1小时,在250℃下老化1小时;⑧在真空箱中60℃下干燥24小时,得到透明的磺化聚酰亚胺膜。 

Claims (1)

1. 一种质子交换膜燃料电池的制备方法,其是以磺化酰亚胺膜为核心制备六元环质子交换膜,然后生产质子交换膜燃料电池,所述磺化酰亚胺膜如下制备:使用装有聚四氟乙烯搅拌系统、惰性气体入口、样品入口的250ml反应器被用来实施聚酰亚胺缩合反应,具体实施过程为①将其放入油温浴以不断维持反应温度;②向反应器装入二氨基苯甲酸并加入N-甲基吡咯烷酮以作为溶剂;③完全溶解后,向溶液中慢慢加入二苯酮四羧酸二酐粉末;④反应持续大约一小时之后,再加入氧化二苯胺;⑤反应持续三小时后,得到深棕色粘稠溶液;⑥向该溶液中加入N, N-二(2-羟乙基)-2-氨基乙磺酸粉末,在N-甲基吡咯烷酮中的溶液需在60-90℃保持1小时;⑦将溶液浇注在玻璃板上,在烘箱中依次在110℃下老化2小时,在150℃下老化1小时,在200℃下老化1小时,在250℃下老化1小时;⑧在真空箱中60℃下干燥24小时,得到透明的磺化酰亚胺膜。
CN2010101221183A 2010-03-11 2010-03-11 一种质子交换膜燃料电池的制备方法 Expired - Fee Related CN102195060B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101221183A CN102195060B (zh) 2010-03-11 2010-03-11 一种质子交换膜燃料电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101221183A CN102195060B (zh) 2010-03-11 2010-03-11 一种质子交换膜燃料电池的制备方法

Publications (2)

Publication Number Publication Date
CN102195060A CN102195060A (zh) 2011-09-21
CN102195060B true CN102195060B (zh) 2013-06-19

Family

ID=44602738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101221183A Expired - Fee Related CN102195060B (zh) 2010-03-11 2010-03-11 一种质子交换膜燃料电池的制备方法

Country Status (1)

Country Link
CN (1) CN102195060B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094587B (zh) * 2013-01-21 2015-04-22 常州大学 耐高温磺化聚酰亚胺-磷酸锆质子交换复合膜的制备方法
CN105470544B (zh) * 2015-12-16 2018-08-14 常州大学 一种磺化聚酰亚胺/磷酸-磺基苯膦酸锆质子交换复合膜原位合成方法
CN112838252A (zh) * 2019-11-25 2021-05-25 嘉应学院 一种燃料电池用高质子电导率的质子交换膜及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1070204C (zh) * 1995-01-18 2001-08-29 中国科学院长春应用化学研究所 聚酰亚胺及其前体溶液的制备方法
CN1253491C (zh) * 2004-11-05 2006-04-26 中国科学院长春应用化学研究所 磺化聚酰亚胺质子传输膜的合成方法
CN100344670C (zh) * 2005-09-09 2007-10-24 中国科学院长春应用化学研究所 磺化聚苯型质子传输膜材料及其合成方法
CN101343360B (zh) * 2008-08-26 2010-07-14 上海应用技术学院 一种低溶胀磺化聚酰亚胺质子交换膜及其制备方法

Also Published As

Publication number Publication date
CN102195060A (zh) 2011-09-21

Similar Documents

Publication Publication Date Title
US10923754B2 (en) Polymer blend proton exchange membrane and method for manufacturing the same
Ye et al. Synthesis and characterization of new sulfonated polyimides as proton-exchange membranes for fuel cells
Einsla et al. Sulfonated naphthalene dianhydride based polyimide copolymers for proton-exchange-membrane fuel cells: II. Membrane properties and fuel cell performance
CN104659395B (zh) 一种质子交换膜燃料电池用有机‑无机复合质子交换膜及其制备方法
CN105131289B (zh) 一种新型磺化聚苯并咪唑共聚物、交联膜、制备方法及其应用
Yao et al. Perylene-based sulfonated aliphatic polyimides for fuel cell applications: Performance enhancement by stacking of polymer chains
Mu et al. Novel ether-free membranes based on poly (p-terphenylene methylimidazole) for vanadium redox flow battery applications
Seo et al. Preparation and characterization of sulfonated poly (tetra phenyl ether ketone sulfone) s for proton exchange membrane fuel cell
He et al. A novel fluorinated acid-base sulfonated polyimide membrane with sulfoalkyl side-chain for vanadium redox flow battery
Meng et al. Semi‐interpenetrating Network Membrane from Polyethyleneimine‐Epoxy Resin and Polybenzimidazole for HT‐PEM Fuel Cells
WO2021043009A1 (zh) 一种结晶性磺化聚酰亚胺嵌段共聚物质子交换膜及其制备方法和应用
CN102195060B (zh) 一种质子交换膜燃料电池的制备方法
Cai et al. Preparation and properties of sulfonated poly (aryl ether sulfone) s proton exchange membranes based on amino graft for vanadium flow battery
KR20140017213A (ko) 카르도 구조를 갖는 황산화 고분자 전해질막 및 이를 포함하는 연료전지
CN103642032B (zh) 含苯并噁唑环侧基的支化磺化聚芳醚酮、制备方法及其应用
KR100654244B1 (ko) 연료전지용 고분자 전해질막, 및 이를 이용한 막-전극접합체, 연료전지
WO2007094561A1 (en) High molocular electrolyte membrane for fuel cell, and membrane-electrode assembly thereby, fuel cell
CN111718505B (zh) 全钒液流电池用磺化聚醚醚酮/聚偏氟乙烯复合离子交换膜及其制备方法
CN111393695B (zh) 一种自交联磺化聚酰亚胺膜的制备方法
Liu et al. Brønsted acid–base polymer electrolyte membrane based on sulfonated poly (phenylene oxide) and imidazole
Seo et al. Preparation and properties of phosphoric acid doped sulfonated poly (tetra phenyl phthalazine ether sulfone) copolymers for high temperature proton exchange membrane application
CN113912887A (zh) 一种ptfe亲水性多孔离子选择膜复合材料的制备方法
KR100900515B1 (ko) 그라프트 고분자막, 이를 이용한 고분자 전해질막 제조방법 및 고온 운전용 고분자 연료전지
KR101286265B1 (ko) 술폰화 폴리술폰케톤 공중합체, 이를 포함하는 고분자전해질, 및 이의 제조방법
Zhou et al. Poly (vinyl alcohol) modified by KE reactive dyes as a novel proton‐exchange membrane for potential fuel‐cell applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130619