WO2011065166A1 - リフローSnめっき部材 - Google Patents

リフローSnめっき部材 Download PDF

Info

Publication number
WO2011065166A1
WO2011065166A1 PCT/JP2010/068901 JP2010068901W WO2011065166A1 WO 2011065166 A1 WO2011065166 A1 WO 2011065166A1 JP 2010068901 W JP2010068901 W JP 2010068901W WO 2011065166 A1 WO2011065166 A1 WO 2011065166A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflow
layer
plating
less
plane
Prior art date
Application number
PCT/JP2010/068901
Other languages
English (en)
French (fr)
Inventor
直文 前田
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to US13/512,486 priority Critical patent/US8865319B2/en
Priority to EP10833013.5A priority patent/EP2495354A4/en
Priority to CN201080054205.8A priority patent/CN102666938B/zh
Priority to KR1020127013324A priority patent/KR101214421B1/ko
Publication of WO2011065166A1 publication Critical patent/WO2011065166A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • H01R13/035Plated dielectric material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9265Special properties
    • Y10S428/929Electrical contact feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12715Next to Group IB metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12722Next to Group VIII metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/1291Next to Co-, Cu-, or Ni-base component

Definitions

  • the present invention relates to a reflow Sn plated member suitably used for conductive spring materials such as connectors, terminals, relays, switches, etc., and having a reflow Sn layer formed on the surface of a substrate made of Cu or a Cu-based alloy.
  • a plated member plated with a copper alloy is used for conductive parts such as connectors, terminals, and relays.
  • an Sn plated material obtained by plating Sn with a copper alloy is frequently used for automotive connectors.
  • In-vehicle connectors tend to be multipolar due to an increase in in-vehicle electrical components, and the insertion / extraction force increases when the connectors are fitted.
  • the connector is fitted manually, there is a problem that the work load increases.
  • the Sn plating material does not generate whiskers and that solder wettability and contact resistance do not easily deteriorate in a high temperature environment.
  • the plated parts are stored for a long time in high-temperature and high-humidity areas overseas, or heated inside the mounting furnace during soldering, resulting in deterioration of solder wettability and contact resistance.
  • the Sn plating material is exposed to a high temperature such as in an engine room of an automobile, copper may diffuse from the copper base material into the Sn plating layer, or the Sn plating layer may be oxidized to deteriorate the contact resistance.
  • an Sn plating material in which the orientation index of the (321) plane in the Sn plating layer is controlled to 2.5 or more and 4.0 or less and whisker generation in the Sn plating layer is suppressed is disclosed (patent) Reference 1). Further, a reflow Sn plating material is disclosed in which a Ni layer is provided between the Sn plating layer and the copper base material so that the copper does not diffuse from the copper base material even if the Sn plating material is exposed to a high temperature (Patent Document). 2).
  • a reflow Sn plating material is disclosed in which the average roughness of the Cu—Sn alloy phase that appears when the Sn plating layer is dissolved is controlled to 0.05 to 0.3 ⁇ m to improve the insertion / removability and heat resistance. (See Patent Document 3). Further, an Sn plating material is disclosed in which the orientation index of the (101) plane in the Sn plating layer without reflowing is controlled to 2.0 or less, and the press punchability and whisker resistance are improved (see Patent Document 4). .
  • the inventors have succeeded in reducing the insertion / extraction force by controlling the orientation of the surface of the reflow Sn layer formed on the surface of the substrate. That is, in the reflow Sn plated member of the present invention, the reflow Sn layer is formed on the surface of the substrate made of Cu or a Cu-based alloy, and the orientation index of the (101) plane of the surface of the reflow Sn layer is 2.0 or more and 5 0.0 or less.
  • the reflow Sn layer is preferably formed by forming a Cu plating layer on the surface of the substrate and reflowing the Sn plating layer formed on the surface of the Cu plating layer. It is preferable that a Ni layer is formed between the reflow Sn layer and the base material.
  • a reflow Sn-plated member that suppresses whisker generation and reduces insertion / extraction force can be obtained.
  • % means “% by mass” unless otherwise specified.
  • a reflow Sn layer is formed on the surface of a substrate made of Cu or a Cu-based alloy, and the orientation index of the (101) plane of the surface of the reflow Sn layer is 2. 0 or more and 5.0 or less.
  • Cu—Ni—Si based alloys include C70250 (CDA number, hereinafter the same; Cu-3% Ni-0.5% Si-0.1 Mg), C64745 (Cu-1 .6% Ni-0.4% Si-0.5% Sn-0.4% Zn).
  • Brass Examples of brass include C26000 (Cu-30% Zn) and C26800 (Cu-35% Zn).
  • Danzoku Examples of Danzoku include C21000, C22000, and C23000.
  • Titanium copper Examples of titanium copper include C19900 (Cu-3% Ti).
  • Phosphor bronze Examples of phosphor bronze include C51020, C51910, C52100, and C52400.
  • the reflow Sn layer is obtained by performing reflow treatment after Sn plating is performed on the surface of the substrate.
  • Cu in the base material diffuses to the surface by reflow, and a layer structure is formed in the order of the Sn layer, the Cu—Sn alloy layer, and the base material from the surface side of the reflow Sn layer.
  • Sn alloy such as Sn—Cu, Sn—Ag, Sn—Pb, etc. can be used in addition to the composition of Sn alone.
  • a Cu underlayer and / or a Ni underlayer may be provided between the Sn layer and the base material.
  • the orientation index of the (101) plane on the surface of the reflow Sn layer By setting the orientation index of the (101) plane on the surface of the reflow Sn layer to 2.0 or more and 5.0 or less, the insertion / extraction property when used for a connector or the like is improved.
  • the orientation index of the (101) plane on the surface of the reflow Sn layer is less than 2.0, the desired insertion / removability cannot be obtained, and when it exceeds 5.0, the insertion / removability becomes good, but the solder wettability after heating is improved. to degrade.
  • the reason why the insertion / extraction is improved by controlling the orientation of the (101) plane on the surface of the reflow Sn layer is not clear, but the following may be considered.
  • orientation index of the (101) plane of the surface of the reflow Sn layer In order to control the orientation index of the (101) plane of the surface of the reflow Sn layer within the above range, it is necessary to change the orientation of the surface of the base material and perform reflow treatment under appropriate conditions. Although the orientation index of the (101) plane of the surface of the base material itself is about 1.5, even if such a base material is directly subjected to Sn plating and reflowed, the (101) plane of the surface of the reflow Sn layer The orientation index cannot be controlled to 2.0 or more.
  • the temperature during reflow (in the reflow furnace) is 450 to 600 ° C.
  • the reflow process is performed under the condition that the reflow time is 8 to 20 seconds, the desired contact resistance and solder wettability are satisfied, and the orientation index of the (101) plane of the surface of the reflow Sn layer is 2.0 or more.
  • Cu plating formed by electroplating may be consumed for forming a Cu—Sn alloy layer during reflow, and the thickness thereof may be zero.
  • the thickness of the Cu plating layer before reflow is 1.0 ⁇ m or more, the thickness of the Cu—Sn alloy layer after reflow increases, and the contact resistance and the solder wettability are significantly increased when heated. And heat resistance may be reduced. This is presumably because the Cu plating layer formed by electroplating has Cu as electrodeposited grains and is more easily diffused to the surface by heat compared to Cu in the base material which is a rolled material.
  • the reflow temperature is less than 450 ° C. or when the reflow time is less than 8 seconds, the inheritance of the orientation to the plating layer is insufficient, the orientation index of the (101) plane is less than 2.0, and the desired insertion / extraction property is achieved. I can't get it.
  • the orientation index of the (101) plane exceeds 5.0 and the insertion / extraction property is good, but the solder wettability after heating is deteriorated. To do.
  • colloidal silica and / or halide ions may be added to the Cu plating bath and Cu plating may be performed. It is preferable to use chloride ions as halide ions.
  • the concentration of chloride ions can be adjusted, for example, by adding potassium chloride to the plating bath, but is not limited to the potassium salt as long as it is a compound that ionizes to chloride ions in the plating bath.
  • a copper sulfate bath can be used as the Cu plating bath.
  • colloidal silica When colloidal silica alone is used in the bath, the volume of colloidal silica is 10 mL / L or more (specific gravity: 1.12 g / m 3 and silica content of 20 wt%). In the case of chloride ion alone, addition of 25 mg / L or more makes it possible to control the orientation of the Cu plating layer. Colloidal silica and halide ions may be co-added.
  • the thickness of the Cu plating with the (101) plane preferentially oriented is in the range of 0.2 ⁇ m or more and less than 1.0 ⁇ m, and Sn plating with a thickness of 0.7 to 2.0 ⁇ m is applied thereon, and the reflow temperature is set to 450.
  • the above plating structure can be obtained by reflow treatment at a temperature of 600 ° C. and a reflow time of 8-20 seconds.
  • the average thickness of the reflow Sn layer is preferably 0.2 to 1.8 ⁇ m.
  • the thickness of the Cu—Sn alloy layer formed between the reflow Sn layer and the substrate is preferably 0.5 to 1.9 ⁇ m. Since the Cu—Sn alloy layer is hard, it exists in a thickness of 0.5 ⁇ m or more, which contributes to a reduction in insertion force. On the other hand, when the thickness of the Cu—Sn alloy layer exceeds 1.9 ⁇ m, the contact resistance increases when heated and the solder wettability deteriorates, and the heat resistance may decrease.
  • Ni layer may be formed between the reflow Sn layer and the base material.
  • the Ni layer is obtained by performing reflow treatment after sequentially performing Ni plating, Cu plating, and Sn plating on the surface of the substrate.
  • the Cu in the base material diffuses to the surface by reflow, and the layer structure is constructed in the order of Sn layer, Cu—Sn alloy layer, Ni layer, and base material from the surface side of the reflow Sn layer. Since Cu diffusion from the material is prevented, the Cu—Sn alloy layer does not become thick.
  • Cu plating is performed in order to make the orientation of the (101) plane of the surface of the reflow Sn layer 2.0 or more.
  • the thickness of the Ni layer after reflow is preferably 0.1 to 0.5 ⁇ m.
  • the thickness of the Ni layer is less than 0.1 ⁇ m, the corrosion resistance and heat resistance may decrease.
  • the thickness of the Ni layer after reflow exceeds 0.5 ⁇ m, the heat resistance improving effect is saturated and the cost is increased, so the upper limit of the Ni layer thickness is preferably 0.5 ⁇ m.
  • Example 1> After applying 0.5 ⁇ m thick Cu plating and 1.0 ⁇ m Sn plating by electroplating on one side of the base material (Cu-1.6% Ni-0.4% Si alloy with 0.3 mm thickness) The reflow treatment was performed under the conditions shown in Table 1 to obtain a reflow Sn plated member.
  • a copper sulfate bath having a sulfuric acid concentration of 60 g / L, a copper sulfate concentration of 200 g / L, and a bath temperature of 50 ° C. was used, and colloidal silica (“Snowtex O” manufactured by Nissan Chemical Industries, Ltd.) at the ratio shown in Table 1.
  • the current density of Cu plating was 5 A / dm 2, and plating was performed while stirring the plating bath with a stirring blade having a rotation speed of 200 rpm.
  • As the Sn plating bath a bath of methanesulfonic acid 80 g / L, tin methanesulfonate 250 g / L, bath temperature 50 ° C., nonionic surfactant 5 g / L was used.
  • the current density of Sn plating was 8 A / dm 2, and plating was performed while stirring the plating bath with a stirring blade having a rotation speed of 200 rpm.
  • ⁇ Evaluation> 1 Measurement of orientation index The obtained reflow Sn plated member was cut into a test piece having a width of 20 mm and a length of 20 mm, and the orientation of the surface of the reflow Sn layer was standardly measured ( ⁇ -2 ⁇ scan) with an X-ray diffractometer. Measurement was carried out at a tube current of 100 mA and a tube voltage of 30 kV using CuK ⁇ rays as a radiation source. The orientation index K was calculated using the following formula.
  • K ⁇ A / B ⁇ / ⁇ C / D ⁇
  • D Sum of intensities of orientation plane (plane defined by B) in standard data of X-ray diffraction (powder method)
  • the contact resistance is an electric contact simulator CRS-113-Au type manufactured by Yamazaki Seiki Laboratories.
  • the voltage is 200 mV
  • the current is 10 mA
  • the sliding load is 0.49 N
  • the sliding speed is 1 mm / min
  • the sliding distance is 1 mm.
  • the insertion / extraction property was evaluated by the dynamic friction coefficient of the surface of the reflow Sn layer of the obtained reflow Sn plating member.
  • a sample was fixed on a sample stage, and a stainless steel ball having a diameter of 7 mm was pressed from the base material side of the sample so that the surface of the reflow Sn layer swelled in a hemisphere.
  • the bulging portion on the surface of the reflow Sn layer is the “female” side.
  • the same sample which did not press a stainless steel ball was attached to the moving stand so that the reflow Sn layer surface might be exposed. This side is the “male” side.
  • the bulging portion on the “female” side was placed on the reflow Sn layer on the “male” side, and both were brought into contact with each other.
  • W 4.9 N
  • the resistance load F accompanying the movement in the horizontal direction is set. Measured with a load cell.
  • the sliding speed of the sample horizontal moving speed of the moving table) was 50 mm / min, and the sliding direction was parallel to the rolling direction of the sample.
  • the sliding distance was 100 mm, and the average value of F during this period was obtained.
  • soldering test method Equilibrium method of JIS-C60068
  • the Sn-plated member was a strip-shaped test piece having a width of 10 mm and a length of 50 mm, and the test was performed under the following conditions using a SAT-20 solder checker manufactured by Reska.
  • the zero cross time was determined from the obtained load / time curve.
  • the wettability was judged as ⁇ when the zero cross time was 6 seconds or less, and as x when it exceeded 6 seconds.
  • Flux 25% rosin-ethanol
  • flux temperature room temperature
  • flux depth 20 mm
  • flux immersion time 5 seconds.
  • soldering Solder composition: Sn-3.0% Ag-0.5% Cu (manufactured by Senju Metal Industry Co., Ltd.), solder temperature: 250 ° C., solder immersion speed: 4 mm / s, solder immersion depth: 2 mm, solder immersion time: It took 10 seconds.
  • Example 2 One side of the substrate was subjected to Ni plating with a thickness of 0.3 ⁇ m by electroplating, and then subjected to Cu plating with a thickness of 0.5 ⁇ m and Sn plating with a thickness of 1.0 ⁇ m in the same manner as in Example 1. Then, the reflow process was performed on the conditions shown in Table 2, and the reflow Sn plating member was obtained.
  • the Ni plating bath a bath having nickel sulfate: 250 g / L, nickel chloride: 45 g / L, boric acid: 30 g / L, and a bath temperature of 50 ° C. was used.
  • the current density of Ni plating was 5 A / dm 2, and plating was performed while stirring the plating bath with a stirring blade having a rotation speed of 200 rpm.
  • Ni plating, Cu plating, and Sn plating were performed in the same manner as in Example 1 and Example 2 except that the thicknesses of Ni plating, Cu plating, and Sn plating were changed as shown in Table 3. Then, the reflow process was performed on conditions of 550 degreeC x 15 sec, and the reflow Sn plating member was obtained.
  • a copper sulfate bath having a sulfuric acid concentration of 60 g / L, a copper sulfate concentration of 200 g / L, and a bath temperature of 50 ° C.
  • colloidal silica (“Snowtex O” manufactured by Nissan Chemical Industries, Ltd.) 15 mL / L (specific gravity) : The volume of colloidal silica having a silica content of 20 wt% at 1.12 g / m 3 was shown, silica particle diameter: 10-20 nm) and chloride ion (potassium chloride) 25 mg / L were added.
  • the current density of Cu plating was 5 A / dm 2, and plating was performed while stirring the plating bath with a stirring blade having a rotation speed of 200 rpm.
  • Comparative Example 52 In the case of Comparative Example 52 in which the thickness of the Cu plating layer at the time of Cu plating (before reflow) was 1.0 ⁇ m or more, the contact resistance exceeded 0.95 m ⁇ and the solder wettability was inferior. This is because the Cu plating layer by electroplating has Cu as electrodeposited grains, and is more easily diffused to the surface by heat compared to Cu in the base material which is a rolled material, and the thickness of the Cu—Sn alloy layer after reflow is large. It is thought that it became thick.
  • Comparative Example 53 In the case of Comparative Example 53 in which the thickness of the Sn plating layer at the time of Sn plating (before reflowing) was less than 0.7 ⁇ m, the contact resistance exceeded 0.95 m ⁇ and the solder wettability was inferior. This is presumably because the Sn plating layer was thin, and the amount of metal Sn remaining on the surface was reduced by Cu diffusion and Sn layer oxidation by reflow. In the case of Comparative Example 54 in which the thickness of the Sn plating layer at the time of Sn plating (before reflow) exceeded 2.0 ⁇ m, the orientation index of the (101) plane of the surface of the reflow Sn layer was less than 2.0, and the dynamic friction coefficient was 0. .5 was exceeded. This is presumably because the friction of the surface was increased by soft Sn because the Sn plating layer was thick.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

【課題】ウィスカ発生を抑制すると共に、挿抜力を低減させたリフローSnめっき部材を提供する。 【解決手段】Cu又はCu基合金からなる基材の表面にリフローSn層が形成され、該リフローSn層の表面の(101)面の配向指数が2.0以上5.0以下であるリフローSnめっき部材である。

Description

リフローSnめっき部材
 本発明は、コネクタ、端子、リレ-、スイッチ等の導電性ばね材に好適に用いられ、Cu又はCu基合金からなる基材の表面にリフローSn層が形成されてなるリフローSnめっき部材に関する。
 コネクタ、端子、リレー等の導電部品には、銅合金にめっきしためっき部材が使用され、なかでも自動車用コネクタには、銅合金にSnめっきしたSnめっき材が多用されている。車載コネクタでは、車載電装品の増加による多極化の傾向があり、コネクタ嵌合時に挿抜力が増大する。通常、コネクタの嵌合は人力で行うため、作業負荷が増加するという問題がある。
 一方、Snめっき材には、ウィスカが発生せず、高温環境下で半田濡れ性や接触抵抗が劣化しにくいことも必要とされている。特に、コネクタメーカーの製造工場の海外移転に伴い、めっき後の部材が海外の高温多湿地域で長期保管されたり、はんだ付け時に実装炉内部で加熱されて、はんだ濡れ性、接触抵抗が劣化する事が報告されている。さらに、自動車のエンジンルーム等の高温にSnめっき材が曝されることで、Snめっき層に銅基材から銅が拡散したり、Snめっき層が酸化され、接触抵抗が劣化することがある。
 このようなことから、Snめっき層における(321)面の配向指数を2.5以上4.0以下に制御し、Snめっき層でのウィスカ発生を抑制したSnめっき材が開示されている(特許文献1参照)。又、Snめっき材が高温に曝されても銅基材から銅が拡散しないよう、Snめっき層と銅基材との間にNi層を設けたリフローSnめっき材が開示されている(特許文献2参照)。さらに、Snめっき層を溶解したときに現れるCu-Sn合金相の平均粗さを0.05~0.3μmに制御し、挿抜性と耐熱性を向上させたリフローSnめっき材が開示されている(特許文献3参照)。又、リフローをしないSnめっき層における(101)面の配向指数を2.0以下に制御し、プレス打抜き性と耐ウィスカ性を向上させたSnめっき材が開示されている(特許文献4参照)。
特開2008-274316号公報 特開2003-293187号公報 特開2007-63624号公報 特許3986265号公報
 しかしながら、ウィスカ発生を抑制する点では、基材表面のSnめっき層をリフローすることが好ましく、この点で特許文献4記載の技術の場合、過酷な環境下で耐ウィスカ性が優れているとは言い難い。
 又、コネクタ嵌合時の挿抜力を低減する方法として、Snめっき厚みを薄くする方法があるが、Snめっき厚みを薄くすると、加熱後の半田濡れ性が劣化するため、Snめっき厚みの減少による挿抜力低減には限界があり、新たな手法による挿抜力の低減が求められている。
 本発明は上記の課題を解決するためになされたものであり、ウィスカ発生を抑制すると共に、挿抜力を低減させたリフローSnめっき部材の提供を目的とする。
 本発明者らは種々検討した結果、基材の表面に形成したリフローSn層の表面の配向を制御することで、挿抜力を低減することに成功した。
 すなわち、本発明のリフローSnめっき部材は、Cu又はCu基合金からなる基材の表面にリフローSn層が形成され、該リフローSn層の表面の(101)面の配向指数が2.0以上5.0以下である。
 前記リフローSn層は、前記基材の表面にCuめっき層を形成し、該Cuめっき層の表面に形成されたSnめっき層をリフローして形成されたものであることが好ましい。
 前記リフローSn層と前記基材との間にNi層が形成されていることが好ましい。
 本発明によれば、ウィスカ発生を抑制すると共に、挿抜力を低減させたリフローSnめっき部材が得られる。
 以下、本発明の実施の形態について説明する。なお、本発明において%とは、特に断らない限り、質量%を示すものとする。
 本発明の実施の形態に係るリフローSnめっき部材は、Cu又はCu基合金からなる基材の表面にリフローSn層が形成され、該リフローSn層の表面の(101)面の配向指数が2.0以上5.0以下である。
 Cu又はCu基合金としては、以下のものを例示することができる。
(1)Cu-Ni-Si系合金
 Cu-Ni-Si系合金としては、C70250(CDA番号、以下同様;Cu-3%Ni-0.5%Si-0.1Mg),C64745(Cu-1.6%Ni-0.4%Si-0.5%Sn-0.4%Zn)を挙げることができる。
(2)黄銅
 黄銅としては、C26000(Cu-30%Zn),C26800(Cu-35%Zn)を挙げることができる。
(3)丹銅
 丹銅としては、C21000、C22000、C23000を挙げることができる。
(4)チタン銅
 チタン銅としては、C19900(Cu-3%Ti)を挙げることができる。
(5)りん青銅
 りん青銅としては、C51020、C51910、C52100、C52400を挙げる事ができる。
 リフローSn層は、上記基材の表面にSnめっきを行った後、リフロー処理を施すことにより得られる。リフローによって上記基材中のCuが表面へ拡散し、リフローSn層の表面側から、Sn層、Cu-Sn合金層、基材の順に層構造が構成される。リフローSn層としては、Sn単独の組成の他、Sn-Cu、Sn-Ag、Sn-Pb等のSn合金を用いることができる。また、Sn層と基材との間に、Cu下地層および/またはNi下地層を設ける事もある。
 リフローSn層の表面の(101)面の配向指数を2.0以上5.0以下にすることにより、コネクタ等に用いたときの挿抜性が改善される。リフローSn層表面の(101)面の配向指数が2.0未満の場合、所望の挿抜性が得られず、5.0を超えると挿抜性は良好となるが、加熱後の半田濡れ性が劣化する。
 リフローSn層表面の(101)面の配向を制御することで挿抜性が改善される理由は明確ではないが、次のことが考えられる。まず、Sn相のすべり系は、{110}[001],{100}[001], {111}[101],{101}[101],{121}[101]の5組であり、{101}面はSnのすべり面となる。従って、{101}面を多く(2.0以上)することで、リフローSn層表面と平行なすべり面の比率が高くなる。このため、コネクタ嵌合時にSnめっき表面にせん断応力が加わった際、比較的低い応力でめっき表面が変形すると考えられる。
 リフローSn層の表面の(101)面の配向指数を上記範囲に制御するには、上記基材の表面の配向を変化させ、適切な条件でリフロー処理する必要がある。上記基材自身の表面の(101)面の配向指数は1.5程度であるが、このような基材にそのままSnめっきを施してリフローしても、リフローSn層の表面の(101)面の配向指数を2.0以上に制御することはできない。
 そこで、基材表面に(101)面を優先配向させたCuめっき層を形成し、Cuめっき層の表面にSnめっきを行った後、リフロー時の(リフロー炉内の)温度を450~600℃、リフロー時間を8~20秒とする条件でリフロー処理を行うと、所望の接触抵抗や半田濡れ性を満足し、かつ、リフローSn層の表面の(101)面の配向指数を2.0以上にすることができる。
 電気めっきで形成したCuめっきは、リフロー時にCu-Sn合金層の形成に消費され、その厚みがゼロになってもよい。但し、リフロー前のCuめっき層の厚みが1.0μm以上であると、リフロー後のCu-Sn合金層の厚みが厚くなり、加熱したときの接触抵抗の増大や半田濡れ性の劣化が顕著になり、耐熱性が低下する場合がある。これは、電気めっきによるCuめっき層はCuが電着粒として存在し、圧延材である基材中のCuに比べ熱により表面に拡散しやすいためと考えられる。
 リフロー温度が450℃未満の場合、または、リフロー時間が8秒未満の場合、めっき層への配向継承が不十分で、(101)面の配向指数は2.0未満となり、所望の挿抜性が得られない。リフロー温度が600℃を超える場合、または、リフロー時間が20秒を超える場合、(101)面の配向指数は5.0を超え、挿抜性は良好となるが、加熱後の半田濡れ性が劣化する。
Cuめっき層の配向を制御し、(101)面の配向指数を基材より高くするには、Cuめっき浴にコロイダルシリカ、及び/又はハロゲン化物イオンを添加し、Cuめっきを施せばよい。ハロゲン化物イオンとして塩化物イオンを用いる事が好ましい。塩化物イオンの濃度調整は、例えば、めっき浴に塩化カリウムを添加する事で調整できるが、めっき浴中で塩化物イオンに電離する化合物であれば、カリウム塩に限定されない。Cuめっき浴としては、硫酸銅浴を用いる事ができ、浴中にコロイダルシリカ単独の場合、10mL/L以上(比重:1.12g/mでシリカ含有率20wt%のコロイダルシリカの体積を示し、シリカ粒子径:10-20nm)、塩化物イオン単独の場合、25mg/L以上添加することで、Cuめっき層の配向制御が可能となる。また、コロイダルシリカ、ハロゲン化物イオンを共添してもよい。
 (101)面を優先配向させたCuめっきの厚みを0.2μm以上1.0μm未満の範囲とし、その上に0.7~2.0μmの厚みのSnめっきを施し、リフロー時の温度を450~600℃、リフロー時間を8~20秒としてリフロー処理する事で、上記めっき構造が得られる。
 リフローSn層(金属Snの層)の平均厚みは0.2~1.8μmとすることが好ましい。リフローSn層の厚みが0.2μm未満になると半田濡れ性が低下し、1.8μmを超えると挿入力が増大する場合がある。
 リフローSn層と基材との間に形成されるCu-Sn合金層の厚みは0.5~1.9μmとすることが好ましい。Cu-Sn合金層は硬質なため、0.5μm以上の厚さで存在すると、挿入力の低減に寄与する。一方、Cu-Sn合金層の厚さが1.9μmを超えると、加熱したときの接触抵抗の増大や半田濡れ性の劣化が顕著になり、耐熱性が低下する場合がある。
 リフローSn層と基材との間にNi層が形成されていてもよい。Ni層は、上記基材の表面にNiめっき、Cuめっき、Snめっきを順に行った後、リフロー処理を施すことにより得られる。リフローによって上記基材中のCuが表面へ拡散し、リフローSn層の表面側から、Sn層、Cu-Sn合金層、Ni層、基材の順に層構造が構成されるが、Ni層が基材からのCuの拡散を防止するので、Cu-Sn合金層が厚くならない。又、Cuめっきは、リフローSn層の表面の(101)面の配向を2.0以上にするために行われる。
 リフロー後のNi層の厚みは0.1~0.5μmとすることが好ましい。Ni層の厚みが0.1μm未満では耐食性や耐熱性が低下する場合がある。一方、リフロー後のNi層の厚みが0.5μmを超えると、耐熱性の改善効果は飽和し、コストアップとなるため、Ni層の厚みの上限は0.5μmとする事が好ましい。
 次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
 基材(板厚0.3mmのCu-1.6%Ni-0.4%Si合金)の片面に、電気めっきにより厚み0.5μmのCuめっき、1.0μmのSnめっきをそれぞれ施した後、表1に示す条件でリフロー処理し、リフローSnめっき部材を得た。
 Cuめっき浴としては、硫酸濃度60g/L、硫酸銅濃度200g/L、浴温50℃の硫酸銅浴を用い、さらに表1に示す割合でコロイダルシリカ(日産化学工業社製「スノーテックスO」,比重:1.12でシリカ含有率20wt%,シリカ粒子径:10-20nm)、及び/又は塩化物イオン(塩化カリウム)を添加した。Cuめっきの電流密度を5A/dmとし、めっき浴を回転数200rpmの攪拌羽根で攪拌しながらめっきした。
 Snめっき浴としては、メタンスルホン酸80g/L、メタンスルホン酸錫250g/L、浴温50℃、ノニオン系界面活性剤5g/Lの浴を用いた。Snめっきの電流密度を8A/dmとし、めっき浴を回転数200rpmの攪拌羽根で攪拌しながらめっきした。
<評価>
 1.配向指数の測定
 得られたリフローSnめっき部材を幅20mm×長さ20mmの試験片に切り出し、リフローSn層表面の配向をX線ディフラクトメータにより標準測定(θ-2θスキャン)した。線源としてCuKα線を用い、管電流100mA,管電圧30kVで測定を実施した。配向指数Kは次式を用いて算出した。
K={A/B}/{C/D} 
A:(101)面のピーク強度(cps)
B:考慮した配向面((200),(101),(220),(211),(301),(112),(400),(321),(420),(411),(312),(431),(103),(332))のピーク強度の和(cps)
C:X線回折の標準データ(粉末法)における(101)面の強度
D:X線回折の標準データ(粉末法)における配向面(Bで規定した面)の強度の総和
 2.耐熱性の評価
 耐熱性の評価として、得られたリフローSnめっき部材を145℃で500時間加熱後、リフローSn層表面の接触抵抗を測定した。接触抵抗は、山崎精機研究所製電気接点シミュレータCRS-113-Au型を用い、四端子法により、電圧200mV、電流10mA、摺動荷重0.49N、摺動速度1mm/min、摺動距離1mmで測定した。
 3.挿抜性の評価
 得られたリフローSnめっき部材のリフローSn層表面の動摩擦係数により、挿抜性を評価した。まず、試料を試料台上に固定し、リフローSn層表面が半球状に膨らむよう、試料の基材側から直径7mmのステンレス球を押し付けた。このリフローSn層表面の膨出部が「メス」側となる。次に、ステンレス球を押し付けない同一試料を、リフローSn層表面が露出するよう移動台に取り付けた。この面が「オス」側となる。
 そして、「メス」側の膨出部を、「オス」側のリフローSn層の上に載置し、両者を接触させた。この状態で、膨出部の裏側(基材側)に所定加重W(=4.9N)を掛けつつ、移動台を水平方向に移動させ、このとき水平方向への移動に伴う抵抗加重Fをロードセルにより測定した。試料の摺動速度(移動台の水平移動速度)は50mm/minとし、摺動方向は試料の圧延方向に対し平行な方向とした。摺動距離は100mmとし、この間のFの平均値を求めた。そして、動摩擦係数μをμ=F/Wより算出した。
 4.はんだ濡れ性の評価
 JIS-C60068のはんだ付け試験方法(平衡法)に準じ、得られたリフローSnめっき部材と鉛フリーはんだとの濡れ性を評価した。Snめっき部材は幅10mm×長さ50mmの短冊状試験片とし、試験はレスカ社製SAT-20ソルダチェッカーを用い、下記条件でおこなった。得られた荷重/時間曲線からゼロクロスタイムを求めた。濡れ性はゼロクロスタイムが6秒以下なら○、6秒を超える場合は×と判定した。
(フラックス塗布)
 フラックス:25%ロジンーエタノール、フラックス温度:室温、フラックス深さ:20mm、フラックス浸漬時間:5秒とした。又、たれ切り方法は、ろ紙にエッジを5秒当てて、フラックスを除去し、装置に固定して30秒保持して行った。
(はんだ付け)
 はんだ組成: Sn-3.0%Ag-0.5%Cu(千住金属工業社製)、はんだ温度:250℃、はんだ浸漬速さ:4mm/s、はんだ浸漬深さ:2mm、はんだ浸漬時間:10秒で行った。
<実施例2>
 上記基材の片面に、電気めっきにより厚み0.3μmのNiめっきを施した後、実施例1と同様にして厚み0.5μmのCuめっき、1.0μmのSnめっきをそれぞれ施した。その後、表2に示す条件でリフロー処理し、リフローSnめっき部材を得た。
 Niめっき浴としては、硫酸ニッケル:250g/L,塩化ニッケル:45g/L,ホウ酸:30g/L,浴温50℃の浴を用いた。Niめっきの電流密度を5A/dmとし、めっき浴を回転数200rpmの攪拌羽根で攪拌しながらめっきした。
<実施例3>
 Niめっき、Cuめっき、および、Snめっきの厚みを表3に示すように変化させたこと以外は実施例1および実施例2と同様にしてNiめっき、Cuめっき、Snめっきをそれぞれ施した。その後、550℃×15secの条件でリフロー処理し、リフローSnめっき部材を得た。Cuめっき浴としては、硫酸濃度60g/L、硫酸銅濃度200g/L、浴温50℃の硫酸銅浴を用い、さらにコロイダルシリカ(日産化学工業社製「スノーテックスO」)15mL/L(比重:1.12g/mでシリカ含有率20wt%のコロイダルシリカの体積を示し、シリカ粒子径:10-20nm)及び塩化物イオン(塩化カリウム)25mg/Lを添加した。Cuめっきの電流密度を5A/dmとし、めっき浴を回転数200rpmの攪拌羽根で攪拌しながらめっきした。
 得られた結果を表1~表3に示す。
 なお、表1の発明例1~7、比較例8~14は、実施例1の条件で行った結果である。表2の発明例20~23、比較例30~35は、実施例2の条件で行った結果である。表3の発明例40~49、比較例50~54は、実施例3の条件で行った結果である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1から明らかなように、本発明の範囲である発明例1~7の場合、動摩擦係数が0.5以下となり、接触抵抗が0.95mΩ以下であるとともに、はんだ濡れ性が優れていた。
 一方、Cuめっき浴中のコロイダルシリカの含有量が10mL/L未満である比較例8、及びCuめっき浴中の塩化物イオンの含有量が25mg/L未満である比較例9の場合、いずれもリフローSn層の表面の(101)面の配向指数が2.0未満となり、動摩擦係数が0.5を超えた。
 リフロー時間が8秒未満である比較例10、及びリフロー温度が450℃未満である比較例12、14の場合、いずれもリフロー処理が不十分となり、リフローSn層の表面の(101)面の配向指数が2.0未満となり、動摩擦係数が0.5を超えた。これは、リフロー時にSnめっき層が十分に溶融しなかったため、Sn層の再配向が生じ難くなったためと考えられる。
 リフロー時間が20秒を超えた比較例11、及びリフロー温度が600℃を超えた比較例13の場合、いずれもリフロー処理が過度となり、接触抵抗が0.95mΩを超えるとともに、はんだ濡れ性が劣った。これは、過度なリフロー処理により、リフローSn層に下地からCuが拡散したり、Sn層が酸化されて表面に残存する金属Sn量が減少したためと考えられる。
 表2から明らかなように、本発明の範囲である発明例20~23の場合、動摩擦係数が0.5以下となり、接触抵抗が0.95mΩ以下であるとともに、はんだ濡れ性が優れていた。
 一方、Cuめっき浴中のコロイダルシリカの含有量が10mL/L未満である比較例30、及びCuめっき浴中の塩化物イオンの含有量が25mg/L未満である比較例31の場合、いずれもリフローSn層の表面の(101)面の配向指数が2.0未満となり、動摩擦係数が0.5を超えた。
 リフロー時間が8秒未満である比較例32、及びリフロー温度が450℃未満である比較例34の場合、いずれもリフロー処理が不十分となり、リフローSn層の表面の(101)面の配向指数が2.0未満となり、動摩擦係数が0.5を超えた。
 リフロー時間が20秒を超えた比較例33、及びリフロー温度が600℃を超えた比較例35の場合、いずれもリフロー処理が過度となり、接触抵抗が0.95mΩを超えるとともに、はんだ濡れ性が劣った。
 表3から明らかなように、本発明の範囲である発明例40~49の場合、動摩擦係数が0.5以下となり、接触抵抗が0.95mΩ以下であるとともに、はんだ濡れ性が優れていた。
 一方、Cuめっきを設けずに基材上に直接Snめっきした比較例50の場合、及びCuめっき時(リフロー前)のCuめっき層の厚みが0.2μm未満である比較例51の場合、いずれもリフローSn層の表面の(101)面の配向指数が2.0未満となり、動摩擦係数が0.5を超えた。これは、リフロー時に溶融するSn層の下地となるCuめっき層が無い(又は薄い)ため、基材の配向の影響が強くなり、Sn層の再配向が生じ難くなったためと考えられる。
 Cuめっき時(リフロー前)のCuめっき層の厚みが1.0μm以上である比較例52の場合、接触抵抗が0.95mΩを超えるとともに、はんだ濡れ性が劣った。これは、電気めっきによるCuめっき層はCuが電着粒として存在し、圧延材である基材中のCuに比べて熱により表面に拡散しやすく、リフロー後のCu-Sn合金層の厚みが厚くなったためと考えられる。
 Snめっき時(リフロー前)のSnめっき層の厚みが0.7μm未満である比較例53の場合、接触抵抗が0.95mΩを超えるとともに、はんだ濡れ性が劣った。これは、Snめっき層の厚みが薄いため、リフローによるCuの拡散やSn層酸化により、表面に残存する金属Sn量が減少したためと考えられる。
 Snめっき時(リフロー前)のSnめっき層の厚みが2.0μmを超えた比較例54の場合、リフローSn層の表面の(101)面の配向指数が2.0未満となり、動摩擦係数が0.5を超えた。これは、Snめっき層の厚みが厚いため、柔らかいSnによって表面の摩擦が大きくなったためと考えられる。

Claims (3)

  1.  Cu又はCu基合金からなる基材の表面にリフローSn層が形成され、該リフローSn層の表面の(101)面の配向指数が2.0以上5.0以下であるリフローSnめっき部材。
  2.  前記リフローSn層は、前記基材の表面にCuめっき層を形成し、該Cuめっき層の表面に形成されたSnめっき層をリフローして形成されたものである請求項1に記載のリフローSnめっき部材。
  3.  前記リフローSn層と前記基材との間にNi層が形成されている請求項1又は2に記載のリフローSnめっき部材。
PCT/JP2010/068901 2009-11-30 2010-10-26 リフローSnめっき部材 WO2011065166A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/512,486 US8865319B2 (en) 2009-11-30 2010-10-26 Reflow Sn plated material
EP10833013.5A EP2495354A4 (en) 2009-11-30 2010-10-26 ELEMENT COATED WITH REFUNDS TIN
CN201080054205.8A CN102666938B (zh) 2009-11-30 2010-10-26 回焊镀Sn构件
KR1020127013324A KR101214421B1 (ko) 2009-11-30 2010-10-26 리플로우 Sn 도금 부재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-271472 2009-11-30
JP2009271472A JP5419275B2 (ja) 2009-11-30 2009-11-30 リフローSnめっき部材

Publications (1)

Publication Number Publication Date
WO2011065166A1 true WO2011065166A1 (ja) 2011-06-03

Family

ID=44066270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068901 WO2011065166A1 (ja) 2009-11-30 2010-10-26 リフローSnめっき部材

Country Status (7)

Country Link
US (1) US8865319B2 (ja)
EP (1) EP2495354A4 (ja)
JP (1) JP5419275B2 (ja)
KR (1) KR101214421B1 (ja)
CN (1) CN102666938B (ja)
TW (1) TWI409128B (ja)
WO (1) WO2011065166A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865319B2 (en) 2009-11-30 2014-10-21 Jx Nippon Mining & Metals Corporation Reflow Sn plated material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6253402B2 (ja) * 2013-12-27 2017-12-27 日立オートモティブシステムズ株式会社 車載用電子モジュール
CA2989621A1 (en) * 2015-06-16 2016-12-22 3M Innovative Properties Company Plating bronze on polymer sheets
KR101900793B1 (ko) * 2017-06-08 2018-09-20 주식회사 풍산 전기·전자, 자동차 부품용 동합금의 주석 도금 방법 및 이로부터 제조된 동합금의 주석 도금재
JP6946884B2 (ja) * 2017-06-30 2021-10-13 三菱マテリアル株式会社 防食端子材とその製造方法、及び防食端子並びに電線端末部構造
JP6930327B2 (ja) * 2017-06-30 2021-09-01 三菱マテリアル株式会社 防食端子材とその製造方法、及び防食端子並びに電線端末部構造

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266095A (ja) * 2001-03-13 2002-09-18 Kobe Steel Ltd 電子・電気部品用銅合金材料
JP2003293187A (ja) 2002-03-29 2003-10-15 Dowa Mining Co Ltd めっきを施した銅または銅合金およびその製造方法
JP2006265642A (ja) * 2005-03-24 2006-10-05 Dowa Mining Co Ltd 錫めっき材およびその製造方法
JP2007063624A (ja) 2005-08-31 2007-03-15 Nikko Kinzoku Kk 挿抜性及び耐熱性に優れる銅合金すずめっき条
WO2007142352A1 (ja) * 2006-06-09 2007-12-13 National University Corporation Kumamoto University めっき膜の形成方法および材料
JP2008274316A (ja) 2007-04-25 2008-11-13 Toyota Motor Corp めっき部材およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759142B2 (en) 2001-07-31 2004-07-06 Kobe Steel Ltd. Plated copper alloy material and process for production thereof
JP4016637B2 (ja) 2001-10-24 2007-12-05 松下電器産業株式会社 錫−銀合金めっき皮膜を有する電子部品用リードフレーム及びその製造方法
JP4897187B2 (ja) * 2002-03-05 2012-03-14 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. スズメッキ方法
DE10213185A1 (de) * 2002-03-23 2003-10-02 Km Europa Metal Ag Verfahren zur Verringerung der Kupferlöslichkeit an der inneren Oberfläche eines Kupferrohrs
US6860981B2 (en) 2002-04-30 2005-03-01 Technic, Inc. Minimizing whisker growth in tin electrodeposits
US7628871B2 (en) * 2005-08-12 2009-12-08 Intel Corporation Bulk metallic glass solder material
JP2009108339A (ja) * 2007-10-26 2009-05-21 Renesas Technology Corp 半導体装置およびその製造方法
JP4963490B2 (ja) * 2008-07-03 2012-06-27 トヨタ自動車株式会社 めっき部材
JP5419275B2 (ja) 2009-11-30 2014-02-19 Jx日鉱日石金属株式会社 リフローSnめっき部材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266095A (ja) * 2001-03-13 2002-09-18 Kobe Steel Ltd 電子・電気部品用銅合金材料
JP3986265B2 (ja) 2001-03-13 2007-10-03 株式会社神戸製鋼所 電子・電気部品用銅合金材料
JP2003293187A (ja) 2002-03-29 2003-10-15 Dowa Mining Co Ltd めっきを施した銅または銅合金およびその製造方法
JP2006265642A (ja) * 2005-03-24 2006-10-05 Dowa Mining Co Ltd 錫めっき材およびその製造方法
JP2007063624A (ja) 2005-08-31 2007-03-15 Nikko Kinzoku Kk 挿抜性及び耐熱性に優れる銅合金すずめっき条
WO2007142352A1 (ja) * 2006-06-09 2007-12-13 National University Corporation Kumamoto University めっき膜の形成方法および材料
JP2008274316A (ja) 2007-04-25 2008-11-13 Toyota Motor Corp めっき部材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2495354A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865319B2 (en) 2009-11-30 2014-10-21 Jx Nippon Mining & Metals Corporation Reflow Sn plated material

Also Published As

Publication number Publication date
TW201125673A (en) 2011-08-01
JP2011111663A (ja) 2011-06-09
EP2495354A4 (en) 2013-08-14
KR101214421B1 (ko) 2012-12-21
US8865319B2 (en) 2014-10-21
TWI409128B (zh) 2013-09-21
JP5419275B2 (ja) 2014-02-19
CN102666938A (zh) 2012-09-12
EP2495354A1 (en) 2012-09-05
CN102666938B (zh) 2016-04-27
US20120282486A1 (en) 2012-11-08
KR20120085853A (ko) 2012-08-01

Similar Documents

Publication Publication Date Title
EP2620275B1 (en) Tin-plated copper-alloy material for terminal and method for producing the same
JP4817095B2 (ja) ウィスカ抑制表面処理方法
JP5319101B2 (ja) 電子部品用Snめっき材
EP2743381B1 (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
JP2007063624A (ja) 挿抜性及び耐熱性に優れる銅合金すずめっき条
JP5419275B2 (ja) リフローSnめっき部材
WO2009123157A1 (ja) 接続部品用金属材料およびその製造方法
EP2682263A2 (en) Tin-plated copper-alloy material for terminal and method for producing the same
JP2009057630A (ja) Snメッキ導電材料及びその製造方法並びに通電部品
TWI719093B (zh) 附鍍錫之銅端子材料的製造方法
JP2012036436A (ja) Sn合金めっき付き導電材及びその製造方法
JP4522970B2 (ja) ウィスカーが抑制されたCu−Zn合金耐熱Snめっき条
JP5479789B2 (ja) コネクタ用金属材料
JP5692799B2 (ja) Snめっき材およびその製造方法
JP2008248332A (ja) Snめっき条及びその製造方法
JP2010084228A (ja) リードフレーム材、それを用いた半導体装置
KR20180084118A (ko) 접속 부품용 도전 재료
JP7335679B2 (ja) 導電材
WO2018212174A1 (ja) 錫めっき付銅端子材及び端子並びに電線端末部構造
JP5226032B2 (ja) ウィスカーが抑制されたCu−Zn合金耐熱Snめっき条
JP2020056056A (ja) 銅端子材、銅端子及び銅端子材の製造方法
WO2018074256A1 (ja) 導電性条材
WO2017038825A1 (ja) 耐熱性に優れためっき材及びその製造方法
JP5714465B2 (ja) Snめっき材およびその製造方法
JP5442385B2 (ja) 導電部材及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080054205.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10833013

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127013324

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010833013

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010833013

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13512486

Country of ref document: US