WO2011064642A2 - 加速度センサ - Google Patents

加速度センサ Download PDF

Info

Publication number
WO2011064642A2
WO2011064642A2 PCT/IB2010/002975 IB2010002975W WO2011064642A2 WO 2011064642 A2 WO2011064642 A2 WO 2011064642A2 IB 2010002975 W IB2010002975 W IB 2010002975W WO 2011064642 A2 WO2011064642 A2 WO 2011064642A2
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
acceleration sensor
weight
movable electrode
fixed
Prior art date
Application number
PCT/IB2010/002975
Other languages
English (en)
French (fr)
Other versions
WO2011064642A3 (ja
Inventor
吉田 仁
伸行 茨
英喜 上田
全史 岡田
岳志 森
昌利 野村
勝己 垣本
鈴木 裕二
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009266581A external-priority patent/JP5716149B2/ja
Priority claimed from JP2009266585A external-priority patent/JP2011112392A/ja
Priority claimed from JP2009266583A external-priority patent/JP2011112390A/ja
Priority claimed from JP2009266582A external-priority patent/JP2011112389A/ja
Priority to US13/511,178 priority Critical patent/US9261530B2/en
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to CN201080052810.1A priority patent/CN102667497B/zh
Priority to EP10832714.9A priority patent/EP2506018A4/en
Publication of WO2011064642A2 publication Critical patent/WO2011064642A2/ja
Publication of WO2011064642A3 publication Critical patent/WO2011064642A3/ja
Priority to US14/718,493 priority patent/US9244094B2/en
Priority to US14/874,845 priority patent/US9702895B2/en
Priority to US15/617,777 priority patent/US10126322B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration

Definitions

  • the present invention relates to a capacitance type acceleration sensor.
  • a capacitance type acceleration sensor As shown in FIG. 5 (a), a rectangular parallelepiped weight part 100 having a movable electrode and the weight part 100 at a substantially center in the longitudinal direction of the weight part 100 can be rotated. A predetermined distance from one side and the other side of the surface of the weight part 100 with the straight line connecting the pair of supporting beam parts 100 and the pair of beam parts 101 as the boundary.
  • an acceleration sensor including a pair of fixed electrodes 10 2, 10 3 that are arranged to face each other (see, for example, Patent Document 1).
  • the acceleration sensor includes a movable electrode (a portion facing the fixed electrodes 1 0 2 and 1 0 3 in the weight portion 1 0 0) that accompanies the rotation of the weight portion 1 0 0 with the boundary line as a rotation axis, and
  • the acceleration applied to the weight part 100 is detected by differentially detecting the change in capacitance between the fixed electrodes 10 2 and 10 3.
  • the weight portion 100 is The weight is different on one side (right side) and the other side (left side) across the boundary.
  • a momentum with the boundary line as a rotation axis is generated in the weight portion 100.
  • a reinforcing wall that divides the concave portion 1 0 4 into two parts 1 0 5 are formed integrally with the weight part 100 along the direction parallel to the boundary line.
  • the acceleration sensor described above can detect acceleration in two directions orthogonal to the rotation axis.
  • the angle 0 formed by the perpendicular drawn from the center of gravity of the weight part 100 to the rotation axis and the surface of the weight part 100 is made equivalent.
  • the detection sensitivity in these two directions is made equivalent.
  • the means to improve the detection sensitivity of the acceleration sensor there is a method of increasing the area of the movable electrode. When this method is adopted, the above angle 0 is maintained at about 45 degrees. In order to do this, the thickness dimension of the weight part 100 must be increased. When the thickness dimension of the weight portion 100 is increased, the etching process for forming the weight portion 100 becomes longer, which is not practical.
  • the beam part 100 in the weight part 100 is shown in FIG. 5 (b).
  • FIG. 5 (b) There is a way to reduce the weight of the weight part 1 0 0 by piercing directly under 1 in the same figure.
  • this method there is a problem in that the strength of the thin portion reduced in weight in the weight portion 100 is insufficient, which is not preferable.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an acceleration sensor capable of improving detection sensitivity without increasing the thickness or weight of the weight portion.
  • the concave portion opening on one surface and the weight portion integrally formed with the solid portion excluding the concave portion, and the concave portion and the solid portion are arranged along the rotation direction.
  • a sensor portion comprising a first fixed electrode disposed at a position facing the concave portion side of the movable electrode and a second fixed electrode disposed at a position facing the solid portion side of the movable electrode.
  • An acceleration sensor that detects acceleration from a change in capacitance between the movable electrode and the fixed electrode that accompanies the rotation of the heavy section with the straight line connecting the beam sections as the rotation axis, and the center of gravity of the weight section
  • the angle formed by the perpendicular line from the position to the pivot axis and the surface of the movable electrode is An acceleration sensor is provided in which the beam portion is shifted to the concave side so as to be approximately 45 degrees.
  • the configuration of the first aspect of the present invention when the area of the movable electrode is increased to improve the detection sensitivity, a perpendicular drawn from the center of gravity of the weight portion to the rotation axis and the surface of the movable electrode are formed. Since it is possible to respond by simply shifting the beam part so that the angle is approximately 45 degrees, it is possible to improve the detection sensitivity without increasing the thickness of the heavy part or reducing the weight of the heavy part. it can.
  • a separate recess opening on one surface may be provided in the solid portion, and an auxiliary heavy portion made of a metal material may be embedded in the separate ⁇ portion.
  • the weight portion can be reduced in size while maintaining the weight balance of the weight portion by embedding the auxiliary weight portion in a separate concave portion, and as a result, the entire sensor can be reduced in size. Can be achieved.
  • the concave portion opening on one surface and the weight portion formed integrally with the solid portion excluding the concave portion, and the concave portion and the solid portion along the rotation direction.
  • a sensor portion comprising a first fixed electrode disposed at a position facing the second fixed electrode disposed at a position facing the solid portion side of the movable electrode, and connecting a pair of beam portions
  • An acceleration sensor that detects acceleration from a change in capacitance between a movable electrode and a fixed electrode that accompanies the rotation of a weight portion with a straight axis as a rotation axis, on the side of the weight portion facing the fixed electrode
  • Each of the movable electrodes has a first
  • the weight portion is formed so that the concave portion opening on one surface and the solid portion excluding the concave portion are integrally formed, and the concave portion and the solid portion are aligned in the rotation direction.
  • a pair of beam portions that are movably supported; a movable electrode provided across the concave portion and the solid portion on the other surface different from the one surface where the concave portion opens; and a position facing the concave portion side of the movable electrode.
  • the sensor unit is composed of a first fixed electrode provided and a second fixed electrode disposed at a position facing the solid portion side of the movable electrode, and a straight line connecting a pair of beam portions is a rotation axis.
  • An acceleration sensor that detects acceleration from a change in electrostatic capacitance between the movable electrode and the fixed electrode that accompanies the rotation of the weight portion, and a protrusion is formed on the surface of each fixed electrode that faces the movable electrode. An acceleration sensor is provided.
  • the protruding portion is fixed to the first fixed portion via the relief portion. Since it is in contact with the plate, there is no direct contact between the protrusion and the fixed electrode. Therefore, it is possible to prevent the protrusion from adhering to the fixed electrode.
  • a concave portion that opens on one surface and a solid portion that is integrally formed with a solid portion excluding the concave portion, and the concave portion and the solid portion are arranged in a rotational direction.
  • a pair of beam portions that rotatably supports the weight portion so as to be lined along, a movable electrode provided across the concave portion and the solid portion on the other surface different from the one surface where the concave portion opens, and movable
  • a first fixed electrode disposed at a position facing the concave portion side of the electrode
  • a second fixed electrode disposed at a position facing the solid portion side of the movable electrode
  • each fixed electrode electrically It has a sensor part consisting of a pair of electrode parts having a detection electrode to be connected, and it is located between the movable electrode and the fixed electrode accompanying the rotation of the weight part with the straight line connecting the pair of beam parts as the rotation axis.
  • An acceleration sensor that detects acceleration from a change in capacitance.
  • each electrode part is arranged along one direction so as to divide the chip in half, and each weight part is point-symmetrical about the approximate center of the arrangement of each electrode part
  • an acceleration sensor is provided in which the beam portions are arranged such that a straight line connecting the beam portions is along a direction perpendicular to the arrangement direction of the electrode portions.
  • the entire sensor since the symmetry of the entire sensor is increased, even if distortion occurs due to thermal expansion or the like, the entire sensor is also distorted, and the overall balance is lost. I can't. Therefore, it is possible to improve the accuracy of the temperature characteristic of the output. Also, as the distance between each electrode part and each weight part becomes equal, the distance between each electrode part and each fixed electrode also becomes equal, so the wiring length of each conductive pattern connecting the electrodes Can be equal to each other. Therefore, the difference in parasitic capacitance of each conductive pattern is reduced, and the difference in capacitance between each movable electrode and each fixed electrode can also be reduced.
  • FIG. 1 is a cross-sectional view of an essential part showing an embodiment of an acceleration sensor according to the present invention.
  • FIG. 2 is an exploded perspective view of the above.
  • FIG. 3 (a) is a top view with the upper fixing plate and conductive pattern omitted, and (b) is
  • FIG. 4 is a bottom view of the above sensor chip.
  • FIG. 5A is a cross-sectional view of a main part showing a conventional acceleration sensor
  • FIG. 5B is a cross-sectional view of the main part when passing directly under the beam part of FIG.
  • FIG. 6 is a sectional view showing Embodiment 2 of the acceleration sensor according to the present invention.
  • FIG. 7 is a diagram showing an acceleration sensor according to a third embodiment of the present invention.
  • (b) is a sectional view of an essential part in another configuration.
  • FIGS. 8A and 8B are diagrams showing an acceleration sensor according to a fourth embodiment of the present invention, where FIG. 8A is a cross-sectional view of a main part and FIG. 8B is a cross-sectional view of a main part in another configuration.
  • FIG. 9 is a cross-sectional view of an essential part showing a reference example of an acceleration sensor according to the present invention.
  • FIG. 10 is an exploded perspective view showing an acceleration sensor according to a fifth embodiment of the present invention.
  • Fig. 11 is a plan view of the above sensor chip as seen from below.
  • FIG. 12 is a cross-sectional view of the above.
  • BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of an acceleration sensor according to the present invention will be described below in detail with reference to the accompanying drawings.
  • the same or similar parts are denoted by the same reference numerals, and the description thereof is omitted.
  • the vertical direction in FIG. 1 is the vertical direction
  • the direction parallel to the short direction of the sensor chip 1 is the X direction
  • the direction parallel to the long direction of the sensor chip 1 is the y direction
  • the X direction the X direction
  • the y direction The directions perpendicular to each other shall be defined as the z direction.
  • the sensor chip 1 whose outer shape is a rectangular plate, the upper fixing plate 2a fixed to the upper surface side of the sensor chip 1, and the lower surface side of the sensor chip 1 And a lower fixing plate 2 b to be fixed.
  • the sensor chip 1 includes a frame portion 3 in which two frames 3 a and 3 b that are rectangular when viewed in the vertical direction are arranged in parallel in the longitudinal direction, and a gap between the inner peripheral surfaces of the frames 3 a and 3 b.
  • the rectangular parallelepiped weights 4 and 5 are arranged adjacent to each other in the frame portions 3 a and 3 b with the space left open, and the inner peripheral surface of the frame portions 3 a and 3 b and the side surfaces of the weight portions 4 and 5.
  • the weight portions 4 and 5 are formed by integrally forming recess portions 41 and 51 that are open on one surface (lower surface) and solid portions 40 and 50 excluding the recess portions 41 and 51, respectively. Yes.
  • the recesses 41 and 5 1 are formed in a square shape in plan view when viewed from the normal direction (vertical direction) of the opening surface, and the reinforcing walls 42 and 52 that divide the recesses 4 1 and 51 into four parts are weight parts 4 It is integrally formed with 5.
  • a pair of reinforcing walls 42, 52 having a square shape in plan view and the central portions of the reinforcing walls 42, 52 are connected by flat reinforcing walls 42 ', 52'.
  • a configuration is adopted in which the plurality of reinforcing walls 42 and 52 are coupled to the inner wall surface at positions where they do not intersect with the apex angles of the recesses 41 and 51.
  • the angles formed by the reinforcing walls 42 and 52 and the inner wall surface are obtuse at the four corners of the recesses 41 and 51, it is easy to form (etch) the recesses 41 and 51 in the weights 4 and 5. It has become.
  • the pair of beam portions 6 a and 6 b connect the substantially central portion in the X direction of the side surface facing the frame portion 3 a of the weight portion 4 to the frame portion 3 a.
  • the pair of beam portions 7 a and 7 b couples the frame portion 3 b to the substantially central portion in the X direction of the side surface facing the frame portion 3 b of the weight portion 5.
  • the straight line connecting the pair of beam portions 6a and 6b and the straight line connecting the pair of beam portions 7a and 7b serve as the rotating shaft, and each of the weight portions 4, 5 around the rotating shaft. Is designed to rotate.
  • the sensor chip 1 is formed by processing an SOI (Silicon on Insulator) substrate using a semiconductor microfabrication technique, and the portions including the upper surfaces of the weights 4 and 5 become the movable electrodes 4 a and 5 a. Further, on the upper and lower surfaces of the weights 4 and 5, projections 43a, 43b and 53 for preventing the weights 4 and 5 from directly colliding with the upper fixing plate 2a and the lower fixing plate 2b. a, 53 b are protruding.
  • SOI Silicon on Insulator
  • the protrusions 43a, 43b, 53a, 53b are made of silicon or silicon oxide film
  • the protrusions 43 a, 43 b, 53 a. 53 b can be easily manufactured.
  • the surface layers of the protrusions 43 a, 43 b, 53 a, 53 b may be coated with a strong bond material.
  • the mechanical strength of the protrusions 43 a, 43 b, 53 a, 5 3 b is increased, and the protrusions 4 3 a, 43 b, 53 a are caused by the collision with the upper fixing plate 2 a and the lower fixing plate 2 b.
  • 53 b can be prevented from being damaged.
  • the thickness of the coating can be reduced, so that the protrusions 43a, 43b, 53a, 53b can be easily adjusted to the desired height. I can do it.
  • the upper fixed plate 2 a is formed of an insulating material such as glass, and is provided on the movable electrodes 4 a and 5 a side, that is, on the sensor chip 1 in this example, and on the lower surface of the upper fixed plate 2 a along the vertical direction.
  • the first fixed electrode 20a and the second fixed electrode 20b are juxtaposed in the X direction at a position opposite to the weight part 4 (movable electrode 4a) of 1 and the sensor along the vertical direction.
  • a first fixed electrode 21 a and a second fixed electrode 21 b are arranged side by side in the X direction at a position facing the overlapping portion 5 (movable electrode 5 a) of the chip 1.
  • five through holes 22a to 22e are arranged side by side in the y direction on one end side in the X direction of the upper fixing plate 2a.
  • a plurality of conductive patterns (not shown) electrically connected to the fixed electrodes 20 a, 2 O b and 2 1 a, 2 1 b are formed on the lower surface of the upper fixed plate 2 a. .
  • a total of four electrode portions 8 a, 8 b, 9 a, 9 b separated from the frame portion 3 are juxtaposed on one end side in the X direction of the sensor chip 1.
  • These four electrode portions 8a, 8b, 9a and 9b are formed with detection electrodes 80a, 80b, 90a and 90b made of a metal film at the approximate center of the upper surface, respectively, and the frame portion 3
  • Pressure electrodes 8 1 a, 8 1 b, 9 1 a, 91 b are formed on the upper surface of the end facing a, 3 b.
  • the electrode 80 a (80 b) and the pressure contact electrode 8 1 a (8 1 b) are connected.
  • a ground electrode 10 is formed between the electrode portions 8 b and 9 a on the upper surface of the frame portion 3, and the ground electrode 10 is connected to the movable electrode 4 a via the beam portions 6 a and 6 b. It is electrically connected to the movable electrode 5a via the beam portions 7a and 7b.
  • each detection electrode 80 a, 80 b, 90 a, 9 O b is electrically connected to each fixed electrode 20 a, 20 b, 2 1 a, 2 1 b
  • the detection electrodes 80a, 80b, 90a, 90b are exposed to the outside through the penetrations 22a-22d of the upper fixing plate 2a.
  • the ground electrode 10 is also exposed to the outside through the through hole 22e.
  • each electrode portion 8a, 8b, 9b A gap is provided between a, 9 b and the frame portion 3, and between each electrode portion 8 a, 8 b, 9 a, 9 b and each weight portion 4, 5.
  • each detection electrode 80 a, 80 b, 90 a, 90 b is electrically insulated from each other, the parasitic capacitance of each detection electrode 80 a, 80 b, 90 a, 90 b The cross! ⁇ High-precision electrostatic capacity can be detected.
  • the lower fixing plate 2b is formed of an insulating material such as glass like the upper fixing plate 2a, and is provided on the opposite side of the upper fixing plate 2a, that is, below the sensor chip 1 in this example, on the upper surface thereof. Are formed with anti-adhesion films 23 a and 23 b at positions facing the weight portions 4 and 5 of the sensor chip 1 along the vertical direction, respectively.
  • These anti-adhesion films 23 a and 23 b are made of the same material as the fixed electrodes 20 a, 2 O b and 21 a, 2 “I b, such as aluminum alloys, and This prevents the lower surface from adhering to the lower fixing plate 2 b In this way, the anti-adhesion films 23 a and 23 b are formed of the same material as the fixed electrodes 20 a and 2 O b and 21 a and 21 b.
  • the adhesion prevention films 23a and 23b are formed by a semiconductor manufacturing process, minute irregularities are formed on the surfaces of the adhesion prevention films 23a and 23b. It can be more suitably prevented from adhering to.
  • the adhesion preventing films 23 a and 23 b are formed of an aluminum-based alloy, the etching process becomes easy.
  • an organic material thin film such as a polyimide thin film on the surface of the adhesion preventing film 23 a, 23 b that has good consistency with the semiconductor manufacturing process and is easy to process, the adhesion preventing film 23 a, 23 You may make it prevent the short circuit between b and the weight parts 4 and 5.
  • the sensor part is configured, and the two sensor parts are formed integrally with the direction of the weight parts 4 and 5 (arrangement of the solid parts 40 and 50 and the concave parts 41 and 51) reversed 180 degrees on the same plane. Yes.
  • the direction and magnitude of the measured acceleration can be calculated.
  • the direction of acceleration in the X and z directions based on the sum and difference of the difference values CA and CB Since the calculation processing for obtaining the size is well known in the art, a detailed description thereof is omitted here.
  • the vertical line and the movable electrode 4 a that are lowered from the center of gravity of the weight portions 4 and 5 to the rotation axis.
  • the thickness of the weights 4 and 5 is increased, or the beam part 6 a, 6 b, 7 a, It is not desirable to reduce the weight by drilling directly under 7b. Therefore, in the present embodiment, as shown in FIG. 1, the beam portions 6a, 6b, 7a, 7b (only the beam portion 6b is shown in the figure) are arranged in the longitudinal direction of the weight portions 4, 5.
  • the vertical line lowered from the center of the weight parts 4, 5 to the rotating shaft and the surface of the movable electrodes 4a, 5a are formed.
  • the angle 0 is set to approximately 45 degrees.
  • the angle 0 can be maintained at approximately 45 degrees simply by shifting the beam portions 6 a, 6 b, 7 a, and 7 b, the thickness dimensions of the weight portions 4 and 5 are increased.
  • the detection sensitivity can be improved without reducing the weights 4 and 5.
  • the operation of the acceleration sensor can be confirmed by following the following procedure. That is, between the first fixed electrode 20a or the second fixed electrode 2Ob and the movable electrode 4a, or the first fixed electrode 21a or the second fixed electrode 21b and the movable electrode 5a.
  • the weights 4 and 5 are rotated by generating a suction force between them.
  • the capacitances between the fixed electrodes 20 a, 2 Ob and 2 1 a, 2 1 b and the weights 4, 5 caused by the rotation of the weights 4, 5 are changed.
  • a similar operation check may be performed by generating a suction force between the adhesion preventing films 23a, 23b and the movable electrodes 4a, 5a.
  • an acceleration sensor that detects acceleration in two directions of the X direction and the z direction has been described as an example.
  • one of the sensor parts including the weight part 4 that does not form the first recess 41 is defined as an XY plane. If it is rotated 90 degrees inside, an acceleration sensor that detects acceleration in three directions including the y direction can be realized.
  • the acceleration sensor of the present embodiment is generally the same as the configuration of FIG. 2, except that the configuration of the weight is shown in FIG.
  • the weight parts 4 and 5 are formed integrally with the first recesses 41 and 51 that open on one surface (lower surface) and the solid parts 40 and 50 excluding the first recesses 4 1 and 51.
  • the first recesses 4 1, 51 are formed in a square shape in plan view when viewed from the normal direction (vertical direction) of the opening surface, and the first recesses 41, 51 are divided into two reinforcing walls 42 , 52 is formed integrally with the weights 4, 5 ing.
  • the second recesses 44 and 54 (only the second recess 44 is shown in the figure) opened in one surface (lower surface) are recessed in the solid portions 40 and 50.
  • auxiliary weight portions 45 and 55 (only the auxiliary weight portion 45 is shown in the figure) made of a metal material having a specific gravity higher than that of the material forming the weight portion 4.5 are embedded in the second concave portions 44 and 54.
  • the specific gravity of silicon is 2.33 gZcm3.
  • the material of the auxiliary weights 45 and 55 is nickel (specific gravity 8.90 g / cm 3), tungsten (specific gravity 19.3 gZcm3), chromium (specific gravity 7.87 g / cm3), palladium (specific gravity 1 2.02 g / cm3), platinum (specific gravity 2 1.45 gZcm3), mangan ( It is desirable to use a specific gravity of 7.43 g / cm3). Further, it is desirable that the weights of the auxiliary weight portions 45 and 55 are substantially the same as the weight of the structure constituting the outer wall portion of the first concave portions 41 and 51.
  • the vertical line is lowered from the center of gravity of the weights 4 and 5 to the rotation axis.
  • the thickness of the weights 4 and 5 is increased, or the beam parts 6 a and 6 b of the weights 4 and 5 , 7 a and 7 b are not desirable to reduce weight by piercing directly under. Therefore, in the present embodiment, as shown in FIG.
  • the beam portions 6a, 6b, 7a, 7b are arranged at substantially the center in the longitudinal direction of the weight portions 4, 5.
  • the formed angle 0 is set to approximately 45 degrees.
  • the angle 0 can be maintained at about 45 degrees simply by shifting the beam parts 6 a, 6 b, 7 a, 7 b, so that the thickness dimensions of the weight parts 4, 5 are increased.
  • the detection sensitivity can be improved without reducing the weights 4 and 5.
  • the second recessed portions 44 and 54 are provided in the solid portions 40 and 50 of the weight portions 4 and 5, and the auxiliary weight portions 45 and 55 are embedded in the second recessed portions 44 and 54. Therefore, the weights 4 and 5 can be reduced in size while maintaining the weight balance of the weights 4 and 5, and as a result, the entire sensor can be reduced in size.
  • the operation of the acceleration sensor can be confirmed by following the procedure below. That is, between the first fixed electrode 20a or the second fixed electrode 2Ob and the movable electrode 4a, or the first fixed electrode 21a or the second fixed electrode 21b and the movable electrode 5a
  • the weight 4.5 is rotated by generating a suction force between the two.
  • the same operation confirmation may be performed by generating a suction force between the adhesion preventing films 23 a and 23 b and the movable electrode 4 a. 5 a.
  • the acceleration sensor that detects the acceleration in the two directions of the X direction and the z direction is exemplified, but the sensor portion including the weight portion 4 that does not form the first concave portion 41 is illustrated. If one is rotated 90 degrees in the XY plane, an acceleration sensor that detects acceleration in three directions, including the Y direction, can be realized.
  • Embodiments 3 and 4 of the acceleration sensor according to the present invention will be described below with reference to the drawings. However, since the basic configuration of each embodiment is the same as that of the first embodiment, common portions are denoted by the same reference numerals and description thereof is omitted.
  • the upper, lower, left and right directions in Fig. 7 (a) are defined as the upper, lower, left and right directions.
  • the upper fixing plate 2 a corresponds to a “first fixing plate” and the lower fixing plate 2 corresponds to a “second fixing plate”.
  • the upper fixing plate 2a is provided at a portion facing the protrusions 43a, 53a of the fixed electrodes 20a, 2Ob and 21a, 21b. It is characterized by providing relief parts 20c, 20d, 21c, and 21d, which are perforated so that one surface (bottom surface) faces the outside.
  • the protrusion 43 a, 53 a is the relief part 20 c
  • 20 Protruding parts 43 a, 53 a and each fixed electrode 20 a, 20 b and 2 1 a, 21 b must be in direct contact with each other to contact upper fixing plate 2 a via b and 21 a, 2 1 b There is no. Therefore, it is possible to prevent the protrusions 43 a and 53 a from adhering to the fixed electrodes 20 a and 2 O b and 2 1 a and 2 1 b.
  • each fixing plate 2a, 2b is made of a glass material, and the protrusions 43a, 53a are made of silicon or a silicon oxide film. It cannot be said that there is no possibility of adhering to each other. Therefore, for example, as shown in FIG. 7 (b), the surface of the fixing plate 2a, 2b corresponding to the relief portions 20c, 20b and 21a, 21b is roughened to form fine irregularities. It is desirable to provide. In this case, it is possible to prevent the protrusions 43a and 53a from adhering to the fixing plates 2a and 2b.
  • a method for roughening one surface of each of the fixing plates 2a and 2b there are a sand blasting method, wet etching using a liquid such as hydrofluoric acid solution, dry etching using a gas such as carbon tetrafluoride, and the like. is there.
  • a thin film made of a material having a hardness higher than that of the material constituting the protrusions 43a, 53a is formed on the surface of the protrusions 43a, 53a in the third embodiment. It is characterized by having A.
  • the thin film A is made of a material having a hardness higher than that of silicon or silicon oxide film such as a silicon nitride film.
  • silicon nitride film has higher hardness than silicon oxide film
  • it is formed thick (0.2 m or more) cracks will occur due to the internal stress of the film itself.
  • the protrusions 43a and 53a are formed with a thickness of 1 to 2 m using silicon or a silicon oxide film as a base material, and the thin film A is formed with a thickness of 0.2 jUm or less on the surface thereof. Forming.
  • the configuration of the thin film A is not limited to the silicon nitride film, and may be formed of, for example, a carbon material.
  • the thickness dimension of the thin film A can be reduced, so that the protrusions 43a and 53a can be easily adjusted to a desired thickness dimension.
  • one surface of the fixing plate 2a, 2b corresponding to the relief portions 20c, 2Ob and 21a, 21b is roughened to be fine. It is desirable to provide a rough surface (see Fig. 8 (b)).
  • the protrusions 43a and 53a are formed on the movable electrodes 4a and 5a, respectively, but as shown in FIG. 9, the fixed electrodes 20a and 2O Projections 43a and 53a may be formed on b and 21a and 21b.
  • the protrusions 43a and 53a collide with the movable electrodes 4a and 5a. Therefore, since each movable electrode 20a, 2Ob and 21a, 21b and each movable electrode 4a, 5a do not contact directly, each movable electrode 4a, 5a becomes each fixed electrode 20 Adhesion to a, 2 O b and 21 a, 2 1 b can be prevented.
  • each electrode portion 8 a, 8 b, 9 a, 9 b, 10 a between the adjacent electrode portions 8 a, 8 b, 9 a, 9 b, 10 a, each electrode portion 8 a, 8 b, 9 a, 9 b.
  • a gap is provided between each electrode portion 8 a, 8 b, 9 a, 9 b, 10 a and each weight portion 4, 5.
  • the detection electrodes 80a, 80b, 90a, 90b are electrically insulated from each other, so that the parasitic capacitances of the detection electrodes 80a, 80b, 90a, 90b The crosstalk between the electrodes can be reduced, and the capacitance can be detected with high accuracy.
  • the anti-adhesion films 23a and 23b are made of an aluminum-based metal as in the past, and when they are formed by a semiconductor manufacturing process, minute irregularities are formed on the surfaces of the anti-adhesion films 23a and 23b. Therefore, it is possible to suitably prevent the weights 4 and 5 and the protrusions 43 b and 53 b from adhering to the lower fixing plate 2 b.
  • aluminum is a relatively soft metal. If repeated collisions occur, the surfaces of the anti-adhesion films 23a and 23b are flattened, and the contact area increases, which makes it easier to adhere. There is.
  • the operation of the acceleration sensor can be confirmed by following the procedure below. That is, between the first fixed electrode 20a or the second fixed electrode 2Ob and the movable electrode 4a, or the first fixed electrode 21a or the second fixed electrode 21b and the movable electrode 5a The weights 4 and 5 are rotated by generating a suction force between them. Then, by detecting the change in capacitance between the fixed electrodes 20 a, 2 O b and 2 1 a, 21 b and the weights 4, 5 that occur as the weight 4.5 rotates. It is possible to check whether the acceleration sensor is operating normally. The same operation confirmation may be performed by generating a suction force between the adhesion preventing films 23a, 23b and the movable electrodes 4a, 5a.
  • the vertical direction in FIG. 10 is the vertical direction
  • the direction parallel to the longitudinal direction of the sensor chip 1 is the X direction
  • the direction parallel to the short direction of the sensor chip 1 is the y direction
  • the X direction is the directions perpendicular to each other in the y direction.
  • the electrode portions 8 a, 8 b, 9 a, 9 b, and 10 a are arranged in the x direction substantially in the center in the short direction (y direction) of the sensor chip 1. It is arranged in a straight line along. That is, the electrode portions 8a, 8b, 9a, 9b, and 10a are arranged so as to divide the sensor chip 1 in half.
  • a ground electrode 10 is provided on the upper surface of the electrode section 10 a.
  • the weights 4 and 5 are arranged so as to be point-symmetrical about the approximate center of the arrangement of the electrode parts 8a, 8b, 9a, 9b, and 10a, and the beam parts. 6 a, 6 b.
  • each beam part so that the straight line connecting 7 a, 7 b is along the direction (y direction) perpendicular to the arrangement direction of each electrode part 8 a, 8 ab, 9 a, 9 b 6 a, 6 b, 7 a, 7 b are arranged.
  • the electrode part 8a and the first fixed electrode 20a, the electrode part 8b and the second fixed electrode 20b, the electrode part 9a and the first fixed electrode 21a, the electrode part 9 and the second fixed electrode 2 1 b are electrically connected to each other through a conductive pattern.
  • two reinforcing walls 42 and 52 are respectively provided so that the inside of each recess 41 and 51 is divided into three. It is formed integrally with the weights 4 and 5.
  • the sensor chip 1 has a point-symmetric structure with the ground electrode 10 as the center. For this reason, the symmetry of the entire sensor increases, and even when distortion occurs due to thermal expansion, the entire sensor is evenly distorted, and the overall balance is not lost. Therefore, the solid portions 40, 50 and the concave portions 41, 51 of the weight portions 4, 5 and the beam portion 6 Differences in stress concentrated on a, 6b and 7a, 7b are unlikely to occur, and the temperature characteristics of the output can be improved.
  • the respective electrode portions 8a , 8b, 9a, 9b, 10a and the respective weight portions 4, 5 become equal, the respective electrode portions 8a , 8 b, 9 a, 9 b, 1 0 a and the fixed electrodes 20 a, 20 b and 2 1 a, 2 1 b are also equal in distance, so the wiring length of each conductive pattern connecting the electrodes Can be equal to each other. Therefore, the difference in parasitic capacitance of each conductive pattern is reduced, and the difference in capacitance between each movable electrode 4a, 5a and each fixed electrode 20a, 20b and 2 1a, 2 1b is also reduced. can do.
  • the distance from the beam portions 6a, 6b, 7a, 7b to the end portions of the weight portions 4, 5 in the longitudinal direction, that is, the turning radius of the weight portions 4, 5 is increased. Therefore, the rotational displacement required for the sensor chip 1 to obtain the same detection sensitivity as compared with the acceleration sensor of the same size can be reduced. For this reason, since the bending rigidity of the beam portions 6a, 6b, 7a, 7b can be increased, the movable electrodes 4a, 5a are supposed to be fixed to the fixed electrodes 20a, 20b and 21a.
  • the movable electrodes 4 a, 5 a are connected to the fixed electrodes 20 a, 2 O b and 2 1 by the restoring force of the beam portions 6 a, 6 b, 7 a, 7 b. Can be peeled off from a, 2 1 b.
  • the protrusions 43a, 43b, 53a, 53b are formed of the main material of the sensor chip such as silicon or silicon oxide film
  • the protrusions 43 a, 43 b, 5 3 a, and 5 3 b can be easily manufactured.
  • the surface layer of the protrusions 43 a, 43 b, 53 a, 53 b may be coated with a strong bond material. In this case, the mechanical strength of the protrusions 43 a. 43 b, 53 a and 53 b is increased, and the protrusions 43 a, 43 b, 53 a, and the like are collided with the upper fixing plate 2 a and the lower fixing plate 2 b.
  • the thickness dimension of the coating can be reduced by adopting a strong carbon nanotube as the carbon material, the protrusions 43a, 43b, 53a, 53b can be easily adjusted to a desired height dimension. .
  • the adhesion preventing films 23a, 23b are formed of the same material as the fixed electrodes 20a, 2Ob and 2 1a, 2 1b. By doing so, the adhesion preventing films 23 a and 23 b can be easily formed.
  • the anti-adhesion films 23 a, 2 3 b are formed simultaneously with the fixed electrodes 20 a, 2 O b and 2 1 a, 2 1 b, the weights 4, 5 and the fixed electrodes 20 a, 2 O b and The accuracy of the distance between 2 1 a and 2 1 b and between the weights 4 and 5 and the lower fixing plate 2 b can be increased.
  • the adhesion preventing film 23 a. 23 b is formed by a semiconductor manufacturing process, since minute irregularities are formed on the surface of the adhesion preventing film 23 a, 23 b, the weights 4, 5 are attached to the lower fixing plate 2. Adherence to b can be more suitably prevented.
  • the anti-adhesion films 23 a and 23 b are When it is made of a Lumidium alloy, it is easy to etch.
  • the adhesion preventing film 23 a, 23 b Furthermore, by forming an organic material thin film such as a polyimide thin film on the surface of the adhesion preventing film 23 a, 23 b that has good consistency with the semiconductor manufacturing process and is easy to process, the adhesion preventing film 23 a, 23 You may make it prevent the short circuit between b and the weight parts 4 and 5.
  • FIG. 1 An organic material thin film such as a polyimide thin film
  • the electrode portions 8 a, 8 b, 9 a, 9 b, 10 0 a the electrode portions 8 a, 8 b, 9 a
  • a gap is provided between 9 b, 1 0 a and frame 3, and between each electrode 8 a, 8 b, 9 a, 9 b, 1 0 a and each weight 4, 5.
  • the detection electrodes 80a, 80b, 90a, 90b are electrically insulated from each other, so that the parasitic capacitances of the detection electrodes 80a, 80b, 90a, 90b The crosstalk between the electrodes can be reduced and the capacitance can be detected with high accuracy.
  • the beam portions 6 a, 6 b, 7 a, 7 b are substantially omitted in the longitudinal direction of the weight portions 4, 5.
  • the vertical line from the center of gravity of the weights 4 and 5 and the surface of the movable electrodes 4 a and 5 a The angle 0 formed by is set to approximately 45 degrees.
  • the angle 0 can be maintained at about 45 degrees simply by shifting the beam portions 6 a, 6 b, 7 a, 7 b, the thickness dimensions of the weight portions 4, 5 are increased.
  • the detection sensitivity can be improved without reducing the weights 4 and 5.
  • the operation of the acceleration sensor can be confirmed by following the procedure below. That is, between the first fixed electrode 20a or the second fixed electrode 2Ob and the movable electrode 4a, or the first fixed electrode 21a or the second fixed electrode 21b and the movable electrode 5a The weights 4 and 5 are rotated by generating a suction force between them. Then, by detecting the change in capacitance between the fixed electrodes 20 a, 2 O b and 2 1 a, 21 b and the weights 4, 5 that occur as the weights 4, 5 rotate. It is possible to check whether the acceleration sensor is operating normally. The same operation confirmation may be performed by generating a suction force between the adhesion preventing films 23a, 23b and the movable electrodes 4a, 5a.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

 本発明は一面に開口する凹部と前記凹部を除く充実部が一体に形成された重り部と、前記凹部と前記充実部とが回動方向に沿って並ぶように前記重り部を回動自在に支持する1対のビーム部と、凹部が開口する前記一面と異なる他の一面において前記凹部と前記充実部とに跨って設けられた可動電極と、前記可動電極における前記凹部側と対向する位置に配設された第1の固定電極と、可動電極における前記充実部側と対向する位置に配設された第2の固定電極とから成るセンサ部を備え、1対の前記ビーム部を結ぶ直線を回動軸とした前記重り部の回動に伴う前記可動電極と前記固定電極との間の静電容量の変化から加速度を検出する加速度センサであって、前記重り部の重心位置から前記回動軸に下ろした垂線と前記可動電極の表面とが成す角度が略45度となるように、前記ビーム部を前記凹部側にずらして配置したことを特徴とする加速度センサを提供する。

Description

明細書
加速度センサ
技術分野 本発明は、 静電容量型の加速度センサに関する。 背景技術 従来、 図 5 ( a ) に示すように、 可動電極を有する直方体形状の重り部 1 0 0と、 重り 部 1 0 0の長手方向における略中央において重り部 1 0 0を回動自在に支持する 1対のビ —ム部 1 0 1と、 1対のビーム部 1 0 1を結ぶ直線を境界線とした重り部 1 0 0の表面の それぞれ一方側及び他方側に対して所定距離を空けて対向配置された 1対の固定電極 1 0 2 , 1 0 3とを備えた加速度センサが知られている (例えば、 特許文献 1参照) 。 この加 速度センサは、 前記境界線を回動軸とした重り部 1 0 0の回動に伴う可動電極 (重り部 1 0 0における固定電極 1 0 2 , 1 0 3との対向部位) と、 固定電極 1 0 2 , 1 0 3との間 の静電容量の変化を差動検出することにより、 重り部 1 0 0に印加された加速度を検出す る。 このような加速度センサでは、 重り部 1 0 0の裏面の前記境界線を挟んだ一方側 (図 5 ( a ) における右側) に凹部 1 0 4を形成することにより、 重り部 1 0 0は前記境界線 を挟んだ一方側 (右側) と他方側 (左側) とで重量が異なるように構成している。 而して、 加速度が印加された際に前記境界線を回動軸としたモーメン卜が重り部 1 0 0に発生する ようになつている。 ここで、 重り部 1 0 0の凹部1 0 4が形成された部位が周囲からの応 力によって変形してしまうのを防ぐために、 凹部 1 0 4内を 2分割するような補強壁 1 0 5を前記境界線と平行な向きに沿って重り部 1 0 0と一体に形成している。
【特許文献 1】 特表 2 0 0 8— 5 4 4 2 4 3号公報 発明の槪要 ところで、 上記の加速度センサでは、 回動軸に直交する 2方向の加速度を検出すること ができるが、 重り部 1 0 0の重心位置から回動軸に下ろした垂線と重り部 1 0 0の表面と が成す角度 0を略 4 5度に設定することによって、 これら 2方向の検出感度を等価にして いる。 ここで、 加速度センサの検出感度を向上させる手段の一つとして、 可動電極の面積 を大きくする方法があるが、 この方法を採用する場合には上記の角度 0を略 4 5度に維持 するために重り部 1 0 0の厚み寸法を大きくしなければならない。 重り部 1 0 0の厚み寸 法を大きくすると、 重り部 1 0 0を形成するエッチング工程の時間が長くなるため、 現実 的ではないという問題があった。
そこで、 重り部 1 0 0の厚み寸法を大きくすることなく上記の角度 0を略 4 5度に維持 させるために、 図 5 ( b ) に示すように、 重り部 1 0 0におけるビーム部 1 0 1の同図に おける直下を刳り貫く事で重り部 1 0 0を軽量化する方法がある。 し力、しな力《ら、 この方 法を採用する場合には、 重り部 1 0 0において軽量化された薄肉部の強度が不足するため に好ましくないという問題があった。
本発明は、 上記の点に鑑みて為されたもので、 重り部の厚み寸法の大型化や軽量化をす ることなく検出感度を向上させることのできる加速度センサを提供することを目的とする。 本発明の第 1側面によれば、 上記目的を達成するために、 一面に開口する凹部と凹部を 除く充実部が一体に形成された重り部と、 凹部と充実部とが回動方向に沿って並ぶように 重り部を回動自在に支持する 1対のビーム部と、 凹部が開口する前記一面と異なる他の一 面において凹部と充実部とに跨って設けられた可動電極と、 可動電極における凹部側と対 向する位置に配設された第 1の固定電極と、 可動電極における充実部側と対向する位置に 配設された第 2の固定電極とから成るセンサ部を備え、 1対のビーム部を結ぶ直線を回動 軸とした重リ部の回動に伴う可動電極と固定電極との間の静電容量の変化から加速度を検 出する加速度センサであって、 重り部の重心位置から前記回動軸に下ろした垂線と可動電 極の表面とが成す角度が略 4 5度となるように、 ビーム部を凹部側にずらして配置した加 速度センサが提供される。
本発明の第 1側面による構成によれば、 可動電極の面積を大きくして検出感度を向上さ せる際に、 重り部の重心位置から回動軸に下ろした垂線と可動電極の表面とが成す角度が 略 4 5度となるようにビーム部をずらして配置するだけで対応できるため、 重リ部の厚み 寸法を大きくする、 或いは重リ部を軽量化することなく検出感度を向上させることができ る。
且つ充実部に一面に開口する別個の凹部を設け、 別個の ω部に金属材料から成る補助重 リ部を埋設しても良い。
このような構成によれば、 補助重り部を別個の凹部に埋設することにより、 重り部の重 量バランスを維持しながら重り部の小型化を図ることができ、 結果的にセンサ全体の小型 化を図ることが可能である。
本発明の第 2側面によれば、 上記目的を達成するために、 一面に開口する凹部と凹部を 除く充実部が一体に形成された重り部と、 凹部と充実部とが回動方向に沿って並ぶように 重り部を回動自在に支持する 1対のビーム部と、 凹部が開口する前記一面と異なる他の一 面において凹部と充実部とに跨って設けられた可動電極と、 可動電極における凹部側と対 向する位置に配設された第 1の固定電極と、 可動電極における充実部側と対向する位置に 配設された第 2の固定電極とから成るセンサ部を備え、 1対のビーム部を結ぶ直線を回動 軸とした重り部の回動に伴う可動電極と固定電極との間の静電容量の変化から加速度を検 出する加速度センサであって、 重り部の固定電極と対向する側の面と所定の間隔を空けて 配置され且つ一面に各固定電極が設けられる第 1の固定板を有し、 各可動電極の各固定電 極との対向面には各々突起部が形成され、 各固定電極の各突起部と対向する部位には、 そ れぞれ第 1の固定板の一面を外部に臨ませるように刳リ貫かれた逃がし部が設けられた加 速度センサが提供される。
本発明の第 3側面によれば、 一面に開口する凹部と凹部を除く充実部が一体に形成され た重り部と、 凹部と充実部とが回動方向に沿って並ぶように重り部を回動自在に支持する 1対のビーム部と、 凹部が開口する前記一面と異なる他の一面において凹部と充実部とに 跨って設けられた可動電極と、 可動電極における凹部側と対向する位置に配設された第 1 の固定電極と、 可動電極における充実部側と対向する位置に配設された第 2の固定電極と から成るセンサ部を備え、 1対のビーム部を結ぶ直線を回動軸とした重り部の回動に伴う 可動電極と固定電極との間の静電容量の変化から加速度を検出する加速度センサであって、 各固定電極の可動電極との対向面に突起部が形成された加速度センサが提供される。
本発明の第 2、 3側面による構成によれば、 従来であれば突起部が固定電極に接触する 程度の衝撃がセンサに与えられたとしても、 突起部が逃がし部を介して第 1の固定板と接 触するため、 突起部と固定電極とが直接接触することがない。 したがって、 突起部が固定 電極に付着するのを防止することができる。
本発明の第 4側面によれば、 上記目的を達成するために、 一面に開口する凹部と凹部を 除く充実部が一体に形成された重リ部と、 凹部と充実部とが回動方向に沿って並ぶように 重り部を回動自在に支持する 1対のビーム部と、 凹部が開口する前記一面と異なる他の一 面において凹部と充実部とに跨って設けられた可動電極と、 可動電極における凹部側と対 向する位置に配設された第 1の固定電極と、 可動電極における充実部側と対向する位置に 配設された第 2の固定電極と、 各固定電極と電気的に接続される検出電極を有する 1対の 電極部とから成るセンサ部を備え、 1対のビーム部を結ぶ直線を回動軸とした重り部の回 動に伴う可動電極と固定電極との間の静電容量の変化から加速度を検出する加速度センサ であって、 センサ部は同一のチップに 2つ形成され、 各電極部はチップを半々に分割する ように一方向に沿って配置され、 各重り部は、 各電極部の配列の略中央を中心として点対 称となるように配置され、 且つ各ビーム部を結ぶ直線が各電極部の配置方向と直交する方 向に沿うように各ビーム部が配置された加速度センサが提供される。
本発明の第 4側面による構成によれば、 センサ全体の対称性が增すため、 熱膨張などに よつて歪みが発生した場合にもセンサ全体に均等に歪みが生じ、 全体のバランスが損なわ れない。 したがって、 出力の温度特性の高精度化を図ることができる。 また、 各電極部と 各重り部との間の距離が等しくなるのに伴って、 各電極部と各固定電極との間の距離も等 しくなるため、 電極間を結ぶ各導電パターンの配線長を互いに等しくすることができる。 したがって、 各導電パターンの寄生容量の差が低減され、 各可動電極と各固定電極との間 の静電容量の差も低減することができる。 更に、 ビーム部から重り部の各端部までの距離、 即ち、 重り部の回動半径を大きくとることができるため、 チップが同一寸法の従来の加速 度センサと比較して同一の検出感度を得るために必要な回動変位を小さくすることができ る。 このため、 ビーム部の曲げ剛性を高くすることができるので、 仮に可動電極が固定電 極に付着したとしてもビーム部の復帰力によって可動電極を固定電極から引き剥がすこと ができる。 図面の簡単な説明 本発明の目的及び特徴は以下のような添付図面を参照する以後の好ましい実施例の説明 により明確になる。
【図 1】 本発明に係る加速度センサの実施形態を示す要部断面図である。
【図 2】 同上の分解斜視図である。
【図 3】 (a ) は同上の上部固定板及び導電パターンを省略した上面図で、 (b ) は
( a ) の A— A ' 線断面矢視図である。
【図 4】 同上のセンサチップの下面図である。
【図 5】 (a ) は従来の加速度センサを示す要部断面図で、 (b ) は (a ) のビーム 部直下を刳リ貫いた場合の要部断面図である。
【図 6】 本発明に係る加速度センサの実施形態 2を示す断面図である。
【図 7】 本発明に係る加速度センサの実施形態 3を示す図で、 (a ) は要部断面図で、
( b ) は他の構成における要部断面図である。
【図 8】 本発明に係る加速度センサの実施形態 4を示す図で、 (a ) は要部断面図で、 ( b ) は他の構成における要部断面図である。
【図 9】 本発明に係る加速度センサの参考例を示す要部断面図である。
【図 1 0】 本発明に係る加速度センサの実施形態 5を示す分解斜視図である。
【図 1 1】 同上のセンサチップを下側から見た平面図である。
【図 1 2】 同上の断面図である。 発明を実施するための形態 以下、 本発明に係る加速度センサの実施形態について添付図面を用いてよリ詳細に説明 する。 図面全体において同一又は類似する部分については同一参照符号を付して説明を省 略する。 尚、 以下の説明では、 図 1における上下を上下方向、 センサチップ 1の短手方向 と平行な方向を X方向、 センサチップ 1の長手方向と平行な方向を y方向、 X方向及び y 方向に互いに直交する方向を z方向と定めるものとする。 本実施形態は、 図 1 , 2に示す ように、 外形が矩形板状であるセンサチップ 1と、 センサチップ 1の上面側に固定される 上部固定板 2 aと、 センサチップ 1の下面側に固定される下部固定板 2 bとを備える。 センサチップ 1は、 上下方向から見て矩形状の 2つの枠部 3 a, 3 bが長手方向に並設 されたフレーム部 3と、 枠部 3 a, 3 bの内周面に対して隙間を空けた状態で枠部 3 a, 3 b内に隣接して配置された直方体形状の重り部 4, 5と、 枠部 3 a, 3 bの内周面と重 リ部 4, 5の側面とを連結してフレーム部 3に対して重り部 4, 5を回動自在に支持する 各 1対のビーム部 6 a, 6 b及び 7 a, 7 bと、 重り部 4, 5の上面に形成される可動電 極 4 a, 5 aとを備える。
重り部 4, 5は、 図 1 , 3 (b) に示すように、 一面 (下面) に開口する凹部 41 , 51 と、 凹部 41, 51を除く充実部 40, 50とが一体に形成されている。 凹部 41, 5 1 は、 開口面の法線方向 (上下方向) から見て平面視四角形状に形成され、 また、 凹部 4 1 , 51内を 4分割する補強壁 42, 52が重り部 4, 5と一体に形成されている。
ここで、 本実施形態では、 図 4に示すように、 平面視く字形の 1対の補強壁 42, 52 と各補強壁 42, 52の中央部が平坦な補強壁 42' 、 52' で連結された構成、 即ち、 複数の補強壁 42, 52が凹部 41 , 51の頂角と交わらない位置で内壁面と結合される 構成を採用している。 而して、 凹部 41 , 51の四隅において補強壁 42, 52と内壁面 との成す角度が鈍角となるため、 重り部 4, 5に凹部 41 , 51を形成 (エッチング) す るのが容易となっている。
1対のビーム部 6 a , 6 bは、 重り部 4の枠部 3 aと対向する側面の X方向における略 中央部と枠部 3 aとを連結している。 同様に、 1対のビーム部 7 a, 7 bは、 重り部 5の 枠部 3 bと対向する側面の X方向における略中央部と枠部 3 bとを連結している。 而して、 1対のビーム部 6 a, 6 bを結ぶ直線、 並びに 1対のビーム部 7 a, 7 bを結ぶ直線が回 動軸となり、 回動軸の回りに各重り部 4, 5が回動するようになっている。
センサチップ 1は、 半導体の微細加工技術により SO I (Silicon on Insulator) 基板 を加工して形成され、 重り部 4, 5の上面を含む部位が可動電極 4 a, 5 aとなる。 また、 重り部 4 , 5の上面及び下面には、 重り部 4 , 5が上部固定板 2 a及び下部固定板 2 bに 直接衝突するのを防止するための突起部 43 a, 43 b, 53 a, 53 bが突設されてい る。
ここで、 突起部 43 a, 43 b, 53 a, 53 bをシリコン又はシリコン酸化膜といつ たセンサチップの主材料により形成した場合には、 突起部 43 a, 43 b, 53 a. 53 bを容易に製造することができる。 尚、 突起部 43 a , 43 b , 53 a , 53 bの表層を 力一ボン材料でコ一ティングしてもよい。 この場合、 突起部 43 a, 43 b, 53 a, 5 3 bの機械的強度が増し、 上部固定板 2 a及び下部固定板 2 bとの衝突によって突起部 4 3 a, 43 b, 53 a, 53 bが破損するのを防止することができる。 更に、 カーボン材 料として力一ボンナノチューブを採用すれば、 コーティングの厚み寸法を小さくできるの で、 突起部 43 a, 43 b, 53 a, 53 bを所望の高さ寸法に容易に調整することがで きる。
上部固定板 2 aは、 例えばガラス等の絶縁材料から形成され、 可動電極 4 a, 5 a側、 すなわち本例ではセンサチップ 1上に設けられ、 その下面には、 上下方向に沿ってセンサ チップ 1の重り部 4 (可動電極 4 a) と対向する位置に第 1の固定電極 20 aと第 2の固 定電極 20 bとが X方向に並設されるととともに、 上下方向に沿ってセンサチップ 1の重 リ部 5 (可動電極 5 a) と対向する位置に第 1の固定電極 21 aと第 2の固定電極 2 1 b とが X方向に並設されている。 また、 上部固定板 2 aの X方向一端側には、 5つの貫通孔 22 a~22 eが y方向に並べて貫設されている。 更に、 上部固定板 2 aの下面には、 各 固定電極 20 a, 2 O b及び 2 1 a , 2 1 bと電気的に接続された複数の導電パターン (図示せず) が形成されている。
一方、 センサチップ 1の X方向一端側には、 フレーム部 3から離間された計 4つの電極 部 8 a, 8 b, 9 a, 9 bが並設されている。 これら 4つの電極部 8 a, 8 b, 9 a , 9 bは、 上面における略中央に金属膜から成る検出電極 80 a, 80 b, 90 a, 90 bが それぞれ形成されるとともに、 枠部 3 a, 3 bに臨む端部の上面に金属膜から成る圧接電 極 8 1 a, 8 1 b, 9 1 a, 91 b (圧接電極 9 1 aのみ図示) がそれぞれ形成されてお リ、 検出電極 80 a (80 b) と圧接電極 8 1 a (8 1 b) とは連結されている。 尚、 フ レーム部 3上面の電極部 8 b, 9 aの間には接地電極 1 0が形成されており、 接地電極 1 0はビーム部 6 a、 6 bを介して可動電極 4 aに、 ビーム部 7 a、 7 bを介して可動電極 5 aに電気的に接続されている。 そして、 センサチップ 1の上面に上部固定板 2 aが接合 されると、 上部固定板 2 aの下面に形成されている導電パターンと圧接電極 8 1 a, 8 1 b, 9 1 a, 9 1 bとが圧接接続されることで、 各検出電極 80 a, 80 b, 90 a, 9 O bが各固定電極 20 a, 20 b, 2 1 a, 2 1 bと電気的に接続されるとともに、 上部 固定板 2 aの貫通 ¾22 a~22 dを介して各検出電極 80 a, 80 b, 90 a, 90 b が外部に露出する。 尚、 接地電極 1 0も貫通孔 22 eを介して外部に露出する。
尚、 本実施形態では、 図 2に示すように、 電極部 8 aと電極部 8 bとの間、 電極部 9 a と電極部 9 bとの間、 各電極部 8 a, 8 b, 9 a, 9 bとフレーム部 3との間、 各電極部 8 a, 8 b, 9 a, 9 bと各重り部 4, 5との間に各々隙間が設けられている。 このよう に構成することで、 各検出電極 80 a, 80 b, 90 a, 90 bが互いに電気的に絶縁さ れるので、 各検出電極 80 a, 80 b, 90 a, 90 bの寄生容量や電極間のクロス! ^一 クを低減し、 高精度な静電容量の検出を行うことができる。
下部固定板 2 bは、 上部固定板 2 aと同様にガラス等の絶緣材料から形成され、 上部固 定板 2 aの反対側、 即ち本例ではセンサチップ 1の下に設けられ、 その上面には上下方向 に沿ってセンサチップ 1の重り部 4, 5と対向する位置にそれぞれ付着防止膜 23 a, 2 3 bが形成されている。 この付着防止膜 23 a, 23 bは、 アルミニウム系合金等の固定 電極 20 a, 2 O b及び 21 a, 2 "I bと同じ材料で形成されており、 回動した重り部 4, 5の下面が下部固定板 2 bに付着するのを防止している。 このように、 付着防止膜 23 a, 23 bを固定電極 20 a, 2 O b及び 21 a, 21 bと同一材料で形成することにより、 付着防止膜 23 a, 23 bを容易に形成することができる。 このとき、 付着防止膜 23 a, 23 bを固定電極 20 a, 2 O b及び 21 a, 21 bと同時に形成すれば、 重り部 4 , 5 と固定電極 20 a, 2 O b及び 2 1 a, 2 1 bとの間、 及び重り部 4, 5と下部固定板 2 bとの間の距離の精度を高めることができる。
尚、 付着防止膜 23 a, 23 bを半導体製造プロセスにより成膜した場合、 付着防止膜 23 a, 23 bの表面に微小な凹凸が形成されるため、 重り部 4, 5が下部固定板 2 に 付着するのをより好適に防止することができる。 ここで、 付着防止膜 23 a, 23 bをァ ルミ二ゥム系合金により形成した場合、 エッチング加工が容易になる。 また、 付着防止膜 23 a, 23 bの表面上に半導体製造プロセスとの整合性が良く、 且つ加工がし易いポリ イミド薄膜等の有機材料薄膜を形成することにより、 付着防止膜 23 a, 23 bと重り部 4, 5との間の短絡を防止するようにしてもよい。
ここで、 本実施形態では、 枠部 3 a、 重り部 4、 ビーム部 6 a, 6 b、 可動電極 4 a、 第 1及び第 2の固定電極 20 a, 20 b、 検出電極 80 a, 80 bと、 枠部 3 b、 重り部 5、 ビーム部 7 a, 7 b、 可動電極 5 a、 第 1及び第 2の固定電極 2 1 a, 21 b、 検出 電極 90 a, 90 bとで各々センサ部が構成され、 重り部 4, 5の向き (充実部 40, 5 0と凹部 41 , 51の配置) を同一平面において 1 80度反転させた状態で 2つのセンサ 部が一体に形成されている。
次に、 本実施形態の検出動作について説明する。 先ず、 一方の重り部 4に X方向の加速 度が印加された場合を考える。 X方向に加速度が印加されると、 重り部 4が回動軸の回り に回動して可動電極 4 aと第 1の固定電極 20 a並びに第 2の固定電極 20 bとの間の距 離が変化し、 その結果、 可動電極 4 aと各固定電極 20 a, 20 bとの間の静電容量 C 1 , C 2も変化する。 ここで、 X方向の加速度が印加されていないときの可動電極 4 aと各固 定電極 20 a, 20 bとの間の静電容量を COとし、 加速度の印加によって生じる静電容 量の変化分を ΔΟとすれば、 X方向の加速度が印加されたときの静電容量 C 1 , C2は、 C 1 =CO— AC … ( 1 )
C2 = C0 +厶 C … (2)
と表すことができる。
同様に、 他方の重り部 5に X方向の加速度が印加された場合、 可動電極 5 aと各固定電 極 21 a, 21 bとの間の静電容量 C 3, C 4は、
C3 = CO-AC … (3)
C4 = C0 +厶 C … (4)
と表すことができる。
ここで、 静電容量 C 1〜C4の値は、 検出電極 80 a, 80 b及び 90 a, 90 bから 取出す電圧信号を演算処理することで検出することができる。 そして、 一方のセンサ部か ら得られる静電容量 C 1 , C2の差分値 CA (=C 1 -C2) と、 他方のセンサ部から得 られる静電容量 C3, C4の差分値 CB (=C3— C4) との和 (±4AC) を算出すれ ば、 この差分値 CA, CBの和に基づいて X方向に印加された加速度の向きと大きさを演 算することができる。
次に、 一方の重り部 4に Z方向の加速度が印加された場合を考える。 z方向に加速度が 印加されると重り部 4が回動軸の回りに回動して可動電極 4 aと第 1の固定電極 20 a並 びに第 2の固定電極 20 bとの間の距離が変化し、 その結果、 可動電極 4 aと各固定電極 20 a, 20 bとの間の静電容量 C 1 , C 2も変化する。 ここで、 z方向の加速度が印加 されていないときの可動電極 4 aと各固定電極 20 a, 20 bとの間の静電容量を CO' とし、 加速度の印加によって生じる静電容量の変化分を AC' とすれば、 z方向の加速度 が印加されたときの静電容量 C 1 ' , C2' は、
C 1 ' =C 0' +Δ C … (5)
C2' =CO' -AC ··■ (6)
と表すことができる。
同様に、 他方の重り部 5に z方向の加速度が印加された場合、 可動電極 5 aと各固定電 極 21 , 21 bとの間の静電容量 C 3' , C4' は、
C 3' =C 0' —AC' … (7)
C 4' =C 0' +△ C' ··· (8)
と表すことができる。
そして、 一方のセンサ部から得られる静電容量 C Γ , C 2' の差分値 CA' (=C 1 ' -C2' ) と、 他方のセンサ部から得られる静電容量 C 3' , C4' の差分値 CB' (=C 3' -C 4' ) との差 (±4AC' ) を算出すれば、 この差分値 CA' , CB' CA' , CB' の差に基づいて z方向に印加された加速度の向きと大きさを演算すること ができる。 尚、 差分値 CA, CBの和と差とに基づいて X方向及び z方向の加速度の向き と大きさを求める演算処理については従来周知であるので、 ここでは詳細な説明を省略す る。
ところで、 前述のように、 加速度センサの検出感度を高めるべく可動電極 4 a, 5 aの 面積を大きくする場合、 重り部 4, 5の重心位置から回動軸に下ろした垂線と可動電極 4 a, 5 aの表面とが成す角度を略 45度に維持するために、 重り部 4, 5の厚み寸法を大 きくする、 或いは重り部 4, 5のビーム部 6 a, 6 b, 7 a, 7 bの直下を刳り貫いて軽 量化する方法は望ましくない。 そこで、 本実施形態では、 図 1に示すように、 ビーム部 6 a, 6 b, 7 a, 7 b (同図ではビーム部 6 bのみ図示) を重り部 4, 5の長手方向にお ける略中央から凹部 41 , 5 1側 (右側) にずらして配置することで、 重り部 4, 5の重 心位置から回動軸に下ろした垂線と可動電極 4 a, 5 aの表面とが成す角度 0を略 45度 となるようにしている。 而して、 ビーム部 6 a, 6 b, 7 a, 7 bをずらして配置するだ けで角度 0を略 45度に維持することができるため、 重り部 4, 5の厚み寸法を大きくす る、 或いは重り部 4, 5を軽量化することなく検出感度を向上させることができる。
尚、 本実施形態では、 以下の手順を踏むことで加速度センサの動作確認を行うことがで きる。 即ち、 第 1の固定電極 20 a又は第 2の固定電極 2 O bと可動電極 4 aとの間、 若 しくは第 1の固定電極 21 a又は第 2の固定電極 21 bと可動電極 5 aとの間に吸引力を 発生させることで、 重り部 4, 5を回動させる。 そして、 重り部 4, 5の回動に伴って生 じる各固定電極 20 a, 2 O b及び 2 1 a, 2 1 bと重り部 4, 5との間の静電容量の変 化を検出することで、 加速度センサが正常に動作しているか否かを確認することができる。 尚、 付着防止膜 23 a, 23 bと可動電極 4 a, 5 aとの間に吸引力を発生させることで 同様の動作確認を行ってもよい。
また、 本実施形態では、 X方向と z方向の 2方向の加速度を検出する加速度センサを例 示したが、 第 1の凹部 41を形成しない重り部 4から成るセンサ部の 1つを X y平面内で 90度回転配置すれば、 y方向を加えた 3方向の加速度を検出する加速度センサを実現す ることができる。
(第 2実施形態)
以下、 本発明に関する加速度センサの第 2実施形態について図面を用いて説明する。 但 し、 本実施形態の基本的な構成は実施形態 1と共通するため、 共通する構成には同一符号 を付して説明を省略する。 本実施形態の加速度センサは図 2の構成と全体的に同一し、 但 し、 重り部の構成が図 6に示されている。
重り部 4, 5は、 図 6に示すように、 一面 (下面) に開口する第 1の凹部 41 , 51と、 第 1の凹部 4 1 , 51を除く充実部 40, 50とが一体に形成されている。 第 1の凹部 4 1 , 5 1は、 開口面の法線方向 (上下方向) から見て平面視四角形状に形成され、 また、 第 1の凹部 4 1 , 51内を 2分割する補強壁 42, 52が重り部 4, 5と一体に形成され ている。
ここで、 本実施形態では、 図 6に示すように、 一面 (下面) に開口する第 2の凹部 44, 54 (同図では第 2の凹部 44のみ図示) が充実部 40, 50に凹設されている。 また、 重り部 4. 5を成す材料よりも比重の高い金属材料から成る補助重り部 45, 55 (同図 では補助重り部 45のみ図示) を第 2の凹部 44, 54に埋設している。 尚、 重り部 4, 5がシリコンにより形成されている場合、 シリコンの比重が 2. 33 gZcm3であるた め、 補助重り部 45, 55を構成する材料としては、 ニッケル (比重 8. 90 g/cm 3) 、 タングステン (比重 1 9. 3 gZcm3) 、 クロム (比重 7. 87 g/cm3) 、 パラジウム (比重 1 2. 02 g/cm3) 、 白金 (比重 2 1. 45 gZcm3) 、 マンガ ン (比重 7. 43 g/cm3) を採用するのが望ましい。 また、 補助重り部 45, 55の 重量は、 第 1の凹部 41 , 5 1の外壁部を構成する構造体の重量と略同一であることが望 ましい。
ところで、 従来の加速度センサのように、 加速度センサの検出感度を高めるべく可動電 極 4 a, 5 aの面積を大きくする場合、 重り部 4, 5の重心位置から回動軸に下ろした垂 線と可動電極 4 a, 5 aの表面とが成す角度を略 45度に維持するために、 重り部 4, 5 の厚み寸法を大きくする、 或いは重り部 4, 5のビーム部 6 a, 6 b, 7 a, 7 bの直下 を刳り貫いて軽量化する方法は望ましくない。 そこで、 本実施形態では、 図 6に示すよう に、 ビーム部 6 a, 6 b, 7 a, 7 b (同図ではビーム部 6 bのみ図示) を重り部 4, 5 の長手方向における略中央から第 1の凹部 4 1 , 5 1側 (右側) にずらして配置すること で、 重り部 4, 5の重心位置から回動軸に下ろした垂線と可動電極 4 a, 5 aの表面とが 成す角度 0を略 45度となるようにしている。 而して、 ビーム部 6 a, 6 b, 7 a, 7 b をずらして配置するだけで角度 0を略 45度に維持することができるため、 重り部 4, 5 の厚み寸法を大きくする、 或いは重り部 4, 5を軽量化することなく検出感度を向上させ ることができる。
更に、 本実施形態では、 重り部 4, 5の充実部 40, 50に第 2の凹部 44, 54を凹 設するとともに、 当該第 2の凹部 44, 54に補助重り部 45, 55を埋設しているので、 重り部 4, 5の重量バランスを維持しつつ重り部 4, 5の小型化を図ることができ、 結果 としてセンサ全体の小型化を図ることができる。
尚、 本実施形態でも第 1実施形態と同様に、 以下の手順を踏むことで加速度センサの動 作確認を行うことができる。 即ち、 第 1の固定電極 20 a又は第 2の固定電極 2 O bと可 動電極 4 aとの間、 若しくは第 1の固定電極 21 a又は第 2の固定電極 21 bと可動電極 5 aとの間に吸引力を発生させることで、 重り部 4. 5を回動させる。 そして、 重り部 4, 5の回動に伴って生じる各固定電極 20 a, 20 b及び 2 1 a, 21 bと重り部 4, 5と の間の静電容量の変化を検出することで、 加速度センサが正常に動作しているか否かを確 認することができる。 尚、 付着防止膜 23 a, 23 bと可動電極 4 a. 5 aとの間に吸引 力を発生させることで同様の動作確認を行ってもよい。
また、 本実施形態でも第 1実施形態と同様に、 X方向と z方向の 2方向の加速度を検出 する加速度センサを例示したが、 第 1の凹部 41を形成しない重り部 4から成るセンサ部 の 1つを X Y平面内で 90度回転配置すれば、 Y方向を加えた 3方向の加速度を検知する 加速度センサを実現することができる。
以下、 本発明に係る加速度センサの各実施形態 3及び 4について図面を用いて説明する。 但し、 各実施形態の基本的な構成は実施形態 1と共通であるので、 共通する部位には同一 の番号を付して説明を省略する。 尚、 以下の説明では、 図 7 (a) における上下左右を上 下左右方向と定めるものとする。 また、 各実施形態において、 上部固定板 2 aが 「第 1の 固定板」 、 下部固定板 2 が 「第 2の固定板」 に相当する。
(実施形態 3 )
本実施形態は、 図 7 (a) に示すように、 各固定電極 20 a, 2 O b及び 21 a, 21 bの突起部 43 a, 53 aと対向する部位に、 上部固定板 2 aの一面 (下面) を外部に臨 ませるように刳り貫かれた逃がし部 20 c, 20 d, 21 c, 2 1 dをそれぞれ設けたこ とを特徴とする。 而して、 突起部 43 a, 53 a, が各固定電極 20 a, …に接触する程 度の衝撃がセンサに与えられたとしても、 突起部 43 a. 53 aが逃がし部 20 c, 20 b及び 21 a, 2 1 bを介して上部固定板 2 aと接触するため、 突起部 43 a, 53 aと 各固定電極 20 a, 20 b及び 2 1 a, 21 bとが直接接触することがない。 したがって、 突起部 43 a, 53 aが各固定電極 20 a, 2 O b及び 2 1 a, 2 1 bに付着するのを防 止することができる。
ところで、 各固定板 2 a, 2 bがガラス材料から成り、 突起部 43 a, 53 aがシリコ ン又はシリコン酸化膜から成るため、 これらが衝突しても互いに付着する可能性は非常に 低いが、 互いに付着する可能性が無いとは言い切れない。 そこで、 例えば図 7 (b) に示 すように、 各固定板 2 a, 2 bにおいて逃がし部 20 c, 20 b及び 21 a, 21 bと対 応ずる部位の一面を粗面化して微細な凹凸を設けるのが望ましい。 この場合、 各固定板 2 a, 2 bに突起部 43 a, 53 aが付着するのを防止することができる。 尚、 各固定板 2 a, 2 bの一面を粗面化する方法としては、 サンドブラスト法、 フッ酸水溶液等の液体を 用いた湿式ェツチング、 四フッ化炭素等のガスを用いたドライエツチング等がある。
(実施形態 4)
本実施形態は、 図 8 (a) に示すように、 実施形態 3における突起部 43 a, 53 aの 表面に、 突起部 43 a, 53 aを構成する材料よりも高硬度の材料から成る薄膜 Aを設け たことに特徴がある。 薄膜 Aは、 例えばシリコン窒化膜などのシリコン又はシリコン酸化 膜よりも高硬度の材料から成る。 ここで、 シリコン窒化膜はシリコン酸化膜よりも高硬度 ではあるが、 一般に厚く (0. 2 m以上) 形成すると、 膜自身の内部応力から亀裂が発 生してしまう。 そこで、 本実施形態では、 シリコン又はシリコン酸化膜を母材として突起 部 43 a, 53 aを 1〜2 mの厚みで形成し、 その表面に薄膜 Aを 0. 2 jU m以下の薄 さで形成している。
上述のように構成することで、 各固定板 2 a, 2 bに突起部 43 a, 53 aが付着する のをより好適に防止することができる。 また、 突起部 43 a, 53 aの機械的強度が増す ので、 各固定板 2 a, 2 bとの衝突によって突起部 43 a, 53 aが破損するのを防止す ることができる。 尚、 薄膜 Aの構成としてはシリコン窒化膜に限定されるものではなく、 例えばカーボン材料で形成してもよい。 また、 力一ボン材料としてカーボンナノチューブ を採用すれば、 薄膜 Aの厚み寸法を小さくできるので、 突起部 43 a, 53 aを所望の厚 み寸法に容易に調整することができる。
尚、 本実施形態においても、 実施形態 1と同様に、 各固定板 2 a, 2 bにおいて逃がし 部 20 c, 2 O b及び 21 a, 21 bと対応する部位の一面を粗面化して微細な凹凸を設 けるのが望ましい (図 8 (b) 参照) 。
ここで、 上記各実施形態 3、 4では、 各可動電極 4 a, 5 aに突起部 43 a, 53 aを 形成しているが、 図 9に示すように、 各固定電極 20 a, 2 O b及び 21 a, 21 bに突 起部 43 a, 53 aを形成してもよい。 この場合、 センサに衝撃が与えられた際に突起部 43 a, 53 aが各可動電極 4 a, 5 aと衝突する。 したがって、 各可動電極 20 a , 2 O b及び 21 a, 21 bと各可動電極 4 a, 5 aとが直接接触することがないので、 各可 動電極 4 a, 5 aが各固定電極 20 a, 2 O b及び 21 a, 2 1 bに付着するのを防止す ることができる。
また、 上記各実施形態 3、 4では、 隣接する各電極部 8 a, 8 b, 9 a, 9 b, 1 0 a の間、 各電極部 8 a, 8 b, 9 a , 9 b. 1 0 aとフレーム部 3との間、 各電極部 8 a, 8 b, 9 a, 9 b, 1 0 aと各重り部 4, 5との間に各々隙間が設けられている。 このよ うに構成することで、 各検出電極 80 a. 80 b, 90 a, 90 bが互いに電気的に絶縁 されるので、 各検出電極 80 a, 80 b, 90 a, 90 bの寄生容量や電極間のクロスト ークを低減し、 高精度な静電容量の検出を行うことができる。
ところで、 付着防止膜 23 a, 23 bを従来と同様にアルミニウム系金属で構成し、 ま た、 半導体製造プロセスにより成膜した場合、 付着防止膜 23 a, 23 bの表面に微小な 凹凸が形成されるため、 重り部 4, 5及び突起部 43 b, 53 bが下部固定板 2 bに付着 するのを好適に防止することができる。 しかしながら、 アルミニウムは比較的柔らかい金 属である†こめ、 衝突が繰り返されると付着防止膜 23 a, 23 bの表面が平坦化され、 接 触面積が増大することで逆に付着し易くなるという問題がある。 そこで、 上記実施形態 3、 4においては、 付着防止膜 23 a, 23 bを重り部 4, 5及び突起部 43 b, 53 bと同 程度の硬度を有する材料で構成することで、 衝突による一方側の変形を防止し、 結果とし て重り部 4, 5及び突起部 43 b, 53 bが下部固定板 2 bに付着するのを好適に防止す る。
尚、 本実施形態でも第 1実施形態と同様に、 以下の手順を踏むことで加速度センサの動 作確認を行うことができる。 即ち、 第 1の固定電極 20 a又は第 2の固定電極 2 O bと可 動電極 4 aとの間、 若しくは第 1の固定電極 2 1 a又は第 2の固定電極 21 bと可動電極 5 aとの間に吸引力を発生させることで、 重り部 4, 5を回動させる。 そして、 重り部 4. 5の回動に伴って生じる各固定電極 20 a, 2 O b及び 2 1 a, 21 bと重り部 4, 5と の間の静電容量の変化を検出することで、 加速度センサが正常に動作しているか否かを確 認することができる。 尚、 付着防止膜 23 a, 23 bと可動電極 4 a, 5 aとの間に吸引 力を発生させることで同様の動作確認を行ってもよい。
(第 5実施形態)
以下、 本発明に係る加速度センサの実施形態について図面を用いて説明する。 但し、 本 実施形態の基本的な構成は実施形態 1と共通であるので、 共通する部位には同一の番号を 付して説明を省略する。 尚、 以下の説明では、 図 1 0における上下を上下方向、 センサチ ップ 1の長手方向と平行な方向を X方向、 センサチップ 1の短手方向と平行な方向を y方 向、 X方向及び y方向に互いに直交する方向を z方向と定めるものとする。
本実施形態は、 図 1 0に示すように、 センサチップ 1の短手方向 (y方向) における略 中央に各電極部 8 a, 8 b, 9 a, 9 b, 1 0 aを x方向に沿って直線状に配置している。 即ち、 センサチップ 1を半々に分割するように各電極部 8 a, 8 b, 9 a, 9 b, 1 0 a を配置している。 尚、 電極部 1 0 aの上面には、 接地電極 1 0が設けられている。 また、 各重り部 4, 5を、 各電極部 8 a, 8 b, 9 a, 9 b, 1 0 aの配列の略中央を中心とし て点対称となるように配置し、 且つ各ビーム部 6 a, 6 b. 7 a, 7 bを結ぶ直線が各電 極部 8 a, 8 a b, 9 a, 9 bの配置方向と直交する方向 ( y方向) に沿うように各ビ一 ム部 6 a, 6 b, 7 a, 7 bを配置している。 また、 電極部 8 aと第 1の固定電極 20 a、 電極部 8 bと第 2の固定電極 20 b、 電極部 9 aと第 1の固定電極 21 a、 電極部 9 と 第 2の固定電極 2 1 bが各々導電パターンを介して電気的に接続されている。 尚、 本実施 形態では、 図 Ί 1に示すように、 各重り部 4, 5の凹部 41 , 51において、 各凹部 41 , 51内を 3分割するように各々 2つの補強壁 42, 52が各重り部 4, 5と一体に形成さ れている。
上述のように構成することで、 本実施形態ではセンサチップ 1が接地電極 1 0を中心と した点対称の構造となる。 このため、 センサ全体の対称性が増し、 熱膨張などによって歪 みが発生した場合にもセンサ全体に均等に歪みが生じ、 全体のバランスが損なわれない。 したがって、 各重り部 4, 5の充実部 40, 50及び凹部 41 , 5 1、 並びにビーム部 6
Figure imgf000016_0001
a, 6 b及び 7 a , 7 bに集中する応力に差が生じ難く、 出力の温度特性の高精度化を図 ることができる。
また、 本実施形態では、 各電極部 8 a , 8 b, 9 a , 9 b, 1 0 aと各重り部 4, 5と の間の距離が等しくなるのに伴って、 各電極部 8 a , 8 b, 9 a, 9 b, 1 0 aと各固定 電極 20 a, 20 b及び 2 1 a, 2 1 bとの間の距離も等しくなるため、 電極間を結ぶ各 導電パターンの配線長を互いに等しくすることができる。 したがって、 各導電パターンの 寄生容量の差が低減され、 各可動電極 4 a, 5 aと各固定電極 20 a , 20 b及び 2 1 a, 2 1 bとの間の静電容量の差も低減することができる。
更に、 本実施形態では、 ビーム部 6 a , 6 b, 7 a, 7 bから重り部 4, 5の長手方向 の各端部までの距離、 即ち、 重り部 4, 5の回動半径を大きくとることができるため、 セ ンサチップ 1が同一寸法の加速度センサと比較して同一の検出感度を得るために必要な回 動変位を小さくすることができる。 このため、 ビーム部 6 a, 6 b, 7 a . 7 bの曲げ剛 性を高くすることができるので、 仮に各可動電極 4 a , 5 aが各固定電極 20 a, 20 b 及び 2 1 a , 2 1 bに付着したとしても、 ビーム部 6 a , 6 b, 7 a, 7 bの復帰力によ つて各可動電極 4 a , 5 aを各固定電極 20 a , 2 O b及び 2 1 a , 2 1 bから引き剥が すことができる。
本実施形態でも第 1実施形態と同様に、 図 1 2に示すように、 突起部 43 a , 43 b, 53 a , 53 bをシリコン又はシリコン酸化膜といったセンサチップの主材料により形成 した場合には、 突起部 43 a , 43 b, 5 3 a, 5 3 bを容易に製造することができる。 また、 突起部 43 a , 43 b, 5 3 a , 53 bの表層を力一ボン材料でコーティングして もよい。 この場合、 突起部 43 a . 43 b, 53 a , 53 bの機械的強度が増し、 上部固 定板 2 a及び下部固定板 2 bとの衝突によって突起部 43 a , 43 b, 53 a , 53 bカ《 破損するのを防止することができる。 更に、 カーボン材料として力一ボンナノチューブを 採用すれば、 コーティングの厚み寸法を小さくできるので、 突起部 43 a , 43 b, 53 a , 53 bを所望の高さ寸法に容易に調整することができる。
本実施形態でも第 1実施形態と同様に、 図 1 0に示すように、 付着防止膜 23 a, 23 bを固定電極 20 a , 2 O b及び 2 1 a, 2 1 bと同一材料で形成することにより、 付着 防止膜 23 a , 23 bを容易に形成することができる。 このとき、 付着防止膜 23 a , 2 3 bを固定電極 20 a , 2 O b及び 2 1 a , 2 1 bと同時に形成すれば、 重り部 4 , 5と 固定電極 20 a , 2 O b及び 2 1 a , 2 1 bとの間、 及び重り部 4 , 5と下部固定板 2 b との間の距離の精度を高めることができる。
尚、 付着防止膜 23 a . 23 bを半導体製造プロセスにより成膜した場合、 付着防止膜 23 a , 23 bの表面に微小な凹凸が形成されるため、 重り部 4, 5が下部固定板 2 bに 付着するのをより好適に防止することができる。 ここで、 付着防止膜 23 a , 23 bをァ ルミ二ゥム系合金により形成した場合、 エッチング加工が容易になる。 また、 付着防止膜 23 a, 23 bの表面上に半導体製造プロセスとの整合性が良く、 且つ加工がし易いポリ イミド薄膜等の有機材料薄膜を形成することにより、 付着防止膜 23 a, 23 bと重り部 4, 5との間の短絡を防止するようにしてもよい。
尚、 本実施形態では、 図 1 0に示すように、 隣接する各電極部 8 a, 8 b, 9 a, 9 b, 1 0 aの間、 各電極部 8 a, 8 b, 9 a, 9 b, 1 0 aとフレーム部 3との間、 各電極部 8 a, 8 b, 9 a, 9 b, 1 0 aと各重り部 4, 5との間に各々隙間が設けられている。 このように構成することで、 各検出電極 80 a . 80 b, 90 a, 90 bが互いに電気的 に絶縁されるので、 各検出電極 80 a, 80 b, 90 a, 90 bの寄生容量や電極間のク ロストークを低減し、 高精度な静電容量の検出を行うことができる。
また、 本実施形態では、 図 1 2に示すように、 ビーム部 6 a, 6 b, 7 a, 7 b (同図 ではビーム部 6 aのみ図示) を重り部 4, 5の長手方向における略中央から凹部 41 , 5 1側 (同図の左側) にずらして配置することで、 重り部 4, 5の重心位置から回動軸に下 ろした垂線と可動電極 4 a, 5 aの表面とが成す角度 0を略 45度となるようにしている。 而して、 ビーム部 6 a, 6 b, 7 a, 7 bをずらして配置するだけで角度 0を略 45度に 維持することができるため、 重り部 4, 5の厚み寸法を大きくする、 或いは重り部 4, 5 を軽量化することなく検出感度を向上させることができる。
尚、 本実施形態でも第 1実施形態と同様に、 以下の手順を踏むことで加速度センサの動 作確認を行うことができる。 即ち、 第 1の固定電極 20 a又は第 2の固定電極 2 O bと可 動電極 4 aとの間、 若しくは第 1の固定電極 2 1 a又は第 2の固定電極 21 bと可動電極 5 aとの間に吸引力を発生させることで、 重り部 4, 5を回動させる。 そして、 重り部 4, 5の回動に伴って生じる各固定電極 20 a, 2 O b及び 2 1 a, 21 bと重り部 4, 5と の間の静電容量の変化を検出することで、 加速度センサが正常に動作しているか否かを確 認することができる。 尚、 付着防止膜 23 a, 23 bと可動電極 4 a, 5 aとの間に吸引 力を発生させることで同様の動作確認を行ってもよい。
上述の各実施形態本発明の技術思想を逸脱しない範囲内で適切に組み合わせることが可 能である。
以上では本発明が特定の実施例を中心にして説明されたが、 本発明の趣旨及び添付され た特許請求範囲内で多様な変形、 変更又は修正が当該技術分野であり得、 よって、 前述し た説明及び図面は本発明の技術思想を限定するものではなく本発明を例示するものとして 解釈されるべきである。

Claims

請求の範囲
【請求項 1】
一面に開口する凹部と前記凹部を除く充実部が一体に形成された重り部と、 前記凹部と 前記充実部とが回動方向に沿って並ぶように前記重り部を回動自在に支持する 1対のビー ム部と、 凹部が開口する前記一面と異なる他の一面において前記凹部と前記充実部とに跨 つて設けられた可動電極と、 前記可動電極における前記凹部側と対向する位置に配設され た第 1の固定電極と、 可動電極における前記充実部側と対向する位置に配設された第 2の 固定電極とから成るセンサ部を備え、 1対の前記ビーム部を結ぶ直線を回動軸とした前記 重リ部の回動に伴う前記可動電極と前記固定電極との間の静電容量の変化から加速度を検 出する加速度センサであって、 前記重り部の重心位置から前記回動軸に下ろした垂線と前 記可動電極の表面とが成す角度が略 4 5度となるように、 前記ビーム部を前記凹部側にず らして配置したことを特徴とする加速度センサ。
【請求項 2】
前記充実部に一面に開口する別個の凹部を設け、 前記別個の凹部に金属材料から成る補 助重リ部を埋設したことを特徴とする請求項 1記載の加速度センサ。
【請求項 3】
前記補助重リ部は、 重リ部を成す材料よリも比重の高い金属材料から成ることを特徴と する請求項 2記載の加速度センサ。
【請求項 4】
前記補助重り部の重量は、 前記凹部の外壁部を構成する構造体の重量と略同一であるこ とを特徴とする請求項 2又は 3記載の加速度センサ。
【請求項 5】
前記重り部に印加された第 1の方向の加速度と、 第 1の方向と直交する第 2の方向の加 速度とを検出することを特徴とする請求項 1乃至 4の何れか 1項に記載の加速度センサ。
【請求項 6】
前記センサ部は、 同一のチップに複数形成されることを特徴とする請求項 1乃至 5の何 れか 1項に記載の加速
度センサ。
【請求項 7】
前記センサ部が同一のチップに 2つ形成され、 一方のセンサ部が他方のセンサ部に対し て同一平面において 1 8 0度回転して配置されたことを特徴とする請求項 6記載の加速度 センサ。 PCT E20 ί fl / fl π 7 Q 7
WO 2011/064642 PCT/IB2010/002975
【請求項 8】
前記 2つのセンサ部が隣接して配置されたことを特徴とする請求項 7記載の加速度セン サ。
【請求項 9】
前記重り部を内包する枠部と、 枠部に形成されて各前記固定電極に電気的に接続される 1対の検出電極とを有し、 各前記検出電極の間、 及び各前記検出電極と前記枠部との間、 及び各前記検出電極と前記重り部との間に隙間が設けられたことを特徴とする請求項 1乃 至 6の何れか 1項に記載の加速度センサ。
【請求項 1 0】
前記各前記固定電極の前記可動電極との対向面、 又は前記可動電極の各前記固定電極と の対向面には突起部が形成されたことを特徴とする請求項 1乃至 9の何れか 1項に記載の 加速度センサ。
【請求項 1 1】
前記突起部は、 シリコン又はシリコン酸化膜から形成されたことを特徴とする請求項 1 0記載の加速度センサ。
【請求項 1 2】
前記突起部は、 その表層がカーボン材料から形成されたことを特徴とする請求項 1 0記 載の加速度センサ。
【請求項 1 3】
前記重り部の前記固定電極が対向する側と反対側の面と所定の間隔を空けて配置される 固定板を有し、 前記固定板の重り部と対向する面には、 重り部の付着を防止するための付 着防止膜が設けられたことを特徴とする請求項 1乃至 1 2の何れか 1項に記載の加速度セ ンサ。
【請求項 1 4】
前記付着防止膜は、 前記固定電極と同じ材料から形成されたことを特徴とする請求項 1 3記載の加速度センサ。
【請求項 1 5】
前記固定電極と可動電極との間に吸引力を発生させることにより、 第 1及び第 2の固定 電極と可動電極との間の静電容量の変化を検出することを特徴とする請求項 1 3又は 1 4 記載の加速度センサ。
【請求項 1 6】
一面に開口する凹部と前記凹部を除く充実部が一体に形成された重り部と、 前記凹部と 前記充実部とが回動方向に沿って並ぶように前記重り部を回動自在に支持する 1対のビー ム部と、 凹部が開口する前記一面と異なる他の一面において前記凹部と前記充実部とに跨 WO 2011/064642 PCT/ffi20pCT/IB2010/0029755
つて設けられた可動電極と、 前記可動電極における前記凹部側と対向する位置に配設され た第 1の固定電極と、 前記可動電極における前記充実部側と対向する位置に配設された第
2の固定電極とから成るセンサ部を備え、 1対の前記ビーム部を結ぶ直線を回動軸とした 前記重り部の回動に伴う前記可動電極と前記固定電極との間の静電容量の変化から加速度 を検出する加速度センサであって、 前記重り部の固定電極と対向する側の面と所定の間隔 を空けて配置され且つ一面に前記各固定電極が設けられる第 1の固定板を有し、 前記各可 動電極の各固定電極との対向面には各々突起部が形成され、 前記各固定電極の各突起部と 対向する部位には、 それぞれ前記第 1の固定板の一面を外部に臨ませるように刳り貫かれ た逃がし部が設けられたことを特徴とする加速度センサ。
【請求項 1 7】
前記固定板において前記逃がし部と対応する部位には、 凹凸が設けられたことを特徴と する請求項 1 6記載の加速度センサ。
【請求項 1 8】
前記突起部は、 その表面に突起部を構成する材料よリも高硬度の材料から成る薄膜が設 けられたことを特徴とする請求項 1 6又は 1 7記載の加速度センサ。
【請求項 1 9】
前記重リ部の固定電極が対向する側と反対側の面と所定の間隔を空けて配置される第 2 の固定板を有し、 第 2の固定板の各重り部と対向する面には、 各重り部の付着を防止する ための付着防止膜が設けられたことを特徵とする請求項 1 6乃至 1 8の何れか 1項に記載 の加速度センサ。
【請求項 2 0】
前記重り部を内包する枠部と、 前記枠部に形成されて前記各固定電極に電気的に接続さ れる 1対の検出電極とを有し、 前記各検出電極の間、 及び前記各検出電極と枠部との間、 及び前記各検出電極と重リ部との間に隙間が設けられたことを特徴とする請求項 1 6乃至
1 9の何れか 1項に記載の加速度センサ。
【請求項 2 1】
一面に開口する凹部と前記凹部を除く充実部が一体に形成された重り部と、 前記凹部と 前記充実部とが回動方向に沿って並ぶように前記重り部を回動自在に支持する 1対のビー ム部と、 前記凹部が開口する前記一面と異なる他の一面において前記凹部と前記充実部と に跨って設けられた可動電極と、 前記可動電極における前記凹部側と対向する位置に配設 された第 1の固定電極と、 前記可動電極における前記充実部側と対向する位置に配設され た第 2の固定電極とから成るセンサ部を備え、 1対の前記ビーム部を結ぶ直線を回動軸と した前記重リ部の回動に伴う前記可動電極と前記固定電極との間の静電容量の変化から加 速度を検出する加速度センサであって、 前記各固定電極の可動電極との対向面に突起部が PC職 0 1 0 / 0 0 2 9 7 5
WO 2011/064642 PCT/IB2010/002975
形成されたことを特徴とする加速度センサ。
【請求項 2 2】
一面に開口する凹部と前記凹部を除く充実部が一体に形成された重り部と、 前記凹部と 前記充実部とが回動方向に沿って並ぶように前記重り部を回動自在に支持する 1対のビー ム部と、 凹部が開口する前記一面と異なる他の一面において前記凹部と前記充実部とに跨 つて設けられた可動電極と、 前記可動電極における前記凹部側と対向する位置に配設され た第 1の固定電極と、 前記可動電極における前記充実部側と対向する位置に配設された第 2の固定電極と、 前記各固定電極と電気的に接続される検出電極を有する 1対の電極部と から成るセンサ部を備え、 1対のビーム部を結ぶ直線を回動軸とした重り部の回動に伴う 前記可動電極と前記固定電極との間の静電容量の変化から加速度を検出する加速度センサ であって、 センサ部は同一のチップに 2つ形成され、 各電極部はチップを半々に分割する ように一方向に沿って配置され、 前記各重り部は、 各電極部の配列の略中央を中心として 点対称となるように配置され、 且つ前記各ビーム部を結ぶ直線が各電極部の配置方向と直 交する方向に沿うように前記各ビーム部が配置されたことを特徴とする加速度センサ。 【請求項 2 3】
前記重り部の固定電極が対向する側と反対側の面と所定の間隔を空けて配置される固定 板を有し、 前記固定板の重り部と対向する面には、 重り部の付着を防止するための付着防 止膜が設けられたことを特徴とする請求項 2 2記載の加速度センサ。
【請求項 2 4】
前記付着防止膜は、 前記固定電極と同じ材料から形成されたことを特徴とする請求項 2 3記載の加速度センサ。
PCT/IB2010/002975 2009-11-24 2010-11-23 加速度センサ WO2011064642A2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10832714.9A EP2506018A4 (en) 2009-11-24 2010-11-23 ACCELERATION SENSOR
CN201080052810.1A CN102667497B (zh) 2009-11-24 2010-11-23 加速度传感器
US13/511,178 US9261530B2 (en) 2009-11-24 2010-11-23 Acceleration sensor
US14/718,493 US9244094B2 (en) 2009-11-24 2015-05-21 Acceleration sensor
US14/874,845 US9702895B2 (en) 2009-11-24 2015-10-05 Acceleration sensor
US15/617,777 US10126322B2 (en) 2009-11-24 2017-06-08 Acceleration sensor

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-266581 2009-11-24
JP2009266581A JP5716149B2 (ja) 2009-11-24 2009-11-24 加速度センサ
JP2009-266583 2009-11-24
JP2009266582A JP2011112389A (ja) 2009-11-24 2009-11-24 加速度センサ
JP2009266583A JP2011112390A (ja) 2009-11-24 2009-11-24 加速度センサ
JP2009266585A JP2011112392A (ja) 2009-11-24 2009-11-24 加速度センサ
JP2009-266582 2009-11-24
JP2009-266585 2009-11-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/511,178 A-371-Of-International US9261530B2 (en) 2009-11-24 2010-11-23 Acceleration sensor
US14/718,493 Continuation US9244094B2 (en) 2009-11-24 2015-05-21 Acceleration sensor

Publications (2)

Publication Number Publication Date
WO2011064642A2 true WO2011064642A2 (ja) 2011-06-03
WO2011064642A3 WO2011064642A3 (ja) 2011-07-21

Family

ID=44066998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/002975 WO2011064642A2 (ja) 2009-11-24 2010-11-23 加速度センサ

Country Status (4)

Country Link
US (4) US9261530B2 (ja)
EP (1) EP2506018A4 (ja)
CN (1) CN102667497B (ja)
WO (1) WO2011064642A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104827A1 (en) 2012-01-12 2013-07-18 Murata Electronics Oy Accelerator sensor structure and use thereof
CN103226153A (zh) * 2012-01-30 2013-07-31 精工爱普生株式会社 物理量传感器以及电子设备

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2506018A4 (en) * 2009-11-24 2013-06-19 Panasonic Corp ACCELERATION SENSOR
JP5943192B2 (ja) * 2012-04-10 2016-06-29 セイコーエプソン株式会社 物理量センサーおよびその製造方法、並びに電子機器
JP6155832B2 (ja) * 2013-05-16 2017-07-05 セイコーエプソン株式会社 センサー素子、電子機器、および移動体
DE102014202816B4 (de) * 2014-02-17 2022-06-30 Robert Bosch Gmbh Wippeneinrichtung für einen mikromechanischen Z-Sensor
JP6373474B2 (ja) * 2015-02-24 2018-08-15 三菱電機株式会社 半導体装置およびその製造方法
JP6631108B2 (ja) * 2015-09-15 2020-01-15 セイコーエプソン株式会社 物理量センサー、センサーデバイス、電子機器および移動体
JP6468167B2 (ja) * 2015-11-03 2019-02-13 株式会社デンソー 力学量センサ
JP7112876B2 (ja) 2017-07-06 2022-08-04 浜松ホトニクス株式会社 光学デバイス
TWI822686B (zh) 2017-07-06 2023-11-21 日商濱松赫德尼古斯股份有限公司 光學裝置
EP3650910A4 (en) 2017-07-06 2021-03-24 Hamamatsu Photonics K.K. OPTICAL DEVICE
JP6524367B1 (ja) 2017-07-06 2019-06-05 浜松ホトニクス株式会社 光学デバイス
CN110799889B (zh) * 2017-07-06 2022-06-03 浜松光子学株式会社 光学装置
EP3650911B1 (en) 2017-07-06 2023-08-30 Hamamatsu Photonics K.K. Optical device
US10759656B2 (en) * 2017-09-29 2020-09-01 Apple Inc. MEMS sensor with dual pendulous proof masses
CN111344622A (zh) 2017-11-15 2020-06-26 浜松光子学株式会社 光学器件的制造方法
DE102017221891B4 (de) * 2017-12-05 2020-03-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Bestimmen eines Schadens, der bei einem Unfall zwischen einem Fahrzeug und einem Stoßpartner an dem Fahrzeug auftritt
KR102520722B1 (ko) * 2018-04-05 2023-04-11 삼성디스플레이 주식회사 압력 센서
DE102018211547A1 (de) 2018-07-11 2020-01-16 Robert Bosch Gmbh Mikromechanischer Sensor
DE102018219546B3 (de) 2018-11-15 2019-09-12 Robert Bosch Gmbh Mikromechanisches Bauelement
EP4116718A1 (en) * 2021-07-05 2023-01-11 Murata Manufacturing Co., Ltd. Seesaw accelerometer
EP4249923A1 (en) 2022-03-25 2023-09-27 Murata Manufacturing Co., Ltd. Improved accelerometer element for detecting out-of-plane accelerations

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544243A (ja) 2005-06-17 2008-12-04 ヴェーテーイー テクノロジーズ オサケユキチュア 容量性加速度センサーを製造する方法、および、容量性加速度センサー

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2617607B1 (fr) * 1987-06-30 1989-12-01 Applic Gles Electrici Meca Accelerometre pendulaire a reequilibrage et procede de fabrication d'un tel accelerometre
JPS6459161A (en) * 1987-08-31 1989-03-06 Fujikura Ltd Semiconductor acceleration sensor and manufacture thereof
JP2804196B2 (ja) * 1991-10-18 1998-09-24 株式会社日立製作所 マイクロセンサ及びそれを用いた制御システム
CA2149933A1 (en) 1994-06-29 1995-12-30 Robert M. Boysel Micro-mechanical accelerometers with improved detection circuitry
JPH1114658A (ja) 1997-06-25 1999-01-22 Mitsubishi Electric Corp 静電容量式加速度センサ
JPH11230986A (ja) 1998-02-18 1999-08-27 Denso Corp 半導体力学量センサ
US6065341A (en) 1998-02-18 2000-05-23 Denso Corporation Semiconductor physical quantity sensor with stopper portion
JP2000019198A (ja) 1998-06-29 2000-01-21 Zexel Corp 加速度センサ
US6871544B1 (en) 1999-03-17 2005-03-29 Input/Output, Inc. Sensor design and process
EP1169657A4 (en) * 1999-03-17 2003-03-05 Input Output Inc CALIBRATION OF SENSORS.
US6230566B1 (en) * 1999-10-01 2001-05-15 The Regents Of The University Of California Micromachined low frequency rocking accelerometer with capacitive pickoff
DE10225714A1 (de) * 2002-06-11 2004-01-08 Eads Deutschland Gmbh Mehrachsiger monolithischer Beschleunigungssensor
FI119527B (fi) * 2003-03-05 2008-12-15 Vti Technologies Oy Kapasitiivinen kiihtyvyysanturi
US7367232B2 (en) * 2004-01-24 2008-05-06 Vladimir Vaganov System and method for a three-axis MEMS accelerometer
US7640807B2 (en) 2004-07-21 2010-01-05 Hokuriku Electric Industry Co., Ltd. Semiconductor Sensor
JP4561348B2 (ja) 2004-12-17 2010-10-13 富士通株式会社 磁気記録媒体、磁気記録装置及び磁気記録媒体の製造方法
JP3906233B2 (ja) 2005-10-11 2007-04-18 株式会社ルネサステクノロジ 半導体装置
JP2006133245A (ja) 2006-02-16 2006-05-25 Mitsubishi Electric Corp 容量式加速度センサ
JP2007298405A (ja) 2006-04-28 2007-11-15 Matsushita Electric Works Ltd 静電容量式センサ
CN102654409A (zh) 2006-04-28 2012-09-05 松下电器产业株式会社 电容式传感器
JP4605087B2 (ja) * 2006-04-28 2011-01-05 パナソニック電工株式会社 静電容量式センサ
JP5070778B2 (ja) 2006-09-20 2012-11-14 株式会社デンソー 力学量センサ
US7665647B2 (en) 2006-09-29 2010-02-23 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force
US7578190B2 (en) * 2007-08-03 2009-08-25 Freescale Semiconductor, Inc. Symmetrical differential capacitive sensor and method of making same
WO2010061777A1 (ja) * 2008-11-25 2010-06-03 パナソニック電工株式会社 加速度センサ
EP2506018A4 (en) * 2009-11-24 2013-06-19 Panasonic Corp ACCELERATION SENSOR

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544243A (ja) 2005-06-17 2008-12-04 ヴェーテーイー テクノロジーズ オサケユキチュア 容量性加速度センサーを製造する方法、および、容量性加速度センサー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2506018A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104827A1 (en) 2012-01-12 2013-07-18 Murata Electronics Oy Accelerator sensor structure and use thereof
CN104185792A (zh) * 2012-01-12 2014-12-03 村田电子有限公司 加速度传感器结构及其使用
EP2802884A4 (en) * 2012-01-12 2015-07-08 Murata Electronics Oy ACCELERATOR SENSOR STRUCTURE AND USE THEREOF
US9279825B2 (en) 2012-01-12 2016-03-08 Murata Electronics Oy Acceleration sensor structure and use thereof
US9651574B2 (en) 2012-01-12 2017-05-16 Murata Electronics Oy Acceleration sensor structure and use thereof
CN103226153A (zh) * 2012-01-30 2013-07-31 精工爱普生株式会社 物理量传感器以及电子设备

Also Published As

Publication number Publication date
US20160025768A1 (en) 2016-01-28
US20150253350A1 (en) 2015-09-10
WO2011064642A3 (ja) 2011-07-21
CN102667497B (zh) 2014-06-18
CN102667497A (zh) 2012-09-12
US10126322B2 (en) 2018-11-13
US9261530B2 (en) 2016-02-16
US20170276696A1 (en) 2017-09-28
US20120227494A1 (en) 2012-09-13
EP2506018A2 (en) 2012-10-03
US9702895B2 (en) 2017-07-11
EP2506018A4 (en) 2013-06-19
US9244094B2 (en) 2016-01-26

Similar Documents

Publication Publication Date Title
WO2011064642A2 (ja) 加速度センサ
JP5175308B2 (ja) 物理量センサ
JP5789737B2 (ja) 加速度センサ
WO2010061777A1 (ja) 加速度センサ
JP5716149B2 (ja) 加速度センサ
JP4965546B2 (ja) 加速度センサ
TW200839242A (en) Electrostatic capacitance type acceleration sensor
US6122963A (en) Electronic component for measuring acceleration
JP4965547B2 (ja) 加速度センサ
EP1365211B1 (en) Integrated gyroscope of semiconductor material with at least one sensitive axis in the sensor plane
JP2011112390A (ja) 加速度センサ
WO2022007010A1 (zh) 用于 mems 麦克风的振膜及 mems 麦克风
JP2011112392A (ja) 加速度センサ
JP2011112389A (ja) 加速度センサ
JP5257115B2 (ja) 力学量センサ及びその製造方法
JP2013231616A (ja) 加速度センサ
JP2012008036A (ja) 静電容量式センサ
JP2010210416A (ja) 加速度センサ
JP2010210431A (ja) 加速度センサ
JP2012008022A (ja) 加速度センサ
JP2012047530A (ja) 静電容量式センサ
JP2013003034A (ja) 静電容量式センサ
JP2010210426A (ja) 加速度センサ並びにその製造方法
JP2010210427A (ja) 加速度センサ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052810.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010832714

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13511178

Country of ref document: US

NENP Non-entry into the national phase in:

Ref country code: DE