JP2012008036A - 静電容量式センサ - Google Patents

静電容量式センサ Download PDF

Info

Publication number
JP2012008036A
JP2012008036A JP2010144931A JP2010144931A JP2012008036A JP 2012008036 A JP2012008036 A JP 2012008036A JP 2010144931 A JP2010144931 A JP 2010144931A JP 2010144931 A JP2010144931 A JP 2010144931A JP 2012008036 A JP2012008036 A JP 2012008036A
Authority
JP
Japan
Prior art keywords
portions
insulating substrate
weight
silicon substrate
frame portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010144931A
Other languages
English (en)
Inventor
Hitoshi Yoshida
仁 吉田
Nobuyuki Ibara
伸行 茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010144931A priority Critical patent/JP2012008036A/ja
Publication of JP2012008036A publication Critical patent/JP2012008036A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Pressure Sensors (AREA)

Abstract

【課題】より検出精度の向上を図ることのできる静電容量式センサを得る。
【解決手段】静電容量式センサ1は、絶縁基板2、3と、この絶縁基板2,3に接合されたシリコン基板4と、を備えている。このシリコン基板4には、絶縁基板2,3に接合されるフレーム部40と、一面に開口する凹部53,63と凹部53,63を除く充実部51,61が一体に形成された錘部5,6と、当該錘部5,6を回動自在に支持する1対のビーム部9,10、11,12と、フレーム部40から離間配置されるアンカー部7,8と、が形成されている。そして、1対のビーム部9,10、11,12のうち少なくともいずれか一方のビーム部9,11がアンカー部7,8に連結されている。
【選択図】図2

Description

本発明は、静電容量式センサに関する。
従来、静電容量式センサとして、可動電極を有する錘部とフレーム部とを備えるシリコン基板を、絶縁基板に接合させたものが知られている(例えば、特許文献1参照)。
この特許文献1では、フレーム部と錘部とを一対のビーム部で連結するとともに、フレーム部を絶縁基板に接合することで、錘部がフレーム部に対して相対回動できるようにしている。
特表2008−544243号公報
しかしながら、上記従来の技術では、錘部を相対移動可能に支持する一対のビーム部がフレーム部に連結されているため、当該一対のビーム部が、シリコン基板と絶縁基板との熱膨張係数の相違に起因してフレーム部に生じる応力の影響を受けやすかった。すなわち、上記従来の技術では、静電容量式センサの検出精度の向上を図り難かった。
そこで、本発明は、より検出精度の向上を図ることのできる静電容量式センサを得ることを目的とする。
本発明にあっては、絶縁基板と、この絶縁基板に接合されたシリコン基板と、を備える静電容量式センサにおいて、前記シリコン基板には、前記絶縁基板に接合されるフレーム部と、一面に開口する凹部と凹部を除く充実部が一体に形成された錘部と、当該錘部を回動自在に支持する1対のビーム部と、前記フレーム部から離間配置されるアンカー部と、が形成されており、前記一対のビーム部のうち少なくともいずれか一方のビーム部が前記アンカー部に連結されていることを主要な特徴とする。
本発明によれば、一対のビーム部のうち少なくともいずれか一方のビーム部を、フレーム部から離間配置されるアンカー部に連結している。そのため、一対のビーム部が、シリコン基板と絶縁基板との熱膨張係数の相違に起因してフレーム部に生じる応力の影響を受けてしまうのを抑制することができる。その結果、より検出精度の向上を図ることのできる静電容量式センサを得ることができる。
図1は、本発明の第1実施形態にかかる加速度センサを示す分解斜視図である。 図2は、本発明の第1実施形態にかかるシリコン基板を示す平面図である。 図3は、本発明の第1実施形態にかかるシリコン基板の裏面側を示す一部破断斜視図である。 図4は、本発明の第1実施形態にかかるシリコン基板の変形例を示す平面図である。 図5は、本発明の第2実施形態にかかるシリコン基板を示す平面図である。 図6は、本発明の第2実施形態にかかるシリコン基板の表面側を示す一部断面斜視図である。 図7は、本発明の第2実施形態にかかるシリコン基板の裏面側を示す一部断面斜視図である。
以下、本発明の実施形態について図面を参照しつつ詳細に説明する。以下では、静電容量式センサとして、加速度センサを例示する。また、錘部の可動電極が形成される側をシリコン基板の表面側と定義する。そして、シリコン基板の短手方向をX方向、シリコン基板の長手方向をY方向、シリコン基板の厚さ方向をZ方向として説明する。
なお、以下の複数の実施形態には、同様の構成要素が含まれている。よって、以下では、それら同様の構成要素には共通の符号を付与するとともに、重複する説明を省略する。
(第1実施形態)
本実施形態にかかる加速度センサ(静電容量式センサ)1は、図1に示すように、半導体素子ディバイスを形成したシリコン基板4と、このシリコン基板4の表面4aおよび裏面4bにそれぞれ接合されたガラス製の第1の絶縁性基板(絶縁基板)2および第2の絶縁性基板(絶縁基板)3と、を備えている。本実施形態では、このシリコン基板4と第1の絶縁性基板2および第2の絶縁性基板3とを陽極接合によって接合している。そして、第1の絶縁性基板2の下面には、錘部5,6の設置領域に対応した固定電極21a,21bおよび22a,22bがそれぞれ設けられている。
シリコン基板4は、2つの枠部40a,40bがY方向(シリコン基板4の長手方向)に並設されたフレーム部40と、枠部40a,40bの内周面に対して隙間43を空けた状態で枠部40a,40b内に配置された錘部5,6と、フレーム部40に対して錘部5,6をそれぞれ回動自在に支持する1対のビーム部9,10および11,12と、錘部5,6の上面に形成される可動電極5a,6aと、を備えている。なお、シリコン基板4の長手方向辺は約2〜4mmで、厚さは約0.3〜0.5mmである。
フレーム部40は、本実施形態では、Z方向(シリコン基板4の厚さ方向)から見て略矩形状の外側フレーム部41と、X方向(シリコン基板4の短手方向)に延在し、外側フレーム部41のY方向(シリコン基板4の長手方向)略中央部を連結する中央フレーム部42と、を備えている。
錘部5,6は、図3に示すように、一面(裏面)に開口する凹部53,63と、凹部53,63を除く充実部51,61とが一体に形成されている。すなわち、錘部5,6に一面(裏面)に開口する凹部53,63(凹部53のみ図示)を形成することで、錘部5,6に、肉厚の充実部51,61と肉薄の薄肉部52,62とを形成している。
本実施形態では、凹部53,63は、開口面の法線方向(Z方向)から見て平面視略四角形状に形成されている。さらに、凹部53は、後述する回動軸A1よりもX方向一方側(図1の奥側)に形成されるとともに、凹部63は、後述する回動軸A2よりもX方向他方側(図1の手前側)に形成されている。また、凹部53,63は、後述する電極台15よりもY方向内側(中央フレーム部42側)に形成されている。すなわち、錘部5,6の電極台15とX方向で隣り合うアーム部56,66に薄肉部52,62が形成されないようにすることで、錘部5,6の強度が低下してしまうのを抑制している。このように、本実施形態では、アーム部56,66を補強部として機能させている。
また、本実施形態では、錘部5,6は、表面の、ビーム部9,10および11,12と連結しない2辺の内の1辺を共有する領域に、厚さが錘部5,6の他所より薄い、平面パターンが帯状の段差部5b,6bを有している。この段差部5b,6bは、シリコン基板4のシリコン活性層を選択的に除去することにより形成される。そして、ビーム部9,10および11,12は、錘部5,6の段差部5b,6bを除く表面の2辺の、それぞれ中点に位置している。
また、錘部5,6のY方向外側(外側フレーム部41側)には、内側(中央フレーム部42側)に向けて凹む凹部54,64がそれぞれ形成されており、当該凹部54,64内に電極台15がそれぞれ2つずつ配置されている。このように、錘部5,6に凹部54,64を形成し、当該凹部54,64内に電極台15を配置することで、センサの小型化を図っている。
電極台15の表面の中央部には、金属膜からなる検出電極25a,25bおよび26a,26bがそれぞれ設けられている。
電極台15は、それぞれフレーム部40から離間して配置されており、第1の絶縁性基板2および第2の絶縁性基板3により上下面を固定されている。また、外側フレーム部41の表面のY方向中央部には、加速度センサ1の外部に配線される共通電極27が設けられており、フレーム部40は共通電極27により共通電位をとっている。
第1の絶縁性基板2の下面には、上述したように、錘部5,6の設置領域に対応した固定電極21a,21bおよび22a,22bがそれぞれ設けられている。これら各固定電極21a,21bおよび22a,22bは、略同一形状で面積が略同一となるように形成されている。
固定電極21a,21bは、ビーム部9,10を互いに結ぶ直線(回動軸A1)を境界線として、互いに離間して配置されている。同様に、固定電極22a,22bは、ビーム部11,12を互いに結ぶ直線(回動軸A2)を境界線として、互いに離間して配置されている。各固定電極21a,21bおよび22a,22bは、例えば、アルミニウム(Al)をスパッタ法やCVD法等により第1の絶縁性基板2に蒸着することで形成することができる。
検出電極25a,25bは固定電極21a,21bにそれぞれ電気的に接続されており、検出電極26a,26bは、固定電極22a,22bにそれぞれ電気的に接続されている。このとき、検出電極25a,25bおよび26a,26bは、互いに離間し、それぞれフレーム部40、錘部5,6から離間しているので、各検出電極が互いに絶縁され、各検出電極の寄生容量や、各検出電極間のクロストークを低減し、高精度な容量検出を行うことができる。
なお、第1の絶縁性基板2の電極台15と対応する部位には、サンドブラスト加工等によってスルーホール23がそれぞれ形成されており、第1の絶縁性基板2の共通電極27に対応する部位には、サンドブラスト加工等によってスルーホール24がそれぞれ形成されている。そして、検出電極25a,25b,26a,26bは、それぞれスルーホール23を介して外部に露出、配線され、共通電極27は、それぞれスルーホール24を介して、外部に露出、配線される。
ここで、本実施形態では、シリコン基板4に、フレーム部40から離間配置されるアンカー部7,8をそれぞれ形成している。
具体的には、錘部5,6の略中央部には略矩形枠状の隙間55,65が形成されており、当該隙間55,65を介して略矩形状のアンカー部7,8を配置することで、アンカー部7,8をフレーム部40から離間配置させている。
また、1対のビーム部9,10のうち、ビーム部9は、アンカー部7のY方向外側の側面のX方向略中央部と、錘部5におけるアンカー部7のY方向外側の側面と対向する側面のX方向略中央部と、を連結している。そして、ビーム部10は、中央フレーム部42の錘部5側の側面と、錘部5における中央フレーム部42の錘部5側の側面と対向する側面と、を連結している。このとき、ビーム部9とビーム部10とが、Y方向に延在するとともに、一直線上に配置されるように、ビーム部10を形成している。
同様に、1対のビーム部11,12のうち、ビーム部11は、アンカー部8のY方向外側の側面のX方向略中央部と、錘部6におけるアンカー部8のY方向外側の側面と対向する側面のX方向略中央部と、を連結している。また、ビーム部12は、中央フレーム部42の錘部6側の側面と、錘部6における中央フレーム部42の錘部6側の側面と対向する側面と、を連結している。このとき、ビーム部11とビーム部12とが、Y方向に延在するとともに、一直線上に配置されるように、ビーム部12を形成している。なお、1対のビーム部9,10および11,12は、シリコン基板4の表面側に形成されている。
そして、1対のビーム部9,10を結ぶ直線、並びに1対のビーム部11,12を結ぶ直線がそれぞれ回動軸A1,A2となり、回動軸A1,A2の回りに各錘部5,6がそれぞれ回動する。
このように、本実施形態では、ビーム部9,11が、一対のビーム部のうち少なくともいずれか一方のビーム部に相当している。
なお、本実施形態では、錘部5と錘部6、アンカー部7とアンカー部8、ビーム部9とビーム部11、およびビーム部10とビーム部12がそれぞれシリコン基板4の中心に対して点対称となるように配置されている。
また、シリコン基板4と第1の絶縁性基板2および第2の絶縁性基板3との接合面には比較的浅いギャップ(図示せず)がそれぞれ形成されており、シリコン基板4各部の絶縁性や錘部(可動電極5a,6a)5,6の動作性の確保が図られている。
本実施形態では、第1の絶縁性基板2の裏面(下面)のうち、中央フレーム部42、錘部5,6、アンカー部7,8および1対のビーム部9,10および11,12と対向する部位を含む領域を凹設することで、シリコン基板4の表面側に比較的浅いギャップ(図示せず)を形成している。また、錘部5,6の裏面側を除去することで、シリコン基板4の裏面側に比較的浅いギャップ(図示せず)を形成している。
このように、本実施形態では、外側フレーム部41および電極台15が第1の絶縁性基板2と第2の絶縁性基板3とに接合され、中央フレーム部42およびアンカー部7,8は、第1の絶縁性基板2には接合されず、第2の絶縁性基板3のみに接合されるようにしている。
なお、シリコン基板4の裏面側のギャップは、アルカリ性湿式異方性エッチング液(例えば、KOH(水酸化カリウム水溶液)、TMAH(テトラメチル水酸化アンモニウム水溶液)等)を用いたシリコン異方性エッチングによりシリコン基板4の一部を除去することで形成することができる。このとき、上述した凹部53,63も同時に形成するのが好適である。
また、隙間43および隙間55,65は、反応性イオンエッチング(RIE:Reactive Ion Etching)などにより垂直エッチング加工をすることで形成している。反応性イオンエッチングとしては、例えば、誘導結合型プラズマ(ICP:Inductively Coupled Plasma)を備えたエッチング装置によるICP加工を利用することができる。
さらに、本実施形態では、中央フレーム部42のビーム部10,12が連結される部位に凹部13,14をそれぞれ形成している。このように、凹部13,14を形成することで、ビーム部10,12の長さを確保しつつ小型化を図ることができる。
なお、図4に示すように、シリコン基板4Aの錘部5,6の中央フレーム部42側にそれぞれ凹部13A,14Aを形成するようにしてもよい。また、中央フレーム部42および錘部5,6の両方に凹部を設けるようにしてもよい。ビーム部9,11についても、同様であり、アンカー部7,8や錘部5,6に凹部を形成することが可能である。
また、錘部5,6の上面及び下面に、錘部5,6が第1の絶縁性基板2および第2の絶縁性基板3に直接衝突するのを防止するための突起部を突設するようにしてもよい。
次に、本実施形態の検出動作について説明する。
まず、一方の錘部5にX方向の加速度が印加された場合を考える。X方向に加速度が印加されると、錘部5が回動軸A1の回りに回動して可動電極5aと固定電極21a並びに固定電極21bとの間の距離が変化する。その結果、可動電極5aと各固定電極21a,21bとの間の静電容量C1,C2も変化する。ここで、X方向の加速度が印加されていないときの可動電極5aと各固定電極21a,21bとの間の静電容量をC0とし、加速度の印加によって生じる静電容量の変化分をΔCとすれば、X方向の加速度が印加されたときの静電容量C1,C2は、
C1=C0−ΔC …(1)
C2=C0+ΔC …(2)
と表すことができる。
同様に、他方の錘部6にX方向の加速度が印加された場合、可動電極6aと各固定電極22a,22bとの間の静電容量C3,C4は、
C3=C0−ΔC …(3)
C4=C0+ΔC …(4)
と表すことができる。
そして、一方の錘部5および固定電極21a,21bから得られる静電容量C1,C2の差分値CA(=C1−C2)と、他方の錘部6および固定電極22a,22bから得られる静電容量C3,C4の差分値CB(=C3−C4)との和(±4ΔC)を算出すれば、この差分値CA,CBの和に基づいてX方向に印加された加速度の向きと大きさを演算することができる。
次に、一方の錘部5にZ方向の加速度が印加された場合を考える。Z方向に加速度が印加されると、錘部5が回動軸A1の回りに回動して可動電極5aと固定電極21a並びに固定電極21bとの間の距離が変化する。その結果、可動電極5aと各固定電極21a,21bとの間の静電容量C1,C2も変化する。ここで、Z方向の加速度が印加されていないときの可動電極5aと各固定電極21a,21bとの間の静電容量をC0とし、加速度の印加によって生じる静電容量の変化分をΔCとすれば、Z方向の加速度が印加されたときの静電容量C1,C2は、
C1=C0+ΔC …(5)
C2=C0−ΔC …(6)
と表すことができる。
同様に、他方の錘部6にZ方向の加速度が印加された場合、可動電極6aと各固定電極22a,22bとの間の静電容量C3,C4は、
C3=C0−ΔC …(7)
C4=C0+ΔC …(8)
と表すことができる。
そして、一方の錘部5および固定電極21a,21bから得られる静電容量C1,C2の差分値CA(=C1−C2)と、他方の錘部6および固定電極22a,22bから得られる静電容量C3,C4の差分値CB(=C3−C4)との差(±4ΔC)を算出すれば、この差分値CA,CBの差に基づいてZ方向に印加された加速度の向きと大きさを演算することができる。
このとき、錘部5,6の重心位置から回動軸A1,A2に下ろした垂線と錘部5,6の表面とが成す角度を略45度に設定すれば、これら2方向の検出感度を等価にすることができる。
なお、差分値CA,CBの和と差とに基づいてX方向およびZ方向の加速度の向きと大きさを求める演算処理については従来周知であるので、ここでは詳細な説明を省略する。
以上説明したように、本実施形態では、1対のビーム部9,10および11,12のうち少なくともいずれか一方のビーム部9,11を、フレーム部40から離間配置されるアンカー部7,8に連結している。そのため、1対のビーム部9,10および11,12が、シリコン基板4と第1の絶縁性基板(絶縁基板)2および第2の絶縁性基板3との熱膨張係数の相違に起因してフレーム部40に生じる応力の影響を受けてしまうのを抑制することができる。その結果、より検出精度の向上を図ることのできる加速度センサ(静電容量式センサ)1を得ることができる。
また、本実施形態では、外側フレーム部41および電極台15が第1の絶縁性基板2と第2の絶縁性基板3とに接合され、中央フレーム部42およびアンカー部7,8は、第1の絶縁性基板2には接合されず、第2の絶縁性基板3のみに接合されるようにしている。
したがって、アンカー部7,8が第1の絶縁性基板2にも接合されている場合に比べて、ビーム部9,11が、シリコン基板4と第1の絶縁性基板(絶縁基板)2との熱膨張係数の相違に起因してフレーム部40に生じる応力の影響を受けてしまうのをより一層抑制することができる。また、中央フレーム部42が第1の絶縁性基板2に接合されていないため、中央フレーム部42に連結されるビーム部10,12が、シリコン基板4と第1の絶縁性基板(絶縁基板)2との熱膨張係数の相違に起因してフレーム部40に生じる応力の影響を受けてしまうのをより一層抑制することができる。
このように、フレーム部40に生じる応力の影響を受けてしまうのを抑制することで、周囲の温度が変化することによってフレーム部40に生じる応力が変化した際に受ける影響が少なくなり、センサ出力の温度安定性を向上させることができる。したがって、より広い温度範囲でもセンサ出力が安定した信頼性の高い加速度センサ(静電容量式センサ)1を得ることができる。
さらに、本実施形態では、1対のビーム部9,10および11,12を、シリコン基板4の表面側に形成している。そのため、各ビーム部9,10および11,12を、それぞれが連結される中央フレーム部42およびアンカー部7,8の第2の絶縁性基板3との接合部分から遠ざけることができる。その結果、中央フレーム部42およびアンカー部7,8と第2の絶縁性基板(絶縁基板)3との熱膨張係数の相違に起因して中央フレーム部42およびアンカー部7,8にそれぞれ生じる応力の影響も極力抑制することができる。したがって、本実施形態によれば、より信頼性の高い加速度センサ(静電容量式センサ)1を得ることができる。
(第2実施形態)
本実施形態にかかる加速度センサ(静電容量式センサ)1は、基本的に上記第1実施形態と同様の構成をしており、図5に示すように、半導体素子ディバイスを形成したシリコン基板4Bと、このシリコン基板4Bの表面4aBおよび裏面4bBにそれぞれ接合されたガラス製の第1の絶縁性基板(絶縁基板)2および第2の絶縁性基板3と、を備えている。なお、本実施形態では、第1および第2の絶縁性基板2,3は図示省略している。
このシリコン基板4Bは、フレーム部40Bと、フレーム部40Bの内周面に対して隙間43を空けた状態でフレーム部40B内に配置された錘部5B,6Bと、フレーム部40Bに対して錘部5B,6Bをそれぞれ回動自在に支持する1対のビーム部16,17および18,19と、錘部5B,6Bの上面に形成される可動電極5aB,6aBと、を備えている。
錘部5B,6Bは、図6に示すように、一面(裏面)に開口する凹部53,63(凹部63のみ図示)と、凹部53,63を除く充実部51,61(充実部61のみ図示)とが一体に形成されている。すなわち、錘部5B,6Bに一面(裏面)に開口する凹部53,63を形成することで、錘部5B,6Bに、肉厚の充実部51,61と肉薄の薄肉部52,62(薄肉部62のみ図示)とを形成している。
また、錘部5B,6Bの略中央部には略矩形枠状の隙間55,65が形成されており、当該隙間55,65を介して略矩形状のアンカー部7B,8Bを配置することで、アンカー部7B,8Bをフレーム部40Bから離間配置させている。
なお、本実施形態では、錘部5B,6Bに段差部を設けていない。
さらに、本実施形態では、1対のビーム部16,17および18,19は、凹部53,63と充実部51,61とが回動方向に沿って並ぶように錘部5B,6Bを回動自在に支持している。
また、錘部5B,6Bの対角線上の両端には、内側(錘部5B,6Bの中心)に向けて凹む凹部54B,64Bがそれぞれ形成されており、当該凹部54B,64Bに沿って電極台15がそれぞれ配置されている。
そして、電極台15の表面の中央部には、金属膜からなる検出電極25a,25bおよび26a,26bがそれぞれ設けられている。また、アンカー部7B,8Bの表面の中央部には、加速度センサ1の外部に配線される共通電極27が設けられている。
また、第1の絶縁性基板2の下面には、錘部5B,6Bの設置領域に対応した固定電極21aB,21bBおよび22aB,22bBがそれぞれ設けられており、これら各固定電極21aB,21bBおよび22aB,22bBは、略同一形状で面積が略同一となるように形成されている。
そして、固定電極21aB,21bBは、ビーム部16,17を互いに結ぶ直線(回動軸A1)を境界線として、互いに離間して配置されている。同様に、固定電極22aB,22bBは、ビーム部18,19を互いに結ぶ直線(回動軸A2)を境界線として、互いに離間して配置されている。
また、検出電極25a,25bは固定電極21aB,21bBにそれぞれ電気的に接続されており、検出電極26a,26bは、固定電極22aB,22bBにそれぞれ電気的に接続されている。
なお、スルーホール23および24が、検出電極25a,25bおよび26a,26bおよび共通電極27と対応する位置に形成されるのはいうまでもない。
ここで、本実施形態が、上記第1実施形態と主に異なる点は、1対のビーム部16,17の両方および1対のビーム部18,19の両方を、アンカー部7B,8Bにそれぞれ連結させたことにある。すなわち、本実施形態では、ビーム部16,17,18,19をフレーム部40Bに連結させないようにしている。
さらに、本実施形態では、錘部5B,6Bにおける1対のビーム部16,17および18,19が連結される部位のY方向両端に、それぞれ凹部57,58および凹部67,68をそれぞれ形成し、ビーム部16,17,18,19の長さを確保しつつ小型化を図っている。
以上の本実施形態によっても、上記第1実施形態と同様の作用、効果を奏することができる。
また、本実施形態によれば、1対のビーム部16,17の両方および1対のビーム部18,19の両方を、アンカー部7B,8Bにそれぞれ連結させたため、1対のビーム部16,17および18,19が、シリコン基板4と第1の絶縁性基板(絶縁基板)2および第2の絶縁性基板3との熱膨張係数の相違に起因してフレーム部40Bに生じる応力の影響を受けてしまうのをより一層抑制することができる。
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。
たとえば、上記各実施形態および変形例では、X方向とZ方向の2方向の加速度を検出する加速度センサを例示したが、錘部の1つをXY平面内で90度回転させて配置し、Y方向を加えた3方向の加速度を検出する加速度センサとしてもよい。
また、錘部や固定電極その他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更可能である。
1 加速度センサ(静電容量式センサ)
2 第1の絶縁性基板(絶縁基板)
3 第2の絶縁性基板(絶縁基板)
4,4A,4B シリコン基板
5,5B 錘部
6,6B 錘部
7,7B アンカー部
8,8B アンカー部
9,10 ビーム部(一対のビーム部)
11,12 ビーム部(一対のビーム部)
16,17 ビーム部(一対のビーム部)
18,19 ビーム部(一対のビーム部)
40,40B フレーム部
51 充実部
53 凹部
61 充実部
63 凹部

Claims (2)

  1. 絶縁基板と、この絶縁基板に接合されたシリコン基板と、を備える静電容量式センサにおいて、
    前記シリコン基板には、前記絶縁基板に接合されるフレーム部と、一面に開口する凹部と凹部を除く充実部が一体に形成された錘部と、当該錘部を回動自在に支持する1対のビーム部と、前記フレーム部から離間配置されるアンカー部と、が形成されており、
    前記一対のビーム部のうち少なくともいずれか一方のビーム部が前記アンカー部に連結されていることを特徴とする静電容量式センサ。
  2. 前記一対のビーム部の両方が前記アンカー部に連結されていることを特徴とする請求項1に記載の静電容量式センサ。
JP2010144931A 2010-06-25 2010-06-25 静電容量式センサ Pending JP2012008036A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010144931A JP2012008036A (ja) 2010-06-25 2010-06-25 静電容量式センサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010144931A JP2012008036A (ja) 2010-06-25 2010-06-25 静電容量式センサ

Publications (1)

Publication Number Publication Date
JP2012008036A true JP2012008036A (ja) 2012-01-12

Family

ID=45538745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010144931A Pending JP2012008036A (ja) 2010-06-25 2010-06-25 静電容量式センサ

Country Status (1)

Country Link
JP (1) JP2012008036A (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736629A (en) * 1985-12-20 1988-04-12 Silicon Designs, Inc. Micro-miniature accelerometer
JPH08228016A (ja) * 1995-02-20 1996-09-03 Tokai Rika Co Ltd 表面型の加速度センサ及びその製造方法
JPH11513111A (ja) * 1995-06-30 1999-11-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 加速度センサ
JP2009109494A (ja) * 2007-10-26 2009-05-21 Rosemount Aerospace Inc 気体の減衰が平衡な振り子式加速度計
JP2010008127A (ja) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd 半導体物理量センサ
JP2010127649A (ja) * 2008-11-25 2010-06-10 Panasonic Electric Works Co Ltd 加速度センサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736629A (en) * 1985-12-20 1988-04-12 Silicon Designs, Inc. Micro-miniature accelerometer
JPH08228016A (ja) * 1995-02-20 1996-09-03 Tokai Rika Co Ltd 表面型の加速度センサ及びその製造方法
JPH11513111A (ja) * 1995-06-30 1999-11-09 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 加速度センサ
JP2009109494A (ja) * 2007-10-26 2009-05-21 Rosemount Aerospace Inc 気体の減衰が平衡な振り子式加速度計
JP2010008127A (ja) * 2008-06-25 2010-01-14 Panasonic Electric Works Co Ltd 半導体物理量センサ
JP2010127649A (ja) * 2008-11-25 2010-06-10 Panasonic Electric Works Co Ltd 加速度センサ

Similar Documents

Publication Publication Date Title
US10126322B2 (en) Acceleration sensor
US9274153B2 (en) Electrostatic capacitance sensor
US9052334B2 (en) Acceleration sensor
JP5426906B2 (ja) 加速度センサ
JP4965546B2 (ja) 加速度センサ
JP4965547B2 (ja) 加速度センサ
JP2012008036A (ja) 静電容量式センサ
JP5716149B2 (ja) 加速度センサ
JP4775412B2 (ja) 半導体物理量センサ
JP2012117972A (ja) 静電容量式センサ
JP2013186061A (ja) 静電容量式センサ
JP2013003125A (ja) 静電容量式センサ
JP2010210422A (ja) 加速度センサ
JP2010210430A (ja) 加速度センサ
JP2013127388A (ja) 静電容量式センサ
JP2013217869A (ja) 静電容量式センサ
WO2012102292A1 (ja) 静電容量式デバイスの製造方法
JP2013231616A (ja) 加速度センサ
JP2010008134A (ja) 半導体物理量センサ
JP2011112392A (ja) 加速度センサ
JP2010210423A (ja) 加速度センサ
JP2011049211A (ja) 静電容量式センサおよびその製造方法
JP2013003034A (ja) 静電容量式センサ
JP2010210418A (ja) 加速度センサ
JP2012047530A (ja) 静電容量式センサ

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140311