WO2011052442A1 - 工作機械 - Google Patents

工作機械 Download PDF

Info

Publication number
WO2011052442A1
WO2011052442A1 PCT/JP2010/068432 JP2010068432W WO2011052442A1 WO 2011052442 A1 WO2011052442 A1 WO 2011052442A1 JP 2010068432 W JP2010068432 W JP 2010068432W WO 2011052442 A1 WO2011052442 A1 WO 2011052442A1
Authority
WO
WIPO (PCT)
Prior art keywords
spindle
tool
radial direction
scale
axis
Prior art date
Application number
PCT/JP2010/068432
Other languages
English (en)
French (fr)
Inventor
中川篤
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Priority to EP10826574.5A priority Critical patent/EP2481521B1/en
Priority to KR1020127013719A priority patent/KR101344892B1/ko
Priority to CN201080048926.8A priority patent/CN102666007B/zh
Publication of WO2011052442A1 publication Critical patent/WO2011052442A1/ja
Priority to US13/456,332 priority patent/US8631727B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B25/00Accessories or auxiliary equipment for turning-machines
    • B23B25/06Measuring, gauging, or adjusting equipment on turning-machines for setting-on, feeding, controlling, or monitoring the cutting tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0003Arrangements for preventing undesired thermal effects on tools or parts of the machine
    • B23Q11/0007Arrangements for preventing undesired thermal effects on tools or parts of the machine by compensating occurring thermal dilations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • B23Q15/24Control or regulation of position of tool or workpiece of linear position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • B23Q17/225Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece of a workpiece relative to the tool-axis
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49206Compensation temperature, thermal displacement, use measured temperature
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49207Compensate thermal displacement using measured distance
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49212Using lookup table, map, position error, temperature and position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2502Lathe with program control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2508Lathe with tool turret
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2531Carriage feed
    • Y10T82/2533Control
    • Y10T82/2535Electrical type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2552Headstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T82/00Turning
    • Y10T82/25Lathe
    • Y10T82/2572Attachment

Definitions

  • the present invention relates to a machine tool such as a lathe, a drill, or a grinder, and more particularly to a machine tool having a measurement function for correcting thermal displacement.
  • thermal expansion and thermal deformation of the bed and other parts occur due to cutting heat and heat generated by each part due to machine operation.
  • thermal expansion and thermal deformation lead to a decrease in processing accuracy.
  • Some of them are equipped with a cooling device as a countermeasure.
  • the cooling device becomes large, and the processing accuracy cannot be ensured only by cooling. For this reason, various types of devices that measure thermal expansion and correct thermal displacement such as the cutting depth of a tool have been proposed.
  • the headstock 51 is fixed on the bed 52, and the feed base 54 on which the tool post 53 is mounted moves in the main shaft radial direction (X-axis direction).
  • the position of the tool post 53 in the radial direction of the spindle is measured by reading a scale 55 attached to the spindle base 51 and extending in the radial direction of the spindle with a reading unit 56 attached to the feed base 54. To do.
  • the measured value of the position of the tool post 53 in the main spindle radial direction changes due to thermal displacement or the like. Therefore, by correcting the cutting amount of the tool 57 of the tool post 53 according to the measured value, an appropriate machining accuracy is always ensured.
  • the object of the present invention is to measure and correct the distance in the radial direction of the spindle between the spindle center and the cutting edge of the tool with high accuracy, and to the dimensional change of the machine which is the greatest factor affecting the machine accuracy.
  • the object is to provide a machine tool capable of performing treatment and improving machining accuracy.
  • Another object of the present invention is to allow the measuring means provided in the machine tool to be manufactured at a low cost as much as possible while adopting a configuration capable of measuring the necessary position corresponding to the movement of the headstock or the tool post. is there.
  • Still another object of the present invention is to make it possible to accurately correct the distance between the axis of the spindle and the cutting edge of the tool with respect to the dimensional change of the machine.
  • a machine tool having a basic configuration of the present invention includes a spindle stock that rotatably supports a spindle having a chuck for gripping a workpiece, and a tool post to which a tool is attached, in a radial direction and a spindle axis direction.
  • a machine tool installed on the bed so as to be relatively movable, The main shaft radius of the scale extending in the main shaft radial direction and a reading unit for reading the scale, and either one of the base end of the scale or the reading unit moves in the main shaft radial direction together with the main shaft base or the main shaft base.
  • a spindle-side position measuring means that is installed in the vicinity of the spindle axis in the direction and the other is provided at a first reference position and measures the spindle axis position in the spindle radial direction with respect to the first reference position; It comprises a scale extending in the main shaft radial direction and a reading unit for reading the scale, and either one of the base end of the scale and the reading unit is installed on the tool rest or a member moving in the main shaft radial direction together with the tool rest, A blade side position measuring means for measuring the position of the tool rest with respect to the second reference position, the other being provided at the second reference position; The first reference position and the second reference position are fixed to each other with respect to the radial direction of the main shaft, Calculate the relative distance between the spindle axis and the cutting edge, which is the distance between the spindle axis and the tool rest in the radial direction of the spindle from the reading value of the spindle side position measuring means and the reading value of the cutter side position
  • the spindle-side position measuring unit can measure the spindle center position in the spindle radial direction with respect to the first reference position, and the tool-side position measuring unit can measure the position of the tool post with respect to the second reference position. Can be measured.
  • the first reference position and the second reference position are fixed to each other, and the positional relationship does not change. Therefore, the relative distance between the spindle axis and the cutting edge, which is the distance between the spindle axis and the tool rest in the spindle radial direction, can be calculated from the reading value of the spindle side position measuring means and the reading value of the tool side position measuring means.
  • both the spindle axis position and the tool post position are measured, the relative distance between the spindle axis and the cutting edge can be accurately measured. That is, both the spindle axis position and the tool post position change due to thermal displacement of the bed and the machine part on the bed. Since the thermal displacement at both positions is measured, the relative distance between the spindle axis and the cutting edge can be accurately measured.
  • the spindle-side position measuring means has either the base end of the scale or the reading unit installed near the spindle axis in the spindle base or a member that moves in the radial direction of the spindle together with the spindle base.
  • the measurement can be performed while avoiding the influence of the thermal displacement of the machine in the deviation range. Therefore, it is possible to measure with higher accuracy. In this way, it is possible to measure the distance in the spindle radial direction between the spindle center and the cutting edge of the tool with high accuracy, and to take measures against changes in the machine dimension, which is the biggest factor affecting machine accuracy. The accuracy can be improved.
  • the calculation means is not limited to the calculation of the relative distance between the spindle axis and the cutting edge, and may calculate a value used for correcting the movement amount of the spindle and the tool rest in the radial direction of the spindle. Also in this case, since both the spindle axis position and the tool post position are measured, accurate correction can be performed, and machining accuracy can be improved.
  • the first reference position and the second reference position are fixed to each other in the main shaft radial direction.
  • the first reference position and the second reference position change depending on the thermal displacement of the machine.
  • the first reference position and the second reference position may not necessarily coincide with each other with respect to the main shaft radial direction, but they are located close enough to ignore the influence of the thermal displacement, or the thermal displacement. It is desirable that the position be close enough to correct the influence of.
  • the machine tool according to the present invention is roughly classified into the following machine tools according to the first to fifth aspects depending on which direction the spindle stock or the tool post is moved. Any of the machine tools according to the first to fifth aspects includes the basic configuration of the present invention.
  • the headstock in the basic configuration, is mounted on a feed base provided on a bed so as to be movable in the main shaft radial direction so as to be movable in the main shaft axis direction.
  • the tool post is provided in a fixed position on the bed.
  • the spindle-side position measuring means either the base end of the scale or the reading unit is installed in the vicinity of the spindle axis in the spindle radial direction of the feed base, and the other is fixed on the bed. It is provided at the first reference position.
  • the cutter side position measuring means is provided with a base end of the scale or a reading unit attached to the tool rest, and the other is provided at a second reference position fixed on the bed.
  • the value obtained by reading the scale scale of the spindle side position measuring means by the reading unit varies depending on the position where the feed base moves and varies depending on the thermal displacement of the bed or the like, but the first reference position and the spindle
  • the current actual distance between the axes is the reading.
  • the measurement value of the tool side position measuring means is originally a constant value, but if there is a thermal displacement of the machine, it becomes a value to which the displacement is added, and the position of the tool rest relative to the second reference position, or the tool rest.
  • the current actual value of the cutting edge position of the tool attached to is shown.
  • the first reference position and the second reference position are fixed to each other.
  • the headstock in a fixed position on a bed, and the tool post is disposed on the bed via a radial feed base and an axial feed base.
  • the radial feed base is provided on the bed so as to be movable in the main shaft radial direction
  • the axial feed base is mounted on the radial feed base so as to be movable in the main shaft axis direction.
  • the tool post is of the type mounted on the axial feed base.
  • either the base end of the scale or the reading unit is installed in the vicinity of the spindle axis in the spindle radial direction of the spindle base, and the other is on the radial feed base. It is provided at a first reference position that is a position.
  • the tool-side position measuring means is provided at a second reference position where one of the base end of the scale and the reading unit is attached to the tool rest and the other is a position on the axial feed base.
  • the first reference position is the position on the radial feed base
  • the second reference position is the position on the axial feed base
  • the axial feed base is on the radial feed base. Since it is installed so as to be movable in the axial direction, the first reference position and the second reference position move together with the radial feed base, and the relative position between the first reference position and the second reference position. Is fixed.
  • the tool post moves with respect to the spindle axis due to the movement of the radial feed base, but the actual position of the radial feed base is measured by the spindle-side position measuring means, and the mechanical thermal displacement of the tool post relative to the radial feed base Etc. can be understood from the measurement by the blade side position measuring means.
  • the calculation means calculates the relative distance between the spindle axis and the blade edge from the reading value of the spindle side position measurement means and the reading value of the blade side position measurement means, thereby accurately The relative distance between the actual spindle axis and the cutting edge including the displacement and the like can be obtained.
  • the headstock is provided on the bed so as to be movable in the radial direction of the spindle, and the tool post is moved on the bed in the direction of the spindle axis.
  • This type is mounted on a freely provided axial feed base.
  • the spindle-side position measuring means either the base end of the scale or the reading unit is installed in the vicinity of the spindle axis in the spindle radial direction on the spindle base, and the other is fixed on the bed. It is provided at the first reference position.
  • the tool-side position measuring means is provided at a second reference position where one of the base end of the scale and the reading unit is attached to the tool rest and the other is a position on the axial feed base.
  • the headstock moves in the main shaft radial direction and the tool rest moves in the main shaft axis direction.
  • the actual position of the main shaft axis relative to the first reference position is measured by the main shaft side position measuring means.
  • the position is measured, and the actual position of the tool post with respect to the second reference position is measured by the tool side position measuring means. Therefore, also in this aspect, the calculation means calculates the relative distance between the spindle axis and the cutting edge from the reading value of the spindle side position measurement means and the reading value of the blade side position measurement means, thereby accurately The relative distance between the actual spindle axis and the cutting edge including the displacement and the like can be obtained.
  • the headstock is provided on a bed so as to be movable in the direction of the spindle axis, and the tool post is arranged on the bed in the radial direction of the spindle. It is the structure mounted in the radial feed stand installed so that movement was possible.
  • the spindle-side position measuring means either the base end of the scale or the reading unit is installed in the vicinity of the spindle axis in the spindle radial direction of the spindle base, and the other is on the radial feed base. It is provided at a first reference position that is a position.
  • the tool side position measuring means is provided at a second reference position where one of the base end of the scale and the reading unit is attached to the tool rest and the other is a position on the radial feed base.
  • the first reference position and the second reference position are both positions on the radial feed base.
  • the radial feed base moves in the radial direction of the spindle, but the actual position of the spindle axis relative to the first reference position on the radial feed base is measured by the spindle-side position measuring means, and the tool post relative to the radial feed base is measured.
  • Mechanical thermal displacement and the like can be understood from the measurement by the blade side position measuring means.
  • the calculation means calculates the relative distance between the spindle axis and the blade edge from the reading value of the spindle side position measurement means and the reading value of the blade side position measurement means, thereby accurately The relative distance between the actual spindle axis and the cutting edge including the displacement and the like can be obtained.
  • the spindle-side scale of the spindle-side position measuring means From the position corresponding to the spindle side reading unit when the spindle stand is located at a position where the tool tip of the tool post comes into contact with the outer diameter of the largest workpiece that can be gripped and processed by the chuck, the spindle side Is within the range up to the origin position, which is the corresponding position of the spindle side reading section, or at one point or a plurality of points within the range when the axial center of the spindle is the same as the radial position of the spindle of the tool
  • the scale should just be attached in the range of the length which can measure the amount of thermal displacement.
  • the scale is provided only in the minimum necessary range for the spindle-side scale of the spindle-side position measuring means, it is possible to perform the necessary position measurement corresponding to the movement of the headstock. Costs can be reduced by minimizing the scale range.
  • the spindle of the spindle side position measuring means From the position corresponding to the spindle side reading unit when the tool post is located at a position where the tool tip of the tool post comes into contact with the outer diameter of the workpiece having the maximum diameter that can be gripped and processed by the chuck, When the axis of the main shaft is at the same position as the cutting edge of the tool in the main shaft radial direction, the main shaft side reading unit is in a range corresponding to the origin position, or one point or a plurality of points within the range It is sufficient that the scale is provided within a range of a length in which the maximum thermal displacement amount can be measured.
  • the necessary position measurement can be performed corresponding to the movement of the spindle head. Costs can be reduced by minimizing the scale range.
  • a control device for moving the tool post relative to the head stock according to a command value of a movement command is provided, and the main shaft obtained by the calculation means for the command value is provided in the control device.
  • the machining accuracy of the workpiece diameter is determined by the accuracy of the cutting edge position of the tool with respect to the spindle axis.
  • the spindle table relative to the tool rest or the command value for moving the tool rest relative to the spindle base By performing correction based on the relative distance between the spindle axis position and the blade edge position obtained by the calculation means, it is possible to perform machining with high accuracy against thermal displacement.
  • the temperature change of a machine tool during a day is not constant.
  • the relative distance between the spindle center position and the blade edge position in the thermal displacement state at the time of measurement is accurately detected. Therefore, it is possible to perform processing with high accuracy by performing measurement at an appropriate time and performing correction by the thermal displacement correction means after measurement.
  • a machine tool in which a spindle stock rotatably supporting a spindle having a chuck for gripping a workpiece and a tool rest to which a tool is attached are arranged in a spindle radial direction and a spindle axis.
  • the main shaft radius of the scale extending in the main shaft radial direction and a reading unit for reading the scale, and either one of the base end of the scale or the reading unit moves in the main shaft radial direction together with the main shaft base or the main shaft base.
  • a spindle-side position measuring means that is installed in the vicinity of the spindle axis in the direction and the other is provided at a first reference position and measures the spindle axis position in the spindle radial direction with respect to the first reference position;
  • a tool-side position measuring means for measuring the position of the tool rest in the spindle radial direction with respect to a second reference position;
  • the first reference position and the second reference position are fixed to each other with respect to the radial direction of the main shaft, Calculate the relative distance between the spindle axis and the cutting edge, which is the distance between the spindle axis and the tool rest in the radial direction of the spindle from the reading value of the spindle side position measuring means and the reading value of the cutter side position measuring means,
  • a calculation means for calculating a value used for correcting a relative movement amount of the spindle stock and the tool rest in the radial direction of the spindle is provided.
  • the machine tool of the fifth aspect is not limited to the configuration having the scale in the tool side position measuring means in the machine tool of the basic configuration, but “the position of the tool rest in the spindle radial direction with respect to the second reference position”. Is a tool-side position measuring means for measuring ".”
  • the temperature measuring means for measuring the temperature of the tool rest by measuring the temperature, for example, the temperature measuring means for measuring the temperature of the tool rest, and the temperature measuring means
  • the temperature measurement value can be a temperature-corresponding blade side position calculating means for obtaining the position of the tool rest in the main shaft radial direction with respect to the second reference position.
  • the spindle center position in the radial direction of the spindle with respect to the first reference position is measured by the spindle side position measuring means, and the position of the tool post with respect to the second reference position is measured by the tool side position measuring means. Since both the spindle axis position and the tool post position are measured, the relative distance between the spindle axis and the cutting edge can be accurately measured.
  • This machine tool is a numerically controlled machine tool, and includes a machine tool body 1 that is a machine part and a control device 2 that controls the machine tool body 1.
  • the machine tool main body 1 is a main spindle moving type lathe, and a main spindle 6 is rotatably supported on a main spindle base 5 installed on a bed 3 via a feed base 4, and a tool post 7 is provided on the bed 3. It is installed via a support base 26.
  • the support base 26 is fixedly installed on the bed 3.
  • the tool post 7 is formed of a turret and is supported on the support base 26 so as to be capable of rotational indexing.
  • the feed table 4 is installed on the X-axis guide 9 provided on the bed 3 so as to be movable in a horizontal main axis radial direction (X-axis direction) orthogonal to the axis O of the main shaft 6. It is driven forward and backward by an X-axis moving mechanism 12 comprising a motor 10 such as an installed servo motor and a feed screw mechanism 11 that converts the rotation output into a linear motion.
  • the feed screw mechanism 11 includes a screw shaft and a nut.
  • the headstock 5 is installed on a Z-axis guide 13 provided on the feed base 4 so as to be movable in the spindle axis direction (Z-axis direction), and is a motor installed on the feed base 4. 14 (FIGS.
  • the feed screw mechanism 15 includes a screw shaft and a nut.
  • the spindle 6 is rotationally driven by a spindle motor (not shown) built in the spindle stock 5.
  • a chuck 17 is detachably provided at the front end of the main shaft 6. The chuck 17 can grip the workpiece W (FIG. 3) by a plurality of chuck claws 17 a that move in the chuck radial direction.
  • the tool post 7 is rotatable about a horizontal rotation center T along the X-axis direction with respect to the support base 26, and as shown in FIG. 5, a plurality of tool mounting portions 7 a arranged in the circumferential direction are arranged on the outer peripheral portion.
  • a tool 18 such as a tool or a rotary tool is attached to each tool attachment portion 7a via a tool holder 18a.
  • the tool post 7 is fixed to the end of a hollow shaft 7c rotatably supported by a support base 26 via a bearing 8, and is hollowed by an indexing motor (not shown). By rotating 7c, the arbitrary tool mounting portion 7a is pivotally indexed to a position facing the main shaft 6.
  • the tool post 7 may have a polygonal shape as shown in FIG. In FIG. 5, only the tool 18 attached to a part of the tool attaching portion 7a is shown, and the other parts are not shown.
  • the machine tool of this embodiment is provided with a spindle-side position measuring means 20 and a blade-side position measuring means 30 on the machine tool body 1 having the basic structure.
  • the spindle-side position measuring means 20 is a means for measuring the position of the spindle axis O in the spindle radial direction (X-axis direction) with respect to the first reference position P1, and includes a scale 21 and a reading unit 22.
  • the scale 21 is a rod-like member, and a base portion 21a is attached to a position in the vicinity of the axis O of the main shaft 6 in the main shaft radial direction in the feed base 4, and extends from the base portion 21a along the main shaft radial direction.
  • the term “near the axial center” means that the axial center position is included. Compared to the case where the base 21a of the scale 21 is attached to the axial center position, the difference in measurement results caused by thermal displacement can be ignored.
  • the scale 21 is attached to the front surface of the feed base 4 via the space member 25, but may be attached to other locations, for example, near the front end of the upper surface or the lower surface of the feed base 4.
  • a scale 23 is provided along a radial direction of the main axis in a predetermined range of the surface of the scale 21 facing the reading unit 22.
  • the reading unit 22 reads the scale 23 of the scale 21, and is attached to the first reference position P ⁇ b> 1, which is a position on the bed 3, via the attachment member 24.
  • the reading unit 22 is an optical type, and reads the scale 23 by projecting detection light and receiving reflected light.
  • the reading unit 22 may be a magnetic type.
  • the range where the scale 23 is attached to the scale 21 is such that the headstock 5 is located at a position where the cutting edge of the tool 18 of the tool post 7 is in contact with the outer diameter of the workpiece W (FIG. 3) having the largest diameter that can be gripped and processed by the chuck 17a.
  • the headstock 5 When the headstock 5 is movable in the radial direction of the spindle as in this embodiment, if the scale 23 of the scale 22 is attached only to the indispensable minimum range as described above, the movement of the headstock 5 can be handled. And can perform the necessary position measurement. Cost can be reduced by minimizing the range of the scale 23.
  • the scale 23 is made fine for the range corresponding to the movement of the headstock 5 at the time of machining, and the scale 23 is set for the range where the headstock 5 moves only at the time of workpiece exchange, chuck exchange, etc. other than during machining. If it is roughened, the cost can be further reduced.
  • the scale 23 may be provided over the entire length of the scale 22.
  • the tool side position measuring means 30 is a means for detecting the position of the tool rest 7 in the principal axis radial direction (X-axis direction) with respect to the second reference position P2, and includes a scale 31 and a reading unit 32.
  • the scale 31 is a round bar-like member, and a base portion 31a is attached to the rotation center of the tool post 7 and extends through the hollow shaft 7c along the main shaft radial direction, that is, the rotation center T.
  • the base 31a of the scale 31 is fixed to the tool post 7, but except for the base 31a, the base 31a is rotatable and advanceable / retractable with respect to the hollow shaft 7c.
  • Scales 33 arranged in the radial direction of the main shaft are attached to the entire periphery of the end of the scale 31 protruding from the hollow shaft 7c so as to correspond to the reading unit 22.
  • the reading unit 32 has an annular shape for reading the scale 33 of the scale 31, and is fixedly attached to the second reference position P ⁇ b> 2 that is a position on the bed 3 through an attachment member 34.
  • the reading unit 32 may also be an optical type or a magnetic type.
  • the reading unit 22 of the spindle-side position measuring unit 20 and the reading unit 32 of the blade-side position measuring unit 30 make the spindle radial position completely coincide with each other or due to the difference in the spindle radial position between the reading units 22 and 32. Align the thermal displacement in the radial direction of the spindle so that it can be ignored or estimated. That is, the main shaft radial direction positions of the first reference position P1 and the second reference position P2 are aligned.
  • the reading values of the reading unit 22 of the spindle-side position measuring unit 20 and the reading unit 32 of the blade-side position measuring unit 30 are input to the calculation unit 40 of the control device 2.
  • the calculation means 40 is provided in the control device 2, but may be provided separately from the control device 2.
  • the calculating means 40 calculates the spindle axis O in the main spindle radial direction (X-axis direction) from the reading value of the reading section 22 of the main spindle side position measuring means 20 and the reading value of the reading section 32 of the blade side position measuring means 30.
  • the specific position of the tool rest 7 is a position on the tool rest 7 and a position on the tool 18 attached to the tool rest 7 and may be any position as long as it is a specified position.
  • the blade tip position of the standard tool 7 attached to the tool post 7 is set as the specific position.
  • the standard tool 7 may be an arbitrary tool. For example, the standard tool 7 is the most frequently used tool 7 in this machine tool.
  • FIG. 6 shows the positions of the headstock 5 and the tool rest 7 at the normal temperature (solid line) and the positions of the head rest 5 and the tool rest 7 at the time of temperature rise (two-dot chain line).
  • the relative distance L0 between the spindle center and the cutting edge at normal temperature (for example, 15 ° C.) is obtained from known dimensions of the machine tool and the tool 18.
  • the calculation means 40 calculates the thermal displacement amount ⁇ L1 in the spindle radial direction of the spindle stock 5 due to the temperature rise from the reading values of the reading section 22 of the spindle position measurement means 20 and the reading section 32 of the tool position measurement means 30 and the tool rest 7. Is calculated, and the relative displacement L between the spindle center and the cutting edge during operation is obtained by adding the thermal displacement amounts ⁇ L1 and ⁇ L2 to the relative distance L0 between the spindle center and the cutting edge at room temperature. Is calculated.
  • the spindle-side position measuring means 20 reads the scale 23 of the scale 21 with the reading unit 22. Since the reading unit 22 is mounted on the bed 3 in a fixed position, the reading position of the reading unit 23 indicates the position in the radial direction of the main shaft of the feed base 4 to which the scale 21 is mounted.
  • the position of the spindle stock 5 in the radial direction of the spindle can be known. That is, the distance L1 between the first reference position P1 and the spindle axis O is known.
  • the feed table 4 moves in the spindle radial direction during machining, but the movement amount is detected by another detection means (not shown), and the detected movement amount is added to always add the detected movement amount to the spindle radial direction.
  • the position can be determined. From the position of the spindle base 5 in the radial direction of the spindle, the amount of thermal displacement ⁇ L1 in the radial direction of the spindle at the time of machining with respect to normal temperature is obtained.
  • the blade side position measuring means 30 reads the scale 33 of the scale 31 by the reading unit 32. Since the reading unit 32 is fixedly mounted on the bed 3, the reading of the reading unit 32 can be used to determine the radial position of the tool post 7 to which the scale 31 is attached. That is, the distance L2 between the second reference position P2 and the specific position of the tool post 7 (for example, the cutting edge position of the tool 18) is known. From the radial direction position of the tool post 7 in the main shaft radial direction, a thermal displacement amount ⁇ L2 in the main shaft radial direction during machining with respect to normal temperature is obtained.
  • the amount of thermal displacement of the tool rest 7 is regarded as the amount of thermal displacement of the tool tip position of the tool 18 attached to the tool rest 7. You may make it obtain
  • the calculation means 40 adds the calculated thermal displacement amounts ⁇ L1 and ⁇ L2 to the relative distance L0 between the spindle center and the blade edge at normal temperature, thereby increasing the temperature during operation or the like.
  • the relative distance L between the spindle axis and the cutting edge is calculated.
  • the relative distance L between the spindle axis and the cutting edge is obtained by adding a dimensional change due to thermal displacement to the relative distance L0 between the spindle axis and the cutting edge at normal temperature, and indicates the current accurate distance.
  • the calculation result of the calculation means 40 is stored in the calculation means 40 or the thermal displacement correction means 43 (FIG. 1). Instead of obtaining the relative distance L between the spindle axis and the cutting edge, a change in the relative distance L between the spindle axis and the cutting edge may be obtained.
  • the control device 2 is composed of a computer-type numerical control device, which decodes and executes each command of the machining program 41 by the arithmetic control unit 42 and gives a control command to each drive source of the machine tool body 1.
  • the movement command 41a in the X-axis direction of the machining program 41 is a command for relatively moving the tool post 7 in the X-axis direction to the position of the command value indicating the movement destination.
  • the arithmetic control unit 42 causes the X-axis motor 10 to move. Is output as a command to drive the.
  • the calculation control unit 42 includes a thermal displacement correction unit 43, and a command value to be output to the motor 10 is calculated by the calculation unit 40 with respect to the command value of the movement command 41 a in the X-axis direction in the machining program 41. Correction is performed using the relative distance L between the spindle axis and the cutting edge. For example, when the relative distance L between the spindle axis and the cutting edge is input from the calculation unit 40, the thermal displacement correction unit 43 always stores the value until the value is updated, and corrects it using the stored value. It is supposed to do.
  • the spindle-side position measuring unit 20 and the cutter-side position measuring unit 30 measure the position, and the value of the relative distance L between the spindle axis and the cutting edge calculated by the calculating unit 40 is updated, the heat to be performed thereafter.
  • the correction amount of the displacement correction means 43 changes.
  • the correction amount by the thermal displacement correction unit 43 will be described later.
  • the thermal displacement correction means 43 can be switched between an active state and an inactive state by a predetermined input by a switch operation or the like. Further, the measuring operation of the spindle side position measuring means 20 and the blade side position measuring means 30 may be manually performed by an input operation of an operation panel (not shown) attached to the control device 2, or for measurement. A program (not shown) may be provided, and a series of measurement operations may be automatically performed by causing the control device 2 to execute the measurement program. When the measurement is automatically performed, even if the measurement is performed at a set time with a timer (not shown) or the like, a series of automatic measurements may be started by the operator turning on the start switch.
  • a timer not shown
  • the thermal displacement correction means 43 executes the X-axis movement command 41a of the machining program 41 by the calculation control unit 42 according to the relative distance L between the spindle center and the cutting edge stored in the calculation means 40 or the thermal displacement correction means 43.
  • This correction is, for example, correction for adding the difference between the spindle axis / cutting edge relative distance L and the design dimension to the command value.
  • the thermal displacement correction means 43 has, for example, a relational setting means such as an arithmetic expression or a table for determining a correction amount for the calculation result of the calculation means 40, and the correction amount determined by using this means is used to determine the correction amount.
  • the command value may be corrected.
  • the relationship set by the relationship setting means may be a relationship such as a correction amount for the difference between the distance obtained by the calculation means 40 and the command value based on the actual driving result or the like.
  • an appropriate thermal displacement correction can be performed by measuring at a set time such as every other hour or every set time in the day and updating the calculation result of the calculation means 40.
  • FIG. 7 shows a second embodiment of the present invention.
  • the machine tool main body 1 of this machine tool is a turret moving type lathe, the headstock 5 is provided on the bed 3 in a fixed position, and the turret 7 is placed on the bed 3 with a radial feed base 4A and an axial feed.
  • the base 27 is provided so as to be movable in the main shaft radial direction (X-axis direction) and the main shaft axis direction (Z-axis direction).
  • the radial feed base 4 is installed on the X-axis guide 9 provided on the bed 3 so as to be movable in the horizontal main-axis radial direction, and is driven forward and backward by the X-axis moving mechanism 12.
  • the axial feed base 27 is installed on a Z-axis guide 13 provided on the radial feed base 4 ⁇ / b> A so as to be movable in the direction of the spindle axis, and is driven forward and backward by the Z-axis moving mechanism 16.
  • the tool post 7 is formed of a turret, and is installed on the axial feed base 27 so as to be rotatable around a horizontal rotation center T along the X-axis direction.
  • the basic structure of the machine tool main body 1 other than the above is the same as that of the first embodiment, and corresponding portions are denoted by the same reference numerals and description thereof is omitted.
  • the machine tool of this embodiment is also provided with the spindle side position measuring means 20 and the cutter side position measuring means 30 in the machine tool body 1.
  • the spindle-side position measuring means 20 is a means for measuring the position of the axis O of the spindle in the spindle radial direction (X-axis direction) with respect to the first reference position P1, and includes a scale 21 and a reading unit 22.
  • the scale 21 is a rod-shaped member, and a base portion 21a is attached to a position near the axis of the main shaft 6 in the main shaft radial direction of the main shaft 5 and extends from the base portion 21a along the main shaft radial direction.
  • the base 21 a of the scale 21 is attached to the headstock 5, for example, on the upper surface, but may be attached to the lower surface or the front surface, or may be attached to the inside of the headstock 5.
  • a scale 23 arranged in the radial direction of the spindle is provided at a position corresponding to the reading unit 22 on the surface of the scale 21 facing the reading unit 22.
  • the reading unit 22 reads the scale 23 of the scale 21 and is attached to a specific position of the radial feed base 4 serving as the first reference position P1 via an attachment member 24A. Therefore, in this embodiment, the first reference position P1 is movable and moves together with the radial feed base 4.
  • the specific position of the radial feed base 4A is, for example, the center position of the radial feed base 4 in the X-axis direction width.
  • the tool-side position measuring means 30 is a means for detecting the position of the tool rest 7 in the principal axis radial direction (X-axis direction) with respect to the second reference position P2, and includes a scale 31 and a reading unit 32.
  • the scale 31 is a rod-shaped member, and a base portion 31a is attached to the tool post 7 and extends from the base portion 31a along the main shaft radial direction.
  • a scale 33 arranged in the radial direction of the spindle is attached to a predetermined range of the surface of the scale 31 facing the reading unit 32. The range to which the scale 33 is attached is the same range as described in the first embodiment.
  • the reading unit 32 reads the scale 33 of the scale 31 and is installed at the second reference position P2.
  • the second reference position P2 is set at a specific position on the axial feed base 27, and the reading unit 32 is attached to the axial feed base 27 via an attachment member (not shown) or directly. It is fixed.
  • the specific position may be a position arbitrarily specified on the axial feed base 27, but in this embodiment, is the same X-direction position as the first reference position P1.
  • the reading values of the reading unit 22 and the reading unit 32 are input to the calculation unit 40, and the calculation unit 40 calculates the thermal displacement amount ⁇ L1 (FIG. 6) in the spindle radial direction of the headstock 5 during machining with respect to normal temperature.
  • the amount of thermal displacement ⁇ L2 (FIG. 6) in the spindle radial direction of the tool post 7 at the time of machining with respect to normal temperature is obtained, and these thermal displacement amounts ⁇ L1 and ⁇ L2 are determined as the relative distance L0 between the spindle axis and the cutting edge at normal temperature.
  • the relative distance L between the spindle axis and the cutting edge at the time of temperature rise during operation or the like is calculated.
  • an accurate relative distance L between the spindle axis and the cutting edge can be obtained by adding a dimensional change due to thermal displacement to the relative distance L0 between the spindle axis and the cutting edge at normal temperature.
  • FIG. 8 shows a third embodiment of the present invention.
  • the machine tool main body 1 of this machine tool is a lathe in which the spindle stock and the tool post move together.
  • the head stock 5 is provided on the bed 3 so as to be movable in the main shaft radial direction (X-axis direction), and the tool post 7 is moved on the bed 3 in the main shaft axis direction (Z-axis direction) via the axial feed base 27B. It is provided as possible.
  • the headstock 5 is installed on the X-axis guide 9 provided on the bed 3 so as to be movable in the horizontal main-axis radial direction, and is driven forward and backward by the X-axis moving mechanism 12.
  • the axial feed base 28 is installed on the Z-axis guide 13 provided on the bed 3 so as to be movable in the direction of the spindle axis, and is driven forward and backward by the Z-axis moving mechanism 16.
  • the tool post 7 is formed of a turret, and is installed on the axial feed base 27B so as to be rotatable around a horizontal rotation center T along the X-axis direction.
  • the basic structure of the machine tool body 1 other than the above is the same as that of the first and second embodiments, and the corresponding parts are denoted by the same reference numerals and description thereof is omitted.
  • the machine tool of this embodiment is also provided with the spindle side position measuring means 20 and the cutter side position measuring means 30 in the machine tool body 1.
  • the spindle-side position measuring means 20 is a means for measuring the position of the spindle axis O in the spindle radial direction (X-axis direction) with respect to the first reference position P1, and includes a scale 21 and a reading unit 22.
  • the scale 21 is a rod-shaped member, and a base portion 21a is attached to a position near the axis of the main shaft 6 in the main shaft radial direction of the main shaft 5 and extends from the base portion 21a along the main shaft radial direction.
  • the base 21 a of the scale 21 is attached to the headstock 5, for example, on the upper surface, but may be attached to the lower surface or the front surface, or may be attached to the inside of the headstock 5.
  • a scale 23 arranged in the radial direction of the main axis is attached to a predetermined range of the surface of the scale 21 facing the reading unit 22.
  • the range to which the scale 33 is attached is the same range as described in the first embodiment.
  • the reading unit 22 reads the scale 23 of the scale 21, and is attached to the first reference position P ⁇ b> 1, which is a position on the bed 3, via the attachment member 24.
  • the tool side position measuring means 30 is a means for detecting the position of the tool rest 7 in the principal axis radial direction (X-axis direction) with respect to the second reference position P2, and includes a scale 31 and a reading unit 32.
  • the scale 31 is a round bar-like member, and a base 31a is attached to the center of the tool post 7, and extends from the base 31a through the hollow shaft 7c along the main shaft radial direction.
  • a scale 33 arranged in the radial direction of the main shaft is attached to the entire circumference.
  • the scale 31 rotates integrally with the tool post body 7b.
  • the reading unit 32 reads the scale 33 of the scale 31 and is installed at the second reference position P2.
  • the second reference position P2 is set to a specific position that is fixed with respect to the axial feed base 28, and the reading unit 32 is attached to the second reference position P2 on the axial feed base 28 at the mounting member 34B. It is fixed through.
  • the specific position may be any position that is arbitrarily specified by fixing the position relative to the axial feed base 28. In this embodiment, the specific position is the same X-direction position as the first reference position P1.
  • the reading values of the reading unit 22 and the reading unit 32 are input to the calculation unit 40 and the calculation unit 40 performs the same calculation process as described above, so that the spindle axis at normal temperature is obtained. -It is possible to obtain an accurate spindle axis-to-blade relative distance L in which a dimensional change due to thermal displacement is added to the relative distance L0 between the blade edges. Furthermore, by using the relative distance L between the spindle axis and the cutting edge, correction is performed by the thermal displacement correction means 43, so that correction can be made with high accuracy corresponding to the thermal displacement, and the processing accuracy is improved.
  • FIG. 9 shows a fourth embodiment of the present invention.
  • the machine tool main body 1 of this machine tool is also a type of lathe in which the spindle stock and the tool post move together, but the spindle stock 5 is placed on the bed 3 in the direction of the spindle axis (as opposed to the third embodiment).
  • the tool post 7 is provided on the bed 3 so as to be movable in the main shaft radial direction (X-axis direction) via a radial feed base 4C.
  • the headstock 5 is installed on a Z-axis guide 13 provided on the bed 3 so as to be movable in the direction of the spindle axis, and is driven forward and backward by a Z-axis moving mechanism 16.
  • the radial feed base 4C is installed on the X-axis guide 9 provided on the bed 3 so as to be movable in the horizontal main-axis radial direction, and is driven forward and backward by the X-axis moving mechanism 12.
  • the tool post 7 is formed of a turret, and is installed on the radial feed base 4C so as to be rotatable around a horizontal rotation center T along the X-axis direction.
  • the basic structure of the machine tool body 1 other than the above is the same as that of the first to third embodiments, and the corresponding parts are denoted by the same reference numerals and description thereof is omitted.
  • the machine tool of this embodiment is also provided with the spindle side position measuring means 20 and the cutter side position measuring means 30 in the machine tool body 1.
  • the spindle-side position measuring means 20 is a means for measuring the position of the spindle axis O in the spindle radial direction (X-axis direction) with respect to the first reference position P1, and includes a scale 21 and a reading unit 22.
  • the scale 21 is a rod-like member, and a base portion 21a is attached to the bed 3 at a position near the axis of the main shaft 6 in the main shaft radial direction, and extends from the base portion 21a along the main shaft radial direction.
  • a scale 23 arranged in the radial direction of the spindle is attached to a portion corresponding to the reading unit 22 on the surface of the scale 21 facing the reading unit 22.
  • the reading unit 22 reads the scale 23 of the scale 21 and is attached to a specific position of the radial direction feed base 4C serving as the first reference position P1 via an attachment member 24C. Therefore, in this embodiment, the first reference position P1 is movable and moves together with the radial feed base 29.
  • the specific position of the radial feed base 4C is, for example, the center position of the radial feed base 29 in the X-axis direction width.
  • a pair of Z-axis guides 13 are provided on a plate-like base member 13a fixed on the bed 3, and a scale is provided on the front surface of the base member 13a via a space member 25.
  • 21 base 21a is attached.
  • the base 21a of the scale 21 may be attached to the upper surface of the base member 13a.
  • the base member 13a constitutes a part of the bed 3, and specifically, the bed 3 includes a bed main body and a base member 13a provided thereon.
  • the base 21a of the scale 21 may be directly attached to the bed 3 without providing the base member 13a.
  • the tool-side position measuring means 30 is a means for detecting the position of the tool rest 7 in the principal axis radial direction (X-axis direction) with respect to the second reference position P2, and includes a scale 31 and a reading unit 32.
  • the scale 31 is a rod-shaped member, and a base portion 31a is attached to the axial feed base 29, and extends from the base portion 31a along the main shaft radial direction.
  • a scale 33 arranged in the radial direction of the spindle is attached to a predetermined range of the surface of the scale 31 facing the reading unit 32. The range to which the scale 33 is attached is the same range as described in the first embodiment.
  • the reading unit 32 reads the scale 33 of the scale 31 and is installed at the second reference position P2.
  • the second reference position P2 is set at a specific position on the axial feed base 29, and the reading unit 32 is connected to the second reference position P2 on the axial feed base 29 (not shown). Or directly fixed.
  • the specific position may be a position arbitrarily specified on the axial feed base 27, but in this embodiment, is the same X-direction position as the first reference position P1.
  • the reading values of the reading unit 22 and the reading unit 32 are input to the calculation unit 40 and the calculation unit 40 performs the same calculation process as described above, so that the spindle axis at normal temperature is obtained. -It is possible to obtain an accurate relative distance L between the spindle axis and the cutting edge in which a thermal displacement due to machining or the like is added to the relative distance L0 between the cutting edges. Furthermore, by using the relative distance L between the spindle axis and the cutting edge, correction is performed by the thermal displacement correction means 43, so that correction can be made with high accuracy corresponding to the thermal displacement, and the processing accuracy is improved.
  • the spindle-side position measuring means 20 has the reading unit 22 at the first reference position P1 and the base 21a of the scale 21 in the vicinity of the spindle axis O.
  • the base 21a of the scale 21 may be provided at the first reference position P1
  • the reading unit 22 may be provided in the vicinity of the spindle axis O.
  • the reading unit 32 is provided at the second reference position P ⁇ b> 2, and the base 31 a of the scale 31 is provided on the tool rest 7.
  • the base 31a of the scale 31 may be provided at the second reference position P2, and the reading unit 32 may be provided on the tool post 7.
  • the calculation means 40 calculates the relative distance L between the spindle axis and the cutting edge, but the calculation means 40 does not necessarily calculate the relative distance L between the spindle axis and the cutting edge.
  • a value used for correcting the movement amount of the spindle stock 5 and the tool rest 7 in the radial direction of the spindle for example, a correction amount for a feed amount command value may be calculated. Even in that case, since both the spindle axis position O and the position of the tool post 7 are measured, accurate correction can be performed, and as a result, the relative distance between the spindle axis and the cutting edge can be controlled with high accuracy. Improvements can be made.
  • the tool post 7 is a turret type tool post has been described, but the tool post 7 may be of other types such as a comb tooth type.
  • the machine tool is a lathe, but the present invention can also be applied when the machine tool is a drilling machine, a grinding machine, or the like.
  • FIG. 11 shows a fifth embodiment of the present invention.
  • This embodiment is different from the first embodiment shown in FIGS. 1 to 6 in that the blade side position measuring means 30 is replaced with a scale 31 and a reading unit 32, and the temperature measurement shown in FIG.
  • a blade side position measuring means 30A composed of the means 44 and the temperature corresponding blade side position calculating means 45 is provided.
  • the temperature measuring means 44 is a means for measuring the temperature of the tool post 7 and is a thermometer such as a thermocouple.
  • the temperature corresponding tool side position calculating means 45 calculates the position of the tool rest 7 in the radial direction of the spindle relative to the second reference position P2 from the temperature measurement value of the temperature measuring means 7.
  • the temperature corresponding tool side position calculating means 45 has a relation setting means (not shown) including a table or an arithmetic expression in which the relation between the temperature measuring means 44 and the position of the tool rest 7 in the spindle radial direction is set. From the temperature measurement value of the measuring means 7 and the relation set in the relation setting means, the position of the tool rest 7 in the main spindle radial direction is calculated. Tables, arithmetic expressions, and the like set in the relationship setting means are determined by tests, simulations, and the like.
  • the temperature-corresponding blade side position calculating means 45 is provided in the control device 2, for example, and is input to the calculating means 40 as a measurement result of the blade side position measuring means 30A.
  • the second reference position P2 is, for example, the same position in the main shaft radial direction as the first reference position P1 on the bed 3. Other configurations in this embodiment are the same as those in the first embodiment.
  • the position of the tool post 7 in the radial direction of the spindle can be accurately obtained by measuring the temperature as described above. Therefore, also in this embodiment, it is possible to measure both the axis position of the spindle 6 and the position of the tool post 7 and accurately measure the relative distance between the spindle axis and the cutting edge.

Abstract

 第1基準位置(P1)に対する主軸半径方向の主軸軸心位置(O)を計測する主軸側位置計測手段(20)と、第2基準位置(P2)に対する刃物台(7)の位置を計測する刃物側位置計測手段(30)とを設ける。主軸側位置計測手段(20)は、主軸半径方向に延びるスケール(21)および読取部(22)からなり、スケール基端および読取部(22)のいずれか一方を主軸台(5)等の主軸軸心(O)の付近に設置し、他方を第1基準位置(P1)に設置する。刃物側位置計測手段(30)は、スケール(31)の基端および読取部(32)のいずれか一方を刃物台(7)等に設置し、他方を第2基準位置(P2)に設置する。

Description

工作機械 関連出願
 本出願は、2009年11月2日出願の特願2009-251736の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、旋盤、ドリル、研削盤等の工作機械、特に熱変位補正等のための計測機能を備えた工作機械に関する。
 旋盤等の工作機械では、切削熱や機械運転に伴う各部位の発熱のために、ベッドや他の各部位の熱膨張,熱変形が生じる。このような熱膨張,熱変形は、加工精度の低下に繋がる。冷却装置を装備してその対策とするものもあるが、熱膨張を十分に抑えるには、冷却装置が大掛かりとなり、また冷却だけでは加工精度を確保することができない。そのため、従来より、熱膨張を計測して工具の切り込み量等の熱変位補正を行なうものが種々提案されている。
 例えば特許文献1に記載の工作機械は、図12に示すように、主軸台51がベッド52上に位置固定され、刃物台53を搭載した送り台54が主軸半径方向(X軸方向)に移動可能に設けられた旋盤であり、主軸台51に取付けられ主軸半径方向に延びるスケール55を、送り台54に取付けられた読取部56で読み取ることにより、刃物台53の主軸半径方向における位置を計測する。この刃物台53の主軸半径方向位置の計測値は、熱変位等により変化する。そこで、計測値に応じて刃物台53の工具57の切り込み量等を補正することで、常に適正な加工精度を確保する。
特開2002-144191号公報
 特許文献1のように、主軸台51と送り台54との相対位置だけを計測するのでは、送り台54に対する刃物台53の熱変位が生じた場合に、主軸軸心と工具の間の距離に誤差が生じる。また、特許文献1の工作機械は、主軸台51と刃物台53の送り台54とが主軸半径方向に並んで配置され、常に両者の主軸軸心方向(Z軸方向)の位置関係が同じであるため、主軸台51に取付けたスケール55を送り台54に取付けた読取部56で読み取ることができる。しかし、刃物台が主軸半径方向および主軸軸心方向の両方に移動する構成の工作機械の場合、主軸台と送り台との主軸軸心方向の位置関係が常に同じでないため、前記のようにスケールおよび読取部を設けることができない。刃物台が位置固定で、主軸台が主軸半径方向および主軸軸心方向の両方に移動する構成の工作機械の場合も、同様である。また、主軸台および刃物台が、主軸半径方向と主軸軸心方向とにそれぞれ個別に移動する構成の工作機械の場合も、同様である。
 この発明の目的は、主軸の軸心と工具の刃先間の主軸半径方向の距離を精度良く計測し、補正することができて、機械精度を左右する最大の要因である機械の寸法変化への処置が行え、加工精度の向上が図れる工作機械を提供することである。
 この発明の他の目的は、前記工作機械に設けられる計測手段を、主軸台または刃物台の移動に対応して必要な位置計測を行える構成としつつ、なるべく低コストで製作できるようにすることである。
 この発明のさらに他の目的は、前記機械の寸法変化に対して、主軸の軸心と工具の刃先間の距離を精度良く補正できるようにすることである。
 この発明の基本構成の工作機械は、ワークを把持するチャックを先端に有する主軸を回転自在に支持した主軸台と、工具が取付けられた刃物台とを、互いに主軸半径方向と主軸軸心方向とに相対的に移動可能にベッドに設置した工作機械であって、
 前記主軸半径方向に延びるスケールおよびこのスケールを読み取る読取部からなり、これらスケールの基端および読取部のいずれか一方が、前記主軸台またはこの主軸台と共に主軸半径方向に移動する部材における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が第1基準位置に設けられてこの第1基準位置に対する前記主軸半径方向の主軸軸心位置を計測する主軸側位置計測手段と、
 前記主軸半径方向に延びるスケールおよびこのスケールを読み取る読取部からなり、これらスケールの基端および読取部のいずれか一方が、前記刃物台またはこの刃物台と共に主軸半径方向に移動する部材に設置され、他方が第2基準位置に設けられてこの第2基準位置に対する前記刃物台の位置を計測する刃物側位置計測手段とを設け、
 前記第1基準位置と第2基準位置とを前記主軸半径方向に対して互いに位置固定とし、
 前記主軸側位置計測手段の読み取り値と前記刃物側位置計測手段の読み取り値とから前記主軸半径方向における前記主軸軸心と刃物台間の距離である主軸軸心・刃先間相対距離を演算し、または前記主軸台と刃物台との主軸半径方向の相対移動量の補正に用いる値を演算する演算手段を設けている。
 この構成によると、主軸側位置計測手段により、第1基準位置に対する主軸半径方向の主軸軸心位置が計測でき、かつ刃物側位置計測手段により、第2基準位置に対する刃物台の位置を計測することが計測できる。第1基準位置と第2基準位置とは互いに位置固定であり、位置関係が変化しない。したがって、これら主軸側位置計測手段の読み取り値と刃物側位置計測手段の読み取り値とから、主軸半径方向における主軸軸心と刃物台間の距離である主軸軸心・刃先間相対距離が演算できる。
 このように、主軸軸心位置および刃物台の位置の両方を計測するようにしたため、主軸軸心・刃先間相対距離が精度良く計測できる。すなわち、主軸軸心位置および刃物台の位置は、いずれもベッドやベッド上の機械部分の熱変位によって変化する。この両方の位置の熱変位を計測するため、主軸軸心・刃先間相対距離が精度良く計測できる。
 また、主軸側位置計測手段は、スケールの基端および読取部のいずれか一方が、主軸台またはこの主軸台と共に主軸半径方向に移動する部材における主軸軸心の付近に設置されるため、主軸軸心からずれた位置にスケールや読取部が設けられる場合と異なり、そのずれ範囲での機械の熱変位等の影響を避けて計測することができる。そのため、より精度良く計測することができる。
 このように、主軸の軸心と工具の刃先間の主軸半径方向の距離を精度良く計測することができて、機械精度を左右する最大の要因である機械の寸法変化への処置が行え、加工精度の向上を図ることができる。
 前記演算手段は、主軸軸心・刃先間相対距離の演算に限らず、主軸台と刃物台との主軸半径方向の移動量の補正に用いる値を演算するものであっても良い。この場合も、主軸軸心位置および刃物台の位置の両方を計測するようにしたため、精度の良い補正が行え、加工精度の向上を図ることができる。
 なお、前記の「前記第1基準位置と第2基準位置とを前記主軸半径方向に対して互いに位置固定」とは、主軸半径方向における第1基準位置と第2基準位置との相対的な位置関係が変わらず固定であることを意味し、第1基準位置と第2基準位置とが一緒に主軸半径方向に移動してもよい。ただし、第1基準位置と第2基準位置とは、機械の熱変位によっては変わる。このため、第1基準位置と第2基準位置とは、前記主軸半径方向に対して、互いに必ずしも一致していなくても良いが、熱変位の影響が無視できる適度に近接し位置、または熱変位の影響を精度良く補正できる程度に近接した位置であることが望ましい。
 この発明の工作機械は、主軸台と刃物台のいずれをどの方向に移動させるようにした構成であるかによって、次の第1~第5の態様の工作機械に大別される。これら第1~第5の態様の工作機械は、いずれもこの発明の前記基本構成を備える。
 この発明の第1の態様の工作機械は、前記基本構成において、前記主軸台が、ベッド上に前記主軸半径方向に移動可能に設けられた送り台に、主軸軸心方向に移動自在に搭載され、前記刃物台が前記ベッド上に位置固定に設けられた形式である。前記主軸側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記送り台における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が前記ベッド上に位置固定の第1基準位置に設けられる。前記刃物側位置計測手段は、前記スケールの基端および読取部のいずれか一方が前記刃物台に取付けられ、他方が前記ベッド上に位置固定の第2基準位置に設けられる。
 この第1の態様の場合、主軸側位置計測手段のスケールの目盛りを読取部で読み取った値は、送り台の移動した位置によって変わり、ベッド等の熱変位によって変わるが、第1基準位置と主軸軸心間の現在の実際の距離が読み取り値となる。刃物側位置計測手段の計測値は、本来は一定の値となるが、機械の熱変位があれば、その変位が加わった値となり、第2基準位置に対する刃物台の位置、しいては刃物台に取付けられた工具の刃先位置の現在の実際の値を示す。第1基準位置と第2基準位置は、互いに位置固定である。このため、前記演算手段により、主軸側位置計測手段の読み取り値と前記刃物側位置計測手段の読み取り値とから主軸軸心・刃先間相対距離を演算することで、精度良く、熱変位等を含む実際の主軸軸心・刃先間相対距離を求めることができる。
 この発明の第2の態様の工作機械は、前記基本構成において、前記主軸台がベッド上に位置固定に設けられ、前記刃物台が、前記ベッド上に半径方向送り台および軸方向送り台を介して設置されて、前記半径方向送り台は前記ベッド上に前記主軸半径方向に移動可能に設けられ、前記軸方向送り台は前記半径方向送り台上に主軸軸心方向に移動自在に搭載され、前記刃物台は前記軸方向送り台に搭載された形式である。前記主軸側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記主軸台における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が前記半径方向送り台上の位置となる第1基準位置に設けられる。前記刃物側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記刃物台に取付けられ、他方が前記軸方向送り台上の位置となる第2基準位置に設けられる。
 この第2の態様の場合、第1基準位置は半径方向送り台上の位置となり、第2基準位置は軸方向送り台上の位置となるとなるが、軸方向送り台は半径方向送り台上に軸方向移動自在に設置されているため、第1基準位置と第2基準位置は、互いに一緒に、半径方向送り台と共に移動することになり、第1基準位置と第2基準位置との相対位置は固定である。半径方向送り台の移動により、主軸軸心に対して刃物台が移動するが、半径方向送り台の実際の位置が主軸側位置計測手段によって計測され、半径方向送り台に対する刃物台の機械熱変位等が刃物側位置計測手段の計測からわかる。そのため、この構成においても、前記演算手段により、主軸側位置計測手段の読み取り値と前記刃物側位置計測手段の読み取り値とから主軸軸心・刃先間相対距離を演算することで、精度良く、熱変位等を含む実際の主軸軸心・刃先間相対距離を求めることができる。
 この発明の第3の態様の工作機械は、前記基本構成において、前記主軸台がベッド上に前記主軸半径方向に移動可能に設けられ、前記刃物台が、前記ベッド上に主軸軸心方向に移動自在に設けられた軸方向送り台に搭載された形式である。前記主軸側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記主軸台における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が前記ベッド上に位置固定の第1基準位置に設けられる。前記刃物側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記刃物台に取付けられ、他方が前記軸方向送り台上の位置となる第2基準位置に設けられる。
 この第3の態様の場合、主軸台が主軸半径方向に移動し、刃物台が主軸軸方向に移動することになるが、主軸側位置計測手段により、第1基準位置に対する主軸軸心の実際の位置が計測され、刃物側位置計測手段により、第2基準位置に対する刃物台の実際の位置が計測される。そのため、この態様においても、前記演算手段により、主軸側位置計測手段の読み取り値と前記刃物側位置計測手段の読み取り値とから主軸軸心・刃先間相対距離を演算することで、精度良く、熱変位等を含む実際の主軸軸心・刃先間相対距離を求めることができる。
 この発明の第4の態様の工作機械は、前記基本構成において、前記主軸台が、ベッド上に主軸軸心方向に移動可能に設けられ、前記刃物台は、前記ベッド上に前記主軸半径方向に移動可能に設置された半径方向送り台に搭載された構成である。前記主軸側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記主軸台における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が前記半径方向送り台上の位置となる第1基準位置に設けられる。前記刃物側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記刃物台に取付けられ、他方が前記半径方向送り台上の位置となる第2基準位置に設けられる。
 この第4の態様の場合、第1基準位置および第2基準位置は、共に半径方向送り台上の位置となる。半径方向送り台は、主軸半径方向に移動するが、半径方向送り台上の第1基準位置に対する実際の主軸軸心の位置が主軸側位置計測手段によって計測され、半径方向送り台に対する刃物台の機械熱変位等が刃物側位置計測手段の計測からわかる。そのため、この構成においても、前記演算手段により、主軸側位置計測手段の読み取り値と前記刃物側位置計測手段の読み取り値とから主軸軸心・刃先間相対距離を演算することで、精度良く、熱変位等を含む実際の主軸軸心・刃先間相対距離を求めることができる。
 この発明における第1の態様の工作機械および第3の態様の工作機械のように、主軸台が直接または間接的に主軸半径方向へ移動可能である場合、前記主軸側位置計測手段の主軸側スケールは、前記チャックに把持され加工可能な最大径のワークの外径に前記刃物台の工具の刃先が接する位置に前記主軸台が位置するときに前記主軸側読取部が対応する位置から、前記主軸の軸心が前記工具の刃先と同じ前記主軸半径方向位置となるときに前記主軸側読取部が対応する位置である原点位置までの範囲に、またはその範囲内の1点もしくは複数の点で最大熱変位量が計測できる長さの範囲に、前記目盛りが付けられていれば良い。
 前記のように、主軸側位置計測手段の主軸側スケールにつき必要不可欠な最小の範囲にだけ目盛りを付ければ、主軸台の移動に対応して必要な位置計測を行うことができる。目盛りの範囲を最小にすることで、コスト低下が図れる。
 また、この発明における第2の態様の工作機械および第4の態様の工作機械のように、刃物台が直接または間接的に主軸半径方向へ移動可能である場合、前記主軸側位置計測手段の主軸側スケールは、前記チャックに把持され加工可能な最大径のワークの外径に前記刃物台の工具の刃先が接する位置に前記刃物台が位置するときに前記主軸側読取部が対応する位置から、前記主軸の軸心が前記工具の刃先と同じ前記主軸半径方向位置となるときに前記主軸側読取部が対応する位置である原点位置までの範囲に、またはその範囲内の1点もしくは複数の点で最大熱変位量が計測できる長さの範囲に、前記目盛りが付けられていれば良い。
 前記のように、主軸側位置計測手段の主軸側スケールにつき必要不可欠な最小の範囲にだけ目盛りを付ければ、主軸台の移動に対応して必要な位置計測を行うことができる。目盛りの範囲を最小にすることで、コスト低下が図れる。
 この発明の工作機械において、移動命令の指令値に従って前記刃物台を前記主軸台に対して相対移動させる制御装置を設け、この制御装置に、前記指令値に対して、前記演算手段が求めた主軸軸心位置・刃先位置間相対距離によって補正を行う熱変位補正手段を設けても良い。
 ワーク径の加工精度は、主軸軸心に対する工具の刃先位置の精度によって定まる。前記のように、主軸軸心位置・刃先位置間相対距離を精度良く計測することができれば、刃物台に対して主軸台を、または主軸台に対して刃物台を相対移動させる指令値に対して、前記演算手段で求められた主軸軸心位置・刃先位置間相対距離によって補正を行うことで、熱変位に対して精度の良い加工を行うことができる。
 一般的に、一日における工作機械の温度変化は、一定ではない。この発明では、その計測時の熱変位状態での主軸軸心位置・刃先位置間相対距離が正確に検出されることになる。したがって、適宜の時間をおいて計測を行い、計測後に前記熱変位補正手段による補正を行うことで、精度の良い加工が行える。
 この発明の第5の態様の工作機械は、ワークを把持するチャックを先端に有する主軸を回転自在に支持した主軸台と、工具が取付けられた刃物台とを、互いに主軸半径方向と主軸軸心方向とに相対的に移動可能にベッドに設置した工作機械において、
 前記主軸半径方向に延びるスケールおよびこのスケールを読み取る読取部からなり、これらスケールの基端および読取部のいずれか一方が、前記主軸台またはこの主軸台と共に主軸半径方向に移動する部材における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が第1基準位置に設けられてこの第1基準位置に対する前記主軸半径方向の主軸軸心位置を計測する主軸側位置計測手段と、
 第2基準位置に対する前記主軸半径方向の前記刃物台の位置を計測する刃物側位置計測手段とを設け、
 前記第1基準位置と第2基準位置とを前記主軸半径方向に対して互いに位置固定とし、
 前記主軸側位置計測手段の読み取り値と前記刃物側位置計測手段の読み取り値とから前記主軸半径方向における前記主軸軸心と刃物台間の距離である主軸軸心・刃先間相対距離を演算し、または前記主軸台と刃物台との主軸半径方向の相対移動量の補正に用いる値を演算する演算手段を設けたことを特徴とする。
 この第5の態様の工作機械は、前記基本構成の工作機械において、刃物側位置計測手段を、スケールを有する構成に限定せず、「第2基準位置に対する前記主軸半径方向の前記刃物台の位置を計測する刃物側位置計測手段」とした発明である。刃物側位置計測手段としては、スケールを有する構成の他に、温度を計測して刃物台の位置を計測する構成、例えば、前記刃物台の温度を計測する温度計測手段と、この温度計測手段の温度計測値から、前記第2基準位置に対する前記主軸半径方向の前記刃物台の位置を求める温度対応刃物側位置計算手段とでなるものとできる。
 この第5の態様の場合も、主軸側位置計測手段により、第1基準位置に対する主軸半径方向の主軸軸心位置が計測し、かつ刃物側位置計測手段により、第2基準位置に対する刃物台の位置を計測し、主軸軸心位置および刃物台の位置の両方を計測するようにしたため、主軸軸心・刃先間相対距離が精度良く計測できる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
この発明の第1の実施形態に係る工作機械おける工作機械本体の平面図と制御装置の概念構成のブロック図とを組み合わせた説明図である。 同工作機械本体の斜視図である。 同工作機械の加工動作を示す部分平面図である。 同工作機械の主軸台部分の正面図である。 同工作機械の刃物台および工具を示す部分省略側面図である。 常温時の主軸軸心位置・刃先位置間相対距離と加工時の主軸軸心位置・刃先位置間相対距離を示す説明図である。 この発明の第2の実施形態に係る工作機械おける工作機械本体の平面図と制御装置の概念構成のブロック図とを組み合わせた説明図である。 この発明の第3の実施形態に係る工作機械おける工作機械本体の平面図と制御装置の概念構成のブロック図とを組み合わせた説明図である。 この発明の第4の実施形態に係る工作機械おける工作機械本体の平面図と制御装置の概念構成のブロック図とを組み合わせた説明図である。 同工作機械の一部を示す斜視図である。 この発明の第5の実施形態に係る工作機械おける工作機械本体の平面図と制御装置の概念構成のブロック図とを組み合わせた説明図である。 従来の工作機械における工作機械本体の平面図である。
 この発明の第1の実施形態を図1ないし図6と共に説明する。この工作機械は数値制御式の工作機械であり、機械部分である工作機械本体1と、この工作機械本体1を制御する制御装置2とで構成される。工作機械本体1は、主軸移動型の旋盤であり、ベッド3上に送り台4を介して設置された主軸台5に、主軸6が回転自在に支持され、ベッド3上に刃物台7が、支持台26を介して設置されている。支持台26は、ベッド3に固定して設置されている。刃物台7はタレットからなり、支持台26に回転割出可能に支持されている。
 送り台4は、ベッド3に設けられたX軸案内9上を、主軸6の軸心Oに対して直交する水平な主軸半径方向(X軸方向)に移動自在に設置され、ベッド3上に設置されたサーボモータ等のモータ10とその回転出力を直線動作に変換する送りねじ機構11とからなるX軸移動機構12によって左右に進退駆動される。前記送りねじ機構11は、ねじ軸とナットとからなる。図4のように、主軸台5は、送り台4上に設けられたZ軸案内13上に主軸軸心方向(Z軸方向)に移動自在に設置され、送り台4上に設置されたモータ14(図1、図2)とその回転出力を直線動作に変換する送りねじ機構15からなるZ軸移動機構16によって前後に進退駆動される。前記送りねじ機構15は、ねじ軸とナットとからなる。主軸6の回転駆動は、主軸台5に内蔵の主軸モータ(図示せず)よって行われる。主軸6の前端にはチャック17が着脱可能に設けられている。チャック17は、チャック半径方向に移動する複数のチャック爪17aにより、ワークW(図3)を把持可能である。
 刃物台7は、支持台26に対してX軸方向に沿う水平な回転中心T回りに回転自在であり、図5に示すように、外周部に円周方向に並ぶ複数の工具取付部7aを有している。各工具取付部7aに、工具ホルダ18aを介してバイトや回転工具等の工具18が取付けられる。図1に示すように、刃物台7は、軸受8を介して支持台26に回転自在に支持された中空軸7cの先端に固定されており、割出用モータ(図示せず)で中空軸7cを回転させることにより、任意の工具取付部7aが主軸6に対向する位置に旋回割出しされる。刃物台7は、その正面形状が、図5に示すような多角形状であっても、また円形であっても良い。なお、図5では工具18は一部の工具取付部7aに取付けられたもののみを示し、他は図示を省略してある。
 図1、図2において、この実施形態の工作機械は、前記基本構造の工作機械本体1に、主軸側位置計測手段20および刃物側位置計測手段30を設けたものである。
 主軸側位置計測手段20は、第1基準位置P1に対する前記主軸半径方向(X軸方向)の主軸軸心Oの位置を計測する手段であり、スケール21と読取部22とからなる。スケール21は棒状の部材であり、送り台4における主軸半径方向位置が主軸6の軸心Oの付近の箇所に基部21aが取付けられ、この基部21aから主軸半径方向に沿って延びている。なお、前記「軸心付近」とは、軸心位置を含む意味であり、スケール21の基部21aを軸心位置に取付けた場合に比べて、熱変位で生じる計測結果の違いが無視できる程度に離れた範囲を「軸心付近」と称している。以下で言う「軸心付近」も、前記と同様な意味である。スケール21は、図示の例では送り台4の前面にスペース部材25を介して取付けられているが、他の箇所、例えば送り台4の上面または下面の前端付近に取付けてもよい。
 スケール21の読取部22を向く面の所定の範囲には、主軸半径方向に沿って目盛り23が付けられている。読取部22は、スケール21の目盛り23を読み取るものであり、ベッド3上の位置となる第1基準位置P1に、取付部材24を介して位置固定に取付けられている。例えば、読取部22は光学式のものであり、検知用光を投光しその反射光を受光することで目盛り23を読み込む。あるいは、読取部22は、磁気式のものであってもよい。
 スケール21における目盛り23の付けられた範囲は、チャック17aに把持され加工可能な最大径のワークW(図3)の外径に刃物台7の工具18の刃先が接する位置に主軸台5が位置するときに読取部22が対応する位置から、主軸6の軸心Oが前記工具12の刃先と同じ主軸半径方向位置となるときに読取部22が対応する位置である原点位置までの範囲、またはその範囲内の1点もしくは複数の点で最大熱変位量が計測できる長さの範囲とされている。この実施形態のように、主軸台5が主軸半径方向へ移動可能である場合に、前記のようにスケール22の目盛り23を必要不可欠な最小の範囲にだけ付ければ、主軸台5の移動に対応して必要な位置計測を行うができる。目盛り23の範囲を最小にすることで、コスト低下が図れる。
 さらに、加工時での主軸台5の移動に対応する範囲については目盛り23を細かくし、加工時以外、例えばワーク交換、チャック交換等の際にだけ主軸台5が移動する範囲については目盛り23を粗くすれば、より一層のコスト低下を図れる。目盛り23をスケール22の全長にわたって設けてもよい。
 刃物側位置計測手段30は、第2基準位置P2に対する刃物台7の前記主軸半径方向(X軸方向)の位置を検出する手段であり、スケール31と読取部32とからなる。スケール31は丸棒状の部材で、基部31aが刃物台7の回転中心に取付けられ、主軸半径方向すなわち回転中心Tに沿って中空軸7cを貫通して延びている。スケール31の基部31aは刃物台7に固定であるが、基部31a以外は中空軸7cに対し回転自在かつ進退自在である。スケール31の中空軸7cから突出した端部に、読取部22に対応させて、主軸半径方向に並ぶ目盛り33が全周に付けられている。読取部32は、スケール31の目盛り33を読み取る円環状のものであり、ベッド3上の位置となる第2基準位置P2に、取付部材34を介して位置固定に取付けられている。読取部32も、光学式のものであっても、磁気式のものであってもよい。
 主軸側位置計測手段20の読取部22および刃物側位置計測手段30の読取部32は、互いに主軸半径方向位置を完全に一致させるか、または両読取部22,32の主軸半径方向位置の差による主軸半径方向の熱変位を無視または推定できる程度に揃える。すなわち第1基準位置P1と第2基準位置P2との主軸半径方向位置を揃える。
 主軸側位置計測手段20の読取部22および刃物側位置計測手段30の読取部32の各読取値は、制御装置2の演算手段40に入力される。この実施形態では、演算手段40が制御装置2に設けられているが、制御装置2とは別に設けても良い。
 演算手段40は、主軸側位置計測手段20の読取部22の読み取り値と、刃物側位置計測手段30の読取部32の読み取り値とから、前記主軸半径方向(X軸方向)における主軸軸心Oと刃物台7の特定位置との間の距離である主軸軸心・刃先間相対距離Lを演算する手段である。刃物台7の特定位置は、刃物台7上の位置、および刃物台7に取付けられる工具18上の位置であって、特定した位置であれば、何処であっても良いが、この実施形態では、刃物台7に取付けた標準の工具7の刃先位置を特定位置としている。前記標準の工具7は任意の工具であっても良く、例えば、この工作機械で最も多く使用される工具7とされる。
 図6に、常温時の主軸台5および刃物台7の位置(実線)と、昇温時の主軸台5および刃物台7の位置(二点鎖線)とを示す。常温時(例えば15°C)の主軸軸心・刃先間相対距離L0は、工作機械および工具18の既知の寸法から求まる。演算手段40は、主軸側位置計測手段20の読取部22および刃物側位置計測手段30の読取部32の各読取値から昇温による主軸台5の主軸半径方向の熱変位量ΔL1および刃物台7の主軸半径方向の熱変位量ΔL2を求め、その熱変位量ΔL1,ΔL2を常温時の主軸軸心・刃先間相対距離L0に加算することで、運転中の主軸軸心・刃先間相対距離Lを演算する。
 さらに詳しく説明する。
 主軸側位置計測手段20は、スケール21の目盛り23を読取部22で読み取る。読取部22はベッド3上に位置固定に取付けられているため、読取部23の読取値から、スケール21が取付けられた送り台4の主軸半径方向位置が分かる。この送り台4の位置に、送り台4と主軸台5の位置関係を加えることで、主軸台5の主軸半径方向位置が分かる。すなわち、第1基準位置P1と主軸軸心Oとの間の距離L1が分かる。送り台4は加工時に主軸半径方向に移動するが、その移動量を別の検出手段(図示せず)で検出し、検出された移動量を加算することで、常に主軸台5の主軸半径方向位置を求めることができる。その主軸台5の主軸半径方向位置から、常温時に対する加工時の主軸半径方向の熱変位量ΔL1が求まる。
 また、刃物側位置計測手段30は、スケール31の目盛り33を読取部32で読み取る。読取部32はベッド3上に位置固定に取付けられているため、読取部32の読取値から、スケール31が取付けられた刃物台7の主軸半径方向位置が分かる。すなわち、第2基準位置P2と刃物台7の特定位置(例えば、工具18の刃先位置)との間の距離L2が分かる。その刃物台7の主軸半径方向位置から、常温時に対する加工時の主軸半径方向の熱変位量ΔL2が求まる。なお、ここでは、刃物台7の熱変位量を、刃物台7に取付けられた工具18の刃先位置の熱変位量と見なしているが、工具刃先位置の熱変位量は、刃物台7の熱変位量に対して適宜の補正を加えて求めるようにしても良い。
 先に述べたように、演算手段40は、これらの求められた熱変位量ΔL1,ΔL2を、常温時の主軸軸心・刃先間相対距離L0に加算することで、運転中等の昇温時の主軸軸心・刃先間相対距離Lを演算する。この主軸軸心・刃先間相対距離Lは、常温時の主軸軸心・刃先間相対距離L0に熱変位による寸法変化が加味されたものであり、現時点の正確な距離を示している。演算手段40の演算結果は、演算手段40または熱変位補正手段43(図1)に記憶される。主軸軸心・刃先間相対距離Lを求めるのに代えて、主軸軸心・刃先間相対距離Lの変化を求めてもよい。
 図1において、制御装置2はコンピュータ式の数値制御装置からなり、加工プログラム41の各命令を、演算制御部42で解読して実行し、工作機械本体1の各駆動源に制御命令を与える。加工プログラム41のX軸方向の移動命令41aは、移動先を示す指令値の位置へ刃物台7をX軸方向へ相対的に移動させる命令であり、演算制御部42により、X軸のモータ10を駆動する命令として出力される。
 演算制御部42は、熱変位補正手段43を有していて、加工プログラム41におけるX軸方向の移動命令41aの指令値に対し、モータ10へ出力する指令値を、前記演算手段40によって算出された主軸軸心・刃先間相対距離Lを用いて補正する。熱変位補正手段43は、例えば、演算手段40から主軸軸心・刃先間相対距離Lが入力されると、その値が更新されるまでは常に記憶しておき、その記憶した値を用いて補正を行うものとされる。この場合、主軸側位置計測手段20および刃物側位置計測手段30が位置計測を行い、演算手段40によって算出される主軸軸心・刃先間相対距離Lの値が更新されると、その後に行う熱変位補正手段43の補正量が変わることになる。熱変位補正手段43による補正量については、後で説明する。
 なお、熱変位補正手段43は、スイッチ操作等による所定の入力により能動状態と非能動状態とに切換可能とされる。また、主軸側位置計測手段20および刃物側位置計測手段30の計測動作は、制御装置2に付属の操作盤(図示せず)の入力操作によって手動で行うようにしても良く、また計測用のプログラム(図示せず)を設けておいて、その計測用プログラムを制御装置2に実行させることで一連の計測動作を自動で行うようにしても良い。計測を自動で行うようにする場合、タイマ(図示せず)等で設定時刻に計測を行うようにしても、また開始用スイッチをオペレータがオンすることで、一連の自動計測が開始されるようにしても良い。
 熱変位補正手段43は、演算手段40または熱変位補正手段43に記憶されている主軸軸心・刃先間相対距離Lに応じて、加工プログラム41のX軸移動命令41aを演算制御部42で実行し、図3のように加工するときに、そのX軸移動命令41aの指令値を補正する。この補正は、例えば、主軸軸心・刃先間相対距離Lと設計寸法との差を、前記指令値に加算する補正とする。なお、熱変位補正手段43は、例えば前記演算手段40の計算結果に対して補正量を定める演算式またはテーブル等の関係設定手段を有していて、この手段を用いて定めた補正量によって前記指令値を補正するようにしても良い。前記関係設定手段で定める関係は、例えば、実際の運転結果等に基づき、演算手段40で求められる距離と指令値との差に対する補正量等の関係を定めたものとしても良い。このように熱変位補正手段43により補正を行うことにより、熱変位に対応して精度良く補正できて、加工精度が向上する。
 なお、一日のうち、例えば1時間おき等の設定時間毎、あるいは設定時刻毎に計測を行い、演算手段40の演算結果を更新しておくことで、適切な熱変位補正が行える。
 図7は、この発明の第2の実施形態を示す。この工作機械の工作機械本体1は、刃物台移動型の旋盤であり、主軸台5はベッド3上に位置固定に設けられ、刃物台7はベッド3上に半径方向送り台4Aおよび軸方向送り台27を介して主軸半径方向(X軸方向)および主軸軸心方向(Z軸方向)に移動可能に設けられている。半径方向送り台4は、ベッド3に設けられたX軸案内9上を水平な主軸半径方向に移動自在に設置され、X軸移動機構12によって進退駆動される。軸方向送り台27は、半径方向送り台4A上に設けられたZ軸案内13上に主軸軸心方向に移動自在に設置され、Z軸移動機構16によって進退駆動される。刃物台7はタレットからなり、軸方向送り台27に、X軸方向に沿う水平な回転中心T回りに回転自在に設置されている。前記以外の工作機械本体1の基本構造は、第1の実施形態と同じであり、対応する部分については同一符号を付して表し説明は省略する。
 この実施形態の工作機械も、工作機械本体1に主軸側位置計測手段20および刃物側位置計測手段30が設けられている。
 主軸側位置計測手段20は、第1基準位置P1に対する主軸半径方向(X軸方向)の主軸の軸心Oの位置を計測する手段であり、スケール21と読取部22とからなる。スケール21は棒状の部材であり、主軸台5における主軸半径方向位置が主軸6の軸心付近の箇所に基部21aが取付けられ、この基部21aから主軸半径方向に沿って延びている。スケール21の基部21aは、主軸台5に対し、例えば上面に取付けられているが、下面または前面に取付けられていても、あるいは主軸台5の内部に取付けられていてもよい。
 スケール21の読取部22を向く面の読取部22に対応する箇所に、主軸半径方向に並ぶ目盛り23が付けられている。読取部22は、スケール21の目盛り23を読み取るものであり、第1基準位置P1となる半径方向送り台4の特定位置に、取付部材24Aを介して取付けられている。したがって、この実施形態では第1基準位置P1は可動であり、半径方向送り台4と共に移動する。半径方向送り台4Aの前記特定位置は、例えば半径方向送り台4のX軸方向幅の中心位置とされる。
 刃物側位置計測手段30は、第2基準位置P2に対する刃物台7の前記主軸半径方向(X軸方向)の位置を検出する手段であり、スケール31と読取部32とからなる。スケール31は棒状の部材であり、刃物台7に基部31aが取付けられ、この基部31aから主軸半径方向に沿って延びている。スケール31の読取部32を向く面の所定の範囲には、主軸半径方向に並ぶ目盛り33が付けられている。目盛り33の付けられた範囲は、第1の実施形態で説明したのと同様の範囲である。読取部32は、スケール31の目盛り33を読み取るものであり、第2基準位置P2に設置されている。第2基準位置P2は、この例では、軸方向送り台27上の特定位置に定められていて、読取部32は軸方向送り台27に取付部材(図示せず)を介して、または直接に固定されている。前記特定位置は、軸方向送り台27上に任意に特定した位置であれば良いが、この実施形態では第1基準位置P1と同じX方向位置としてある。
 前記同様、読取部22および読取部32の読取値が演算手段40に入力され、演算手段40により、常温時に対する加工時の主軸台5の主軸半径方向の熱変位量ΔL1(図6)と、常温時に対する加工時の刃物台7の主軸半径方向の熱変位量ΔL2(図6)とが求められ、これらの熱変位量ΔL1,ΔL2を、常温時の主軸軸心・刃先間相対距離L0(図6)に加算することで、運転中等の昇温時の主軸軸心・刃先間相対距離Lを演算する。この場合も、常温時の主軸軸心・刃先間相対距離L0に熱変位による寸法変化が加味された正確な主軸軸心・刃先間相対距離Lを得ることができ、この主軸軸心・刃先間相対距離Lを用いて、熱変位補正手段43により補正を行うことにより、熱変位に対応して精度良く補正できて、加工精度が向上する。
 図8は、この発明の第3の実施形態を示す。この工作機械の工作機械本体1は、主軸台および刃物台が共に移動する型の旋盤である。主軸台5はベッド3上に主軸半径方向(X軸方向)に移動可能に設けられ、刃物台7はベッド3上に軸方向送り台27Bを介して主軸軸心方向(Z軸方向)に移動可能に設けられている。主軸台5は、ベッド3に設けられたX軸案内9上を水平な主軸半径方向に移動自在に設置され、X軸移動機構12によって進退駆動される。軸方向送り台28は、ベッド3に設けられたZ軸案内13上に主軸軸心方向に移動自在に設置され、Z軸移動機構16によって進退駆動される。刃物台7はタレットからなり、軸方向送り台27Bに、X軸方向に沿う水平な回転中心T回りに回転自在に設置されている。前記以外の工作機械本体1の基本構造は、第1および第2の実施形態と同じであり、対応部分については同一符号を付して表し説明は省略する。
 この実施形態の工作機械も、工作機械本体1に主軸側位置計測手段20および刃物側位置計測手段30が設けられている。
 主軸側位置計測手段20は、第1基準位置P1に対する主軸半径方向(X軸方向)の主軸軸心Oの位置を計測する手段であり、スケール21と読取部22とからなる。スケール21は棒状の部材であり、主軸台5における主軸半径方向位置が主軸6の軸心付近の箇所に基部21aが取付けられ、この基部21aから主軸半径方向に沿って延びている。スケール21の基部21aは、主軸台5に対し、例えば上面に取付けられているが、下面または前面に取付けられていても、あるいは主軸台5の内部に取付けられていてもよい。スケール21の読取部22を向く面の所定の範囲には、主軸半径方向に並ぶ目盛り23が付けられている。目盛り33の付けられた範囲は、第1の実施形態で説明したのと同様の範囲である。読取部22は、スケール21の目盛り23を読み取るものであり、ベッド3上の位置となる第1基準位置P1に、取付部材24を介して位置固定に取付けられている。
 刃物側位置計測手段30は、第2基準位置P2に対する刃物台7の前記主軸半径方向(X軸方向)の位置を検出する手段であり、スケール31と読取部32とからなる。スケール31は丸棒状の部材で、基部31aが刃物台7の中心に取付けられ、この基部31aから主軸半径方向に沿って中空軸7cを貫通して延びている。スケール31の中空軸7cから突出した端部には、主軸半径方向に並ぶ目盛り33が全周に付けられている。スケール31は、刃物台本体7bと一体に回転する。読取部32は、スケール31の目盛り33を読み取るものであり、第2基準位置P2に設置されている。第2基準位置P2は、この例では、軸方向送り台28に対して位置固定の特定位置に定められていて、読取部32は軸方向送り台28上の第2基準位置P2に取付部材34Bを介して固定されている。前記特定位置は、軸方向送り台28に対して位置固定で任意に特定した位置であれば良いが、この実施形態では第1基準位置P1と同じX方向位置としてある。
 この実施形態も、前記各実施形態と同様、読取部22および読取部32の読取値が演算手段40に入力され、演算手段40により前記同様の演算処理を行うことで、常温時の主軸軸心・刃先間相対距離L0に熱変位による寸法変化が加味された正確な主軸軸心・刃先間相対距離Lを得ることができる。さらに、この主軸軸心・刃先間相対距離Lを用いて、熱変位補正手段43により補正を行うことにより、熱変位に対応して精度良く補正できて、加工精度が向上する。
 図9は、この発明の第4の実施形態を示す。この工作機械の工作機械本体1も、主軸台および刃物台が共に移動する型の旋盤であるが、前記第3の実施形態とは逆に、主軸台5がベッド3上に主軸軸心方向(Z軸方向)に移動可能に設けられ、刃物台7がベッド3上に半径方向送り台4Cを介して主軸半径方向(X軸方向)に移動可能に設けられている。主軸台5は、ベッド3に設けられたZ軸案内13上に主軸軸心方向に移動自在に設置され、Z軸移動機構16によって進退駆動される。半径方向送り台4Cは、ベッド3に設けられたX軸案内9上を水平な主軸半径方向に移動自在に設置され、X軸移動機構12によって進退駆動される。刃物台7はタレットからなり、半径方向送り台4Cに、X軸方向に沿う水平な回転中心T回りに回転自在に設置されている。前記以外の工作機械本体1の基本構造は、前記第1~第3の実施形態と同じであり、対応部分については同一符号を付して表し説明は省略する。
 この実施形態の工作機械も、工作機械本体1に主軸側位置計測手段20および刃物側位置計測手段30が設けられている。
 主軸側位置計測手段20は、第1基準位置P1に対する主軸半径方向(X軸方向)の主軸軸心Oの位置を計測する手段であり、スケール21と読取部22とからなる。スケール21は棒状の部材であり、ベッド3における主軸半径方向位置が主軸6の軸心付近の箇所に基部21aが取付けられ、この基部21aから主軸半径方向に沿って延びている。スケール21の読取部22を向く面の読取部22に対応する箇所に、主軸半径方向に並ぶ目盛り23が付けられている。読取部22は、スケール21の目盛り23を読み取るものであり、第1基準位置P1となる半径方向送り台4Cの特定位置に、取付部材24Cを介して取付けられている。したがって、この実施形態では第1基準位置P1は可動であり、半径方向送り台29と共に移動する。半径方向送り台4Cの前記特定位置は、例えば半径方向送り台29のX軸方向幅の中心位置とされる。
 図例では、図10に示すように、ベッド3上に固定した板状のベース部材13aの上に一対のZ軸案内13が設けられ、前記ベース部材13aの前面にスペース部材25を介してスケール21の基部21aを取付けてある。ベース部材13aの上面に、スケール21の基部21aを取付けてもよい。これらの場合、ベース部材13aはベッド3の一部を構成するものであり、ベッド3は、具体的にはベッド本体とその上に設けられたベース部材13aとでなる。ベース部材13aを設けずに、ベッド3にスケール21の基部21aを直接取付けても良い。
 刃物側位置計測手段30は、第2基準位置P2に対する刃物台7の前記主軸半径方向(X軸方向)の位置を検出する手段であり、スケール31と読取部32とからなる。スケール31は棒状の部材であり、軸方向送り台29に基部31aが取付けられ、この基部31aから主軸半径方向に沿って延びている。スケール31の読取部32を向く面の所定の範囲には、主軸半径方向に並ぶ目盛り33が付けられている。目盛り33の付けられた範囲は、第1の実施形態で説明したのと同様の範囲である。読取部32は、スケール31の目盛り33を読み取るものであり、第2基準位置P2に設置されている。第2基準位置P2は、この例では、軸方向送り台29上の特定位置に定められていて、読取部32は軸方向送り台29上の第2基準位置P2に(図示せず)を介して、または直接に固定されている。前記特定位置は、軸方向送り台27上に任意に特定した位置であれば良いが、この実施形態では第1基準位置P1と同じX方向位置としてある。
 この実施形態も、前記各実施形態と同様、読取部22および読取部32の読取値が演算手段40に入力され、演算手段40により前記同様の演算処理を行うことで、常温時の主軸軸心・刃先間相対距離L0に加工等による熱変位分が加味された正確な主軸軸心・刃先間相対距離Lを得ることができる。さらに、この主軸軸心・刃先間相対距離Lを用いて、熱変位補正手段43により補正を行うことにより、熱変位に対応して精度良く補正できて、加工精度が向上する。
 なお、前記各実施形態では、いずれも、主軸側位置計測手段20は、第1基準位置P1に読取部22を設け、主軸軸心Oの付近にスケール21の基部21aを設けたが、これとは逆に、第1基準位置P1にスケール21の基部21aを設け、主軸軸心Oの付近に読取部22を設けても良い。刃物側位置計測手段30についても、前記各実施形態では、いずれも、第2基準位置P2に読取部32を設け、刃物台7にスケール31の基部31aを設けたが、これとは逆に、第2基準位置P2にスケール31の基部31aを設け、刃物台7に読取部32を設けても良い。
 また、前記各実施形態では、いずれも演算手段40が主軸軸心・刃先間相対距離Lを演算するものとしたが、演算手段40は、必ずしも主軸軸心・刃先間相対距離Lを演算することなく、主軸台5と刃物台7との主軸半径方向の移動量の補正に用いる値、例えば送り量指令値に対する補正量を演算するものとしても良い。その場合も、主軸軸心位置Oおよび刃物台7の位置の両方を計測するようにしたため、精度の良い補正が行え、結果として主軸軸心・刃先間相対距離を精度良く制御でき、加工精度の向上を図ることができる。
 さらに、前記各実施形態では、いずれも刃物台7がタレット型の刃物台である場合につき説明したが、刃物台7は、櫛歯型等の他の形式のものであっても良い。
 前記各実施形態は工作機械が旋盤であるが、この発明は工作機械がドリリングマシン、研削盤等である場合にも適用できる。
 図11は、この発明の第5の実施形態を示す。この実施形態は、図1~図6に示した第1の実施形態において、刃物側位置計測手段30を、スケール31と読取部32とでなるものとする構成に代えて、図11の温度計測手段44と温度対応刃物側位置計算手段45とでなる刃物側位置計測手段30Aを設けたものである。温度計測手段44は、刃物台7の温度を計測する手段であり、熱電対等の温度計等からある。温度対応刃物側位置計算手段45は、温度計測手段7の温度計測値から、前記第2基準位置P2に対する前記主軸半径方向の刃物台7の位置を計算するものである。
 温度対応刃物側位置計算手段45は、温度計測手段44と刃物台7の主軸半径方向の位置との関係を設定したテーブルまたは演算式等からなる関係設定手段(図示せず)を有し、温度計測手段7の温度計測値と前記関係設定手段に設定された関係とから、刃物台7の主軸半径方向の位置を計算する。前記関係設定手段に設定されるテーブル,演算式等は、試験やシミュレーション等によって定められたものとされる。温度対応刃物側位置計算手段45は、例えば制御装置2に設けられ、刃物側位置計測手段30Aの計測結果として前記演算手段40に入力される。第2基準位置P2は、例えば、ベッド3上における前記第1基準位置P1と同じ前記主軸半径方向の位置である。この実施形態におけるその他の構成は、第1の実施形態と同じである。
 刃物台7の位置と温度とには、定まった関係があるため、上記のように温度計測することによっても、刃物台7の主軸半径方向の位置が精度良く求められる。そのため、この実施形態においても、主軸6の軸心位置および刃物台7の位置の両方を計測して、主軸軸心・刃先間相対距離を精度良く計測することができる。
 以上のとおり、図面を参照しながら本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。
1 工作機械本体
2 制御装置
3 ベッド
4 送り台
4A,4C 半径方向送り台
5 主軸台
6 主軸
7 刃物台
12 X軸移動機構
16 Z軸移動機構
17 チャック
18 工具
20 主軸側位置計測手段
21 スケール
21a 基部
22 読取部
24,24A,24C 取付部材
26 支持台
27,27B 軸方向送り台
30,30A 刃物側位置計測手段
31 スケール
31a 基部
32 読取部
34,34B 取付部材
40 演算手段
43 熱変位補正手段
44 温度計測手段
45 温度対応刃物側位置計算手段
L,L0 主軸軸心・刃先間相対距離
L1,L2 距離
ΔL1,ΔL2 熱変位量
O 主軸の軸心
P1 第1基準位置
P2 第2基準位置
W ワーク

Claims (9)

  1.  ワークを把持するチャックを先端に有する主軸を回転自在に支持した主軸台と、工具が取付けられた刃物台とを、互いに主軸半径方向と主軸軸心方向とに相対的に移動可能にベッドに設置した工作機械であって、
     前記主軸半径方向に延びるスケールおよびこのスケールを読み取る読取部からなり、これらスケールの基端および読取部のいずれか一方が、前記主軸台またはこの主軸台と共に主軸半径方向に移動する部材における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が第1基準位置に設けられてこの第1基準位置に対する前記主軸半径方向の主軸軸心位置を計測する主軸側位置計測手段と、
     前記主軸半径方向に延びるスケールおよびこのスケールを読み取る読取部からなり、これらスケールの基端および読取部のいずれか一方が、前記刃物台またはこの刃物台と共に主軸半径方向に移動する部材に設置され、他方が第2基準位置に設けられてこの第2基準位置に対する前記刃物台の位置を計測する刃物側位置計測手段とを設け、
     前記第1基準位置と第2基準位置とを前記主軸半径方向に対して互いに位置固定とし、
     前記主軸側位置計測手段の読み取り値と前記刃物側位置計測手段の読み取り値とから前記主軸半径方向における前記主軸軸心と刃物台間の距離である主軸軸心・刃先間相対距離を演算し、または前記主軸台と刃物台との主軸半径方向の相対移動量の補正に用いる値を演算する演算手段を設けた、
     工作機械。
  2.  前記主軸台は、ベッド上に前記主軸半径方向に移動可能に設けられた送り台に、主軸軸心方向に移動自在に搭載され、前記刃物台は前記ベッド上に位置固定に設けられ、
     前記主軸側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記送り台における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が前記ベッド上に位置固定の第1基準位置に設けられ、
     前記刃物側位置計測手段は、前記スケールの基端および読取部のいずれか一方が前記刃物台に取付けられ、他方が前記ベッド上に位置固定の第2基準位置に設けられた
     請求項1記載の工作機械。
  3.  前記主軸台はベッド上に位置固定に設けられ、前記刃物台は、前記ベッド上に半径方向送り台および軸方向送り台を介して設置されて、前記半径方向送り台は前記ベッド上に前記主軸半径方向に移動可能に設けられ、前記軸方向送り台は前記半径方向送り台上に主軸軸心方向に移動自在に搭載され、前記刃物台は前記軸方向送り台に搭載され、
     前記主軸側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記主軸台における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が前記半径方向送り台上の位置となる第1基準位置に設けられ、
     前記刃物側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記刃物台に取付けられ、他方が前記軸方向送り台上の位置となる第2基準位置に設けられた
     請求項1記載の工作機械。
  4.  前記主軸台はベッド上に前記主軸半径方向に移動可能に設けられ、前記刃物台は、前記ベッド上に主軸軸心方向に移動自在に設けられた軸方向送り台に搭載され、
     前記主軸側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記主軸台における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が前記ベッド上に位置固定の第1基準位置に設けられ、
     前記刃物側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記刃物台に取付けられ、他方が前記軸方向送り台上の位置となる第2基準位置に設けられた
     請求項1記載の工作機械。
  5.  前記主軸台は、ベッド上に主軸軸心方向に移動可能に設けられ、前記刃物台は、前記ベッド上に前記主軸半径方向に移動可能に設置された半径方向送り台に搭載され、
     前記主軸側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記主軸台における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が前記半径方向送り台上の位置となる第1基準位置に設けられ、
     前記刃物側位置計測手段は、前記スケールの基端および読取部のいずれか一方が、前記刃物台に取付けられ、他方が前記半径方向送り台上の位置となる第2基準位置に設けられた
     請求項1記載の工作機械。
  6.  前記主軸側位置計測手段のスケールは、前記チャックに把持され加工可能な最大径のワークの外径に前記刃物台の工具の刃先が接する位置に前記主軸台が位置するときに前記読取部が対応する位置から、前記主軸の軸心が前記工具の刃先と同じ前記主軸半径方向位置となるときに前記読取部が対応する位置である原点位置までの範囲に前記目盛りが付けられている請求項2または請求項4に記載の工作機械。
  7.  前記主軸側位置計測手段のスケールは、前記チャックに把持され加工可能な最大径のワークの外径に前記刃物台の工具の刃先が接する位置に前記刃物台が位置するときに前記読取部が対応する位置から、前記主軸の軸心が前記工具の刃先と同じ前記主軸半径方向位置となるときに前記読取部が対応する位置である原点位置までの範囲に前記目盛りが付けられている請求項3または請求項5に記載の工作機械。
  8.  移動命令の指令値に従って前記刃物台を前記主軸台に対して相対移動させる制御装置を設け、この制御装置に、前記指令値に対して、前記演算手段が求めた主軸軸心位置・刃先位置間相対距離によって補正を行う熱変位補正手段を設けた
     請求項1に記載の工作機械。
  9.  ワークを把持するチャックを先端に有する主軸を回転自在に支持した主軸台と、工具が取付けられた刃物台とを、互いに主軸半径方向と主軸軸心方向とに相対的に移動可能にベッドに設置した工作機械において、
     前記主軸半径方向に延びるスケールおよびこのスケールを読み取る読取部からなり、これらスケールの基端および読取部のいずれか一方が、前記主軸台またはこの主軸台と共に主軸半径方向に移動する部材における前記主軸半径方向の前記主軸軸心の付近に設置され、他方が第1基準位置に設けられてこの第1基準位置に対する前記主軸半径方向の主軸軸心位置を計測する主軸側位置計測手段と、
     第2基準位置に対する前記主軸半径方向の前記刃物台の位置を計測する刃物側位置計測手段とを設け、
     前記第1基準位置と第2基準位置とを前記主軸半径方向に対して互いに位置固定とし、
     前記主軸側位置計測手段の読み取り値と前記刃物側位置計測手段の読み取り値とから前記主軸半径方向における前記主軸軸心と刃物台間の距離である主軸軸心・刃先間相対距離を演算し、または前記主軸台と刃物台との主軸半径方向の相対移動量の補正に用いる値を演算する演算手段を設けた、
     工作機械。
PCT/JP2010/068432 2009-11-02 2010-10-20 工作機械 WO2011052442A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10826574.5A EP2481521B1 (en) 2009-11-02 2010-10-20 Machine tool
KR1020127013719A KR101344892B1 (ko) 2009-11-02 2010-10-20 공작 기계
CN201080048926.8A CN102666007B (zh) 2009-11-02 2010-10-20 机床
US13/456,332 US8631727B2 (en) 2009-11-02 2012-04-26 Machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009251736A JP5515639B2 (ja) 2009-11-02 2009-11-02 工作機械
JP2009-251736 2009-11-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/456,332 Continuation US8631727B2 (en) 2009-11-02 2012-04-26 Machine tool

Publications (1)

Publication Number Publication Date
WO2011052442A1 true WO2011052442A1 (ja) 2011-05-05

Family

ID=43921866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068432 WO2011052442A1 (ja) 2009-11-02 2010-10-20 工作機械

Country Status (6)

Country Link
US (1) US8631727B2 (ja)
EP (1) EP2481521B1 (ja)
JP (1) JP5515639B2 (ja)
KR (1) KR101344892B1 (ja)
CN (1) CN102666007B (ja)
WO (1) WO2011052442A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537952A (zh) * 2013-10-23 2014-01-29 江苏昆鼎数控设备制造有限公司 一种安装在机床底座上的测具
TWI510874B (zh) * 2013-12-31 2015-12-01 Syntec Inc 具有加工路徑修補功能的數值控制器及其加工路徑修補方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719625B2 (ja) * 2010-07-26 2015-05-20 Dmg森精機株式会社 工作機械
JP5372260B2 (ja) * 2010-10-01 2013-12-18 川田鉄工株式会社 Nc旋盤
CN103250039B (zh) * 2010-11-18 2016-01-20 国际计测器株式会社 材料试验机
WO2013073317A1 (ja) * 2011-11-16 2013-05-23 村田機械株式会社 工作機械
JP6107210B2 (ja) * 2013-02-20 2017-04-05 日本精工株式会社 ねじ部の加工方法及び加工装置
JP5698798B2 (ja) * 2013-06-24 2015-04-08 ファナック株式会社 熱変位量補正機能を有する工作機械
WO2015029517A1 (ja) * 2013-08-27 2015-03-05 三菱重工業株式会社 工作機械
CN103978402A (zh) * 2014-05-24 2014-08-13 齐重数控装备股份有限公司 高精重型数控机床a轴与c轴对中检测技术
USD788196S1 (en) * 2014-09-12 2017-05-30 Pocket NC Company Multi-axis machine
KR20170058334A (ko) * 2015-03-17 2017-05-26 도시바 기카이 가부시키가이샤 공작 기계
CH711178A1 (fr) * 2015-06-11 2016-12-15 Watch Out Sa Module d'usinage, ensemble d'accessoire pour module d'usinage, et procédé de mise en train d'un module d'usinage.
JP6610043B2 (ja) * 2015-07-07 2019-11-27 株式会社ジェイテクト ボールねじを有する工作機械
DE202016106623U1 (de) * 2016-11-28 2018-03-02 Wzt Wendland-Zerspanungs-Technik Gmbh Werkzeugmaschine mit Nennmaßermittlung
DE102017202469B3 (de) * 2017-02-15 2018-07-05 Hiwin Technologies Corp. Spindelstockanordnung für eine Werkzeugmaschine
JP6538772B2 (ja) * 2017-07-26 2019-07-03 ファナック株式会社 数値制御装置
USD861750S1 (en) * 2018-05-02 2019-10-01 Pocket NC Company Multi-axis machine
KR102065770B1 (ko) * 2018-05-08 2020-01-13 한전원자력연료 주식회사 Wh형 골격체 벌지툴 피로 시험장치
CN109352421B (zh) * 2018-10-16 2020-03-10 资阳中工机车传动有限公司 一种数控镗床快速对刀方法
CN109249041A (zh) * 2018-11-23 2019-01-22 宝鸡文理学院 一种高速切削加工装置
EP3671369B1 (fr) * 2018-12-18 2022-08-17 ETA SA Manufacture Horlogère Suisse Dispositif de controle geometrique pour mobiles d'horlogerie
JP6721805B1 (ja) * 2020-03-13 2020-07-15 株式会社滝澤鉄工所 工作機械
KR102196327B1 (ko) * 2020-06-22 2020-12-29 한상봉 금속가공장치
JP2022148001A (ja) * 2021-03-24 2022-10-06 スター精密株式会社 旋盤
WO2024080102A1 (ja) * 2022-10-12 2024-04-18 Dmg森精機株式会社 ワークと該ワークを加工する加工体との相対位置の補正方法
CN117300735B (zh) * 2023-11-28 2024-02-23 昆山台功精密机械有限公司 一种直角头精度检测装置及其检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277889A (ja) * 1997-01-31 1998-10-20 Okuma Mach Works Ltd 工具刃先位置計測装置
JP2004322255A (ja) * 2003-04-24 2004-11-18 Murata Mach Ltd 直線位置計測器付き工作機械

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD109197A1 (ja) * 1973-10-29 1974-10-20
US4451892A (en) * 1980-01-31 1984-05-29 Mcmurtry David R Method of and apparatus for measuring distances in numerically controlled machine tools
JPS57205051A (en) * 1981-06-09 1982-12-16 Mitsubishi Heavy Ind Ltd Contact detecting method between work and tool
JPS61230017A (ja) * 1985-04-05 1986-10-14 Disco Abrasive Sys Ltd 工具位置検出装置
JP3101072B2 (ja) * 1992-03-23 2000-10-23 西部電機株式会社 Nc工作機械における刃先の経時変位補正装置
DE4238504C2 (de) * 1992-11-14 1996-04-25 Chiron Werke Gmbh Verfahren zum Vermessen eines Werkzeuges
JP2574031Y2 (ja) * 1992-12-24 1998-06-11 オークマ株式会社 刃先検出装置
JP2706420B2 (ja) * 1993-12-27 1998-01-28 村田機械株式会社 Nc工作機械の工具刃先位置補正方法及びその装置
JP3792266B2 (ja) * 1994-06-16 2006-07-05 森精機興産株式会社 工作機械の熱変位補正方法及びその装置
JPH1190788A (ja) * 1997-09-24 1999-04-06 Okuma Corp 数値制御工作機械の工具刃先位置計測装置及び方法
JP3479012B2 (ja) 1999-11-12 2003-12-15 Necエレクトロニクス株式会社 静電保護回路及び半導体装置
JP4351379B2 (ja) * 2000-11-02 2009-10-28 村田機械株式会社 工作機械
JP4276275B2 (ja) * 2007-07-25 2009-06-10 ファナック株式会社 工作機械の位置検出誤差測定方法
DE102008046940B4 (de) * 2008-09-08 2011-06-01 Index-Werke Gmbh & Co. Kg Hahn & Tessky Werkzeugmaschine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10277889A (ja) * 1997-01-31 1998-10-20 Okuma Mach Works Ltd 工具刃先位置計測装置
JP2004322255A (ja) * 2003-04-24 2004-11-18 Murata Mach Ltd 直線位置計測器付き工作機械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537952A (zh) * 2013-10-23 2014-01-29 江苏昆鼎数控设备制造有限公司 一种安装在机床底座上的测具
TWI510874B (zh) * 2013-12-31 2015-12-01 Syntec Inc 具有加工路徑修補功能的數值控制器及其加工路徑修補方法

Also Published As

Publication number Publication date
US8631727B2 (en) 2014-01-21
KR101344892B1 (ko) 2013-12-26
EP2481521A4 (en) 2013-03-27
KR20120083551A (ko) 2012-07-25
CN102666007A (zh) 2012-09-12
US20130104707A1 (en) 2013-05-02
CN102666007B (zh) 2014-09-24
EP2481521B1 (en) 2013-12-25
EP2481521A1 (en) 2012-08-01
JP5515639B2 (ja) 2014-06-11
JP2011093069A (ja) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5515639B2 (ja) 工作機械
JP4229698B2 (ja) 工具の刃先位置の測定方法及び装置、ワークの加工方法、並びに工作機械
JP5673855B2 (ja) 工作機械
JP5545025B2 (ja) 工作機械
WO2011052441A1 (ja) 工作機械および変位計測器
JP2007175804A (ja) 工作機械の制御装置
JP2007257606A (ja) ツールの加工位置決め誤差補正方法
JP4799472B2 (ja) 工具の刃先位置の測定方法及び装置、ワークの加工方法並びに工作機械
JP2013255982A (ja) 工作機械とその熱変形の補正方法
JP5734213B2 (ja) 高精度加工方法および高精度加工装置
EP3715025B1 (en) Machining tool and workpiece measurement method
JP2018079526A (ja) 工作機械及び加工方法
JP2014237204A (ja) 工作機械
JP2018027599A (ja) 工作機械の加工誤差の補正方法
WO2013187106A1 (ja) 工作機械とその熱変形の補正方法
JP5531640B2 (ja) 工作機械の送り制御装置
JP2011093065A (ja) 工作機械
JP2004322255A (ja) 直線位置計測器付き工作機械
JP3839197B2 (ja) 工作機械における先使用・後使用工具の刃先位置整合方法
JP3755411B2 (ja) 工具回転径検出方法
JP2012061578A (ja) 工作機械
JP2022120886A (ja) 工作機械
JP2020059071A (ja) 工作機械及び加工方法
JP2023030668A (ja) エアスピンドル装置
JP2024040918A (ja) 高精度穴位置加工用工作機械及びその制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048926.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010826574

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127013719

Country of ref document: KR

Kind code of ref document: A