WO2013073317A1 - 工作機械 - Google Patents

工作機械 Download PDF

Info

Publication number
WO2013073317A1
WO2013073317A1 PCT/JP2012/076087 JP2012076087W WO2013073317A1 WO 2013073317 A1 WO2013073317 A1 WO 2013073317A1 JP 2012076087 W JP2012076087 W JP 2012076087W WO 2013073317 A1 WO2013073317 A1 WO 2013073317A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
workpiece
axis
support means
displacement
Prior art date
Application number
PCT/JP2012/076087
Other languages
English (en)
French (fr)
Inventor
大坪努
中川篤
Original Assignee
村田機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村田機械株式会社 filed Critical 村田機械株式会社
Priority to JP2013544186A priority Critical patent/JP5673855B2/ja
Priority to KR1020147011094A priority patent/KR101533303B1/ko
Priority to EP12849603.1A priority patent/EP2781303B1/en
Priority to CN201280056084.XA priority patent/CN103945981B/zh
Publication of WO2013073317A1 publication Critical patent/WO2013073317A1/ja
Priority to US14/274,980 priority patent/US9658610B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2233Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/18Compensation of tool-deflection due to temperature or force

Definitions

  • This invention relates to machine tools such as lathes, machining centers, grinders, drills, etc., and more particularly to thermal displacement correction.
  • closed-loop control with a feedback control system is used to control the feed of the tool post and the feed of the headstock in a spindle moving type lathe.
  • a semi-closed loop method using a pulse coder attached to the servo motor is adopted.
  • the position of the tool post or the like is directly read and controlled by a linear position detection means such as a linear encoder.
  • a fully closed loop method may be employed.
  • thermal expansion and thermal deformation of the bed and other parts occur due to cutting heat and heat generation of each part accompanying machine operation.
  • thermal expansion and thermal deformation lead to a decrease in processing accuracy.
  • Some of them are equipped with a cooling device as a countermeasure.
  • the cooling device becomes large, and the processing accuracy cannot be ensured only by cooling.
  • the headstock 51 is fixed on the bed 52, and the feed base 54 on which the tool post 53 is mounted moves in the main spindle radial direction (X-axis direction).
  • the position of the tool post 53 in the radial direction of the spindle is measured by reading a scale 55 attached to the spindle base 51 and extending in the radial direction of the spindle with a reading unit 56 attached to the feed base 54.
  • the measured value of the position of the tool post 53 in the main spindle radial direction changes due to thermal displacement or the like. Therefore, by correcting the cutting amount of the tool 57 of the tool post 53 according to the measured value, an appropriate machining accuracy is always ensured.
  • machining dimension of the workpiece is determined by the distance between the workpiece center and the cutting edge of the tool, if this distance can be detected directly, machining can be performed with high accuracy. However, it is impossible to directly measure the distance between the workpiece center and the cutting edge of the tool because the measuring means interferes with the workpiece and the tool.
  • An object of the present invention is to provide a machine tool capable of measuring the displacement between the workpiece center and the cutting edge of the tool in a form as close as possible to the form of direct measurement and improving the machining accuracy.
  • the laser processing machine of the present invention will be described with reference numerals used in the embodiments.
  • the machine tool according to the present invention includes a workpiece support means for supporting a workpiece and a tool support means for supporting a tool, which are installed on a fixed base so as to be able to move forward and backward relative to each other along the cutting direction.
  • a machine tool provided with a moving mechanism for relatively moving the tool support means back and forth, Displacement measurement for measuring the displacement amount of the workpiece center / blade distance (L), which is the distance in the cutting direction, between the center equivalent position (Xw) of the workpiece support means and the edge equivalent position (Xt) of the tool support means.
  • This displacement measuring means (30) is a continuous path (Xw) between the center equivalent position (Xw) and the cutting edge equivalent position (Xt) of the workpiece support means avoiding the machining movement area (E) in which the workpiece and tool move relative to each other ( C)
  • the displacement amount ( ⁇ L) of the distance between the workpiece center and the blade edge (L) is measured by measuring the displacement amount ( ⁇ L, ⁇ L1, ⁇ L2) provided on the continuous path (C). It is characterized by.
  • the “equivalent center position (Xw) of the work support means” is a position that can be regarded as the center of the work support means in the measurement direction of the displacement, and is separated from the direction orthogonal to the measurement direction of the displacement. May be.
  • the center equivalent position (Xw) of the workpiece support means is at the center of the workpiece support means in the displacement measuring direction and is on the workpiece support means or integrally with the workpiece support means in the orthogonal direction. It is on the moving member.
  • the “blade edge equivalent position (Xt)” may be slightly different in the displacement measurement direction, but is close to the blade edge position, and the blade edge position is measured for the influence of thermal displacement. A position that can be handled in the same way.
  • the displacement measuring means (30) is on a continuous path (C) between the center equivalent position (Xw) and the cutting edge equivalent position (Xt) of the workpiece support means, and this continuous path (C).
  • the amount of displacement ( ⁇ L, ⁇ L1, ⁇ L2) is measured.
  • the measurement is performed on a detoured path, but in consideration of the limit on the control of the machine tool, it is possible to perform the same measurement as when the displacement amount between the workpiece center and the cutting edge of the tool is directly measured. .
  • the amount of displacement between the workpiece center in the direction orthogonal to the spindle axis and the cutting edge of the tool can be measured in the same way as when directly measured, the machining accuracy in the cutting direction can be improved.
  • the continuous path (C) for measuring the amount of displacement is a machining movement area (E) in which the workpiece and the tool are relatively moved by relative movement of the workpiece support means and the tool support means for machining. Therefore, it is possible to arrange the displacement measuring means (30) while avoiding interference with a workpiece or a tool.
  • the movement value or the origin position is corrected using the measurement value of the displacement measuring means (30).
  • the correction is performed in this way, since the measured value of the displacement amount by the displacement measuring means (30) is used, unlike the case where the thermal displacement correction is performed from the temperature measurement value, a highly accurate correction can be performed with a simple calculation.
  • the displacement measuring means (30) is capable of measuring a position at a certain distance and detecting the position, the measured value of the displacement measuring means (30) is directly used without using the correction calculation. Feedback control may be performed.
  • the displacement measuring means (30) is made of a low thermal expansion material having a lower thermal expansion coefficient than the fixed base, and is located on the continuous path (C) and installed on the fixed base.
  • the frame may have a scale extending in the cutting direction and a read head for reading the scale, and either one of the scale or the read head may have a linear position detecting means provided on the reference frame. That is, the configuration “on the continuous path (C) between the center equivalent position (Xw) of the workpiece support means and the cutting edge equivalent position (Xt) avoiding the machining movement region (E)” is “the continuous This is realized by a configuration of a reference frame located on the path (C) and installed on the fixed base.
  • the linear position detection means is detection means for detecting a position in the linear direction.
  • the thermal expansion coefficient is synonymous with the linear expansion coefficient.
  • a reference frame made of a low thermal expansion material having a lower thermal expansion coefficient than that of the fixed base is arranged on the continuous path (C), and a linear position detecting means is installed on the reference frame, so that the distance between the workpiece surface and the cutting edge of the tool It is possible to measure the amount of displacement in a form close to the form of direct measurement with a simple configuration.
  • the linear position detection means includes the scale and the read head that reads the scale as described above
  • the thermal displacement correction means based on the temperature measurement value is provided by installing the scale and the read head as described above.
  • the relative position movement control between the work support means and the tool support means can be performed with high accuracy regardless of the thermal displacement, and the control system can be simplified and the machining accuracy can be improved. Further, the above-described effects of the present invention can be obtained by using linear position detecting means generally used in machine tools.
  • the reference frame When providing the reference frame, the reference frame has an axial direction frame portion extending in a direction along the center axis of the center of the workpiece support means and an orthogonal direction frame portion extending in a direction perpendicular to the axis.
  • a workpiece-side linear position detecting means for measuring a displacement amount between the center equivalent position (Xw) of the workpiece support surface and the reference frame, the cutting edge equivalent position (Xt) and the reference It is good also as what has a linear position detection means by the side of the tool which measures the amount of displacement between frames.
  • the displacement amount ( ⁇ L) between the workpiece center and the cutting edge of the tool can be measured in a form close to the form of direct measurement. That is, the workpiece side linear position detection means and the tool side linear position detection means are provided, and the displacement amount ( ⁇ L1) of the center equivalent position (Xw) of the workpiece support means and the displacement amount ( ⁇ L2) of the cutting edge equivalent position (Xt) Since both are measured and used for control, the distance between the work supported by the work support means and the cutting edge of the tool installed on the tool support means can be detected with high accuracy.
  • the linear position detection means on the workpiece side and the linear position detection means on the tool side are installed on the detection means support frame made of a low thermal expansion material installed on the fixed base, and installed on the common detection means support frame, Regardless of the thermal displacement of the fixed base or the moving mechanism, the distance between the workpiece and the tool cutting edge can be detected with high accuracy from the detection values of the workpiece-side linear position detection means and the tool-side linear position detection means. That is, ideally, the detection means support frame and linear position detection means that do not thermally deform will detect the workpiece position and tool position after movement and thermal deformation, and accurately detect the distance between the workpiece and the tool edge. it can.
  • the configuration in which the workpiece-side linear position detection means and the tool-side linear position detection means are provided is realized as follows in accordance with various types of relative movement between the workpiece support means and the tool support means of the machine tool.
  • a spindle movement type machine tool wherein the tool support means is installed on the fixed base in a fixed position, and the work support means is on the fixed base in a direction perpendicular to the axis.
  • the moving feed base On the moving feed base, it is installed so as to be movable in the direction along the axis, and the linear position detecting means on the workpiece side has either the scale or the read head at the orthogonal frame portion of the reference frame.
  • the other is provided on the feed base, the linear position detecting means on the tool side, either the scale or the read head is provided on an axial frame portion of the reference frame, and the other is the tool support means Is provided.
  • the displacement amount between the workpiece surface and the cutting edge of the tool can be measured in a form as close as possible to the form of direct measurement, and the machining accuracy can be improved.
  • the other one is that the work support means is installed in a fixed position on the fixed base, and the tool support means is on a feed base that moves in a direction perpendicular to the axis on the fixed base.
  • the linear position detection means on the workpiece side is installed so as to be movable along the axis, and either the scale or the read head is provided in the orthogonal frame portion of the reference frame, and the other is the workpiece.
  • the tool-side linear position detection means is provided with either one of the scale or the read head provided in the axial direction frame portion of the reference frame and the other provided in the tool support means. It is. In the case of this configuration, in the tool moving type machine tool, the displacement amount between the center of the workpiece and the cutting edge of the tool can be measured in a form as close as possible to the form of direct measurement, and the machining accuracy can be improved.
  • the work support means is movably installed on the fixed base in a direction perpendicular to the axis, and the tool support means is a direction along the main axis on the fixed base.
  • the workpiece-side linear position detection means is configured such that one of the scale and the read head is provided in the orthogonal frame portion of the reference frame, and the other is provided in the workpiece support means.
  • the linear position detecting means on the tool side is one in which either the scale or the read head is provided in the axial direction frame portion of the reference frame, and the other is provided in the tool support means.
  • the work support means is movably installed on the fixed base in a direction along the spindle axis, and the tool support means is a direction perpendicular to the axis on the fixed base.
  • the workpiece-side linear position detection means is configured such that one of the scale and the read head is provided in the orthogonal frame portion of the reference frame, and the other is provided in the workpiece support means.
  • the linear position detecting means on the tool side is one in which either the scale or the reading head is installed on the reference frame and the other is installed on the tool support means.
  • the main shaft moves in the direction along the main shaft axis.
  • the form that is as close as possible to the form that directly measures the amount of displacement between the workpiece center and the tool edge. It is possible to measure with, and to improve the processing accuracy.
  • a control device for controlling the moving mechanism controls an X-axis for controlling a motor that relatively moves the workpiece support means and the tool support means in a direction orthogonal to the axis.
  • This machine tool is a numerically controlled machine tool, and includes a machine tool body 1 that is a machine part and a control device 2 that controls the machine tool body 1.
  • the machine tool main body 1 is a main spindle moving type lathe, and a main spindle 6 is rotatably supported on a main spindle base 5 installed on a bed 3 which is a fixed base via a feed base 4.
  • a tool rest 7 is installed via a support base 26.
  • the support base 26 is fixedly installed on the bed 3.
  • the tool post 7 is formed of a turret and is supported on the support base 26 so as to be capable of rotational indexing.
  • the spindle 6 and the spindle stock 5 constitute a work support means 21.
  • the tool rest 22 and the support base 26 constitute a tool support means 22.
  • the feed table 4 is installed on the X-axis guide 9 provided on the bed 3 so as to be movable in a horizontal main axis radial direction (X-axis direction) orthogonal to the axis O of the main shaft 6. It is driven forward and backward by an X-axis moving mechanism 12 comprising an installed servo motor 10 and a feed screw mechanism 11 that converts its rotational output into a linear motion.
  • the feed screw mechanism 11 includes a screw shaft and a nut.
  • the headstock 5 is installed on a Z-axis guide 13 provided on the feed table 4 so as to be movable in the spindle axis direction (Z-axis direction), and is installed on the feed table 4.
  • a Z-axis moving mechanism 16 comprising a motor 14 and a feed screw mechanism 15 (FIG. 1A) that converts its rotational output into linear motion.
  • the feed screw mechanism 15 includes a screw shaft and a nut.
  • the spindle 6 is rotationally driven by a spindle motor (not shown) built in the spindle stock 5.
  • a chuck 17 is detachably provided at the front end of the main shaft 6. The chuck 17 can grip the workpiece W by a plurality of chuck claws 17a that move in the chuck radial direction.
  • the tool post 7 in FIG. 1A is rotatable about a horizontal rotation center axis T along the X-axis direction with respect to the support base 26, and a plurality of tool mounting portions (see FIG. Not shown).
  • the rotation center axis T is the tool post center axis.
  • a tool 18 such as a cutting tool or a rotary tool is attached to each tool attachment portion via a tool holder 18a.
  • the tool post 7 is fixed to the tip of a hollow shaft 7c rotatably supported by a support base 26 via a bearing 8, and the hollow shaft 7c is rotated by an indexing motor (not shown).
  • An arbitrary tool mounting portion is pivotally indexed to a position facing the main shaft 6.
  • the tool post 7 may have a circular front shape as shown in FIG. 2 or a polygonal shape. In FIG. 1A and FIG. 2, only the tool 18 attached to a part of the tool attachment part is shown, and the others are not shown.
  • the machine tool of this embodiment includes a main spindle 1 between the center equivalent position Xw of the workpiece support means 21 and the cutting edge equivalent position Xt of the tool support means 22 on the machine tool body 1 having the basic structure.
  • Displacement measuring means 30 for measuring a displacement amount ⁇ L (not shown) of the distance L between the workpiece center and the cutting edge, which is a distance in the direction (X direction) orthogonal to the axis O, is provided.
  • the workpiece support surface 21a of the workpiece support means 21 is a workpiece seating surface of the chuck 17 provided on the main shaft 6 in the illustrated example.
  • the center of the workpiece support surface 21a is the center of the displacement measurement direction of the workpiece support means 21 (in this example, the X-axis direction).
  • the center equivalent position Xw of the workpiece support means 21 is a position that can be regarded as the center of the workpiece support means 21 in the displacement measurement direction (X-axis direction in this example), and is a vertical direction that is orthogonal to the displacement measurement direction. It may be separated from the direction or the front-rear direction.
  • the center equivalent position Xw of the work support means 21 is at the center of the work support means 21 in the displacement measuring direction (X-axis direction) and on the work support means 21 or with the work support means 21. It is a position on the member that moves integrally in the orthogonal direction (X-axis direction).
  • the center equivalent position Xw of the workpiece support means 21 is the same position in the X-axis direction as the spindle axis O on the front surface of the feed table 4 (the surface on the tool post 7 side in the Z-axis direction) as shown in FIG. It is.
  • the cutting edge equivalent position Xt may be slightly different in the measurement direction of the amount of displacement, but is close to the cutting edge position of the tool 18 and is equivalent to measuring the cutting edge position with respect to the influence of thermal displacement.
  • the front surface of the tool post 7 made of a turret (the surface on the feed base 7 side in the X-axis direction) is used.
  • the distance L0 (FIG. 3) in the X-axis direction between the cutting edge equivalent position Xt and the actual cutting edge position is calculated as a fixed value, for example.
  • the displacement measuring means 30 is provided on a continuous path C between the center equivalent position Xw of the workpiece support means 21 and the cutting edge equivalent position Xt, and by measuring the displacement amount of the continuous path C, the workpiece center / The displacement amount ⁇ L of the distance L between the cutting edges is measured.
  • the path C passes through an area avoiding the processing movement area E. ⁇ ⁇
  • This path C is a path along a reference frame 40 (to be described later) in plan view, and is composed of path portions C1 to C3.
  • the displacement measuring means 30 includes a reference frame 40 made of a low thermal expansion material and linear position detecting means 31 and 32 on the workpiece side (orthogonal direction) and tool side (axial direction) provided on the reference frame 40. .
  • the material of the reference frame 40 is made of a low thermal expansion material having a lower thermal expansion coefficient than that of the bed 3, for example, an alloy material such as invar (also referred to as invariant steel), particularly an alloy material such as super invar or stainless invar.
  • the reference frame 40 may be an alloy material having a thermal expansion coefficient equal to or less than that of Invar, ceramics, or the like.
  • the reference frame 40 is fixed and installed on the bed 3 which is a fixed base with one attachment portion which is a part of the reference frame 40.
  • the reference frame 40 has a single column portion 40c whose lower end is fixed to the upper surface of the bed 3, and the lower end of the column portion 40c constitutes the mounting portion.
  • the “one place” may have a certain range or may be two branched parts, and the reference frame 40 as a whole is not a plurality of places such as fixed at both ends, but is conceptual. Means that it is fixed at a point that can be regarded as one-point support. Further, it is desirable that the reference frame 40 is fixed to the bed 3 at one location, but other locations may be supported by a slide structure or the like that does not hinder thermal expansion and contraction of the bed 30 with respect to the reference frame 40.
  • the reference frame 40 includes an axial direction frame portion 40a extending in a direction along the main axis O and an orthogonal direction frame portion 40b extending in a direction orthogonal to the main axis O, and is L-shaped in plan view. It is.
  • the axial direction frame portion 40a and the orthogonal direction frame portion 40b are provided so as to extend in a cantilever manner from the support column portion 40c.
  • the axial direction frame portion 40a is located on the back surface (rear surface) side of the support table 26 at the height of the rotation center of the tool post 7 made of a turret.
  • the orthogonal direction frame portion 40 b is disposed close to the front surface of the feed table 4 at the height position of the feed table 4.
  • the Z-axis direction intermediate portion of the axial center frame portion 40a and the lower portion of the support column portion 40c are connected by a reinforcing diagonal member 40e.
  • the entire reference frame 40 is made of the low thermal expansion material.
  • Each of the linear position detection means 31 and 32 includes first and second scales 31a and 32a extending in a direction (X-axis direction) orthogonal to the main axis O, and the first and second scales 31a and 32a.
  • the first and second reading heads 31b and 32b are used.
  • the first and second scales 31a and 32a are members provided with detectable scales.
  • Each of the linear position detection means 31 and 32 may be either an optical detection means or a magnetic detection means, but in this example, it is an optical detection means.
  • the first scale 31 a is provided in the orthogonal frame portion 40 b, and the first reading head 31 b is installed at the center equivalent position Xw of the workpiece support surface 21 a on the front surface of the feed base 4. Yes. Even if the first scale 31a has a scale directly applied to the orthogonal frame portion 40b, a scale forming member (not shown) on which the scale is formed is attached to the orthogonal frame portion 40b. There may be. When the scale forming member is used, a material having a thermal expansion coefficient equivalent to that of the reference frame 40 is used.
  • the length of the first scale 31a only needs to be long enough to measure the amount of displacement ⁇ L at the distance L between the workpiece center and the blade edge L due to thermal displacement or the like, and therefore may be short.
  • the length of the first scale 31a is set to the length over the plurality of locations, or the displacement amount ⁇ L.
  • the displacement amount ⁇ L is measured in the main axis orthogonal direction (X-axis direction)
  • the first scale 31a may be short as described above, the first scale 31a may be provided on the feed base 4, and the first reading head 31b may be provided on the orthogonal frame portion 40b. In addition, the first scale 31a may be provided over the entire movement range of the feed base 4, and in that case, the position control in the X-axis direction can be a full-closed control. It is difficult to obtain a highly accurate linear position detecting means 31 on the workpiece side that can be measured. From the viewpoint of cost and accuracy, it is preferable that the first scale 31a is short in the range in which the displacement amount ⁇ L can be measured.
  • the tool-side linear position detection means 32 has a second scale 32 a provided in the tool support means 22 and a second reading head 32 b provided in the axial direction frame portion 40 a of the reference frame 40.
  • the linear position detecting means 32 on the tool side may be either an optical or magnetic position sensor, but in this example, an optical position sensor is used.
  • the tool side linear position detecting means 32 is specifically provided as follows.
  • the second scale 32 a is provided at the tip of the shaft member 32 aa fixed to the tool post 7.
  • the shaft member 32aa is inserted into the hollow shaft 7c of the tool rest 7 and the base end portion is fixed to the front plate portion 7d (FIG. 3) of the rotating portion of the tool rest 7 concentrically with the rotation center axis T, and the tip end portion is fixed. It protrudes from the hollow shaft 7c.
  • a second scale 32a is provided at the protruding tip.
  • the shaft member 32aa is made of a material having the same or similar thermal expansion coefficient as that of the reference frame 40, and is not restrained in the axial direction with respect to the tool support means 22 except for a fixed portion at the base end.
  • the second scale 32a is provided with a scale over a part or the entire circumference of the shaft member 32aa in the circumferential direction.
  • the second read head 32b is provided with a shaft member 32aa that can be inserted therethrough.
  • the second read head 32b may be provided so as to face a part of the surface of the shaft member 32aa.
  • the control device 2 includes a computer-type numerical control device and a programmable controller, and the machining program 42 stored in the program storage means 41 is executed by an arithmetic control unit 43 including a CPU (central processing unit) and the like. Each part of the machine body 1 is controlled.
  • the control device 2 includes an X-axis movement control unit 44 and a Z-axis movement control unit 45 in addition to the arithmetic control unit 43, and also includes a sequence control unit (not shown).
  • the machining program 42 has an X-axis movement command Rx and a Z-axis movement command Rz described by NC codes and the like, and a sequence control command (not shown) for each part. Read in the order of description. The read sequence control command is transferred to the sequence control unit, and control is executed by the sequence control unit.
  • the arithmetic control unit 43 gives the X-axis movement command Rx in the machining program 42 as an X-axis position command to the X-axis movement control unit 44, and sends the Z-axis movement command Rz to the Z-axis movement control unit 45 in the X-axis position.
  • Rx the X-axis movement command
  • Z-axis movement command Rz the Z-axis movement control unit 45 in the X-axis position.
  • a corrected position command is given.
  • the X-axis movement control means 44 and the Z-axis movement control means 45 are composed of X-axis and Z-axis servo controllers, respectively, so that the X-axis and Z-axis command positions given from the calculation control unit 43 are obtained.
  • the X-axis servo motor 10 and the Z-axis servo motor 14 are controlled.
  • the X-axis and Z-axis movement control means 44 and 45 use the position detection values of the position detectors 10a and 14a comprising the pulse coder or encoder attached to the X-axis servomotor 10 and the Z-axis servomotor 1, and are semi-closed. Performs feedback control as loop control.
  • the arithmetic control unit 43 is provided with reading control means 46 and correction means 47.
  • the reading control means 46 is located at the detection position where the position detected by the position detector 10a of the X-axis servomotor 10 is determined, and when it is determined as the detection time, It is means for reading the detection values of the first and second reading heads 31b and 32b.
  • the “predetermined detection position” may be arbitrarily determined in the reading control means 46.
  • the tool 18 is positioned at a position where the work W supported by the chuck 17 of the spindle 6 can be processed by the tool 18. It is a position that is arbitrarily determined within a range of positions relative to the main shaft 6.
  • the distance L in the X-axis direction between the axis O of the main shaft 6 and the position of the cutting edge of the tool 18 is within the radius of the workpiece W supported by the chuck 17 of the main shaft 6 or an arbitrary margin in this radius.
  • the position is arbitrarily determined within the radius including the distance. It may be a position that is the machining finish diameter of the peripheral surface of the workpiece W to be machined.
  • the arbitrarily determined position may be a fixed value, or may be a value changed by an operation from the machining program 42 or the operation panel.
  • the above “when determined as detection time” may be arbitrarily determined by the machining program 42 or the like. For example, immediately before machining a workpiece W or machining one workpiece W and machining the next workpiece W. It is a set time in between.
  • the tool 18 and the workpiece W are separated in the Z-axis direction so that the tool 18 does not interfere with the workpiece W, or the tool 18 contacts the workpiece W.
  • the correction means 47 corrects the X-axis command value given by the X-axis movement command of the machining program 41 with the displacement amount ⁇ L detected by the both linear position detection means 31 and 32, and gives it to the X-axis movement control means 44.
  • a value obtained by multiplying the displacement amount ⁇ L by a predetermined coefficient may be corrected as an offset value.
  • the distance between the spindle axis O and the tool edge position when the displacement is detected by each of the linear position detecting means 31 and 32 (the position detected by the position detector 10a of the X-axis servomotor 10), and the workpiece W A correction amount may be obtained by multiplying the detected displacement amount ⁇ L by a coefficient according to the difference from the radius of the processed surface. It is assumed that the amount of displacement measured by each of the linear position detection means 31 and 32 is zero when the machine tool is at room temperature (20 degrees Celsius), for example.
  • each of the linear position detecting means 31 and 32 serving as the displacement measuring means 30 is on a continuous path C between the center equivalent position Xw of the workpiece support means 21 and the cutting edge equivalent position Xt.
  • the amount of displacement of the route C is measured. For this reason, the measurement is performed on a detoured path, but the displacement amount between the center of the workpiece W and the cutting edge of the tool 18 is directly measured in consideration of the structure of the machine tool and the control limit. Can perform the same measurement.
  • the continuous path C for measuring the amount of displacement is an area avoiding the machining movement area E, which is an area in which the workpiece W and the tool 18 are relatively moved by the relative movement of the workpiece support means 21 and the tool support means 22 for machining. Therefore, the displacement measuring means 30 can be arranged avoiding interference with the workpiece W and the tool 18.
  • the position control of the X-axis movement mechanism 12 using the measurement value of the displacement measurement means 30 by the X-axis movement control means 44 is simply by adding the measurement values of the linear position detection means 31 and 32 of the displacement measurement means 30 or Alternatively, the offset correction is performed by multiplying the coefficient and correcting the value. Therefore, unlike the case where the thermal displacement correction is performed from the temperature measurement value, the correction with high accuracy can be performed with a simple calculation.
  • the workpiece-side linear position detecting means 31 and the tool-side linear position detecting means 32 constituting the displacement measuring means 30 are a common reference frame 40 made of a low thermal expansion material installed in one place on the bed 3 which is a fixed base. Therefore, regardless of the thermal displacement of the bed 3 or the X-axis moving mechanism 12, the distance between the workpiece W and the tool cutting edge can be determined from the detection values of the workpiece-side linear position detection means 31 and the tool-side linear position detection means 32. Can be detected with high accuracy. That is, ideally, the workpiece position and tool position after movement and thermal deformation are detected by the reference frame 40 and the linear position detection means 31 and 32 that do not thermally deform, and the distance between the workpiece W and the tool edge. Can be detected with high accuracy.
  • correction means 47 for correcting the X-axis command value using the detection values of both the workpiece-side linear position detection means 31 and the tool-side linear position detection means 32 thermal displacement correction based on the temperature detection value is provided. It is possible to process with high accuracy without performing the control, and the control system is also simplified. Since the reference frame 40 is fixed to the bed 3 at one location, the reference frame 40 is not subjected to processing force such as a cutting reaction force acting between the workpiece support means 21 and the tool support means 22 and is not affected by the deformation of the bed 3. Therefore, it is not deformed by the processing force, and this also enables position detection with higher accuracy and processing with higher accuracy.
  • the workpiece-side linear position detection means 31 and the tool-side linear position detection means 32 both detect the position in the direction (X-axis direction) perpendicular to the spindle central axis O.
  • Position control in the cutting direction which requires high precision, can be performed with high precision.
  • the thermal displacement correction in the Z-axis direction is not necessary, but an appropriate linearization means or correction means may be additionally provided.
  • the linear position detecting means 31 and 32 serving as the displacement measuring means 30 are short, unlike the full-closed control used by the displacement measuring means 30. Just do things. Therefore, it is possible to obtain and use the inexpensive and highly accurate linear position detecting means 31 and 32.
  • FIG. 5 shows a second embodiment applied to a machine tool that is a tool post moving type lathe.
  • the workpiece support means 21 is installed in a fixed position on the bed 3 which is a fixed base, and the tool support means 22 moves on the bed 3 in a direction perpendicular to the spindle axis O (X-axis direction). It is installed on the feed base 27 to be movable in the direction along the spindle axis O.
  • the first scale 31 a is provided in the orthogonal frame portion 40 b of the reference frame 40, and the first reading head 31 b is provided in the workpiece support means 21.
  • the second reading head 32 b is provided at the tip of the axial frame portion 40 a of the reference frame 40, and the second scale 32 a is provided on the tool support means 22.
  • the displacement measuring means can measure the amount of displacement between the center of the workpiece and the cutting edge of the tool 18 in a form as close as possible to the form of direct measurement, thereby improving the machining accuracy.
  • the plan is realized.
  • FIG. 6 shows a third embodiment applied to a machine tool composed of a lathe in which both the spindle and the tool post are movable and the spindle 6 moves in a direction (X-axis direction) perpendicular to the spindle axis O.
  • the headstock 5 of the work support means 21 is installed on the bed 3, which is a fixed base, so as to be movable in a direction perpendicular to the spindle axis O, and the tool support means 22 is arranged on the bed 3. It is installed movably in the direction along O.
  • the first scale 31 a is provided in the orthogonal frame portion 40 b of the reference frame 40, and the first reading head 31 b is provided in the workpiece support means 21.
  • the second reading head 32 b is provided in the axial direction frame portion 40 a of the reference frame 40, and the second scale 32 a is provided in the tool support means 22.
  • the second reading head 32b in the tool-side linear position detection means 32 is along the axial direction frame portion 40a together with the first scale 31a so as not to disturb the movement of the tool rest 7 in the Z-axis direction. It is guided by the guide rail 29 so that it can move freely.
  • the displacement between the workpiece center and the cutting edge of the tool 18 is directly measured in a both-spindle / tool tool movement type machine tool in which the spindle 6 moves in a direction perpendicular to the spindle axis O. It is possible to measure in a form as close as possible to improve machining accuracy.
  • FIG. 7 shows a fourth embodiment applied to a machine tool including a lathe in which both the spindle and the tool post are movable and the spindle 6 moves in a direction along the spindle axis O (Z-axis direction).
  • the headstock 5 of the workpiece support means 21 is installed on the bed 3 which is a fixed base so as to be movable in the direction along the spindle axis O (Z-axis direction). It is installed so as to be movable in a direction (X-axis direction) perpendicular to the spindle axis O above.
  • the first scale 31 a is provided in the orthogonal frame portion 40 b of the reference frame 40, and the first reading head 31 b is provided in the workpiece support means 21.
  • the second reading head 32 b is installed on the reference frame 40 and the second scale 32 a is provided on the tool support means 22.
  • the displacement amount between the workpiece center and the cutting edge of the tool 18 is directly measured in a tool moving type machine tool in which both the spindle 6 moves in the direction along the spindle axis O. It is possible to measure in as close a form as possible and to improve the processing accuracy.
  • the first and second scales 31a and 32a and the first and second reading heads 31b and 32b are provided on the reference frame 40 side. Whether to provide the workpiece support means 21 or the like on the measured side may be reversed.
  • the displacement measuring means 30 is constituted by two detection means of the workpiece side linear position measuring means 31 and the tool side linear position measuring means 32 in each of the above-described embodiments. For example, it may be configured by three or more detection means by adding means for detecting 40 displacements, or the displacement measurement means 30 may be a single detection means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

 ワーク支持手段(21)のワーク支持面の中心相当位置(Xw)と工具支持手段(22)の刃先相当位置(Xt)との間の、主軸軸心(O)に直交する方向(X)の距離であるワーク中心・刃先間距離(L)の変位量(ΔL)を計測する変位計測手段(30)を設ける。この変位計測手段(30)は、加工移動領域(E)を避けた領域におけるワーク支持面の中心相当位置(Xw)と刃先相当位置(Xt)間の連続した経路(C)上にあってこの連続した経路(C)の変位量を計測することにより、前記変位(ΔL)を計測する。変位計測手段(30)は、主軸側および工具側の直線位置検出手段(31,32)からなる。変位計測手段(30)の計測値は、X軸指令値の補正に用いる。

Description

工作機械 関連出願
 この出願は、2011年11月16日出願の特願2011-250592の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、旋盤、マシニングセンタ、研削盤、ドリル等の工作機械に関し、特にその熱変位補正に関する。
 旋盤等の工作機械において、刃物台の送りや、主軸移動型旋盤における主軸台の送りの制御には、フィードバック制御系のあるクローズドループ制御が用いられる。通常は、サーボモータに付属のパルスコーダを利用したセミクローズドループ方式が採られるが、高精度な位置決めのために、刃物台等の位置をリニアエンコーダ等の直線位置検出手段で直接に読み取って制御するフルクローズドループ方式が採用されることがある。
 また、工作機械では、切削熱や機械運転に伴う各部位の発熱のために、ベッドや他の部位の熱膨張、熱変形が生じる。このような熱膨張,熱変形は、加工精度の低下に繋がる。冷却装置を装備してその対策とするものもあるが、熱膨張を十分に抑えるには、冷却装置が大掛かりとなり、また冷却だけでは加工精度を確保することができない。
 そのため、従来より、温度を計測することで、機械全体の熱変位を推測し、工具の切り込み量等の熱変位補正を行なうものが種々提案されている。しかし、温度から変位を推測する場合、温度から変位に計算する段階で時間遅れ等の複雑な計算が必要となる。温度変化には種々の要因があり、温度の計測値から精度良く熱変位補正を行うことが難しい。そのため、リニアスケール等で実際の熱変位を計測し、補正するものも提案されている。
 例えば特許文献1に記載の工作機械は、図8に示すように、主軸台51がベッド52上に位置固定され、刃物台53を搭載した送り台54が主軸半径方向(X軸方向)に移動可能に設けられた旋盤であり、主軸台51に取付けられ主軸半径方向に延びるスケール55を、送り台54に取付けられた読取部56で読み取ることにより、刃物台53の主軸半径方向における位置を計測する。この刃物台53の主軸半径方向位置の計測値は、熱変位等により変化する。そこで、計測値に応じて刃物台53の工具57の切り込み量等を補正することで、常に適正な加工精度を確保する。
特開2002-144191号公報
 特許文献1のように、主軸台51と送り台54との相対位置だけを計測するのでは、送り台54に対する刃物台53の熱変位が生じた場合に、主軸軸心と工具の間の距離に誤差が生じる。
 従来のフルクローズドループ方式の制御は、例えば刃物台移動型の旋盤では、刃物台の移動をリニアエンコーダ等の直線位置計測器で直接に読み取って制御を行うが、直線位置計測器の取付箇所に熱変位が生じた場合、高精度な制御が行えなくなる。そのため熱変位補正を行う手段を別に設ける必要がある。
 ワークの加工寸法は、ワーク中心と工具の刃先との間の距離によって定まるため、この距離を直接に検出できれば、精度良く加工することができる。しかし、ワーク中心と工具の刃先との間の距離を直接に計測することは、計測手段がワークや工具に干渉することになるため、実現することができない。
 この発明の目的は、ワーク中心と工具の刃先間の変位を、直接に計測する形態にできるだけ近い形態で計測できて、加工精度の向上を図ることができる工作機械を提供することである。
 この発明のレーザ加工機を実施形態に用いた符号を付して説明する。この発明の工作機械は、ワークを支持するワーク支持手段と工具を支持する工具支持手段とを、固定基台上に互いに切り込み方向に沿って相対的に進退可能に設置し、前記ワーク支持手段と工具支持手段とを相対的に進退させる移動機構を設けた工作機械において、
 前記ワーク支持手段の中心相当位置(Xw)と工具支持手段の刃先相当位置(Xt)との間の前記切り込み方向の距離であるワーク中心・刃先間距離(L)の変位量を計測する変位計測手段(30)を設け、
 この変位計測手段(30)は、前記ワークおよび工具が相対移動する加工移動領域(E)を避けた前記ワーク支持手段の中心相当位置(Xw)と刃先相当位置(Xt)間の連続した経路(C)上に設けられてこの連続した経路(C)の変位量(ΔL,ΔL1,ΔL2)を計測することにより、前記ワーク中心・刃先間距離(L)の変位量(ΔL)を計測することを特徴とする。
 なお、上記の「ワーク支持手段の中心相当位置(Xw)」とは、変位量の計測方向において、ワーク支持手段の中心と見なせる位置であり、変位量の計測方向と直交する方向に対して離れていても良い。しかし、ワーク支持手段の中心相当位置(Xw)は、変位量の計測方向にはワーク支持手段の中心にあって、かつワーク支持手段上にあるか、またはワーク支持手段と一体に前記直交方向に移動する部材上にある。また、「刃先相当位置(Xt)」とは、変位量の計測方向において、多少の位置の違いあっても良いが、刃先の位置に近くて、熱変位の影響については刃先位置を計測するのと同等に扱える位置を言う。
 この構成によると、前記変位計測手段(30)は、ワーク支持手段の中心相当位置(Xw)と刃先相当位置(Xt)間の連続した経路(C)上にあってこの連続した経路(C)の変位量(ΔL,ΔL1,ΔL2)を計測する。このため、迂回した経路上での計測とはなるが、工作機械の制御上の限度を考慮した実質上、ワーク中心と工具の刃先間の変位量を直接に計測する場合と同等の計測が行える。このように、主軸軸心に直交する方向のワーク中心と工具の刃先間の変位量を、直接に計測する場合と同等に計測できるため、切り込み方向についての加工精度を向上させることができる。
 また、前記の変位量を計測する前記の連続した経路(C)は、加工のための前記ワーク支持手段と工具支持手段の相対移動によって前記ワークおよび前記工具が相対移動する加工移動領域(E)を避けた経路であるため、ワークや工具との干渉を避けて、変位計測手段(30)を配置することができる。
 前記制御装置による変位計測手段(30)の計測値を用いた前記移動機構の位置制御は、例えば、前記変位計測手段(30)の計測値を用いて、移動量または原点位置等の補正を行う。このように補正を行う場合に、変位計測手段(30)による変位量の計測値を用いるため、温度計測値から熱変位補正を行うものと異なり、精度の良い補正が簡単な演算で済む。なお、前記変位計測手段(30)が、ある程度長い距離の計測が行えて位置検出を行うものである場合は、補正演算によらずに、変位計測手段(30)の計測値を直接に用いてフィードバック制御するようにしても良い。
 この発明において、前記変位計測手段(30)は、前記固定基台よりも熱膨張係数の低い低熱膨張材からなり前記連続した経路(C)上に位置して前記固定基台に設置された基準フレームと、切り込み方向に延びるスケールおよびこのスケールを読む読取ヘッドを有しこれらスケールおよび読取ヘッドのいずれか一方が前記基準フレームに設けられた直線位置検出手段とを有していてもよい。すなわち、上記の「加工移動領域(E)を避けた前記ワーク支持手段の中心相当位置(Xw)と刃先相当位置(Xt)間の連続した経路(C)上」という構成を、「前記連続した経路(C)上に位置して前記固定基台に設置された基準フレーム」という構成によって具現化する。なお、前記直線位置検出手段は、直線方向の位置を検出する検出手段のことである。前記熱膨張係数は線膨張係数と同義である。
 固定基台よりも熱膨張係数の低い低熱膨張材からなる基準フレームを前記連続した経路(C)上に配置し、この基準フレームに直線位置検出手段を設置するため、ワーク表面と工具の刃先間の変位量を、直接に計測する形態に近い形態で計測することが、簡易な構成で実現可能となる。直線位置検出手段が、上記のようなスケールおよびこのスケールを読み取る読取りヘッドからなる場合に、上記のようにスケールおよび読取りヘッドを設置することで、上記の温度計測値による熱変位補正手段を設けることなく、熱変位にかかわらずに高精度にワーク支持手段と工具支持手段間の相対位置の移動制御が行えて、制御系が簡素にでき、かつ加工精度の向上が図れるという効果が実現される。また、工作機械において一般的に用いられる直線位置検出手段を用いて、この発明の上記各効果を得ることができる。
 前記基準フレームを設ける場合に、基準フレームが、前記ワーク支持手段の中心の軸心に沿う方向に延びる軸心方向フレーム部と前記軸心と直交する方向に延びる直交方向フレーム部とを有し、前記直線位置検出手段として、前記ワーク支持面の中心相当位置(Xw)と前記基準フレームとの間の変位量を計測するワーク側の直線位置検出手段と、前記刃先相当位置(Xt)と前記基準フレームとの間の変位量を計測する工具側の直線位置検出手段とを有するものとしても良い。
 この場合、ワーク中心と工具の刃先間の変位量(ΔL)を、直接に計測する形態に近い形態で計測することができる、より具体的な構成となる。すなわち、ワーク側の直線位置検出手段および工具側の直線位置検出手段を設け、ワーク支持手段の中心相当位置(Xw)の変位量(ΔL1)と刃先相当位置(Xt)の変位量(ΔL2)との両方を計測して制御に用いるため、ワーク支持手段に支持されたワークと工具支持手段に設置された工具の刃先との間の距離を、精度良く検出することができる。
 また、ワーク側の直線位置検出手段および工具側の直線位置検出手段は、固定基台に設置された低熱膨張材からなる検出手段支持枠に設置し、かつ共通の検出手段支持枠に設置したため、前記固定基台や移動機構の熱変位に係わらずに、ワーク側の直線位置検出手段と工具側の直線位置検出手段の検出値から、ワークと工具刃先間の距離を精度良く検出できる。すなわち、理想的には、熱変形しない検出手段支持枠および直線位置検出手段で、移動や熱変形後のワーク位置と工具位置を検出することになり、ワークと工具刃先間の距離を精度良く検出できる。そのため、ワーク側の直線位置検出手段および工具側の直線位置検出手段の両方の検出値を用いて前記移動機構を制御する制御装置を設けたことで、温度計測による煩雑な熱変位補正を行うことなく、精度良く加工することができ、制御系も簡素になる。
 このワーク側の直線位置検出手段と工具側の直線位置検出手段とを設ける構成は、工作機械のワーク支持手段と工具支持手段との各種の相対移動の形式に応じて、次のように実現される。
 その一つは、主軸移動型の工作機械において、前記工具支持手段が前記固定基台上に位置固定に設置され、前記ワーク支持手段が、前記固定基台上で前記軸心と直交する方向に移動する送り台上に、前記軸心に沿う方向に移動可能に設置され、前記ワーク側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記直交方向フレーム部に設けられ、他方が前記送り台に設けられ、前記工具側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの軸方向フレーム部に設けられ、他方が前記工具支持手段に設けられたものである。この構成の場合、主軸移動型の工作機械において、ワーク表面と工具の刃先間の変位量を、直接に計測する形態にできるだけ近い形態で計測できて、加工精度の向上を図ることができる。
 他の一つは、前記ワーク支持手段が前記固定基台上に位置固定に設置され、前記工具支持手段が、前記固定基台上で前記軸心と直交する方向に移動する送り台上に、前記軸心に沿う方向に移動可能に設置され、前記ワーク側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記直交方向フレーム部に設けられ、他方が前記ワーク支持手段に設けられ、前記工具側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記軸心方向フレーム部に設けられ他方が前記工具支持手段に設けられたものである。この構成の場合、工具移動型の工作機械において、ワーク中心と工具の刃先間の変位量を、直接に計測する形態にできるだけ近い形態で計測できて、加工精度の向上を図ることができる。
 さらに他の一つは、前記ワーク支持手段が前記固定基台上に前記軸心と直交する方向に移動自在に設置され、前記工具支持手段が、前記固定基台上で主軸軸心に沿う方向に移動自在に設置され、前記ワーク側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記直交方向フレーム部に設けられ、他方が前記ワーク支持手段に設けられ、前記工具側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記軸心方向フレーム部に設けられ他方が前記工具支持手段に設けられたものである。この構成の場合、主軸が主軸軸心と直交する方向に移動する、主軸,工具双方工具移動型の工作機械において、ワーク中心と工具の刃先間の変位量を、直接に計測する形態にできるだけ近い形態で計測できて、加工精度の向上を図ることができる。
 さらに他の一つは、前記ワーク支持手段が前記固定基台上に主軸軸心に沿う方向に移動自在に設置され、前記工具支持手段が、前記固定基台上で前記軸心と直交する方向に移動自在に設置され、前記ワーク側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記直交方向フレーム部に設けられ、他方が前記ワーク支持手段に設けられ、前記工具側の直線位置検出手段は、記スケールおよび読取ヘッドのいずれか一方が前記基準フレームに設置され他方が前記工具支持手段に設けられたものである。この構成の場合、主軸が主軸軸心に沿う方向に移動する、主軸,工具双方工具移動型の工作機械において、ワーク中心と工具の刃先間の変位量を、直接に計測する形態にできるだけ近い形態で計測できて、加工精度の向上を図ることができる。
 この発明において、前記移動機構を制御する制御装置を設け、この制御装置は、前記ワーク支持手段と工具支持手段とを前記軸心と直交する方向に相対的に進退させるモータを制御するX軸の移動制御手段と、加工プログラムの移動命令の指令値により前記X軸の移動制御手段へ指令値を与える演算制御部とを有し、前記演算制御部に、前記変位計測手段(30)の変位量の計測値によって前記X軸の移動制御手段へ与える指令値を補正する補正手段を有するものとしても良い。この構成の場合、前記変位計測手段(30)の計測値は補正に用いるため、変位計測手段(30)は短いもので済み、そのため安価で高精度の変位計測手段(30)を入手して用いることができる。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
(A)はこの発明の第1実施形態に係る工作機械おける工作機械本体の平面図と制御装置の概念構成のブロック図とを組み合わせた説明図、(B)はその一部の説明図である。 同工作機械本体の斜視図である。 同工作機械の変位計測手段の部分拡大平面図である。 同工作機械の工作機械本体の平面図である。 この発明の第2実施形態に係る工作機械の工作機械本体の平面図である。 この発明の第3実施形態に係る工作機械の工作機械本体の平面図である。 この発明の第4実施形態に係る工作機械の工作機械本体の平面図である。 従来の工作機械における工作機械本体の平面図である。
 この発明の第1実施形態を図1(A)および(B)ないし図4と共に説明する。この工作機械は数値制御式の工作機械であり、機械部分である工作機械本体1と、この工作機械本体1を制御する制御装置2とで構成される。工作機械本体1は、主軸移動型の旋盤であり、固定基台であるベッド3上に送り台4を介して設置された主軸台5に、主軸6が回転自在に支持され、ベッド3上に刃物台7が、支持台26を介して設置されている。支持台26は、ベッド3に固定して設置されている。刃物台7はタレットからなり、支持台26に回転割出可能に支持されている。前記主軸6および主軸台5によりワーク支持手段21が構成される。前記刃物台7および支持台26により、工具支持手段22が構成される。
 送り台4は、ベッド3に設けられたX軸案内9上を、主軸6の軸心Oに対して直交する水平な主軸半径方向(X軸方向)に移動自在に設置され、ベッド3上に設置されたサーボモータ10とその回転出力を直線動作に変換する送りねじ機構11とからなるX軸移動機構12によって左右に進退駆動される。前記送りねじ機構11は、ねじ軸とナットとからなる。図2のように、主軸台5は、送り台4上に設けられたZ軸案内13上に主軸軸心方向(Z軸方向)に移動自在に設置され、送り台4上に設置されたサーボモータ14とその回転出力を直線動作に変換する送りねじ機構15(図1(A))からなるZ軸移動機構16によって前後に進退駆動される。前記送りねじ機構15は、ねじ軸とナットとからなる。主軸6の回転駆動は、主軸台5に内蔵の主軸モータ(図示せず)よって行われる。主軸6の前端にはチャック17が着脱可能に設けられている。チャック17は、チャック半径方向に移動する複数のチャック爪17aにより、ワークWを把持可能である。
 図1(A)の刃物台7は、支持台26に対してX軸方向に沿う水平な回転中心軸T回りに回転自在であり、外周部に円周方向に並ぶ複数の工具取付部(図示せず)を有している。回転中心軸Tは、刃物台中心軸となる。各工具取付部に、工具ホルダ18aを介してバイトや回転工具等の工具18が取付けられる。刃物台7は、軸受8を介して支持台26に回転自在に支持された中空軸7cの先端に固定されており、割出用モータ(図示せず)で中空軸7cを回転させることにより、任意の工具取付部が主軸6に対向する位置に旋回割出しされる。刃物台7は、その正面形状が、図2に示すような円形状であっても、また多角形状であっても良い。なお、図1(A),図2では、工具18は一部の工具取付部に取付けられたもののみを示し、他は図示を省略してある。
 図1(A)において、この実施形態の工作機械は、前記基本構造の工作機械本体1に、ワーク支持手段21の中心相当位置Xwと工具支持手段22の刃先相当位置Xtとの間の、主軸軸心Oに直交する方向(X方向)の距離であるワーク中心・刃先間距離Lの変位量ΔL(図示せず)を計測する変位計測手段30を設けたものである。ワーク支持手段21のワーク支持面21aは、図示の例では主軸6に設けられたチャック17のワーク着座面である。この例では、ワーク支持面21aの中心は、ワーク支持手段21の変位量計測方向(この例ではX軸方向)の中心となる。
 ワーク支持手段21の中心相当位置Xwは、変位量の計測方向(この例ではX軸方向)において、ワーク支持手段21の中心と見なせる位置であり、変位量の計測方向と直交する方向である上下方向又は前後方向に対して離れていても良い。このワーク支持手段21の中心相当位置Xwは、変位量の計測方向(X軸方向)にはワーク支持手段21の中心にあって、かつワーク支持手段21上であるか、またはワーク支持手段21と一体に前記直交方向(X軸方向)に移動する部材上の位置である。この実施形態では、ワーク支持手段21の中心相当位置Xwは、図2のように、送り台4の前面(Z軸方向の刃物台7側の面)における主軸軸心Oと同じX軸方向位置である。
 また、刃先相当位置Xtは、変位量の計測方向において、多少の位置の違いあっても良いが、工具18の刃先の位置に近くて、熱変位の影響については刃先位置を計測するのと同等に扱える位置であり、この実施形態では、タレットからなる刃物台7の前面(X軸方向の送り台7側の面)位置とされている。刃先相当位置Xtと実際の刃先位置と間のX軸方向の距離L0(図3)は、例えば固定値として演算する。
 図1(B),図4に斜線を施した範囲(加工移動領域)Eは、加工のためのワーク支持手段21と工具支持手段22の相対移動によってワークWおよび工具18が相対移動する領域である。変位計測手段30は、前記ワーク支持手段21の中心相当位置Xwと刃先相当位置Xt間の連続した経路C上に設けられ、この連続した経路Cの変位量を計測することにより、前記ワーク中心・刃先間距離Lの変位量ΔLを計測する。経路Cは、前記加工移動領域Eを避けた領域を通る。 この経路Cは、平面視で後述の基準フレーム40上に沿う経路であり、経路部分C1~C3からなる。変位計測手段30は、低熱膨張材の基準フレーム40と、この基準フレーム40に設けられたワーク側(直交方向)および工具側(軸心方向)の直線位置検出手段31,32とで構成される。
 基準フレーム40の材質は、ベッド3よりも熱膨張係数の低い材料である低熱膨張材、例えばインバー(不変鋼とも言う)等の合金材料、特にスーパーインバーやステンレスインバー等の合金材料からなる。基準フレーム40は、インバーの他に、インバーと同等以下の熱膨張係数の合金材料でも、セラミックス等であっても良い。
 基準フレーム40は、固定基台であるベッド3に、基準フレーム40の一部となる1箇所の取付部で固定して設置される。具体的には、基準フレーム40は、ベッド3の上面に下端が固定された1本の支柱部40cを有し、この支柱部40cの下端が前記取付部を構成する。上記「1箇所の」とは、ある程度の範囲を持っていても、分岐された2つの部分等であっても良く、基準フレーム40の全体として、両端固定のような複数箇所ではなく、概念的に1点支持と見なせる箇所で固定されていることを言う。また、基準フレーム40のベッド3への固定箇所は1箇所であることが望ましいが、基準フレーム40に対するベッド30の熱伸縮等を阻害しないスライド構造等で他の箇所が支持されていても良い。
 基準フレーム40は、主軸軸心Oに沿う方向に延びる軸心方向フレーム部40aと、主軸軸心Oに対して直交する方向に延びる直交方向フレーム部40bとを有し、平面視でL字状である。これら、軸心方向フレーム部40aおよび直交方向フレーム部40bは、前記支柱部40cから片持ち状に延びるように設けられている。軸心方向フレーム部40aは、タレットからなる刃物台7の回転中心の高さで、支持台26の背面(後面)側に位置している。直交方向フレーム部40bは、送り台4の高さ位置で、送り台4の前面に近づけて配置されている。軸心方向フレーム部40aのZ軸方向中間部と支柱部40cの下部とは、補強用の斜材部40eにより連結されている。基準フレーム40は、その全体が前記低熱膨張材で構成されている。
 前記各直線位置検出手段31,32は、いずれも、主軸軸心Oに直交する方向(X軸方向)に延びる第1および第2スケール31a,32aと、この第1および第2スケール31a,32aを読み取る第1および第2読取ヘッド31b,32bとでなる。第1および第2スケール31a,32aは、検出可能な目盛を設けた部材である。各直線位置検出手段31,32は、光学式の検出手段と磁気式の検出手段とのいずれであっても良いが、この例では光学式の検出手段とされている。
 ワーク側の直線位置検出手段31は、第1スケール31aが直交方向フレーム部40bに設けられ、第1読取ヘッド31bが送り台4の前面における前記ワーク支持面21aの中心相当位置Xwに設置されている。第1スケール31aは、直交方向フレーム部40bに直接に目盛りを施したものであっても、また目盛りが形成された目盛り形成部材(図示せず)を直交方向フレーム部40bに貼り付けたものであっても良い。目盛り形成部材を用いる場合、熱膨張係数が基準フレーム40と同等の材料とされる。第1スケール31aの長さは、熱変位等によるワーク中心・刃先間距離Lの変位量ΔLの計測時に、その変位量が計測できる長さであれば良く、したがって短いものであっても良い。変位量ΔLの計測を行う箇所が、主軸直交方向(X軸方向)の複数箇所である場合は、第1スケール31aの長さは、それら複数箇所に渡る長さとされるか、または変位量ΔLが計測可能な長さである短いものを複数箇所に分けて設けられる。
 なお、第1スケール31aは上記のように短いもので良いため、送り台4に第1スケール31aを設け、直交方向フレーム部40bに第1読取ヘッド31bを設けても良い。この他に、第1スケール31aは、送り台4の移動範囲の全域に渡って設けたものであっても良く、その場合、X軸方向の位置制御をフルクローズド制御とできるが、長尺を計測できるワーク側の直線位置検出手段31は高精度なものが得難く、コストや精度面から、第1スケール31aは変位量ΔLが計測可能な範囲で短いものが好ましい。
 工具側の直線位置検出手段32は、第2スケール32aが工具支持手段22に設けられ、第2読取ヘッド32bが基準フレーム40の軸心方向フレーム部40aに設けられている。工具側の直線位置検出手段32も、光学式と磁気式のいずれの位置センサであって良いが、この例では光学式の位置センサが用いられている。
 工具側の直線位置検出手段32は、具体的には次のように設けられる。第2スケール32aは、刃物台7に固定された軸部材32aaの先端部に設けられている。軸部材32aaは、刃物台7の中空軸7c内に挿通されて基端部が刃物台7の回転部分の前板部7d(図3)に回転中心軸Tと同心に固定され、先端部が中空軸7cから突出している。この突出した先端部に第2スケール32aが設けられている。軸部材32aaは、基準フレーム40と同じかまたは同程度の熱膨張係数の材料からなり、基端の固定部分以外は工具支持手段22に対して軸方向に非拘束である。第2スケール32aは、軸部材32aaの周方向の一部かまたは全周に渡って目盛りが設けられる。第2読取りヘッド32bには、図示の例では、軸部材32aaが挿通自在に設けられているが、軸部材32aaの一部の面に対向するように設けられたものであっても良い。
 図1(A)において、制御系を説明する。制御装置2は、コンピュータ式の数値制御装置およびプログラマブルコントローラからなり、プログラム記憶手段41に記憶された加工プログラム42を、CPU(中央処理装置)等からなる演算制御部43で実行することにより、工作機械本体1の各部を制御する。制御装置2は、演算制御部43の他にX軸の移動制御手段44とZ軸の移動制御手段45を有し、かつシーケンス制御部(図示せず)を有する。加工プログラム42は、NCコード等により記述されたX軸移動命令Rx、およびZ軸移動命令Rzや、各部のシーケンス制御命令(図示せず)を有しており、演算制御部43は各命令を記述順に読み出す。その読み出されたシーケンス制御命令は、前記シーケンス制御部に転送され、シーケンス制御部によって制御が実行される。
 演算制御部43は、加工プログラム42におけるX軸移動命令Rxを、X軸移動制御手段44にX軸の位置指令として与え、Z軸移動命令Rzを、Z軸移動制御手段45にX軸の位置指令として与える。後述の補正手段47を機能させる場合は、補正後の位置指令を与える。
 X軸の移動制御手段44およびZ軸の移動制御手段45は、それぞれX軸およびZ軸のサーボコントローラからなり、演算制御部43から与えられたX軸およびZ軸の指令位置となるように、X軸サーボモータ10およびZ軸サーボモータ14を制御する。このときX軸,Z軸の移動制御手段44,45は、X軸サーボモータ10およびZ軸サーボモータ1に付属のパルスコーダまたはエンコーダからなる位置検出器10a,14aの位置検出値を用い、セミクローズループ制御となるフィードバック制御を行う。
 演算制御部43には、読み取り制御手段46および補正手段47が設けられている。
 読み取り制御手段46は、X軸サーボモータ10の位置検出器10aで検出される位置が定められた検出位置にあり、かつ検出時として定められた時に、前記各直線位置検出手段31,32の第1および第2読取ヘッド31b,32bの検出値を読み取る手段である。前記の「定められた検出位置」は、読み取り制御手段46に任意に定めておけば良いが、例えば、主軸6のチャック17で支持されたワークWを工具18によって加工できる位置に、工具18が主軸6に対して位置する範囲内の位置で、任意に定めた位置である。
 具体的には、主軸6の軸心Oと工具18の刃先の位置とのX軸方向の距離Lが、主軸6のチャック17に支持されるワークWの半径内、またはこの半径に任意の余裕距離を加えた半径内において、任意に定めた位置である。これから加工しようとするワークWの周面の加工仕上げ径となる位置であっても良い。この任意に定める位置は、固定の値としても良く、または加工プログラム42や操作盤等からの操作で変えられた値であっても良い。
 上記の「検出時として定められた時」は、加工プログラム42等によって任意に定めれば良いが、例えばワークWを加工する直前や、一つのワークWを加工して次のワークWを加工する間における定められた時である。主軸6にワークWが支持されている状態で読み取るときは、工具18がワークWに干渉しないように、工具18とワークWとをZ軸方向に離した状態、または工具18がワークWに接触していないが近接した位置にあるとき、つまり上記の「任意の余裕距離」の範囲にあるときである。
 補正手段47は、加工プログラム41のX軸移動命令で与えられるX軸指令値を、両直線位置検出手段31,32で検出された変位量ΔLで補正し、X軸の移動制御手段44に与える処理を行う。補正量は、検出された変位量ΔL、すなわち両直線位置検出手段31,32でそれぞれ検出された変位量ΔL1,ΔL2の和ΔL(=ΔL1+ΔL2)をそのままオフセット値として補正しても良く、検出された変位量ΔLに定められた係数を掛けた値をオフセット値として補正しても良い。また、各直線位置検出手段31,32で変位検出を行ったときの主軸軸心Oと工具刃先位置との距離(X軸サーボモータ10の位置検出器10aで検出した位置)と、ワークWの加工面の半径との差に応じて、前記の検出された変位量ΔLに係数を掛けて補正量としても良い。なお、各直線位置検出手段31,32で計測される変位量は、例えば、工作機械が常温(摂氏20度)であるときに、零であるとする。
 上記構成の工作機械による加工方法の例を説明する。複数のワークWの切削加工を順次行う場合、主軸6のチャック17からワークWが搬出されて次のワークWが搬入されるまでの間に、上記の定められた検出位置に刃物台7を主軸6に対して相対移動させ(この例では主軸6が移動)、上記各直線位置検出手段31,32で変位量ΔLの計測を行う。あるいはこれから加工しようとするワークWが主軸6のチャック17に把持されている状態で、変位量ΔLの計測を行う。この計測された変位量ΔLで、加工時における、加工プログラム41のX軸移動命令RxのX軸指令値を補正手段47により補正し、X軸方向の切り込みの制御を行う。
 この構成の工作機械によると、変位計測手段30となる各直線位置検出手段31,32は、ワーク支持手段21の中心相当位置Xwと刃先相当位置Xt間の連続した経路C上にあってこの連続した経路Cの変位量を計測する。このため、迂回した経路上での計測とはなるが、工作機械の構造や制御上の限度を考慮した実質上で、ワークWの中心と工具18の刃先間の変位量を直接に計測する場合と同等の計測が行える。このように、主軸軸心Oに直交する方向(X軸方向)のワークW表面と工具18の刃先間の変位量を、直接に計測する場合と同等に計測できるため、切り込み方向についての加工精度を向上させることができる。
 また、変位量を計測する連続した経路Cは、加工のためのワーク支持手段21と工具支持手段22の相対移動によってワークWおよび工具18が相対移動する領域である加工移動領域Eを避けた領域における経路であるため、ワークWや工具18との干渉を避けて、変位計測手段30を配置することができる。
 X軸の移動制御手段44による変位計測手段30の計測値を用いたX軸移動機構12の位置制御は、変位計測手段30の各直線位置検出手段31,32の計測値を単に加算するか、または係数を掛けて値で補正するオフセット補正とされる。そのため、温度計測値から熱変位補正を行うものと異なり、精度の良い補正が簡単な演算で済む。
 変位計測手段30を構成するワーク側の直線位置検出手段31および工具側の直線位置検出手段32は、固定基台であるベッド3に1箇所で設置された低熱膨張材からなる共通の基準フレーム40に設置したため、ベッド3やX軸移動機構12の熱変位に係わらずに、ワーク側の直線位置検出手段31と工具側の直線位置検出手段32の検出値から、ワークWと工具刃先間の距離を精度良く検出できる。すなわち、理想的には、熱変形しない基準フレーム40および各直線位置検出手段31,32で、移動や熱変形後のワーク位置と工具位置を検出することになり、ワークWと工具刃先間の距離を精度良く検出できる。
 そのため、ワーク側の直線位置検出手段31および工具側の直線位置検出手段32の両方の検出値を用いてX軸指令値を補正する補正手段47を設けたことで、温度検出値による熱変位補正を行うことなく、精度良く加工することででき、制御系も簡素になる。基準フレーム40は、ベッド3に1箇所で固定されているため、ワーク支持手段21と工具支持手段22間に作用する切削反力等の加工による力を受けず、またベッド3の変形の影響を受けず、そのため加工力で変形せず、これによっても、より精度良く位置検出が行えて、精度良く加工することができる。
 また、旋盤では、切り込み方向の加工精度と送り方向の加工精度のうち、切り込み方向の寸法に、より高い精度が求められる。この実施形態の場合、ワーク側の直線位置検出手段31および工具側の直線位置検出手段32が、いずれも主軸中心軸Oに直交する方向(X軸方向)の位置を検出するものであるため、高精度化の要求の強い切り込み方向の位置制御が高精度に行える。切り込み方向と送り方向の両方を、基準フレーム40に直線位置検出手段を設けて検出することは、構成が複雑になって困難な場合があるが、この実施形態では切り込み方向のみを各直線位置検出手段31,32で検出し、送り方向につてはサーボモータ14に付属の位置検出器14aを用いて制御しているため、構成の複雑化を回避して必要な精度を満足することができる。なお、この実施形態では、Z軸方向の熱変位補正は不要であるが、適宜のリニアライズ手段や、補正手段を追加して設けても良い。
 また、この実施形態では、変位計測手段30は補正に用いるようにしたため、変位計測手段30で用いてフルクローズド制御するものと異なり、変位計測手段30となる各直線位置検出手段31,32が短いもので済む。そのため、安価で高精度の各直線位置検出手段31,32を入手して用いることができる。
 上記実施形態では、主軸移動型の旋盤に適用した場合につき説明したが、図5に示す刃物台移動型の旋盤や、図6,図7にそれぞれ示す主軸・刃物台双方移動型の旋盤にもこの発明を適用することができる。なお、以下の各実施形態において、図1~図4に示した第1実施形態と同様の部分は、同一の符号を付してその説明を省略する。
 図5は、刃物台移動型の旋盤である工作機械で適用した第2実施形態である。この実施形態では、ワーク支持手段21が固定基台であるベッド3上に位置固定に設置され、工具支持手段22が、ベッド3上で主軸軸心Oと直交する方向(X軸方向)に移動する送り台27上に、主軸軸心Oに沿う方向に移動可能に設置されている。ワーク側の直線位置検出手段31は、前記第1スケール31aが基準フレーム40の直交方向フレーム部40bに設けられ、第1読取ヘッド31bがワーク支持手段21に設けられている。工具側の直線位置検出手段32は、第2読取ヘッド32bが基準フレーム40の軸心方向フレーム部40aの先端に設けられ、第2スケール32aが工具支持手段22に設けられている。
 この構成の場合、刃物台移動型の工作機械において、変位計測手段によりワーク中心と工具18の刃先間の変位量を、直接に計測する形態にできるだけ近い形態で計測できて、加工精度の向上を図ることが実現される。
 図6は、主軸・刃物台双方移動型で主軸6が主軸軸心Oと直交する方向(X軸方向)に移動する旋盤からなる工作機械に適用した第3実施形態である。この実施形態ではワーク支持手段21の主軸台5が固定基台であるベッド3上に主軸軸心Oと直交する方向に移動自在に設置され、工具支持手段22は、ベッド3上で主軸軸心Oに沿う方向に移動自在に設置されている。ワーク側の直線位置検出手段31は、第1スケール31aが基準フレーム40の直交方向フレーム部40bに設けられ、第1読取ヘッド31bがワーク支持手段21に設けられている。工具側の直線位置検出手段32は、第2読取ヘッド32bが基準フレーム40の軸心方向フレーム部40aに設けられ、第2スケール32aが工具支持手段22に設けられている。この構成の場合も、工具側の直線位置検出手段32における第2読取ヘッド32bは、刃物台7のZ軸方向移動を妨げないように、第1スケール31aと共に軸心方向フレーム部40aに沿って移動自在なように、案内レール29によって案内される。
 この構成の場合、主軸6が主軸軸心Oと直交する方向に移動する、主軸・工具双方工具移動型の工作機械において、ワーク中心と工具18の刃先間の変位量を、直接に計測する形態にできるだけ近い形態で計測できて、加工精度の向上を図ることが実現される。
 図7は、主軸・刃物台双方移動型で主軸6が主軸軸心Oに沿う方向(Z軸方向)に移動する旋盤からなる工作機械に適用した第4実施形態である。この実施形態では、ワーク支持手段21の主軸台5が固定基台であるベッド3上に主軸軸心Oに沿う方向(Z軸方向)に移動自在に設置され、工具支持手段22が、ベッド3上で主軸軸心Oと直交する方向(X軸方向)に移動自在に設置されている。ワーク側の直線位置検出手段31は、第1スケール31aが基準フレーム40の直交方向フレーム部40bに設けられ、第1読取ヘッド31bがワーク支持手段21に設けられている。工具側の直線位置検出手段32は、第2読取ヘッド32bが基準フレーム40に設置され第2スケール32aが工具支持手段22に設けられている。
 この構成の場合、主軸6が主軸軸心Oに沿う方向に移動する、主軸・工具双方工具移動型の工作機械において、ワーク中心と工具18の刃先間の変位量を、直接に計測する形態にできるだけ近い形態で計測できて、加工精度の向上を図ることが実現される。
 なお、図6~図7の第2および第3実施形態において、第1および第2スケール31a,32aと第1および第2読取ヘッド31b,32bとを設ける箇所は、基準フレーム40側に設けるかワーク支持手段21等の被計測側に設けるかを、互いに逆にしても良い。また、変位計測手段30は、上記各実施形態ではワーク側の直線位置計測手段31と工具側の直線位置計測手段32との2つの検出手段で構成したが、例えば、これら2つに、基準フレーム40の変位を検出する手段を加えるなどして、3つ以上の検出手段で構成してもよく、また変位計測手段30の全体で検出手段を一つだけとしても良い。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。例えば、上記各実施形態は、タレット型の旋盤に適用した場合につき説明したが、タレット型以外の、例えばくし歯型の旋盤にも適用できる。さらに、旋盤以外の工作機械にも、この発明を適用することができる。したがって、そのような変更および修正は、添付の特許請求の範囲から定まるこの発明の範囲内のものと解釈される。
1 工作機械本体
2 制御装置
3 ベッド(固定基台)
4 送り台
5 主軸台
6 主軸
7 刃物台
10 サーボモータ
10a 位置検出器
11 送りねじ機構
12 X軸移動機構
14 サーボモータ
14a 位置検出値
16 Z軸移動機構
17 チャック
18 工具
21 ワーク支持手段
21a ワーク支持面
22 工具支持手段
30 変位計測手段
31 直交方向の直線位置検出手段(ワーク側の直線位置検出手段)
32 軸心方向の直線位置検出手段(工具側の直線位置検出手段)
31a 第1スケール
31b 第1読取ヘッド
32a 第2スケール
32b 第2読取ヘッド
32aa 軸部材
40 基準フレーム
40a 直交方向フレーム部
40b 軸心方向フレーム部
43 演算制御部
44 X軸移動制御手段
45 Z軸移動制御手段
46 読み取り制御手段
47 補正手段
C 経路
E 領域
L ワーク中心・刃先間距離
O 主軸軸心
Xt 刃先相当位置
Xw 中心相当位置
W ワーク

Claims (8)

  1.  ワークを支持するワーク支持手段と工具を支持する工具支持手段とを、固定基台上に互いに切り込み方向に沿って相対的に進退可能に設置し、前記ワーク支持手段と工具支持手段とを相対的に進退させる移動機構を設けた工作機械において、
     前記ワーク支持手段の中心相当位置と工具支持手段の刃先相当位置との間の、前記切り込み方向の距離であるワーク中心・刃先間距離の変位量を計測する変位計測手段を設け、
     この変位計測手段は、前記ワークおよび工具が相対移動する加工移動領域を避けた前記ワーク支持手段の中心相当位置と刃先相当位置間の連続した経路上に設けられてこの連続した経路の変位量を計測することにより、ワーク中心・刃先間距離の変位量を計測する、
     工作機械。
  2.  前記変位計測手段は、前記固定基台よりも熱膨張係数の低い低熱膨張材からなり前記連続した経路上に位置して前記固定基台に設置された基準フレームと、前記切り込み方向に延びるスケールおよびこのスケールを読む読取ヘッドを有しこれらスケールおよび読取ヘッドのいずれか一方が前記基準フレームに設けられた直線位置検出手段とでなる請求項1記載の工作機械。
  3.  前記基準フレームが、前記ワーク支持手段の中心の軸心に沿う方向に延びる軸心方向フレーム部と前記軸心と直交する方向に延びる直交方向フレーム部とを有し、前記直線位置検出手段として、前記ワーク支持面の中心相当位置と前記基準フレームとの間の変位量を計測するワーク側の直線位置検出手段と、前記刃先相当位置と前記基準フレームとの間の変位量を計測する工具側の直線位置検出手段とを有する請求項2記載の工作機械。
  4.  前記工具支持手段が前記固定基台上に位置固定に設置され、前記ワーク支持手段が、前記固定基台上で前記軸心と直交する方向に移動する送り台上に、前記軸心に沿う方向に移動可能に設置され、
     前記ワーク側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記直交方向フレーム部に設けられ、他方が前記送り台に設けられ、
     前記工具側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記軸心方向フレーム部に設けられ、他方が前記工具支持手段に設けられた請求項3記載の工作機械。
  5.  前記ワーク支持手段が前記固定基台上に位置固定に設置され、前記工具支持手段が、前記固定基台上で前記軸心と直交する方向に移動する送り台上に、前記軸心に沿う方向に移動可能に設置され、
     前記ワーク側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記直交方向フレーム部に設けられ、他方が前記ワーク支持手段に設けられ、
     前記工具側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記軸心方向フレーム部に設けられ他方が前記工具支持手段に設けられた請求項3記載の工作機械。
  6.  前記ワーク支持手段が前記固定基台上に前記軸心と直交する方向に移動自在に設置され、前記工具支持手段が、前記固定基台上で前記軸心に沿う方向に移動自在に設置され、
     前記ワーク側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記直交方向フレーム部に設けられ、他方が前記ワーク支持手段に設けられ、
     前記工具側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記軸心方向フレーム部に設けられ他方が前記工具支持手段に設けられた請求項3記載の工作機械。
  7.  前記ワーク支持手段が前記固定基台上に前記軸心に沿う方向に移動自在に設置され、前記工具支持手段が、前記固定基台上で前記軸心と直交する方向に移動自在に設置され、
     前記ワーク側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームの前記直交方向フレーム部に設けられ、他方が前記ワーク支持手段に設けられ、
     前記工具側の直線位置検出手段は、前記スケールおよび読取ヘッドのいずれか一方が前記基準フレームに設置され他方が前記工具支持手段に設けられた請求項3記載の工作機械。
  8.  前記移動機構を制御する制御装置を設け、この制御装置は、前記ワーク支持手段と工具支持手段とを前記軸心と直交する方向に相対的に進退させるモータを制御するX軸の移動制御手段と、加工プログラムの移動命令の指令値により前記X軸の移動制御手段へ指令値を与える演算制御部とを有し、前記演算制御部に、前記変位計測手段の変位量の計測値によって前記X軸の移動制御手段へ与える指令値を補正する補正手段を有する請求項1ないし請求項7のいずれかに記載の工作機械。
PCT/JP2012/076087 2011-11-16 2012-10-09 工作機械 WO2013073317A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013544186A JP5673855B2 (ja) 2011-11-16 2012-10-09 工作機械
KR1020147011094A KR101533303B1 (ko) 2011-11-16 2012-10-09 공작 기계
EP12849603.1A EP2781303B1 (en) 2011-11-16 2012-10-09 Machine tool
CN201280056084.XA CN103945981B (zh) 2011-11-16 2012-10-09 机床
US14/274,980 US9658610B2 (en) 2011-11-16 2014-05-12 Displacement and position measurement in machine tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011250592 2011-11-16
JP2011-250592 2011-11-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/274,980 Continuation US9658610B2 (en) 2011-11-16 2014-05-12 Displacement and position measurement in machine tool

Publications (1)

Publication Number Publication Date
WO2013073317A1 true WO2013073317A1 (ja) 2013-05-23

Family

ID=48429387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076087 WO2013073317A1 (ja) 2011-11-16 2012-10-09 工作機械

Country Status (6)

Country Link
US (1) US9658610B2 (ja)
EP (1) EP2781303B1 (ja)
JP (1) JP5673855B2 (ja)
KR (1) KR101533303B1 (ja)
CN (1) CN103945981B (ja)
WO (1) WO2013073317A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021142626A (ja) * 2020-03-13 2021-09-24 株式会社滝澤鉄工所 工作機械

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105397568A (zh) * 2015-12-24 2016-03-16 湖州以创精工机械有限公司 一种车床车刀中心高误差的测算方法
KR101804540B1 (ko) 2016-09-06 2017-12-04 두산중공업 주식회사 선반 가공 장치 및 방법
EP3338946B1 (en) * 2016-12-22 2019-07-10 National Chung Shan Institute of Science and Technology Measurement, calibration and compensation system and method for machine tool
JP2019096219A (ja) * 2017-11-27 2019-06-20 ファナック株式会社 工作機械の制御装置
CN108296877A (zh) * 2018-02-24 2018-07-20 沈阳富创精密设备有限公司 一种热膨胀系数在高精度加工中的应用
CN108838627B (zh) * 2018-07-05 2020-04-28 大连理工大学 一种用于直观检测立式铣床热误差变化的样件加工方法
CN109604642A (zh) * 2018-11-30 2019-04-12 芜湖常瑞汽车部件有限公司 一种轴类零件自动加工装置及方法
JP6940474B2 (ja) * 2018-12-05 2021-09-29 ファナック株式会社 工作機械
JP7473306B2 (ja) * 2019-08-14 2024-04-23 ファナック株式会社 機上測定装置、工作機械、および、機上測定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144191A (ja) 2000-11-02 2002-05-21 Murata Mach Ltd 工作機械
JP2011093069A (ja) * 2009-11-02 2011-05-12 Murata Machinery Ltd 工作機械
JP2011093068A (ja) * 2009-11-02 2011-05-12 Murata Machinery Ltd 工作機械および変位計測器
JP2011240423A (ja) * 2010-05-17 2011-12-01 Murata Machinery Ltd 工作機械

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3629132B2 (ja) 1997-01-31 2005-03-16 オークマ株式会社 工具刃先位置計測装置
EP1327495B1 (en) * 2000-10-16 2008-11-12 Makino Milling Machine Co. Ltd. Measuring method and device, machine tool having such device, and work processing method
US7104169B2 (en) * 2002-10-17 2006-09-12 Toyoda Koki Kabushiki Kaisha Machine tool and bed structure thereof
JP2004322255A (ja) 2003-04-24 2004-11-18 Murata Mach Ltd 直線位置計測器付き工作機械
JP2005028482A (ja) * 2003-07-09 2005-02-03 Mori Seiki Co Ltd 旋盤
JP2006212765A (ja) * 2005-02-07 2006-08-17 Enshu Ltd 工作機械の熱変位補正方法
JP4846432B2 (ja) * 2006-04-28 2011-12-28 コマツNtc株式会社 工作機械における主軸装置の変位及び振れ測定装置
JP2009214283A (ja) * 2008-03-13 2009-09-24 Brother Ind Ltd 工作機械の熱変位補正方法、熱変位補正装置及びその熱変位補正用プログラム
DE102010003303A1 (de) * 2010-03-25 2011-09-29 Deckel Maho Seebach Gmbh Verfahren und Vorrichtung zum Kompensieren einer temperaturabhängigen Lageveränderung an einer Werkzeugmaschine
JP5437891B2 (ja) * 2010-04-12 2014-03-12 Dmg森精機株式会社 工作機械における被加工物計測装置およびその方法
CN101844318B (zh) * 2010-05-24 2013-04-17 四川长征机床集团有限公司 机床位置环热变形的补偿方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002144191A (ja) 2000-11-02 2002-05-21 Murata Mach Ltd 工作機械
JP2011093069A (ja) * 2009-11-02 2011-05-12 Murata Machinery Ltd 工作機械
JP2011093068A (ja) * 2009-11-02 2011-05-12 Murata Machinery Ltd 工作機械および変位計測器
JP2011240423A (ja) * 2010-05-17 2011-12-01 Murata Machinery Ltd 工作機械

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2781303A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021142626A (ja) * 2020-03-13 2021-09-24 株式会社滝澤鉄工所 工作機械

Also Published As

Publication number Publication date
EP2781303A1 (en) 2014-09-24
KR20140078705A (ko) 2014-06-25
JP5673855B2 (ja) 2015-02-18
CN103945981A (zh) 2014-07-23
EP2781303A4 (en) 2015-04-22
CN103945981B (zh) 2016-02-24
EP2781303B1 (en) 2016-03-02
US9658610B2 (en) 2017-05-23
KR101533303B1 (ko) 2015-07-02
US20140249664A1 (en) 2014-09-04
JPWO2013073317A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5673855B2 (ja) 工作機械
JP5545025B2 (ja) 工作機械
KR101344892B1 (ko) 공작 기계
US8152422B2 (en) Control method for a machine tool with numerical control
JP5897891B2 (ja) 工作機械
EP1203632B1 (en) Machine tool with tool position control
JP2019000945A (ja) 工作機械のワーク加工方法
WO2011052441A1 (ja) 工作機械および変位計測器
JP6168396B2 (ja) 工作機械
JP5846400B2 (ja) 工作機械とその熱変形の補正方法
JP4799472B2 (ja) 工具の刃先位置の測定方法及び装置、ワークの加工方法並びに工作機械
JP2013255982A (ja) 工作機械とその熱変形の補正方法
JP6842146B2 (ja) 工作機械の加工誤差の補正方法
JP2018079526A (ja) 工作機械及び加工方法
JP6913920B2 (ja) 工作機械のワーク加工方法
JP2009172716A (ja) 複数の主軸を備えた旋盤
JP4082598B2 (ja) 数値制御工作機械の熱変位補正方法及び装置
JP2004322255A (ja) 直線位置計測器付き工作機械
JP5531640B2 (ja) 工作機械の送り制御装置
JP2011093065A (ja) 工作機械
JP5517483B2 (ja) 旋盤及び旋盤における刃物台位置の補正方法
JP2020059071A (ja) 工作機械及び加工方法
JP2004148422A (ja) 多軸加工装置、多軸加工装置での加工方法、プログラム
JP2003285244A (ja) Nc旋盤における熱変位量補正方法及びそれを用いたnc旋盤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280056084.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12849603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013544186

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147011094

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012849603

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE