WO2011052407A1 - 切替回路、制御装置および発電システム - Google Patents
切替回路、制御装置および発電システム Download PDFInfo
- Publication number
- WO2011052407A1 WO2011052407A1 PCT/JP2010/068167 JP2010068167W WO2011052407A1 WO 2011052407 A1 WO2011052407 A1 WO 2011052407A1 JP 2010068167 W JP2010068167 W JP 2010068167W WO 2011052407 A1 WO2011052407 A1 WO 2011052407A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- power generation
- unit
- storage unit
- generated
- Prior art date
Links
- 238000010248 power generation Methods 0.000 claims description 348
- 238000005259 measurement Methods 0.000 claims description 83
- 238000012790 confirmation Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 8
- 230000005611 electricity Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 description 61
- 230000008569 process Effects 0.000 description 58
- 238000012986 modification Methods 0.000 description 57
- 230000004048 modification Effects 0.000 description 57
- 230000007423 decrease Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005856 abnormality Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910001416 lithium ion Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000001151 other effect Effects 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000009118 appropriate response Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
- H02J7/35—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02016—Circuit arrangements of general character for the devices
- H01L31/02019—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02021—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/46—Accumulators structurally combined with charging apparatus
- H01M10/465—Accumulators structurally combined with charging apparatus with solar battery as charging system
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a switching circuit, a control device, and a power generation system, and in particular, a switching circuit, a control device, and a switching portion used in a power generation system including a plurality of power generation modules generating power using natural energy and a storage unit. Relates to a power generation system equipped with
- the electric power generation system provided with the photovoltaic power generation module which generate
- it is required to efficiently use the power generated in the solar power generation module.
- JP 2009-153306 A In the power generation system of JP 2009-153306 A, a plurality of solar power generation modules are constantly connected to the storage unit. Further, in the power generation system disclosed in JP 2009-153306 A, a plurality of solar power generation modules are connected in series, a plurality of solar power generation modules are connected in series with each other, and a plurality of solar power generation modules are connected. Can be switched to a parallel connection state in which they are connected in parallel to one another. In the above-mentioned JP 2009-153306 A, when the output voltage of each photovoltaic power generation module becomes smaller than the reference voltage of the storage unit, switching from the parallel connection state to the series connection state makes the reference voltage of the storage unit Since a large output voltage can be obtained, it is possible to charge the storage unit efficiently.
- connection state of a plurality of solar cells parallel connection, series connection, combination connection of parallel connection and series connection, disconnection of a specific solar cell, etc.
- a switching circuit capable of switching is known.
- Such a switching circuit is disclosed, for example, in Japanese Patent Laid-Open No. 11-103537.
- JP-A-11-103537 it is possible to output a voltage according to the load by switching the connection state of the plurality of solar cells according to the load. Further, it is described in the above-mentioned Japanese Patent Application Laid-Open No. 11-103537 that it may be outputted to a load via a power storage device.
- the present invention has been made to solve the above-described problems, and one object of the present invention is to provide a switching circuit capable of efficiently utilizing generated power in a plurality of photovoltaic modules. It is providing a control device and a power generation system.
- the switching circuit according to the first aspect of the present invention is provided with a power generation output unit configured to include a plurality of power generation modules that generate power using natural energy, and power generated by the power generation module.
- a switching circuit capable of switching connection states of a plurality of power generation modules, wherein at least a part of the plurality of power generation modules are connected in series with each other A connected state and at least a part of the plurality of power generation modules are connected in parallel to one another, or a generated power output unit is connected to the power storage unit such that generated power is supplied from the one power generation module to the power storage unit; It is a switching circuit for switching between 2 connection states.
- the “power converter” is a concept including a DC-DC converter, a DC-AC converter, and an AC-AC converter.
- a control device is a generated power output unit configured to include a plurality of power generation modules that generate power using natural energy, and a switching unit that switches connection states of the plurality of power generation modules.
- a control device used in a power generation system including a power converter to which power generation is supplied in the power generation module and a power storage unit, wherein at least a part of the plurality of power generation modules are connected in series and the power generation output unit is electric power
- the generated power output unit is configured such that the first connection state connected to the converter and at least a part of the plurality of power generation modules are connected in parallel to one another or the generated power is supplied to the storage unit from one power generation module
- the switching unit controls to switch between the second connection state connected to the storage unit and the second connection state.
- a power generation system is a first generated power output unit configured to include a plurality of power generation modules that generate power using natural energy, and a switching unit that switches connection states of the plurality of power generation modules. And a power converter and storage unit to which the generated power in the power generation module is supplied, wherein at least a part of the plurality of power generation modules are connected in series with each other in the switching unit, and the first generated power output unit is a power converter
- the first generated power output unit stores power so that the first connection state to be connected and at least a part of the plurality of power generation modules are connected in parallel to each other, or that one power generation module supplies generated power to the power storage unit. It is comprised so that switching is possible with the 2nd connection state connected to a part.
- the present invention in a configuration in which a plurality of power generation modules are selectively connected to the power storage unit and the power converter, generated power in the plurality of solar power generation modules can be efficiently utilized.
- the power generated by the power generation module can be supplied to each connection destination at a voltage of an appropriate magnitude according to the connection destination (either the power converter or the storage unit).
- the configuration of the power generation system can be simplified, and power loss due to the provision of the voltage converter can be prevented. It can also contribute effectively to the reduction of CO 2 emissions.
- FIG. 1st Embodiment of the present invention It is a block diagram showing composition of a power generation system by a 1st embodiment of the present invention. It is a figure for demonstrating the detailed structure of the generated power output part (series connection state) of the electric power generation system by 1st Embodiment shown in FIG. It is a figure for demonstrating the detailed structure of the generated power output part (parallel connection state) of the electric power generation system by 1st Embodiment shown in FIG. It is a figure for demonstrating the detailed structure of the generated power output part (series connection state) of the electric power generation system by the 1st modification of 1st Embodiment of this invention.
- the photovoltaic power generation system 1 includes a generated power output unit 2 that outputs power generated using sunlight and the power output by the generated power output unit 2.
- Storage unit 3 capable of storing electricity, inverter 4 connected to power system 50, and outputting power output from generated power output unit 2 to power system 50 so that reverse power flow is possible, generated power output unit 2
- a control unit 5 for controlling the storage unit 3 and the like.
- the inverter 4 is an example of the “power converter” in the present invention, and has a function of converting direct current power output from the generated power output unit 2 into alternating current.
- the control unit 5 is an example of the “control device” and the “control unit” in the present invention.
- the generated power output unit 2 selectively generates the generated power of the plurality of (five in the first embodiment) solar power generation modules 21 and the solar power generation module 21 connected to each other to the inverter 4 side or the storage unit 3 side. And a switching circuit unit 22 connected to be switchable (optionally).
- the generated power output unit 2 is an example of the “first generated power output unit” in the present invention
- the switching circuit unit 22 is an example of the “switching unit” and the “switching circuit” in the present invention.
- the photovoltaic power generation module 21 it is desirable for the photovoltaic power generation module 21 to use a solar cell having a small temperature coefficient (small change in characteristics due to temperature change) and a small seasonal fluctuation of the maximum output operating voltage.
- the solar cell having a small temperature coefficient include a solar cell using a-Si (thin film a-Si, a HIT solar cell, etc.) and a compound solar cell such as GaAs.
- the switching circuit unit 22 When connecting the generated power output unit 2 to the inverter 4 side, the switching circuit unit 22 electrically disconnects the connection between the generated power output unit 2 and the storage unit 3, and connects the generated power output unit 2 to the storage unit 3. When connecting to the side, the connection between the generated power output unit 2 and the inverter 4 is electrically disconnected. Further, when connecting the generated power output unit 2 to the inverter 4 side, the switching circuit unit 22 is configured such that the five solar power generation modules 21 are connected in series with each other for the connection state of the five solar power generation modules 21. It is possible to switch to the series connection state.
- the switching circuit unit 22 when connecting the generated power output unit 2 to the storage unit 3 side, the switching circuit unit 22 is configured such that the five solar power generation modules 21 are connected in parallel with each other for the connection state of the five solar power generation modules 21. It is possible to switch to the parallel connection state.
- the switching circuit unit 22 includes ten switch circuits 23.
- Each switch circuit 23 selectively connects the terminal 23a on the solar power generation module 21 side with the terminal 23b at the time of series connection and the connection between the terminal 23a at the solar power generation module 21 side and the terminal 23c at the time of parallel connection It is possible to switch to As shown in FIG. 2, when all the switch circuits 23 connect the terminal 23a on the solar power generation module 21 side and the terminal 23b at the time of serial connection, the five solar power generation modules 21 are connected in series with one another.
- the five photovoltaic power generation modules 21 connected in series are configured to be connected to the inverter 4 side. Thereby, the power of the voltage which becomes the total of the output voltage of each photovoltaic power generation module 21 is input to the inverter 4. In this series connection state, the photovoltaic power generation module 21 is electrically disconnected from the storage unit 3 side.
- the output from the inverter 4 to the bus 6 is designed to be, for example, an AC output of single-phase three-wire 200 V so as to be compatible with the use of household appliances (general load 60 described later).
- the input voltage from the generated power output unit 2 to the inverter 4 is preferably a DC voltage of 200 V or more and 300 V or less.
- a bus 6 connecting the inverter 4 and the electric power system 50 and a wire 7 connecting the generated power output unit 2 and the storage unit 3 are connected by a wire 9 via an AC-DC converter 8.
- AC-DC converter 8 AC-DC converter 8
- a diode 10 is provided which allows only the power flowing from the power system 50 to the storage unit 3.
- the generated power output unit 2 and the storage unit 3 are directly connected by the wiring 7 without a voltage converter such as a DC-DC converter.
- a general load 60 is connected to the bus 6 connecting the inverter 4 and the power system 50.
- the general load 60 is a device driven by an AC power supply.
- a specific load 70 is connected to the storage unit 3 via the DC-DC converter 11.
- the specific load 70 in the first embodiment is a device driven by a DC power supply.
- the specific load is a device that is required to be supplied with power from the power supply at all times, for example, a device that needs to be operated at all times, or a standby that can be driven immediately when an operation signal is input. Contains the necessary equipment.
- the power supply to the specific load 70 is performed by the storage unit 3 even when the power grid 50 fails, and the feeding is immediately stopped. There is no.
- the DC-DC converter 11 has a function of switching the connection so as to select one of the DC power from the storage portion 3 and the DC power from the wiring 12. Under normal conditions, DC power is selected from power storage unit 3 and the connection between power storage unit 3 and specific load 70 is electrically disconnected when power storage unit 3 charge decreases, etc. It is possible to connect
- connection switching function of the DC-DC converter 11 does not have to be incorporated in the DC-DC converter 11, and instead of the DC-DC converter 11, a DC-DC converter having no switching function, and its DC By providing a switch provided separately from the DC converter, it is possible to realize the same function as the DC-DC converter 11.
- the apparatus driven by DC power supply was shown as an example of the specific load 70 here, you may use the apparatus driven by AC power supply.
- an inverter is used instead of the DC-DC converter 11.
- wiring 12 is connected to system power supply 50 side than AC-DC converter 8, and when the charge amount of power storage unit 3 decreases, specific load is not performed in the inverter without performing AC-DC conversion. It may be configured to supply 70.
- devices driven by a DC power supply and an AC power supply may be mixed.
- a secondary battery for example, a lithium ion storage battery, a nickel hydrogen storage battery, or the like
- a lithium ion storage battery for example, a lithium ion storage battery, a nickel hydrogen storage battery, or the like
- the voltage of power storage unit 3 be lower.
- the specific load 70 connected to the storage unit 3 is often used with a relatively low voltage specification, it is desirable that the voltage of the storage unit 3 be low accordingly. Therefore, the charging voltage of power storage unit 3 is smaller than the desired input voltage (200 V or more and 300 V or less) required for inverter 4.
- the nominal voltage (charging voltage) of the storage unit 3 is selected to be lower than the nominal maximum output operating voltage of the photovoltaic power generation module 21. Further, in consideration of the generated voltage of the solar power generation module 21 for efficiently charging the storage portion 3 and the temperature dependency of the solar power generation module 21, the nominal voltage of the storage portion 3 is more preferably a nominal maximum It is selected to be 70% or more and 90% or less of the output operating voltage.
- the voltage of the storage unit 3 rises by about 10% over the nominal voltage depending on the charge amount. Therefore, a voltage about 10% higher than the nominal voltage is required to fully charge the battery, and the generated power drops sharply at a voltage higher than Vop, so 90 of the nominal maximum power operating voltage (Vop) Operation below% is preferable. It is also known that Vop decreases at high temperatures. Therefore, in order to maintain the voltage higher by 10% or more than the nominal voltage of the storage unit 3 even when the Vop decreases, the storage unit nominal voltage lower than 90% of the Vop is required. On the other hand, it is also known that the power generation efficiency of the photovoltaic power generation module 21 is reduced at an operating voltage deviated from Vop.
- the nominal maximum output operating voltage of the photovoltaic power generation module 21 is about 60 V
- the nominal voltage (charging voltage) of the storage unit 3 is about 48 V.
- the DC-DC converter can be made unnecessary when charging power storage unit 3, so a converter in the case of using a DC-DC converter It is possible to suppress the power loss inside. This enables high efficiency charging.
- the number of parts can be reduced while replacing the DC-DC converter is eliminated, it is expected that reliability can be improved, cost can be reduced, and long-term maintenance free can be realized by reducing the failure rate.
- control unit 5 controls switching circuit unit 22 of generated power output unit 2 based on the amount of power generation of generated power output unit 2, the amount of charge of power storage unit 3, the operating condition of inverter 4, and preset setting information. And has a function of controlling the storage unit 3, the AC-DC converter 8, the DC-DC converter 11, and the like. Specifically, control unit 5 determines whether the system is in the normal operation mode or in the non-normal operation mode, based on the charge amount of power storage unit 3, the operating condition of inverter 4, and preset setting information, etc. to decide.
- the normal operation state is a state in which the power system 50 is operating normally.
- the non-normal operation time is a case where it is necessary to take measures in advance because there is a possibility that a failure occurs in the power system 50 for some reason. For example, when the power grid 50 fails, when the allowable voltage of the distribution line is exceeded due to reverse power flow from the customer side, and in relation to the amount of power demand and the generated power of the photovoltaic module 21, for example, generated power In the case of a special day where it is required to suppress the generated power of nuclear power generation which is difficult to adjust, the control unit 5 determines that the operation is in the non-normal operation.
- control unit 5 determines that it is in the normal operation, as shown in FIG. 2, the control unit 5 switches the connection state of the switch circuit 23 to be in a series connection state, and the connection destination of the generated power output unit 2 Switch to the inverter 4 side.
- the output power of the generated power output unit 2 is consumed by the general load 60, and the remaining power is reversely flowed to the power system 50.
- the specific load 70 is driven using the power storage unit 3 as a power supply.
- control unit 5 controls DC-DC converter 11 to connect power system 50 and specific load 70 via wiring 12 when the charge amount of power storage unit 3 decreases to, for example, 50%.
- control unit 5 determines that it is in the non-normal operation, it switches the connection state of the switch circuit 23 as shown in FIG.
- the connection destination is switched to the storage unit 3 side.
- the output power of the generated power output unit 2 is supplied to the storage unit 3, and the specific load 70 is driven by the charging power of the storage unit 3 and the output power of the generated power output unit 2.
- the output power from the generated power output unit 2 may be supplied to the specific load 70 via the storage unit 3 as shown in FIG. 1, or the generated power output unit 2, the storage unit 3 and the specific load 70.
- the output power from the generated power output unit 2 may be supplied to the specific load 70 without passing through the storage unit 3 by connecting the wiring to the side at one point.
- the plurality of solar power generation modules 21 when the plurality of (five) solar power generation modules 21 are connected to the inverter 4, the plurality of solar power generation modules 21 are connected in series with each other in the connection state of the plurality of solar power generation modules 21.
- the plurality of solar power generation modules 21 are connected to the power storage unit 3 while switching to the connected series connection state, the plurality of solar power generation modules 21 are connected in parallel with each other. Switch to connected parallel connection state.
- the connection destination of the power generation module 21 can be selected between the inverter 4 and the storage unit 3, so that the supply destination of the generated power can be changed as needed.
- the storage unit 3 when the storage unit 3 is fully charged, it can be connected to the inverter 4 side, and can be connected to the storage unit 3 when the inverter 4 is stopped.
- a plurality of solar power generation modules The power generation at 21 can be used efficiently.
- the power generated by the solar power generation modules 21 since the plurality of solar power generation modules 21 are connected in series with each other, the power generated by the solar power generation modules 21 has a relatively high voltage Can be supplied (input) to the inverter 4.
- the power generated in the solar power generation module 21 is supplied to the inverter 4.
- Power storage unit 3 can be supplied at a relatively lower voltage than in the case.
- the electric power generated by the photovoltaic power generation module 21 can be supplied to each connection destination at a voltage of an appropriate magnitude according to the connection destination (either the inverter 4 or the storage unit 3).
- the connection destination either the inverter 4 or the storage unit 3.
- the voltage of the generated power in the solar power generation module 21 is charged by charging the storage unit 3 by connecting the plurality of solar power generation modules 21 in parallel.
- a voltage converter such as a DC-DC converter between the photovoltaic power generation module 21 and the storage unit 3 because it is not necessary to convert the voltage into a voltage suitable for the voltage.
- the configuration of the power generation system 1 can be simplified, and power loss due to the provision of the voltage converter can be prevented.
- the amount of power generation by a power generation method that emits CO 2 such as thermal power generation can be reduced, so the amount of CO 2 emissions can be effectively reduced. Can contribute to
- the switch circuit unit 22 is provided with the plurality of switch circuits 23, and the plurality of switch circuits 23 switch the series connection state and the parallel connection state of the plurality of photovoltaic modules 21.
- the switch circuit 23 can be used to easily switch between the series connection state and the parallel connection state.
- the switching circuit unit 22 switches between the series connection state and the parallel connection state of the plurality of photovoltaic power generation modules 21 by the plurality of switch circuits 23, the plurality of switch circuits Switching between the state in which the plurality of solar power generation modules 21 are connected to the inverter 4 and the state in which the plurality of solar power generation modules 21 are connected to the power storage unit 3 is also performed by S23.
- S23 the plurality of switch circuits Switching between the state in which the plurality of solar power generation modules 21 are connected to the inverter 4 and the state in which the plurality of solar power generation modules 21 are connected to the power storage unit 3 is also performed by S23.
- the plurality of solar power generation modules 21 are connected to the inverter 4 during normal operation, and the connection state of the plurality of solar power generation modules 21 is connected in series by the switching circuit unit 22 Switching to the state, the electric power generated by the plurality of photovoltaic power generation modules 21 connected in series with one another is output to the electric power system 50 side via the inverter 4 to store the plurality of photovoltaic power generation modules 21 during abnormal operation.
- connection state of the plurality of solar power generation modules 21 is switched to the parallel connection state by the switching circuit unit 22, and the power generated by the plurality of solar power generation modules 21 connected in parallel is stored in the storage unit 3 Configured to supply
- generated power generated by the plurality of photovoltaic power generation modules 21 can be supplied to the inverter 4 at a high voltage suitable for input to the inverter 4 by series connection, and also abnormal operation
- parallel connection allows the power storage unit 3 to be supplied with power generated by the plurality of photovoltaic power generation modules 21 at a low voltage suitable for charging the storage unit 3.
- the generated power of the solar power generation module 21 can be linked with the power system 50 through the inverter 4, and at the time of abnormal operation where the inverter 4 must be stopped or operation suppression
- the generated power of the photovoltaic module 21 can be supplied to the storage unit 3 to store the power, or to the specific load 70. Thereby, the generated power of the photovoltaic power generation module 21 can be used more efficiently.
- the specific load 70 is connected to the storage unit 3, and during normal operation, the storage unit 3 stores power supplied from the power system 50, such as late-night power, for example.
- the power stored in 3 is supplied to the specific load 70, and the power generated by the plurality of photovoltaic power generation modules 21 connected in parallel during the non-normal operation and the power stored in the storage unit 3 It is configured to supply 70.
- the generated power of the photovoltaic power generation module 21 is output to the power system 50 side via the inverter 4 and the generated power of the photovoltaic power generation module 21 is supplied to the inverter 4
- the specific load 70 can be driven for a long time by efficiently utilizing the power generated by the photovoltaic power generation module 21 during the non-normal operation.
- the switch circuit unit 22 of the generated power output unit 2 switches between the series connection state and the parallel connection state, and switches the connection destination (the inverter 4 or the storage unit 3) of the generated power output unit 2.
- the circuit 23 is used, in the generated power output unit 2a according to the first modification of the first embodiment shown in FIGS. 4 and 5, the switch circuit 24 for switching between the series connection state and the parallel connection state;
- the switch circuit unit 22a is separately provided with the switch circuit 25 for switching the connection destination of the generated power output unit 2a.
- the switch circuit portion 22a is an example of the "switch portion” in the present invention, and the switch circuit 24 and the switch circuit 25 are examples of the “first switch circuit” and the “second switch circuit” in the present invention, respectively. is there.
- the generated power output unit 2a is an example of the "first generated power output unit” in the present invention.
- each switch circuit 24 is connected to the terminal 24 a on the solar power generation module 21 side and the terminal 24 b at the time of series connection, and in parallel to the terminal 24 a on the solar power generation module 21 side. It is possible to selectively switch the connection with the terminal 24c at the time of connection.
- each switch circuit 25 includes a connection between the terminal 25a on the solar power generation module 21 side and the terminal 25b at the time of series connection, and a connection between the terminal 25a at the solar power generation module 21 side and the terminal 25c at the time of parallel connection. It is possible to switch selectively. As shown in FIG.
- the solar power generation module 21 connected in parallel is connected to the storage unit 3 side.
- the photovoltaic power generation module 21 is electrically disconnected from the inverter 4 side.
- the switching circuit unit 22b is connected in parallel so that part of the solar power generation modules 21 can be connected in parallel.
- the switch 23d capable of interrupting the circuit is provided on the circuit for connecting the five photovoltaic modules 21 in parallel.
- the switch 23 d is provided on the circuit corresponding to the first and second photovoltaic power generation modules 21 from the right in the figure.
- the switching circuit unit 22 b is an example of the “switching unit” or the “switching circuit” in the present invention.
- the switch 23d is switched on / off in accordance with the weather or the like, whereby it is possible to suppress an excessive load on the power storage unit 3.
- the switch 23d is turned off, whereby the power generated by some (three or four) photovoltaic modules 21 is generated. Can be used to charge the storage unit 3 without exerting an excessive burden on the storage unit 3.
- all the switches 23d may be simultaneously turned on or off, or may be individually controlled on / off.
- the switch 23 d is provided on the circuit corresponding to the two solar power generation modules 21, but for one or three or more solar power generation modules 21.
- a switch 23d may be provided.
- the switches 23d may be provided on the circuits corresponding to the four photovoltaic modules 21 of FIG. In this case, it is possible to supply power to the storage unit 3 by connecting the photovoltaic modules 21 in an arbitrary number of 2 to 5 in parallel, and simultaneously turning off all the switches 23 d It is also possible to supply power from the two solar power generation modules 21 to the power storage unit 3.
- the generated power output unit 2c in the parallel connection state, a part of the solar power generation modules 21 are other solar power generation modules 21 and storage units 3 and inverters
- the switching circuit unit 22 c is configured to be electrically separated from the switching circuit unit 4. Specifically, in the switching circuit unit 22c, circuits for parallel connection corresponding to the first and second photovoltaic power generation modules 21 from the right in the drawing are not provided. That is, in the example of FIG. 7, only the generated power of the three solar power generation modules 21 is supplied to the storage unit 3 in the parallel connection state. Also in the example of FIG. 7, all (five) photovoltaic power generation modules 21 are connected in series and connected to the inverter 4 in the serial connection state.
- the switching circuit unit 22c is an example of the "switching unit” or the “switching circuit” in the present invention.
- a mechanical switch circuit 26 for switching the part 3) and an electronic switch circuit 27 for switching the inflow and shutoff of current to the switch circuit 26 are provided.
- the switch circuit 26 is an example of the “switch circuit” or the “mechanical switch circuit” in the present invention.
- the switch circuit 27 is an example of the “electronic switch circuit” in the present invention.
- the generated power output unit 2 d is an example of the “first generated power output unit” and the “generated power output unit” in the present invention.
- the switching circuit unit 22d includes ten switching circuits 26, five switching circuits 27, and one switching switch 26e.
- the switch circuit 26 is composed of a mechanical relay switch including a mechanical contact switching unit having contacts 26a, 26b and 26c, and a coil (electromagnet) 26d for switching the contact.
- the switching circuit unit 22 d is an example of the “switching unit” or the “switching circuit” in the present invention.
- each switch circuit 26 selects the contact 26 a on the solar power generation module 21 as the contact 26 b for connecting to the inverter 4 or the contact 26 c for connecting to the storage unit 3. It is configured to be switchable. Usually, the contact 26a is connected to one of the contact 26b and the contact 26c, and a connection (switching) between the other of the contact 26b or the contact 26c and the contact 26a is performed by the attraction force generated as the coil 26d is energized.
- the coil 26d of each switch circuit 26 has one end connected to the power supply path from the external power supply and the other end grounded. For this reason, each switch circuit 26 is configured such that contact switching is simultaneously performed by the current supplied from the external power supply to each coil 26d via the power supply path.
- the five solar power generation modules 21 are connected in series to one another, and the five solar power generation modules connected in series 21 is connected to the inverter 4 side. Further, as shown in FIG. 9, when the contact 26a and the contact 26c of each switch circuit 26 are connected, the five solar power generation modules 21 are connected in parallel with each other, and the five sunlight connected in parallel with each other.
- the power generation module 21 is connected to the storage unit 3 side.
- An electronic changeover switch 26e is provided between the coil 26d of each switch circuit 26 and the external power supply.
- the changeover switch 26 e is configured to switch supply and cutoff of current to the coil 26 d in accordance with a control signal from the control unit 5. Thereby, switching control of the connection state by the control unit 5 is performed.
- Each of the five switch circuits 27 is an electronic non-contact FET (field effect transistor) switch, and is provided one by one between the switch circuit 26 and the photovoltaic module 21 (on the anode side).
- Each switch circuit 27 is configured to switch the inflow and interruption of the current to the switch circuit 26 based on the control signal from the control unit 5.
- the control unit 5 when switching the connection of each switch circuit 26, the control unit 5 first turns off (shuts off) each switch circuit 27 to switch the current to each switch circuit 26. Cut off. Then, when the current to each switch circuit 26 is cut off by each switch circuit 27, the control unit 5 outputs a control signal to the changeover switch 26e, whereby connection switching of each switch circuit 26 is executed.
- the contact switching of the switch circuit 26 can be performed in the state where the current is shut off, so that the reliability at the time of the contact switching can be improved.
- the lifetime of the mechanical switch circuit 26 can be extended.
- the switch circuit 271 is provided at the confluence portion of.
- the circuit configuration of the switching circuit unit 22e is the same as that of the switching circuit unit 22a shown in FIG. 4 and FIG. That is, in the switching circuit unit 22e according to the fifth modification of the first embodiment, the switching between the series connection and the parallel connection between the photovoltaic power generation modules 21 is performed by the mechanical switch circuit 261, and the connection destination Switching of (the inverter 4 or the storage unit 3) is performed by the mechanical switch circuit 262.
- the mechanical switch circuit 262 when each photovoltaic power generation module 21 is connected in series to the inverter 4 (see FIG.
- the switch circuit unit 22e is provided with a single electronic switch circuit 271 at a position immediately before the switch circuit 262 (on the side of the solar power generation module 21).
- the contact switching of the switch circuit 261 (262) can be performed in the state where the current is interrupted even if the mechanical switch circuits 261 and 262 are used by providing only one electronic switch circuit 271. .
- the switch circuits 261 and 262 are examples of the “switch circuit” and the “mechanical switch circuit” in the present invention.
- the switch circuit 271 is an example of the “electronic switch circuit” in the present invention.
- the generated power output unit 2 e is an example of the “first generated power output unit” and the “generated power output unit” in the present invention.
- the switching circuit unit 22e is an example of the "switching unit” or the “switching circuit” in the present invention.
- FIG. 1a a power generation system (a solar power generation system 1a) according to a second embodiment of the present invention will be described with reference to FIGS. 2, 3 and 12.
- FIG. 1a unlike the first embodiment described above, in which control for normally connecting in series is performed with emphasis on cooperation with power system 50, control for connected in parallel with emphasis on charging of power storage unit 3 is performed.
- the configuration other than the control of the controller 5a is the same as that of the first embodiment shown in FIG.
- the control unit 5a is an example of the "control device" in the present invention.
- the control unit 5 a of the photovoltaic power generation system 1 a includes the amount of power generation of the generated power output unit 2, the amount of charge of the storage unit 3, the operating condition of the inverter 4, and preset settings It has a function of controlling the switching circuit unit 22 of the generated power output unit 2, the storage unit 3, the AC-DC converter 8, the DC-DC converter 11, and the like based on information and the like. Specifically, control unit 5a supplies electric power stored in storage unit 3 to specific load 70 based on the charge amount of storage unit 3, the operating condition of inverter 4, and preset setting information, etc. Determine if it is possible to crawl for a long time.
- the case where the power supplied to specific load 70 can be supplied by the power stored in power storage unit 3 includes, for example, the case where power storage unit 3 is fully charged or a charge amount close to it or specific load 70.
- the amount of power used in Control unit 5a monitors the amount of charge in storage unit 3 and the amount of change in the amount of charge, thereby monitoring the amount of power used in specified load 70 and the like.
- the control unit 5 a switches the connection state of the switch circuit 23 as shown in FIG. 3, While being in parallel connection, the connection destination of the generated power output unit 2 is switched to the storage unit 3 side.
- the output power of the generated power output unit 2 is supplied to the power storage unit 3. Is driven by the charging power of the storage unit 3 and the output power of the generated power output unit 2.
- control unit 5a determines that the power supplied to specific load 70 can be supplied by the power stored in power storage unit 3
- the connection state of switch circuit 23 is set as shown in FIG. By switching, the series connection state is established, and the connection destination of the generated power output unit 2 is switched to the inverter 4 side. In this case, the output power of the generated power output unit 2 is consumed by the general load 60, and the remaining power is reversely flowed to the power system 50. Further, the specific load 70 is driven using the power storage unit 3 as a power supply.
- the plurality of solar power generation modules 21 3 when it is determined that there is a possibility that the power supplied to the specific load 70 can not be supplied by the power stored in the power storage unit 3, the plurality of solar power generation modules 21 3 while switching the connection state of the plurality of solar power generation modules 21 to the parallel connection state by the switching circuit unit 22 and using the power generated by the plurality of solar power generation modules 21 connected in parallel and the storage unit 3
- the plurality of solar power generation modules 21 are connected to the inverter 4 and the switching circuit unit 22 Switches the connection state of the plurality of photovoltaic power generation modules 21 to the series connection state, and supplies the electric power stored in the storage unit 3 to the specific load 70, It is configured to be reverse flow to the power system 50 to power generated by the plurality of photovoltaic modules 21 that are connected via the inverter 4.
- the power generated by the plurality of solar power generation modules 21 is stored in storage unit 3
- the power can be supplied to the storage unit 3 at a relatively low voltage suitable for charging, and the specific load 70 can be supplied by the power stored in the storage unit 3 in the case of full charge or when the amount of power consumption in the specific load 70 is small.
- the power generated by the plurality of photovoltaic power generation modules 21 is supplied to the inverter 4 at a relatively high voltage suitable for the input to the inverter 4 so that reverse power flow to the power system 50 becomes possible. Can.
- the power generated by the solar power generation module 21 can be used more efficiently.
- a power generation system (a solar power generation system 200) according to a third embodiment of the present invention will be described with reference to FIG.
- a generated power output unit 201 which is always connected to the inverter 4 is further provided.
- the solar power generation system 200 in addition to the configuration of the first embodiment, two generated power output units 201 constantly connected to the inverter 4 are provided. In the generated power output unit 201, five solar power generation modules 21 are connected in series.
- the generated power output unit 201 is an example of the “second generated power output unit” in the present invention. Further, one generated power output unit 2 and two generated power connection units 201 are connected in parallel to each other and connected to the inverter 4. In the solar power generation system 200, it is possible to connect all three generated power output units (one generated power output unit 2 and two generated power output units 201) to the inverter 4, and the two generated power output units 201 It is also possible to connect one generated power output unit 2 to the storage unit 3 while connecting to the inverter 4.
- the module 21 is connected to the power storage unit 3, and it is preferable that the photovoltaic power generation module 21 (hereinafter referred to as a separation module) separated electrically is separated from both the power storage unit 3 and the inverter 4.
- a separation module the photovoltaic power generation module 21
- the output voltage of the generated power output unit 201 is dragged by the output voltage of the separation module, resulting in a loss of the entire output power.
- the separation module be separated from any of power storage unit 3 and inverter 4. This is the same as in the first and second modifications of the third embodiment described later.
- the generated power output unit 201 by further providing the generated power output unit 201 constantly connected to the inverter 4 in addition to the generated power output unit 2 capable of switching the connection destination, The generated power of the generated power output unit 201 can be reversely flowed through the inverter 4 while outputting the generated power to the storage unit 3.
- the generated power output unit 201 constantly connected to the inverter 4 is provided.
- the photovoltaic power generation system 300 according to the second modification of the third embodiment shown in FIG. Two or more are provided.
- the connection destinations (the storage unit 3 or the inverter 4) of the generated power output units 2 by the control unit 301, the power to be output to the storage unit 3 and the power to reverse flow to the power system 50 are It can be adjusted stepwise.
- control unit 301 is an example of the “control device” and the “control unit” in the present invention.
- the amount of power generation of the photovoltaic power generation module and the capacity of power storage unit 3 can be appropriately selected according to the general load amount and the specific load amount. For example, when the general load amount is large and the specific load amount is small, the capacity of power storage unit 3 may be small, so the number of generated power output units that can be switched in series and parallel may be small, depending on the situation of each customer. Appropriate response is possible.
- one of the three generated power output units is configured to be switchable in series and parallel, and in FIG. 16, all three are configured to be switchable in series and parallel.
- a power generation system (a solar power generation system 400) according to a fourth embodiment of the present invention will be described with reference to FIG.
- a current measurement unit for measuring the value of the current flowing to the storage unit 3 is provided.
- switching control of the connection destination (the power storage unit 3 or the inverter 4) of each generated power output unit 2 is performed based on the value will be described.
- a voltage detection unit for detecting the voltage of the generated power output unit 2 is provided and the operation check of the switching circuit unit 22 is performed based on the detection result of the voltage detection unit.
- a photovoltaic power generation system 400 a plurality of (three) generated power output units 2 connected in parallel to one another and a plurality (three) power storage units 3 connected in parallel to one another are provided.
- the control unit 401 can individually control switching of the output destination (the storage unit 3 or the inverter 4) of the generated power of each generated power output unit 2 is there.
- a charge / discharge switch unit 402 is connected between the generated power output unit 2 and the storage unit 3.
- the control unit 401 is an example of the “control device” in the present invention.
- the charge / discharge switch unit 402 includes a current / voltage measurement unit 403, a charge switch 404, a current measurement unit 405, and a discharge switch 406.
- the charge / discharge switch unit 402 has a function of switching between connection and disconnection of the storage unit 3 and the generated power output units 2 and switching between connection and disconnection of the storage unit 3 and the specific load 70. Therefore, charge / discharge switch unit 402 has a function of switching between opening and closing of the charging side circuit from generated power output unit 2 to storage unit 3 and switching between discharge side circuit from storage unit 3 to specific load 70.
- a charge side branch path 407 and a discharge side branch path 408, which connect three power storage units 3 in parallel, are respectively provided.
- the current / voltage measurement unit 403 is an example of the “current measurement unit” or the “voltage detection unit” in the present invention.
- the charging switch 404 is an example of the “charging switch circuit” in the present invention.
- diodes 409 and 410 for preventing the backflow of current are respectively provided in the charge side branch path 407 and the discharge side branch path 408, diodes 409 and 410 for preventing the backflow of current are respectively provided. Thereby, only the current from the generated power output unit 2 to the storage unit 3 flows to the charge side branch path 407 during charging, and only the current from the storage unit 3 to the specific load 70 flows to the discharge side branch path 408 during discharge. .
- the current / voltage measurement unit 403 has a function of measuring a current value and a voltage value flowing from the generated power output unit 2 to the power storage unit 3.
- the current / voltage measurement unit 403 is provided at a position closer to the generated power output unit 2 than the three charge side branch paths 407. Therefore, in the current / voltage measurement unit 403, a current value obtained by summing the current values flowing to the storage unit 3 side through the three charge side branch paths 407 is measured.
- the charging switch 404 is provided between the charging side branch path 407 and the current / voltage measuring unit 403, and has a function of switching connection / disconnection (opening / closing of the charging circuit) between the storage unit 3 and each generated power output unit 2. Have. Opening and closing (connection and disconnection) of the charging switch 404 is configured to be performed based on a control signal of the control unit 401.
- the discharge switch 406 has a function of switching between connection and disconnection (opening and closing of the discharge circuit) between the storage unit 3 and the specific load 70 based on a control signal of the control unit 401.
- the current measurement unit 405 has a function of individually measuring current values flowing to the three power storage units 3 after being branched by the charge side branch path 407. Therefore, in the fourth embodiment, three current measurement units 405 are provided, one for each of the charge side branch paths 407 in accordance with the three power storage units 3.
- the control unit 401 turns on the charging switch 404 and switches the output destination of one or more generated power output units 2 to the storage unit 3 side.
- the output power of the generated power output unit 2 is supplied to the respective power storage units 3 via the current / voltage measurement unit 403, the charging switch 404, the charge side branch path 407, and each current measurement unit 405.
- discharge switch 406 is turned on by control unit 401, so that discharge side branch path 408, discharge switch 406 and DC-DC converter 11 are used. Power is supplied to the specific load 70.
- control unit 401 acquires, from the current / voltage measurement unit 403 or the current measurement unit 405, a current value (measurement result) flowing to the storage unit 3 during charging. Then, when the measured current value is equal to or less than the rated current of each power storage unit 3, control unit 401 connects generated power output unit 2 and power storage unit 3 with charging switch 404 and generates generated power output unit 2. Control is performed so as to be connected to the power storage unit 3 side. Further, based on the measurement result, when the measured current value is larger than the rated current of each power storage unit 3, control unit 401 cuts off generated power output unit 2 and power storage unit 3 by charging switch 404. At the same time, the generated power output unit 2 is controlled to be connected to the inverter 4 side. At this time, the control unit 401 individually controls the connection destination of the generated power output unit 2 to connect to the power storage unit 3 according to the value of the current flowing to the power storage unit 3 (performs power supply) It is configured to control the number of units 2.
- control unit 401 is connected to the display unit 411 and the operation unit 412.
- the control unit 401 is configured to output a predetermined display screen to the display unit 411 and to receive an operation input of the user via the operation unit 412.
- the control unit 401 is configured to perform an operation confirmation process of the switching circuit unit 22 when the solar power generation system 400 is started. Specifically, based on the voltage detected by the current / voltage measurement unit 403, the control unit 401 performs switching operation of series connection and parallel connection of each photovoltaic power generation module 21, and a connection destination of the generated power output unit 2. A check process with the switching operation of (inverter 4 and power storage unit 3) is performed. Details of this confirmation process will be described later.
- the remaining structure of the fourth embodiment is similar to that of the second modification of the third embodiment.
- connection switching processing of the generated power output unit 2 at the time of charging of the power storage unit 3 of the solar power generation system 400 according to the fourth embodiment will be described with reference to FIGS. 17 and 18.
- charging of power storage unit 3 is started, for example, when the charge amount of power storage unit 3 is less than or equal to a predetermined value.
- the controller 401 turns on (closes) the charging switch 404 in step S1 of FIG. As a result, if the connection destination of the generated power output unit 2 is switched to the storage unit 3 side, charging can be started.
- the current / voltage measurement unit 403 measures the total value of the currents flowing to the three storage units 3, and each current measurement unit 405 measures the current flowing to the corresponding individual storage units 3. The value is measured. Subsequently, in step S4, measurement of elapsed time is started by the control unit 401. The elapsed time will be described later.
- step S5 the control unit 401 acquires the measured current value.
- the measured current values are acquired as they are.
- control unit 401 determines whether the acquired current value is equal to or less than the rated current value of power storage unit 3. If the acquired current value is less than or equal to the rated current value, the process proceeds to step S7. When acquiring current values from each current measurement unit 405, if all of the current values acquired by each current measurement unit 405 are equal to or less than the rated current value of power storage unit 3, the process proceeds to step S7. If there is more than one, the process proceeds to step S1.
- step S7 it is determined by the control unit 401 whether or not a fixed time (for example, 2 minutes) has elapsed since the measurement of the elapsed time in step S4 is started. If the predetermined time has not elapsed, the process returns to step S5, and the current value is acquired again, and comparison with the rated current value is performed in step S6. If a predetermined time passes without exceeding the rated current value, the process proceeds to step S8. That is, by looping between steps S5 to S7 for a fixed time, the output (current value) of the generated power output unit 2 which changes due to the fluctuation of the weather does not continuously exceed the rated current for this fixed time. Make sure.
- a fixed time for example, 2 minutes
- step S8 If the acquired current value does not exceed the rated current of power storage unit 3 until the predetermined time elapses, whether or not generated power output unit 2 can be switched to power storage unit 3 in step S8 Is judged. Specifically, when N generated power output units 2 are provided, is the number i of generated power output units 2 connected to the storage unit 3 smaller than the total number N of generated power output units 2? It is determined whether or not (i ⁇ N?). If the number i of the generated power output units 2 connected to the storage unit 3 matches N, no more generated power output units 2 can be switched to the storage unit 3 side, so the process returns to step S4.
- step S4 the elapsed time measurement is reset, and the time measurement is started again.
- step S5 if the current value acquired in step S5 exceeds the rated current, the process proceeds from step S6 to step S11, and the charging switch 404 is turned off (cut off). Therefore, when it is confirmed in the loop of steps S5 to S7 that the current value does not exceed the rated current continuously for a fixed time, when the current value exceeding the rated current is acquired, the storage unit 3 is instantaneously And the generated power output unit 2 are disconnected. Thus, current exceeding the rated current can be suppressed from flowing to power storage unit 3.
- the control unit 401 After the charging switch 404 is turned off, the control unit 401 performs switching operation of the switching circuit unit 22 to switch the output destination of the ith generated power output unit 2 to the inverter 4 side.
- the control unit 401 performs switching operation of the switching circuit unit 22 to switch the output destination of the ith generated power output unit 2 to the inverter 4 side.
- the connection destination of generated power output unit 2 is switched to the side of inverter 4 without waiting for the elapse of a fixed time, so the process returns from step S14 to step S4. After that, when a current value still exceeding the rated current is detected, the connection destination of the generated power output unit 2 is instantly switched to the inverter 4 side. Therefore, even when a plurality (for example, N) of generated power output units 2 are connected to power storage unit 3, when a current value exceeding the rated current is detected, the detected current value is the power storage unit. The connection destination of the generated power output unit 2 is continuously switched to the inverter 4 side until the rated current of 3 or less is reached.
- step S6 it is determined that the acquired current value is always equal to or less than the rated current. As a result, after the elapse of a predetermined time, the connection destination of the first generated power output unit 2 is switched to the storage unit 3 through steps S8 to S10.
- connection switching process of the generated power output unit 2 at the time of charging of the storage unit 3 of the solar power generation system 400 according to the fourth embodiment is performed.
- either one of the current / voltage measurement unit 403 and the current measurement unit 405 may be provided.
- the current flowing through the plurality of power storage units 3 connected in parallel can be measured collectively, so that the device configuration can be simplified.
- connection switching of the generated power output unit 2 (solar power generation module 21) may be performed based on the current value actually flowing to each of the storage units 3 connected in parallel. it can. That is, it is possible to perform more rigorous connection switching reflecting individual differences of each power storage unit 3. Therefore, excessive current can be more reliably suppressed from flowing in power storage unit 3.
- the control unit 401 stores the generated power output unit 2 when the current value measured by the current / voltage measurement unit 403 or each current measurement unit 405 is equal to or less than the rated current.
- the switching circuit unit 22 is controlled to switch to the side of the unit 3 and to switch the generated power output unit 2 to the side of the inverter 4 when the measured current value is larger than the rated current.
- the generated power by the generated power output unit 2 can be supplied from the side of the inverter 4 to the general load 60, and the surplus power can be reversely flowed to the power system 50. As a result, it is possible to efficiently use the generated power by the generated power output unit 2 while suppressing an excessive current from flowing into the storage unit 3.
- the control unit 401 when the current value measured by the current / voltage measurement unit 403 or each current measurement unit 405 is equal to or less than the rated current, the control unit 401 generates power using the charging switch 404. The power output unit 2 and the storage unit 3 are connected, and the output destination of the generated power output unit 2 is switched to the storage unit 3 side. Further, when the current value measured by the current / voltage measurement unit 403 or each current measurement unit 405 is larger than the rated current, the control unit 401 controls the generated power output unit 2 and the storage unit 3 by the charging switch 404. It is comprised so that it may switch off and the output destination of the generated electric power output part 2 to the inverter 4 side while interrupting
- connection and disconnection between the generated power output unit 2 and the storage unit 3 by the charging switch 404 can be performed.
- the generated power output unit 2 and the storage unit 3 can be cut off immediately. As a result, it is possible to more reliably suppress the flow of an excessive current in power storage unit 3.
- the number (i) of the power output units 2 is configured to be controlled. With such a configuration, the power supplied to the storage unit 3 can be adjusted stepwise based on the measurement result (current value). As a result, even when the output of the generated power output unit 2 fluctuates due to an external factor such as weather fluctuation, appropriate power supply to the storage unit 3 can be performed.
- the fourth embodiment by connecting a plurality (three) of power storage units 3 in parallel, it is possible to suppress an increase in the current value flowing to each power storage unit 3 during charging. For this reason, in the photovoltaic power generation system 400, even when the output of the generated power output unit 2 fluctuates due to the fluctuation of the weather, the current value flowing through the storage unit 3 does not easily exceed the rated current.
- the series / parallel switching confirmation process is performed as part of a system error check performed at startup when the photovoltaic power generation system 400 is launched by the user.
- the serial / parallel switching confirmation process the parallel / serial switching operation of the photovoltaic power generation module 21 by the switching circuit unit 22 and the switching operation of the connection destination of the generated power output unit 2 function normally for each generated power output unit 2 It is a process which confirms whether to do.
- step S21 in FIG. 19 the control unit 401 turns off the charging switch 404.
- step S22 when the control unit 401 performs switching operation of the switching circuit unit 22, the output destination of all (three) generated power output units 2 is switched to the inverter 4 side. Under the present circumstances, each photovoltaic power generation module 21 of generated electric power output part 2 is mutually connected in series.
- step S23 the voltage value (series) of the generated power output unit 2 is acquired by the current / voltage measurement unit 403. Note that, as shown in FIG. 17, the current / voltage measurement unit 403 is provided on the side of the power storage unit 3, so that if the switching of the output destination is normal, the acquired voltage value is 0V.
- step S24 the control unit 401 sets the value of k to "1" in order to check the switching operation of the first generated power output unit 2. Then, the control unit 401 performs switching operation of the switching circuit unit 22 in step S25, whereby the output destination of the kth generated power output unit 2 is switched to the storage unit 3 side. At this time, the photovoltaic power generation modules 21 of the switched generated power output unit 2 are connected in parallel to each other.
- step S26 the voltage value of the generated power output unit 2 is acquired by the current / voltage measurement unit 403.
- the current / voltage measurement unit 403 is provided closer to the generated power output unit 2 than the charging switch 404, so the output destination is If switching is normal, the acquired voltage value becomes the open end voltage of the generated power output unit 2.
- step S27 the control unit 401 displays the voltage value acquired in step S26 on the display unit 411, and inquires of the user as to whether or not to execute a check. Specifically, as shown in FIG. 20, a message of “PV VOLTAGE *** V” (“***” is a voltage value), a cursor (“> mark”), “SKIP?” And “CHECK” The “?” Option is displayed on the display unit 411. The user presses the key of the operation unit 412 to select whether to execute the check or to skip the check.
- step S28 the control unit 401 determines whether to execute a check. That is, it is determined whether an instruction to perform a check has been input by the user via the operation unit 412. As a result, when "CHECK" is selected by the user, the process proceeds to step S29, and the check of the kth generated power output unit 2 whose output destination is switched to the storage unit 3 side is performed.
- step S29 the control unit 401 determines whether the voltage (series) acquired in step S23 is 0 V and the voltage (parallel) acquired in step S26 exists (is not 0). As described above, since the voltage (series) acquired in step S23 is the voltage when the output destinations of all the generated power output units 2 are switched to the inverter 4 side, if the switching of the output destinations is normal The voltage value is zero.
- the voltage (parallel) acquired in step S26 is a voltage detected after the k-th generated power output unit 2 is switched to the storage unit 3 side. Therefore, if the operation of switching the k-th generated power output unit 2 to the storage unit 3 side is normally performed, the voltage value becomes the open end voltage of the k-th generated power output unit 2.
- step S29 when the voltage (series) is not 0 V or when the voltage (parallel) is 0, there is a possibility that the switching operation has not been performed normally, so it is judged as abnormal and the processing ends. (Change to error processing at the time of abnormality detection). When the voltage (series) is 0 V and the voltage (parallel) is not 0 V, it is confirmed that the switching has been normally performed, and the process proceeds to step S30.
- step S28 when “SKIP” is instructed by the user, the process proceeds from step S28 to step S30 without passing through step S29.
- each solar power generation module 21 can not perform power generation, so the voltage of the generated power output unit 2 is not detected.
- the voltage (parallel) is 0 V
- step S29 since the voltage (parallel) is 0 V, it is determined in step S29 that there is an abnormality. Therefore, by displaying the voltage value detected in step S27 and asking the user whether to check or not, the user activates the solar power generation system 400 at night and the voltage value displayed on the display unit 411 When it is confirmed that the display of is 0V, the operation unit 412 may be operated to skip the serial / parallel switching confirmation process.
- step S30 the output destination of the kth generated power output unit 2 is switched to the inverter 4 side.
- the output destinations of all the generated power output units 2 are returned to the state in which they are switched to the inverter 4 side.
- step S31 a voltage value (series) is acquired by the current / voltage measurement unit 403.
- step S32 the control unit 401 determines whether the voltage value (series) acquired in step S31 is 0V.
- the voltage value (series) detected by the current / voltage measurement unit 403 is 0V. Therefore, if the operation of switching the k-th generated power output unit 2 from the storage unit 3 side to the inverter 4 side is normally performed, the voltage value is 0V. If the voltage value (series) is not 0 V, there is a possibility that the switching operation has not been performed normally, so it is judged as abnormal (transition to error processing at the time of abnormality detection).
- step S32 even when the solar power generation system 400 is started at night (when the voltage of the generated power output unit 2 is 0 V), it is not judged as abnormal, so the above step S29 There is no need to skip based on the user's operation instruction as in.
- step S29 the operation of switching the output destination from the inverter 4 side to the storage unit 3 is checked in step S29, and the operation of switching the output destination from the storage unit 3 to the inverter 4 side Is checked in step S32.
- the control unit 401 can perform the switching operation confirmation processing of the connection state by the switching circuit unit 22 based on the voltage detected by the current / voltage measurement unit 403. Is configured. With this configuration, it is possible to operate the system after confirming that the switching of the output destination of the generated power output unit 2 and the switching of the series connection and the parallel connection are properly performed. As a result, it is possible to improve the reliability of the solar power generation system 400 capable of switching the charging of the storage unit 3 and the power supply to the side of the inverter 4 (the power system 50 and the general load 60).
- a photovoltaic power generation system 450 In a photovoltaic power generation system 450 according to a first modification of the fourth embodiment, two generated power output units 2 and one generated power output unit 2 b having a switch 23 d are provided.
- the control unit 451 generates a total of three generated power output units 2 (generated power output unit 2b) based on the measurement results of the current / voltage measurement unit 403. It is possible to individually switch the output destination of.
- the control unit 451 performs switching control of the switch 23d to connect each of the five solar power generation modules 21 of the generated power output unit 2b with the storage unit 3. It is configured to be able to switch individually.
- control unit 451 is an example of the “control device” in the present invention.
- the solar power generation system 450 only one power storage unit 3 is provided. Therefore, unlike the fourth embodiment, in the charge / discharge switch unit 452 of the solar power generation system 450, the charge side branch path 407, the current measurement unit 405, the discharge side branch path 408, and the like are not provided.
- the photovoltaic power generation system 450 for example, when the output destination of one generated power output unit 2 b is switched to the storage unit 3 side, the current value flowing through the storage unit 3 is Even when the rated current is exceeded, it is possible to more finely adjust the power supplied to the storage unit 3 side by switching the number of the solar power generation modules 21 connected to the storage unit 3. In particular, when only one power storage unit 3 is installed, a large current easily flows in the power storage unit 3 compared to the fourth embodiment in which three power storage units 3 are connected in parallel, which is effective. It is. The same process as the switching process shown in FIG. 18 can be applied to the switching of the solar power generation module 21 (increase / decrease in the number of connections).
- the current / voltage measurement unit 403 and the three current measurement units 405 are provided.
- a power storage unit 502 including the unit 503 may be used.
- Each storage unit 502 includes a storage unit 3, a current measurement unit 503, and a communication unit 504.
- Current measuring unit 503 is configured to be capable of measuring the value of the current flowing through power storage unit 3.
- the communication unit 504 is configured to be able to mutually communicate with the control unit 501 of the solar power generation system 500. Thereby, the control unit 501 acquires various information related to the storage unit 502 such as the measurement result (current value) of the current measurement unit 503 and the remaining capacity of the storage unit 3 through communication with the communication unit 504. Is possible.
- control unit 501 can obtain the value of the current flowing through the storage unit 3 through the communication unit 504. There is no need to provide 403 and the current measurement unit 405. Therefore, by using power storage unit 502 incorporating current measurement unit 503 and communication unit 504, the configuration of charge / discharge switch unit 505 can be simplified.
- the inverter 4 and the power system 50 are not connected, and the inverter 4 is connected only to the general load 60. Therefore, this solar power generation system 500 is configured not to reverse the generated power of the generated power output unit 2 to the power system 50 side, and the generated power of the generated power output unit 2 is supplied only to the general load 60. Is configured. Thus, the generated power of the generated power output unit 2 may be supplied only to the facility (general load 60) in the facility without reverse flow of power generated by the generated power output unit 2 to the power system 50 side. .
- switching control of the generated power output unit 2 of the power generation system (solar power generation system) according to the fifth embodiment of the present invention will be described with reference to FIGS. 17, 21, 22 and 23.
- the fourth switching control of the generated power output unit 2 and the storage unit 3 is performed based on whether the measured current value exceeds the rated current of the storage unit 3 or not.
- a predicted current value predicted when the generated power output unit 2 is switched to the storage unit 3 side is calculated, and switching control of the generated power output unit 2 is performed based on the predicted current value.
- the configured example will be described.
- any configuration of the fourth embodiment (see FIG. 17), the first modified example of the fourth embodiment (see FIG. 21), and the second modified example (see FIG. 22) Since it may be, here, the example which applied the connection switching process of the solar power generation system by 5th Embodiment to the solar power generation system 400 shown in FIG. 17 is shown.
- step S41 of FIG. 23 the charging switch 404 is turned on (closed). As a result, if the connection destination of the generated power output unit 2 is switched to the storage unit 3 side, charging can be started.
- step S45 the control unit 401 sets the maximum current value for calculating the predicted current value to “0”.
- step S46 the control unit 401 acquires the current value measured by the current / voltage measurement unit 403 or each current measurement unit 405.
- control unit 401 determines whether the acquired current value is equal to or less than the rated current value of power storage unit 3. If the acquired current value is less than or equal to the rated current value, the process proceeds to step S48. If the acquired current value exceeds the rated current value, the process proceeds to step S57. When acquiring current values from each current measurement unit 405, if all of the current values acquired by each current measurement unit 405 are less than or equal to the rated current value of power storage unit 3, the process proceeds to step S48, and even one If there is more than one, the process proceeds to step S57.
- steps S57 to S60 are the same as the processes of steps S11 to S14 of the fourth embodiment, and thus the description thereof will be omitted.
- step S48 the control unit 401 determines whether the acquired current value is larger than the maximum current value. If the acquired current value is larger than the maximum current value, the process proceeds to step S49, and the control unit 401 sets the current value as the maximum current value. If the acquired current value is less than or equal to the maximum current value, the process proceeds to step S50 without setting the current value.
- step S50 it is determined whether or not a predetermined time (for example, 2 minutes) has elapsed since the measurement of the elapsed time in step S24 is started. If the predetermined time has not elapsed, the process returns to step S46. When a predetermined time has elapsed, the process proceeds to step S51. Therefore, by looping between steps S46 to S50 for a fixed time, it is confirmed that the current value does not exceed the rated current continuously for the fixed time, and the current acquired for a fixed time is obtained. The maximum value (maximum current value) is set. When a current value exceeding the rated current of power storage unit 3 is detected as described above, the process proceeds to steps S57 to S60, and thus the maximum current value is not set. That is, the maximum current value is the maximum current value acquired by the current / voltage measurement unit 403 or each current measurement unit 405 when the rated current is not exceeded.
- a predetermined time for example, 2 minutes
- step S51 If the acquired current value does not exceed the rated current of power storage unit 3 until the predetermined time elapses, whether or not generated power output unit 2 can be switched to power storage unit 3 in step S51 (I ⁇ N?) Is determined. If the number i of the generated power output units 2 connected to the storage unit 3 matches N, no more generated power output units 2 can be switched to the storage unit 3 side, so the process returns to step S44.
- next generated power output unit 2 when the next generated power output unit 2 is connected to the storage unit 3 side, it is desired to determine whether or not the rated current of the storage unit 3 is exceeded, so the maximum current value measured within a predetermined time is predicted It is used to calculate As a result, when the next generated power output unit 2 is connected to the storage unit 3 side, it is predicted that a current value approximately equal to the predicted current value flows in the storage unit 3.
- step S54 control unit 401 determines whether the calculated predicted current value is equal to or less than the rated current of power storage unit 3.
- the predicted current value exceeds the rated current, it is highly possible that the current value will exceed the rated current when the next generated power output unit 2 is connected to the storage unit 3 side.
- the process returns to step S44 without switching to the 3 side.
- step S44 the elapsed time measurement is reset, and the time measurement is started again.
- the maximum current value is also reset (set to “0”) in step S45.
- connection switching process of the generated power output unit 2 at the time of charging of the storage unit 3 of the solar power generation system according to the fifth embodiment is performed.
- the storage unit 3 when the connection destination of the generated power output unit 2 is switched to the storage unit 3 based on the measurement results of the current / voltage measurement unit 403 or each current measurement unit 405, the storage unit The predicted current value flowing to 3 is calculated, and it is determined based on the predicted current value whether to switch the generated power output unit 2 to the storage unit 3 side.
- the present invention is not limited thereto, and another DC power generation device or wind power may be used as a power generation module.
- a power generation module that generates power using other natural energy such as a power generation device may be used.
- a storage battery such as a lithium ion battery or a nickel hydrogen battery as the storage unit 3
- the present invention is not limited to this.
- a secondary battery may be used.
- the present invention is not limited to this and a voltage other than 48 V may be used.
- the voltage of the storage unit is preferably about 60 V or less, but a suitable voltage is selected in consideration of the rated voltage of the specific load 70, the power loss in the wiring, and the like.
- the example has been described in which all the five solar power generation modules 21 are connected in parallel when the generated power output unit 2 is connected to the storage unit 3 side.
- the present invention is not limited to this, and the generated power output unit may be connected to the storage unit side in a state where only some of the five solar power generation modules are connected in parallel.
- the generated power output unit is connected to the storage unit 3 side, and in a state in which other solar power generation modules are connected in series You may connect to the side.
- the generated power output unit 2f of the example shown in FIG. 24 and FIG. 25 the five solar power generation modules 21 are connected in series and output to the inverter 4 side in the series connection state.
- the photovoltaic module 21 is connected in series and output to the inverter 4 side, and the switching circuit unit 22 f is controlled to connect two photovoltaic modules 21 in parallel and output to the electric storage unit 3 side.
- the number of photovoltaic power generation modules 21 connected in series within the input possible range of the inverter 4 should be adjusted.
- the six solar power generation modules 21 are connected in series and output to the inverter 4 side.
- the switching circuit unit 22g is controlled so that two sets of the photovoltaic modules 21 connected in series are connected in parallel and output to the storage unit 3 side.
- connection mode series connection, parallel connection, or a combination thereof
- power storage unit 3 is powered with a voltage appropriate to the value of the nominal voltage of storage unit 3. It is possible to input.
- a photovoltaic power generation module having a nominal maximum output operating voltage of about 60 V is used and the nominal voltage of the storage unit is 96 V will be described.
- the nominal voltage of storage unit 3 it is desirable to select the nominal voltage of storage unit 3 to be 70% or more and 90% or less of the nominal maximum output operating voltage, so the output voltage to the storage unit is about 120 V It is desirable to have. Therefore, four photovoltaic modules are used.
- the four sheets are connected in series to output at a voltage of about 240 V, and when outputting to the storage unit side, two sets of two sheets connected in series are used. By connecting in parallel, a voltage of about 120 V is output.
- -It may be a DC-DC converter that performs DC conversion (boosts or steps DC voltage) or a cycloconverter that performs AC-AC conversion (converts the frequency of AC).
- DC-DC converter that performs DC conversion (boosts or steps DC voltage)
- AC-AC conversion converts the frequency of AC.
- the case of AC-AC conversion means, for example, the case of using a power generation module that generates AC power, such as wind power generation.
- the present invention is not limited to this, and the present invention is not connected to the power system 50. It is also good.
- a reverse flow prevention device may be provided near the connection point between the customer internal wiring and the power system, for example, to limit the reverse flow. In this case, the diode 10 can be omitted.
- the power storage unit 3 may be provided with a control device that performs control to suppress overcharge, overdischarge, and the like. Furthermore, the storage unit 3 may be connected to the generated power output unit 2 or the specific load 70 via such a control device.
- power for driving the switch 23 of the switching circuit unit 22 may be supplied from the storage unit 3 and the switch 23 may be switched by the power.
- the power from the power system 50 When the power from the power system 50 is supplied, the power is used to connect in series, and when the power system 50 loses power and no power is supplied to the switching circuit unit 22, it is automatically connected to the parallel side. It may be configured to switch. In either configuration, it is possible to switch to the parallel side at the time of a power failure.
- a serial-parallel connection method at least a part of a plurality of power generation modules (solar power generation modules 21) are serially connected to one another, and a plurality of power generation modules are serially connected At least a part of the power generation modules may be connected in parallel to each other, and the power generation modules connected in parallel may be switched to a parallel connection state in which the power storage module is connected.
- an example of the “mechanical switch circuit” is a relay switch including a contact switching portion and a coil.
- the present invention is not limited thereto. I can not.
- the mechanical switch circuit may be another switch circuit other than the relay switch as long as the switch mechanically switches contacts.
- an example of the "electronic switch circuit” is an FET switch, but the present invention is not limited to this.
- the electronic switch circuit may be a switch circuit in which another switch element such as a bipolar transistor other than the FET switch or a plurality of semiconductor elements is combined, as long as the switch is a contactless and electronically switchable switch.
- the generated power output unit 2 is switched one by one in the connection switching process of the generated power output unit 2, but the present invention is not limited to this.
- a plurality of generated power output units may be switched at one time. Further, for example, the number of generated power output units to be switched at one time may be increased to 1, 2, 4, 8,.
- the voltage value is displayed on the display unit 411 when the voltage value of the generated power output unit 2 can not be detected, such as at night, in the switching operation confirmation process of the connection state by the switching circuit unit 22.
- the present invention is not limited to this.
- an illuminance meter is provided, and it is determined whether it is nighttime (whether or not there is light irradiation capable of generating power) based on the measured illuminance, and if it is not possible to generate power, the check is skipped It is also good. In this case, it is not necessary to inquire the user whether to execute the check.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Computer Hardware Design (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
複数の太陽光発電モジュールにおける発電電力を効率的に活用することが可能な切替回路を提供する。この切替回路(22)は、発電システム(1)に用いられ、複数の発電モジュール(21)の接続状態を切替可能な切替回路であって、複数の発電モジュールの少なくとも一部が互いに直列接続される第1接続状態と、複数の発電モジュールの少なくとも一部が互いに並列接続され、または、1つの発電モジュールから蓄電部(3)に発電電力が供給されるように発電電力出力部が蓄電部に接続される、第2接続状態と、を切り替える。
Description
本発明は、切替回路、制御装置および発電システムに関し、特に、自然エネルギーを用いて発電する複数の発電モジュールと、蓄電部とを備えた発電システムに用いられる切替回路、制御装置、および、切替部を備えた発電システムに関する。
従来、自然エネルギーである太陽光エネルギーを用いて発電する太陽光発電モジュールと、太陽光発電モジュールにより発電した電力を蓄電可能な蓄電部とを備えた発電システムが知られている。このような発電システムにおいては、太陽光発電モジュールにおいて発電された電力を効率的に使用することが求められている。
ここで、従来、太陽光発電モジュールにおいて発電された電力の蓄電池への充電効率を高める構成が知られている。このような発電システムは、たとえば、特開2009-153306号公報に開示されている。
上記特開2009-153306号公報の発電システムでは、複数の太陽光発電モジュールが常時蓄電部に接続されている。また、上記特開2009-153306号公報の発電システムは、複数の太陽光発電モジュール同士の接続状態を、複数の太陽光発電モジュールが互いに直列接続された直列接続状態と、複数の太陽光発電モジュールが互いに並列接続された並列接続状態とに切り替えることが可能に構成されている。上記特開2009-153306号公報では、各太陽光発電モジュールの出力電圧が蓄電部の基準電圧よりも小さくなった場合に、並列接続状態から直列接続状態に切り替えることにより、蓄電部の基準電圧よりも大きい出力電圧が得られるので、蓄電部に効率良く充電を行うことが可能である。
また、従来、複数の太陽電池を切替スイッチを介して接続することにより、複数の太陽電池の接続状態(並列接続、直列接続、並列接続および直列接続の組み合わせ接続、特定の太陽電池の切り離しなど)を切り替えることが可能な切替回路が知られている。このような切替回路は、たとえば、特開平11-103537号公報に開示されている。
上記特開平11-103537号公報では、負荷に応じて複数の太陽電池の接続状態を切り替えることにより、負荷に応じた電圧を出力することが可能である。また、上記特開平11-103537号公報には、蓄電装置を介して負荷に出力してもよいことが記載されている。
しかしながら、上記特開2009-153306号公報および特開平11-103537号公報では、蓄電池(蓄電装置)の容量を考慮していない。このため、蓄電池が満充電である場合には、太陽光発電モジュールにおける発電電力を蓄電することができない。この場合、蓄電できない電力は廃棄することになるので、複数の太陽光発電モジュールにおける発電電力を効率的に活用することができないという問題点がある。
また、余剰電力が発生した場合には、電力系統に逆潮流させることによって太陽光発電モジュールにおける発電電力を効率的に活用する方法が一般的に知られているが、太陽光発電モジュールと蓄電池とを組み合わせたシステムを構築する場合には多くの制限があり、太陽光発電モジュールの発電電力の効率的な利用が困難である。たとえば、逆潮流を行うシステムとする場合には、太陽光発電モジュールと電力系統とをインバータを介して接続するが、電力系統が停電した際にはインバータの駆動を停止させる必要があるので、太陽光発電モジュールの発電電力を利用することができない。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、複数の太陽光発電モジュールにおける発電電力を効率的に活用することが可能な切替回路、制御装置および発電システムを提供することである。
上記目的を達成するために、この発明の第1の局面による切替回路は、自然エネルギーを用いて発電する複数の発電モジュールを含んで構成される発電電力出力部と、発電モジュールにおける発電電力が供給される電力変換器および蓄電部とを備えた発電システムに用いられ、複数の発電モジュールの接続状態を切替可能な切替回路であって、複数の発電モジュールの少なくとも一部が互いに直列接続される第1接続状態と、複数の発電モジュールの少なくとも一部が互いに並列接続され、または、1つの発電モジュールから蓄電部に発電電力が供給されるように発電電力出力部が蓄電部に接続される、第2接続状態と、を切り替えるための切替回路である。なお、「電力変換器」とは、直流-直流変換器、直流-交流変換器および交流-交流変換器を含む概念である。
この発明の第2の局面による制御装置は、自然エネルギーを用いて発電する複数の発電モジュールと、複数の発電モジュールの接続状態を切り替える切替部と、を含んで構成される発電電力出力部と、発電モジュールにおける発電電力が供給される電力変換器および蓄電部とを備えた発電システムに用いられる制御装置であって、複数の発電モジュールの少なくとも一部が互いに直列接続され、発電電力出力部が電力変換器に接続される第1接続状態と、複数の発電モジュールの少なくとも一部が互いに並列接続され、または、1つの発電モジュールから蓄電部に発電電力が供給されるように、発電電力出力部が蓄電部に接続される第2接続状態と、を切替部によって切り替えるように制御する。
この発明の第3の局面による発電システムは、自然エネルギーを用いて発電する複数の発電モジュールと、複数の発電モジュールの接続状態を切り替える切替部と、を含んで構成される第1発電電力出力部と、発電モジュールにおける発電電力が供給される電力変換器および蓄電部とを備え、切替部は、複数の発電モジュールの少なくとも一部が互いに直列接続され、第1発電電力出力部が電力変換器に接続される第1接続状態と、複数の発電モジュールの少なくとも一部が互いに並列接続され、または、1つの発電モジュールから蓄電部に発電電力が供給されるように、第1発電電力出力部が蓄電部に接続される第2接続状態と、を切替可能に構成されている。
本発明によれば、複数の発電モジュールが蓄電部と電力変換器とに選択的に接続される構成において、複数の太陽光発電モジュールにおける発電電力を効率的に活用することができる。また、発電モジュールにおいて発電された電力を、接続先(電力変換器または蓄電部のいずれか一方)に応じた適正な大きさの電圧で各々の接続先に供給することができる。これにより、発電システムの構成を簡略化することができるとともに、電圧変換器を設けることに起因する電力損失を防止することができる。また、効果的にCO2排出量の削減に貢献することができる。
以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
まず、図1~図3を参照して、本発明の第1実施形態による発電システム(太陽光発電システム1)の構造を説明する。
まず、図1~図3を参照して、本発明の第1実施形態による発電システム(太陽光発電システム1)の構造を説明する。
本発明の第1実施形態による太陽光発電システム1は、図1に示すように、太陽光を用いて発電した電力を出力する発電電力出力部2と、発電電力出力部2により出力された電力を蓄電可能な蓄電部3と、電力系統50に接続され、発電電力出力部2より出力された電力を逆潮流が可能となるように電力系統50に出力するインバータ4と、発電電力出力部2および蓄電部3などを制御する制御部5とを備えている。なお、インバータ4は、本発明の「電力変換器」の一例であり、発電電力出力部2から出力された直流の電力を交流に変換する機能を有している。また、制御部5は、本発明の「制御装置」および「制御部」の一例である。
発電電力出力部2は、互いに接続された複数(第1実施形態では、5つ)の太陽光発電モジュール21と、太陽光発電モジュール21の発電電力をインバータ4側または蓄電部3側に選択的(択一的)に切替可能に接続する切替回路部22とを含んでいる。なお、発電電力出力部2は、本発明の「第1発電電力出力部」の一例であり、切替回路部22は、本発明の「切替部」および「切替回路」の一例である。
太陽光発電モジュール21は、温度係数が小さく(温度変化による特性の変化が小さく)、最大出力動作電圧の季節変動が少ない太陽電池を用いることが望ましい。温度係数の小さい太陽電池としては、たとえば、a-Siを用いた太陽電池(薄膜a-Si、HIT太陽電池など)およびGaAs系などの化合物系太陽電池が挙げられる。
切替回路部22は、発電電力出力部2をインバータ4側に接続する場合には、発電電力出力部2と蓄電部3との接続を電気的に切断し、発電電力出力部2を蓄電部3側に接続する場合には、発電電力出力部2とインバータ4との接続を電気的に切断するように構成されている。また、切替回路部22は、発電電力出力部2をインバータ4側に接続する場合には、5つの太陽光発電モジュール21同士の接続状態を、5つの太陽光発電モジュール21が互いに直列接続された直列接続状態に切り替えることが可能である。また、切替回路部22は、発電電力出力部2を蓄電部3側に接続する場合には、5つの太陽光発電モジュール21同士の接続状態を、5つの太陽光発電モジュール21が互いに並列接続された並列接続状態に切り替えることが可能である。
発電電力出力部2の詳細構造としては、たとえば図2に示すように、切替回路部22は、10個のスイッチ回路23を含んでいる。各スイッチ回路23は、太陽光発電モジュール21側の端子23aと直列接続時の端子23bとの接続と、太陽光発電モジュール21側の端子23aと並列接続時の端子23cとの接続とを選択的に切り替えることが可能である。図2に示すように、全てのスイッチ回路23において太陽光発電モジュール21側の端子23aと直列接続時の端子23bとを接続した場合に、5つの太陽光発電モジュール21が互いに直列接続されるとともに、その直列接続された5つの太陽光発電モジュール21がインバータ4側に接続されるように構成されている。これにより、インバータ4には、各太陽光発電モジュール21の出力電圧の総和となる電圧の電力が入力される。なお、この直列接続状態では、太陽光発電モジュール21は蓄電部3側とは電気的に切断されている。
また、図3に示すように、全てのスイッチ回路23において太陽光発電モジュール21側の端子23aと並列接続時の端子23cとを接続した場合に、5つの太陽光発電モジュール21が互いに並列接続されるとともに、その並列接続された太陽光発電モジュール21が蓄電部3側に接続されるように構成されている。これにより、蓄電部3には、蓄電部3と接続される太陽光発電モジュール21のうち出力電圧が最も小さい大きさの出力電圧の電力が入力される。なお、この並列接続状態では、太陽光発電モジュール21はインバータ4側とは電気的に切断されている。
インバータ4から母線6への出力は、たとえば、家庭用の機器(後述する一般負荷60)の使用に適合するように、単相3線200Vの交流出力となるように設計されている。インバータ4から200Vの交流出力を効率良く得るためには、発電電力出力部2からインバータ4への入力電圧は、200V以上300V以下の直流電圧が望ましい。
また、インバータ4と電力系統50とを接続する母線6と、発電電力出力部2と蓄電部3とを接続する配線7とはAC-DCコンバータ8を介して配線9により接続されている。これにより、電力系統50からAC-DCコンバータ8を介して蓄電部3に直流電力を供給することが可能である。また、配線9には電力系統50から蓄電部3に向かう電力のみを許容するダイオード10が設けられている。これにより、蓄電部3から配線9を介して電力系統50に逆潮流することが防止されている。また、発電電力出力部2と蓄電部3とは、DC-DCコンバータなどの電圧変換器を介さずに配線7により直接接続されている。
また、インバータ4と電力系統50とを接続する母線6には、一般負荷60が接続されている。この一般負荷60は、第1実施形態では、交流電源によって駆動される機器である。また、蓄電部3には、DC-DCコンバータ11を介して特定負荷70が接続されている。この特定負荷70は、第1実施形態では、直流電源によって駆動される機器である。また、特定負荷とは、常に電源から電力が供給されていることが望まれるような機器であり、例えば、常時動作する必要のある機器や、動作信号が入力されたら直ちに駆動可能なように待機が必要な機器が含まれる。第1実施形態では、蓄電部3と特定負荷70とが接続されているために、電力系統50が停電した場合でも特定負荷70への給電は蓄電部3により行われ、直ちに給電が停止することはない。
また、配線9のAC-DCコンバータ8よりも蓄電部3側の部分とDC-DCコンバータ11とが配線12を介して接続されている。これにより、AC-DCコンバータ8からは、蓄電部3に対してだけでなく配線12を介してDC-DCコンバータ11にも電力が供給されている。これにより、蓄電部3の充電電力が少なくなった場合にもAC-DCコンバータ8を介して系統電力を特定負荷70に供給することができるので、特定負荷70への給電が停止することはない。DC-DCコンバータ11は、蓄電部3からの直流電力と配線12からの直流電力とのいずれか一方を選択するように接続を切り替える機能を有している。通常時には蓄電部3から直流電力を選択し、蓄電部3の充電量が低下した場合などに、蓄電部3と特定負荷70との接続を電気的に切断するとともに、電力系統50と特定負荷70とを接続することが可能である。
なお、DC-DCコンバータ11の接続切替機能はDC-DCコンバータ11に組み込まれている必要はなく、DC-DCコンバータ11に代えて、切替機能を有していないDC-DCコンバータと、そのDC-DCコンバータとは別個に設けたスイッチとを設けることにより、DC-DCコンバータ11と同様の機能を実現することが可能である。
また、ここでは特定負荷70の例として直流電源で駆動させる機器を示したが、交流電源で駆動される機器を用いてもよい。この場合、DC-DCコンバータ11に代えてインバータが用いられる。また、この場合、配線12をAC-DCコンバータ8よりも系統電源50側に接続し、蓄電部3の充電量が少なくなったときにインバータ内での交流-直流変換を行うことなしに特定負荷70に供給するように構成してもよい。さらに、特定負荷70として、直流電源および交流電源で駆動される機器が混在してもよい。
また、蓄電部3としては、自然放電が少なく、充放電効率の高い2次電池(たとえば、リチウムイオン蓄電池、ニッケル水素蓄電池など)が用いられている。また、蓄電部3の電圧は高いほど安全設計が重要になることから、蓄電部3の電圧は低いことが望まれる。また、蓄電部3に接続される特定負荷70についても比較的低い電圧仕様のものが用いられることが多いので、それに合わせて蓄電部3の電圧も低いことが望まれる。このため、インバータ4に求められる所望の入力電圧(200V以上300V以下)よりも蓄電部3の充電電圧は小さくなる。また、蓄電部3の公称電圧(充電電圧)は、太陽光発電モジュール21の公称最大出力動作電圧よりも低くなるように選択される。さらに蓄電部3を効率的に充電するための太陽光発電モジュール21の発電電圧と、太陽光発電モジュール21の温度依存性とを考慮すると、蓄電部3の公称電圧は、より好ましくは、公称最大出力動作電圧の70%以上90%以下となるように選択される。
この理由を以下にさらに詳細に説明する。蓄電部3の電圧は充電量により公称電圧よりも10%程度上昇することが知られている。このため、満充電を行うためには公称電圧よりも10%程度高い電圧が必要であり、また、Vopを上回る電圧では発電電力が急激に低下するため、公称最大電力動作電圧(Vop)の90%以下での運用が好ましい。また、Vopは高温時などに低下することも知られている。このため、Vop低下時にも蓄電部3の公称電圧よりも10%以上高い電圧を維持するためには、Vop90%よりも低い蓄電部公称電圧が必要となる。その一方で、Vopから外れた動作電圧では、太陽光発電モジュール21の発電効率が低下することも知られている。発明者らの鋭意研究の結果、蓄電部3の公称電圧をVopの70%以上90%以下とすることが最も効率的に充電ができることを見出した。第1実施形態では、太陽光発電モジュール21の公称最大出力動作電圧が約60Vであり、蓄電部3の公称電圧(充電電圧)は約48Vである。
また、蓄電部3の公称電圧をVopの70%以上90%以下とすることにより、蓄電部3の充電に際してDC-DCコンバータを不要とすることができるので、DC-DCコンバータを用いる場合のコンバータ内における電力ロスを抑制することができる。これにより、高効率充電が可能になる。また、DC-DCコンバータの交換作業がなくなるとともに、部品点数を減らすことができるので、故障率低減による信頼性の向上や低コスト化、長期に渡るメンテナンスフリーの実現が見込まれる。
また、制御部5は、発電電力出力部2の発電量、蓄電部3の充電量、インバータ4の動作状況および予め設定された設定情報などに基づいて、発電電力出力部2の切替回路部22、蓄電部3、AC-DCコンバータ8およびDC-DCコンバータ11などを制御する機能を有する。具体的には、制御部5は、蓄電部3の充電量、インバータ4の動作状況および予め設定された設定情報などに基づいて、システムが通常運転時であるか非通常運転時であるかを判断する。
なお、通常運転時とは、電力系統50が正常に稼動している状態である。また、非通常運転時とは、電力系統50に何らかの理由で不具合が生じた場合または生じる可能性があるために予め対策を講じる必要がある場合である。たとえば、電力系統50が停電した場合、需要家側からの逆潮流によって配電線の許容電圧を越える場合、および、電力需要量と太陽光発電モジュール21の発電電力などとの関係で、例えば発電電力の調整が困難な原子力発電の発電電力を抑制することが求められるような特異日の場合に、制御部5は非通常運転時であると判断する。
制御部5は、通常運転時であると判断した場合には、図2に示すようにスイッチ回路23の接続状態を切り替えることにより、直列接続状態にするとともに、発電電力出力部2の接続先をインバータ4側に切り替える。通常運転時においては、発電電力出力部2の出力電力は、一般負荷60において消費され、余った電力は電力系統50に逆潮流される。また、特定負荷70は、蓄電部3を電源として駆動される。蓄電部3の充電量が少なくなった場合には、電力系統50から配線12を介して特定負荷70に電力が供給される。たとえば、制御部5は、蓄電部3の充電量が例えば50%まで低下した場合に、電力系統50と特定負荷70とを配線12を介して接続するようにDC-DCコンバータ11を制御する。これにより、蓄電部3の充電量の50%を確保することができるため、停電時などで電力系統50からの電力供給がない場合でも蓄電部3とDC-DCコンバータ11とを接続するように制御することによって、停電時でも特定負荷70に対して蓄電部3より電力を供給することも可能である。また、蓄電部3の放電深度差を少なくすることが可能であるので、蓄電部3の長寿命化を図ることが可能である。
また、制御部5は、非通常運転時であると判断した場合には、図3に示すようにスイッチ回路23の接続状態を切り替えることにより、並列接続状態にするとともに、発電電力出力部2の接続先を蓄電部3側に切り替える。非通常運転時においては、発電電力出力部2の出力電力は、蓄電部3に供給され、特定負荷70は、蓄電部3の充電電力および発電電力出力部2の出力電力によって駆動される。ここで、発電電力出力部2からの出力電力を、図1に示すように蓄電部3を介して特定負荷70に供給してもよいし、発電電力出力部2と蓄電部3と特定負荷70側への配線とを1点で結合することにより、発電電力出力部2からの出力電力を蓄電部3を介さずに特定負荷70に供給してもよい。
第1実施形態では、複数(5つ)の太陽光発電モジュール21がインバータ4に接続される場合には、複数の太陽光発電モジュール21同士の接続状態を複数の太陽光発電モジュール21が互いに直列接続された直列接続状態に切り替えるとともに、複数の太陽光発電モジュール21が蓄電部3に接続される場合には、複数の太陽光発電モジュール21同士の接続状態を複数の太陽光発電モジュール21が並列接続された並列接続状態に切り替える。このように構成することによって、発電モジュール21の接続先をインバータ4と蓄電部3との間で選択することができるため、必要に応じて発電電力の供給先を変更することができる。これにより、例えば蓄電部3が満充電の場合は、インバータ4側に接続することができるとともに、インバータ4の停止時には、蓄電部3に接続することができ、その結果、複数の太陽光発電モジュール21における発電電力を効率的に活用することができる。また、複数の太陽光発電モジュール21をインバータ4に接続する場合には、複数の太陽光発電モジュール21同士が互いに直列接続されるので、太陽光発電モジュール21において発電された電力を比較的高い電圧でインバータ4に供給(入力)することができる。また、複数の太陽光発電モジュール21を蓄電部3に接続する場合には、複数の太陽光発電モジュール21が並列接続されるので、太陽光発電モジュール21において発電された電力をインバータ4に供給する場合よりも比較的低い電圧で蓄電部3に供給することができる。これらにより、太陽光発電モジュール21において発電された電力を、接続先(インバータ4または蓄電部3のいずれか一方)に応じた適正な大きさの電圧で各々の接続先に供給することができる。これにより、複数の太陽光発電モジュール21が蓄電部3とインバータ4とに選択的に接続される構成において、複数の太陽光発電モジュール21をインバータ4に接続した場合および蓄電部3に接続した場合の両方の場合に電力の損失が生じることを抑制することができるので、太陽光発電モジュール21における発電電力を効率的に活用することができる。
また、複数の太陽光発電モジュール21が蓄電部3に接続される場合に、複数の太陽光発電モジュール21を並列接続することによって、太陽光発電モジュール21における発電電力の電圧を蓄電部3の充電電圧に適するような電圧に変換する必要がないので、太陽光発電モジュール21と蓄電部3との間にDC-DCコンバータなどの電圧変換器を設ける必要がない。これにより、発電システム1の構成を簡略化することができるとともに、電圧変換器を設けることに起因する電力損失を防止することができる。また、太陽光発電モジュール21における発電電力を効率的に活用することにより、火力発電などのCO2を排出する発電方法による発電量を少なくすることができるので、効果的にCO2排出量の削減に貢献することができる。
また、第1実施形態では、上記のように、切替回路部22に複数のスイッチ回路23を設け、複数のスイッチ回路23により複数の太陽光発電モジュール21の直列接続状態と並列接続状態とを切り替えることによって、スイッチ回路23を用いて容易に直列接続状態と並列接続状態とを切り替えることができる。
また、第1実施形態では、上記のように、切替回路部22は、複数のスイッチ回路23により複数の太陽光発電モジュール21の直列接続状態と並列接続状態とを切り替える際に、複数のスイッチ回路23により複数の太陽光発電モジュール21がインバータ4に接続される状態と、複数の太陽光発電モジュール21が蓄電部3に接続される状態との切り替えも行う。このように構成することによって、スイッチ回路23を用いて、直列接続状態と並列接続状態とを切り替えることができるのみならず、複数の太陽光発電モジュール21の接続先の切り替えも行うことができるので、太陽光発電モジュール21の接続先を切り替えるための専用のスイッチを別途設ける必要がない。
また、第1実施形態では、上記のように、通常運転時に、複数の太陽光発電モジュール21をインバータ4に接続するとともに、切替回路部22により複数の太陽光発電モジュール21の接続状態を直列接続状態に切り替えて、互いに直列接続された複数の太陽光発電モジュール21により発電された電力をインバータ4を介して電力系統50側に出力し、非通常運転時に、複数の太陽光発電モジュール21を蓄電部3に接続するとともに、切替回路部22により複数の太陽光発電モジュール21の接続状態を並列接続状態に切り替えて、並列接続された複数の太陽光発電モジュール21により発電された電力を蓄電部3に供給するように構成している。このように構成することによって、通常運転時には、直列接続によって複数の太陽光発電モジュール21による発電電力をインバータ4への入力に適した高い電圧でインバータ4に供給することができるとともに、非通常運転時には、並列接続によって複数の太陽光発電モジュール21による発電電力を蓄電部3の充電に適した低い電圧で蓄電部3に供給することができる。これにより、通常運転時には、太陽光発電モジュール21の発電電力をインバータ4を介して電力系統50と連係することができ、インバータ4を停止あるいは運転抑制をしないといけないような非通常運転時には、太陽光発電モジュール21の発電電力を蓄電部3に供給して電力を蓄える、あるいは特定負荷70に電力を供給することができる。これにより、太陽光発電モジュール21の発電電力をより効率的に活用することができる。
また、第1実施形態では、上記のように、蓄電部3に特定負荷70を接続し、通常運転時には、例えば深夜電力など電力系統50から供給された電力を蓄電部3に蓄電し、蓄電部3に蓄電された電力を特定負荷70に供給するとともに、非通常運転時に、並列接続された複数の太陽光発電モジュール21により発電された電力と、蓄電部3に蓄電された電力とを特定負荷70に供給するように構成している。このように構成することによって、通常運転時には太陽光発電モジュール21の発電電力をインバータ4を介して電力系統50側に出力しておき、太陽光発電モジュール21の発電電力をインバータ4に供給することが困難な非通常運転時には、太陽光発電モジュール21の発電電力と、蓄電部3に蓄電された電力とを合わせた電力を負荷に供給することができる。これにより、非通常運転時において太陽光発電モジュール21の発電電力を効率的に活用して特定負荷70を長時間駆動することができる。
(第1実施形態の変形例)
上記第1実施形態では、発電電力出力部2の切替回路部22により直列接続状態と並列接続状態との切替と、発電電力出力部2の接続先(インバータ4または蓄電部3)の切替をスイッチ回路23を用いたが、図4および図5に示す第1実施形態の第1変形例による発電電力出力部2aでは、直列接続状態と並列接続状態との切替を行うためのスイッチ回路24と、発電電力出力部2aの接続先の切替を行うためのスイッチ回路25とを別個に切替回路部22aに設けている。なお、切替回路部22aは、本発明の「切替部」の一例であり、スイッチ回路24およびスイッチ回路25は、それぞれ、本発明の「第1スイッチ回路」および「第2スイッチ回路」の一例である。また、発電電力出力部2aは、本発明の「第1発電電力出力部」の一例である。
上記第1実施形態では、発電電力出力部2の切替回路部22により直列接続状態と並列接続状態との切替と、発電電力出力部2の接続先(インバータ4または蓄電部3)の切替をスイッチ回路23を用いたが、図4および図5に示す第1実施形態の第1変形例による発電電力出力部2aでは、直列接続状態と並列接続状態との切替を行うためのスイッチ回路24と、発電電力出力部2aの接続先の切替を行うためのスイッチ回路25とを別個に切替回路部22aに設けている。なお、切替回路部22aは、本発明の「切替部」の一例であり、スイッチ回路24およびスイッチ回路25は、それぞれ、本発明の「第1スイッチ回路」および「第2スイッチ回路」の一例である。また、発電電力出力部2aは、本発明の「第1発電電力出力部」の一例である。
この第1実施形態の第1変形例では、各スイッチ回路24は、太陽光発電モジュール21側の端子24aと直列接続時の端子24bとの接続と、太陽光発電モジュール21側の端子24aと並列接続時の端子24cとの接続とを選択的に切り替えることが可能である。また、各スイッチ回路25は、太陽光発電モジュール21側の端子25aと直列接続時の端子25bとの接続と、太陽光発電モジュール21側の端子25aと並列接続時の端子25cとの接続とを選択的に切り替えることが可能である。図4に示すように、全てのスイッチ回路24において太陽光発電モジュール21側の端子24aと直列接続時の端子24bとを接続した場合に、5つの太陽光発電モジュール21が互いに直列接続され、全てのスイッチ回路25において太陽光発電モジュール21側の端子25aと直列接続時の端子25bとを接続した場合に、その直列接続された5つの太陽光発電モジュール21がインバータ4側に接続されるように構成されている。なお、この直列接続状態では、太陽光発電モジュール21は蓄電部3側とは電気的に切断されている。また、図5に示すように、全てのスイッチ回路24において太陽光発電モジュール21側の端子24aと並列接続時の端子24cとを接続した場合に、5つの太陽光発電モジュール21が互いに並列接続されるとともに、全てのスイッチ回路25において太陽光発電モジュール21側の端子25aと直列接続時の端子25cとを接続した場合に、その並列接続された太陽光発電モジュール21が蓄電部3側に接続されるように構成されている。なお、この並列接続状態では、太陽光発電モジュール21はインバータ4側とは電気的に切断されている。
また、図6に示す第1実施形態の第2変形例による発電電力出力部2bでは、一部の太陽光発電モジュール21を並列接続して蓄電部3に接続可能なように切替回路部22bを構成している。具体的には、切替回路部22bでは、5つの太陽光発電モジュール21を並列接続するための回路上に、回路を遮断可能なスイッチ23dを設けている。図6では、図の右から1番目と2番目の太陽光発電モジュール21に対応する回路上に、スイッチ23dが設けられている。このスイッチ23dをオフ(回路を遮断)することにより、並列接続状態において、オフしたスイッチ23dに対応する太陽光発電モジュール21の発電電力を蓄電部3に供給しないようにすることが可能である。なお、図6の例では、直列接続状態においては、スイッチ23dのオン/オフに拘わらず、全て(5つ)の太陽光発電モジュール21が直列接続されてインバータ4に接続される。なお、切替回路部22bは、本発明の「切替部」および「切替回路」の一例である。
この第1実施形態の第2変形例では、天候などに応じてスイッチ23dのオン/オフを切り替えることにより、蓄電部3に過度の負担がかかるのを抑制することができる。たとえば、天候が曇りであり、各太陽光発電モジュール21の発電電力が小さい場合には、スイッチ23dをオンにすることにより、より早く蓄電部3の充電を行うことができる。また、天候が快晴であり、各太陽光発電モジュール21の発電電力が大きい場合には、スイッチ23dをオフにすることにより、一部(3つまたは4つ)の太陽光発電モジュール21の発電電力を用いて蓄電部3に過度の負担をかけずに蓄電部3の充電を行うことができる。尚、スイッチ23dを複数設ける場合には、全てのスイッチ23dを同時にオンまたはオフしてもよいし、個別にオン/オフを制御してもよい。
また、この第1実施形態の第2変形例では、2つの太陽光発電モジュール21に対応する回路上にスイッチ23dを設けているが、1つ、または3つ以上の太陽光発電モジュール21に対してスイッチ23dを設けてもよい。たとえば、図6の4つの太陽光発電モジュール21に対応する回路上にそれぞれスイッチ23dを設けてもよい。この場合には、太陽光発電モジュール21を2~5個の任意の数の並列接続によって蓄電部3に電力供給を行うことが可能であるとともに、全てのスイッチ23dを同時にオフすることにより、1つの太陽光発電モジュール21から蓄電部3に電力供給を行うことも可能である。
また、図7に示す第1実施形態の第3変形例による発電電力出力部2cでは、並列接続状態において、一部の太陽光発電モジュール21が他の太陽光発電モジュール21および蓄電部3やインバータ4と電気的に分離されるように切替回路部22cを構成している。具体的には、切替回路部22cでは、図の右から1番目と2番目の太陽光発電モジュール21に対応する並列接続用の回路を設けていない。すなわち、図7の例では、並列接続状態において、3つの太陽光発電モジュール21の発電電力のみを蓄電部3に供給するように構成されている。なお、図7の例においても、直列接続状態においては、全て(5つ)の太陽光発電モジュール21が直列接続されてインバータ4に接続される。なお、互いに並列接続された3つの太陽光発電モジュール21は蓄電部3に接続され、電気的に分離された残りの2つの太陽光発電モジュール21は、蓄電部3およびインバータ4のいずれからも分離されていることが好ましい。この理由については、後述する第3実施形態において説明する。なお、切替回路部22cは、本発明の「切替部」および「切替回路」の一例である。
この第1実施形態の第3変形例では、蓄電部3の充電の際に、蓄電部3に過度の負担がかかるのを抑制することができるとともに、スイッチ23dを設けない分、回路構成を簡略化することができる。
また、図8および図9に示す第1実施形態の第4変形例による発電電力出力部2dでは、直列接続状態および並列接続状態の切替と、発電電力出力部2dの接続先(インバータ4または蓄電部3)の切替とを行う機械式のスイッチ回路26と、スイッチ回路26への電流の流入および遮断の切替を行う電子式のスイッチ回路27とを設けている。なお、スイッチ回路26は、本発明の「スイッチ回路」および「機械式スイッチ回路」の一例である。また、スイッチ回路27は、本発明の「電子式スイッチ回路」の一例である。また、発電電力出力部2dは、本発明の「第1発電電力出力部」および「発電電力出力部」の一例である。
この第1実施形態の第4変形例では、切替回路部22dは、10個のスイッチ回路26と、5個のスイッチ回路27と、1つの切替スイッチ26eとを備えている。スイッチ回路26は、接点26a、26bおよび26cを有する機械式の接点切替部と、接点切替用のコイル(電磁石)26dとを含む機械式リレースイッチにより構成されている。なお、切替回路部22dは、本発明の「切替部」および「切替回路」の一例である。
上記第1実施形態と同様に、各スイッチ回路26は、太陽光発電モジュール21側の接点26aを、インバータ4側に接続するための接点26bまたは蓄電部3側に接続するための接点26cに選択的に切替可能に構成されている。通常、接点26aは接点26bまたは接点26cの一方と接続されており、コイル26dへの通電に伴い発生する吸引力により接点26bまたは接点26cの他方と接点26aとの接続(切替)が行われる。各スイッチ回路26のコイル26dは一方端が外部電源からの電源供給路に接続されているとともに、他方端が接地されている。このため、各スイッチ回路26は、外部電源から電源供給路を介して各コイル26dに供給される電流によって同時に接点切り替えが行われるように構成されている。図8に示すように、各スイッチ回路26の接点26aと接点26bとが接続されると、5つの太陽光発電モジュール21が互いに直列接続されるとともに、その直列接続された5つの太陽光発電モジュール21がインバータ4側に接続される。また、図9に示すように、各スイッチ回路26の接点26aと接点26cとが接続されると、5つの太陽光発電モジュール21が互いに並列接続されるとともに、その並列接続された5つの太陽光発電モジュール21が蓄電部3側に接続される。
なお、各スイッチ回路26のコイル26dと外部電源との間には電子式の切替スイッチ26eが設けられている。切替スイッチ26eは、制御部5からの制御信号に応じてコイル26dへの電流の供給および遮断を切り替えるように構成されている。これにより、制御部5による接続状態の切替制御が行われる。
5つのスイッチ回路27は、それぞれ、電子式で無接点のFET(電界効果トランジスタ)スイッチからなり、スイッチ回路26と太陽光発電モジュール21との間(陽極側)に1つずつ設けられている。各スイッチ回路27は、制御部5からの制御信号に基づいてスイッチ回路26への電流の流入および遮断を切り替えるように構成されている。この第1実施形態の第4変形例では、制御部5は、各スイッチ回路26の接続切替を行う際に、まず、各スイッチ回路27をオフ(遮断)して各スイッチ回路26への電流を遮断する。そして、各スイッチ回路27により各スイッチ回路26への電流が遮断された状態で、制御部5が切替スイッチ26eに制御信号を出力することにより、各スイッチ回路26の接続切替が実行される。これにより、機械式のスイッチ回路26を用いる場合にも、電流を遮断した状態でスイッチ回路26の接点切替を行うことができるので、接点切替時の信頼性を向上させることが可能であるとともに、機械式のスイッチ回路26の長寿命化を図ることができる。
なお、上記第1実施形態の第4変形例では、5つの太陽光発電モジュール21のそれぞれに合計5つの電子式のスイッチ回路27を設けた例を示したが、電子式のスイッチ回路を回路の合流点に設けてもよい。この場合には、電子式のスイッチ回路の個数を減らすことができるので、回路構成を簡略化することができる。
具体的には、図10および図11に示す第1実施形態の第5変形例による発電電力出力部2eのように、切替回路部22eにおいて、5つの太陽光発電モジュール21からの電流経路(回路)の合流部分にスイッチ回路271を設ける。ここで、切替回路部22eの回路構成は、図4および図5に示した切替回路部22aと同様である。すなわち、この第1実施形態の第5変形例による切替回路部22eでは、各太陽光発電モジュール21相互間の直列接続と並列接続との切替が機械式のスイッチ回路261で行われるとともに、接続先(インバータ4または蓄電部3)の切替が機械式のスイッチ回路262で行われる。ここで、各太陽光発電モジュール21を直列接続でインバータ4側に接続する場合(図10参照)、および、各太陽光発電モジュール21を並列接続で蓄電部3側に接続する場合(図11参照)のいずれの場合でも、各太陽光発電モジュール21からの電流はスイッチ回路262を通過する。このため、切替回路部22eには、スイッチ回路262の直前(太陽光発電モジュール21側)の位置に、1つの電子式のスイッチ回路271が設けられている。これにより、電子式のスイッチ回路271を1つ設けるだけで、機械式のスイッチ回路261および262を用いる場合にも、電流を遮断した状態でスイッチ回路261(262)の接点切替を行うことができる。なお、スイッチ回路261および262は、本発明の「スイッチ回路」および「機械式スイッチ回路」の一例である。また、スイッチ回路271は、本発明の「電子式スイッチ回路」の一例である。また、発電電力出力部2eは、本発明の「第1発電電力出力部」および「発電電力出力部」の一例である。また、切替回路部22eは、本発明の「切替部」および「切替回路」の一例である。
(第2実施形態)
次に、図2、図3および図12を参照して、本発明の第2実施形態による発電システム(太陽光発電システム1a)について説明する。この第2実施形態では、電力系統50との連携を重視して通常は直列接続する制御を行う上記第1実施形態と異なり、蓄電部3の充電を重視して通常は並列接続する制御を行う例について説明する。なお、制御部5aの制御以外の構成は、図1に示した上記第1実施形態の構成と同様であるので、説明を省略する。また、制御部5aは、本発明の「制御装置」の一例である。
次に、図2、図3および図12を参照して、本発明の第2実施形態による発電システム(太陽光発電システム1a)について説明する。この第2実施形態では、電力系統50との連携を重視して通常は直列接続する制御を行う上記第1実施形態と異なり、蓄電部3の充電を重視して通常は並列接続する制御を行う例について説明する。なお、制御部5aの制御以外の構成は、図1に示した上記第1実施形態の構成と同様であるので、説明を省略する。また、制御部5aは、本発明の「制御装置」の一例である。
図12に示すように、第2実施形態による太陽光発電システム1aの制御部5aは、発電電力出力部2の発電量、蓄電部3の充電量、インバータ4の動作状況および予め設定された設定情報などに基づいて、発電電力出力部2の切替回路部22、蓄電部3、AC-DCコンバータ8およびDC-DCコンバータ11などを制御する機能を有する。具体的には、制御部5aは、蓄電部3の充電量、インバータ4の動作状況および予め設定された設定情報などに基づいて、蓄電部3に蓄えられた電力で特定負荷70に供給する電力を長時間賄うことが可能であるか否かを判断する。なお、蓄電部3に蓄えられた電力で特定負荷70に供給する電力を賄うことが可能である場合とは、たとえば、蓄電部3が満充電またはそれに近い充電量である場合や、特定負荷70における使用電力量が少ない場合などが該当する。制御部5aは、蓄電部3の充電量および充電量の変化量を検出することにより、特定負荷70における使用電力量などを監視している。
蓄電部3に蓄えられた電力で特定負荷70に供給する電力を賄えない恐れがあると判断するときには、制御部5aは、図3に示すようにスイッチ回路23の接続状態を切り替えることにより、並列接続状態にするとともに、発電電力出力部2の接続先を蓄電部3側に切り替える。蓄電部3に蓄えられた電力で特定負荷70に供給する電力を賄えない恐れがあると判断するときにおいては、発電電力出力部2の出力電力は、蓄電部3に供給され、特定負荷70は、蓄電部3の充電電力および発電電力出力部2の出力電力によって駆動される。
また、制御部5aは、蓄電部3に蓄えられた電力で特定負荷70に供給する電力を賄うことが可能であると判断した場合には、図2に示すようにスイッチ回路23の接続状態を切り替えることにより、直列接続状態にするとともに、発電電力出力部2の接続先をインバータ4側に切り替える。この場合においては、発電電力出力部2の出力電力は、一般負荷60において消費され、余った電力は電力系統50に逆潮流される。また、特定負荷70は、蓄電部3を電源として駆動される。
蓄電部3の充電量が少なくなった場合には、発電電力出力部2の発電量および特定負荷70の負荷量などに基づいて、並列接続状態とし、発電電力出力部2を蓄電部3側に接続するように切替回路部22を切り替えるとともに、DC-DCコンバータ11を蓄電部3側に接続することにより、充電部3の充電および特定負荷70への給電を行う。または、DC-DCコンバータ11を電力系統50側に接続することにより、電力系統50の電力をAC-DCコンバータ8および配線12を介して特定負荷70に供給する。また、電力系統50から特定負荷70に給電するだけでなく、合わせて蓄電部3への充電を行ってもよい。この充電電力源としては、発電電力出力部2および電力系統50を用いることが可能である。
第2実施形態では、上記のように、蓄電部3に蓄えられた電力で特定負荷70に供給する電力を賄えない恐れがあると判断するときに、複数の太陽光発電モジュール21を蓄電部3に接続するとともに、切替回路部22により複数の太陽光発電モジュール21の接続状態を並列接続状態に切り替えて、並列接続された複数の太陽光発電モジュール21により発電された電力と蓄電部3に蓄電された電力とを特定負荷70に供給し、蓄電部3に蓄電された電力により負荷に供給する電力を賄える時には、複数の太陽光発電モジュール21をインバータ4に接続するとともに、切替回路部22により複数の太陽光発電モジュール21の接続状態を直列接続状態に切り替えて、蓄電部3に蓄電された電力を特定負荷70に供給しながら、互いに直列接続された複数の太陽光発電モジュール21により発電された電力をインバータ4を介して電力系統50に逆潮流可能となるように構成している。このように構成することによって、蓄電部3に蓄えられた電力で特定負荷70に供給する電力を賄えない恐れがあると判断するときには、複数の太陽光発電モジュール21による発電電力を蓄電部3の充電に適した比較的低い電圧で蓄電部3に供給することができるとともに、満充電の場合や特定負荷70における電力消費量が少ない場合など蓄電部3に蓄電された電力により特定負荷70に供給する電力を賄える時には、複数の太陽光発電モジュール21による発電電力をインバータ4への入力に適した比較的高い電圧でインバータ4に供給して電力系統50に逆潮流可能となるようにすることができる。その結果、蓄電部3への充電にのみ太陽光発電モジュール21を使う場合と比較して、太陽光発電モジュール21の発電電力をより効率的に活用することができる。
その他の効果は、上記第1実施形態と同様である。
(第2実施形態の変形例)
上記第2実施形態では、配線9およびAC-DCコンバータ8を介して電力系統50から蓄電部3に電力を供給することが可能に構成したが、図13に示す第2実施形態の変形例による太陽光発電システム100では、配線9およびAC-DCコンバータ8を設けていない。このように構成し、蓄電部3の充電量が低下した場合などでは並列側に切り替えて充電し、例えば満充電状態または所定の蓄電量以上では直列側に切り替えるような構成としてもよい。特に、特定負荷70の消費電力が蓄電部3の蓄電容量に比べて小さいときに有効である。
上記第2実施形態では、配線9およびAC-DCコンバータ8を介して電力系統50から蓄電部3に電力を供給することが可能に構成したが、図13に示す第2実施形態の変形例による太陽光発電システム100では、配線9およびAC-DCコンバータ8を設けていない。このように構成し、蓄電部3の充電量が低下した場合などでは並列側に切り替えて充電し、例えば満充電状態または所定の蓄電量以上では直列側に切り替えるような構成としてもよい。特に、特定負荷70の消費電力が蓄電部3の蓄電容量に比べて小さいときに有効である。
(第3実施形態)
次に、図14を参照して、本発明の第3実施形態による発電システム(太陽光発電システム200)について説明する。この第3実施形態では、上記第1実施形態と異なり、インバータ4に常時接続される発電電力出力部201をさらに設けた例について説明する。
次に、図14を参照して、本発明の第3実施形態による発電システム(太陽光発電システム200)について説明する。この第3実施形態では、上記第1実施形態と異なり、インバータ4に常時接続される発電電力出力部201をさらに設けた例について説明する。
第3実施形態による太陽光発電システム200では、上記第1実施形態の構成に加えて、インバータ4に常時接続される発電電力出力部201が2つ設けられている。発電電力出力部201では、5つの太陽光発電モジュール21が直列接続されている。なお、発電電力出力部201は、本発明の「第2発電電力出力部」の一例である。また、1つの発電電力出力部2と、2つの発電電力接続部201とは互いに並列に接続されて、インバータ4に接続されている。太陽光発電システム200では、3つの発電電力出力部(1つの発電電力出力部2および2つの発電電力出力部201)を全てインバータ4に接続することが可能であり、2つの発電電力出力部201をインバータ4に接続するとともに1つの発電電力出力部2を蓄電部3に接続することも可能である。なお、第3実施形態において発電電力出力部2の替わりに図6または図7に示した発電電力出力部2bまたは2cを用いた場合には、並列接続状態において、互いに並列接続された太陽光発電モジュール21は蓄電部3に接続され、電気的に分離された太陽光発電モジュール21(以下、分離モジュールと呼ぶ)は、蓄電部3およびインバータ4のいずれからも分離されていることが好ましい。この理由を説明する。すなわち、仮に、分離モジュールをインバータ4に接続した場合には、発電電力出力部201と、発電電力出力部201の出力電圧よりも小さい分離モジュールとが同時にインバータ4に並列接続されることになる。この場合、発電電力出力部201の出力電圧が、分離モジュールの出力電圧に引きずられてしまうことに起因して、全体の出力電力のロスが生じてしまう。以上の理由により、分離モジュールは、蓄電部3およびインバータ4のいずれからも分離されていることが好ましい。なお、これは、後述する第3実施形態の第1変形例および第2変形例においても同様である。
第3実施形態では、上記のように、接続先を切替可能な発電電力出力部2に加えて、インバータ4に常時接続される発電電力出力部201をさらに設けることによって、発電電力出力部2の発電電力を蓄電部3に出力しながら、発電電力出力部201の発電電力をインバータ4を介して逆潮流させることができる。
(第3実施形態の変形例)
第3実施形態による太陽光発電システム200では、インバータ4に常時接続される発電電力出力部201を2つ設けたが、図15に示す第3実施形態の第1変形例の太陽光発電システム250のように、インバータ4に常時接続される発電電力出力部201を3つ設けてもよい。このように、発電電力出力部201の数は自由に変更可能である。
第3実施形態による太陽光発電システム200では、インバータ4に常時接続される発電電力出力部201を2つ設けたが、図15に示す第3実施形態の第1変形例の太陽光発電システム250のように、インバータ4に常時接続される発電電力出力部201を3つ設けてもよい。このように、発電電力出力部201の数は自由に変更可能である。
また、第3実施形態では、インバータ4に常時接続される発電電力出力部201を設けたが、図16に示す第3実施形態の第2変形例の太陽光発電システム300では、発電電力出力部2を複数設けている。この場合、各発電電力出力部2の接続先(蓄電部3またはインバータ4)を制御部301によって個別に制御することにより、蓄電部3に出力する電力と電力系統50に逆潮流させる電力とを段階的に調整することができる。たとえば、3つの発電電力出力部2を全てインバータ4または蓄電部3に接続することも可能であり、1つの発電電力出力部2をインバータ4に接続するとともに2つの発電電力出力部2を蓄電部3に接続することも可能であり、2つの発電電力出力部2をインバータ4に接続するとともに1つの発電電力出力部2を蓄電部3に接続することも可能である。これにより、より太陽光発電モジュール21による発電電力を効率的に活用することができる。なお、制御部301は、本発明の「制御装置」および「制御部」の一例である。
また、第3実施形態、その第1変形例および第2変形例では、特に以下のような効果を得ることができる。すなわち、一般負荷量および特定負荷量に応じて太陽光発電モジュールの発電量や蓄電部3の容量を適宜選択することができる。たとえば、一般負荷量が多く、特定負荷量が少ない場合には、蓄電部3の容量は少なくて済むので、直並列切替可能な発電電力出力部は少数でもよく、各需要家の状況に応じて適宜対応が可能である。
また、需要家側からの逆潮流によって配電線の許容電圧を越える問題(過電圧)に対しても、太陽光発電モジュールの発電能力を極力最大限に利用しながら逆潮流量を抑制することができる。すなわち、直並列切替可能な発電電力出力部を設けていないシステム(図14の3つの発電電力出力部の全てが直並列切替可能でない場合)では、出力電力を抑制する際に、3つの発電電力出力部側の全ての発電量を抑制する必要があるが、図14の例では、1つの発電電力出力部の出力を蓄電部3側に切り替えることにより、電力系統50側への出力を、各発電電力出力部の出力を抑制することなく、2/3にすることができる。また、図16の例では、過電圧の問題に対してさらに段階的に対応(電力系統50への出力電力量を調整)することが可能となる。すなわち、発電電力出力部2での発電電力の全てを電力系統50へ逆潮流すると過電圧になるのに対し、一部の発電電力を逆潮流させなければ過電圧とならない場合には有効である。また、並列側に切り替えられた発電電力出力部についても、蓄電部3に充電あるいは特定負荷70で利用することができるために各発電電力出力部を効率的に利用することができる。
第3実施形態およびその変形例のその他の効果は、上記第1実施形態と同様である。
なお、図14では3つの発電電力出力部のうち1つを直並列切替可能に構成しており、図16では3つ全てを直並列切替可能に構成している。ここで、複数の発電電力出力部のうち、いくつの発電電力出力部を直並切替可能に構成するかは、任意に変更可能である。
(第4実施形態)
次に、図17を参照して、本発明の第4実施形態による発電システム(太陽光発電システム400)について説明する。この第4実施形態では、発電電力出力部2を複数設けた上記第3実施形態の第2変形例に加えて、蓄電部3へ流れる電流値を測定する電流測定部を設け、測定される電流値に基づいて各発電電力出力部2の接続先(蓄電部3またはインバータ4)の切替制御を行う例について説明する。また、この第4実施形態では、発電電力出力部2の電圧を検出する電圧検出部を設け、電圧検出部の検出結果に基づいて切替回路部22の動作確認を行う例について説明する。
次に、図17を参照して、本発明の第4実施形態による発電システム(太陽光発電システム400)について説明する。この第4実施形態では、発電電力出力部2を複数設けた上記第3実施形態の第2変形例に加えて、蓄電部3へ流れる電流値を測定する電流測定部を設け、測定される電流値に基づいて各発電電力出力部2の接続先(蓄電部3またはインバータ4)の切替制御を行う例について説明する。また、この第4実施形態では、発電電力出力部2の電圧を検出する電圧検出部を設け、電圧検出部の検出結果に基づいて切替回路部22の動作確認を行う例について説明する。
第4実施形態による太陽光発電システム400では、互いに並列接続された複数(3つ)の発電電力出力部2と、並列接続された複数(3つ)の蓄電部3とが設けられている。上記第3実施形態の第2変形例と同様に、制御部401は、各発電電力出力部2の発電電力の出力先(蓄電部3またはインバータ4)の切替を個別に制御することが可能である。また、これらの発電電力出力部2と蓄電部3との間には、充放電スイッチ部402が接続されている。なお、この第4実施形態では、3つの発電電力出力部2と3つの蓄電部3とを設けた例について説明するが、上記の通り、発電電力出力部2の数および蓄電部3の数は任意に変更可能である。また、制御部401は、本発明の「制御装置」の一例である。
充放電スイッチ部402は、電流・電圧測定部403と、充電用スイッチ404と、電流測定部405と、放電用スイッチ406とを備えている。充放電スイッチ部402は、蓄電部3と各発電電力出力部2との接続および遮断を切り替えるとともに、蓄電部3と特定負荷70との接続および遮断を切り替える機能を有する。したがって、充放電スイッチ部402は、発電電力出力部2から蓄電部3への充電側回路の開閉、および、蓄電部3から特定負荷70への放電側回路の開閉を切り替える機能を有する。充電側回路および放電側回路には、3つの蓄電部3を並列に接続する充電側分岐路407および放電側分岐路408がそれぞれ設けられている。なお、電流・電圧測定部403は、本発明の「電流測定部」および「電圧検出部」の一例である。また、充電用スイッチ404は、本発明の「充電用スイッチ回路」の一例である。
また、これらの充電側分岐路407および放電側分岐路408には、電流の逆流を防止するためのダイオード409および410がそれぞれ設けられている。これにより、充電時には、発電電力出力部2から蓄電部3へ向かう電流のみが充電側分岐路407に流れ、放電時には、蓄電部3から特定負荷70へ向かう電流のみが放電側分岐路408に流れる。
電流・電圧測定部403は、発電電力出力部2から蓄電部3に流れる電流値および電圧値を測定する機能を有する。電流・電圧測定部403は、3つの充電側分岐路407よりも発電電力出力部2側の位置に設けられている。このため、電流・電圧測定部403では、3つの充電側分岐路407を介して蓄電部3側に流れる電流値を合計した電流値が測定される。
充電用スイッチ404は、充電側分岐路407と電流・電圧測定部403との間に設けられ、蓄電部3と各発電電力出力部2との接続および遮断(充電用回路の開閉)を切り替える機能を有する。充電用スイッチ404の開閉(接続および遮断)は、制御部401の制御信号に基づいて行われるように構成されている。なお、放電用スイッチ406は、制御部401の制御信号に基づいて、蓄電部3と特定負荷70との接続および遮断(放電用回路の開閉)を切り替える機能を有する。
電流測定部405は、充電側分岐路407で分岐した後の3つの蓄電部3にそれぞれ流れる電流値を個別に測定する機能を有する。したがって、第4実施形態では、電流測定部405は、3つの蓄電部3に応じて充電側分岐路407にそれぞれ1つずつ、合計3つ設けられている。
蓄電部3を充電する場合には、制御部401により充電用スイッチ404がオンされるとともに、1または複数の発電電力出力部2の出力先が蓄電部3側に切り替えられる。この結果、発電電力出力部2の出力電力が電流・電圧測定部403、充電用スイッチ404、充電側分岐路407および各電流測定部405を介してそれぞれの蓄電部3に供給される。一方、蓄電部3から特定負荷70に放電する場合には、制御部401により放電用スイッチ406がオンされることにより、放電側分岐路408、放電用スイッチ406およびDC-DCコンバータ11を介して特定負荷70への電力供給が行われる。
第4実施形態では、制御部401は、充電時における蓄電部3へ流れる電流値(測定結果)を電流・電圧測定部403または電流測定部405から取得する。そして、制御部401は、測定された電流値が各蓄電部3の定格電流以下の場合に、充電用スイッチ404により発電電力出力部2と蓄電部3とを接続するとともに発電電力出力部2を蓄電部3側に接続するように制御する。また、制御部401は、測定結果に基づいて、測定された電流値が各蓄電部3の定格電流よりも大きい場合に、充電用スイッチ404により発電電力出力部2と蓄電部3とを遮断するとともに発電電力出力部2をインバータ4側に接続するように制御する。この際、制御部401は、発電電力出力部2の接続先を個別に制御することにより、蓄電部3へ流れる電流値に応じて蓄電部3に接続される(電力供給を行う)発電電力出力部2の数を制御するように構成されている。
さらに、第4実施形態では、制御部401は、表示部411および操作部412と接続されている。制御部401は、表示部411に所定の表示画面を出力するとともに、操作部412を介してユーザの操作入力を受け付けることが可能なように構成されている。この第4実施形態では、制御部401は、太陽光発電システム400の起動時における切替回路部22の動作確認処理を行うように構成されている。具体的には、制御部401は、電流・電圧測定部403により検出された電圧に基づいて、各太陽光発電モジュール21の直列接続および並列接続の切替動作と、発電電力出力部2の接続先(インバータ4および蓄電部3)の切替動作とのチェック処理を行う。この確認処理の詳細は、後述する。
なお、第4実施形態のその他の構成は、上記第3実施形態の第2変形例と同様である。
次に、図17および図18を参照して、第4実施形態による太陽光発電システム400の蓄電部3の充電時における発電電力出力部2の接続切替処理について説明する。なお、発電電力出力部2の数Nは任意に変更可能であるが、ここではN=3個の発電電力出力部2が設けられた場合を説明する。
まず、蓄電部3への充電は、蓄電部3の充電量が所定以下の場合などに開始される。充電が開始されると、図18のステップS1において、制御部401により充電用スイッチ404がオン(閉)される。これにより、発電電力出力部2の接続先を蓄電部3側に切り替えれば、充電を始めることができる。
ステップS2において、制御部401は、蓄電部3側に接続する発電電力出力部2の数iを「1」にセットする。そして、ステップS3において、制御部401が切替回路部22の切替操作を行うことにより、1つ目(i=1)の発電電力出力部2の接続先が蓄電部3側に切り替えられる。この結果、接続された発電電力出力部2から蓄電部3側へ電力が供給され充電が開始される。この際、図17に示すように、電流・電圧測定部403では、3つの蓄電部3へ流れる電流の合計値が測定され、各電流測定部405では、対応する個々の蓄電部3へ流れる電流値が測定される。続いて、ステップS4において、制御部401により、経過時間の計測が開始される。この経過時間については、後述する。
ステップS5において、制御部401により、測定された電流値が取得される。ここで、電流・電圧測定部403から電流値を取得する場合には、測定された電流値を並列接続された蓄電部3の数N(ここでは、N=3)で割ることにより、電流値が取得される。また、各電流測定部405から電流値を取得する場合には、測定された電流値をそのまま取得する。
ステップS6では、制御部401により、取得された電流値が蓄電部3の定格電流値以下かどうかが判断される。取得された電流値が定格電流値以下の場合には、ステップS7に進む。なお、各電流測定部405から電流値を取得する場合には、各電流測定部405で取得された電流値の全てが蓄電部3の定格電流値以下の場合にステップS7に進み、一つでも超えるものがあればステップS1に進む。
ステップS7では、制御部401により、ステップS4における経過時間計測を開始してから、一定時間(たとえば、2分間)経過したか否かが判断される。一定時間経過していない場合には、ステップS5に戻り、再度電流値が取得されるとともに、ステップS6で定格電流値との比較が行われる。定格電流値を超えることなく一定時間が経過すると、ステップS8に進む。すなわち、ステップS5~S7の間を一定時間の間ループすることにより、天候の変動などにより変化する発電電力出力部2の出力(電流値)がこの一定時間の間継続的に定格電流を超えないことを確認する。
一定時間経過するまでの間、取得された電流値が蓄電部3の定格電流を超えなかった場合には、ステップS8において、発電電力出力部2を蓄電部3側に切り替えることができるか否かが判断される。具体的には、N個の発電電力出力部2が設けられた場合に、発電電力出力部2の総数Nよりも、蓄電部3側に接続された発電電力出力部2の数iが小さいか否か(i<Nか?)が判断される。蓄電部3側に接続された発電電力出力部2の数iがNと一致する場合、それ以上の発電電力出力部2を蓄電部3側に切り替えることはできないので、ステップS4に戻る。
発電電力出力部2を蓄電部3側に切り替えることができる場合には、ステップS9に進み、制御部401により蓄電部3側に接続する発電電力出力部2の数iが「1」加算される(i=i+1)。そして、ステップS10において、制御部401が切替回路部22の切替操作を行うことにより、1つの発電電力出力部2の接続先が蓄電部3側に切り替えられる。その後、ステップS4に戻り、経過時間計測がリセットされて、再度時間計測が開始される。このように、蓄電部3側に流れる電流値が一定時間の間継続的に蓄電部3の定格電流を超えない場合には、一定時間の経過毎に発電電力出力部2の接続先が1つずつ蓄電部3側に切り替えられていく。
一方、ステップS5で取得された電流値が定格電流を超える場合には、ステップS6からステップS11に進み、充電用スイッチ404がオフ(遮断)される。したがって、ステップS5~S7のループで一定時間の間継続的に電流値が定格電流を超えないことを確認する際に、定格電流を超える電流値が取得された場合には、瞬時に蓄電部3と発電電力出力部2との接続が遮断される。これにより、定格電流を超える電流が蓄電部3に流れることを抑制することが可能である。
充電用スイッチ404がオフされた後は、制御部401が切替回路部22の切替操作を行うことにより、i番目の発電電力出力部2の出力先がインバータ4側に切り替えられる。この結果、1つの発電電力出力部2が蓄電部3側に接続されている場合(i=1)には、全ての発電電力出力部2がインバータ4側に接続されることになる。2つ以上の発電電力出力部2が蓄電部3側に接続されている場合(i=2以上)には、そのうちの1つの発電電力出力部2の出力先がインバータ4側に切り替えられる。
次に、ステップS13において、制御部401により蓄電部3側に接続された発電電力出力部2の数iが「1」減算される(i=i-1)。そして、ステップS14において、ステップS11でオフ(遮断)されていた充電用スイッチ404がオンされる。その後、ステップS4に戻り、経過時間計測がリセットされて、再度時間計測が開始される。このように、蓄電部3側に流れる電流値が蓄電部3の定格電流を超える場合には、発電電力出力部2の接続先が1つずつインバータ4側に切り替えられていく。ただし、電流値が蓄電部3の定格電流を超える場合には、一定時間の経過を待つことなく発電電力出力部2の接続先がインバータ4側に切り替えられるため、ステップS14からステップS4に戻った後、まだ定格電流を超える電流値が検出される場合には、瞬時に発電電力出力部2の接続先がインバータ4側に切り替えられる。このため、複数(たとえばN個)の発電電力出力部2が蓄電部3に接続されていた場合にも、定格電流を超える電流値が検出された場合には、検出される電流値が蓄電部3の定格電流以下になるまで連続的に発電電力出力部2の接続先がインバータ4側に切り替えられることになる。
なお、全ての発電電力出力部2の接続先がインバータ4側に切り替えられた場合(i=0の場合)には、蓄電部3へ電流が流れないため、取得される電流値が0となる。このため、ステップS6において、取得された電流値が常に定格電流以下と判断される。この結果、一定時間の経過後にはステップS8~S10を経て1つ目の発電電力出力部2の接続先が蓄電部3側に切り替えられることになる。
以上の処理が継続して実行されることにより、第4実施形態による太陽光発電システム400の蓄電部3の充電時における発電電力出力部2の接続切替処理が実施される。
第4実施形態では、上記のように、電流・電圧測定部403または各電流測定部405の測定結果に基づいて、切替回路部22による発電電力出力部2の接続先の切替(太陽光発電モジュール21の並列および直列接続の切替)が行われる。これにより、蓄電部3へ流れる電流値に応じて蓄電部3と発電電力出力部2(太陽光発電モジュール21)との接続を切り替えることができるので、蓄電部3の充電時に、蓄電部3の寿命を縮めるような過度の電流が流れるのを抑制することができる。このため、蓄電部3の長寿命化を図ることができる。
なお、第4実施形態において、電流・電圧測定部403と電流測定部405とは、いずれか一方が設けられていればよい。電流・電圧測定部403のみを設ける場合には、並列接続された複数の蓄電部3に流れる電流をまとめて測定できるため、装置構成を簡素化することが可能である。一方、電流測定部405を設ける場合には、並列接続された各蓄電部3のそれぞれに実際に流れる電流値に基づいて発電電力出力部2(太陽光発電モジュール21)の接続切替を行うことができる。すなわち、各蓄電部3の個体差を反映した、より厳密な接続切替を行うことができる。このため、蓄電部3に過度の電流が流れるのをより確実に抑制することができる。
また、第4実施形態では、上記のように、制御部401は、電流・電圧測定部403または各電流測定部405により測定された電流値が定格電流以下の場合に発電電力出力部2を蓄電部3側に切り替えるとともに、測定された電流値が定格電流よりも大きい場合に発電電力出力部2をインバータ4側に切り替えるよう切替回路部22を制御する。このように構成することによって、測定された電流値が定格電流を超える場合には発電電力出力部2がインバータ4側に切り替えられるので、蓄電部3に過度の電流が流れるのを抑制することができるとともに、発電電力出力部2による発電電力をインバータ4側から一般負荷60へ供給し、余剰電力を電力系統50に逆潮流することができる。この結果、蓄電部3に過度の電流が流れるのを抑制しながら、発電電力出力部2による発電電力を効率的に利用することができる。
また、第4実施形態では、上記のように、電流・電圧測定部403または各電流測定部405により測定された電流値が定格電流以下の場合に、制御部401は、充電用スイッチ404により発電電力出力部2と蓄電部3とを接続するとともに、発電電力出力部2の出力先を蓄電部3側に切り替えるように構成されている。また、電流・電圧測定部403または各電流測定部405により測定された電流値が定格電流よりも大きい場合に、制御部401は、充電用スイッチ404により発電電力出力部2と蓄電部3とを遮断するとともに発電電力出力部2の出力先をインバータ4側に切り替えるように構成されている。このように構成することによって、発電電力出力部2の出力先の切替に加えて充電用スイッチ404による発電電力出力部2と蓄電部3との接続および遮断を行うことができるので、蓄電部3に流れる電流が定格電流を超える場合に、即座に発電電力出力部2と蓄電部3とを遮断することができる。この結果、蓄電部3に過度の電流が流れるのをより確実に抑制することができる。
また、第4実施形態では、上記のように、制御部401が、電流・電圧測定部403または各電流測定部405の測定結果(電流値)に基づいて、蓄電部3側に接続される発電電力出力部2の数(i)を制御するように構成されている。このように構成することによって、測定結果(電流値)に基づいて蓄電部3側に供給する電力を段階的に調節することができる。これにより、天候の変動など外的な要因により発電電力出力部2の出力が変動する場合にも、蓄電部3に対して適切な電力供給を行うことができる。
なお、第4実施形態では、複数(3つ)の蓄電部3を並列に接続することによって、充電時に個々の蓄電部3に流れる電流値が大きくなるのを抑制することができる。このため、太陽光発電システム400では、天候の変動によって発電電力出力部2の出力が変動した場合にも、蓄電部3に流れる電流値が定格電流を超えにくくなっている。
次に、図17、図19および図20を参照して、第4実施形態による太陽光発電システム400の起動時の直列/並列切替確認処理について説明する。直列/並列切替確認処理は、ユーザにより太陽光発電システム400が立ち上げられた起動時に行われるシステムエラーチェックの一部として実施される。直列/並列切替確認処理は、切替回路部22による太陽光発電モジュール21の並列/直列切替動作、および、発電電力出力部2の接続先の切替動作が、各発電電力出力部2について正常に機能するか否かを確認する処理である。
まず、図19のステップS21において、制御部401により充電用スイッチ404がオフされる。次に、ステップS22において、制御部401が切替回路部22の切替操作を行うことにより、全て(3つ)の発電電力出力部2の出力先がインバータ4側に切り替えられる。この際、発電電力出力部2の各太陽光発電モジュール21は、互いに直列接続される。そして、ステップS23において、電流・電圧測定部403により発電電力出力部2の電圧値(直列)が取得される。なお、図17に示すように、電流・電圧測定部403は蓄電部3側に設けられているので、出力先の切替が正常であれば取得される電圧値は0Vとなる。
次に、各発電電力出力部2の切替動作確認を個別に行うため、k番目の発電電力出力部2の切替動作確認を行う。このため、ステップS24では、最初の発電電力出力部2の切替動作確認を行うために制御部401によりkの値が「1」にセットされる。そして、ステップS25において制御部401が切替回路部22の切替操作を行うことにより、k番目の発電電力出力部2の出力先が蓄電部3側に切り替えられる。このとき、切り替えられた発電電力出力部2の各太陽光発電モジュール21は、互いに並列接続される。
そして、ステップS26において、電流・電圧測定部403により発電電力出力部2の電圧値が取得される。なお、図17に示すように、充電用スイッチ404がオフのままであるが、電流・電圧測定部403は充電用スイッチ404よりも発電電力出力部2側に設けられているので、出力先の切替が正常であれば、取得される電圧値は発電電力出力部2の開放端電圧となる。
ここで、ステップS27において、制御部401により、ステップS26で取得された電圧値が表示部411に表示されるとともに、ユーザにチェックを実行するか否かの問い合わせが行われる。具体的には、図20に示すように、「PV VOLTAGE ***V」(「***」は電圧値)のメッセージと、カーソル(「>印」)と、「SKIP?」および「CHECK?」の選択肢とが表示部411に表示される。ユーザは、操作部412のキーを押下してチェックを実行するか、チェックをスキップするかを選択する。
ステップS28では、制御部401により、チェックを実行するか否かが判断される。すなわち、操作部412を介してユーザによりチェックを行う指示が入力されたか否かが判断される。この結果、ユーザにより「CHECK」が選択された場合には、ステップS29に進み、出力先が蓄電部3側に切り替えられたk番目の発電電力出力部2のチェックが実施される。
ステップS29では、制御部401により、ステップS23で取得された電圧(直列)が0Vで、かつ、ステップS26で取得された電圧(並列)がある(0でない)か否かが判断される。上記のように、ステップS23で取得された電圧(直列)は、全ての発電電力出力部2の出力先をインバータ4側に切り替えたときの電圧であるので、出力先の切替が正常であれば電圧値は0となる。また、ステップS26で取得された電圧(並列)は、k番目の発電電力出力部2を蓄電部3側に切り替えた後に検出された電圧である。このため、k番目の発電電力出力部2を蓄電部3側に切り替える動作が正常に行われていれば、電圧値はk番目の発電電力出力部2の開放端電圧となる。これにより、k番目の発電電力出力部2の出力先をインバータ4側から蓄電部3側に切り替える動作が正常か否かが判断される。このステップS29において、電圧(直列)が0Vでない場合や電圧(並列)が0となる場合には、切替動作が正常に行われなかった可能性があるので、異常と判断されて処理が終了する(異常検出時のエラー処理に移行する)。電圧(直列)が0Vで、かつ、電圧(並列)が0Vでない場合には、切替が正常に実行されたことが確認され、ステップS30に進む。
なお、図20に示すように、ユーザにより「SKIP」が指示された場合には、ステップS29を経ることなく、ステップS28からステップS30に進む。これは、たとえば夜間に太陽光発電システム400が起動された場合などには、各太陽光発電モジュール21は発電を行えないため、発電電力出力部2の電圧が検出されない。この場合、電圧(並列)が0Vとなることから、ステップS29で異常と判断されることになる。したがって、ステップS27において検出された電圧値を表示するとともにユーザにチェックを行うか否かを問い合わせることによって、ユーザは、夜間に太陽光発電システム400を起動して表示部411に表示された電圧値の表示が0Vであることを確認した場合には、操作部412を操作して、直列/並列切替確認処理をスキップすればよい。
ステップS30では、k番目の発電電力出力部2の出力先がインバータ4側に切り替えられる。この結果、全ての発電電力出力部2の出力先がインバータ4側に切り替えられた状態に戻されることになる。そして、ステップS31において、電流・電圧測定部403により電圧値(直列)が取得される。
次に、ステップS32において、制御部401により、ステップS31で取得された電圧値(直列)が0Vか否かが判断される。上記のように、全ての発電電力出力部2の出力先がインバータ4側に切り替えられた状態では、電流・電圧測定部403により検出される電圧値(直列)は0Vとなる。このため、k番目の発電電力出力部2を蓄電部3側からインバータ4側に切り替える動作が正常に行われていれば、電圧値は0Vとなる。電圧値(直列)が0Vでない場合には、切替動作が正常に行われなかった可能性があるので、異常と判断される(異常検出時のエラー処理に移行する)。電圧(直列)が0Vの場合には、切替が正常に実行されたことが確認され、ステップS33に進む。なお、このステップS32では、夜間に太陽光発電システム400が起動された場合(発電電力出力部2の電圧が0Vになる場合)であっても異常と判断されることがないので、上記ステップS29のようにユーザの操作指示に基づいてスキップする必要はない。
以上のように、k番目の発電電力出力部2について、出力先をインバータ4側から蓄電部3側へ切り替える動作がステップS29でチェックされ、出力先を蓄電部3側からインバータ4側へ切り替える動作がステップS32でチェックされる。この後、ステップS33において、制御部401により、全て(N個)の発電電力出力部2について切替動作のチェックが行われたか否かが判断される。未チェックの発電電力出力部2が存在する場合(k<Nの場合)には、ステップS34に進み、kに「1」が加算(k=k+1)される。そして、ステップS25に戻り、次の発電電力出力部2(k+1番目)についての切替動作チェックが実施される。異常と判断されることなく最後の発電電力出力部2のチェックが完了した場合(k=Nの場合)には、ステップS33で正常と判断され、直列/並列切替確認処理が終了する。
第4実施形態では、上記のように、制御部401が、電流・電圧測定部403により検出された電圧に基づいて、切替回路部22による接続状態の切替動作確認処理を行うことが可能なように構成されている。このように構成することによって、発電電力出力部2の出力先の切替と、直列接続および並列接続の切替とが正常に行われることを確認した上で、システムを作動させることができる。この結果、蓄電部3への充電やインバータ4(電力系統50および一般負荷60)側への電力供給を切り替え可能な太陽光発電システム400の信頼性を向上させることができる。
なお、第4実施形態のその他の効果は、上記第3実施形態と同様である。
(第4実施形態の変形例)
上記第4実施形態では、3つの発電電力出力部2の接続先の切替を各々の発電電力出力部2に含まれる5つの太陽光発電モジュール21に対して一括して行うように構成した例を示したが、図21に示す第4実施形態の第1変形例のように発電電力出力部2b(図6参照)を用いて、5つの太陽光発電モジュール21のそれぞれと蓄電部3との接続および遮断を切り替えるように構成してもよい。なお、この第4実施形態の第1変形例では、発電電力出力部2bの4つの太陽光発電モジュール21にスイッチ23dを設けている。
上記第4実施形態では、3つの発電電力出力部2の接続先の切替を各々の発電電力出力部2に含まれる5つの太陽光発電モジュール21に対して一括して行うように構成した例を示したが、図21に示す第4実施形態の第1変形例のように発電電力出力部2b(図6参照)を用いて、5つの太陽光発電モジュール21のそれぞれと蓄電部3との接続および遮断を切り替えるように構成してもよい。なお、この第4実施形態の第1変形例では、発電電力出力部2bの4つの太陽光発電モジュール21にスイッチ23dを設けている。
この第4実施形態の第1変形例による太陽光発電システム450では、2つの発電電力出力部2と、スイッチ23dを有する1つの発電電力出力部2bとが設けられている。これにより、上記第4実施形態で示したように、制御部451により、電流・電圧測定部403の測定結果に基づいて、合計3つの発電電力出力部2(発電電力出力部2b)の発電電力の出力先を個別に切り替えることが可能である。さらに、この第4実施形態の第1変形例では、制御部451がスイッチ23dの切替制御を行うことにより、発電電力出力部2bの5つの太陽光発電モジュール21のそれぞれと蓄電部3との接続を個別に切り替えることが可能なように構成されている。これにより、並列接続された2~5の任意の数の太陽光発電モジュール21から蓄電部3に電力供給を行うことが可能であるとともに、1つの太陽光発電モジュール21から蓄電部3に電力供給を行うことが可能である。なお、制御部451は、本発明の「制御装置」の一例である。
また、太陽光発電システム450では、蓄電部3が1つだけ設けられている。このため、上記第4実施形態と異なり、太陽光発電システム450の充放電スイッチ部452では、充電側分岐路407、電流測定部405および放電側分岐路408などが設けられていない。
第4実施形態の第1変形例による太陽光発電システム450では、たとえば1つの発電電力出力部2bの出力先を蓄電部3側に切り替えたときに蓄電部3に流れる電流値が蓄電部3の定格電流を超える場合にも、蓄電部3に接続される太陽光発電モジュール21の数を切り替えることにより、蓄電部3側に供給される電力をさらに細かく調節することが可能である。特に、蓄電部3が1つだけ設置されているような場合には、3つの蓄電部3が並列接続された上記第4実施形態と比較して蓄電部3に大きな電流が流れやすいので効果的である。なお、この太陽光発電モジュール21の切替(接続数の増減)についても、図18に示した切替処理と同様の処理を適用することが可能である。
また、上記第4実施形態では、電流・電圧測定部403および3つの電流測定部405を設けた例を示したが、図22に示す第4実施形態の第2変形例のように、電流測定部503を備えた蓄電ユニット502を用いてもよい。
この第4実施形態の第2変形例による太陽光発電システム500では、充放電スイッチ部505に並列接続された3つの蓄電ユニット502が設けられている。各蓄電ユニット502は、それぞれ、蓄電部3と、電流測定部503と、通信部504とを備えている。電流測定部503は、蓄電部3に流れる電流値を測定可能に構成されている。また、通信部504は、太陽光発電システム500の制御部501と相互に通信可能に構成されている。これにより、制御部501は、通信部504との通信によって、電流測定部503の測定結果(電流値)や、蓄電部3の残容量などの、蓄電ユニット502に関わる各種の情報を取得することが可能である。
この第4実施形態の第2変形例では、制御部501が蓄電部3に流れる電流値を通信部504を介して取得することが可能であるので、充放電スイッチ部402に電流・電圧測定部403および電流測定部405を設ける必要がない。このため、電流測定部503および通信部504を内蔵する蓄電ユニット502を用いることにより、充放電スイッチ部505の構成を簡素化することができる。
なお、この第4実施形態の第2変形例では、インバータ4と電力系統50とが接続されておらず、インバータ4は一般負荷60とのみ接続されている。したがって、この太陽光発電システム500は、発電電力出力部2の発電電力を電力系統50側へ逆潮流しないように構成され、発電電力出力部2の発電電力が一般負荷60にのみ供給されるように構成されている。このように、発電電力出力部2の発電電力を電力系統50側へ逆潮流せず、発電電力出力部2の発電電力を施設内の設備(一般負荷60)にのみ供給するようにしてもよい。
(第5実施形態)
次に、図17、図21、図22および図23を参照して、本発明の第5実施形態による発電システム(太陽光発電システム)の発電電力出力部2の切替制御について説明する。この第5実施形態では、測定された電流値が蓄電部3の定格電流を超えるか否かに基づいて発電電力出力部2と蓄電部3との接続切替制御を行うように構成した上記第4実施形態に加えて、発電電力出力部2を蓄電部3側に切り替えた場合に予測される予測電流値を算出し、この予測電流値に基づいて発電電力出力部2の切替制御を行うように構成した例について説明する。
次に、図17、図21、図22および図23を参照して、本発明の第5実施形態による発電システム(太陽光発電システム)の発電電力出力部2の切替制御について説明する。この第5実施形態では、測定された電流値が蓄電部3の定格電流を超えるか否かに基づいて発電電力出力部2と蓄電部3との接続切替制御を行うように構成した上記第4実施形態に加えて、発電電力出力部2を蓄電部3側に切り替えた場合に予測される予測電流値を算出し、この予測電流値に基づいて発電電力出力部2の切替制御を行うように構成した例について説明する。
以下、第5実施形態による太陽光発電システムの蓄電部3の充電時における発電電力出力部2の接続切替処理について説明する。なお、太陽光発電システムの装置構成としては、第4実施形態(図17参照)、第4実施形態の第1変形例(図21参照)および第2変形例(図22参照)のいずれの構成であってもよいので、ここでは、図17に示す太陽光発電システム400に第5実施形態による太陽光発電システムの接続切替処理を適用した例を示す。
まず、図23のステップS41において、充電用スイッチ404がオン(閉)される。これにより、発電電力出力部2の接続先を蓄電部3側に切り替えれば、充電を始めることができる。
ステップS42において、制御部401は、蓄電部3側に接続する発電電力出力部2の数iを「1」にセットする。そして、ステップS43において、制御部401により、1つ目(i=1)の発電電力出力部2の接続先が蓄電部3側に切り替えられる。この結果、接続された発電電力出力部2から蓄電部3側へ電力が供給され充電が開始される。この際、電流・電圧測定部403および各電流測定部405では、蓄電部3へ流れる電流値が測定される。続いて、ステップS44において、制御部401により、経過時間の計測が開始される。
ステップS45において、制御部401により、予測電流値の算出のための最大電流値が「0」にセットされる。次に、ステップS46において、制御部401により、電流・電圧測定部403または各電流測定部405により測定された電流値が取得される。
ステップS47では、制御部401により、取得された電流値が蓄電部3の定格電流値以下かどうかが判断される。取得された電流値が定格電流値以下の場合にはステップS48に進み、取得された電流値が定格電流値を超える場合にはステップS57に移行する。なお、各電流測定部405から電流値を取得する場合には、各電流測定部405で取得された電流値の全てが蓄電部3の定格電流値以下の場合にステップS48に進み、一つでも超えるものがあればステップS57に進む。
ステップS57からステップS60までの処理は、上記第4実施形態のステップS11~S14までと同じ処理であるので、説明は省略する。
ステップS48では、制御部401により、取得された電流値が最大電流値よりも大きいか否かが判断される。取得された電流値が最大電流値よりも大きい場合には、ステップS49に進み、制御部401がその電流値を最大電流値としてセットする。取得された電流値が最大電流値以下の場合には、その電流値をセットすることなくステップS50に進む。
ステップS50では、ステップS24における経過時間計測を開始してから、一定時間(たとえば、2分間)経過したか否かが判断される。一定時間経過していない場合には、ステップS46に戻る。一定時間経過すると、ステップS51に進む。このため、ステップS46~S50の間を一定時間の間ループすることにより、この一定時間の間継続的に電流値が定格電流を超えないことを確認するとともに、一定時間の間に取得された電流値の最大値(最大電流値)がセットされる。なお、上記のように蓄電部3の定格電流を超える電流値が検出された場合には、ステップS57~S60へと移行するので、最大電流値はセットされない。つまり、最大電流値は、定格電流を超えない場合に電流・電圧測定部403または各電流測定部405により取得された最大の電流値となる。
一定時間経過するまでの間、取得された電流値が蓄電部3の定格電流を超えなかった場合には、ステップS51において、発電電力出力部2を蓄電部3側に切り替えることができるか否か(i<Nか?)が判断される。蓄電部3側に接続された発電電力出力部2の数iがNと一致する場合、それ以上の発電電力出力部2を蓄電部3側に切り替えることはできないので、ステップS44に戻る。
蓄電部3側に接続された発電電力出力部2の数iがNよりも小さい場合(まだ切り替えられる場合)には、ステップS52に進み、すべての発電電力出力部2がインバータ4側に接続されているか否か(i=0か?)が判断される。蓄電部3側に接続されている発電電力出力部2がある場合には、ステップS53に進み、電流・電圧測定部403または各電流測定部405により測定された最大電流値に基づく予測電流値の算出が行われる。
このステップS53では、制御部401により、予測電流値=最大電流値+(最大電流値÷i)が算出される。すなわち、各発電電力出力部2の出力電力が同じと仮定すれば、たとえば2つの発電電力出力部2が蓄電部3側に接続されている場合(i=2)に3つ目の発電電力出力部2を蓄電部3側に接続すると、電流値が(電流値÷2)だけ増加する(電流値が(1+1/i=3/2)倍になる)と予測される。ここで、次の発電電力出力部2を蓄電部3側に接続した場合に蓄電部3の定格電流を超えるか否かを判断したいので、所定時間内に測定された最大電流値を予測電流値の算出に用いている。これにより、次の発電電力出力部2を蓄電部3側に接続した場合に、最大で予測電流値程度の電流値が蓄電部3に流れることが予測される。
予測電流値が算出されると、ステップS54に進み、制御部401により、算出された予測電流値が蓄電部3の定格電流以下か否かが判断される。予測電流値が定格電流を超える場合には、次の発電電力出力部2を蓄電部3側に接続した場合に電流値が定格電流を超える可能性が高いので、発電電力出力部2を蓄電部3側に切り替えることなくステップS44に戻る。
一方、ステップS54で予測電流値が定格電流以下と判断された場合には、ステップS55に進み、蓄電部3側に接続する発電電力出力部2の数iを「1」加算し、ステップS56で加算されたi番目の発電電力出力部2が蓄電部3側に切り替えられる。なお、ステップS52ですべての発電電力出力部2がインバータ4側に接続されている(i=0)と判断された場合には、蓄電部3側に電流が流れていないことになるので、予測電流値の算出を行うことなくステップS55およびS56に進む(1つ目の発電電力出力部2が蓄電部3側に切り替えられる)。
その後、ステップS44に戻り、経過時間計測がリセットされて、再度時間計測が開始される。また、ステップS45で最大電流値もリセット(「0」にセット)される。
以上の処理が継続して実行されることにより、第5実施形態による太陽光発電システムの蓄電部3の充電時における発電電力出力部2の接続切替処理が実施される。
第5実施形態では、上記のように、電流・電圧測定部403または各電流測定部405の測定結果に基づいて、発電電力出力部2の接続先を蓄電部3側に切り替えた場合に蓄電部3へ流れる予測電流値を算出するとともに、予測電流値に基づいて発電電力出力部2を蓄電部3側に切り替えるか否かを判断する。このように構成することによって、発電電力出力部2の接続先を蓄電部3側に切り替えた場合に蓄電部3の定格電流を超えることが予め予測できる場合に、接続先の切替を行わなくて済む。このため、不必要な切替動作を減少させてシステムの信頼性を向上させることができるとともに、蓄電部3の定格電流を超える(ことが予測される)場合には、予め蓄電部3に過大な電流が流れるのを防止することができるので、蓄電部3の長寿命化を図ることができる。
なお、第5実施形態のその他の効果は、上記第4実施形態と同様である。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、上記第1~第3実施形態およびそれらの変形例では、太陽光発電モジュール21によって発電を行う例について説明したが、本発明はこれに限らず、発電モジュールとして他の直流発電装置あるいは風力発電装置などの他の自然エネルギーを用いて発電する発電モジュールを用いてもよい。
また、上記第1~第3実施形態およびそれらの変形例では、蓄電部3としてリチウムイオン電池やニッケル水素電池などの蓄電池を用いる例を示したが、本発明はこれに限らず、他の2次電池を用いてもよい。また、本発明の「蓄電部」の一例として、蓄電池の代わりにキャパシタを用いてもよい。
また、上記第1~第3実施形態およびそれらの変形例では、蓄電部3の電圧が48Vである例について説明したが、本発明はこれに限らず、48V以外の電圧にしてもよい。なお、蓄電部の電圧としては約60V以下が望ましいが、特定負荷70の定格電圧・配線内での電力損失などを考慮して好適な電圧を選択する。
また、上記第1~第3実施形態では、発電電力出力部2を蓄電部3側に接続する際に、5つの太陽光発電モジュール21の全てを並列に接続する例について説明したが、本発明はこれに限らず、5つのうちの一部の太陽光発電モジュールのみを並列に接続した状態で発電電力出力部を蓄電部側に接続してもよい。また、一部の太陽光発電モジュールを並列に接続した状態で、発電電力出力部を蓄電部3側に接続し、他の太陽光発電モジュールを直列に接続した状態で発電電力出力部をインバータ4側に接続してもよい。たとえば、図24および図25に示す例の発電電力出力部2fでは、直列接続状態では、5つの太陽光発電モジュール21を直列接続してインバータ4側に出力し、並列接続状態では、3つの太陽光発電モジュール21を直列接続してインバータ4側に出力するとともに、2つの太陽光発電モジュール21を並列接続して蓄電部3側に出力するように切替回路部22fを制御している。この場合において、インバータ4の入力可能範囲内で直列接続される太陽光発電モジュール21の数を調整すべきである。また、図26および図27に示す例の発電電力出力部2gでは、直列接続状態では、6つの太陽光発電モジュール21を直列接続してインバータ4側に出力し、並列接続状態では、3つの太陽光発電モジュール21を直列接続した2組を互いに並列接続して蓄電部3側に出力するように切替回路部22gを制御している。このように、複数の太陽光発電モジュールの接続態様(直列接続、並列接続またはその組み合わせ)を変更することにより、蓄電部3の公称電圧の値に対して適正な電圧の電力を蓄電部3に入力することが可能である。一例として、公称最大出力動作電圧が約60Vの太陽光発電モジュールを用いる場合であって、蓄電部の公称電圧が96Vである場合について説明する。この場合には、前述のように蓄電部3の公称電圧は公称最大出力動作電圧の70%以上90%以下となるように選択することが望ましいことから、蓄電部への出力電圧が約120Vであることが望ましい。そこで、4枚の太陽光発電モジュールを用いる。これにより、インバータ側へ接続する場合には、4枚を直列に接続することにより約240Vの電圧で出力するとともに、蓄電部側に出力する場合には、直列に接続した2枚の2組を並列に接続することにより約120Vの電圧で出力する。
また、上記第1~第3実施形態およびそれらの変形例では、「電力変換器」の一例が直流を交流に変換するインバータ4である例を説明したが、本発明はこれに限らず、直流-直流変換を行う(直流電圧を昇圧または降圧する)DC-DCコンバータや、交流-交流変換を行う(交流の周波数を変換する)サイクロコンバータであってもよい。尚、交流-交流変換がなされる場合とは、例えば風力発電など交流電力を発電するような発電モジュールを用いた場合である。
また、上記第1~第3実施形態およびそれらの変形例では、蓄電部3を1つ設けた例について説明したが、本発明はこれに限らず、蓄電部3を複数設けてもよい。また、複数の蓄電部を直列または並列に接続してもよい。
また、上記第1~第3実施形態およびそれらの変形例では、インバータ4が電力系統50に接続される例について説明したが、本発明はこれに限らず、電力系統50に接続されていなくてもよい。また、需要家内配線と電力系統との接続点付近などに逆潮流を制限するための逆潮流防止装置を設けてもよい。この場合、ダイオード10を省略することができる。
また、蓄電部3に過充電・過放電などを抑制する制御を行う制御装置を設けてもよい。さらにこのような制御装置を介して蓄電部3と発電電力出力部2や特定負荷70と接続してもよい。
また、スイッチ23を駆動するための電源については、たとえば、切替回路部22のスイッチ23を駆動するための電力を蓄電部3から供給してその電力によってスイッチ23を切り替える構成にしてもよいし、電力系統50からの電力が供給されている場合にその電力を用いて直列側に接続し、電力系統50が停電して切替回路部22に電力が供給されなくなった場合に自動的に並列側に切り替わるように構成してもよい。どちらの構成にしても、停電時に並列側に切り替えることが可能である。
また、直並列の接続方法の一例として、複数の発電モジュール(太陽光発電モジュール21)の少なくとも一部分が互いに直列接続され、複数の発電モジュールがインバータに接続される直列接続状態と、直列接続される発電モジュールの少なくとも一部が互いに並列接続され、その並列接続された発電モジュールが蓄電部に接続される並列接続状態とに切り替えるように構成してもよい。
また、上記第1実施形態の第4および第5変形例では、「機械式スイッチ回路」の一例が接点切替部とコイルとを含むリレースイッチである例を説明したが、本発明はこれに限られない。機械式スイッチ回路は、機械的に接点が切り替わるタイプのスイッチであればリレースイッチ以外の他のスイッチ回路でもよい。
また、上記第1実施形態の第4および第5変形例では、「電子式スイッチ回路」の一例がFETスイッチである例を説明したが、本発明はこれに限られない。電子式スイッチ回路は、無接点で電子的に切替可能なスイッチであれば、FETスイッチ以外のバイポーラトランジスタなどの他のスイッチ素子や複数の半導体素子を組み合わせたスイッチ回路でもよい。
また、上記第4および第5実施形態では、発電電力出力部2の接続切替処理において発電電力出力部2を1つずつ切り替えるように構成した例を示したが、本発明はこれに限られない。本発明では、複数の発電電力出力部を一度に切り替えるようにしてもよい。また、たとえば、一度に切り替える発電電力出力部の数を1、2、4、8・・・と増やすようにしてもよい。
また、上記第4実施形態では、切替回路部22による接続状態の切替動作確認処理において、夜間など発電電力出力部2の電圧値を検出できない場合のために、電圧値を表示部411に表示するとともに、チェックを実行するか否かの問い合わせをユーザに対して行うように構成した例を示したが、本発明はこれに限られない。たとえば、照度計を設け、測定された照度に基づいて夜間か否か(発電可能な光照射があるか否か)を判断し、発電不可能な場合にはチェックをスキップするように構成してもよい。この場合には、チェックを実行するか否かをユーザに問い合わせる必要がない。
Claims (21)
- 自然エネルギーを用いて発電する複数の発電モジュールを含んで構成される発電電力出力部と、前記発電モジュールにおける発電電力が供給される電力変換器および蓄電部とを備えた発電システムに用いられ、前記複数の発電モジュールの接続状態を切替可能な切替回路であって、
前記複数の発電モジュールの少なくとも一部が互いに直列接続される第1接続状態と、
前記複数の発電モジュールの少なくとも一部が互いに並列接続され、または、1つの前記発電モジュールから前記蓄電部に発電電力が供給されるように前記発電電力出力部が前記蓄電部に接続される、第2接続状態と、を切り替えるための切替回路。 - 前記複数の発電モジュールの接続状態を切り替えるスイッチ回路を備え、
前記スイッチ回路は、前記複数の発電モジュールの少なくとも一部が互いに直列接続または並列接続されるように接続状態を切り替え可能で、かつ、前記接続状態の切替に連動して、前記発電電力出力部の接続先を前記電力変換器と前記蓄電部とに切り替え可能なように構成されている、請求項1に記載の切替回路。 - 前記スイッチ回路は、前記複数の発電モジュールの接続状態を切り替える第1スイッチ回路と、前記発電電力出力部の接続先である前記電力変換器と前記蓄電部とを切り替える第2スイッチ回路とを含む、請求項2に記載の切替回路。
- 前記スイッチ回路は、機械式のスイッチ回路からなり、
前記機械式のスイッチ回路への電流の流入および遮断を切替可能な電子式スイッチ回路をさらに備え、
前記電子式スイッチ回路により前記機械式スイッチ回路への電流が遮断された状態で前記機械式スイッチ回路が作動されることにより、前記複数の発電モジュールの接続状態を切り替え可能に構成されている、請求項2に記載の切替回路。 - 前記第1接続状態において、前記発電電力出力部は前記電力変換器に接続され、
前記第2接続状態において、前記並列接続された発電モジュールより出力される発電電力が前記蓄電部に供給されるように、前記発電電力出力部が前記蓄電部に接続されるように構成されている、請求項1に記載の切替回路。 - 前記第1接続状態において前記複数の発電モジュールの全てを互いに直列接続し、前記第2接続状態において前記複数の発電モジュールのうちの一部を互いに並列接続するとともに、前記並列接続された発電モジュールを前記蓄電部に接続するように構成されている、請求項5に記載の切替回路。
- 前記並列接続された発電モジュールが前記蓄電部に接続される場合に、前記並列接続された発電モジュールを、電圧変換器を介さずに、前記蓄電部に接続するように構成されている、請求項5に記載の切替回路。
- 自然エネルギーを用いて発電する複数の発電モジュールと、前記複数の発電モジュールの接続状態を切り替える切替部と、を含んで構成される発電電力出力部と、前記発電モジュールにおける発電電力が供給される電力変換器および蓄電部とを備えた発電システムに用いられる制御装置であって、
前記複数の発電モジュールの少なくとも一部が互いに直列接続され、前記発電電力出力部が前記電力変換器に接続される第1接続状態と、
前記複数の発電モジュールの少なくとも一部が互いに並列接続され、または、1つの前記発電モジュールから前記蓄電部に発電電力が供給されるように、前記発電電力出力部が前記蓄電部に接続される第2接続状態と、
を前記切替部によって切り替えるように制御する制御装置。 - 自然エネルギーを用いて発電する複数の発電モジュールと、前記複数の発電モジュールの接続状態を切り替える切替部と、を含んで構成される第1発電電力出力部と、
前記発電モジュールにおける発電電力が供給される電力変換器および蓄電部とを備え、
前記切替部は、
前記複数の発電モジュールの少なくとも一部が互いに直列接続され、前記第1発電電力出力部が前記電力変換器に接続される第1接続状態と、
前記複数の発電モジュールの少なくとも一部が互いに並列接続され、または、1つの前記発電モジュールから前記蓄電部に発電電力が供給されるように、前記第1発電電力出力部が前記蓄電部に接続される第2接続状態と、
を切替可能に構成されている、発電システム。 - 複数の前記第1発電電力出力部と、
前記切替部による接続状態の切替を制御する制御部とをさらに備え、
前記複数の第1発電電力出力部は、前記複数の発電モジュールの接続状態を前記第1発電電力出力部ごとに切替可能に構成されており、
前記複数の発電モジュールの接続状態は、前記制御部により制御されるように構成されている、請求項9に記載の発電システム。 - 互いに直列接続された前記複数の発電モジュールを含んで構成される第2発電電力出力部をさらに備え、
前記第2発電電力出力部は、前記電力変換器に接続され、
前記第1発電電力出力部が前記電力変換器に接続される第1接続状態をとる場合には、前記第1発電電力出力部と前記第2発電電力出力部とは互いに並列接続されるように構成されている、請求項9に記載の発電システム。 - 前記切替部は、前記複数の発電モジュールの接続状態を切り替えるスイッチ回路を含み、
前記スイッチ回路は、前記複数の発電モジュールの少なくとも一部が互いに直列接続または並列接続されるように接続状態を切り替え可能で、かつ、前記接続状態の切替に連動して、前記発電電力出力部の接続先を前記電力変換器と前記蓄電部とに切り替え可能なように構成されている、請求項9に記載の発電システム。 - 通常運転時には、前記第1接続状態を取ることにより前記発電モジュールにより発電された電力が前記電力変換器に供給され、
非通常運転時には、前記第2接続状態を取ることにより前記発電モジュールにより発電された電力が前記蓄電部に供給されるように構成されている、請求項9に記載の発電システム。 - 前記蓄電部には、負荷が接続されており、
前記第1接続状態では、前記蓄電部に蓄電された電力が前記負荷に供給され、
前記第2接続状態では、前記並列接続された発電モジュールにより発電された電力と、前記蓄電部に蓄電された電力とが、前記負荷に供給されるように構成されている、請求項13に記載の発電システム。 - 前記発電モジュールは、太陽光を用いて発電する太陽光発電モジュールであり、
前記電力変換器は、インバータであり、
前記太陽光発電モジュールは、前記インバータを介して電力系統に接続されており、
前記蓄電部には、負荷が接続されており、
前記蓄電部に蓄電された電力により前記負荷に供給する電力を賄えない恐れがある場合には、前記第2接続状態に切り替えられて、前記並列接続された前記太陽光発電モジュールにより発電された電力と前記蓄電部に蓄電された電力とが前記負荷に供給され、
前記蓄電部に蓄電された電力により前記負荷に供給する電力を賄える場合には、前記第1接続状態に切り替えられて、前記蓄電部に蓄電された電力が前記負荷に供給されながら、前記太陽光発電モジュールにより発電された電力が前記インバータを介して前記電力系統に逆潮流可能なように構成されている、請求項9に記載の発電システム。 - 前記第1発電電力出力部から前記蓄電部へ流れる電流値を測定する電流測定部をさらに備え、
前記電流測定部の測定結果に基づいて、前記切替部による前記複数の発電モジュールの接続状態が切り替えられるように構成されている、請求項9に記載の発電システム。 - 前記切替部による接続状態の切替を制御する制御部をさらに備え、
前記制御部は、前記電流測定部により測定された電流値が所定値以下の場合に、前記第1発電電力出力部を前記第2接続状態に切り替えるとともに、前記電流測定部により測定された電流値が前記所定値よりも大きい場合に、前記第1発電電力出力部を前記第1接続状態に切り替えるよう前記切替部を制御するように構成されている、請求項16に記載の発電システム。 - 前記第1発電電力出力部と前記蓄電部との間に設けられ、前記第1発電電力出力部と前記蓄電部との接続および遮断を切替可能な充電用スイッチ回路をさらに備え、
前記制御部は、
前記電流測定部により測定された電流値が所定値以下の場合に、前記充電用スイッチ回路により前記第1発電電力出力部と前記蓄電部とを接続するとともに前記第1発電電力出力部を前記第2接続状態に切り替え、
前記電流測定部により測定された電流値が前記所定値よりも大きい場合に、前記充電用スイッチ回路により前記第1発電電力出力部と前記蓄電部とを遮断するとともに前記第1発電電力出力部を前記第1接続状態に切り替えるように構成されている、請求項17に記載の発電システム。 - 複数の前記第1発電電力出力部をさらに備え、
前記複数の第1発電電力出力部は、前記第1接続状態と前記第2接続状態との切り替えを前記第1発電電力出力部ごとに切替可能に構成されており、
前記制御部は、前記電流測定部の測定結果に基づいて、前記第2接続状態に切り替えることにより前記蓄電部に接続される前記第1発電電力出力部の数を制御するように構成されている、請求項17に記載の発電システム。 - 前記制御部は、前記電流測定部の測定結果に基づいて、前記第1発電電力出力部を前記第2接続状態に切り替えた場合に前記蓄電部へ流れる予測電流値を算出するとともに、前記予測電流値に基づいて前記第1発電電力出力部を前記第2接続状態に切り替えるか否かを判断するように構成されている、請求項19に記載の発電システム。
- 前記切替部による接続状態の切替を制御する制御部と、
前記第1発電電力出力部の電圧を検出する電圧検知部とをさらに備え、
前記制御部は、前記電圧検知部により検出された電圧に基づいて、前記切替部による接続状態の切替動作確認を行うことが可能なように構成されている、請求項9に記載の発電システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080042552.9A CN102549878B (zh) | 2009-10-29 | 2010-10-15 | 切换电路、控制装置及发电系统 |
EP10826541A EP2472703A1 (en) | 2009-10-29 | 2010-10-15 | Switching circuit, control apparatus, and power generating system |
JP2011101564A JP2012090516A (ja) | 2010-10-15 | 2011-04-28 | 切替回路、制御装置および発電システム |
US13/424,483 US8587251B2 (en) | 2009-10-29 | 2012-03-20 | Switching circuit, control apparatus, and power generation system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-249566 | 2009-10-29 | ||
JP2009249566 | 2009-10-29 | ||
JP2010172841A JP2011120449A (ja) | 2009-10-29 | 2010-07-30 | 発電システム、制御装置および切替回路 |
JP2010-172841 | 2010-07-30 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/424,483 Continuation US8587251B2 (en) | 2009-10-29 | 2012-03-20 | Switching circuit, control apparatus, and power generation system |
US13/424,483 Division US8587251B2 (en) | 2009-10-29 | 2012-03-20 | Switching circuit, control apparatus, and power generation system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011052407A1 true WO2011052407A1 (ja) | 2011-05-05 |
Family
ID=43921833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/068167 WO2011052407A1 (ja) | 2009-10-29 | 2010-10-15 | 切替回路、制御装置および発電システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US8587251B2 (ja) |
EP (1) | EP2472703A1 (ja) |
JP (1) | JP2011120449A (ja) |
CN (1) | CN102549878B (ja) |
WO (1) | WO2011052407A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102569430A (zh) * | 2012-01-12 | 2012-07-11 | 苏州清莲纳米环保科技有限公司 | 太阳能电池组 |
JP2012160667A (ja) * | 2011-02-02 | 2012-08-23 | Toshiba Corp | 太陽光発電システム |
ITTO20110762A1 (it) * | 2011-08-11 | 2013-02-12 | Sisvel Technology Srl | Sistema di generazione e utilizzo (per accumulo ed erogazione) di energia elettrica prodotta da fonti di energia elettrica in corrente continua modulari, e relativo metodo di gestione del sistema |
EP2566004A1 (en) * | 2011-09-05 | 2013-03-06 | Delta Electronics, Inc. | Photovoltaic powered system with adaptive power control and method of operating the same |
WO2013046658A1 (ja) * | 2011-09-30 | 2013-04-04 | 三洋電機株式会社 | 切替装置および蓄電システム |
TWI553440B (zh) * | 2015-02-26 | 2016-10-11 | 國立中山大學 | 太陽光伏發電之最大功率追蹤方法 |
WO2017158717A1 (ja) * | 2016-03-15 | 2017-09-21 | 株式会社東芝 | 発電システム、制御システム、制御方法、および集電装置 |
WO2024101334A1 (ja) * | 2022-11-10 | 2024-05-16 | 克彦 近藤 | 太陽光発電システムおよび制御方法 |
WO2024101335A1 (ja) * | 2022-11-10 | 2024-05-16 | 克彦 近藤 | 充電制御装置および制御方法 |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102010017747A1 (de) * | 2010-05-03 | 2011-11-03 | Sma Solar Technology Ag | Verfahren zur Begrenzung der Generatorspannung einer photovoltaischen Anlage im Gefahrenfall und photovoltaische Anlage |
WO2012119258A1 (en) * | 2011-03-09 | 2012-09-13 | Solantro Semiconductor Corp. | Power generating component connectivity testing |
EP2752329A4 (en) * | 2011-08-30 | 2015-09-23 | Toyota Motor Co Ltd | POWER SUPPLY SYSTEM FOR VEHICLE |
US9136732B2 (en) * | 2011-10-15 | 2015-09-15 | James F Wolter | Distributed energy storage and power quality control in photovoltaic arrays |
US8933721B2 (en) * | 2011-10-27 | 2015-01-13 | Infineon Technologies Austria Ag | Power source arrangement and method of diagnosing a power source arrangement |
US9166434B2 (en) * | 2012-06-29 | 2015-10-20 | Intel Corporation | Universal charger |
JP6000742B2 (ja) * | 2012-08-10 | 2016-10-05 | シャープ株式会社 | パワーコンディショナおよび電力供給システム |
US9293948B2 (en) * | 2012-09-19 | 2016-03-22 | Sundial Energy, Inc. | Renewable uninterrupted power supply for critical node infrastructure support |
US9281699B2 (en) | 2012-12-27 | 2016-03-08 | Intel Corporation | Electronic device to be powered by alternative power source |
US9287702B2 (en) | 2012-12-27 | 2016-03-15 | Intel Corporation | Universal power interface |
US9184627B2 (en) | 2012-12-28 | 2015-11-10 | Intel Corporation | Charging system for electronic device |
JP5673711B2 (ja) * | 2013-03-08 | 2015-02-18 | 日本電気株式会社 | サーバ |
US20140265590A1 (en) * | 2013-03-15 | 2014-09-18 | Advanced Energy Industries, Inc. | Pre-regulator and pre-regulation methods for photovioltaic inverters |
WO2014190300A1 (en) * | 2013-05-24 | 2014-11-27 | Suncore Photovoltaics Incorporated | Systems and methods for power generation |
DE102013105636A1 (de) * | 2013-05-31 | 2014-12-04 | Karlsruher Institut für Technologie | Elektrischer Stromerzeuger mit Stromspeicher und Verfahren zum Betreiben desselben |
JP5668132B1 (ja) * | 2013-12-27 | 2015-02-12 | 株式会社フジクラ | 蓄電システム、及び蓄電方法 |
US9461487B2 (en) | 2013-12-27 | 2016-10-04 | Dialog Semiconductor (Uk) Limited | Battery stack configuration in a multi-battery supply system |
US9923487B2 (en) * | 2014-04-14 | 2018-03-20 | Tmeic Corporation | Hybrid power converter for renewable energy power plant |
US9601938B2 (en) | 2014-05-15 | 2017-03-21 | Intel Corporation | Battery charger for different power sources |
JP2016131469A (ja) * | 2015-01-15 | 2016-07-21 | 日東工業株式会社 | 直流発電システム |
WO2016185759A1 (ja) * | 2015-05-20 | 2016-11-24 | シャープ株式会社 | 機器制御システムおよび制御方法 |
JP6718109B2 (ja) * | 2016-03-07 | 2020-07-08 | 富士通株式会社 | 過電圧保護回路及び過電圧保護制御方法 |
US10700527B2 (en) * | 2016-03-25 | 2020-06-30 | Sharp Kabushiki Kaisha | Power generation system, power conditioner, power control device, power control method, and power control program |
KR101906886B1 (ko) * | 2016-05-11 | 2018-10-11 | 엘에스산전 주식회사 | 에너지 저장 장치 |
CN107154774A (zh) * | 2017-06-08 | 2017-09-12 | 合肥华盖光伏科技有限公司 | 一种家用安全高效离网光伏发电系统 |
US20210091563A1 (en) * | 2017-09-01 | 2021-03-25 | Sion Electric Co., Ltd. | Power supply system and power synthesis device |
CN107508371A (zh) * | 2017-09-06 | 2017-12-22 | 合肥凌山新能源科技有限公司 | 一种太阳能发电组用智能合流系统 |
CN107748014B (zh) * | 2017-11-22 | 2024-05-21 | 中国科学技术大学 | 一种读取多路温度传感器的系统 |
US11843274B2 (en) * | 2017-12-04 | 2023-12-12 | Gs Yuasa International Ltd. | Charge control apparatus for controlling charging of an energy storage device via purality of charging paths connected in parallel anssociated energy storage appartus, and an associated charging method |
JP6441520B1 (ja) * | 2018-03-14 | 2018-12-19 | 株式会社日立パワーソリューションズ | 電力需給システム、制御装置及び電力需給方法 |
JP7102839B2 (ja) * | 2018-03-26 | 2022-07-20 | トヨタ自動車株式会社 | 車両用ソーラー発電システム |
JP6973235B2 (ja) * | 2018-03-28 | 2021-11-24 | 株式会社オートネットワーク技術研究所 | 車載用の電力制御装置及び車載用の電力制御システム |
JP6990148B2 (ja) * | 2018-05-30 | 2022-01-12 | 株式会社日立ビルシステム | エレベーターの駆動制御システム |
JP7216889B2 (ja) * | 2018-11-28 | 2023-02-02 | トヨタ自動車株式会社 | 電源システム |
JP7129008B2 (ja) * | 2018-11-29 | 2022-09-01 | トヨタ自動車株式会社 | 電源システム |
CN111277033A (zh) * | 2020-03-04 | 2020-06-12 | 上海钧正网络科技有限公司 | 发电模块、发电装置和控制方法 |
CN111262767B (zh) * | 2020-03-27 | 2022-11-15 | 阳光电源股份有限公司 | 一种光伏系统及其通信方法 |
CN111509667B (zh) * | 2020-05-29 | 2022-04-19 | 常州佳讯光电系统工程有限公司 | 一种分布式光伏并网开关配套用的欠电压保护控制装置 |
JP7386774B2 (ja) * | 2020-09-11 | 2023-11-27 | 本田技研工業株式会社 | 充電システム |
US20240014652A1 (en) * | 2022-07-11 | 2024-01-11 | Vroom Solar Inc. | Control Center for Use with Photovoltaic and Other DC Power Sources |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06296333A (ja) * | 1993-04-07 | 1994-10-21 | Mitsubishi Electric Corp | 宇宙船の電源装置 |
JPH11103537A (ja) | 1997-09-29 | 1999-04-13 | Sekisui Jushi Co Ltd | 太陽電池装置 |
JP2004023879A (ja) * | 2002-06-14 | 2004-01-22 | Mitsubishi Heavy Ind Ltd | 給電システム及びその制御方法 |
JP2007330057A (ja) * | 2006-06-08 | 2007-12-20 | Kawasaki Plant Systems Ltd | 二次電池付太陽光システムの充電制御方法 |
JP2009153306A (ja) | 2007-12-21 | 2009-07-09 | Homare Denchi Kogyo:Kk | 太陽光発電システム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3147257B2 (ja) * | 1992-12-09 | 2001-03-19 | 日本電池株式会社 | 系統連系電源システム |
JP2001218365A (ja) | 2000-02-04 | 2001-08-10 | Nippon Telegr & Teleph Corp <Ntt> | 直流電源装置 |
EP1986306B1 (en) * | 2006-01-27 | 2014-05-14 | Sharp Kabushiki Kaisha | Power supply system |
JP4495138B2 (ja) | 2006-12-06 | 2010-06-30 | 日本電信電話株式会社 | 電源システム、電源システムの制御方法および電源システムの制御プログラム |
CN201137854Y (zh) * | 2007-07-27 | 2008-10-22 | 北京中关村国际环保产业促进中心有限公司 | 一种场致发光与太阳能技术结合应用系统 |
US20090079412A1 (en) * | 2007-09-24 | 2009-03-26 | Yao Hsien Kuo | Apparatus and method for controlling the output of a photovoltaic array |
JP2011522505A (ja) * | 2008-05-14 | 2011-07-28 | ナショナル セミコンダクタ コーポレイション | 複数個のインテリジェントインバータからなるアレイ用のシステム及び方法 |
CN201328089Y (zh) * | 2008-09-28 | 2009-10-14 | 上海城建(集团)公司 | 一种多用途太阳能发电系统 |
JP2011015232A (ja) | 2009-07-02 | 2011-01-20 | Ricoh Co Ltd | 画像読取装置 |
-
2010
- 2010-07-30 JP JP2010172841A patent/JP2011120449A/ja active Pending
- 2010-10-15 EP EP10826541A patent/EP2472703A1/en not_active Withdrawn
- 2010-10-15 WO PCT/JP2010/068167 patent/WO2011052407A1/ja active Application Filing
- 2010-10-15 CN CN201080042552.9A patent/CN102549878B/zh not_active Expired - Fee Related
-
2012
- 2012-03-20 US US13/424,483 patent/US8587251B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06296333A (ja) * | 1993-04-07 | 1994-10-21 | Mitsubishi Electric Corp | 宇宙船の電源装置 |
JPH11103537A (ja) | 1997-09-29 | 1999-04-13 | Sekisui Jushi Co Ltd | 太陽電池装置 |
JP2004023879A (ja) * | 2002-06-14 | 2004-01-22 | Mitsubishi Heavy Ind Ltd | 給電システム及びその制御方法 |
JP2007330057A (ja) * | 2006-06-08 | 2007-12-20 | Kawasaki Plant Systems Ltd | 二次電池付太陽光システムの充電制御方法 |
JP2009153306A (ja) | 2007-12-21 | 2009-07-09 | Homare Denchi Kogyo:Kk | 太陽光発電システム |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012160667A (ja) * | 2011-02-02 | 2012-08-23 | Toshiba Corp | 太陽光発電システム |
CN103733474A (zh) * | 2011-08-11 | 2014-04-16 | 西斯维尔科技有限公司 | 用于生成、存储和供应由模块化dc生成器产生的电能的系统以及用于管理所述系统的相关方法 |
ITTO20110762A1 (it) * | 2011-08-11 | 2013-02-12 | Sisvel Technology Srl | Sistema di generazione e utilizzo (per accumulo ed erogazione) di energia elettrica prodotta da fonti di energia elettrica in corrente continua modulari, e relativo metodo di gestione del sistema |
WO2013021364A1 (en) * | 2011-08-11 | 2013-02-14 | Sisvel Technology S.R.L. | System for the generation, storage and supply of electrical energy produced by modular dc generators, and method for managing said system |
JP2014524722A (ja) * | 2011-08-11 | 2014-09-22 | シズベル テクノロジー エス.アール.エル. | モジュール式直流電気エネルギー源によって生成された電気エネルギーを、貯蔵および供給するために生成および使用するシステム、および、システムの管理方法 |
CN103733474B (zh) * | 2011-08-11 | 2018-04-24 | 西斯维尔科技有限公司 | 用于生成、存储和供应由模块化dc生成器产生的电能的系统以及用于管理所述系统的相关方法 |
EP2566004A1 (en) * | 2011-09-05 | 2013-03-06 | Delta Electronics, Inc. | Photovoltaic powered system with adaptive power control and method of operating the same |
WO2013046658A1 (ja) * | 2011-09-30 | 2013-04-04 | 三洋電機株式会社 | 切替装置および蓄電システム |
CN102569430A (zh) * | 2012-01-12 | 2012-07-11 | 苏州清莲纳米环保科技有限公司 | 太阳能电池组 |
TWI553440B (zh) * | 2015-02-26 | 2016-10-11 | 國立中山大學 | 太陽光伏發電之最大功率追蹤方法 |
WO2017158717A1 (ja) * | 2016-03-15 | 2017-09-21 | 株式会社東芝 | 発電システム、制御システム、制御方法、および集電装置 |
WO2024101334A1 (ja) * | 2022-11-10 | 2024-05-16 | 克彦 近藤 | 太陽光発電システムおよび制御方法 |
WO2024101335A1 (ja) * | 2022-11-10 | 2024-05-16 | 克彦 近藤 | 充電制御装置および制御方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2472703A1 (en) | 2012-07-04 |
JP2011120449A (ja) | 2011-06-16 |
US8587251B2 (en) | 2013-11-19 |
CN102549878B (zh) | 2014-10-29 |
CN102549878A (zh) | 2012-07-04 |
US20120176079A1 (en) | 2012-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011052407A1 (ja) | 切替回路、制御装置および発電システム | |
KR101268356B1 (ko) | 재생 가능 에너지의 이용을 최대화하는 에너지 저장 시스템 | |
KR101243909B1 (ko) | 전력 저장 시스템 및 그 제어 방법 | |
US11316471B2 (en) | Manual transfer switch for onsite energy generation and storage systems | |
US10511173B2 (en) | Power controller, power control method, and power control system | |
WO2013088798A1 (ja) | 電力供給システム | |
WO2013132832A1 (ja) | 制御装置および配電システム | |
WO2013132833A1 (ja) | 制御装置、変換装置、制御方法、および配電システム | |
JP2007124811A (ja) | 電力貯蔵システム、ルート発生装置及びルート発生方法 | |
US10177586B2 (en) | Electric energy storage apparatus | |
WO2011068133A1 (ja) | 充放電システム、発電システムおよび充放電制御装置 | |
KR20140034848A (ko) | 충전 장치 | |
JP2012090516A (ja) | 切替回路、制御装置および発電システム | |
JP2017184362A (ja) | パワーコンディショナ、電力供給システム及び電流制御方法 | |
JP2019198203A (ja) | 全負荷対応型分電盤および全負荷対応型分電盤に対応した蓄電システム | |
JP6168854B2 (ja) | 系統連系装置 | |
JP2014131422A (ja) | 電力供給システムおよびパワーコンディショナ | |
JP2013183611A (ja) | 制御装置、変換装置、制御方法、および配電システム | |
JP2015122841A (ja) | 蓄電システムおよび発電システム | |
JP2014176163A (ja) | 直流給電システム、電力変換装置、および直流給電システムの制御方法 | |
KR20190143084A (ko) | 독립형 마이크로그리드 운용 시스템 | |
WO2013046658A1 (ja) | 切替装置および蓄電システム | |
WO2013005804A1 (ja) | スイッチング装置 | |
JP2014239561A (ja) | 切替装置および蓄電システム | |
JP6323893B2 (ja) | 系統連系装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080042552.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10826541 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010826541 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |