WO2011052178A1 - 不飽和カルボン酸および/またはその誘導体の合成方法 - Google Patents

不飽和カルボン酸および/またはその誘導体の合成方法 Download PDF

Info

Publication number
WO2011052178A1
WO2011052178A1 PCT/JP2010/006295 JP2010006295W WO2011052178A1 WO 2011052178 A1 WO2011052178 A1 WO 2011052178A1 JP 2010006295 W JP2010006295 W JP 2010006295W WO 2011052178 A1 WO2011052178 A1 WO 2011052178A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
derivative
unsaturated carboxylic
carboxylic acid
catalyst
Prior art date
Application number
PCT/JP2010/006295
Other languages
English (en)
French (fr)
Inventor
歩武 恩田
松浦 由美子
和道 柳澤
Original Assignee
株式会社サンギ
国立大学法人高知大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サンギ, 国立大学法人高知大学 filed Critical 株式会社サンギ
Priority to CN201080048079.5A priority Critical patent/CN102596883B/zh
Priority to BR112012009658-3A priority patent/BR112012009658B1/pt
Priority to JP2011538242A priority patent/JP5799324B2/ja
Priority to EP10826314.6A priority patent/EP2495233B1/en
Priority to US13/503,780 priority patent/US8772539B2/en
Publication of WO2011052178A1 publication Critical patent/WO2011052178A1/ja
Priority to IN3044/DELNP/2012A priority patent/IN2012DN03044A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1806Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with alkaline or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • C07C67/327Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups by elimination of functional groups containing oxygen only in singly bound form

Definitions

  • the present invention relates to a method for synthesizing an unsaturated carboxylic acid and / or a derivative thereof from a hydroxycarboxylic acid and / or a derivative thereof using an apatite compound as a catalyst.
  • Acrylic acid is a raw material monomer for polyacrylic acid and acrylic acid copolymers. Along with an increase in the amount of water-absorbent resin (polysodium acrylate) used, the production amount is increasing. Acrylic acid is usually produced by synthesizing acrolein from propylene, which is a petroleum-derived raw material, and converting this acrolein into catalytic acrylic acid and converting it into acrylic acid (for example, Patent Document 1).
  • Patent Document 2 discloses a method of synthesizing an unsaturated carboxylic acid or an ester thereof from an ammonium salt of hydroxycarboxylic acid.
  • an object of the present invention is to synthesize an unsaturated carboxylic acid such as acrylic acid or a derivative thereof such as a salt or ester thereof more easily from a biomass-derived compound. More specifically, a hydroxycarboxylic acid such as lactic acid and / or a derivative thereof, which can be easily synthesized from a polysaccharide such as cellulose derived from biomass, as a raw material compound, an unsaturated carboxylic acid such as acrylic acid and / or its In synthesizing a derivative, an appropriate catalyst was found, and an object was to provide an efficient unsaturated carboxylic acid and / or derivative thereof.
  • the present invention that has solved the above-mentioned problems is characterized in that an unsaturated carboxylic acid and / or a derivative thereof is synthesized from a biomass-derived hydroxycarboxylic acid and / or a derivative thereof by a dehydration reaction using an apatite compound as a catalyst.
  • Derivatives include salts and esters.
  • a compound containing Ca and P is preferably used as the apatite compound, more preferably hydroxyapatite having a Ca to P molar ratio of 1.5 to 1.8, and the hydroxyapatite may be Ca 10 (PO 4 It is most preferred to use 6 (OH) 2 .
  • the hydroxycarboxylic acid is lactic acid and the unsaturated carboxylic acid is acrylic acid.
  • an unsaturated carboxylic acid and / or derivative thereof can be obtained from a biomass-derived hydroxycarboxylic acid and / or derivative thereof over a long period of time with a high yield. It became possible to synthesize.
  • FIG. 3 is a relationship diagram of the amount of catalyst and the conversion rate and yield of lactic acid to acrylic acid. It is a relationship figure of distribution
  • biomass-derived lactic acid is used as a raw material for unsaturated carboxylic acid such as acrylic acid.
  • biomass is generally used to mean a broad concept such as foods, materials, and fuels made of biological materials, but also includes those treated as industrial waste.
  • the main component of these biomass is cellulose, which is not suitable for human food that does not have the digestive enzyme.
  • it is difficult to use as a fuel because it is not as excellent in combustion efficiency as petroleum components. Therefore, since these biomass must be discarded or incinerated at present, it is very significant to promote the effective use of these from the viewpoint of reducing industrial waste.
  • lactic acid that can be easily obtained from polysaccharides such as cellulose and monosaccharides, which are contained in a large amount in biomass.
  • polysaccharides can be converted to glucose by enzymatic methods, sulfuric acid methods, solid catalyst methods, ionic liquid methods, and the like.
  • a method for producing glucose from polyglucose by the applicant of the present application has been filed as Japanese Patent Application Laid-Open No. 2009-201405. Then, glucose can be converted into lactic acid by using a fermentation method, an alkaline aqueous solution method, a solid catalyst method or the like.
  • acrylic acid is synthesized from this lactic acid.
  • a salt and an ester are collectively referred to as a “derivative thereof”.
  • a hydroxycarboxylic acid and a derivative thereof are simply referred to as a hydroxycarboxylic acid
  • an unsaturated carboxylic acid and a derivative thereof are simply referred to as a derivative. It is called unsaturated carboxylic acid.
  • the hydroxycarboxylic acid ester may be reacted with a biomass-derived hydroxycarboxylic acid and the corresponding alcohol by a known method using a known esterification catalyst or the like.
  • an apatite compound is used as a catalyst in the reaction of dehydrating the hydroxycarboxylic acid and converting it to the corresponding unsaturated carboxylic acid.
  • the apatite compound in the present invention is a compound having an apatite structure and includes a solid solution, and can be represented by a general formula: M a (M′O b ) c X 2 .
  • M represents Ca, Sr, Pb, Mg, Cd, Fe, Co, Ni, Cu, Zn, La, H, or the like, and may be one or more of these.
  • an apatite compound in which M is Ca alone or an apatite compound in which Ca and other elements are combined is preferable.
  • M ′ represents P, V, As, C, S or the like, and among them, an apatite compound in which M ′ is P alone or an apatite compound in which P and other elements are combined is preferable.
  • X represents OH, F, Cl or the like.
  • M 10 (M′O 4 ) 6 X 2 in which a is 10, b is 4, c is 6, and a / c is 1.67 is a basic apatite compound.
  • M contains an element other than divalent
  • M ′ contains an element other than pentavalent such as C or S
  • the above basic The chemical formula is different from that of a napatite compound.
  • a / c may vary between 1.5 and 1.8.
  • M or M ′ is a combination of two or more elements, a and c are the total valence of each element.
  • the most typical apatite is Ca 10 (PO 4 ) 6 (OH) 2 having a molar ratio of a / c (Ca / P) of 1.67.
  • Calcium nitrate or the like is used as a Ca source when synthesizing an apatite compound, strontium nitrate or the like is used as a Sr source, diphosphorus pentoxide (P 2 O 5 ) is used as a P source, and lead nitrate is used as a Pb source.
  • the V source include vanadium pentoxide (V 2 O 5 ).
  • acetates, chlorides, metal complexes, carbonates, and the like can also be used. When synthesizing apatite compounds having other elements, they can be synthesized from these compounds as appropriate.
  • the apatite compound can be synthesized, for example, by a hydrothermal reaction in the presence of an alkali.
  • the hydrothermal reaction may be carried out by mixing aqueous solutions of raw material compounds made alkaline with NaOH or the like and at a temperature of about 50 to 300 ° C. and a pressure of about 1 ⁇ 10 5 to 1 ⁇ 10 7 Pa.
  • the a / c can be changed by changing the ratio of the amount of the raw material compound used or adjusting the alkali concentration.
  • the apatite compound can also be synthesized by a dry solid phase reaction method or a wet precipitation reaction method.
  • the form of the apatite compound is not particularly limited, such as granules, needles, pulverized products, tablets, and honeycombs. Further, it may be used by being supported on a known carrier such as alumina or silica. The amount of the apatite compound used can be appropriately selected in consideration of the reaction time.
  • Examples of the hydroxycarboxylic acid used as a raw material compound in the synthesis reaction of the present invention include lactic acid, citric acid, 3-hydroxypropionic acid, 3-hydroxy-2-methylpropionic acid, 3-hydroxybutanoic acid, and 3-hydroxy-2-methylbutane. Examples include acid and 2,3-dimethyl-3-hydroxybutanoic acid. Moreover, derivatives such as these salts and esters can also be used as raw material compounds.
  • the synthesis reaction of unsaturated carboxylic acid is preferably performed by bringing an aqueous solution of hydroxycarboxylic acid into contact with the apatite compound.
  • Hydroxycarboxylic acid can be prevented from condensing before being introduced into the reaction tube, and when the reaction product is cooled with an ice bath trap or the like, it is recovered as an aqueous solution containing unsaturated carboxylic acid. It is because it becomes easy. However, the reaction proceeds even without a solvent.
  • the reaction temperature is preferably 250 to 400 ° C.
  • the reaction pressure may be normal pressure, increased pressure, or reduced pressure, but may be normal pressure.
  • the concentration of the hydroxycarboxylic acid aqueous solution is not particularly limited, but is preferably about 20 to 50% by mass in view of efficiency.
  • solvents other than water may be included.
  • a hydrophilic organic solvent such as alcohol or ether may be used together with water or in place of water, and the hydroxycarboxylic acid ester is difficult to dissolve or does not dissolve in water.
  • the reaction may be carried out without using a solvent, or an organic solvent capable of dissolving the hydroxycarboxylic acid ester may be used.
  • any of a fixed bed type, a moving bed type, a distribution bed type, etc. can be adopted.
  • An inert carrier gas such as nitrogen, argon or helium can also be used.
  • an inert filler such as silica wool or quartz sand may be filled upstream and downstream of the apatite compound layer.
  • a highly purified unsaturated carboxylic acid can be obtained by purifying the reaction product by a known purification means (distillation, crystallization, etc.).
  • the acrylic acid synthesis reaction from lactic acid was performed using the five types of catalysts obtained above.
  • the synthesis reaction was carried out using an atmospheric pressure fixed bed flow reactor.
  • the reaction tube was made of Pyrex (registered trademark) glass and had an inner diameter of 7 mm. Quartz sand and silica wool were filled upstream of the catalyst layer, and silica wool was filled downstream.
  • the amount of catalyst used was basically 0.4 g.
  • a micro syringe pump manufactured by ASONE; model MSPE-1
  • a liquid chromatograph pump HITACHI; model L-2420
  • the concentration of the lactic acid aqueous solution was 38% by mass.
  • a lactic acid aqueous solution was introduced into the catalyst layer at 20 ⁇ l / min together with Ar 40 ml / min as a carrier gas.
  • the reaction temperature was 350 ° C.
  • the liquid product was collected with an ice bath trap. The gaseous product was also recovered from the exit of the ice bath trap.
  • the liquid product was analyzed with a high-performance liquid chromatograph (HPLC), GC-MS, GC-FID, GC-TCD, total organic carbon meter, in addition to mass measurement with an electronic balance.
  • HPLC high-performance liquid chromatograph
  • GC-MS GC-MS
  • GC-FID GC-FID
  • GC-TCD total organic carbon meter
  • the gas chromatograph was obtained by GC-FID (Shimadzu Corporation: GC-14B) and GC-MS (Agilent Technologies: HP-5890, HP-5972), DB-WAX (60 m: Agilent Technologies). A column was used.
  • GC-TCD manufactured by Shimadzu Corporation: GC-8A, column: Gasclopack and activated carbon
  • GC-FID manufactured by Shimadzu Corporation: GC-14B, column: DB- WAX
  • the total organic carbon amount was determined by measuring the total organic carbon concentration (TOC) using a total organic carbon meter (Total Organic Carbon Analyzer manufactured by Shimadzu Corporation) after diluting the liquid product 500 times.
  • the conversion ratio of lactic acid was determined by ⁇ 1- (area value of lactic acid in the product / area value of standard sample) ⁇ ⁇ 100, and the yield of acrylic acid was obtained by (Area value of acrylic acid / Area value of standard sample) ⁇ 100, and the conversion rate to acrylic acid was obtained by (Conversion rate of lactic acid / Yield of acrylic acid) ⁇ 100.
  • the standard sample in the case of lactic acid is obtained by adding 30 ml of 0.46M NaOH aqueous solution to 0.5 g of 38% by mass of lactic acid aqueous solution, and the standard sample in the case of acrylic acid is 30.4% by mass of acrylic acid. 30 ml of 0.46M NaOH aqueous solution was added to the acid aqueous solution.
  • FIG. 1 The results when the reaction was carried out for 6 hours are shown in FIG.
  • the total flow rate of lactic acid when reacted for 6 hours is 2736 ⁇ l.
  • 1 in FIG. 1 is silica-supported P 2 O 5
  • 2 is Ca 10 (PO 4 ) 6 (OH) 2
  • 3 is Sr 10 (PO 4 ) 6 (OH) 2
  • 4 is silica-supported CaNO 3. It is.
  • Ca-P-based hydroxyapatite has the highest yield of acrylic acid, and the yield of acrylic acid was 37.0% with a catalyst amount of 0.4 g.
  • the acrylic acid yield was about 20%.
  • the conversion rate of lactic acid was high, but the yield of the target acrylic acid was found to be low.
  • the catalyst amount was 1.0 g, but the conversion of lactic acid and the yield of acrylic acid were very low.
  • the activated carbon-supported NaNO 3 had a catalyst use amount of 0.05 g, a lactic acid conversion rate of 30.0%, and an acrylic acid yield of 17.2%.
  • silica gel used as a carrier alone was subjected to the same experiment as above, the conversion of lactic acid was as high as 66.7%, but the yield of acrylic acid was as low as 2.3%.
  • Experimental Example 6 A synthesis experiment of ethyl acrylate using ethyl lactate as a raw material compound was conducted. Except for using ethyl lactate (100%) in place of the lactic acid aqueous solution and using 1 g of Ca 10 (PO 4 ) 6 (OH) 2 with a Ca / P of 1.67, the same as in Experimental Example 1. And allowed to react for 6 hours.
  • reaction product was analyzed in the same manner as in Experimental Example 1.
  • GC-MS and GC-FID were analyzed after 10-fold dilution with methanol.
  • the conversion rate of ethyl lactate after 6 hours of distribution was 55%, and the reaction product contained ethyl acrylate and acrylic acid. The total yield of both was 18%.
  • unsaturated carboxylic acid and / or its derivative can be synthesized from biomass-derived hydroxycarboxylic acid and / or its derivative in high yield, so that industrially useful unsaturated carboxylic acid can be used without relying on petroleum raw materials. It has become possible to synthesize acids and / or their derivatives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 バイオマス由来のセルロース等の多糖類から容易に合成することのできるヒドロキシカルボン酸および/またはその誘導体を原料化合物として、不飽和カルボン酸および/またはその誘導体を合成するに当たり、適切な触媒を見出し、効率よい不飽和カルボン酸および/またはその誘導体の合成方法を提供するものである。アパタイト化合物を触媒として、バイオマス由来のヒドロキシカルボン酸および/またはその誘導体から、脱水反応により、不飽和カルボン酸および/またはその誘導体を合成することを特徴とする不飽和カルボン酸および/またはその誘導体の合成方法である。

Description

不飽和カルボン酸および/またはその誘導体の合成方法
 本発明は、アパタイト化合物を触媒として、ヒドロキシカルボン酸および/またはその誘導体からの不飽和カルボン酸および/またはその誘導体を合成する方法に関する。
 アクリル酸は、ポリアクリル酸やアクリル酸系共重合体の原料モノマーである。吸水性樹脂(ポリアクリル酸ソーダ)の使用量の増大も相俟って、その生産量は増大している。アクリル酸は、通常、石油由来原料であるプロピレンからアクロレインを合成し、このアクロレインを接触気相酸化してアクリル酸へと転化させて製造されている(例えば特許文献1)。
 しかしながら、石油由来原料は将来的には枯渇するおそれがある。こういったことから、バイオマスから不飽和カルボン酸を得ることを目的とした研究がなされている。例えば、特許文献2には、ヒドロキシカルボン酸のアンモニウム塩から、不飽和カルボン酸またはそのエステルを合成する方法が開示されている。
特開2006-15330号公報 特開2009-67775号公報
 しかし、上記特許文献2に記載の方法では、ヒドロキシカルボン酸のアンモニウム塩をヒドロキシカルボン酸と非水性アンモニウムカチオン含有交換樹脂とに分離する必要がある等、工程が煩雑である。
 そこで本発明では、より簡単に、バイオマス由来の化合物からアクリル酸等の不飽和カルボン酸やその塩やエステル等の誘導体を合成することを課題とした。より具体的には、バイオマス由来のセルロース等の多糖類から容易に合成することのできる乳酸等のヒドロキシカルボン酸および/またはその誘導体を原料化合物として、アクリル酸等の不飽和カルボン酸および/またはその誘導体を合成するに当たり、適切な触媒を見出し、効率よい不飽和カルボン酸および/またはその誘導体を提供することを課題として掲げた。
 上記課題を解決し得た本発明は、アパタイト化合物を触媒として、バイオマス由来のヒドロキシカルボン酸および/またはその誘導体から、脱水反応により、不飽和カルボン酸および/またはその誘導体を合成することを特徴とする不飽和カルボン酸および/またはその誘導体の合成方法である。なお、誘導体には、塩やエステルが含まれる。
 アパタイト化合物として、CaとPとを含む化合物を用いることが好ましく、CaとPのモル比が1.5~1.8のハイドロキシアパタイトを用いることがより好ましく、ハイドロキシアパタイトとして、Ca10(PO46(OH)2を用いることが最も好ましい。
 また、ヒドロキシカルボン酸が乳酸であり、不飽和カルボン酸がアクリル酸である態様が最も好ましい。
 本発明法によれば、簡単に合成できるアパタイト化合物を触媒とすることで、バイオマス由来のヒドロキシカルボン酸および/またはその誘導体から不飽和カルボン酸および/またはその誘導体を長時間に亘って収率よく合成することが可能となった。
触媒の構成元素と、乳酸からのアクリル酸への転化率および収率との関係図である。 触媒量と、乳酸からのアクリル酸への転化率および収率との関係図である。 流通時間と、乳酸からのアクリル酸への転化率および収率との関係図である。
 本発明では、バイオマス由来の乳酸等のヒドロキシカルボン酸をアクリル酸等の不飽和カルボン酸の原料として用いる。バイオマスという語は、一般的には生物起源の物質からなる食料、資材、燃料など広い概念を意味する語として用いられているが、産業廃棄物として扱われているものも含まれている。例えば、稲藁、ヤシガラ、籾殻、間伐材、木材チップダスト、剪定枝などである。これらバイオマスの主成分はセルロースであり、その消化酵素を有しないヒトの食料としては適さない。また、石油成分ほど燃焼効率に優れるものではないことから燃料としても用い難い。よって、これらバイオマスは現在のところ廃棄や焼却せざるを得ないので、これらの有効利用を促進することは、産業廃棄物を低減することからも非常に意義がある。
 本発明では、バイオマスに多く含まれているセルロース等の多糖類や単糖類から容易に得られる乳酸に着目した。例えば、多糖類は、酵素法、硫酸法、固体触媒法、イオン液体法等で、グルコースに転化させることができる。本願出願人によるポリグルコースからグルコースを製造する方法は特開2009-201405号として出願されている。そして、グルコースを、発酵法、アルカリ水溶液法、固体触媒法等を用いれば、乳酸に転化させることができる。本発明では、この乳酸からアクリル酸を合成する。本発明では、同様に、乳酸エステルからアクリル酸エステルを合成することも可能である。また、本発明では、乳酸以外のヒドロキシカルボン酸、その塩、あるいはエステルから、不飽和カルボン酸、その塩、あるいはエステルを合成することも可能である。以下の説明では、塩とエステルを併せて「その誘導体」といい、簡単のため、特に断らない限り、ヒドロキシカルボン酸とその誘導体を単にヒドロキシカルボン酸といい、不飽和カルボン酸とその誘導体を単に不飽和カルボン酸という。なお、ヒドロキシカルボン酸エステルは、バイオマス由来のヒドロキシカルボン酸と対応するアルコールとを、公知のエステル化触媒等を用いて公知の方法で反応させればよい。
 本発明において、ヒドロキシカルボン酸を脱水して対応する不飽和カルボン酸へと転化する反応の際には、アパタイト化合物を触媒として用いる。本発明におけるアパタイト化合物とは、アパタイト構造を有する化合物であり、固溶体をも含む概念で、一般式:Ma(M’Obc2で表すことができる。Mは、Ca,Sr,Pb,Mg,Cd,Fe,Co,Ni,Cu,Zn,La,H等を表し、これらの1種または2種以上であってもよい。中でも、MがCa単独のアパタイト化合物、またはCaと他の元素を組み合わせたアパタイト化合物が好ましい。また、M’は、P,V,As,C,S等を表し、中でも、M’がP単独のアパタイト化合物、またはPと他の元素を組み合わせたアパタイト化合物が好ましい。XはOH,FまたはCl等を表す。aが10、bが4、cが6であり、a/cが1.67であるM10(M’O462が、基本的なアパタイト化合物である。固溶体の場合や、a/cが1.67からずれる場合、Mに2価以外の元素が含まれる場合、M’にCやS等の5価以外の元素が含まれる場合は、上記基本的なアパタイト化合物とは異なる化学式となる。a/cは1.5~1.8の間で変化しても構わない。なお、MやM’が2種以上の元素の組み合わせである場合、aやcは、各元素の価数の合計となる。最も代表的なアパタイトは、a/c(Ca/P)のモル比が1.67であるCa10(PO46(OH)2である。
 アパタイト化合物を合成する際のCa源としては硝酸カルシウム等が、Sr源として硝酸ストロンチウム等が、P源としては五酸化二リン(P25)等が、Pb源としては硝酸鉛等が挙げられ、V源としては五酸化バナジウム(V25)等が挙げられる。また、酢酸塩、塩化物、金属錯体、炭酸塩等も用いることができる。その他の元素を有するアパタイト化合物を合成する場合も、適宜、これらの化合物から合成可能である。
 アパタイト化合物は、例えば、アルカリ存在下、水熱反応によって合成することができる。水熱反応は、NaOH等でアルカリ性にした各原料化合物の水溶液を混合し、50~300℃程度、圧力1×105~1×107Pa程度で行えばよい。上記a/cを変化させるには、原料化合物の使用量の比率を変えるか、アルカリの濃度を調整することにより行うことができる。また、アパタイト化合物は、乾式固相反応法や湿式沈殿反応法等によっても合成可能である。
 アパタイト化合物の形態は、顆粒状、針状、粉砕物、錠剤型に成形したもの、ハニカム等、特に限定されない。また、アルミナ、シリカ等の公知の担体に担持させて用いてもよい。アパタイト化合物の使用量は、反応時間を考慮して適宜選択できる。
 本発明の合成反応における原料化合物となるヒドロキシカルボン酸としては、乳酸、クエン酸、3-ヒドロキシプロピオン酸、3-ヒドロキシ-2-メチルプロピオン酸、3-ヒドロキシブタン酸、3-ヒドロキシ-2-メチルブタン酸、2,3-ジメチル-3-ヒドロキシブタン酸等が挙げられる。また、これらの塩やエステル等の誘導体も原料化合物として用いることができる。
 不飽和カルボン酸の合成反応は、ヒドロキシカルボン酸の水溶液をアパタイト化合物に接触させることで行うことが好ましい。ヒドロキシカルボン酸が反応管へ導入される前に縮合してしまうのを抑制することができ、また、反応生成物を氷浴トラップ等で冷却すると、不飽和カルボン酸を含む水溶液となって回収し易くなるからである。ただし、溶媒がなくても反応は進行する。反応温度は250~400℃が好ましい。反応圧力は、常圧、加圧下、減圧下、いずれの条件でもよいが、常圧で構わない。ヒドロキシカルボン酸水溶液の濃度も特に限定されないが、効率を考慮すると20~50質量%程度が好ましい。また、水以外の溶媒を含んでいてもよい。ヒドロキシカルボン酸の場合であれば、アルコールやエーテル等の親水性有機溶媒を、水と共に、あるいは水に変えて用いてもよく、また、ヒドロキシカルボン酸エステルが水に溶解しにくい、もしくは溶解しない場合には、溶媒を用いずに反応を行うか、ヒドロキシカルボン酸エステルを溶解することのできる有機溶媒を用いればよい。
 反応形式としては、固定床式、移動床式、流通床式等のいずれも採用可能である。窒素、アルゴン、ヘリウム等の不活性キャリアガスを用いることもできる。例えば、固定床流通式反応装置を用いる場合、アパタイト化合物層の上下流にシリカウールや石英砂等の不活性充填剤を充填してもよい。
 反応生成物を公知の精製手段(蒸留、晶析等)によって精製することにより、高純度の不飽和カルボン酸を得ることができる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
 実験例1(触媒の種類の影響)
 [アパタイト化合物の調製]
 P25を1mmol、NaOH7mmolを含む水溶液7mlに溶解させた後、硝酸カルシウムまたは硝酸ストロンチウムを3.33mmol含む水溶液8mlを加えることによって2種類の懸濁液を得た。この懸濁液をポリテトラフルオロエチレン内張りオートクレーブに導入し、110℃、圧力143kPaで14時間、撹拌しながら水熱処理を行った。水熱処理後、得られた沈殿をよく水洗し、60℃で5時間乾燥させた。粉末状のM10(M’O46(OH)2(MはCaまたはSr、M’はP)が得られた。この粉末をペレ
ットに成型し、粉砕して250~500μm程度にしたものを触媒として用いた。
 [シリカゲルを用いた触媒の調製]
 P換算で1mmolのP25、またはCa換算で1mmolのCaNO3を、蒸留水1.5mlに完全に溶解させ、担体としてのシリカゲル(富士シリシア社製;キャリアクト(登録商標)G-6;粒子径30-200メッシュ)1.0gを加えてかき混ぜた。ウォーターバス上で水分がなくなるまでよくかき混ぜた後、60℃で一晩乾燥させた。この粉末をペレットに成型し、粉砕して250~500μm程度にしたものを触媒として用いた。
 [活性炭を用いた触媒の調製]
 Na換算で10mmolのNaNO3を蒸留水1.5mlに完全に溶解させ、担体としての活性炭(和光純薬工業社製;グレード;平均粒子径等)1.0gを加えてかき混ぜた。ウォーターバス上で水分がなくなるまでよくかき混ぜた後、60℃で一晩乾燥させた。この粉末をペレットに成型し、粉砕して250~500μm程度にしたものを触媒として用いた。
 上記で得られた5種類の触媒を用い、乳酸からのアクリル酸合成反応を行った。合成反応は、常圧固定床流通式反応装置を用いて行った。反応管は、パイレックス(登録商標)ガラス製の内径7mmのものを用いた。触媒層の上流に石英砂とシリカウールを、下流にシリカウールを充填した。なお、この実験例では触媒の使用量は基本的には0.4gとした。
 乳酸水溶液の反応管への導入には、マイクロシリンジポンプ(アズワン社製;型番MSPE-1)または液クロ用送液ポンプ(HITACHI社製;型番L-2420)を用いた。乳酸水溶液の濃度は38質量%とした。乳酸水溶液を20μl/minで、キャリアガスとしてのAr40ml/minと共に、触媒層に導入した。反応温度は350℃とした。液体生成物を氷浴トラップで回収した。また、氷浴トラップの出口から気体生成物も回収した。
 液体生成物については、電子天秤による質量測定の他、高速液体クロマトグラフ(HPLC)、GC-MS、GC-FID、GC-TCD、全有機体炭素計で分析した。
 HPLCにおいては、HITACHI社製のLC-UV装置(送液ポンプ:655、カラム恒温槽:L-2350、検出器:638-41)で、カラムはInertsil(登録商標)C8-3(150×4.6mmI.D.)として、UV法により分析した。移動相(溶離液)は、0.1MのH3PO4と0.1MのNH42PO4の混合液(pH=2.8)を使用した。分析条件は、溶離液流量:1.0ml/min、カラム温度:40℃、検出波長:210nmとした。なお、液クロ用のサンプルは、反応生成物(水溶液)または標準試料0.5gと、0.46MのNaOH水溶液30mlを混合して調製した。
 ガスクロマトグラフは、GC-FID(島津製作所製:GC-14B)と、GC-MS(アジレント・テクノロジー社製:HP-5890,HP-5972)により、DB-WAX(60m:アジレント・テクノロジー社製)カラムを用いた。
 氷浴トラップの出口から回収した気体生成物については、GC-TCD(島津製作所製:GC-8A、カラム:ガスクロパックと活性炭)およびGC-FID(島津製作所製:GC-14B、カラム:DB-WAX)を用いて分析した。
 全有機体炭素量は、液体生成物を500倍に希釈した後、全有機体炭素計(Total Organic Carbon Analyzer:島津製作所製)を用いて、全有機体炭素濃度(TOC)を測定した。
 なお、ガスクロマトグラフ、全有機体炭素量は副生成物の分析に使用したが、実験例1の結果には直接関係ないため省略した。
 HPLCのチャートにおける乳酸およびアクリル酸標準溶液の面積率から、乳酸の転化率は、{1-(生成物の乳酸の面積値/標準試料の面積値)}×100で求め、アクリル酸の収率は、(アクリル酸の面積値/標準試料の面積値)×100で求め、アクリル酸への転化率は、(乳酸の転化率/アクリル酸の収率)×100で求めた。なお、乳酸の場合の標準試料は、38質量%の乳酸水溶液0.5gに、0.46MのNaOH水溶液30mlを加えたものとし、アクリル酸の場合の標準試料は、30.4質量%のアクリル酸水溶液に、0.46MのNaOH水溶液30mlを加えたものとした。
 6時間反応を行った場合の結果を図1に示した。6時間反応させたときの乳酸の全流通量は2736μlである。図1の1は、シリカ担持P25で、2がCa10(PO46(OH)2で、3がSr10(PO46(OH)2で、4がシリカ担持CaNO3である。
 図1から、Ca-P系のハイドロキシアパタイトが最もアクリル酸の収率がよく、0.4gの触媒量でアクリル酸収率が37.0%となった。また、Sr-P系では、20%前後のアクリル酸収率となった。P25系では、乳酸の転化率は高かったが、目的とするアクリル酸の収率は低いことがわかった。また、CaNO3系では、触媒量を1.0gとしたが、乳酸の転化率もアクリル酸の収率も非常に低かった。
 図1には載せていないが、活性炭担持NaNO3は触媒使用量0.05gで乳酸の転化率は30.0%、アクリル酸の収率は17.2%であった。また、担体として用いたシリカゲル単独でも上記と同じ実験を行ったところ、乳酸の転化率は66.7%と高かったが、アクリル酸の収率は2.3%と非常に低かった。
 実験例2(Ca/Pの影響)
 次に、アパタイト化合物におけるCa/Pを変える実験を行い、その影響について検討した。実験例1における水熱反応時のCa源とP源の使用比率を変えて、Ca/Pが1.5,1.6,1.8の触媒を合成した。
 使用した触媒量を1gにした以外は、実験例1と同様にして、6時間のアクリル酸合成反応を行った。Ca/Pが1.67のCa10(PO46(OH)2は、乳酸の転化率が91.4%、アクリル酸の収率が72.0%であり、最も高い結果を示した。Ca/Pが1.5,1.6,1.8の場合も、いずれもアクリル酸の収率が50%を超えており、触媒性能としては充分であった。また、Sr10(PO46(OH)2についても触媒量を1gにして同様の実験を行ったところ、転化率は54.3%、アクリル酸の収率は33.6%であることが確認できた。
 実験例3(触媒量による影響)
 Ca/Pが1.67のCa10(PO46(OH)2を用いて、触媒量を変え、その影響について検討した。使用した触媒量を変えた以外は、実験例1と同様にして、6時間のアクリル酸合成反応を行った。結果を図2に示す。乳酸の転化率、アクリル酸の収率共に、1gまでは触媒量の増加に伴って増大した。触媒量を2gにしたときは、乳酸の転化率は100%となったが、アクリル酸の収率は1gの場合とほとんど変わらず、触媒の効果が頭打ちとなった。
 実験例4(経時変化)
 Ca/Pが1.67のCa10(PO46(OH)2を1g用いて、実験例1と同様にしてアクリル酸の合成反応を行い、時間毎の状態を追跡した。結果を図3に示した。3時間目以降はアクリル酸の収率に大きな変化がないことがわかった。
 実験例5(経時変化)
 Ca/Pが1.67のCa10(PO46(OH)2を1g用いて、実験例1と同様にしてアクリル酸の合成反応を行い、60時間の経時変化を追跡した。乳酸の転化率は経時によってさほど低下しなかったが、アクリル酸の選択率や収率は次第に低下することがわかった。しかし、60時間の連続反応を行ってもアクリル酸の収率は50%を超えており、本発明で用いたアパタイト化合物系触媒が長時間の使用に耐えられることが確認できた。
 実験例6
 乳酸エチルを原料化合物として用いたアクリル酸エチルの合成実験を行った。乳酸水溶液に変えて乳酸エチル(100%)を用いたこと、Ca/Pが1.67のCa10(PO46(OH)2を1g用いたこと以外は、実験例1と同様にして、6時間反応させた。
 反応生成物を、実験例1と同様にして分析した。GC-MSとGC-FIDでは、メタノールで10倍希釈してから分析した。
 流通6時間後の乳酸エチルの転化率は55%で、反応生成物中には、アクリル酸エチルとアクリル酸とが含まれていた。両者の合計収率は18%であった。
 本発明法では、バイオマス由来のヒドロキシカルボン酸および/またはその誘導体から高収率で不飽和カルボン酸および/またはその誘導体を合成できるため、石油原料に頼ることなく、工業的に有用な不飽和カルボン酸および/またはその誘導体を合成することが可能となった。

Claims (5)

  1.  アパタイト化合物を触媒として、バイオマス由来のヒドロキシカルボン酸および/またはその誘導体から、脱水反応により、不飽和カルボン酸および/またはその誘導体を合成することを特徴とする不飽和カルボン酸および/またはその誘導体の合成方法。
  2.  アパタイト化合物として、CaとPとを含む化合物を用いる請求項1に記載の合成方法。
  3.  CaとPのモル比が1.5~1.8のハイドロキシアパタイトを用いる請求項2に記載の合成方法。
  4.  ハイドロキシアパタイトとして、Ca10(PO46(OH)2を用いる請求項3に記載の合成方法。
  5.  ヒドロキシカルボン酸が乳酸であり、不飽和カルボン酸がアクリル酸である請求項1~4のいずれかに記載の合成方法。
PCT/JP2010/006295 2009-10-29 2010-10-25 不飽和カルボン酸および/またはその誘導体の合成方法 WO2011052178A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080048079.5A CN102596883B (zh) 2009-10-29 2010-10-25 不饱和羧酸和/或其衍生物的合成方法
BR112012009658-3A BR112012009658B1 (pt) 2009-10-29 2010-10-25 Método para a sintetização de ácido carboxílico insaturado e/ou seu derivado
JP2011538242A JP5799324B2 (ja) 2009-10-29 2010-10-25 不飽和カルボン酸および/またはその誘導体の合成方法
EP10826314.6A EP2495233B1 (en) 2009-10-29 2010-10-25 Method for synthesizing unsaturated carboxylic acid and/or derivative of same
US13/503,780 US8772539B2 (en) 2009-10-29 2010-10-25 Method for synthesizing unsaturated carboxylic acid and/or derivative of same
IN3044/DELNP/2012A IN2012DN03044A (ja) 2009-10-29 2012-04-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-249427 2009-10-29
JP2009249427 2009-10-29

Publications (1)

Publication Number Publication Date
WO2011052178A1 true WO2011052178A1 (ja) 2011-05-05

Family

ID=43921613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006295 WO2011052178A1 (ja) 2009-10-29 2010-10-25 不飽和カルボン酸および/またはその誘導体の合成方法

Country Status (7)

Country Link
US (1) US8772539B2 (ja)
EP (1) EP2495233B1 (ja)
JP (1) JP5799324B2 (ja)
CN (1) CN102596883B (ja)
BR (1) BR112012009658B1 (ja)
IN (1) IN2012DN03044A (ja)
WO (1) WO2011052178A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013044854A1 (zh) * 2011-09-28 2013-04-04 株式会社日本触媒 用于由乳酸制备丙烯酸的催化剂以及使用该催化剂制备丙烯酸的方法
JP2013188652A (ja) * 2012-03-12 2013-09-26 Gifu Prefecture 揮発性有機ガスの分解方法
JP2014523441A (ja) * 2011-07-19 2014-09-11 アルケマ フランス 脂肪酸または脂肪酸エステルから官能化されたω−酸を合成する方法
JP2014525894A (ja) * 2011-05-16 2014-10-02 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ 乳酸を触媒的に脱水してアクリル酸にするための改良型プロセス
WO2014181545A1 (ja) 2013-05-10 2014-11-13 株式会社サンギ 不飽和カルボン酸及び/又はその誘導体の合成用触媒及び合成方法
WO2015012392A1 (ja) * 2013-07-25 2015-01-29 株式会社日本触媒 乳酸および/またはその誘導体からアクリル酸および/またはアクリル酸エステルを製造するための触媒、ならびに、アクリル酸および/またはアクリル酸エステルの製造方法
JP2015057385A (ja) * 2013-09-16 2015-03-26 アームストロング ワールド インダストリーズ インコーポレーテッド バイオベース出発物質からアクリル酸を製造する方法
JP2015517999A (ja) * 2012-04-11 2015-06-25 ザ プロクター アンド ギャンブルカンパニー バイオベースアクリル酸の粗及び氷アクリル酸への精製
JP2015518481A (ja) * 2012-04-11 2015-07-02 ザ プロクター アンド ギャンブルカンパニー アクリル酸又はその誘導体を生成する方法
JP5764122B2 (ja) * 2010-04-26 2015-08-12 株式会社日本触媒 ポリアクリル酸(塩)、ポリアクリル酸(塩)系吸水性樹脂及びその製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5654615B2 (ja) 2010-12-28 2015-01-14 株式会社日本触媒 アクリル酸および/またはそのエステルおよびその重合体の製法
CN104903287A (zh) * 2013-01-08 2015-09-09 国际壳牌研究有限公司 丙烯酸的生产
WO2015147752A1 (en) 2014-03-28 2015-10-01 Agency For Science, Technology And Research Method for preparing a sodium faujasite catalyst and its use in producing acrylic acid
FR3029805B1 (fr) * 2014-12-10 2017-01-13 Centre Nat Rech Scient Production d'acides ou d'esters d'acides carboxyliques insatures avec un catalyseur a base d'halogeno-apatite
BR112019006051A2 (pt) 2016-09-27 2019-06-25 Shell Int Research processo para produção de álcool alílico
CN106946686A (zh) * 2017-05-05 2017-07-14 佛山慧创正元新材料科技有限公司 一种基于掺杂改性羟基磷灰石催化的丙烯酸的制备方法
US20230391708A1 (en) * 2020-11-11 2023-12-07 Lg Chem, Ltd. Method for Preparing an Acrylic Acid
CN114602519B (zh) * 2020-12-09 2023-07-25 中国科学院大连化学物理研究所 一种Ca基高熵磷酸盐的制备及其催化合成甲基丙烯酸及其甲酯

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038822A1 (fr) * 1998-01-30 1999-08-05 Kabushiki Kaisha Sangi Synthese de matiere premiere de l'industrie chimique et de carburant a indice d'octane eleve, et composition pour carburant a indice d'octane eleve
JP2004115480A (ja) * 2002-09-30 2004-04-15 National Institute Of Advanced Industrial & Technology アクリル酸及び/又はピルビン酸の合成方法
JP2006015330A (ja) 2004-06-02 2006-01-19 Nippon Shokubai Co Ltd アクリル酸製造用触媒とこれを用いるアクリル酸製造方法
JP2009067775A (ja) 2007-09-17 2009-04-02 Rohm & Haas Co ヒドロキシカルボン酸、またはその塩を、不飽和カルボン酸および/またはそのエステルに変換する方法
JP2009201405A (ja) 2008-02-27 2009-09-10 Kochi Univ グルコースの製造方法およびスルホン化活性炭の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2859240A (en) * 1956-01-12 1958-11-04 Minnesota Mining & Mfg Production of acrylates by catalytic dehydration of lactic acid and alkyl lactates
US4786756A (en) * 1984-11-05 1988-11-22 The Standard Oil Company Catalytic conversion of lactic acid and ammonium lactate to acrylic acid
JPS6323744A (ja) * 1986-03-11 1988-02-01 Nippon Shokubai Kagaku Kogyo Co Ltd アルカノ−ルアミン類の気相分子内脱水反応用触媒
US4729978A (en) * 1987-05-04 1988-03-08 Texaco Inc. Catalyst for dehydration of lactic acid to acrylic acid
JP2884638B2 (ja) * 1989-11-28 1999-04-19 三菱瓦斯化学株式会社 不飽和カルボン酸エステルの製造法
US5252473A (en) 1990-01-23 1993-10-12 Battelle Memorial Institute Production of esters of lactic acid, esters of acrylic acid, lactic acid, and acrylic acid
JPH10158255A (ja) * 1996-11-29 1998-06-16 Toagosei Co Ltd オキセタンアルコール類の製造方法
JP4456718B2 (ja) * 2000-03-27 2010-04-28 出光興産株式会社 不飽和ビシクロ〔2.2.1〕ヘプタン誘導体の製造方法
CN102911010B (zh) * 2004-12-03 2016-03-02 三仪股份有限公司 高分子醇的合成方法
DE102006039203B4 (de) * 2006-08-22 2014-06-18 Evonik Degussa Gmbh Verfahren zur Herstellung von durch Kristallisation gereinigter Acrylsäure aus Hydroxypropionsäure sowie Vorrichtung dazu
JP2008088140A (ja) * 2006-10-05 2008-04-17 Sangi Co Ltd 化学工業原料及び燃料組成物の合成方法
JP5849259B2 (ja) * 2008-02-21 2016-01-27 国立大学法人高知大学 触媒およびアルコールの合成法
BR112012006801A2 (pt) * 2009-09-27 2018-04-10 Opx Biotechnologies Inc método para produção de ácido 3-hidroxipropiônico e outros produtos
FR2954311B1 (fr) * 2009-12-22 2012-02-03 Arkema France Procede de synthese perfectionne d'acroleine a partir de glycerol
JP5846388B2 (ja) * 2010-07-09 2016-01-20 国立大学法人北海道大学 新規なグリセリン脱水用触媒とその製造方法
JP2012071267A (ja) * 2010-09-29 2012-04-12 Nippon Shokubai Co Ltd グリセリン脱水用触媒、およびアクロレインの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999038822A1 (fr) * 1998-01-30 1999-08-05 Kabushiki Kaisha Sangi Synthese de matiere premiere de l'industrie chimique et de carburant a indice d'octane eleve, et composition pour carburant a indice d'octane eleve
JP2004115480A (ja) * 2002-09-30 2004-04-15 National Institute Of Advanced Industrial & Technology アクリル酸及び/又はピルビン酸の合成方法
JP2006015330A (ja) 2004-06-02 2006-01-19 Nippon Shokubai Co Ltd アクリル酸製造用触媒とこれを用いるアクリル酸製造方法
JP2009067775A (ja) 2007-09-17 2009-04-02 Rohm & Haas Co ヒドロキシカルボン酸、またはその塩を、不飽和カルボン酸および/またはそのエステルに変換する方法
JP2009201405A (ja) 2008-02-27 2009-09-10 Kochi Univ グルコースの製造方法およびスルホン化活性炭の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Dai 106 Kai CatSJ Meeting Toronkai A Yokoshu, 15 September 2010", 15 September 2010, article YUMIKO MATSUURA ET AL.: "Hydroxyapatite Shokubai ni yoru Nyusan kara Acryl-san eno Dassui Hanno", pages: 159, XP008160566 *
See also references of EP2495233A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5764122B2 (ja) * 2010-04-26 2015-08-12 株式会社日本触媒 ポリアクリル酸(塩)、ポリアクリル酸(塩)系吸水性樹脂及びその製造方法
JP2014525894A (ja) * 2011-05-16 2014-10-02 カウンシル オブ サイエンティフィック アンド インダストリアル リサーチ 乳酸を触媒的に脱水してアクリル酸にするための改良型プロセス
JP2014523441A (ja) * 2011-07-19 2014-09-11 アルケマ フランス 脂肪酸または脂肪酸エステルから官能化されたω−酸を合成する方法
WO2013044854A1 (zh) * 2011-09-28 2013-04-04 株式会社日本触媒 用于由乳酸制备丙烯酸的催化剂以及使用该催化剂制备丙烯酸的方法
JP2013188652A (ja) * 2012-03-12 2013-09-26 Gifu Prefecture 揮発性有機ガスの分解方法
JP2015517999A (ja) * 2012-04-11 2015-06-25 ザ プロクター アンド ギャンブルカンパニー バイオベースアクリル酸の粗及び氷アクリル酸への精製
JP2015518481A (ja) * 2012-04-11 2015-07-02 ザ プロクター アンド ギャンブルカンパニー アクリル酸又はその誘導体を生成する方法
JP2017101046A (ja) * 2012-04-11 2017-06-08 ザ プロクター アンド ギャンブル カンパニー バイオベースアクリル酸の粗及び氷アクリル酸への精製
WO2014181545A1 (ja) 2013-05-10 2014-11-13 株式会社サンギ 不飽和カルボン酸及び/又はその誘導体の合成用触媒及び合成方法
US9409158B2 (en) 2013-05-10 2016-08-09 Kabushiki Kaisha Sangi Synthesis catalyst and synthesis method for unsaturated carboxylic acid and/or derivative thereof
JPWO2014181545A1 (ja) * 2013-05-10 2017-02-23 株式会社サンギ 不飽和カルボン酸及び/又はその誘導体の合成用触媒及び合成方法
WO2015012392A1 (ja) * 2013-07-25 2015-01-29 株式会社日本触媒 乳酸および/またはその誘導体からアクリル酸および/またはアクリル酸エステルを製造するための触媒、ならびに、アクリル酸および/またはアクリル酸エステルの製造方法
JP2015057385A (ja) * 2013-09-16 2015-03-26 アームストロング ワールド インダストリーズ インコーポレーテッド バイオベース出発物質からアクリル酸を製造する方法

Also Published As

Publication number Publication date
BR112012009658A2 (pt) 2016-05-17
JP5799324B2 (ja) 2015-10-21
CN102596883B (zh) 2015-03-25
US8772539B2 (en) 2014-07-08
US20120277467A1 (en) 2012-11-01
JPWO2011052178A1 (ja) 2013-03-14
IN2012DN03044A (ja) 2015-07-31
EP2495233A4 (en) 2013-05-01
EP2495233A1 (en) 2012-09-05
CN102596883A (zh) 2012-07-18
EP2495233B1 (en) 2019-05-08
BR112012009658B1 (pt) 2018-06-19

Similar Documents

Publication Publication Date Title
JP5799324B2 (ja) 不飽和カルボン酸および/またはその誘導体の合成方法
US9926256B2 (en) Catalytic conversion of lactic acid to acrylic acid
JP5654615B2 (ja) アクリル酸および/またはそのエステルおよびその重合体の製法
JP6173314B2 (ja) (メタ)アクリル酸の製造方法、及び、親水性樹脂の製造方法
US10723688B2 (en) Method of making acrylic acid from hydroxypropionic acid
BR112018004058B1 (pt) Catalisadores para a desidratação de ácido hidroxipropiônico e seus derivados
BR112018004032B1 (pt) Catalisadores para a desidratação de ácido hidróxi propiônico e seus derivados
TW201538477A (zh) 製備丁二酸酯之方法
BR112018004046B1 (pt) Desidratação catalítica de ácido hidroxipropiônico e seus derivados
JP5869436B2 (ja) 3−ヒドロキシカルボン酸又はそのエステルの脱水用触媒の再生方法、及び、(メタ)アクリル酸又はそのエステルの製造方法
JP6405507B2 (ja) 不飽和カルボン酸及び/又はその誘導体の合成用触媒及び合成方法
CN111187155B (zh) 一种气相催化合成r-(+)-2-(4-羟基苯氧基)丙酸的方法
JP6193010B2 (ja) (メタ)アクリル酸の製造方法、及び、親水性樹脂の製造方法
JP5785910B2 (ja) (メタ)アクリル酸又はそのエステルの製造方法
EP3268344B1 (en) Bicomponent catalyst and method for dehydrating lactic acid to acrylic acid
JP2014156450A (ja) (メタ)アクリル酸の製造方法、及び、親水性樹脂の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048079.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826314

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010826314

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3044/DELNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2011538242

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13503780

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012009658

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012009658

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120424