WO2011043313A1 - 電力ケーブル気中終端接続部及び電力ケーブル気中終端接続部の製造方法 - Google Patents

電力ケーブル気中終端接続部及び電力ケーブル気中終端接続部の製造方法 Download PDF

Info

Publication number
WO2011043313A1
WO2011043313A1 PCT/JP2010/067405 JP2010067405W WO2011043313A1 WO 2011043313 A1 WO2011043313 A1 WO 2011043313A1 JP 2010067405 W JP2010067405 W JP 2010067405W WO 2011043313 A1 WO2011043313 A1 WO 2011043313A1
Authority
WO
WIPO (PCT)
Prior art keywords
power cable
silicone
silicone oil
raw material
oil
Prior art date
Application number
PCT/JP2010/067405
Other languages
English (en)
French (fr)
Inventor
杏奈 森
貴裕 櫻井
正三 小林
Original Assignee
株式会社ビスキャス
株式会社フジクラ
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ビスキャス, 株式会社フジクラ, 古河電気工業株式会社 filed Critical 株式会社ビスキャス
Priority to RU2012118697/07A priority Critical patent/RU2533179C2/ru
Priority to US13/500,970 priority patent/US9124082B2/en
Priority to JP2011535390A priority patent/JP5804948B2/ja
Priority to CA2777287A priority patent/CA2777287C/en
Priority to CN201080040312.5A priority patent/CN102640372B/zh
Priority to IN3031DEN2012 priority patent/IN2012DN03031A/en
Publication of WO2011043313A1 publication Critical patent/WO2011043313A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G15/00Cable fittings
    • H02G15/02Cable terminations
    • H02G15/06Cable terminating boxes, frames or other structures
    • H02G15/064Cable terminating boxes, frames or other structures with devices for relieving electrical stress
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing

Definitions

  • the present invention relates to a power cable air termination connection portion in which an end portion of a power cable is accommodated in a bushing and an insulation filling is filled in the bushing, and a method of manufacturing the same.
  • a terminal treatment applied to the end of the power cable A structure (so-called oil-immersed termination connection) in which the end of a power cable is accommodated in a suction pipe and oil is filled in the suction pipe is known as a termination connection (hereinafter, a termination connection).
  • a termination connection in which the end of a power cable is accommodated in a suction pipe and oil is filled in the suction pipe is known as a termination connection (hereinafter, a termination connection).
  • a termination connection in which the end of a power cable is accommodated in a suction pipe and oil is filled in the suction pipe.
  • a raw material of silicone gel before curing may be injected into a cannula and then cured and gelled, and a structure similar to oil immersion type (for example, You can use fistulas, stress cones, etc.).
  • Patent No. 3769046 gazette Japanese Utility Model Application Publication No. 6-80338
  • the present invention has been made to solve the above-mentioned problems, and has a dry power cable air termination which has excellent durability and reliability against temperature change environments and can reduce manufacturing costs. It is an object of the present invention to provide a method of manufacturing a connection and a power cable termination connection.
  • the end of the power cable and the conductor lead rod connected to the conductor end of the power cable are accommodated in the bushing, and the bushing is filled with the insulating filler.
  • the insulating filler is formed of either a mixture of silicone oil and silicone rubber, a mixture of silicone oil and silicone gel, or a mixture of silicone oil, silicone rubber and silicone gel.
  • the insulation filling filled in the outer tube of the power cable air termination end has excellent interface adhesion and can be expected to self-repair even if the above-mentioned peeling or cracking occurs, so this end Even when the connection portion is used in a temperature change environment and the insulating filler repeats thermal expansion and thermal contraction, a gap does not easily occur at the interface between the insulating filler and the power cable or the like. Therefore, according to the present invention, a dry termination connection excellent in durability and reliability is realized.
  • the end connection according to the present invention can be manufactured inexpensively because the other structure is the same as that of the conventional oil-immersed end connection except that the configuration of the insulating filling is different. On the other hand, there is no risk of oil leakage as in oil-immersed end connections.
  • the end portion of the power cable and the conductor lead rod connected to the conductor end portion of the power cable are accommodated in the bushing, and the bushing is filled with the insulating filler.
  • a method of manufacturing the end connection of the power cable When installing the power cable air termination end, the silicone oil and silicone rubber raw material are mixed, and the silicone oil and silicone gel raw material are mixed, or the silicone oil and silicone rubber raw material and silicone gel raw material are used. It mixes and it is characterized by filling in the said suction pipe.
  • an insulating filler is formed which has excellent interface adhesion and can be expected to exhibit a self-repairing function when peeling occurs at the interface with the power cable or the like.
  • connection portion Even when the connection portion is used in a temperature change environment and the insulating filler repeats thermal expansion and thermal contraction, a gap does not easily occur at the interface between the insulating filler and the power cable or the like. Therefore, according to the present invention, a dry termination connection excellent in durability and reliability is realized.
  • the end connection according to the present invention can be manufactured inexpensively because the other structure is the same as that of the conventional oil-immersed end connection except that the configuration of the insulating filling is different. On the other hand, there is no risk of oil leakage like oil-immersed end connections.
  • the invention according to claim 3 is the power cable according to claim 2, wherein the mixing ratio of the silicone oil and the silicone rubber raw material is in the range of 9: 1 to 20: 1 by mass ratio. It is characterized by being. According to the present invention, the interface adhesion and the like of the insulating filler are optimized, so that the end connection portion having higher durability and reliability can be realized.
  • the invention according to claim 4 is the method according to claim 2, wherein the mixing ratio of the silicone oil and the silicone gel raw material is in the range of 2: 8 to 7: 3 by mass ratio. It is characterized by being. According to the present invention, the interface adhesion and the like of the insulating filler are optimized, so that the end connection portion having higher durability and reliability can be realized.
  • the invention according to claim 5 is the method for producing a power cable air-terminated connection according to any one of claims 2 to 4, wherein the viscosity of the silicone oil is in the range of 3000 cst to 30000 cst. It features. According to the present invention, the interface adhesion and the like of the insulating filler are optimized, so that the end connection portion having higher durability and reliability can be realized. Moreover, the workability (handling property) at the time of construction of a termination
  • the invention according to claim 6 is the method according to claim 2, wherein the raw material of the silicone rubber or the raw material of the silicone gel and the silicone oil are placed in separate containers and the electric power cable is It is characterized in that it is brought into the construction site of the middle end connection portion, mixed in the construction site, and then filled into the above-mentioned tunnel pipe.
  • the raw material of the silicone rubber or the raw material of the silicone gel and the silicone oil can be injected into the injection pipe in an appropriately mixed state, a desired insulating filling can be easily formed.
  • the silicone rubber or silicone gel any of two-component type and one-component type can be used.
  • the term "raw material” means a main agent and a curing agent if the silicone rubber or silicone gel is of the two-pack type, and before the silicone rubber or silicone gel is of the one-pack type, before curing. It means liquid silicone rubber or silicone gel.
  • a dry power cable overhead termination connection portion having excellent durability and reliability against a temperature change environment and capable of reducing manufacturing cost, and a method of manufacturing the same.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a termination connection portion according to the embodiment.
  • the power cable 11 is a rubber or plastic insulated power cable (e.g., a CV cable).
  • the power cable 11 includes a conductor 111, an insulating layer 112 formed on the outer periphery of the conductor 111, an outer semiconductive layer 113 formed on the outer periphery of the insulating layer 112, and a shielding layer formed on the outer periphery of the outer semiconductive layer 113 (Not shown) and a sheath 114 etc., and each layer is exposed by peeling off a predetermined length.
  • a conductor lead rod 13 having conductivity is connected.
  • a normal temperature contraction type rubber stress cone 14 is attached from the outer semiconductive layer 113 to the insulating layer 112.
  • the rubber stress cone 14 is composed of a semiconductive rubber portion 141 for electric field relaxation and an insulating rubber portion 142 and is in close contact with the outer peripheral surface of the power cable 11 by the contraction force caused by the diameter expansion by the power cable 11.
  • the bushing 12 is a composite bushing in which, for example, the outer periphery of a hollow cylinder made of fiber reinforced plastic (FRP: Fiber Reinforced Plastics) is covered with a sheathed jacket made of rubber or plastic.
  • the upper fitting 15 is attached to the upper surface of the bushing 12, the lower fitting 16 is attached to the bottom, and the upper and lower openings of the bushing 12 are closed to form a small chamber for accommodating the end of the power cable 11.
  • a lower copper pipe 17 for holding the power cable 11 is extended to the lower metal fitting 16, and the insulating filler 10 is prevented from flowing out to one end (the lower end in FIG. 1) of the lower copper pipe 17.
  • a seal 18 is applied.
  • the chamber formed by the bushing 12, the upper fitting 15 and the lower fitting 16 is filled with an insulating filler 10. That is, in the end connection portion 1, the end of the power cable 11 and the conductor lead rod 13 connected to the conductor end of the power cable 11 are accommodated in the bushing 12, and the insulating filler is contained in the bushing 12. 10 is configured to be filled.
  • the insulating filler 10 to be filled in the bushing 12 is a mixture of silicone oil and silicone rubber, a mixture of silicone oil and silicone gel, or a mixture of silicone oil, silicone rubber and silicone gel. It consists of These insulating fillers 10 are manufactured by mixing and curing a silicone oil with a silicone rubber raw material or a silicone gel raw material, as described later.
  • the silicone rubber is commercially available in the liquid state, and the raw material is cured by a polymerization reaction. There are one-part type and two-part type, and further, they are roughly classified into addition reaction type and condensation reaction type according to the type of reaction. Addition type silicone rubber is preferably used because condensation type silicone rubber may react with moisture in the air.
  • An example of commercially available silicone rubber is SE6910 manufactured by Toray Dow Corning Co., Ltd. This silicone rubber is a two-component type in which the main agent is a vinyl group-containing organopolysiloxane and the curing agent is a hydrogen organopolysiloxane, and the hardness according to Type A durometer after curing is 9.
  • silicone gel is commercially available in the liquid state, and the raw material is cured into a gel by polymerization reaction. There are one-part type and two-part type, and further, they are roughly classified into addition reaction type and condensation reaction type according to the type of reaction. Since condensation type silicone gel may react with moisture in the air, addition type silicone gel is preferably used.
  • a commercially available silicone gel there is SE1886 manufactured by Toray Dow Corning Co., Ltd., for example.
  • This silicone gel is a two-component type in which the main agent is a vinyl group-containing organopolysiloxane and the curing agent is a hydrogen organopolysiloxane, and the consistency after curing is 50.
  • silicone rubber is a silicone cured product whose hardness can be measured by a type A durometer defined by JIS K 6253 when the raw material is cured without mixing silicone oil
  • silicone is A gel is a silicone cured product whose hardness can not be measured by a type A durometer.
  • the JIS K 6253 corresponds to ISO 7619.
  • the silicone oil is a component which does not exhibit polymerization reactivity, such as the silicone rubber and silicone gel.
  • silicone oil any of commercially available straight silicone oil or modified silicone oil may be used, but it is desirable to use straight silicone oil.
  • a commercially available straight silicone oil there is SH200 manufactured by Toray Dow Corning Co., Ltd., for example.
  • the straight silicone oil is a silicone oil composed of a linear polymer composed of siloxane bonds.
  • Dimethylsilicone oil (polysiloxane side chain, all of which end is methyl group), methyl phenyl silicone oil (a part of polysiloxane side chain is phenyl group), methyl hydrogen silicone oil (polysiloxane)
  • methyl silicone oil (a part of polysiloxane side chain is phenyl group)
  • methyl hydrogen silicone oil (polysiloxane)
  • straight silicone oil Three types of side chains that are partially hydrogen) are collectively called straight silicone oil.
  • modified silicone oil is one in which an organic group is introduced to the side chain and the end, and four types of structures (side-chain type, both-end type, one-end type, both types) depending on the bonding position of the organic group to be substituted Chain end type). Also, they are classified into reactive silicone oil and non-reactive silicone depending on the nature of the introduced organic group.
  • the viscosity of the silicone oil is not particularly limited, but preferably 3000 to 30000 cst (measurement method: JIS K 7117-2).
  • JIS K 7117-2 corresponds to ISO 3219.
  • the mixing ratio of the silicone oil and the silicone rubber raw material is desirably in the range of 9: 1 to 20: 1 by mass ratio.
  • the mixing ratio of the silicone oil and the silicone gel raw material be in the range of 2: 8 to 7: 3 by mass ratio. .
  • the mixing ratio of these is as described above in the mixture of silicone oil and silicone rubber raw material mixed in the above ratio. It is desirable to make the ratio which can be regarded as having mixed the mixture of the silicone oil and the silicone gel raw material mixed in the ratio of. By setting the mixing ratio in such a range, the insulation filling 10 having desired interface adhesion is realized, and therefore, the durability and reliability of the termination connection portion 1 against temperature change environment is improved.
  • arbitrary components can be mix
  • the optional components include reaction inhibitors, reaction accelerators, inorganic fillers, flame retardancy imparting agents, thixotropic agents, pigments, dyes and the like.
  • the raw material of liquid silicone rubber (or silicone gel) and silicone oil are put into one container, and mixed at a predetermined ratio, and then mixed until uniform at normal temperature.
  • the silicone rubber (or silicone gel) is a two-component type consisting of a main agent and a curing agent, the curing agent is finally mixed.
  • the mixing operation of the silicone rubber (or silicone gel) raw material and the silicone oil is performed, for example, by mixing with a hand mixer.
  • a mixture of a raw material of silicone rubber (or silicone gel) and silicone oil is poured in a predetermined amount into a small chamber formed by the bushing 12 and the lower fitting 16 to defoam, and then the upper fitting 15 is attached. Close the chamber. Then, while the small chamber is kept at a normal temperature, the power cable 11 is energized and allowed to stand for a predetermined time to cure the mixture, thereby forming the insulating filler 10.
  • the insulating filler 10 has a soft gel-like cured product (a consistency of 200 to 420 defined by JIS K 2220 (measurement terminal: standard cone)). JIS K 2220 (measurement terminal: standard cone) corresponds to ISO 2137 (measurement terminal: cone cone).
  • Example 1 In Example 1, the silicone oil and the raw material of silicone rubber are mixed to form a mixture, and the gel-like cured product obtained by curing the mixture is the consistency defined by JIS K 2220, the durability / reliability by the heat cycle test, the interface The adhesion and void disappearance time were evaluated.
  • silicone oil use SH200 series (available from Toray Dow Corning Co., Ltd.) (sealed products having different viscosities), and for silicone rubber raw materials, use SE6910 (liquid type, cured, Toray Dow Corning Co., Ltd. The previous viscosity: 7500 cst) was used.
  • the mixing ratio of the silicone oil and the silicone rubber raw material was varied as shown in Table 1 in the range of 8: 1 to 21: 1.
  • silicone oils having a viscosity in the range of 1000 to 40000 cst were used.
  • a heat cycle test was performed on each sample, and interface adhesion and void disappearance time were examined. The evaluation results are shown in Table 1.
  • the heat cycle test was performed by producing the termination connection 1. That is, the end of a power cable 11 with a voltage of 66kV, a conductor size of 500sq, and an insulation thickness of 10mm is accommodated in a 110kV class polymer tube 12 (inner diameter 290mm, height 1350mm), and silicone oil and silicone rubber raw materials at the construction site 30 kg of this mixture was poured into a sleeve 12 and cured to prepare a gel-like cured product, ie, an end filling 1 as an insulating filler 10, and a heat cycle test was performed using this.
  • the insulation filling 10 does not separate from the outer surface of the power cable 11 or the inner surface of the bushing 12 even if the surface of the insulation filling 10 is pushed with a bar, " ⁇ "
  • the insulation filling 10 is pushed when the surface of the insulation filling 10 is pushed with a bar " ⁇ " when the object 10 is easily peeled off from the outer surface of the power cable 11 or the inner surface of the sleeve 12, a gap is observed between the insulating filling 10 and the outer surface of the power cable 11 or the inner surface of the sleeve 12. It evaluated as "x".
  • the “o” evaluation indicates that the insulating filler 10 was kept in the heat cycle test without peeling off the power cable 11 and the bushing 12, and the “ ⁇ ” evaluation was insulating in the heat cycle test.
  • the filler 10 peels off from the power cable 11 or the bushing 12 and the adhesion state is lost, indicating that a peeling mark is observed (no gap is generated).
  • the “x” evaluation indicates that the insulating filler 10 was peeled off from the power cable 11 or the bushing 12 in the heat cycle test and not only the adhesion was lost, but also a gap was observed. And there was no thing that became "x” evaluation including the comparative example.
  • the interface adhesion test was performed using a test piece of a gel-like cured product prepared by putting a mixture of silicone oil and a silicone rubber raw material between two sheets and curing. Specifically, after curing a mixture of silicone oil and a silicone rubber raw material on two sheets of 20 mm ⁇ 100 mm ⁇ 1 mm, the sheet is parallelly applied with a load of 0.5 kg applied from above the sheet. It was evaluated as to how much force (adhesion) was generated when shifted, and whether a gel-like cured product or an oil component remained on the surface of the sheet. The interfacial adhesion was evaluated for each of the sheet made of cross-linked polyethylene (XLPE) and the sheet made of ethylene propylene rubber (EP).
  • XLPE cross-linked polyethylene
  • EP ethylene propylene rubber
  • the void disappearance time was measured using a sample of a gel-like cured product obtained by curing 15 ml of a mixture of silicone oil and silicone rubber raw material in a 20-ml-volume screw tube. From the top surface of this sample, a 20 mm wire of ⁇ 0.5 mm was pierced to make a hole, and it was confirmed how long the formed hole disappeared.
  • the void disappearance time makes it possible to infer the tendency of the silicone oil to exude and fill the gap of the peeled portion when the insulating filler 10 is peeled from the power cable 11 or the bushing 12. That is, it is considered that if the disappearance time of the void is short, even if the insulating filler 10 peels off from the power cable 11 or the bushing 12 to form a gap, the gap is filled (repaired) in a short time.
  • Example 1-2 in which the mixing ratio of the silicone oil and the silicone rubber raw material was 12: 1, and Example 20 in which the ratio was 20: 1
  • Example 1-3 oil viscosity is 3000 cst
  • the consistency after curing Are respectively 325 and 375, and good results were obtained in the heat cycle test and the interfacial adhesion test. Further, since the void disappearance time is 45 minutes or less, even if a gap is generated between the insulating filler 10 and the power cable 11 or the bushing 12, it is considered that the oil exudes and the gap is repaired in a short time.
  • Example 1-1 oil viscosity is 3000 cst
  • the mixing ratio of the silicone oil and the silicone rubber raw material is 9: 1
  • the consistency after curing is 282
  • the interfacial adhesion is Examples 1-2, 1-3.
  • the void disappearance time is 3 h, and even if a gap is generated between the insulating filler 10 and the power cable 11 or the bushing 12, it is considered that the oil exudes and the gap is restored.
  • Example 1-5 oil viscosity is 3000 cst
  • the mixing ratio of silicone oil and silicone rubber raw material is 8: 1
  • the consistency after curing is 220
  • the interfacial adhesion is Examples 1-2, 1-3.
  • the peeling marks were observed also in the heat cycle test.
  • the void disappearance time is 12 h, and even if a gap is generated between the insulating filler 10 and the power cable 11 or the bushing 12, it is considered that the oil exudes and the gap is restored.
  • the mixing ratio of the silicone oil is small and the consistency of the insulating filler 10 after curing becomes small (hard), the interface adhesion decreases, and the durability / reliability against temperature change environment is accompanied (heat) Cycle test results) would be reduced. In addition, it can be said that as the consistency decreases, the void annihilation time also increases. From the viewpoint of durability and reliability with respect to temperature change environments, it is desirable that the mixing ratio of silicone oil and silicone rubber raw material be 9: 1 or more. Even when the mixing ratio of silicone oil and silicone rubber raw material is 8: 1, an oil film is formed at the interface between the insulating filler 10 and the power cable 11 or the bushing 12 and no gap is generated. There is no problem in practical use.
  • Example 1-7 the mixing ratio of the silicone oil and the silicone rubber raw material is 20: 1
  • the consistency after curing is 380 and 398, respectively. It was equal to or higher than Example 1-3.
  • good results were obtained in the heat cycle test and the interface adhesion test.
  • the void annihilation time was 30 minutes in each case, and was equivalent to that of Example 1-3.
  • Example 1-7 since the oil viscosity is too high, the oil does not easily flow even when the container is inclined when mixing the silicone oil and the raw material of the silicone rubber, and the stirring when mixing with the raw material of the silicone rubber The work was labor intensive, and it took time to construct the termination connection 1.
  • Example 1-6 in which the oil viscosity is 1000 cst (the mixing ratio of silicone oil and silicone rubber raw material is 20: 1), the consistency after curing is 260 and smaller than in Example 1-3 (oil viscosity: 3000 cst) (hard )became. Also, although the interfacial adhesion was good, peeling marks were observed in the heat cycle test. Since an oil film is formed at the interface between the insulating filler 10 and the power cable 11 or the bushing 12 and no gap is generated, there is no electrical problem. The void disappearance time was 6 h, which was longer than in Example 1-3.
  • FIG. 2 is a view showing the relationship between the oil viscosity and the consistency after curing when the mixing ratio of the silicone oil and the silicone rubber raw material is 20: 1.
  • Curiously, the relationship between the viscosity of the silicone oil and the hardness (consistency) of the resulting insulation filling is reversed as shown in FIG. That is, the higher the viscosity of the silicone oil, the softer the insulation filling obtained (large consistency), and the lower the viscosity of the silicone oil, the harder the insulation filling (less consistency).
  • the viscosity of the silicone oil to be mixed is 3000 or more, the consistency of the insulating filling 10 is stabilized at a high value.
  • the viscosity of the silicone oil be 3000 cst or more and 30000 cst or less.
  • Example 1-8 oil viscosity: 30000 cst in which the mixing ratio of the silicone oil and the silicone rubber raw material was 21: 1, the consistency after curing was clearly larger than that of Example 1-3 at 400 or more. In addition, good results were obtained in the heat cycle test and the interface adhesion test. However, it took a long time to cure the mixture at the time of application (in Examples 1-1 to 1-7, the mixture was cured within 5 days at 25 ° C., whereas in Examples 1-8, 8) It took a day). If the curing time of the mixture of silicone oil and silicone rubber raw material is long, there is a risk that the mixture may flow out of the bushing 12 unless the seal 18 is advanced. From this, it is desirable to make the blending ratio of silicone oil and silicone rubber raw material smaller than 21: 1.
  • the range in which the mixing ratio is 9: 1 to 20: 1 is a standard. It is desirable to The viscosity of the silicone oil to be mixed is preferably 3000 to 30000 cst.
  • Example 2 In Example 2, with respect to the gel-like cured product obtained by mixing and curing the silicone oil and the raw material of the silicone gel, the consistency defined by JIS K 2220, the durability and the reliability by the heat cycle test, as in Example 1. , Interfacial adhesion, and void annihilation time were evaluated.
  • silicone oil SH200 series manufactured by Toray Dow Corning Co., Ltd. was used
  • silicone gel SE 1886 (viscosity before curing: 112 cst) manufactured by Toray Dow Corning Co., Ltd. was used.
  • the mixing ratio of the silicone oil and the silicone gel raw material was changed in the range of 1: 9 to 8: 2.
  • An example of the evaluation result is shown in Table 2.
  • Examples 2-1 and 7 3 in which the mixing ratio of the silicone oil and the silicone gel raw material was 2: 8, and Example 2-2 in which the mixing ratio was 7: 3 (consistency after curing) Of 280 and 395, respectively, and good results were obtained in the heat cycle test and the interfacial adhesion test. Further, since the void disappearance time is 45 minutes or less, even if a gap is generated between the insulating filler 10 and the power cable 11 or the bushing 12, it is considered that the oil exudes and the gap is repaired in a short time.
  • Example 2-3 oil viscosity is 3000 cst in which the mixing ratio of the silicone oil and the silicone gel raw material is 1: 9, the consistency after curing is 250 (hard) lower than in Examples 2-1 and 2-2.
  • the interfacial adhesion was good, peeling marks were observed in the heat cycle test. Since an oil film is formed at the interface between the insulating filler 10 and the power cable 11 or the bushing 12 and no gap is generated, there is no electrical problem.
  • the void disappearance time was 1 h, which was slightly longer than in Examples 2-1 and 2-2.
  • the mixing ratio of the silicone oil is small, and the consistency of the insulating filler 10 after curing is small (hardened).
  • the interface adhesion is lowered, and the durability and reliability against the temperature change environment (heat cycle test results) are lowered accordingly.
  • the consistency decreases the void annihilation time also increases.
  • the mixing ratio of the silicone oil and the silicone gel raw material be 2: 8 or more.
  • Example 2-4 oil viscosity is 3000 cst
  • silicone oil and silicone gel material is 8: 2
  • the consistency after curing is 400 or more and clearly larger than in Examples 2-1 and 2-2 ( It became soft).
  • the void disappearance time was 30 minutes, which was equivalent to that of Example 2-2.
  • the range of the mixing ratio is 2: 8 to 7: 3: It is desirable to The viscosity of the silicone oil is desirably 3000 to 30000 cst as in the first embodiment.
  • the consistency after curing is preferably 280 to 398.
  • Comparative example In the comparative example, a gel-like cured product obtained by curing a commercially available silicone gel (JCR 6110 manufactured by Toray Dow Corning Co., Ltd.) alone is treated with the consistency and heat cycle test defined in JIS K 2220 as in Example 1. Durability / reliability, interface adhesion, and void disappearance time were evaluated. The evaluation results are shown in Table 3.
  • the consistency after curing was 225, and the characteristics in the heat cycle test and the interface adhesion test were compared with Examples 1 and 2. It clearly fell.
  • the void did not disappear even after 48 hours. Since the interface adhesion is inferior even in comparison with the example 1-5 having the same degree of consistency after curing, it is preferable to form the insulating filler 10 by mixing the silicone rubber or the silicone gel with the silicone oil. The effectiveness was confirmed.
  • silicone rubber or silicone rubber is used as in the present invention, rather than using the commercially available product which has been previously produced as a silicone gel as it is, as the present invention. It can be seen that the interface adhesion between the insulating filler 10 and various components such as the power cable 11, the bushing 12, or the stress cone 14 is improved when the insulating filler 10 is formed of a mixture of silicone gel.
  • the insulating filler 10 produced in the first and second embodiments does not easily form a gap at the interface with the power cable 11 and the like, and has the function of self-repairing (filling the gap) in a short time even if peeling occurs at the interface. It can be said that it has.
  • the present inventors speculate that such a phenomenon may occur for the following reasons. That is, the commercially available silicone gel has an entirely uniform composition, and the insulating filler 10 obtained by curing it has an entirely uniform crosslinked state.
  • the silicone oil is mixed with the raw material of the silicone rubber or the raw material of the silicone gel, the mixture may be mixed in a nonuniform (nonuniform) state where the composition partially differs when viewed finely.
  • Be filled with The insulating filler 10 obtained by curing the resin has a non-uniform (cross-linked) cross-linked state and a loose restraint on the silicone oil molecules.
  • a gap does not easily occur at the interface between the insulating filler 10 and the power cable 11 etc., and even if peeling occurs at the interface, self-healing is possible in a short time.
  • the insulating filler 10 is formed of a mixture of silicone oil and silicone rubber, or a mixture of silicone oil and silicone gel.
  • the insulating filler 10 filled in the bushing 12 has excellent interface adhesion and a self-repairing function for the peeling portion etc., so the end connection portion 1 is used in a temperature change environment.
  • a gap does not easily occur at the interface between the insulating filler 10 and the power cable 11 or the like. Therefore, a dry termination connection 1 excellent in durability and reliability is realized.
  • the termination connection portion 1 can be manufactured at low cost because the other structure is the same as that of the conventional oil immersion type termination connection portion except that the configuration of the insulating filler 10 is different. On the other hand, there is no risk of oil leakage as in oil-immersed end connections.
  • the present invention is not limited to the above-mentioned embodiment, and can be changed in the range which does not deviate from the gist.
  • a mixture of a raw material of silicone gel and a silicone oil for example, Example 1-1 It is also possible to use a mixture.
  • FIG. 3 is a view showing another example of the termination connection to which the present invention is applied.
  • a rubber stress cone 24 is attached by pressure bonding to the insulating layer 212 and the outer semiconductive layer 213 of the power cable 21 by the epoxy seat 29 and the compression device 30. .
  • the end of the power cable 21 and the conductor lead rod 23 connected to the end of the conductor 211 of the power cable 21 The insulator 22 is accommodated and filled with an insulating filler 20 composed of a silicone gel raw material and / or a silicone rubber raw material and a silicone oil.

Landscapes

  • Cable Accessories (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processing Of Terminals (AREA)
  • Organic Insulating Materials (AREA)

Abstract

 温度変化環境に対して優れた耐久性・信頼性を有するとともに、製造コストの低減を図ることができる完全乾式の電力ケーブル気中終端接続部及び電力ケーブル終端接続部の製造方法を提供する。 電力ケーブルの端部と、この電力ケーブルの導体端部に接続された導体引出棒とが、碍管内に収容され、この碍管内に絶縁充填物が充填されてなる電力ケーブル気中終端接続部において、絶縁充填物を、シリコーンオイルとシリコーンゴムを混合したもの、シリコーンオイルとシリコーンゲルを混合したもの、又はシリコーンオイルとシリコーンゴムとシリコーンゲルを混合したものの何れかで形成する。

Description

電力ケーブル気中終端接続部及び電力ケーブル気中終端接続部の製造方法
 本発明は、碍管内に電力ケーブルの端部を収容し、この碍管内に絶縁充填物を充填してなる電力ケーブル気中終端接続部及びその製造方法に関する。
 一般に、CVケーブル(架橋ポリエチレン絶縁ビニルシースケーブル)等の電力ケーブルと発電所等に配置される電力機器や架空送電線とを接続する際に電力ケーブルの終端部に施す端末処理、すなわち電力ケーブル気中終端接続部(以下、終端接続部)として、碍管内に電力ケーブルの端部を収容し、この碍管内に油を充填した構造(いわゆる油浸式の終端接続部)が知られている。この油浸式の終端接続部では、油漏れが生じた場合に周囲の環境を汚損する虞があることから、油を使用しない完全乾式の終端接続部が望まれている。
 完全乾式の終端接続部としては、導体要素の外側にエポキシやシリコーンゴムの外被を施したタイプがある(例えば特許文献1)。特許文献1に記載の技術によれば、完全乾式の終端接続部が実現されるが、エポキシ及びシリコーンゴムの外被を成形するための大型の金型が新たに必要になり、初期投資費用が嵩む上、導体要素のコスト自体も高くなることから、終端接続部のコストが高くなるという問題がある。
 また、その他の完全乾式の終端接続部としては、油の代わりにシリコーンゲルを利用したタイプがある(例えば特許文献2)。特許文献2に記載の終端接続部の場合、油の代わりに硬化前のシリコーンゲルの原料を碍管内に注入し、その後硬化させてゲル化するだけでよく、油浸式と同様の構造(例えば碍管やストレスコーン等)を使用できる。
特許第3769046号公報 実開平6-80338号公報
 ところで、終端接続部において、碍管内をシリコーンゲル等からなる絶縁充填物で充填する場合、絶縁充填物と電力ケーブル、碍管、又はゴムストレスコーンなどの各種部品との間に隙間を生じないことが最も重要となる。
油浸式の終端接続部では、絶縁充填物が流体(油)であるために、熱膨張・熱収縮を繰り返しても、絶縁充填物と電力ケーブル等との界面に隙間が生じたり、絶縁充填物自体に割れが生じたりすることはない。
 しかしながら、特許文献2のように絶縁充填物としてシリコーンゲルを用いた場合、温度変化環境下で絶縁充填物が熱膨張・熱収縮を繰り返すと、絶縁充填物と電力ケーブル等との界面が部分的に剥離して隙間が生じたり、絶縁充填物自体に割れが生じる恐れがあり、耐久性・信頼性の面で不安がある。
 このように、絶縁充填物としてシリコーンゲルを用いた終端接続部にも欠点があるため、環境を汚損する危険性のない完全乾式の必要性は認識されているものの、油浸式の終端接続部が現在も主流となっている。
 本発明は、上記課題を解決するためになされたものであり、温度変化環境に対して優れた耐久性・信頼性を有するとともに、製造コストの低減を図ることができる乾式の電力ケーブル気中終端接続部及び電力ケーブル終端接続部の製造方法を提供することを目的とする。
 請求項1に記載の発明は、電力ケーブルの端部と、この電力ケーブルの導体端部に接続された導体引出棒とが、碍管内に収容され、この碍管内に絶縁充填物が充填されてなる電力ケーブル気中終端接続部であって、
 前記絶縁充填物が、シリコーンオイルとシリコーンゴムを混合したもの、シリコーンオイルとシリコーンゲルを混合したもの、又はシリコーンオイルとシリコーンゴムとシリコーンゲルを混合したものの何れかで形成されていることを特徴とする。
 この電力ケーブル気中終端接続部の碍管内に充填された絶縁充填物は、優れた界面密着性を有するとともに、前述の剥離や割れが生じた場合でも自己修復することを期待できるので、この終端接続部は、温度変化環境で使用されて絶縁充填物が熱膨張・熱収縮を繰り返したときでも、絶縁充填物と電力ケーブル等との界面に隙間が生じ難いものになる。したがって、この発明により、耐久性・信頼性に優れた乾式の終端接続部が実現される。また、この発明の終端接続部は、絶縁充填物の構成が異なるだけで、その他の構造は従来の油浸式の終端接続部と同等であるので、安価に製造することができる。一方、油浸式の終端接続部のような漏油の危険性もない。
 請求項2に記載の発明は、電力ケーブルの端部と、この電力ケーブルの導体端部に接続された導体引出棒とが、碍管内に収容され、この碍管内に絶縁充填物が充填されてなる電力ケーブル気中終端接続部の製造方法であって、
 当該電力ケーブル気中終端接続部を施工するときに、シリコーンオイルとシリコーンゴムの原料を混合し、シリコーンオイルとシリコーンゲルの原料を混合し、又はシリコーンオイルとシリコーンゴムの原料とシリコーンゲルの原料を混合して、前記碍管内に充填することを特徴とする。
 この発明によれば、優れた界面密着性を有するとともに、電力ケーブル等との界面に剥離が生じた場合には自己修復機能を発揮することを期待できる絶縁充填物が形成されるので、この終端接続部は、温度変化環境で使用されて絶縁充填物が熱膨張・熱収縮を繰り返す場合でも、絶縁充填物と電力ケーブル等との界面に隙間が生じ難いものになる。したがって、この発明により、耐久性・信頼性に優れた乾式の終端接続部が実現される。また、この発明の終端接続部は、絶縁充填物の構成が異なるだけで、その他の構造は従来の油浸式の終端接続部と同等であるので、安価に製造することができる。一方、油浸式の終端接続部のような漏油の危険性はない。
 請求項3に記載の発明は、請求項2に記載の電力ケーブル気中終端接続部の製造方法において、シリコーンオイルとシリコーンゴム原料の混合比率が、質量比で9:1から20:1の範囲であることを特徴とする。
 この発明によれば、絶縁充填物の界面密着性等が好適化されるので、さらに高い耐久性・信頼性を有する終端接続部が実現される。
 請求項4に記載の発明は、請求項2に記載の電力ケーブル気中終端接続部の製造方法において、シリコーンオイルとシリコーンゲル原料の混合比率が、質量比で2:8から7:3の範囲であることを特徴とする。
 この発明によれば、絶縁充填物の界面密着性等が好適化されるので、さらに高い耐久性・信頼性を有する終端接続部が実現される。
 請求項5に記載の発明は、請求項2から4の何れか一項に記載の電力ケーブル気中終端接続部の製造方法において、前記シリコーンオイルの粘度が、3000cstから30000cstの範囲であることを特徴とする。
 この発明によれば、絶縁充填物の界面密着性等が最適化されるので、さらに高い耐久性・信頼性を有する終端接続部が実現される。また、シリコーンオイルが適度な粘性を有することにより、終端接続部を施工する際の作業性(取扱い性)が向上する。
 請求項6に記載の発明は、請求項2に記載の電力ケーブル気中終端接続部の製造方法において、シリコーンゴムの原料又はシリコーンゲルの原料とシリコーンオイルを別々の容器に入れて当該電力ケーブル気中終端接続部の施工現場に持ち込み、これらを施工現場で混合した後、前記碍管内に充填することを特徴とする。
 この発明によれば、シリコーンゴムの原料又はシリコーンゲルの原料とシリコーンオイルを、適度に混合した状態で碍管内に注入できるので、所望の絶縁充填物を簡易に形成することができる。
 なお、本発明において、シリコーンゴム又はシリコーンゲルには、二液タイプ、一液タイプの何れも用いることができる。本願において「原料」という用語は、シリコーンゴム又はシリコーンゲルが二液タイプのものであれば主剤と硬化剤を意味し、シリコーンゴム又はシリコーンゲルが一液タイプのものであるときは硬化する前の液状のシリコーンゴム又はシリコーンゲルを意味する。
 本発明によれば、温度変化環境に対して優れた耐久性・信頼性を有するとともに、製造コストの低減を図ることができる乾式の電力ケーブル気中終端接続部及びその製造方法が提供される。
実施形態に係る終端接続部の概略構成を示す断面図である。 用いたシリコーンオイルの粘度と製造される絶縁充填物の稠度の関係を示すグラフである。 終端接続部の他の一例を示す断面図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
 図1は、実施形態に係る終端接続部の概略構成を示す断面図である。図1において、電力ケーブル11は、ゴム又はプラスチック絶縁の電力ケーブル(例えばCVケーブル)である。電力ケーブル11は、導体111、導体111の外周部に形成された絶縁層112、絶縁層112の外周に形成された外部半導電層113、外部半導電層113の外周に形成された遮蔽層(図示略)及びシース114等を有し、所定長で段剥ぎすることにより各層が露出されている。また、導体111の先端には、導電性を有する導体引出棒13が接続されている。
 電力ケーブル11の外周面には、外部半導電層113から絶縁層112にかけて、常温収縮型のゴムストレスコーン14が装着されている。ゴムストレスコーン14は、電界緩和用の半導電ゴム部141と絶縁ゴム部142で構成され、電力ケーブル11によって拡径されることによる収縮力で電力ケーブル11の外周面に密着している。
 碍管12は、例えば、繊維強化プラスチック(FRP:Fiber Reinforced Plastics)製の中空筒体の外周を、ゴム又はプラスチックからなる襞付きの外套で被覆した複合碍管である。碍管12の上面に上部金具15が取り付けられ、底面に下部金具16が取り付けられて、碍管12の上下開口が閉塞されることにより、電力ケーブル11の端部を収容する小室が形成される。また、下部金具16には、電力ケーブル11を保持する下部銅管17が延設されており、下部銅管17の一端(図1では下端)側には、絶縁充填物10の流出を防止するシール18が施されている。
 電力ケーブル11の導体111の先端に接続された導体引出棒13は上部金具15を貫通して外部に突出している。碍管12、上部金具15、及び下部金具16で形成された小室内は、絶縁充填物10で充填されている。すなわち、終端接続部1は、電力ケーブル11の端部と、この電力ケーブル11の導体端部に接続された導体引出棒13とが、碍管12内に収容され、この碍管12内に絶縁充填物10が充填されて構成されている。
 本実施形態では、碍管12内に充填する絶縁充填物10を、シリコーンオイルとシリコーンゴムを混合したもの、シリコーンオイルとシリコーンゲルを混合したもの、又はシリコーンオイルとシリコーンゴムとシリコーンゲルを混合したもので構成している。これらの絶縁充填物10は、後述するように、シリコーンオイルにシリコーンゴムの原料又はシリコーンゲルの原料を混合して硬化させることにより製造される。
 シリコーンゴムは、液体の状態で原料が市販されており、この原料を重合反応により硬化させる。一液型と二液型があり、さらに反応のタイプにより付加反応型と縮合反応型とに大別される。縮合型のシリコーンゴムでは空気中の水分と反応することがあるため、好ましくは付加型のシリコーンゴムを使用する。
 市販されているシリコーンゴムとしては、例えば、東レ・ダウコーニング株式会社製のSE6910がある。このシリコーンゴムは、主剤がビニル基含有オルガノポリシロキサンで、硬化剤がハイドロジェンオルガノポリシロキサンである2液タイプのものであり、硬化後のタイプAデュロメータによる硬度が9である。
 シリコーンゲルは、シリコーンゴムと同様、液体の状態で原料が市販されており、この原料を重合反応によりゲル状に硬化させる。一液型と二液型があり、さらに反応のタイプにより付加反応型と縮合反応型とに大別される。縮合型のシリコーンゲルでは空気中の水分と反応することがあるため、好ましくは付加型のシリコーンゲルを使用する。
 市販されているシリコーンゲルとしては、例えば、東レ・ダウコーニング株式会社製のSE1886がある。このシリコーンゲルは、主剤がビニル基含有オルガノポリシロキサンで、硬化剤がハイドロジェンオルガノポリシロキサンである2液タイプのものであり、硬化後の稠度が50である。
 ここで、シリコーンゴムとは、シリコーンオイルを混合しないでその原料を硬化させたときに、JIS K 6253で規定されているタイプAデュロメータにより硬度を測定することが可能なシリコーン硬化物であり、シリコーンゲルとは、タイプAデュロメータによる硬度測定が不能なシリコーン硬化物である。なお、前記JIS K 6253は、ISO7619に対応する。
 シリコーンオイルは、前記シリコーンゴムやシリコーンゲルのような重合反応性を示さない成分である。シリコーンオイルには、市販のストレートシリコーンオイル又は変性シリコーンオイルの何れを使用してもよいが、ストレートシリコーンオイルを使用するのが望ましい。市販のストレートシリコーンオイルとしては、例えば、東レ・ダウコーニング株式会社製のSH200がある。
 ここで、ストレートシリコーンオイルとは、シロキサン結合からなる直鎖状ポリマーで構成されるシリコーンオイルである。ジメチルシリコーンオイル(ポリシロキサンの側鎖、末端がすべてメチル基であるもの)、メチルフェニルシリコーンオイル(ポリシロキサンの側鎖の一部がフェニル基であるもの)、メチルハイドロジェンシリコーンオイル(ポリシロキサンの側鎖の一部が水素であるもの)の3種類が総称してストレートシリコーンオイルと呼ばれる。
 また、変性シリコーンオイルとは、側鎖、末端に有機基を導入したものであり、置換される有機基の結合位置によって大きく4種類の構造(側鎖型、両末端型、片末端型、両鎖両末端型)に分類される。また、導入する有機基の性質によって反応性シリコーンオイルと非反応性シリコーンに分類される。
 シリコーンオイルの粘度は、特に制限されないが、好ましくは3000~30000cst(測定方法:JIS K 7117-2)がよい。この範囲の粘度のシリコーンオイルを用いることにより、シリコーンゴムの原料又はシリコーンゲルの原料と混合して絶縁充填物10を製造する際の作業性(取り扱い性)が良く、得られるゲル状硬化物(絶縁充填物10)の界面密着性も優れたものになる。なお、前記JIS K 7117-2はISO3219に対応する。
 絶縁充填物10をシリコーンオイルとシリコーンゴムの原料を混合して作製する場合、シリコーンオイルとシリコーンゴム原料の混合比率を、質量比で9:1~20:1の範囲とするのが望ましい。混合比率をこのような範囲とすることにより、所望の界面密着性を有する絶縁充填物10が実現されるので、終端接続部1の温度変化環境に対する耐久性・信頼性が向上する。
 また、絶縁充填物10をシリコーンオイルとシリコーンゲルの原料を混合して作製する場合、シリコーンオイルとシリコーンゲル原料の混合比率を、質量比で2:8~7:3の範囲とするのが望ましい。混合比率をこのような範囲とすることにより、所望の界面密着性を有する絶縁充填物10が実現されるので、終端接続部1の温度変化環境に対する耐久性・信頼性が向上する。
 絶縁充填物10をシリコーンオイルとシリコーンゴムの原料とシリコーンゲルの原料とを混合して作製する場合、これらの混合比率は、前述の比率で混ぜたシリコーンオイルとシリコーンゴム原料との混合物に、前述の比率で混ぜたシリコーンオイルとシリコーンゲル原料との混合物を混合したとみなせる比率にすることが望ましい。混合比率をこのような範囲とすることにより、所望の界面密着性を有する絶縁充填物10が実現されるので、終端接続部1の温度変化環境に対する耐久性・信頼性が向上する。
 なお、絶縁充填物10には、本発明の作用・効果を妨げない範囲で任意成分を配合することができる。任意成分としては、反応抑制剤、反応促進剤、無機質充填剤、難燃性付与剤、チクソ性付与剤、顔料、染料等が挙げられる。
 図1に示す終端接続部1を施工する場合、シリコーンゴム(又はシリコーンゲル)の原料(二液タイプの場合は主剤と硬化剤)、及びシリコーンオイルを、それぞれ別の容器に所定量入れて、施工現場に搬入する。そして、段剥ぎした電力ケーブル11の端部に、下部銅管17及び下部金具16を取り付け、ゴムストレスコーン14を装着するとともに、導体111の端部に導体引出棒13を接続する。この電力ケーブル11の端部に碍管12を被せて、下部金具16上に液密に固定する。また、電力ケーブル11と下部銅管17に跨ってシール18を施す。
 なお、絶縁充填物10を作製するときに、ストレスコーン14の表面にシリコーンオイルを予め塗布しておくと、ストレスコーン14の表面に生じるボイドをより少なくできる。
 次に、液状のシリコーンゴム(又はシリコーンゲル)の原料とシリコーンオイルとを一つの容器に入れ、所定の比率で配合した後、常温で均一になるまで混合する。この際、シリコーンゴム(又はシリコーンゲル)が主剤及び硬化剤からなる二液タイプの場合は、硬化剤を最後に混ぜる。シリコーンゴム(又はシリコーンゲル)の原料とシリコーンオイルの混合作業は、例えばハンドミキサーで混ぜることによって行われる。
 次に、シリコーンゴム(又はシリコーンゲル)の原料とシリコーンオイルからなる混合物を、碍管12と下部金具16とで形成された小室内に所定量だけ流し込み、脱泡した後、上部金具15を取り付けて小室を閉塞する。そして、小室内を常温に保持した状態で電力ケーブル11に通電し、所定時間静置して混合物を硬化させ、絶縁充填物10を形成する。絶縁充填物10は、軟らかいゲル状硬化物(JIS K 2220(測定端子:標準コーン)で規定される稠度が200~420)となる。なお、JIS K 2220(測定端子:標準コーン)は、ISO2137(測定端子:円錐コーン)に対応する。
[実施例1]
 実施例1では、シリコーンオイルとシリコーンゴムの原料を混合して混合物とし、これを硬化させたゲル状硬化物について、JIS K 2220で規定される稠度、ヒートサイクル試験による耐久性・信頼性、界面密着性、及びボイド消滅時間を評価した。
 シリコーンオイルには、東レ・ダウコーニング株式会社製のSH200シリーズ(粘度の異なるものが販売されている)を用い、シリコーンゴムの原料には、東レ・ダウコーニング株式会社製のSE6910(液状タイプ、硬化前の粘度:7500cst)を用いた。
 シリコーンオイルとシリコーンゴム原料の混合比率は8:1~21:1の範囲で、表1に示したように変化させた。シリコーンオイルには、表1に示したように、粘度が1000~40000cstの範囲のもの用いた。各試料について、ヒートサイクル試験を行い、また、界面密着性、ボイド消滅時間を調べた。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 
 ヒートサイクル試験は、終端接続部1を製作して行った。すなわち、電圧66kV、導体サイズ500sq、絶縁厚10mmの電力ケーブル11の端部を、110kV級のポリマー碍管12(内径290mm、高さ1350mm)に収容し、施工現場でシリコーンオイルとシリコーンゴムの原料とを混合し、この混合物30kgを碍管12に注入し、硬化させてゲル状硬化物、すなわち絶縁充填物10とした終端接続部1を作製し、これを用いてヒートサイクル試験を行った。
 具体的には、シリコーンオイルとシリコーンゴムの混合物を硬化させた後、<常温16時間>と<導体温度90℃×8時間>とを1サイクルとして、10サイクルのヒートサイクル試験を行った。そして、ヒートサイクル試験後に上部金具15を取り外し、碍管12の上部開口から内部を覗いて絶縁充填物10の様子を観察し、絶縁充填物10と電力ケーブル11又は碍管12との間に剥離や隙間が生じていないか等の観点から評価した。
 絶縁充填物10の表面を棒で押しても絶縁充填物10が電力ケーブル11の外面又は碍管12の内面から剥離しない場合を“○”、絶縁充填物10の表面を棒で押したときに絶縁充填物10が電力ケーブル11の外面又は碍管12の内面から容易に剥離した場合を“△”、絶縁充填物10と電力ケーブル11の外面又は碍管12の内面との間に隙間が観察された場合を“×”として評価した。つまり、“○”評価は、ヒートサイクル試験において絶縁充填物10が電力ケーブル11及び碍管12から剥離せずに密着状態が保持されていたことを示し、“△”評価は、ヒートサイクル試験において絶縁充填物10が電力ケーブル11又は碍管12から剥離して密着状態が損なわれ、剥離跡が観察された(隙間は生じていない)ことを示す。“×”評価は、ヒートサイクル試験において絶縁充填物10が電力ケーブル11又は碍管12から剥離して密着状態が損なわれただけでなく、隙間が観察されたことを示すが、実施例1、2及び比較例を含めて“×”評価となったものはなかった。
 界面密着性試験は、シリコーンオイルとシリコーンゴム原料の混合物を、2枚のシートの間に入れて硬化させて作製したゲル状硬化物の試験片を用いて行った。具体的には、20mm×100mm×1mmの2枚のシートに、シリコーンオイルとシリコーンゴム原料の混合物を挟んで硬化させた後、シートの上から荷重0.5kgをかけた状態で平行にシートをずらした際にどれだけの力(密着力)が生じるか、またゲル状硬化物又は油分がシートの表面に残っているかで評価した。なお、架橋ポリエチレン(XLPE)製のシートを用いた場合と、エチレンプロピレンゴム(EP)製のシートを用いた場合のそれぞれについて界面密着性を評価した。
 2枚のシートに夫々ゲル状硬化物が残った場合を“○”、一方のシートにゲル状硬化物、他方に油分が残った場合を“△”、片方のシートにのみゲル状硬化物が残った(他方には油分も残らなかった)場合を“×”で示す。
 ボイド消滅時間は、容積20mlのスクリュウ管にシリコーンオイルとシリコーンゴム原料の混合物を15ml入れて硬化させたゲル状硬化物の試料を用いて行った。この試料に、上面からφ0.5mmの針金を20mm刺して穴を開け、形成された穴がどれくらいの時間で消滅するか確認した。
 ボイド消滅時間により、絶縁充填物10が電力ケーブル11又は碍管12から剥離したときに、シリコーンオイルが染み出て剥離部分の隙間を埋める傾向を推測できる。すなわち、ボイドの消滅時間が短ければ、絶縁充填物10が電力ケーブル11又は碍管12から剥離して隙間が生じたりしても、隙間が短時間で埋まる(修復される)と考えられる。
 表1に示すように、シリコーンオイルとシリコーンゴム原料の混合比率を12:1とした実施例1-2、20:1とした実施例1-3(オイル粘度は3000cst)では、硬化後の稠度がそれぞれ325,375であり、ヒートサイクル試験及び界面密着性試験において良好な結果が得られた。また、ボイド消滅時間が45min以下なので、仮に絶縁充填物10と電力ケーブル11又は碍管12との間に隙間が生じたとしても、オイルが染み出して短時間で隙間は修復されると考えられる。
 シリコーンオイルとシリコーンゴム原料の混合比率を9:1とした実施例1-1(オイル粘度は3000cst)では、硬化後の稠度が282であり、界面密着性が実施例1-2,1-3よりも低下しているが、ヒートサイクル試験において良好な結果が得られた。なお、ボイド消滅時間は3hであり、仮に絶縁充填物10と電力ケーブル11又は碍管12との間に隙間が生じたとしても、オイルが染み出して隙間は修復されると考えられる。
 シリコーンオイルとシリコーンゴム原料の混合比率を8:1とした実施例1-5(オイル粘度は3000cst)では、硬化後の稠度が220であり、界面密着性が実施例1-2,1-3より低下しており、ヒートサイクル試験においても剥離跡が観察された。なお、ボイド消滅時間は12hであり、仮に絶縁充填物10と電力ケーブル11又は碍管12との間に隙間が生じたとしても、オイルが染み出して隙間は修復されると考えられる。
 これより、シリコーンオイルの混合比率が小さく、硬化後の絶縁充填物10の稠度が小さくなる(硬くなる)と、界面密着性が低下し、これに伴い温度変化環境に対する耐久性・信頼性(ヒートサイクル試験結果)が低下すると思われる。また、稠度が小さくなるに伴いボイド消滅時間も長くなるといえる。
 温度変化環境に対する耐久性・信頼性の観点から、シリコーンオイルとシリコーンゴム原料の混合比率は、9:1以上とするのが望ましい。なお、シリコーンオイルとシリコーンゴム原料の混合比率を8:1とした場合であっても、絶縁充填物10と電力ケーブル11又は碍管12との界面には油膜が形成され、隙間は生じないため電気的には問題はなく、実用可能である。
 オイル粘度を30000cstとした実施例1-4、40000cstとした実施例1-7(シリコーンオイルとシリコーンゴム原料の混合比率は20:1)では、硬化後の稠度がそれぞれ380、398であり、実施例1-3と同等以上であった。また、ヒートサイクル試験及び界面密着性試験において、良好な結果が得られた。ボイド消滅時間は何れも30minであり、実施例1-3と同等であった。
 しかしながら、実施例1-7では、オイル粘度が大きすぎるため、シリコーンオイルとシリコーンゴムの原料を混合するときに、容器を傾けてもオイルが流れにくい上、シリコーンゴムの原料と混合する際の攪拌作業に労力を要し、終端接続部1の施工に時間かった。
 オイル粘度を1000cstとした実施例1-6(シリコーンオイルとシリコーンゴム原料の混合比率は20:1)では、硬化後の稠度が260で実施例1-3(オイル粘度:3000cst)より小さく(硬く)なった。また、界面密着性は良好であるが、ヒートサイクル試験において剥離跡が観察された。なお、絶縁充填物10と電力ケーブル11又は碍管12との界面には油膜が形成され、隙間は生じないため電気的には問題はない。ボイド消滅時間は6hであり、実施例1-3に比較して長時間となった。
 図2は、シリコーンオイルとシリコーンゴム原料の混合比率を20:1とした場合のオイル粘度と硬化後の稠度の関係について示す図である。不思議なことに、シリコーンオイルの粘度と、得られる絶縁充填物の硬さ(稠度)の関係は、図2に示すように逆の関係になる。すなわち、シリコーンオイルの粘度が高いほど得られる絶縁充填物は軟らかく(稠度大)、シリコーンオイルの粘度が低いと絶縁充填物が硬くなる(稠度小)。
 図2に示すように、混合するシリコーンオイルの粘度が3000以上のときに絶縁充填物10の稠度は高い値で安定する。一方、オイル粘度が3000cstより小さくなると、稠度は急激に小さく(硬く)なるため、絶縁充填物10と電力ケーブル11又は碍管12との間が剥離しやすくなる(ヒートサイクル試験が△)。また、これらの間に生じた隙間を埋める効果が低下する(ボイド消滅時間が長い)。
 一方、絶縁充填物10の稠度が大きすぎる(軟らかすぎる)と、碍管12から絶縁充填物10が流出し易くなるので、シール18を高度化する必要が生じる。
 これより、温度変化環境に対する耐久性・信頼性及び施工時の作業性の観点から、シリコーンオイルの粘度は3000cst以上30000cst以下であることが望ましい。
 シリコーンオイルとシリコーンゴム原料の混合比率を21:1とした実施例1-8(オイル粘度は30000cst)では、硬化後の稠度が400以上で実施例1-3より明らかに大きくなった。また、ヒートサイクル試験及び界面密着性試験において、良好な結果が得られた。しかしながら、施工時に混合物を硬化させるに際して長時間を要した(他の実施例1-1~1-7では25℃で5日以内に混合物が硬化したのに対して、実施例1-8では8日を要した)。
 シリコーンオイルとシリコーンゴム原料の混合物の硬化時間が長い場合、シール18を高度にしないと、この混合物が碍管12から流出する虞がある。これより、シリコーンオイルとシリコーンゴム原料の配合比率は、21:1よりも小さくするのが望ましい。
 実施例1-1~1-8についての評価結果から、絶縁充填物10をシリコーンオイルとシリコーンゴムの原料を混合して作製する場合、混合比率が9:1~20:1となる範囲を目安とするのが望ましい。また、混合するシリコーンオイルの粘度は3000~30000cstであることが望ましい。
[実施例2]
 実施例2では、シリコーンオイルとシリコーンゲルの原料を混合して硬化させたゲル状硬化物について、実施例1と同様に、JIS K 2220で規定される稠度、ヒートサイクル試験による耐久性・信頼性、界面密着性、及びボイド消滅時間を評価した。
 シリコーンオイルには、東レ・ダウコーニング株式会社製のSH200シリーズを用い、シリコーンゲルには、東レ・ダウコーニング株式会社製のSE1886(硬化前の粘度:1122cst)を用いた。また、シリコーンオイルとシリコーンゲル原料の混合比率は1:9~8:2の範囲で変化させた。評価結果の一例を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 
 表2に示すように、シリコーンオイルとシリコーンゲル原料の混合比率を2:8とした実施例2-1、7:3とした実施例2-2(オイル粘度は3000cst)では、硬化後の稠度がそれぞれ280,395であり、ヒートサイクル試験及び界面密着性試験において良好な結果が得られた。また、ボイド消滅時間が45min以下なので、仮に絶縁充填物10と電力ケーブル11又は碍管12との間に隙間が生じたとしても、オイルが染み出して短時間で隙間は修復されると考えられる。
 シリコーンオイルとシリコーンゲル原料の混合比率を1:9とした実施例2-3(オイル粘度は3000cst)では、硬化後の稠度が250で実施例2-1,2-2より低く(硬く)なった。また、界面密着性は良好であるが、ヒートサイクル試験において剥離跡が観察された。なお、絶縁充填物10と電力ケーブル11又は碍管12との界面には油膜が形成され、隙間は生じないため電気的には問題はない。ボイド消滅時間は1hであり、実施例2-1、2-2に比較して若干長くなった。
 これより、絶縁充填物10をシリコーンオイルとシリコーンゲルの原料を混合して作製する場合においても、シリコーンオイルの混合比率が小さく、硬化後の絶縁充填物10の稠度が小さくなる(硬くなる)と、界面密着性が低下し、これに伴い温度変化環境に対する耐久性・信頼性(ヒートサイクル試験結果)が低下するといえる。また、稠度が小さくなるに伴いボイド消滅時間も長くなるといえる。
 温度変化環境に対する耐久性・信頼性の観点から、シリコーンオイルとシリコーンゲル原料の混合比率は、2:8以上とするのが望ましい。
 シリコーンオイルとシリコーンゲル原料の混合比率を8:2とした実施例2-4(オイル粘度は3000cst)では、硬化後の稠度が400以上で実施例2-1,2-2より明らかに大きく(軟らかく)なった。また、ヒートサイクル試験及び界面密着性試験において、良好な結果が得られた。ボイド消滅時間は30minであり、実施例2-2と同等であった。しかしながら、施工時に混合物を硬化させるに際して長時間を要した。
 シリコーンオイルとシリコーンゲル原料の混合物の硬化時間が長い場合、シール18を高度にしないと、この混合物が碍管12から流出する虞がある。したがって、シリコーンオイルとシリコーンゲル原料の配合比率は、8:2よりも小さくするのが望ましい。
 実施例2-1~2-4についての評価結果から、絶縁充填物10をシリコーンオイルとシリコーンゲルの原料を混合して作製する場合、混合比率が2:8~7:3となる範囲を目安とするのが望ましい。また、シリコーンオイルの粘度は、実施例1と同様に、3000~30000cstであることが望ましい。
また、実施例1、2のヒートサイクル試験の結果や混合物の硬化に要する期間を考慮すると、硬化後の稠度が280~398であることが好ましい。
[比較例]
 比較例では、市販のシリコーンゲル(東レ・ダウコーニング株式会社製のJCR6110)単体を硬化させたゲル状硬化物について、実施例1と同様に、JIS K 2220で規定される稠度、ヒートサイクル試験による耐久性・信頼性、界面密着性、及びボイド消滅時間を評価した。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 表3に示すように、シリコーンゲル単体で絶縁充填物10を作製した比較例では、硬化後の稠度が225であり、ヒートサイクル試験及び界面密着性試験による特性が実施例1,2に比較して明らかに低下した。また、比較例では、48時間経過してもボイドが消滅しなかった。硬化後の稠度が同じ程度の実施例1-5と比較しても界面密着性が劣っていることから、絶縁充填物10をシリコーンゴム又はシリコーンゲルにシリコーンオイルを混合したもので形成することの有効性が確認された。
 実施例1,2及び比較例の結果から、予めシリコーンゲルとして製造された市販のものをそのまま単体で用いて絶縁充填物10を作製するよりも、本発明のように、シリコーンオイルにシリコーンゴム又はシリコーンゲルを混合したもので絶縁充填物10を形成したほうが、電力ケーブル11、碍管12、又はストレスコーン14等の各種部品と絶縁充填物10との界面密着性が向上することがわかる。
 また、実施例1,2で作製した絶縁充填物10は、電力ケーブル11等との界面に隙間を生じにくく、仮に界面に剥離が生じても短時間で自己修復する(隙間を埋める)機能を有しているといえる。
 本発明者等は、次のような理由でこのような現象が生じるのではないかと推測している。すなわち、市販のシリコーンゲルは全体が均一な組成になっており、これを硬化させて得られる絶縁充填物10は、全体に均一な架橋状態になる。これに対して、本発明では、シリコーンゴムの原料又はシリコーンゲルの原料にシリコーンオイルを混合させるので、細かく見ると、組成が部分的に異なる不均一な(ムラがある)状態で混合物が碍管12に充填される。これを硬化して得られる絶縁充填物10は、架橋状態が不均一で(粗密がある)、シリコーンオイルの分子に対する拘束が緩い状態となる。この結果、絶縁充填物10と電力ケーブル11等との界面に隙間を生じにくくなり、仮に界面で剥離が生じても短時間で自己修復されると考えられる。
 上述したように、実施形態の終端接続部1においては、絶縁充填物10が、シリコーンオイルとシリコーンゴムを混合したもの、又はシリコーンオイルとシリコーンゲルを混合したもので形成されている。
 これにより、碍管12内に充填された絶縁充填物10が、優れた界面密着性を有するとともに、剥離部等に対するの自己修復機能を備えることとなるので、終端接続部1が温度変化環境で使用されて絶縁充填物が熱膨張・熱収縮を繰り返しても、絶縁充填物10と電力ケーブル11等との界面に隙間が生じ難くなる。したがって、耐久性・信頼性に優れた乾式の終端接続部1が実現される。また、終端接続部1は、絶縁充填物10の構成が異なるだけで、その他の構造は従来の油浸式の終端接続部と同等であるので、安価に製造することができる。一方、油浸式の終端接続部のような漏油の危険性もない。
 以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
 例えば、碍管内に充填する絶縁充填物としては、シリコーンゴムの原料とシリコーンオイルの混合物(例えば実施例1-1)に、シリコーンゲルの原料とシリコーンオイルの混合物(例えば実施例2-1)を混ぜたものを使用することもできる。
 また例えば、実施形態とは異なる構造の終端接続部に本発明を適用することもできる。図3は、本発明を適用した終端接続部の他の一例を示す図である。図3に示す終端接続部2では、ゴム製のストレスコーン24が、エポキシ座29と圧縮装置30とにより、電力ケーブル21の絶縁層212と外部半導電層213とに圧着して取り付けられている。
 すなわち、終端接続部2も実施形態の終端接続部1と同様に、電力ケーブル21の端部と、この電力ケーブル21の導体211端部に接続された導体引出棒23とが、碍管22内に収容され、この碍管22内にシリコーンゲルの原料及び/又はシリコーンゴムの原料とシリコーンオイルとからなる絶縁充填物20が充填されて構成されている。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 電力ケーブル終端接続部
10 絶縁充填物
11 電力ケーブル
111 導体
112 絶縁層
113 外部半導電層
12 碍管
13 導体引出棒
14 ゴムストレスコーン
141 半導電ゴム部
142 絶縁ゴム部
15 上部金具
16 下部金具
17 下部銅管
18 シール

Claims (6)

  1.  電力ケーブルの端部と、この電力ケーブルの導体端部に接続された導体引出棒とが、碍管内に収容され、この碍管内に絶縁充填物が充填されてなる電力ケーブル気中終端接続部であって、
     前記絶縁充填物が、シリコーンオイルとシリコーンゴムを混合したもの、シリコーンオイルとシリコーンゲルを混合したもの、又はシリコーンオイルとシリコーンゴムとシリコーンゲルを混合したものの何れかで形成されていることを特徴とする電力ケーブル気中終端接続部。
  2.  電力ケーブルの端部と、この電力ケーブルの導体端部に接続された導体引出棒とが、碍管内に収容され、この碍管内に絶縁充填物が充填されてなる電力ケーブル気中終端接続部の製造方法であって、
     当該電力ケーブル気中終端接続部を施工するときに、シリコーンオイルとシリコーンゴムの原料を混合し、シリコーンオイルとシリコーンゲルの原料を混合し、又はシリコーンオイルとシリコーンゴムの原料とシリコーンゲルの原料の何れかを混合して、前記碍管内に充填することを特徴とする電力ケーブル気中終端接続部の製造方法。
  3.  シリコーンオイルとシリコーンゴム原料の混合比率が、質量比で9:1から20:1の範囲であることを特徴とする請求項2に記載の電力ケーブル気中終端接続部の製造方法。
  4.  シリコーンオイルとシリコーンゲル原料の混合比率が、質量比で2:8から7:3の範囲であることを特徴とする請求項2に記載の電力ケーブル気中終端接続部の製造方法。
  5.  前記シリコーンオイルの粘度が、3000cstから30000cstの範囲であることを特徴とする請求項2から4の何れか一項に記載の電力ケーブル気中終端接続部の製造方法。
  6.  シリコーンゴムの原料又はシリコーンゲルの原料とシリコーンオイルを別々の容器に入れて当該電力ケーブル気中終端接続部の施工現場に持ち込み、これらを施工現場で混合した後、前記碍管内に充填することを特徴とする請求項2に記載の電力ケーブル気中終端接続部の製造方法。
PCT/JP2010/067405 2009-10-09 2010-10-05 電力ケーブル気中終端接続部及び電力ケーブル気中終端接続部の製造方法 WO2011043313A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
RU2012118697/07A RU2533179C2 (ru) 2009-10-09 2010-10-05 Концевая муфта силового кабеля для воздушного соединения и способ ее изготовления
US13/500,970 US9124082B2 (en) 2009-10-09 2010-10-05 Power cable termination for aerial connection and process for producing power cable termination for aerial connection
JP2011535390A JP5804948B2 (ja) 2009-10-09 2010-10-05 電力ケーブル気中終端接続部及び電力ケーブル気中終端接続部の製造方法
CA2777287A CA2777287C (en) 2009-10-09 2010-10-05 Power cable termination for aerial connection and process for producing power cable termination for aerial connection
CN201080040312.5A CN102640372B (zh) 2009-10-09 2010-10-05 电力电缆空中终端连接部和电力电缆空中终端连接部的制造方法
IN3031DEN2012 IN2012DN03031A (ja) 2009-10-09 2010-10-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009234742 2009-10-09
JP2009-234742 2009-10-09

Publications (1)

Publication Number Publication Date
WO2011043313A1 true WO2011043313A1 (ja) 2011-04-14

Family

ID=43856766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067405 WO2011043313A1 (ja) 2009-10-09 2010-10-05 電力ケーブル気中終端接続部及び電力ケーブル気中終端接続部の製造方法

Country Status (8)

Country Link
US (1) US9124082B2 (ja)
JP (2) JP5804684B2 (ja)
CN (1) CN102640372B (ja)
CA (1) CA2777287C (ja)
IN (1) IN2012DN03031A (ja)
RU (1) RU2533179C2 (ja)
TW (1) TWI458214B (ja)
WO (1) WO2011043313A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790372A (zh) * 2011-05-20 2012-11-21 Abb技术有限公司 电缆端接装置及其预制方法和用于实现电缆端接的方法
JP2012253867A (ja) * 2011-06-01 2012-12-20 Viscas Corp 電力ケーブル気中終端接続部及び電力ケーブル気中終端接続部の製造方法
CN107332195A (zh) * 2017-07-28 2017-11-07 特变电工昭和(山东)电缆附件有限公司 一种高压直流电缆户外终端

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011369287B2 (en) * 2011-05-20 2015-09-17 Nkt Hv Cables Ab A cable termination device, a method for prefabricating a cable termination device and a method for achieving a cable termination
CN103149394A (zh) * 2013-03-15 2013-06-12 无锡市曙光电缆有限公司 一种电缆局放测试用缩短式脱离子水终端
CN105449620B (zh) * 2014-07-23 2018-03-20 泰科电子(上海)有限公司 干式电力电缆终端
FR3032554B1 (fr) * 2015-02-10 2019-05-31 Nexans Dispositif electrique comprenant une couche reticulee
CN105802239B (zh) * 2016-03-22 2019-06-14 天津汇润赢防爆电器有限公司 高压电缆快速连接器
US10439383B2 (en) * 2016-12-21 2019-10-08 Te Connectivity Corporation Seal systems for oil-filled cable terminations and assemblies and methods including the same
CN107634496A (zh) * 2017-08-01 2018-01-26 全球能源互联网研究院 一种高压直流电缆线路终端
US10381817B1 (en) 2018-02-28 2019-08-13 Te Connectivity Corporation Cable oil barrier systems for oil-filled cable terminations and assemblies and methods including the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680338U (ja) * 1993-04-16 1994-11-08 古河電気工業株式会社 電力ケーブルの終端部
JPH09275611A (ja) * 1996-04-02 1997-10-21 Fujikura Ltd 架橋ポリエチレンケーブルのプレハブ型接続部の製造方法
JPH1166975A (ja) * 1997-08-20 1999-03-09 Yazaki Corp 耐火電線
JP2004015945A (ja) * 2002-06-10 2004-01-15 Furukawa Electric Co Ltd:The 電力ケーブル終端接続部

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59120437A (ja) * 1982-12-28 1984-07-12 Shin Etsu Polymer Co Ltd シリコ−ンゴムロ−ルの製造方法
ATE158443T1 (de) * 1991-06-06 1997-10-15 Raychem Sa Nv Einrichtung für den aufbau eines abgedichteten elektrischen spleisses
JPH0680338A (ja) 1992-09-07 1994-03-22 Toshiba Corp エレベータの表示装置
JPH0699571B2 (ja) * 1992-09-30 1994-12-07 第二しなのポリマー株式会社 シリコーンゴム板の製造方法
IT1275359B1 (it) 1994-02-11 1997-08-05 Pirelli Cavi Spa Terminale per cavo elettrico
JP4106170B2 (ja) * 1999-04-22 2008-06-25 シンジーテック株式会社 画像形成装置に使用されるオイル塗布ローラ
FR2819261B1 (fr) * 2001-01-11 2003-02-28 Nexans Composition a base de caoutchouc silicone, resistante au dechirement, pour cables et accessoires d'energie
CA2489549C (en) * 2002-06-26 2010-12-14 Pirelli & C. S.P.A. Method and arrangement for a termination of an electrical cable
JP4158904B2 (ja) 2003-04-18 2008-10-01 古河電気工業株式会社 常温収縮型ゴムユニット
US7214735B2 (en) 2004-02-02 2007-05-08 3M Innovative Properties Company Microsphere-filled sealant materials
JP2006042421A (ja) * 2004-07-22 2006-02-09 Exsym Corp 電力ケーブルの終端接続部
EP1833289A1 (en) * 2004-12-17 2007-09-12 Kabushiki Kaisha Fine Rubber Kenkyuusho Dielectric raw material, antenna device, portable phone and electromagnetic wave shielding body
FR2883427B1 (fr) * 2005-03-17 2007-05-04 Nexans Sa Traversee electrique pour element supraconducteur
JP4637085B2 (ja) * 2006-09-04 2011-02-23 株式会社エクシム 気中終端接続部用套管ユニット
JP4805074B2 (ja) * 2006-09-20 2011-11-02 古河電気工業株式会社 端子付自動車ハーネスの製造方法
JP4621707B2 (ja) * 2007-04-26 2011-01-26 株式会社エクシム 気中終端接続部用がい管ユニット
CN201113370Y (zh) * 2007-07-30 2008-09-10 北京国电德源电缆附件有限公司 一种预制型户外电缆终端
CN201252384Y (zh) * 2008-08-29 2009-06-03 广东吉熙安电缆附件有限公司 一种瓷套型干式中压电缆终端头

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680338U (ja) * 1993-04-16 1994-11-08 古河電気工業株式会社 電力ケーブルの終端部
JPH09275611A (ja) * 1996-04-02 1997-10-21 Fujikura Ltd 架橋ポリエチレンケーブルのプレハブ型接続部の製造方法
JPH1166975A (ja) * 1997-08-20 1999-03-09 Yazaki Corp 耐火電線
JP2004015945A (ja) * 2002-06-10 2004-01-15 Furukawa Electric Co Ltd:The 電力ケーブル終端接続部

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102790372A (zh) * 2011-05-20 2012-11-21 Abb技术有限公司 电缆端接装置及其预制方法和用于实现电缆端接的方法
WO2012159681A3 (en) * 2011-05-20 2013-07-18 Abb Technology Ag A cable termination device, a method for prefabricating a cable termination device and a method for achieving a cable termination
US8981222B2 (en) 2011-05-20 2015-03-17 Abb Technology Ag Cable termination device, a method for prefabricating a cable termination device and a method for achieving a cable termination
AU2011369288B2 (en) * 2011-05-20 2015-06-18 Nkt Hv Cables Ab A cable termination device, a method for prefabricating a cable termination device and a method for achieving a cable termination
JP2012253867A (ja) * 2011-06-01 2012-12-20 Viscas Corp 電力ケーブル気中終端接続部及び電力ケーブル気中終端接続部の製造方法
CN107332195A (zh) * 2017-07-28 2017-11-07 特变电工昭和(山东)电缆附件有限公司 一种高压直流电缆户外终端

Also Published As

Publication number Publication date
RU2533179C2 (ru) 2014-11-20
JPWO2011043313A1 (ja) 2013-03-04
JP2011101582A (ja) 2011-05-19
CA2777287A1 (en) 2011-04-14
JP5804948B2 (ja) 2015-11-04
US9124082B2 (en) 2015-09-01
CN102640372A (zh) 2012-08-15
CA2777287C (en) 2017-05-09
JP5804684B2 (ja) 2015-11-04
TW201131919A (en) 2011-09-16
TWI458214B (zh) 2014-10-21
CN102640372B (zh) 2016-05-18
RU2012118697A (ru) 2013-11-20
IN2012DN03031A (ja) 2015-07-31
US20120193142A1 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
WO2011043313A1 (ja) 電力ケーブル気中終端接続部及び電力ケーブル気中終端接続部の製造方法
CN105176484B (zh) 一种电力电子器件用灌封胶及其制备方法
KR100818596B1 (ko) 압출가능한 가교제 그리스상 방열재, 그것을 충진·봉입한용기, 그러한 용기의 제조방법, 및 그것을 이용한 방열방법
CN104341778B (zh) 导电性液体硅橡胶组合物和高电压电缆用常温收缩橡胶构件
WO2013153501A1 (en) Silicone rubber sealing glue used in medium and high voltage cable accessories and cable accessories
CN102666729B (zh) 用于形成密封元件的可固化的液体有机硅橡胶组合物和密封元件
JP2010539668A (ja) 電気絶縁デバイス及びそれが設けられた電気的なデバイス
CN104341777B (zh) 导电性硅橡胶组合物和高电压电缆用常温收缩橡胶构件
JP2011116955A (ja) シリコーンゴム組成物
Wang et al. Flame retardancy, thermal, rheological, and mechanical properties of polycarbonate/polysilsesquioxane system
CA2577002C (en) Liquid silicon elastomer composition for the production of a material with a high tear strength
CN106543731A (zh) 硅橡胶组合物和电力电缆
JP2019179597A (ja) 電線の防水構造
CA2601354C (en) Silicone rubber material
JP5622241B2 (ja) 電力ケーブル気中終端接続部及び電力ケーブル気中終端接続部の製造方法
CN104845375A (zh) 一种低介电常数液体硅橡胶复合材料及其制备方法
JP6888593B2 (ja) ミラブル型シリコーンゴム組成物及び電界緩和層
JP6519305B2 (ja) 封止材用シリコーン樹脂組成物及び該組成物を用いたパワー半導体モジュール
GB2167084A (en) Water clocking compound for cables
JP2015214661A (ja) 樹脂、風力発電用ブレード、電子部品、モータコイル及びケーブル
CN106520064A (zh) 一种柔性好不易裂的pcb电路板用有机硅电子灌封胶
CN115315486A (zh) 硅橡胶组合物
WO2017094357A1 (ja) 自己接着性シリコーンゲル組成物及びシリコーンゲル
JP2015171170A (ja) 電力ケーブルの終端接続部
JP2014128135A (ja) 電力ケーブルの接続方法及び接続構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040312.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10821983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011535390

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13500970

Country of ref document: US

Ref document number: 3031/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2777287

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012118697

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 10821983

Country of ref document: EP

Kind code of ref document: A1