WO2011040354A1 - 透過膜の阻止率向上方法及び透過膜 - Google Patents

透過膜の阻止率向上方法及び透過膜 Download PDF

Info

Publication number
WO2011040354A1
WO2011040354A1 PCT/JP2010/066654 JP2010066654W WO2011040354A1 WO 2011040354 A1 WO2011040354 A1 WO 2011040354A1 JP 2010066654 W JP2010066654 W JP 2010066654W WO 2011040354 A1 WO2011040354 A1 WO 2011040354A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
permeable membrane
amino
water
rejection
Prior art date
Application number
PCT/JP2010/066654
Other languages
English (en)
French (fr)
Inventor
哲也 青木
孝博 川勝
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to JP2011534226A priority Critical patent/JP5633517B2/ja
Priority to DE112010003846T priority patent/DE112010003846T5/de
Priority to CN201080042730.8A priority patent/CN102695555B/zh
Priority to BR112012007129-7A priority patent/BR112012007129B1/pt
Priority to US13/496,785 priority patent/US20120168370A1/en
Publication of WO2011040354A1 publication Critical patent/WO2011040354A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/106Repairing membrane apparatus or modules
    • B01D65/108Repairing membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4693Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
    • C02F1/4695Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis electrodeionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Definitions

  • the present invention relates to a method for improving the rejection rate of a permeable membrane, and in particular, repairs a permeable membrane, particularly a deteriorated reverse osmosis (RO) membrane, without significantly reducing the permeation flux of the permeable membrane, and effectively improves the rejection rate. It is related with the method of improving.
  • the present invention also relates to a permeable membrane that has been subjected to a rejection improvement process by the method for improving the rejection of the permeable membrane, a water treatment method using the permeable membrane, a permeable membrane device, and a water treatment device.
  • the blocking rate of permeable membranes such as RO membranes against separation targets such as inorganic electrolytes and water-soluble organic substances decreases due to the influence of oxidizing substances and reducing substances present in water, and deterioration of material polymers due to other causes.
  • the required treated water quality cannot be obtained. This deterioration may occur little by little during long-term use, or it may occur suddenly due to an accident. In some cases, the rejection rate of the permeable membrane as a product does not reach the required level.
  • raw water may be treated with chlorine (such as sodium hypochlorite) in a pretreatment process in order to prevent biofouling due to slime on the membrane surface.
  • chlorine such as sodium hypochlorite
  • Patent Document 1 In order to decompose residual chlorine, reducing agents such as sodium bisulfite are also added, but even in a reducing environment where sodium bisulfite is added excessively, metals such as Cu and Co coexist. Then, it is also known that the film deteriorates (Patent Document 1).
  • Patent Document 2 A method for improving the blocking rate of a permeable membrane by attaching an anionic or cationic ionic polymer compound to the membrane surface (Patent Document 2). Although this method shows a certain rejection rate improvement effect, the suppression rate improvement effect for the deteriorated film is not sufficient.
  • Patent Document 3 A method for improving the blocking rate of a nanofiltration membrane or RO membrane by attaching a compound having a polyalkylene glycol chain to the membrane surface. Although this method can also achieve the effect of improving the rejection rate, it is not fully satisfactory in the demand for improving the rejection rate without greatly reducing the permeation flux with respect to the deteriorated membrane.
  • the CN bond of the polyamide bond of the membrane material is broken by the deterioration of the polyamide membrane due to the oxidizing agent, and the original sieve structure of the membrane is destroyed.
  • An object of the present invention is to solve the above-mentioned conventional problems, and to provide a method capable of effectively improving the rejection rate even if the film is significantly deteriorated without greatly reducing the permeation flux.
  • the present invention also provides a permeable membrane that has been subjected to rejection rate improvement processing by such a permeable membrane rejection rate improving method, a water treatment method using the permeable membrane, a permeable membrane device including the permeable membrane, and a water treatment device. The purpose is to provide.
  • the first aspect is a step of passing an aqueous solution containing an amino group-containing compound having a molecular weight of 1000 or less and having a pH of 7 or less (hereinafter, this aqueous solution is referred to as “amino-treated water”) through a permeable membrane (hereinafter, this step is referred to as “this step”). And a method for improving the rejection of the permeable membrane, characterized in that it includes an “amino treatment step”.
  • a second aspect is the process of passing water having a pH higher than that of the amino-treated water through the permeable membrane after the amino treatment step in the first aspect (hereinafter, this step is referred to as an “alkali treatment step”).
  • an alkali treatment step There is provided a method for improving the rejection rate of a permeable membrane characterized by comprising:
  • the third aspect provides the method for improving the rejection of a permeable membrane according to the second aspect, wherein the high pH water contains a compound having an amino group and a molecular weight of 1000 or less.
  • a fourth aspect is characterized in that, in any one of the first to third aspects, an aqueous solution containing a compound having an anionic functional group is passed through the permeable membrane in the amino treatment step or after the amino treatment step.
  • a method for improving the rejection of a permeable membrane is provided.
  • a compound having a nonionic functional group and / or a compound having a cationic functional group is added to the permeable membrane in the amino treatment step or after the amino treatment step.
  • a method for improving the rejection rate of a permeable membrane characterized by passing water is provided.
  • the sixth aspect provides a method for improving the rejection of a permeable membrane according to any one of the second to fifth aspects, wherein the amino treatment step and the alkali treatment step are repeated twice or more.
  • the seventh aspect provides a permeable membrane characterized in that the rejection rate improving process is performed by the method of improving the rejection rate of the permeable membrane according to any one of the first to sixth aspects.
  • the permeation membrane for example, the polyamide membrane, breaks the CN bond of the polyamide due to degradation by the oxidizing agent, and the original sieving structure of the membrane breaks down. Disappears, but some carboxyl groups remain.
  • the deteriorated film By efficiently attaching and bonding an amino compound to the carboxyl group of the deteriorated film, the deteriorated film can be repaired and the blocking rate can be recovered.
  • the membrane surface By using a low molecular weight compound having an amino group as the amino compound to be bonded to the carboxyl group, the membrane surface can be made hydrophobic and the permeation flux can be prevented from significantly decreasing due to the attachment of a polymer substance. Can do.
  • the present invention has been completed based on such knowledge.
  • an aqueous solution (amino-treated water) having a pH of 7 or less containing a compound having an amino group and a molecular weight of 1000 or less (hereinafter referred to as “low molecular weight amino compound”) in a permeable membrane deteriorated by an oxidizing agent or the like.
  • low molecular weight amino compound a compound having an amino group and a molecular weight of 1000 or less
  • FIG. 1 a is an explanatory diagram of a chemical structural formula showing the mechanism of the rejection improvement processing according to the present invention.
  • FIG. 1 b is an explanatory diagram of a chemical structural formula showing the mechanism of the rejection improvement processing according to the present invention.
  • FIG. 1c is an explanatory diagram of a chemical structural formula showing the mechanism of the rejection improvement processing according to the present invention.
  • FIG. 1d is an explanatory diagram of a chemical structural formula showing the mechanism of the rejection improvement processing according to the present invention.
  • FIG. 1e is an explanatory diagram of a chemical structural formula showing the mechanism of the rejection improvement processing according to the present invention.
  • FIG. 1f is an explanatory diagram of a chemical structural formula showing the mechanism of the rejection improvement processing according to the present invention.
  • FIG. 2 is a schematic diagram showing the flat membrane test apparatus used in the examples.
  • FIG. 3 is a schematic diagram showing a 4-inch module test apparatus used in the examples.
  • the method for improving the rejection of a permeable membrane of the present invention includes an amino treatment step of passing an aqueous solution (amino treated water) having a pH of 7 or less containing a low molecular weight amino compound having a molecular weight of 1000 or less through the permeable membrane.
  • the present invention preferably has an alkali treatment step of passing water having a pH higher than that of the amino-treated water through the permeable membrane after the amino treatment step.
  • the high pH water preferably contains the low molecular weight amino compound having a molecular weight of 1000 or less.
  • the method for improving the rejection of the permeable membrane of the present invention is A step of passing an aqueous solution containing a compound having an anionic functional group through a permeable membrane in the amino treatment step or after the amino treatment step (hereinafter referred to as “anion treatment step”); Or In the amino treatment step or after the amino treatment step, a compound having a nonionic functional group is passed through the permeable membrane (hereinafter referred to as “nonion treatment step”). Or In the amino treatment step or after the amino treatment step, a step of passing a compound having a cationic functional group through the permeable membrane (hereinafter referred to as “cation treatment step”). You may have. Further, the amino treatment step and the alkali treatment step, or further, the anion treatment step, the nonion treatment step, and the cation treatment step may be repeated twice or more. Moreover, you may carry out combining these suitably.
  • a polymer compound such as a polymer compound having a polyalkylene glycol chain in the nonionic treatment step, and a polymer compound such as polyvinylamidine in the cation treatment step.
  • pure water may be washed between each process by passing pure water through the permeable membrane as necessary.
  • the mechanism for repairing a deteriorated film according to the present invention is assumed to be as shown in FIGS. 1a to 1f.
  • a normal amide bond of a permeable membrane for example, a polyamide membrane has a structure as shown in FIG.
  • an oxidizing agent such as chlorine
  • the CN bond of the amide bond is broken, and finally the structure shown in FIG. 1b is obtained.
  • Aromatic amino compounds those having a benzene skeleton and an amino group, such as aniline and diaminobenzene.
  • Aromatic aminocarboxylic acid compounds for example, 3,5-diaminobenzoic acid, 3,4-diaminobenzoic acid, 2,4-diaminobenzoic acid, 2,5-diaminobenzoic acid, 2,4,6-triamino Those having a benzene skeleton such as benzoic acid, two or more amino groups, and fewer carboxyl groups than the number of amino groups.
  • Aliphatic amino compound for example, methylamine, ethylamine, octylamine, 1,9-diaminononane (sometimes abbreviated as “NMDA” in this specification) (C 9 H 18 (NH 2 ) 2 ) Having a straight-chain hydrocarbon group having about 1 to 20 carbon atoms and one or more amino groups, such as aminopentane (NH 2 (CH 2 ) 2 CH (CH 3 ) 2 ), 2-methyloctane A branched hydrocarbon group having about 1 to 20 carbon atoms such as diamine (may be abbreviated as “MODA” in this specification) (NH 2 CH 3 CH (CH 3 ) (CH 2 ) 6 NH 2 ) Those having one or more amino groups.
  • NMDA 1,9-diaminononane
  • Aliphatic amino alcohol for example, monoaminoisopentanol (in this specification, sometimes abbreviated as “AMB”) (NH 2 (CH 2 ) 2 CH (CH 3 ) CH 2 OH) A chain or branched hydrocarbon group having 1 to 20 carbon atoms having an amino group and a hydroxyl group.
  • Cyclic amino compounds For example, tetrahydrofurfurylamine (sometimes abbreviated as “FAM” in the present specification) (the following structural formula), those having a heterocyclic ring and an amino group such as chitosan.
  • Amino acid compounds For example, basic amino acid compounds such as arginine and lysine, amino acid compounds having an amide group such as asparagine and glutamine, other amino acid compounds such as glycine and phenylalanine, and peptides that are polymers thereof, or their Derivatives such as aspartame.
  • These low molecular weight amino compounds are highly soluble in water and can be passed through the permeable membrane as a stable aqueous solution. As described above, they react with the carboxyl group of the membrane and bind to the permeable membrane to form an insoluble salt. Are formed to close the holes caused by the deterioration of the film, thereby increasing the blocking rate of the film.
  • the molecular weight of the low molecular weight amino compound used in the amino treatment step of the present invention is greater than 1000, it may not be possible to enter a finely degraded portion, which is not preferable. However, if the molecular weight of the amino compound is excessively small, it is difficult to stay in the dense layer of the film. Therefore, the molecular weight of this amino compound is preferably 1000 or less, particularly 500 or less, particularly 60 to 300.
  • low molecular weight amino compounds may be used alone or in combination of two or more.
  • two or more kinds of low molecular weight amino compounds having different molecular weights and skeleton structures are used in combination, and these are simultaneously permeated through the permeable membrane. It is preferable that the residence time at the deteriorated portion is increased because the contact probability between the carboxyl group of the film and the amino group of the low molecular weight amino compound is increased and the repair effect of the film is enhanced.
  • a low molecular weight amino compound having a molecular weight of several tens for example, about 60 to 300, and a low molecular weight amino compound having a molecular weight of several hundreds, for example, about 200 to 1,000 are used in combination. It is preferable to use a compound and a branched compound in combination. Preferred examples of the combination include the combined use of diaminobenzoic acid and NMDA or aminopentane, the combined use of arginine and aspartame, and the combined use of aniline and MODEA.
  • the concentration of the low molecular weight amino compound in the amino-treated water should be about 1 to 1000 mg / L, particularly about 5 to 500 mg / L. It is preferable to make it.
  • the content of the low molecular weight amino compound contained in the smallest amount is 50% or more.
  • these low molecular weight amino compounds are passed through the permeable membrane as an aqueous solution having an acidic condition of pH 7 or less, preferably pH 5.5 or less, or an isoelectric point of the permeable membrane to be treated.
  • pH 7 or less preferably pH 5.5 or less
  • isoelectric point of the permeable membrane to be treated When the pH of this amino-treated water is high, the solubility of the low molecular weight amino compound is lowered, and it becomes difficult to adhere to the raw water side (primary side) of the permeable membrane and permeate through the permeable membrane.
  • the pH of the amino-treated water is excessively low, a large amount of acid and a large amount of alkali are required to move to the alkali treatment step, and there is a possibility that the membrane may be deteriorated. Is preferably 1.5 or more.
  • the acid to be used is not particularly limited, inorganic acids such as hydrochloric acid, sulfuric acid and sulfamic acid, organic acids having a sulfone group such as methanesulfonic acid, and organic acids having a carboxyl group such as citric acid, malic acid and oxalic acid Examples thereof include phosphoric acid compounds such as acid, phosphonic acid and phosphinic acid. Of these, hydrochloric acid and sulfuric acid are preferred from the viewpoint of solution stability and cost.
  • an inorganic electrolyte such as sodium chloride (NaCl), a neutral organic substance such as isopropyl alcohol and glucose, and a low molecular polymer such as polymaleic acid may be added to the amino treated water as a tracer.
  • NaCl sodium chloride
  • a neutral organic substance such as isopropyl alcohol and glucose
  • a low molecular polymer such as polymaleic acid
  • low molecular weight organic compounds having a molecular weight of 1000 or less such as alcohol compounds, compounds having a carboxyl group or a sulfonic acid group, specifically isobutanol, salicylic acid or isothiazoline
  • the compound may be added to such a concentration that it does not polymerize or aggregate with the low molecular weight amino compound, for example, about 0.1 to 100 mg / L. Expected to be effective.
  • the water supply pressure when passing the amino-treated water through the permeable membrane is excessively high, there is a problem that adsorption to a non-degraded part proceeds, and if it is excessively low, adsorption to a degrading part does not proceed. Therefore, it is preferably 30 to 150%, particularly 50 to 130% of the normal operating pressure of the permeable membrane.
  • This amino treatment step can be performed at room temperature, for example, at a temperature of about 10 to 35 ° C., and the treatment time is such that the low molecular weight amino compound is sufficiently permeated through the permeable membrane, and the membrane is deteriorated.
  • the molecular weight of the low molecular weight amino compound is sufficiently small and easily permeates through the permeable membrane, it is sufficient if the low molecular weight amino compound is detected on the permeate side, and there is no particular upper limit. However, it is usually preferably 0.5 to 100 hours, particularly 1 to 50 hours.
  • alkali treatment process water having a pH higher than that of the amino-treated water, that is, alkaline water having a pH higher than 7 (hereinafter referred to as “alkali-treated water”) is passed through the permeable membrane.
  • alkali-treated water water having a pH higher than that of the amino-treated water
  • alkali-treated water water having a pH higher than 7
  • the solubility of the low molecular weight amino compound present in the permeable membrane is reduced, and the reaction between the carboxyl group of the membrane and the amino group of the low molecular weight amino compound proceeds to precipitate the low molecular weight amino compound as an insoluble salt in the membrane. Then, the deteriorated part of the film is repaired.
  • the pH of the alkali-treated water is shifted to the acid side, the precipitation effect of the low molecular weight amino compound cannot be sufficiently obtained, and if it is too high, the film is deteriorated by alkali. It is preferably 7 or more and 12 or less, particularly 11 or less.
  • the alkali-treated water is preferably one obtained by adding alkali to amino-treated water, but water adjusted to a predetermined alkalinity by adding alkali to pure water can also be used. These waters may also contain salt, glucose or the like as a tracer at the above-mentioned concentration, similar to the above-mentioned amino-treated water. Furthermore, when the amino treatment step is performed at the same time as the anion treatment step, nonion treatment step or cation treatment step described later, these anion treatment step, nonion treatment step or cation treatment step can be carried out simultaneously in the alkali treatment step. it can.
  • a scale dispersant such as a phosphoric acid compound or a phosphonic acid compound may be added to the alkali-treated water in an amount of about 1 to 100 mg / L, so that when the pH is raised, calcium carbonate scale or silica is added to the system. It is possible to prevent the system scale from being precipitated.
  • the water supply pressure when passing the alkali treated water through the permeable membrane is 30 to 150%, especially 50 to 130% of the normal operating pressure of the permeable membrane for the same reason as in the amino treatment step. Is preferred.
  • This alkali treatment step can be performed at room temperature, for example, at a temperature of about 10 to 35 ° C., and the treatment time is such a time that the pH of the permeate rises to the same extent as the alkali treatment water used.
  • the upper limit There is no particular limitation on the upper limit, but it is usually preferably 0.5 to 100 hours, particularly 1 to 50 hours.
  • Pure water cleaning is a process performed as necessary. After the alkali treatment step, or after an anion treatment step, a nonion treatment step, or a cation treatment step described later, pure water is added to the permeable membrane for 0.25 to 2 hours. It is done by passing water to the extent.
  • the temperature and feed water pressure at this time are the same as in the amino treatment step and the alkali treatment step.
  • the anion treatment step can be performed by adding a compound having an anionic functional group to the amino-treated water in the above-mentioned amino treatment step, but preferably after the amino treatment step, more preferably an alkali treatment step, and then It can also be performed as an independent process.
  • anion treatment step it is possible to fix the low molecular weight amino compound to the repair site by the effect of fixing the amino compound or the cationic compound.
  • anionic functional group used in the anion treatment step include sulfonic acid groups and carboxylic acid groups such as polystyrene sulfonic acid soda, alkylbenzene sulfonic acid, acrylic acid polymer, carboxylic acid polymer, and acrylic acid / maleic acid copolymer.
  • an acrylic acid / maleic acid copolymer having a molecular weight of 100,000 or less, such as 1,000 to 100,000, and a polystyrene sulfonate sodium or alkylbenzene sulfonate sodium (branched type) having a molecular weight of 100,000 or more, such as 200,000 to 10,000,000.
  • a polystyrene sulfonate sodium or alkylbenzene sulfonate sodium (branched type) having a molecular weight of 100,000 or more, such as 200,000 to 10,000,000.
  • These compounds having an anionic functional group are preferably dissolved in water to a concentration of 1000 mg / L or less, for example, 1 to 100 mg / L, and allowed to pass through the permeable membrane. If the concentration of the compound having an anionic functional group is too low, the immobilization effect of the low molecular weight amino compound is not sufficient, and if it is too high, the permeation flux decreases. Also, a combination of acrylic acid / maleic acid copolymer having a molecular weight of 100,000 or less, such as 1,000 to 100,000, and polystyrene sulfonate sodium or alkylbenzene sulfonate soda (branched type) having a molecular weight of 100,000 or more, such as 200,000 to 10,000,000. In this case, each concentration is preferably 100 mg / L or less, for example, about 5 to 50 mg / L.
  • an excess cation after repair by using or using an aromatic carboxylic acid having a carboxyl group such as benzoic acid and a benzene skeleton, a dicarboxylic acid such as oxalic acid or citric acid, or a tricarboxylic acid is also effective to crush.
  • the water that dissolves the compound having an anionic functional group may be pure water, and, like the above-mentioned amino-treated water, contains salt, glucose, etc. as a tracer at the above-mentioned concentration. It may be a thing.
  • the pH of water in which the compound having an anionic functional group used in this anion treatment step is dissolved is usually about 5 to 10, but it may be acidified to about pH 3 to 5.
  • a polymer compound having a polyalkylene glycol chain such as polyethylene glycol having a molecular weight of about 2000 to 6000 or polyaxylalkylstearyl ether, or a compound having a cyclic skeleton such as cyclodextrin may be used in combination.
  • the amount of these compounds added should be about 0.1 to 100 mg / L, particularly about 0.5 to 20 mg / L, as the concentration of water passing through the permeable membrane in the anion treatment step. It is preferable for obtaining the above effect while suppressing the decrease of the bundle.
  • the water supply pressure in the anion treatment step is also preferably 30 to 150%, particularly 50 to 130% of the normal operating pressure of the permeable membrane for the same reason as in the amino treatment step.
  • This anion treatment step can be performed at ordinary temperature, for example, a temperature of about 10 to 35 ° C., and the treatment time is not particularly limited, but is usually 0.5 to 100 hours, particularly 1 to 50. It is preferable to set it to about time.
  • Nonionic functional group compounds used in the nonionic treatment process include alcohol fatty acid esters such as glycerin / fatty acid ester and sorbitan / fatty acid ester, polyoxyalkylene ether of fatty acid, polyoxyalkylene ether of higher alcohol, polyoxyalkylene of alkylphenol.
  • Oxidized polyethylene polymerized adducts such as pluronic surfactants such as alkylene ethers, polyoxyalkylene ethers of sorbitan esters, polyoxyalkylene ethers of polyoxypropylene, surfactants such as alkylol amide surfactants, polyethylene glycol, tetra Having a hydroxyl group or an ether group, such as glycol compounds such as ethylene glycol and polyalkylene glycol, and having a molecular weight of about 100 to 10,000 Compounds, and these may be used alone, or in combination of two or more.
  • pluronic surfactants such as alkylene ethers, polyoxyalkylene ethers of sorbitan esters, polyoxyalkylene ethers of polyoxypropylene, surfactants such as alkylol amide surfactants, polyethylene glycol, tetra Having a hydroxyl group or an ether group, such as glycol compounds such as ethylene glycol and polyalky
  • These compounds having a nonionic functional group are dissolved in water so as to have a concentration of 1000 mg / L or less, for example, 0.1 to 100 mg / L, particularly 0.5 to 20 mg / L, and pass through the permeable membrane. It is preferable. If the concentration of the compound having a nonionic functional group is too low, the immobilization effect of the low molecular weight amino compound is not sufficient, and if it is too high, the permeation flux decreases.
  • the water that dissolves the compound having a nonionic functional group may be pure water, and, like the above-mentioned amino-treated water, contains salt, glucose, and the like as a tracer at the aforementioned concentration. It may be a thing.
  • the water in which the compound having a nonionic functional group used in the nonionic treatment step is dissolved may further contain a compound having a cyclic skeleton such as cyclodextrin in an amount of 0.1 to 100 mg / L, particularly about 0.5 to 70 mg / L. Good.
  • the pH of water in which the compound having a nonionic functional group used in this nonionic treatment step is usually about 5 to 10, but it may be acidic to about 3 to 5.
  • the water supply pressure in the nonion treatment step is also preferably 30 to 150%, particularly 50 to 130% of the normal operating pressure of the permeable membrane for the same reason as in the amino treatment step.
  • This nonionic treatment step can be performed at room temperature, for example, a temperature of about 10 to 35 ° C., and the treatment time is not particularly limited, but is usually 0.5 to 100 hours, particularly 1 to 50. It is preferable to set it to about time.
  • the cation treatment step can be preferably performed by adding a compound having a cationic functional group to the amino-treated water in the above-described amino treatment step or alkali treatment step. Moreover, it can also carry out as an independent process after an alkali treatment process, when an amino treatment process or an alkali treatment process is performed.
  • the cationic functional group is bonded to the carboxyl group on the membrane surface, and the large degradation portion of the membrane is blocked, so that the low molecular weight amino compound can be immobilized on the restoration site.
  • the compound having a cationic functional group used in the cation treatment step include a quaternary ammonium group such as benzethonium chloride, polyvinylamidine, polyethyleneimine, and chitosan, and a heterocyclic group containing N having a molecular weight of about 100 to 10 million.
  • polymer compounds having a molecular weight of about 1,000 to 10,000,000 are preferable, and these may be used alone or in combination of two or more.
  • These compounds having a cationic functional group are preferably dissolved in water so as to have a concentration of 1000 mg / L or less, for example, 1 to 1000 mg / L, particularly 5 to 500 mg / L, and passed through the permeable membrane. If the concentration of the compound having a cationic functional group is too low, the immobilization effect of the low molecular weight amino compound is not sufficient, and if it is too high, the permeation flux decreases.
  • the water that dissolves the compound having a cationic functional group may be pure water, and, like the above-mentioned amino-treated water, contains salt, glucose, etc. as a tracer at the above-mentioned concentration. It may be a thing.
  • the pH of water in which the compound having a cationic functional group used in the cation treatment step is dissolved is usually about 5 to 10, but may be acidic about pH 3 to 5.
  • the water supply pressure in the cation treatment step is also preferably 30 to 150%, particularly 50 to 130% of the normal operating pressure of the permeable membrane for the same reason as in the amino treatment step.
  • This cation treatment step can be performed at ordinary temperature, for example, a temperature of about 10 to 35 ° C., and the treatment time is not particularly limited, but is usually 0.5 to 100 hours, particularly 1 to 50. It is preferable to set it to about time.
  • the method for improving the rejection of the permeable membrane of the present invention is suitably applied to a selective permeable membrane such as a nanofiltration membrane or an RO membrane.
  • the nanofiltration membrane is a liquid separation membrane that blocks particles and polymers having a particle size of about 2 nm.
  • Examples of the membrane structure of the nanofiltration membrane include polymer membranes such as asymmetric membranes, composite membranes, and charged membranes.
  • the RO membrane is a liquid separation membrane that applies a pressure higher than the osmotic pressure difference between solutions through the membrane to the high concentration side to block the solute and permeate the solvent.
  • the membrane structure of the RO membrane include polymer membranes such as asymmetric membranes and composite membranes.
  • Examples of the material of the nanofiltration membrane or RO membrane to which the method for improving the rejection rate of the permeable membrane of the present invention is applied include, for example, aromatic polyamides, aliphatic polyamides, polyamide materials such as composite materials thereof, and cellulose acetate. Examples thereof include cellulosic materials.
  • the method for improving the rejection of the permeable membrane of the present invention is particularly suitable for a permeable membrane of an aromatic polyamide material that has many carboxyl groups due to CN bond breakage due to deterioration. Can be applied.
  • a tubular membrane module for example, a tubular membrane module, a planar membrane module, a spiral membrane module, a hollow fiber membrane module etc. can be mentioned. .
  • the permeable membrane of the present invention is a permeable membrane that has been subjected to the rejection rate improving process by the method of improving the rejection rate of the permeable membrane of the present invention, specifically, a selective permeable membrane such as an RO membrane or a nanofiltration membrane.
  • the rejection rate is improved with the permeation flux of the permeable membrane being high, and the high state can be maintained for a long time.
  • Water treatment method In the water treatment method of the present invention in which water to be treated is permeated by the permeable membrane of the present invention, the rejection rate is improved with the permeation flux of the permeable membrane being increased, and the high state is lengthened. As a result, the removal effect of a substance to be removed such as an organic substance is high, and a stable treatment is possible for a long period of time.
  • the treatment water can be supplied and permeated in the same way as normal permeable membrane treatment. However, when treating water containing hardness components such as calcium and magnesium, the raw water contains dispersants and scale prevention. Agents and other agents may be added.
  • the permeable membrane device provided with the permeable membrane of the present invention preferably has a permeable membrane module for passing water to be treated on the primary side and taking out the permeated water from the secondary side, and each treatment described above on the primary side of the module. And a means for supplying an agent for the process, that is, a low molecular weight amino compound, an acid, an alkali, and other compounds.
  • This permeable membrane module has a pressure vessel and a permeable membrane installed so as to partition the inside of the pressure vessel into a primary side and a secondary side.
  • This permeable membrane device can be used to recover and reuse wastewater containing high or low concentration TOC discharged in the electronic device manufacturing field, semiconductor manufacturing field, and other various industrial fields, or from industrial water or city water. It is effectively applied to ultrapure water production and water treatment in other fields.
  • the treated water to be treated is not particularly limited, but can be suitably used for organic substance-containing water.
  • TOC 0.01 to 100 mg / L, preferably about 0.1 to 30 mg / L. It is suitably used for the treatment of organic substance-containing water.
  • Examples of such organic substance-containing water include, but are not limited to, wastewater from electronic device manufacturing factories, transportation machinery manufacturing factories, organic synthesis factories, printing plate making / painting factories, or the primary treatment water thereof. .
  • the water treatment apparatus provided with the permeable membrane of the present invention is an activated carbon tower, a coagulating sedimentation apparatus, a coagulating pressure floating apparatus as a pretreatment apparatus for the permeable membrane apparatus for the purpose of preventing clogging and fouling of the permeable membrane, particularly the RO membrane. It is preferable to provide a filtration device or a decarboxylation device. As the filtration device, a sand filtration device, an ultrafiltration device, a microfiltration device, or the like can be used. A prefilter may be further provided as a pretreatment device.
  • the RO membrane is susceptible to oxidative degradation
  • a device for removing the oxidant (oxidation degradation inducing substance) contained in the raw water as necessary.
  • an apparatus for removing such an oxidative degradation inducing substance an activated carbon tower, a reducing agent injection apparatus, or the like can be used.
  • the activated carbon tower can also remove organic substances and can also be used as a fouling prevention means as described above.
  • the pH of the raw water is not particularly limited, but when it contains a large amount of hardness component, it is preferable to take measures such as adjusting to an acidic range of pH 5 to 7 or using a dispersant.
  • a decarbonation means an ion exchange device, an electric regeneration type deionization device, an ultraviolet oxidation device, a mixed bed type ion exchange resin device are provided in the subsequent stage of the permeable membrane device.
  • An ultrafiltration device or the like is provided.
  • Aromatic polyamide RO membrane with initial performance of desalination rate (conductivity rejection rate of aqueous solution with NaCl concentration 2000 mg / L) of 99.2% and permeation flux of 1.22 m 3 / (m 2 ⁇ d) (Normal operating pressure of 0.75 MPa) was used for about 2 years in a water treatment plant, resulting in oxidative degradation and a desalination rate of 89.3%, permeation flux 1.48 m 3 / (m 2 ⁇ d)
  • the flat membrane deteriorated as a sample was used as a sample, and this membrane was mounted on the flat membrane test apparatus shown in FIG. In this restoration experiment A, an aqueous solution having a NaCl concentration of 2000 mg / L was used as test water.
  • a flat membrane installation section 2 is provided at an intermediate position in the height direction of a cylindrical container 1 with a bottom and a lid, and the container is partitioned into a raw water chamber 1A and a permeate water chamber 1B. It is installed on the stirrer 3. Water to be treated is supplied to the raw water chamber 1 ⁇ / b> A through the pipe 11 by the pump 4. The stirrer 5 in the container 1 is rotated to stir the raw water chamber 1A, and the permeated water is taken out from the permeated water chamber 1B through the pipe 12, and the concentrated water is taken out from the raw water chamber 1A through the pipe 13.
  • the concentrated water outlet pipe 13 is provided with a pressure gauge 6 and an opening / closing valve 7.
  • Examples 1 to 3 and Comparative Examples 1 to 4 were as follows. In the following, pH adjustment of the test water was performed by adding acid (HCl) or alkali (NaOH) to the test water as necessary. In addition, water flow was performed at an average pressure of 25 ° C. and an operating pressure of 0.75 MPa.
  • HCl acid
  • NaOH alkali
  • Example 1 An aqueous solution adjusted to pH 6 by adding 3,5-diaminobenzoic acid 5 mg / L, aminopentane 5 mg / L, and polyvinylamidine (molecular weight 3.5 million) 10 mg / L to test water (NaCl concentration 2000 mg / L aqueous solution).
  • test water NaCl concentration 2000 mg / L aqueous solution.
  • This amino-treated water was supplied to a flat membrane test apparatus. After operating for 2 days under these conditions, ultrapure water was supplied and washed, and then the test water was supplied to the flat membrane test apparatus.
  • Example 2 An aqueous solution prepared by adding 3,5-diaminobenzoic acid 5 mg / L and aminopentane 5 mg / L to test water (NaCl concentration 2000 mg / L aqueous solution) to obtain pH 6 was used as amino-treated water.
  • This amino-treated water was supplied to a flat membrane test apparatus. After operating for 2 days under these conditions, ultrapure water was supplied and washed, and then the test water was supplied to the flat membrane test apparatus. .
  • Example 3 An aqueous solution prepared by adding 10 mg / L of 3,5-diaminobenzoic acid to test water (NaCl concentration 2000 mg / L aqueous solution) to adjust the pH to 6 was used as amino-treated water.
  • This amino-treated water was supplied to a flat membrane test apparatus. After operating for 2 days under these conditions, ultrapure water was supplied and washed, and then the test water was supplied to the flat membrane test apparatus.
  • This membrane repair treatment water was supplied to a flat membrane test apparatus. After operating for 2 days under these conditions, ultrapure water was supplied and washed, and then the test water was supplied to the flat membrane test apparatus.
  • This membrane repair treatment water was supplied to a flat membrane test apparatus. After operating for 2 days under these conditions, ultrapure water was supplied and washed, and then the test water was supplied to the flat membrane test apparatus.
  • This membrane repair treatment water was supplied to a flat membrane test apparatus. After operating for 2 days under these conditions, ultrapure water was supplied and washed, and then the test water was supplied to the flat membrane test apparatus.
  • This membrane repair treatment water was supplied to a flat membrane test apparatus. After operating for 2 days under these conditions, ultrapure water was supplied and washed, and then the test water was supplied to the flat membrane test apparatus.
  • the permeation flux is It calculated from the amount of permeated water x reference membrane surface effective pressure / membrane surface effective pressure x temperature conversion coefficient.
  • Permeation flux reduction rate is (Initial permeation flux ⁇ post-treatment permeation flux) / initial permeation flux ⁇ 100 As calculated.
  • the improvement rate in desalination rate is ⁇ 1 ⁇ (initial desalting rate ⁇ desalting rate after treatment) / (initial desalting rate ⁇ desalting rate at start) ⁇ ⁇ 100 As calculated.
  • Example 1 the desalting rate was improved from 88.1% to 96.1% before and after the treatment. Further, the permeation flux reduction rate at this time is about 3.5%. Also in Example 2, the desalting rate was improved from 88.4% to 95.4%. Further, the permeation flux reduction rate at this time is about 2.4%. In Example 3, the reduction rate of the permeation flux was about 4.7%, and the desalination rate was recovered to 94.5%. Since this Example 3 uses only one low molecular weight amino compound, the effect is slightly inferior to those of Examples 1 and 2. In either case, the reduction rate of the permeation flux is 10% or less, and the improvement rate is 50% or more. The solute concentration of the treated water was also 50% or less compared to the start time.
  • Comparative Examples 1 and 2 are examples in which a cationic surfactant was used instead of the low molecular weight amino compound, and the improvement rate of the desalting rate before and after the treatment was improved to 74.5% and 86.7%, respectively. However, the decrease rate of the permeation flux was remarkably reduced to 69.4% and 72.9%, respectively.
  • Comparative Example 3 is an example in which a nonionic surfactant was used in place of the low molecular weight amino compound. Although the permeation flux was kept at a reduction rate of 17.6%, the improvement in the desalting rate was only 23. 0%.
  • Comparative Example 4 is an example in which a cationic polymer is used instead of the low molecular weight amino compound, and the permeation flux is higher than the initial permeation flux, but the improvement rate of the desalting rate is 39.8%.
  • the membrane was deteriorated while controlling the free effective chlorine concentration.
  • the performance of the membrane after deterioration was lowered to a permeation flux of 1.88 m 3 / (m 2 ⁇ d), a desalting rate of 68%, and a D-glucose concentration of 37 mg / L in the permeated water at pH 6.7.
  • This deteriorated film was attached to a 4-inch module test apparatus shown in FIG. 3, and a repair experiment was conducted.
  • the above-mentioned deteriorated membrane 11 is attached to the RO membrane element 10 to partition the raw water chamber 10A and the permeated water chamber 10B, and the raw water is provided with the high-pressure pump 12 and the pipe 21 including the cartridge filters 13A and 13B.
  • the permeated water is taken out from the pipe 22 and the concentrated water is taken out from the pipe 23.
  • a pure water supply pipe 24 is connected to the pipe 21, and an electric valve 14 is provided.
  • the pipe 21 is provided with chemical injection points 15A, 15B, 15C, and 15D, and a necessary medicine can be injected at each point.
  • the pipes 22 and 23 are provided with flow meters 16 and 17, respectively.
  • Examples 4 to 9 and Comparative Examples 4 and 5 were as follows. In the following, pH adjustment of the test water was performed by adding acid (HCl) or alkali (NaOH) to the test water as necessary. In addition, water flow was conducted at an average pressure of 25 ° C. and an operating pressure of 1.5 MPa.
  • HCl acid
  • NaOH alkali
  • Example 4 In test water (NaCl concentration 200 mg / L, D-glucose concentration 100 mg / L aqueous solution (pH 6.7)), 3,5-diaminobenzoic acid 5 mg / L, aminopentane 5 mg / L, and polyvinylamidine (molecular weight 350) 10 mg / L was added to adjust the pH to 5 to 5.5 as amino-treated water. This amino-treated water was passed through the module test apparatus for 2 hours.
  • Example 5 After the water flow at pH 5 to 5.5, the water flow at pH 7.5 and the pure water washing in Example 4 were repeated twice (water flow at pH 5 to 5.5 ⁇ pH 7.5) Water passage ⁇ pure water washing ⁇ water passage at pH 5 to 5.5 ⁇ water passage at pH 7.5 ⁇ pure water washing), and supply of test water was started for 4 hours.
  • Example 6 In Example 4, the treatment was carried out in the same manner except that the pH condition for passing water at pH 5 to 5.5 was pH 6.
  • Example 7 In Example 4, the treatment was carried out in the same manner except that the pH condition for water flow at pH 5 to 5.5 was pH 4, and then the pH condition for water flow at pH 7.5 was pH 10.
  • Example 9 Test water (NaCl concentration 200 mg / L, D-glucose concentration 100 mg / L aqueous solution (pH 6.7)) with 5 mg / L of MODA (2-methyloctanediamine) added to a pH of 5 to 5.5 was treated with amino-treated water. The amino-treated water was passed through the module test apparatus for 2 hours, washed with pure water, and then supplied with test water for 4 hours.
  • Membrane repair treated water was prepared by adding 20 mg / L of cetyltrimethylammonium chloride to test water (NaCl concentration 200 mg / L, D-glucose concentration 100 mg / L aqueous solution (pH 6.7)) to a pH of 5 to 5.5. It was. This membrane repair treated water was passed through for 2 hours, then washed with pure water, and then the test water was supplied for 4 hours.
  • Membrane repair treatment is performed by adding 20 mg / L of polyoxyethylene alkyl ether to test water (aqueous solution (NaCl concentration 200 mg / L, D-glucose concentration 100 mg / L) (pH 6.7)) to adjust the pH to 5 to 5.5. Water was used. This membrane repair treated water was passed through for 2 hours, then washed with pure water, and then the test water was supplied for 4 hours.
  • test water aqueous solution (NaCl concentration 200 mg / L, D-glucose concentration 100 mg / L) (pH 6.7)
  • the processing operation in each of Examples 10 to 14 was as follows. In the following, pH adjustment of the test water was performed by adding acid (HCl) or alkali (NaOH) to the test water as necessary. In addition, water flow was performed at an average pressure of 25 MPa at an operating pressure of 1.5 MPa.
  • pH adjustment of the test water was performed by adding acid (HCl) or alkali (NaOH) to the test water as necessary.
  • water flow was performed at an average pressure of 25 MPa at an operating pressure of 1.5 MPa.
  • Example 10 In test water (NaCl concentration 200 mg / L, D-glucose concentration 100 mg / L aqueous solution (pH 6.7)), 3,5-diaminobenzoic acid 5 mg / L, aminopentane 5 mg / L, and polyvinylamidine (molecular weight 350) 10 mg / L was added to adjust the pH to 5 to 5.5 as amino-treated water. This amino-treated water was passed through the module test apparatus for 2 hours, and then the pH of the test water was adjusted to pH 7.5 while maintaining the concentrations of 3,5-diaminobenzoic acid, aminopentane and polyvinylamidine in the test water.
  • the alkali-treated water was passed through the module test apparatus for 2 hours. Further, after passing pure water and washing, 100 mg / L of an anionic compound (branched alkylbenzene sulfonic acid, molecular weight 350) was added to the test water to adjust the pH to 6 to 8, and this anion treated water was obtained. The treated water was passed through the module test apparatus for 4 hours and further washed with pure water, and then the test water was started to supply for 5 hours.
  • an anionic compound branched alkylbenzene sulfonic acid, molecular weight 350
  • Example 11 In Example 10, the treatment was carried out in the same manner except that the anion treatment with an aqueous solution of the anionic compound was carried out using an aqueous solution of 20 mg / L of a nonionic compound (PEG, molecular weight 3000).
  • Example 12 In Example 10, the treatment was performed in the same manner except that an aqueous solution in which 10 mg / L of a nonionic compound (PEG, molecular weight 3000) was added together with 50 mg / L of an anionic compound was used.
  • a nonionic compound PEG, molecular weight 3000
  • Example 13 Treatment was conducted in the same manner except that nonionic treatment was carried out with an aqueous solution containing polyethylene glycol (molecular weight 3000) and cyclodextrin 10 mg / L and 50 mg / L, respectively, instead of anionic treatment with an aqueous solution of an anionic compound. Went.
  • nonionic treatment was carried out with an aqueous solution containing polyethylene glycol (molecular weight 3000) and cyclodextrin 10 mg / L and 50 mg / L, respectively, instead of anionic treatment with an aqueous solution of an anionic compound. Went.
  • Example 14 In Example 10, the treatment was performed in the same manner except that the anion treatment was not performed.
  • Example 14 although the desalination rate which was 69.5% before the treatment was improved to 92.2% immediately after the treatment, the adhered compound was peeled off by continuously passing water for 5 days. The desalination rate dropped to 85.2%.
  • the desalination rate was 68.0 to 68.8% before the treatment, but it can be recovered to 91.1 to 95.9% immediately after the treatment.
  • an anionic surfactant or a nonionic surfactant to condition the membrane surface (immobilization of the attached amino compound)
  • the desalination rate can be reduced to 88.8 even after continuous water passage for 5 days. It was only 90.6%.
  • Example 15 to 17 and Comparative Example 7 were as follows. In the following, pH adjustment of the test water was performed by adding acid (HCl) or alkali (NaOH) to the test water as necessary. In addition, the water flow was performed at an average pressure of 25 MPa at an operating pressure of 1.5 MPa, and chitosan produced in the following production examples was used.
  • HCl acid
  • NaOH alkali
  • chitosan 100 g of chitosan 5 (a reagent manufactured by Wako Pure Chemical Industries, Ltd., 0 to 10 mPa ⁇ s) is dissolved in 400 g of a 30% by weight aqueous hydrochloric acid solution, heated to 80 ° C. for hydrolysis, and after hydrolysis to 0 to 5 ° C. Cooled and allowed to stand for 24 hours.
  • the aqueous solution concentration 20 weight%) of chitosan with different average molecular weight was obtained by changing the heating time in 80 degreeC in the range of 5 minutes to 60 minutes.
  • the average molecular weight of the obtained chitosan was 500, 750, 1000, 1250. Diluted as chitosan 500, chitosan 750, chitosan 1000, and chitosan 1250, respectively, were used in the following examples and comparative examples.
  • Example 15 In test water (NaCl concentration 200 mg / L, D-glucose concentration 100 mg / L aqueous solution (pH 6.7)), chitosan 500 5 mg / L, aminopentane 5 mg / L, polyvinylamidine (molecular weight 3.5 million) 10 mg / L L and added to adjust the pH to 5 to 5.5 for 2 hours, and then the chitosan 500, aminopentane and polyvinylamidine concentrations in the test water were left unchanged, and only the pH was adjusted to pH 7.5 for 2 hours. Watered. Furthermore, after passing pure water and washing
  • Example 16 In Example 15, the treatment was performed in the same manner except that chitosan 750 was used instead of chitosan 500.
  • Example 17 In Example 15, the same treatment was performed except that chitosan 1000 was used instead of chitosan 500.
  • Example 18 In Example 15, the same treatment was performed except that chitosan 1250 was used instead of chitosan 500.
  • the desalination rate is measured with an electric conductivity meter.
  • Desalination rate (1 ⁇ (electric conductivity of permeated water ⁇ 2) / (electric conductivity of supplied water (test water) + conductivity of concentrated water)) ⁇ 100
  • the concentration of D-glucose was measured using an RQflex10 analyzer manufactured by MERCK.
  • the permeation flux is It calculated from the amount of permeated water x reference membrane surface effective pressure / membrane surface effective pressure x temperature conversion coefficient.
  • “after treatment” means that the test water was passed for 4 hours after washing with pure water.
  • Example 19 The treatment was performed in the same manner as in Example 16 except that aminopentane was not used.
  • Example 20 The treatment was performed in the same manner as in Example 17 except that aminopentane was not used.
  • Example 18 ⁇ Comparative Example 7> In Example 18, the treatment was performed in the same manner except that aminopentane was not used.
  • Example 21 As an amino treatment step, 10 mg / L of arginine was added to test water (an aqueous solution having a NaCl concentration of 500 mg / L and an IPA concentration of 100 mg / L), and the aqueous solution adjusted to pH 5 was supplied to the flat membrane test apparatus and operated for 2 hours. As an alkali treatment process, 10 mg / L of arginine was added to test water, and an aqueous solution adjusted to pH 8 was supplied to the flat membrane test apparatus and operated for 2 hours. Thereafter, after further washing with pure water, the test water was supplied and operated for 4 hours.
  • Example 22 As an amino treatment step, arginine 10 mg / L and polyvinylamidine 1 mg / L were added to test water, and an aqueous solution adjusted to pH 5 was supplied to the flat membrane test apparatus and operated for 2 hours. Then, 10 mg / L of arginine and 1 mg / L of polyvinylamidine were added, and an aqueous solution adjusted to pH 8 was supplied to the flat membrane test apparatus and operated for 2 hours. Thereafter, after further washing with pure water, the test water was supplied and operated for 4 hours.
  • Example 23 As an amino treatment step, arginine 10 mg / L and polyvinylamidine 1 mg / L were added to test water, and an aqueous solution adjusted to pH 5 was supplied to the flat membrane test apparatus and operated for 2 hours. Then, 10 mg / L of arginine and 1 mg / L of polyvinylamidine were added, and an aqueous solution adjusted to pH 8 was supplied to the flat membrane test apparatus and operated for 2 hours.
  • a polystyrene sulfonate aqueous solution having a molecular weight of 1,000,000 was added to the test water, and the aqueous solution adjusted to pH 6.5 was supplied to the flat membrane test apparatus and operated for 2 hours. Thereafter, after further washing with pure water, the test water was supplied and operated for 4 hours.
  • Example 24 As an amino treatment step, 10 mg / L of arginine was added to test water (an aqueous solution having a NaCl concentration of 500 mg / L and an IPA concentration of 100 mg / L), and the aqueous solution adjusted to pH 5 was supplied to the flat membrane test apparatus and operated for 2 hours. As an alkali treatment process, 10 mg / L of arginine was added to test water, and an aqueous solution adjusted to pH 8 was supplied to the flat membrane test apparatus and operated for 2 hours. After passing pure water for 1 hour, as an anion treatment step, an aqueous solution in which 1 mg / L oxalic acid was added to test water was supplied to the flat membrane test apparatus and operated for 20 hours. Thereafter, after further washing with pure water, the test water was supplied and operated for 4 hours.
  • Example 25 As an amino treatment step, 10 mg / L of arginine was added to test water (an aqueous solution having a NaCl concentration of 500 mg / L and an IPA concentration of 100 mg / L), and the aqueous solution adjusted to pH 5 was supplied to the flat membrane test apparatus and operated for 2 hours. As an alkali treatment process, 10 mg / L of arginine was added to test water, and an aqueous solution adjusted to pH 8 was supplied to the flat membrane test apparatus and operated for 2 hours. After passing pure water for 1 hour, as an anion treatment step, an aqueous solution in which 1 mg / L oxalic acid was added to test water was supplied to the flat membrane test apparatus and operated for 20 hours.
  • Example 26 As the amino treatment step, arginine 5 mg / L and aspartame 5 mg / L were added to test water (aqueous solution having a NaCl concentration of 500 mg / L and an IPA concentration of 100 mg / L), and an aqueous solution adjusted to pH 5 was supplied to the flat membrane test apparatus. After operating for a period of time, as an alkali treatment step, arginine 5 mg / L and aspartame 5 mg / L were added to the test water, and an aqueous solution adjusted to pH 8 was supplied to the flat membrane test apparatus and operated for 2 hours.
  • test water aqueous solution having a NaCl concentration of 500 mg / L and an IPA concentration of 100 mg / L
  • an alkali treatment step arginine 5 mg / L and aspartame 5 mg / L were added to the test water, and an aqueous solution adjusted to pH 8 was supplied to the flat membrane test apparatus and operated for 2 hours.
  • an aqueous solution in which 1 mg / L oxalic acid was added to test water was supplied to the flat membrane test apparatus and operated for 20 hours.
  • 1 mg / L of polyvinylamidine was added to the test water, and an aqueous solution adjusted to pH 6 was supplied to the flat membrane test apparatus and operated for 2 hours.
  • a polystyrene sulfonate aqueous solution having a molecular weight of 1,000,000 was added to the test water, and the aqueous solution adjusted to pH 6.5 was supplied to the flat membrane test apparatus and operated for 2 hours. Thereafter, after further washing with pure water, the test water was supplied and operated for 4 hours.
  • Example 27 As an amino treatment step, phenylalanine 10 mg / L and polyvinylamidine 1 mg / L are added to test water, and an aqueous solution adjusted to pH 5 is supplied to a flat membrane test apparatus and operated for 2 hours. Then, 10 mg / L of arginine and 1 mg / L of polyvinylamidine were added, and an aqueous solution adjusted to pH 8 was supplied to the flat membrane test apparatus and operated for 2 hours.
  • a polystyrene sulfonate aqueous solution having a molecular weight of 1,000,000 was added to the test water, and the aqueous solution adjusted to pH 6.5 was supplied to the flat membrane test apparatus and operated for 2 hours. Thereafter, after further washing with pure water, the test water was supplied and operated for 4 hours.
  • Example 28 As an amino treatment step, glycine 10 mg / L and polyvinylamidine 1 mg / L are added to test water, and an aqueous solution having a pH of 5 is supplied to the flat membrane test apparatus and operated for 2 hours. Then, 10 mg / L of arginine and 1 mg / L of polyvinylamidine were added, and an aqueous solution adjusted to pH 8 was supplied to the flat membrane test apparatus and operated for 2 hours.
  • a polystyrene sulfonate aqueous solution having a molecular weight of 1,000,000 was added to the test water, and the aqueous solution adjusted to pH 6.5 was supplied to the flat membrane test apparatus and operated for 2 hours. Thereafter, after further washing with pure water, the test water was supplied and operated for 4 hours.
  • Table 5 shows the permeation flux, desalination rate, and IPA removal rate before and after treatment in the restoration experiment E.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 透過流束を大きく低下させることなく、また著しい劣化膜であっても阻止率を効果的に向上させることができる方法が提供される。アミノ基を有する分子量1000以下の化合物を含む、pH7以下の水溶液(アミノ処理水)を透過膜に通水する工程(アミノ処理工程)を含む透過膜の阻止率向上方法。このアミノ処理工程後、前記アミノ処理水よりも高pHの水を透過膜に通水する。低分子量アミノ化合物を通水することにより、この透過膜の透過流束を大きく低下させることなく、膜の劣化部分を修復し、阻止率を効果的に向上させることができる。

Description

透過膜の阻止率向上方法及び透過膜
 本発明は透過膜の阻止率向上方法に係り、特に、透過膜の透過流束を大きく低下させることなく、透過膜、特に劣化した逆浸透(RO)膜を修復して、その阻止率を効果的に向上させる方法に関する。本発明はまた、この透過膜の阻止率向上方法により阻止率向上処理がなされた透過膜と、この透過膜を用いた水処理方法並びに透過膜装置及び水処理装置に関する。
 近年、水資源を有効に利用するために、排水を回収し、再生、再利用するプロセスや海水、かん水を淡水化するプロセスの導入が進んでいる。水質の高い処理水を得るために、電解質除去、中低分子除去が可能なナノ濾過膜や逆浸透膜(RO膜)等の選択的透過膜が使用されている。
 RO膜等の透過膜の無機電解質や水溶性有機物等の分離対象物に対する阻止率は、水中に存在する酸化性物質や還元性物質などの影響、その他の原因による素材高分子の劣化によって低下し、必要とされる処理水質が得られなくなる。この劣化は、長期間使用しているうちに少しずつ起こることもあり、また事故によって突発的に起こることもある。また、製品としての透過膜の阻止率自体が要求されるレベルに達していない場合もある。
 RO膜等の透過膜システムにおいては、膜面でのスライムによるバイオファウリングを防止するために、前処理工程において塩素(次亜塩素酸ソーダなど)による原水の処理が行われることがある。塩素は強力な酸化作用があるため、残留塩素を十分に処理せずに透過膜に供給すると、透過膜が劣化することが知られている。
 残留塩素を分解するために、重亜硫酸ソーダなどの還元剤を添加することも行われているが、重亜硫酸ソーダが過剰に添加されている還元環境下においても、Cu、Coなどの金属が共存すると膜が劣化することも知られている(特許文献1)。
  膜が劣化すると、透過膜の阻止率が大きく損なわれる。従来、RO膜等の透過膜の阻止率向上方法としては、以下のようなものが提案されている。
i) アニオン又はカチオンのイオン性高分子化合物を膜表面に付着させることにより、透過膜の阻止率を向上させる方法(特許文献2)。
 本方法は、ある程度の阻止率向上効果を示すが、劣化膜に対する阻止率向上効果は十分ではない。
ii) ポリアルキレングリコール鎖を有する化合物を膜表面に付着させることにより、ナノ濾過膜やRO膜の阻止率を向上させる方法(特許文献3)。
 本方法も、阻止率向上効果は得られるが、劣化膜に対して透過流束を大きく低下させることなく阻止率を向上させるという要求においては、十分に満足し得るものではない。
iii) 透過流束が増加した、アニオン荷電を有するナノ濾過膜やRO膜に対し、ノニオン系界面活性剤を用いた処理を行って、その透過流束を適正範囲まで低減させて、膜汚染や透過水質の悪化を防止する方法(特許文献4)。この方法では、透過流束が使用開始時の+20~-20%の範囲となるように、ノニオン性界面活性剤を膜面に接触、付着させる。
 このiii)の阻止率向上の有効性は、特許文献4に記載される実施例と比較例との対比においても確認できるが、著しく劣化が生じた膜(脱塩率で95%以下)においては、相当量の界面活性剤を膜面に付着させる必要があり、透過流束の劇的な低下を伴うと考えられる。また、この特許文献4の実施例においては、製造時の初期性能が、透過流束で1.20m/m・day、NaC阻止率が99.7%、シリカ阻止率が99.5%の芳香族系ポリアミドRO膜を2年間使用して酸化劣化した膜を使用するとあり、その劣化膜の性能が処理後において透過流束で1.84m/m・dayに増加したとの記載があるが、NaCl阻止率99.5%、シリカ阻止率98.0%と大きな劣化には至っていない膜を対象としており、この方法で、劣化した透過膜の阻止率を十分に向上させることができるかは不明である。
iv) タンニン酸などを劣化膜に付着させて脱塩率を改善させる方法。
 この方法による阻止率の向上効果は大きいとは言えず、例えば、劣化したRO膜であるES20(日東電工社製)、SUL-G20F(東レ社製)の透過水電気伝導度は、処理前後でそれぞれ、82%→88%、92%→94%であり、透過水の溶質濃度を1/2にするまでに阻止率を高めることはできない。
 なお、透過膜の劣化については、例えばポリアミド膜の酸化剤による劣化で、膜素材のポリアミド結合のC-N結合が分断され、膜本来のふるい構造が崩壊していることが知られている。
特開平7-308671号公報 特開2006-110520号公報 特開2007-289922号公報 特開2008-86945号公報
 上述の如く、従来、透過膜の阻止率向上方法としては各種の方法が提案されているが、従来の阻止率向上方法は、透過膜表面に新たに物質を付着させるため、透過流束の低下が起こる。例えば、阻止率を回復させて透過水の溶質濃度を1/2にするために、透過流束については処理前に対して20%以上も低下させてしまう場合もあった。また、非常に大きな劣化(例えば、電気伝導度阻止率が95%以下にまで低下)を起こした膜に対しては、既存の技術では、阻止率の回復が困難であった。
 本発明は上記従来の問題点を解決し、透過流束を大きく低下させることなく、また著しい劣化膜であっても阻止率を効果的に向上させることができる方法を提供することを目的とする。本発明はまた、このような透過膜の阻止率向上方法により阻止率向上処理が施された透過膜と、この透過膜を用いた水処理方法、この透過膜を備える透過膜装置及び水処理装置を提供することを目的とする。
 第1態様は、アミノ基を有する分子量1000以下の化合物を含む、pH7以下の水溶液(以下、この水溶液を「アミノ処理水」と称す。)を透過膜に通水する工程(以下、この工程を「アミノ処理工程」と称す。)を含むことを特徴とする透過膜の阻止率向上方法を提供する。
 第2態様は、第1態様において、前記アミノ処理工程後、前記アミノ処理水よりも高pHの水を前記透過膜に通水する工程(以下、この工程を「アルカリ処理工程」と称す。)を有することを特徴とする透過膜の阻止率向上方法を提供する。
 第3態様は、第2態様において、前記高pHの水は、アミノ基を有する分子量1000以下の化合物を含んでいることを特徴とする透過膜の阻止率向上方法を提供する。
 第4態様は、第1ないし3態様のいずれかにおいて、前記アミノ処理工程において、或いはアミノ処理工程後において、アニオン性官能基を有する化合物を含む水溶液を前記透過膜に通水することを特徴とする透過膜の阻止率向上方法を提供する。
 第5態様は、第1ないし4態様のいずれかにおいて、前記アミノ処理工程において、或いはアミノ処理工程後において、ノニオン性官能基を有する化合物及び/又はカチオン性官能基を有する化合物を前記透過膜に通水することを特徴とする透過膜の阻止率向上方法を提供する。
 第6態様は、第2ないし5態様のいずれかにおいて、前記アミノ処理工程及びアルカリ処理工程を2回以上繰り返し行うことを特徴とする透過膜の阻止率向上方法を提供する。
 第7態様は、第1ないし6態様のいずれかに記載の透過膜の阻止率向上方法により阻止率向上処理が施されたことを特徴とする透過膜を提供する。
 本発明者らは、上記課題を解決すべく、実機での劣化膜の調査解析を繰り返し行うなどして鋭意検討を重ね、次のような知見を得た。
1) 従来法のように、膜の劣化で膜にあいた穴を、新たな物質(例えば、ノニオン系界面活性剤やカチオン系界面活性剤などの化合物)を膜に付着させることにより塞ぐ方法では、膜の疎水化や、高分子物質の付着による膜の透過流束の低下が著しく、水量の確保が困難である。
2) 透過膜、例えばポリアミド膜は、酸化剤による劣化で、ポリアミドのC-N結合が分断され、膜本来のふるい構造が崩壊するが、膜の劣化箇所においては、アミド結合の分断でアミド基は消失してしまうものの、カルボキシル基が一部残存する。
3) この劣化膜のカルボキシル基にアミノ化合物を効率良く付着・結合させることにより、劣化膜を修復して阻止率を回復させることができる。
 この場合において、カルボキシル基に結合させるアミノ化合物として、アミノ基を有する低分子量化合物を用いることにより、膜表面の疎水化や、高分子物質を付着させることによる透過流束の著しい低下を抑制することができる。
 本発明は、このような知見をもとに完成されたものである。
 本発明によれば、酸化剤等により劣化した透過膜に、アミノ基を有する分子量1000以下の化合物(以下、「低分子量アミノ化合物」と称す。)を含む、pH7以下の水溶液(アミノ処理水)を通水することにより、この透過膜の透過流束を大きく低下させることなく、膜の劣化部分を修復し、阻止率を効果的に向上させることができる。
図1aは本発明による阻止率向上処理のメカニズムを示す、化学構造式の説明図である。 図1bは本発明による阻止率向上処理のメカニズムを示す、化学構造式の説明図である。 図1cは本発明による阻止率向上処理のメカニズムを示す、化学構造式の説明図である。 図1dは本発明による阻止率向上処理のメカニズムを示す、化学構造式の説明図である。 図1eは本発明による阻止率向上処理のメカニズムを示す、化学構造式の説明図である。 図1fは本発明による阻止率向上処理のメカニズムを示す、化学構造式の説明図である。 図2は実施例で用いた平膜試験装置を示す模式図である。 図3は実施例で用いた4inchモジュール試験装置を示す模式図である。
 以下に本発明の実施の形態を詳細に説明する。
[透過膜の阻止率向上方法]
 本発明の透過膜の阻止率向上方法は、分子量1000以下の低分子量アミノ化合物を含む、pH7以下の水溶液(アミノ処理水)を透過膜に通水するアミノ処理工程を有する。本発明は、好ましくは、このアミノ処理工程後、アミノ処理水よりも高pHの水を透過膜に通水するアルカリ処理工程を有する。更に、この高pHの水は、前記分子量1000以下の低分子量アミノ化合物を含むことが好ましい。
 また、本発明の透過膜の阻止率向上方法は、
 アミノ処理工程において、又はアミノ処理工程後において、アニオン性官能基を有する化合物を含む水溶液を透過膜に通水する工程(以下、「アニオン処理工程」と称す。)、
或いは、
 アミノ処理工程において、又はアミノ処理工程後において、ノニオン性官能基を有する化合物を透過膜に通水する工程(以下、「ノニオン処理工程」と称す。)
或いは、
 アミノ処理工程において、又はアミノ処理工程後において、カチオン性官能基を有する化合物を透過膜に通水する工程(以下、「カチオン処理工程」と称す。)
を有していても良い。
 また、アミノ処理工程とアルカリ処理工程、或いは更にアニオン処理工程、ノニオン処理工程、カチオン処理工程を2回以上繰り返し行っても良い。また、これらを適宜組み合わせて行っても良い。
 更に、上述のノニオン処理工程では、ポリアルキレングリコール鎖を有する高分子化合物などの高分子化合物を、上述のカチオン処理工程では、ポリビニルアミジンなどの高分子化合物を用いることが好ましい。
 なお、各工程間には必要応じて純水を透過膜に通水して純水洗浄を行ってもよい。
 従って、本発明の透過膜の阻止率向上方法の処理手順としては、例えば次のようなものが挙げられる。
 i) アミノ処理工程→純水洗浄
 ii) アミノ処理工程→アルカリ処理工程→純水洗浄
 iii) 上記ii)を2回以上繰り返し行う。例えば、2回繰り返す場合であれば、アミノ処理工程→アルカリ処理工程→純水洗浄→アミノ処理工程→アルカリ処理工程→純水洗浄。3回繰り返す場合であれば、アミノ処理工程→アルカリ処理工程→純水洗浄→アミノ処理工程→アルカリ処理工程→純水洗浄→アミノ処理工程→アルカリ処理工程→純水洗浄。
 iv) アミノ処理工程→アルカリ処理工程→純水洗浄→アニオン処理工程→純水洗浄
 v) アミノ処理工程→アルカリ処理工程→純水洗浄→ノニオン処理工程→純水洗浄
 vi) アミノ処理工程→アルカリ処理工程→純水洗浄→アニオン処理工程及びノニオン処理工程→純水洗浄
 vii) アミノ処理工程→アルカリ処理工程→純水洗浄→カチオン処理工程→純水洗浄
 viii) アミノ処理工程→アルカリ処理工程→純水洗浄→カチオン処理工程及びノニオン処理工程→純水洗浄
 ix) 上記iii)~viii)において、アミノ処理工程→アルカリ処理工程を2回以上繰り返し行った後、純水洗浄し、次の工程を行う。
 x) 上記i)~vi)及びix)において、アミノ処理工程としてアミノ処理とカチオン処理とを同時に行う。
 xi) 上記i)~iv)、vii)及びix)において、アミノ処理工程として、アミノ処理とノニオン処理とを同時に行う。
 xii) 上記i)~iv)及びix)において、アミノ処理工程として、アミノ処理、カチオン処理及びノニオン処理を同時に行う。
[膜の修復のメカニズム]
 本発明による劣化膜の修復のメカニズムは図1a~図1fの通りであると推察される。
 透過膜、例えば、ポリアミド膜の正常なアミド結合は図1aに示すような構造をとっている。この膜が塩素などの酸化剤で劣化した場合、アミド結合のC-N結合が分断され、最終的には図1bに示すような構造となる。
 図1bに示されるように、アミド結合の分断で、アミド基は酸化により消失し、この分断部分にカルボキシル基が形成される。
 このような劣化膜は、低pHの酸性水を通水する酸性条件では、図1cに示すようにカルボキシル基の水素は解離しないため、アニオン荷電が弱まる。
 この酸性水中に、低分子量アミノ化合物(図1dでは2,4-ジアミノ安息香酸)が含まれると、低pH条件では、低分子量アミノ化合物の溶解度が高いため、図1dに示す如く、この低分子量アミノ化合物は、溶質として膜の劣化部分と接触する。
 この状態で、図1eのように、アルカリ剤を使用してpHを上昇させると、低分子量アミノ化合物の溶解度が低下し、アルカリ条件では、アミノ基と膜のカルボキシル基との間の静電結合により、図1fのように、膜に低分子量アミノ化合物が結合して不溶性塩を形成し、この不溶性塩により、劣化膜の穴が修復され、阻止率が回復する。
 低分子量アミノ化合物を膜に透過させる際には、分子量や骨格(構造)の異なるアミノ化合物を数種類併用し、これらを同時に透過させることにより、各々の化合物が膜を透過する際に互いに障害となり、膜内の劣化箇所に滞留する時間が長くなることにより、膜のカルボキシル基と低分子量アミノ化合物のアミノ基との接触確率が高くなり、膜の修復効率が高められる。
 また、特に高分子量の化合物を併用することにより、膜の大きな劣化箇所を塞ぐことができ、修復効率が高まる。
 以下に、各工程について説明する。
<アミノ処理工程>
 本発明において、アミノ処理工程で用いるアミノ化合物は、アミノ基を有し、分子量1000以下の比較的低分子量のものであり、例えば、次のa)~f)が挙げられるが、これに限定されない。
 a) 芳香族アミノ化合物:例えば、アニリン、ジアミノベンゼンなどのベンゼン骨格とアミノ基を有するもの。
 b) 芳香族アミノカルボン酸化合物:例えば、3,5-ジアミノ安息香酸、3,4-ジアミノ安息香酸、2,4-ジアミノ安息香酸、2,5-ジアミノ安息香酸、2,4,6-トリアミノ安息香酸などのベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有するもの。
 c) 脂肪族アミノ化合物:例えば、メチルアミン、エチルアミン、オクチルアミン、1,9-ジアミノノナン(本明細書中では「NMDA」と略記することがある。)(C18(NH)等の炭素数1~20程度の直鎖炭化水素基と1個又は複数のアミノ基を有するもの、及び、アミノペンタン(NH(CHCH(CH)、2-メチルオクタンジアミン(本明細書中では「MODA」と略記することがある。)(NHCHCH(CH)(CHNH)等の炭素数1~20程度の分岐炭化水素基と1個又は複数のアミノ基を有するもの。
 d) 脂肪族アミノアルコール:例えばモノアミノイソペンタノール(本明細書中では「AMB」と略記することがある。)(NH(CHCH(CH)CHOH)等の直鎖又は分岐の炭素数1~20の炭化水素基にアミノ基と水酸基を有するもの。
 e) 環式アミノ化合物:例えばテトラヒドロフルフリルアミン(本明細書中では「FAM」と略記することがある。)(下記構造式)、キトサンなどの複素環とアミノ基を有するもの。
Figure JPOXMLDOC01-appb-C000001
 f) アミノ酸化合物:例えば、アルギニンやリシン等の塩基性アミノ酸化合物、アスパラギンやグルタミン等のアミド基を有するアミノ酸化合物、グリシンやフェニルアラニン等のその他アミノ酸化合物、およびこれらの重合物であるペプチド、あるいはそれらの誘導体、例えばアスパルテームなど。
 これらの低分子量アミノ化合物は、水に対する溶解性が高く、安定な水溶液として透過膜に通水することができ、前述の如く、膜のカルボキシル基と反応して透過膜に結合し、不溶性の塩を形成して、膜の劣化により生じた穴を塞ぎ、これにより膜の阻止率を高める。
 本発明のアミノ処理工程で用いる低分子量アミノ化合物の分子量が1000より大きいと、微細な劣化箇所に侵入できないことがあり好ましくない。ただし、アミノ化合物の分子量が過度に小さいと膜の緻密層に留まり難くなる。従って、このアミノ化合物の分子量は、1000以下、特に500以下、とりわけ60~300であることが好ましい。
 これらの低分子量アミノ化合物は、1種を単独で用いても良く、2種以上を混合して用いても良い。特に、本発明においては、分子量や骨格構造の異なる低分子量アミノ化合物を2種以上併用し、これらを同時に透過膜に透過させることにより、各々の化合物が膜を透過する際に互いに障害となり、膜内の劣化箇所に滞留する時間が長くなることにより、膜のカルボキシル基と低分子量アミノ化合物のアミノ基との接触確率が高くなり、膜の修復効果が高められるため好ましい。
 このため、分子量数十、例えば60~300程度の低分子量アミノ化合物と分子量が数百、例えば200~1000程度の低分子量アミノ化合物を併用したり、環状化合物と鎖状化合物を、更には直鎖化合物と分岐状化合物とを併用したりすることが好ましい。
 その好ましい組み合わせ例としては、ジアミノ安息香酸とNMDA又はアミノペンタンとの併用、アルギニンとアスパルテームとの併用、その他、アニリンとMODAとの併用などが挙げられる。
 アミノ処理水中の低分子量アミノ化合物の含有量は膜の劣化の度合により異なるが、過度に多いとアルカリ処理時に不溶化して透過流束を大きく低下させることがあり、過度に少ないと修復が不十分になるため、アミノ処理水中の低分子量アミノ化合物の濃度(2種以上の低分子量アミノ化合物を用いる場合は、その合計濃度)が、1~1000mg/L、特に5~500mg/L程度となるようにすることが好ましい。
 また、2種以上の低分子量アミノ化合物を用いる場合、各々の低分子量アミノ化合物の濃度に大きな差異があると、これらの併用による効果を得難いことから、最も多く含まれる低分子量アミノ化合物の含有量に対して、最も少なく含まれる低分子量アミノ化合物の含有量が50%以上となるように配合することが好ましい。
 アミノ処理工程においては、これらの低分子量アミノ化合物を、pH7以下、好ましくはpH5.5以下の酸性条件、或いは、処理する透過膜の等電点以下にした水溶液として、透過膜に通水する。
 このアミノ処理水のpHが高いと、低分子量アミノ化合物の溶解度が低下し、透過膜の原水側(一次側)に付着して透過膜内を透過させることが困難となる。ただし、アミノ処理水のpHが過度に低いと、大量の酸と、アルカリ処理工程に移るために大量のアルカリを要し、膜の劣化を進める可能性もあることから、このアミノ処理水のpHは1.5以上であることが好ましい。
 従って、アミノ処理水には、必要に応じて、酸を添加してpH調整を行う。この場合、使用する酸に特に制限はなく、塩酸、硫酸、スルファミン酸などの無機酸、メタンスルホン酸などのスルホン基を有する有機酸、クエン酸、リンゴ酸、シュウ酸などのカルボキシル基を有する有機酸、ホスホン酸、ホスフィン酸などのリン酸化合物などを挙げることができる。これらのうち、溶液の安定性とコスト面の観点から、塩酸、硫酸が好ましい。
 このようなアミノ処理工程において、アミノ処理水には、トレーサーとして、食塩(NaCl)等の無機電解質やイソプロピルアルコールやグルコース等の中性有機物及びポリマレイン酸などの低分子ポリマーなどを添加してもよく、これにより、アミノ処理工程において、透過膜の透過水への食塩やグルコースの透過の程度を分析して、膜の修復の程度を確認することができる。
 また、アミノ処理水中に、低分子量アミノ化合物以外の、分子量1000以下の低分子量の有機化合物、例えば、アルコール系化合物やカルボキシル基又はスルホン酸基を有する化合物、具体的にはイソブタノール、サリチル酸又はイソチアゾリン系化合物を、低分子量アミノ化合物と重合や凝集しないような程度の濃度、例えば0.1~100mg/L程度に添加しても良く、これにより、緻密層における立体障害を上げて、目詰めの効果を上げることが期待される。
 また、アミノ処理水を透過膜に通水するときの給水圧力は、過度に高いと劣化していない箇所への吸着が進むという問題があり、過度に低いと劣化箇所への吸着も進まないことから、当該透過膜の通常運転圧力の30~150%、特に50~130%とすることが好ましい。
 このアミノ処理工程は、常温、例えば10~35℃程度の温度で行うことができ、また、その処理時間としては、透過膜中を低分子量アミノ化合物が十分に透過して、膜の劣化箇所に接触する時間、低分子量アミノ化合物の分子量が十分に小さく透過膜を透過しやすい場合には、透過水側に低分子量アミノ化合物が検出される程度の時間であれば良く、特に制限とりわけ上限はないが、通常0.5~100時間、特に1~50時間程度とすることが好ましい。
[アルカリ処理工程]
 アミノ処理工程後は、アミノ処理水よりもpHの高い水、即ちpHが7より高いアルカリ性の水(以下「アルカリ処理水」と称す。)を透過膜に通水する。これにより、透過膜中に存在する低分子量アミノ化合物の溶解度が低下し、膜のカルボキシル基と低分子量アミノ化合物のアミノ基との反応が進行して低分子量アミノ化合物が膜中に不溶性塩として析出し、膜の劣化部分が修復される。このアルカリ処理水のpHが酸側にシフトしていると上記低分子量アミノ化合物の析出効果が十分に得られず、高すぎるとアルカリによる膜劣化が起こるため、アルカリ処理水のpHは、好ましくは7以上、12以下、特に11以下であることが好ましい。
 このアルカリ処理水は、アミノ処理水にアルカリを添加したものが好ましいが、純水にアルカリを添加して所定のアルカリ性に調整した水も用いることができる。またこれらの水についても、前述のアミノ処理水と同様、トレーサーとしての食塩やグルコース等を前述の濃度で含むものであっても良い。更には、アミノ処理工程が後述するアニオン処理工程、ノニオン処理工程又はカチオン処理工程と同時に行われる場合には、アルカリ処理工程においてこれらのアニオン処理工程、ノニオン処理工程又はカチオン処理工程を同時に行うことができる。
 アルカリ処理水の調製に用いるアルカリ剤として、特に制限はなく、水酸化ナトリウム、水酸化カリウムなどが挙げられる。但しコスト面や取り扱いの観点から、水酸化ナトリウムが好ましい。
 なお、このアルカリ処理水には、スケール分散剤、例えばリン酸系化合物、ホスホン酸系化合物を1~100mg/L程度添加しても良く、これによりpH上昇時に、系内に炭酸カルシウムスケールやシリカ系スケールが析出することを防止することができる。
 また、アルカリ処理水を透過膜に通水するときの給水圧力は、アミノ処理工程における理由と同様な理由から、当該透過膜の通常運転圧力の30~150%、特に50~130%とすることが好ましい。
 このアルカリ処理工程は、常温、例えば10~35℃程度の温度で行うことができ、また、その処理時間としては、透過水のpHが、用いたアルカリ処理水と同程度に上昇する程度の時間であれば良く、特に制限とりわけ上限はないが、通常0.5~100時間、特に1~50時間程度とすることが好ましい。
[純水洗浄]
 純水洗浄は必要に応じて行われる工程であり、上記のアルカリ処理工程後、又は、後述のアニオン処理工程、ノニオン処理工程又はカチオン処理工程後に、透過膜に純水を0.25~2時間程度通水することにより行われる。
 このときの温度、給水圧力についても、アミノ処理工程及びアルカリ処理工程と同様である。
[アニオン処理工程]
 アニオン処理工程は、前述のアミノ処理工程において、アミノ処理水にアニオン性官能基を有する化合物を添加して行うこともできるが、好ましくはアミノ処理工程後、さらに好ましくはアルカリ処理工程を行い、その後独立した工程として行うこともできる。
 このアニオン処理工程により、アミノ化合物やカチオン性化合物を定着させるという効果で、低分子量アミノ化合物の修復箇所への固定化を図ることができる。アニオン処理工程で用いるアニオン性官能基を有する化合物としては、ポリスチレンスルホン酸ソーダ、アルキルベンゼンスルホン酸、アクリル酸系ポリマー、カルボン酸系ポリマー、アクリル酸/マレイン酸コポリマーなどのスルホン酸基やカルボン酸基を有する、分子量1000~1000万程度の化合物が挙げられ、これらは1種を単独で用いても良く、2種以上を併用しても良い。
 好ましくは、分子量10万以下、例えば1000~10万のアクリル酸/マレイン酸コポリマーと、分子量10万以上、例えば20万~1000万のポリスチレンスルホン酸ソーダ、アルキルベンゼンスルホン酸ソーダ(分岐型)との併用であり、これにより、低分子ポリマーによる高分子ポリマーの隙間部分の目詰め、及び、高分子ポリマーによる多点吸着による安定吸着という効果が奏される。
 これらのアニオン性官能基を有する化合物は、水中に1000mg/L以下、例えば1~100mg/Lの濃度となるように溶解させて透過膜に通水することが好ましい。アニオン性官能基を有する化合物の濃度が低過ぎると、低分子量アミノ化合物の固定化効果が十分でなく、高過ぎると透過流束の低下を招く。
 また、分子量10万以下、例えば1000~10万のアクリル酸/マレイン酸コポリマーと、分子量10万以上、例えば20万~1000万のポリスチレンスルホン酸ソーダ、アルキルベンゼンスルホン酸ソーダ(分岐型)との併用の場合、各々の濃度は100mg/L以下、例えば5~50mg/L程度とすることが好ましい。
 なお、このアニオン処理工程においては、安息香酸などのカルボキシル基とベンゼン骨格を有する芳香族カルボン酸や、シュウ酸、クエン酸などのジカルボン酸、トリカルボン酸などを併用もしくは使用して修復後の余剰カチオンをつぶすことも有効である。
 このアニオン処理工程において、アニオン性官能基を有する化合物を溶解する水は、純水であっても良く、また、前述のアミノ処理水と同様、トレーサーとしての食塩やグルコース等を前述の濃度で含むものであっても良い。
 また、このアニオン処理工程で用いるアニオン性官能基を有する化合物を溶解した水のpHは、通常5~10程度であるが、pH3~5程度の酸性としても良い。
 なお、このアニオン処理工程においては、分子量2000~6000程度のポリエチレングリコールやポリアキシアルキルステアリルエーテルなどのポリアルキレングリコール鎖を有する高分子化合物やシクロデキストリンなどの環状骨格を有する化合物を併用しても良く、これにより、阻止率の向上と、表面の電荷の緩和で荷電性物質の吸着を抑制する効果が奏される。この場合、これらの化合物の添加量は、アニオン処理工程で透過膜に通水する水中の濃度として、0.1~100mg/L、特に0.5~20mg/L程度とすることが、透過流束の低下を抑えた上で、上記効果を得るために好ましい。
 アニオン処理工程における給水圧力についても、アミノ処理工程における理由と同様な理由から、当該透過膜の通常運転圧力の30~150%、特に50~130%とすることが好ましい。
 このアニオン処理工程は、常温、例えば10~35℃程度の温度で行うことができ、また、その処理時間としては、特に制限とりわけ上限はないが、通常0.5~100時間、特に1~50時間程度とすることが好ましい。
[ノニオン処理工程]
 ノニオン処理工程は、好ましくは前述のアミノ処理工程やアルカリ処理工程において、アミノ処理水にノニオン性官能基を有する化合物を添加して行うことができる。また、アミノ処理工程後、或いはアルカリ処理工程を行った場合にはアルカリ処理工程後に、独立した工程として行うこともできる。
 このノニオン処理工程により、電荷の影響の小さい箇所への吸着による目詰めという効果で、低分子量アミノ化合物の修復箇所への固定化を図ることができる。ノニオン処理工程で用いるノニオン性官能基を有する化合物としては、グリセリン・脂肪酸エステル、ソルビタン・脂肪酸エステルなどのアルコール系脂肪酸エステルや脂肪酸のポリオキシアルキレンエーテル、高級アルコールのポリオキシアルキレンエーテル、アルキルフェノールのポリオキシアルキレンエーテル、ソルビタンエステルのポリオキシアルキレンエーテル、ポリオキシプロピレンのポリオキシアルキレンエーテル等のプルロニック系界面活性剤などの酸化ポリエチレン重合付加物、アルキロールアマイド界面活性剤などの界面活性剤、ポリエチレングリコール、テトラエチレングリコール、ポリアルキレングリコールなどのグリコール系化合物などのヒドロキシル基やエーテル基を有する、分子量100~10000程度の化合物が挙げられ、これらは1種を単独で用いても良く、2種以上を併用しても良い。
 これらのノニオン性官能基を有する化合物は、水中に1000mg/L以下、例えば0.1~100mg/L、特に0.5~20mg/Lの濃度となるように溶解させて透過膜に通水することが好ましい。ノニオン性官能基を有する化合物の濃度が低過ぎると、低分子量アミノ化合物の固定化効果が十分でなく、高過ぎると透過流束の低下を招く。
 このノニオン処理工程において、ノニオン性官能基を有する化合物を溶解する水は、純水であっても良く、また、前述のアミノ処理水と同様、トレーサーとしての食塩やグルコース等を前述の濃度で含むものであっても良い。ノニオン処理工程で用いるノニオン性官能基を有する化合物を溶解した水は、さらに、シクロデキストリンなどの環状骨格を有する化合物を0.1~100mg/L特に0.5~70mg/L程度含有してもよい。
 また、このノニオン処理工程で用いるノニオン性官能基を有する化合物を溶解した水のpHは、通常5~10程度であるが、pH3~5程度の酸性としても良い。
 ノニオン処理工程における給水圧力についても、アミノ処理工程における理由と同様な理由から、当該透過膜の通常運転圧力の30~150%、特に50~130%とすることが好ましい。
 このノニオン処理工程は、常温、例えば10~35℃程度の温度で行うことができ、また、その処理時間としては、特に制限とりわけ上限はないが、通常0.5~100時間、特に1~50時間程度とすることが好ましい。
[カチオン処理工程]
 カチオン処理工程は、好ましくは前述のアミノ処理工程やアルカリ処理工程において、アミノ処理水にカチオン性官能基を有する化合物を添加して行うことができる。また、アミノ処理工程後、或いはアルカリ処理工程を行った場合はアルカリ処理工程後に、独立した工程として行うこともできる。
 このカチオン処理工程により、膜面のカルボキシル基にカチオン性官能基が結合して、膜の大きな劣化箇所を塞ぐという効果で、低分子量アミノ化合物の修復箇所への固定化を図ることができる。カチオン処理工程で用いるカチオン性官能基を有する化合物としては、塩化ベンゼトニウムやポリビニルアミジン、ポリエチレンイミン、キトサンなどの1~4級アンモニウム基やNを含む複素環基を有する、分子量100~1000万程度の化合物が挙げられ、特に分子量1000~1000万程度の高分子化合物が好ましく、これらは1種を単独で用いても良く、2種以上を併用しても良い。
 これらのカチオン性官能基を有する化合物は、水中に1000mg/L以下、例えば1~1000mg/L、特に5~500mg/Lの濃度となるように溶解させて透過膜に通水することが好ましい。カチオン性官能基を有する化合物の濃度が低過ぎると、低分子量アミノ化合物の固定化効果が十分でなく、高過ぎると透過流束の低下を招く。
 このカチオン処理工程において、カチオン性官能基を有する化合物を溶解する水は、純水であっても良く、また、前述のアミノ処理水と同様、トレーサーとしての食塩やグルコース等を前述の濃度で含むものであっても良い。
 また、このカチオン処理工程で用いるカチオン性官能基を有する化合物を溶解した水のpHは、通常5~10程度であるが、pH3~5程度の酸性としても良い。
 カチオン処理工程における給水圧力についても、アミノ処理工程における理由と同様な理由から、当該透過膜の通常運転圧力の30~150%、特に50~130%とすることが好ましい。
 このカチオン処理工程は、常温、例えば10~35℃程度の温度で行うことができ、また、その処理時間としては、特に制限とりわけ上限はないが、通常0.5~100時間、特に1~50時間程度とすることが好ましい。
[透過膜]
 本発明の透過膜の阻止率向上方法は、ナノ濾過膜、RO膜等の選択性透過膜に対して好適に適用される。ナノ濾過膜は、粒径が約2nm程度の粒子や高分子を阻止する液体分離膜である。ナノ濾過膜の膜構造としては、非対称膜、複合膜、荷電膜などの高分子膜などを挙げることができる。RO膜は、膜を介する溶液間の浸透圧差以上の圧力を高濃度側にかけて、溶質を阻止し、溶媒を透過する液体分離膜である。RO膜の膜構造としては、非対称膜、複合膜などの高分子膜などを挙げることができる。本発明の透過膜の阻止率向上方法を適用するナノ濾過膜又はRO膜の素材としては、例えば、芳香族系ポリアミド、脂肪族系ポリアミド、これらの複合材などのポリアミド系素材、酢酸セルロースなどのセルロース系素材などを挙げることができる。これらの中で、芳香族系ポリアミド素材の透過膜であって、劣化することによりC-N結合の分断でカルボキシル基を多く有する膜に、本発明の透過膜の阻止率向上方法を特に好適に適用することができる。
 また、本発明の透過膜の阻止率向上方法を適用する透過膜のモジュール形式に特に制限はなく、例えば、管状膜モジュール、平面膜モジュール、スパイラル膜モジュール、中空糸膜モジュールなどを挙げることができる。
 本発明の透過膜は、このような本発明の透過膜の阻止率向上方法により阻止率向上処理が施された透過膜、具体的には、RO膜、ナノ濾過膜等の選択的透過膜であり、透過膜の透過流束を高くした状態で阻止率が向上しており、かつその高い状態を長く維持させることも可能である。
[水処理方法]
 本発明の透過膜により、被処理水を透過させて透過膜処理を行う本発明の水処理方法では、透過膜の透過流束を高くした状態で阻止率が向上し、かつその高い状態を長く維持することができ、これにより有機物等の除去対象物質の除去効果が高く、長期間にわたって安定処理が可能である。被処理水の供給、透過の操作は通常の透過膜処理と同様に行うことができるが、カルシウムやマグネシウムなどの硬度成分を含有する被処理水を処理する場合は、原水に分散剤、スケール防止剤、その他の薬剤を添加してもよい。
[透過膜装置]
 本発明の透過膜を備える透過膜装置は、好ましくは、1次側に被処理水を通水し、2次側から透過水を取り出す透過膜モジュールと、モジュールの1次側に前述の各処理工程のための薬剤、即ち、低分子量アミノ化合物や、酸、アルカリ、その他の化合物を供給する手段とを有する。この透過膜モジュールは、耐圧容器と、この耐圧容器内を1次側と2次側とに区画するように設置された透過膜とを有する。
 この透過膜装置は、電子デバイス製造分野、半導体製造分野、その他の各種産業分野で排出される高濃度ないし低濃度TOC含有排水の回収・再利用のための水処理、あるいは工業用水や市水からの超純水製造、その他の分野の水処理に有効に適用される。処理対象とする被処理水は特に限定されるものではないが、有機物含有水に好適に用いることができ、例えばTOC=0.01~100mg/L、好ましくは0.1~30mg/L程度の有機物含有水の処理に好適に用いられる。このような有機物含有水としては電子デバイス製造工場排水、輸送機械製造工場排水、有機合成工場排水又は印刷製版・塗装工場排水など、あるいはそれらの一次処理水など挙げることができるが、これらに限定されない。
[水処理装置]
 本発明の透過膜を備える水処理装置は、透過膜、特にRO膜の目詰まりやファウリングを防止する目的で、透過膜装置の前処理装置として活性炭塔、凝集沈殿装置、凝集加圧浮上装置、濾過装置あるいは脱炭酸装置を備えることが好ましい。濾過装置としては、砂濾過装置、限外濾過装置、精密濾過装置などを用いることができる。前処理装置としては更にプレフィルターを設けてもよい。また、RO膜は酸化劣化を受けやすいため、必要に応じて原水に含まれる酸化剤(酸化劣化誘発物質)を除去する装置を設けることが好ましい。このような酸化劣化誘発物質を除去する装置としては、活性炭塔や還元剤注入装置などを用いることができる。特に活性炭塔は有機物も除去することが可能であり、上述の通りファウリング防止手段として兼用することができる。原水のpHは特に制限されるものではないが、硬度成分を多く含む場合は、pH5~7の酸性域に調整する、分散剤を使用するなどの対応を行うのが好ましい。
 また、この水処理装置で超純水を製造する場合には、透過膜装置の後段に、脱炭酸手段、イオン交換装置、電気再生式脱イオン装置、紫外線酸化装置、混床式イオン交換樹脂装置、限外濾過装置などが設けられる。
 以下に実施例及び比較例を挙げて本発明をより具体的に説明する。
[修復実験A(実施例1~3、比較例1~4)]
 初期性能が、脱塩率(NaCl濃度2000mg/Lの水溶液の電導度阻止率)99.2%で、透過流束1.22m/(m・d)であった芳香族系ポリアミドRO膜(通常運転圧力0.75MPa)を、水処理の実プラントにおいて約2年間使用することにより、酸化劣化して脱塩率89.3%、透過流束1.48m/(m・d)に劣化した平膜をサンプルとして用い、この膜を図2に示す平膜試験装置に装着し、膜の修復実験を行った。
 この修復実験Aにおいて、NaCl濃度2000mg/Lの水溶液を試験水として用いた。
 この平膜試験装置では、有底有蓋の円筒状容器1の高さ方向の中間位置に平膜設置部2を設けて容器内を原水室1Aと透過水室1Bとに仕切り、この容器1をスターラー3上に設置してある。ポンプ4で被処理水を配管11を介して原水室1Aに給水する。容器1内の攪拌子5を回転させて原水室1A内を攪拌し、透過水を透過水室1Bより配管12を介して取り出すと共に、濃縮水を原水室1Aより配管13を介して取り出す。濃縮水取り出し配管13には圧力計6と開閉バルブ7が設けられている。
 各実施例1~3及び比較例1~4における処理操作は、以下の通りとした。なお、以下において試験水のpH調整は、必要に応じて試験水に酸(HCl)又はアルカリ(NaOH)を添加することにより行った。また、通水はいずれも平均25℃にて、操作圧0.75MPaで行った。
<実施例1>
 試験水(NaCl濃度2000mg/L水溶液)に、3,5-ジアミノ安息香酸5mg/Lと、アミノペンタン5mg/Lと、ポリビニルアミジン(分子量350万)10mg/Lとを添加し、pH6とした水溶液をアミノ処理水とした。このアミノ処理水を平膜試験装置に給水した。この条件で2日間運転した後、超純水を供給して水洗し、その後、上記試験水を平膜試験装置に供給した。
<実施例2>
 試験水(NaCl濃度2000mg/L水溶液)に、3,5-ジアミノ安息香酸5mg/Lと、アミノペンタン5mg/Lとを添加し、pH6とした水溶液をアミノ処理水とした。このアミノ処理水を平膜試験装置に給水した。この条件で2日間運転した後、超純水を供給して水洗し、その後、上記試験水を平膜試験装置に供給した。。
<実施例3>
 試験水(NaCl濃度2000mg/L水溶液)に、3,5-ジアミノ安息香酸10mg/Lを添加し、pH6とした水溶液をアミノ処理水とした。このアミノ処理水を平膜試験装置に給水した。この条件で2日間運転した後、超純水を供給して水洗し、その後、上記試験水を平膜試験装置に供給した。
<比較例1>
 試験水(NaCl濃度2000mg/L水溶液)に、アルキルアマイドアミン誘導体を20mg/L添加し、pH6としたものを膜修復処理水とした。この膜修復処理水を平膜試験装置に給水した。この条件で2日間運転した後、超純水を供給して水洗し、その後、上記試験水を平膜試験装置に供給した。
<比較例2>
 試験水(NaCl濃度2000mg/L水溶液)に、セチルトリメチルアンモニウムクロライドを20mg/L添加し、pH6としたものを膜修復処理水とした。この膜修復処理水を平膜試験装置に給水した。この条件で2日間運転した後、超純水を供給して水洗し、その後、上記試験水を平膜試験装置に供給した。
<比較例3>
 試験水(NaCl濃度2000mg/L水溶液)に、ポリオキシエチレンアルキルエーテルを20mg/L添加し、pH6としたものを膜修復処理水とした。この膜修復処理水を平膜試験装置に給水した。この条件で2日間運転した後、超純水を供給して水洗し、その後、上記試験水を平膜試験装置に供給した。
<比較例4>
 試験水(NaCl濃度2000mg/L水溶液)に、ポリビニルアミジンを20mg/L添加し、pH6としたものを膜修復処理水とした。この膜修復処理水を平膜試験装置に給水した。この条件で2日間運転した後、超純水を供給して水洗し、その後、上記試験水を平膜試験装置に供給した。
 各実施例1~3及び比較例1~4におけるアミノ処理水又は膜修復処理水の通水開始時と処理後(試験水の給水開始直後)のRO膜の透過流束及び脱塩率と、透過流束の低下率及び脱塩率の改善率を調べ、結果を表1に示した。
 なお、脱塩率は、試験水(NaCl濃度2000mg/Lの水溶液)を平膜試験装置に給水し、電気伝導度計にて電気伝導度を測定し、
 脱塩率=(1-(透過水の電気伝導度×2)/(供給水(試験水)の電気伝導度+濃縮水の電気伝導度))×100
 また、透過流束は、
  透過水量×基準膜面有効圧力/膜面有効圧力×温度換算係数
より算出した。
 透過流束の低下率は、
  (初期透過流束-処理後透過流束)/初期透過流束×100
として計算した。
 脱塩率における改善率は、
  {1-(初期脱塩率-処理後脱塩率)/(初期脱塩率-開始時脱塩率)}×100
として計算した。
 なお、この修復実験Aにおいては、用いた平膜試験装置が劣化膜を使用していた実プラントとはモジュール型式や通水条件が異なるため、劣化膜と同一の型式の新品の平膜を図2の試験装置に装着し、この新品の平膜の透過流束と脱塩率を測定することにより初期値を調べた。その結果、透過流束は0.85m/(m・d)、脱塩率は99.1%であったことから、この値をこの修復実験Aにおける初期透過流速及び初期脱塩率とした。
Figure JPOXMLDOC01-appb-T000002
 表1より次のことが明らかである。
 実施例1においては、処理前後において、脱塩率は88.1%から96.1%にまで改善された。また、この際の透過流束の低下率は3.5%程度である。実施例2においても、脱塩率は88.4%から95.4%にまで改善された。また、この際の透過流束の低下率は2.4%程度である。実施例3は、透過流束の低下率は4.7%程度であり、脱塩率は94.5%にまで回復された。この実施例3は、低分子量アミノ化合物のみを1種用いているため、他の実施例1,2に比べて効果が若干劣る。
 いずれの場合も透過流束の低下率は10%以下、改善率は50%以上である。処理水の溶質濃度も開始時と比較して50%以下になった。
 一方、比較例1,2は、低分子量アミノ化合物の代わりにカチオン系界面活性剤を使用した例であり、処理前後において脱塩率の改善率はそれぞれ74.5%、86.7%と改善が認められているが、透過流束の低下率はそれぞれ69.4%、72.9%と著しく低下した。
 比較例3は低分子量アミノ化合物の代わりにノニオン系界面活性剤を使用した例であり、透過流束は17.6%の低下率で収まっているものの、脱塩率の改善はわずかに23.0%である。
 比較例4は低分子量アミノ化合物の代わりにカチオン性高分子を使用した例であり、透過流束は初期透過流束よりも高いが、脱塩率の改善率は39.8%である。
 以上の結果から、本発明によれば、透過流束の低下を抑えて、脱塩率を効果的に改善することができることが分かる。
[修復実験B(実施例4~9、比較例5,6)]
 NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7)を給水とする場合の初期性能が、透過流束1.17m/(m・d)、脱塩率98.3%で、透過水中のD-グルコース濃度が1mg/L未満の芳香族系ポリアミド低圧RO膜モジュール(DOW製低圧RO膜「BW30-4040」4inch,通常運転圧力1.5MPa)に対して、給水に次亜塩素酸ソーダ及び鉄を添加して膜を劣化させた。なお、膜の劣化は遊離有効塩素濃度を管理しながら行った。劣化後の膜の性能は、pH6.7にて透過流束1.88m/(m・d)、脱塩率68%、透過水中のD-グルコース濃度37mg/Lにまで低下した。この劣化膜を図3に示す4inchモジュール試験装置に装着し、修復実験を行った。
 本修復実験Bにおいて、NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7)を試験水として用いた。
 この4inchモジュール試験装置は、RO膜エレメント10に上記劣化膜11を装着して原水室10Aと透過水室10Bとに仕切り、原水を、高圧ポンプ12で、カートリッジフィルタ13A,13Bを備える配管21を介して給水し、透過水を配管22より取り出し、濃縮水を配管23より取り出すものである。
 配管21には、純水の供給配管24が接続され、電動弁14が設けられている。また、配管21には薬注点15A,15B,15C,15Dが設けられており、各点において、必要な薬剤が注入可能とされている。配管22,23にはそれぞれ流量計16,17が設けられている。
 各実施例4~9及び比較例4,5における処理操作は、以下の通りとした。なお、以下において試験水のpH調整は、必要に応じて試験水に酸(HCl)又はアルカリ(NaOH)を添加することにより行った。また、通水はいずれも平均25℃にて、操作圧1.5MPaで行った。
<実施例4>
 試験水(NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7))に、3,5-ジアミノ安息香酸5mg/Lと、アミノペンタン5mg/Lと、ポリビニルアミジン(分子量350万)10mg/Lとを添加し、pH5~5.5としたものをアミノ処理水とした。このアミノ処理水をモジュール試験装置に2時間通水した。その後、試験水中の3,5-ジアミノ安息香酸、アミノペンタン及びポリビニルアミジンの添加濃度はそのままにして、pHのみをpH7.5に調整したものをアルカリ処理水とし、このアルカリ処理水をモジュール試験装置に2時間通水した。更に、純水を通水して洗浄した後、試験水の給水を開始して4時間運転した。
<実施例5>
 実施例4におけるpH5~5.5での通水、pH7.5での通水及び純水洗浄を、2回繰り返して行った後(pH5~5.5での通水→pH7.5での通水→純水洗浄→pH5~5.5での通水→pH7.5での通水→純水洗浄)、試験水の給水を開始して4時間運転した。
<実施例6>
 実施例4において、pH5~5.5での通水におけるpH条件をpH6としたこと以外は同様にして処理を行った。
<実施例7>
 実施例4において、pH5~5.5での通水におけるpH条件をpH4とし、その後、pH7.5での通水におけるpH条件をpH10としたこと以外は同様にして処理を行った。
<実施例8>
 試験水(NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7))に、3,5-ジアミノ安息香酸を5mg/L添加して、pH5~5.5としたものをアミノ処理水とした。このアミノ処理水をモジュール試験装置に2時間通水した後、純水で通水洗浄し、その後、試験水の給水を再開して4時間運転した。
<実施例9>
 試験水(NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7))に、MODA(2-メチルオクタンジアミン)を5mg/L添加して、pH5~5.5としたものをアミノ処理水とした。このアミノ処理水をモジュール試験装置に2時間通水した後、純水で通水洗浄し、その後、試験水の給水を開始して4時間運転した。
<比較例5>
 試験水(NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7))に、セチルトリメチルアンモニウムクロライドを20mg/L添加し、pH5~5.5としたものを膜修復処理水とした。この膜修復処理水を2時間通水した後、純水で通水洗浄し、その後、試験水の給水を開始して4時間運転した。
<比較例6>
 試験水(NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7))に、ポリオキシエチレンアルキルエーテルを20mg/L添加し、pH5~5.5としたものを膜修復処理水とした。この膜修復処理水を2時間通水した後、純水で通水洗浄し、その後、試験水の給水を開始して4時間運転した。
 各実施例4~9及び比較例5,6における処理前後の透過流束及び脱塩率と、透過水中のD-グルコース濃度を調べ、結果を表2に示した。
 なお、脱塩率は電気伝導度計にて電気伝導度を測定し、
 脱塩率=(1-(透過水の電気伝導度×2)/(供給水(試験水)の電気伝導度+濃縮水の電気伝導度))×100
で算出した。
 D-グルコースの濃度は、MERCK製RQflex10分析機器を用いて測定した。
また、透過流束は、
  透過水量×基準膜面有効圧力/膜面有効圧力×温度換算係数
より算出した。
 なお、表2で処理後とは、試験水を4時間通水したときを表わす。
Figure JPOXMLDOC01-appb-T000003
 表2より次のことが明らかである。
 脱塩率は、実施例4では23.1%(91.1-68.0=23.1)、実施例5では27.1%(95.9-68.8=27.1)回復した。また、透過水中のD-グルコース濃度も、実施例4では37mg/Lから3mg/Lに低下し、実施例5では38mg/Lから2mg/Lに低減した。また、その際、透過流束を著しく落とすことはなかった。実施例6,7でも同様に良好な結果が得られた。
 一方、比較例5では、脱塩率が28.5%(97.8-69.3=28.5)回復したが、透過流束は1.89m/(m・d)から0.36m/(m・d)に大きく低下した。また、比較例6の場合、透過流束が大きく低下しない段階で処理を停止したが、脱塩率に大きな改善は認められなかった。
 実施例8,9では、脱塩率が18.3%(85.3-67.0=18.3)、23.5%(90.3-66.8=23.5)それぞれ回復したが、透過水中のD-グルコース濃度は10mg/L以下には低下せず、アミノ化合物を1種のみ用いた場合には修復効果は小さいことが分かる。
[修復実験C(実施例10~14)]
 修復実験Bにおけると同様に、NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7)を給水とする場合の初期性能が、透過流束1.17m/(m・d)、脱塩率98.3%で、透過水中のD-グルコース濃度が1mg/L未満の芳香族系ポリアミド低圧RO膜モジュール(DOW製低圧RO膜「BW30-4040」4inch,通常運転圧力1.5MPa)を次亜塩素酸ソーダ及び鉄で劣化させて、pH6.7にて、透過流束1.88m/(m・d)、脱塩率68%、透過水中のD-グルコース濃度37mg/Lにまで低下させた膜をサンプルとして用い、図3に示す4inchモジュール試験装置で修復実験を行った。
 この修復実験Cにおいて、NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7)を試験水として用いた。
 各実施例10~14における処理操作は、以下の通りとした。なお、以下において試験水のpH調整は、必要に応じて試験水に酸(HCl)又はアルカリ(NaOH)を添加することにより行った。また、通水は、いずれも平均25℃にて、操作圧1.5MPaで行った。
<実施例10>
 試験水(NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7))に、3,5-ジアミノ安息香酸5mg/Lと、アミノペンタン5mg/Lと、ポリビニルアミジン(分子量350万)10mg/Lとを添加し、pH5~5.5としたものをアミノ処理水とした。このアミノ処理水をモジュール試験装置に2時間通水し、その後、更に、試験水中の3,5-ジアミノ安息香酸、アミノペンタン及びポリビニルアミジンの濃度はそのままで、pHのみpH7.5に調整したものをアルカリ処理水とし、このアルカリ処理水をモジュール試験装置に2時間通水した。更に、純水を通水して洗浄した後、試験水にアニオン性化合物(分岐型アルキルベンゼンスルホン酸、分子量350)を100mg/L添加してpH6~8としたものをアニオン処理水とし、このアニオン処理水をモジュール試験装置に4時間通水し、更に純水で通水洗浄した後、試験水の給水を開始して5時間運転した。
<実施例11>
 実施例10において、アニオン性化合物の水溶液によるアニオン処理の代りにノニオン性化合物(PEG、分子量3000)20mg/Lの水溶液を用いてノニオン処理を行ったこと以外は同様にして処理を行った。
<実施例12>
 実施例10において、アニオン性化合物50mg/Lと共に、ノニオン性化合物(PEG、分子量3000)を10mg/L添加した水溶液を用いたこと以外は同様にして処理を行った。
<実施例13>
 実施例10において、アニオン性化合物の水溶液によるアニオン処理の代りにポリエチレングリコール(分子量3000)とシクロデキストリンをそれぞれ10mg/L、50mg/L添加した水溶液によるノニオン処理を行ったこと以外は同様にして処理を行った。
<実施例14>
 実施例10において、アニオン処理を行わなかったこと以外は同様にして処理を行った。
 各実施例10~14における処理前後の透過流束及び脱塩率を、修復実験Bと同様に調べ、結果を表3に示した。
 なお、表3において、処理直後とは、純水による通水洗浄後、試験水の給水を開始した直後であり、処理5日後とは、純水による通水洗浄後、試験水の給水を開始して5日間運転したときである。
Figure JPOXMLDOC01-appb-T000004
 表3より次のことが分かる。
 実施例14においては、処理前に69.5%であった脱塩率が処理直後に92.2%にまで向上できたものの、5日間連続通水することで、付着させた化合物が剥離し脱塩率は85.2%にまで低下した。
 これに対して、実施例10~13においては、処理前で脱塩率68.0~68.8%であったものが、処理直後は91.1~95.9%にまで回復でき、更にアニオン系界面活性剤やノニオン系界面活性剤を添加して、膜表面のコンディショニングをすること(付着させたアミノ化合物の固定化)で、5日間の連続通水後も脱塩率を88.8~90.6%にとどめることができた。
[修復実験D(実施例15~17、比較例7)]
 修復実験Bと同様に、NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7)を給水とする場合の初期性能が、透過流束1.17m/(m・d)、脱塩率98.3%で、透過水中のD-グルコース濃度が1mg/L未満の芳香族系ポリアミド低圧RO膜モジュール(DOW製低圧RO膜「BW30-4040」4inch,通常運転圧力1.5MPa)を次亜塩素酸ソーダ及び鉄で劣化させて、pH6.7にて、透過流束1.88m/(m・d)、脱塩率68%、透過水中のD-グルコース濃度37mg/Lにまで低下させた膜をサンプルとして用い、図3に示す4inchモジュール試験装置で修復実験を行った。
 本修復実験Dにおいて、NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7)を試験水として用いた。
 各実施例15~17及び比較例7における処理操作は、以下の通りとした。なお、以下において試験水のpH調整は、必要に応じて試験水に酸(HCl)又はアルカリ(NaOH)を添加することにより行った。また、通水は、いずれも平均25℃にて、操作圧1.5MPaで行い、以下製造例で製造したキトサンを使用した。
 <キトサンの製造例>
 キトサン5(和光純薬工業株式会社製試薬、0~10mPa・s)100gを30重量%塩酸水溶液400gに溶解し、80℃に加熱して加水分解を行い、加水分解後、0~5℃に冷却し24時間静置した。なお、80℃での加熱時間を5分から60分の範囲で変化させることで異なる平均分子量のキトサンの水溶液(濃度20重量%)を得た。得られたキトサンをGPCにより重量平均分子量を測定したところ、平均分子量は500、750、1000、1250であった。それぞれ、キトサン500、キトサン750、キトサン1000、キトサン1250として、希釈して以下の各実施例及び比較例で使用した。
<実施例15>
 試験水(NaCl濃度200mg/L、D-グルコース濃度100mg/Lの水溶液(pH6.7))に、キトサン500を5mg/Lと、アミノペンタン5mg/Lと、ポリビニルアミジン(分子量350万)10mg/Lとを添加し、pH5~5.5として2時間通水し、その後、試験水中のキトサン500、アミノペンタン及びポリビニルアミジン濃度はそのままにして、pHのみをpH7.5に調整して2時間通水した。更に、純水を通水して洗浄した後、試験水の給水を開始して4時間運転した。
<実施例16>
 実施例15において、キトサン500の代わりにキトサン750を用いた以外は同様にして処理を行った。
<実施例17>
 実施例15において、キトサン500の代わりにキトサン1000を用いた以外は同様にして処理を行った。
<実施例18>
 実施例15において、キトサン500の代わりにキトサン1250を用いた以外は同様にして処理を行った。
 各実施例及び比較例における処理前後の透過流束及び脱塩率と、透過水中のD-グルコース濃度を調べ、結果を表4に示した。
 なお、脱塩率は電気伝導度計にて電気伝導度を測定し、
 脱塩率=(1-(透過水の電気伝導度×2)/(供給水(試験水)の電気伝導度+濃縮水の電気伝導度))×100
で算出した。
 D-グルコースの濃度は、MERCK製RQflex10分析機器を用いて測定した。
また、透過流束は、
  透過水量×基準膜面有効圧力/膜面有効圧力×温度換算係数
より算出した。
 なお、表4で処理後とは、純水洗浄後、試験水を4時間通水したときを表わす。
<実施例19>
 実施例16において、アミノペンタンを用いなかったこと以外は同様にして処理を行った。
<実施例20>
 実施例17において、アミノペンタンを用いなかったこと以外は同様にして処理を行った。
<比較例7>
 実施例18において、アミノペンタンを用いなかったこと以外は同様にして処理を行った。
Figure JPOXMLDOC01-appb-T000005
 表4により次のことが明らかである。
 アミノ処理工程で使用するアミノ基を有する化合物の分子量が増大するにつれて、処理後の透過流束は増大する傾向にあり、また、処理後の脱塩率は低下する傾向にあった。特に、アミノペンタンを用いない条件で、キトサンの分子量のみを変えた修復実験では、分子量が1000のものを用いた実施例20と分子量が1250のものを用いた比較例7とを比較すると、前者は処理後の脱塩率は77.5%とほぼ80%近くにまで回復しているのに対して、後者は70.2%と約70%程度にまでしか回復していなかった。
[修復実験E(実施例21~28)]
 日東電工社製超低圧膜ES-20を過酸化水素と鉄で酸化劣化させて劣化膜を得た。この膜の初期性能が、脱塩率(電導度阻止率)99%、IPA除去率88%(試験水:NaCl濃度500mg/L、IPA濃度100mg/Lの水溶液)、透過流束0.85m/(m・d)、酸化劣化後は、脱塩率82%、IPA除去率60%、透過流束1.3m/(m・d)となった。なお、性能の評価、および修復実験には、修復実験Aで使用した平膜試験装置を用いた。通水はいずれも平均温度25℃にて、操作圧はいずれも0.75MPaである。
<実施例21>
 アミノ処理工程として、試験水(NaCl濃度500mg/L、IPA濃度100mg/Lの水溶液)にアルギニン10mg/Lを添加し、pH5とした水溶液を平膜試験装置に給水し、2時間運転した後、アルカリ処理工程として、試験水にアルギニン10mg/Lを添加し、pH8とした水溶液を平膜試験装置に給水し、2時間運転した。その後、更に純水で通水洗浄した後、試験水の給水を開始して4時間運転した。
<実施例22>
 アミノ処理工程として、試験水に、アルギニン10mg/Lとポリビニルアミジン1mg/Lを添加し、pH5とした水溶液を平膜試験装置に給水し、2時間運転した後、アルカリ処理工程として、試験水に、アルギニン10mg/Lとポリビニルアミジン1mg/Lを添加し、pH8とした水溶液を平膜試験装置に給水し、2時間運転した。その後、更に純水で通水洗浄した後、試験水の給水を開始して4時間運転した。
<実施例23>
 アミノ処理工程として、試験水に、アルギニン10mg/Lとポリビニルアミジン1mg/Lを添加し、pH5とした水溶液を平膜試験装置に給水し、2時間運転した後、アルカリ処理工程として、試験水に、アルギニン10mg/Lとポリビニルアミジン1mg/Lを添加し、pH8とした水溶液を平膜試験装置に給水し、2時間運転した。1時間の純水通水後、アニオン処理工程として、試験水に分子量100万のポリスチレンスルホン酸ソーダ水溶液を添加し、pH6.5とした水溶液を平膜試験装置に給水し、2時間運転した。その後、更に純水で通水洗浄した後、試験水の給水を開始して4時間運転した。
<実施例24>
 アミノ処理工程として、試験水(NaCl濃度500mg/L、IPA濃度100mg/Lの水溶液)にアルギニン10mg/Lを添加し、pH5とした水溶液を平膜試験装置に給水し、2時間運転した後、アルカリ処理工程として、試験水にアルギニン10mg/Lを添加し、pH8とした水溶液を平膜試験装置に給水し、2時間運転した。1時間の純水通水後、アニオン処理工程として、試験水に1mg/Lのシュウ酸を添加した水溶液を平膜試験装置に給水し、20時間運転した。その後、更に純水で通水洗浄した後、試験水の給水を開始して4時間運転した。
<実施例25>
 アミノ処理工程として、試験水(NaCl濃度500mg/L、IPA濃度100mg/Lの水溶液)にアルギニン10mg/Lを添加し、pH5とした水溶液を平膜試験装置に給水し、2時間運転した後、アルカリ処理工程として、試験水にアルギニン10mg/Lを添加し、pH8とした水溶液を平膜試験装置に給水し、2時間運転した。1時間の純水通水後、アニオン処理工程として、試験水に1mg/Lのシュウ酸を添加した水溶液を平膜試験装置に給水し、20時間運転した。1時間の純水通水後、カチオン処理工程として、試験水にポリビニルアミジン1mg/Lを添加し、pH6とした水溶液を平膜試験装置に給水し、2時間運転した。1時間の純水通水後、アニオン処理工程として、試験水に分子量100万のポリスチレンスルホン酸ソーダ水溶液を添加し、pH6.5とした水溶液を平膜試験装置に給水し、2時間運転した。その後、更に純水で通水洗浄した後、試験水の給水を開始して4時間運転した。
<実施例26>
 アミノ処理工程として、試験水(NaCl濃度500mg/L、IPA濃度100mg/Lの水溶液)にアルギニン5mg/Lとアスパルテーム5mg/Lを添加し、pH5とした水溶液を平膜試験装置に給水し、2時間運転した後、アルカリ処理工程として、試験水にアルギニン5mg/Lとアスパルテーム5mg/Lを添加し、pH8とした水溶液を平膜試験装置に給水し、2時間運転した。1時間の純水通水後、アニオン処理工程として、試験水に1mg/Lのシュウ酸を添加した水溶液を平膜試験装置に給水し、20時間運転した。1時間の純水通水後、カチオン処理工程として、試験水にポリビニルアミジン1mg/Lを添加し、pH6とした水溶液を平膜試験装置に給水し、2時間運転した。1時間の純水通水後、アニオン処理工程として、試験水に分子量100万のポリスチレンスルホン酸ソーダ水溶液を添加し、pH6.5とした水溶液を平膜試験装置に給水し、2時間運転した。その後、更に純水で通水洗浄した後、試験水の給水を開始して4時間運転した。
<実施例27>
 アミノ処理工程として、試験水に、フェニルアラニン10mg/Lとポリビニルアミジン1mg/Lを添加し、pH5とした水溶液を平膜試験装置に給水し、2時間運転した後、アルカリ処理工程として、試験水に、アルギニン10mg/Lとポリビニルアミジン1mg/Lを添加し、pH8とした水溶液を平膜試験装置に給水し、2時間運転した。1時間の純水通水後、アニオン処理工程として、試験水に分子量100万のポリスチレンスルホン酸ソーダ水溶液を添加し、pH6.5とした水溶液を平膜試験装置に給水し、2時間運転した。その後、更に純水で通水洗浄した後、試験水の給水を開始して4時間運転した。
<実施例28>
 アミノ処理工程として、試験水に、グリシン10mg/Lとポリビニルアミジン1mg/Lを添加し、pH5とした水溶液を平膜試験装置に給水し、2時間運転した後、アルカリ処理工程として、試験水に、アルギニン10mg/Lとポリビニルアミジン1mg/Lを添加し、pH8とした水溶液を平膜試験装置に給水し、2時間運転した。1時間の純水通水後、アニオン処理工程として、試験水に分子量100万のポリスチレンスルホン酸ソーダ水溶液を添加し、pH6.5とした水溶液を平膜試験装置に給水し、2時間運転した。その後、更に純水で通水洗浄した後、試験水の給水を開始して4時間運転した。
 修復実験Eにおける、処理前と後の透過流束、脱塩率、IPA除去率を表5に示す。
Figure JPOXMLDOC01-appb-T000006
 表5より次のことが明らかである。
 アミノ処理工程で使用する低分子量アミノ化合物として、アルギニン、アスパルテーム、フェニルアラニンまたはグリシンを用いても、透過流束を大きく低下させることなく阻止率を回復させることが可能であった。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2009年9月29日付で出願された日本特許出願(特願2009-224643)に基づいており、その全体が引用により援用される。

Claims (23)

  1.  アミノ基を有する分子量1000以下の化合物を含む、pH7以下の水溶液(以下、この水溶液を「アミノ処理水」と称す。)を透過膜に通水するアミノ処理工程を含むことを特徴とする透過膜の阻止率向上方法。
  2.  請求項1において、前記アミノ処理工程後、pHが7よりも高い第2の水溶液を前記透過膜に通水するアルカリ処理工程を有することを特徴とする透過膜の阻止率向上方法。
  3.  請求項2において、前記第2の水溶液は、アミノ基を有する分子量1000以下の化合物を含んでいることを特徴とする透過膜の阻止率向上方法。
  4.  請求項1ないし3のいずれか1項において、前記アミノ処理工程において、或いはアミノ処理工程後において、アニオン性官能基を有する化合物を含む水溶液を前記透過膜に通水することを特徴とする透過膜の阻止率向上方法。
  5.  請求項1ないし3のいずれか1項において、前記アミノ処理工程において、或いはアミノ処理工程後において、ノニオン性官能基を有する化合物及び/又はカチオン性官能基を有する化合物を含む水溶液を前記透過膜に通水することを特徴とする透過膜の阻止率向上方法。
  6.  請求項1において、前記アミノ処理水がさらにカチオン性官能基を有する化合物を含有することを特徴とする透過膜の阻止率向上方法。
  7.  請求項3において、前記アルカリ処理工程で通水する第2の水溶液がさらにカチオン性官能基を有する化合物を含有することを特徴とする透過膜の阻止率向上方法。
  8.  請求項6又は7において、カチオン性官能基を有する化合物が、ポリビニルアミジンであることを特徴とする透過膜の阻止率向上方法。
  9.  請求項2又は3において、前記アルカリ処理工程後に、アニオン性官能基を有する化合物、及びノニオン性官能基を有する化合物の少なくとも1つを含む第3の水溶液を前記透過膜に通水することを特徴とする透過膜の阻止率向上方法。
  10.  請求項2又は3において、前記アミノ処理工程及びアルカリ処理工程を2回以上繰り返し行うことを特徴とする透過膜の阻止率向上方法。
  11.  請求項1~3のいずれか1項において、アミノ基を有する分子量1000以下の化合物が芳香族アミノ化合物、芳香族アミノカルボン酸化合物、脂肪族アミノ化合物、脂肪族アミノアルコール、複素環アミノ化合物及びアミノ酸化合物よりなる群から選ばれる少なくとも1つであることを特徴とする透過膜の阻止率向上方法。
  12.  請求項1~3のいずれか1項において、アミノ基を有する分子量1000以下の化合物が芳香族アミノカルボン酸化合物と脂肪族アミノ化合物であることを特徴とする透過膜の阻止率向上方法。
  13.  請求項11において、芳香族アミノカルボン酸化合物がジアミノ安息香酸又はトリアミノ安息香酸であることを特徴とする透過膜の阻止率向上方法。
  14.  請求項11において、複素環アミノ化合物がキトサンであることを特徴とする透過膜の阻止率向上方法。
  15.  請求項11において、脂肪族アミノ化合物は、炭素数1~20の炭化水素基を有することを特徴とする透過膜の阻止率向上方法。
  16.  請求項15において、脂肪族アミノ化合物がアミノペンタン又は2-メチルオクタンジアミンであることを特徴とする透過膜の阻止率向上方法。
  17.  請求項4において、アニオン性官能基を有する化合物がスルホン酸基又はカルボン酸基を有する分子量1000~1000万の化合物であることを特徴とする透過膜の阻止率向上方法。
  18.  請求項4において、アニオン性官能基を有する化合物は、ポリスチレンスルホン酸ソーダ、アルキルベンゼンスルホン酸、アクリル酸系ポリマー、及びカルボン酸系ポリマー、アクリル酸/マレイン酸コポリマーよりなる群から選ばれる少なくとも1つであることを特徴とする透過膜の阻止率向上方法。
  19.  請求項9において、アニオン性官能基を有する化合物は、ポリスチレンスルホン酸ソーダ、アルキルベンゼンスルホン酸、アクリル酸系ポリマー、及びカルボン酸系ポリマー、アクリル酸/マレイン酸コポリマーよりなる群から選ばれる少なくとも1つであることを特徴とする透過膜の阻止率向上方法。
  20.  請求項9において、ノニオン性官能基を有する化合物が分子量100~1000のグリコール系化合物であることを特徴とする透過膜の阻止率向上方法。
  21.  請求項9において、アニオン性官能基を有する化合物がアルキルベンゼンスルホン酸であり、ノニオン性官能基を有する化合物がポリエチレングリコール系化合物であることを特徴とする透過膜の阻止率向上方法。
  22.  請求項9において、第3の水溶液がさらにシクロデキストリンを含有することを特徴とする透過膜の阻止率向上方法。
  23.  請求項1に記載の透過膜の阻止率向上方法により阻止率向上処理が施されたことを特徴とする透過膜。
PCT/JP2010/066654 2009-09-29 2010-09-27 透過膜の阻止率向上方法及び透過膜 WO2011040354A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011534226A JP5633517B2 (ja) 2009-09-29 2010-09-27 透過膜の阻止率向上方法及び透過膜
DE112010003846T DE112010003846T5 (de) 2009-09-29 2010-09-27 Verfahren zur Verbesserung der Abstoßung einer permeablenMembran und permeable Membran
CN201080042730.8A CN102695555B (zh) 2009-09-29 2010-09-27 提高透过膜阻止率的方法及透过膜
BR112012007129-7A BR112012007129B1 (pt) 2009-09-29 2010-09-27 Membrana permeável, e método para melhorar sua rejeição
US13/496,785 US20120168370A1 (en) 2009-09-29 2010-09-27 Method of improving rejection of permeable membrane and permeable membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009224643 2009-09-29
JP2009-224643 2009-09-29

Publications (1)

Publication Number Publication Date
WO2011040354A1 true WO2011040354A1 (ja) 2011-04-07

Family

ID=43826169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066654 WO2011040354A1 (ja) 2009-09-29 2010-09-27 透過膜の阻止率向上方法及び透過膜

Country Status (7)

Country Link
US (1) US20120168370A1 (ja)
JP (1) JP5633517B2 (ja)
CN (1) CN102695555B (ja)
BR (1) BR112012007129B1 (ja)
DE (1) DE112010003846T5 (ja)
TW (1) TWI478763B (ja)
WO (1) WO2011040354A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121209A1 (ja) * 2011-03-09 2012-09-13 栗田工業株式会社 透過膜の阻止率向上方法、阻止率向上処理剤及び透過膜
WO2012121208A1 (ja) * 2011-03-09 2012-09-13 栗田工業株式会社 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
JP2013202585A (ja) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd ホルムアルデヒド含有排水の処理法
WO2013153982A1 (ja) * 2012-04-09 2013-10-17 栗田工業株式会社 逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜
JP2015123430A (ja) * 2013-12-27 2015-07-06 東レ株式会社 造水方法
WO2016185789A1 (ja) * 2015-05-20 2016-11-24 栗田工業株式会社 逆浸透膜の洗浄剤、洗浄液、および洗浄方法
CN112999881A (zh) * 2021-03-17 2021-06-22 同济大学 一种再生利用水处理报废pvdf膜的方法
WO2023176048A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法
WO2023176049A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10239021B2 (en) * 2012-06-14 2019-03-26 Teledyne Scientific & Imaging, Llc Fouling resistant coating for filtration membranes and methods of producing and using same
JP6251953B2 (ja) * 2012-12-28 2017-12-27 栗田工業株式会社 逆浸透膜の阻止率向上方法
US10384167B2 (en) 2013-11-21 2019-08-20 Oasys Water LLC Systems and methods for improving performance of osmotically driven membrane systems
AU2014353129A1 (en) * 2013-11-21 2016-05-26 Oasys Water LLC Systems and methods for repairing membranes and improving performance of osmotically driven membrane systems
EP3092057B1 (en) * 2014-01-07 2018-09-19 Dow Global Technologies LLC Treatment of aqueous mixtures containing anionic surfactants using fouling resistant reverse osmosis membrane
JP2016155052A (ja) * 2015-02-23 2016-09-01 栗田工業株式会社 水中微粒子の除去装置及び超純水製造・供給システム
WO2018091273A1 (en) 2016-11-16 2018-05-24 Basf Se New processes for treating water
JP6468305B2 (ja) * 2017-03-07 2019-02-13 栗田工業株式会社 水処理薬品及びその調製方法、並びにポリアミド系逆浸透膜の洗浄方法
CN111558300B (zh) * 2020-04-07 2022-03-22 天津工业大学 一种小分子两性离子改性表面聚酰胺复合膜及其制备方法
CN113413767B (zh) * 2021-05-13 2022-03-22 铜陵有色金属集团股份有限公司 旧膜修复方法
CN115814605B (zh) * 2022-12-06 2024-04-12 浙江大学 一种废弃反渗透膜修复剂及修复方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811005A (ja) * 1981-07-10 1983-01-21 Toray Ind Inc 半透膜の処理法
JPH022827A (ja) * 1987-11-13 1990-01-08 Toray Ind Inc 架橋ポリアミド系逆浸透膜の処理方法
US4983291A (en) * 1989-12-14 1991-01-08 Allied-Signal Inc. Dry high flux semipermeable membranes
JPH05137978A (ja) * 1991-04-22 1993-06-01 Union Carbide Ind Gases Technol Corp 複合ガス分離膜の反応処理
JP2000504270A (ja) * 1996-02-02 2000-04-11 ザ ダウ ケミカル カンパニー ポリアミド膜のフラックス増大処理方法
JP2002095940A (ja) * 2000-09-21 2002-04-02 Nitto Denko Corp 複合逆浸透膜とその製造方法及びその使用方法
JP2007289922A (ja) * 2006-03-29 2007-11-08 Kurita Water Ind Ltd ナノろ過膜又は逆浸透膜の阻止率向上剤、阻止率向上方法、ナノろ過膜又は逆浸透膜、水処理方法、及び、水処理装置
WO2007133362A1 (en) * 2006-05-12 2007-11-22 Dow Global Technologies Inc. Modified membrane
JP2008519673A (ja) * 2004-11-15 2008-06-12 東レ株式会社 複合半透膜、その製造方法、ならびにそれを用いたエレメント、流体分離装置、およびホウ素含有水の処理方法
JP2009131815A (ja) * 2007-11-30 2009-06-18 Kurita Water Ind Ltd 透過膜の阻止率向上方法、阻止率向上透過膜、水処理方法および透過膜装置
JP2009172531A (ja) * 2008-01-25 2009-08-06 Kurita Water Ind Ltd 透過膜の阻止率向上方法、阻止率向上透過膜、透過膜処理方法および装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115704A (ja) * 1982-12-24 1984-07-04 Toray Ind Inc 半透膜の処理法
US4872984A (en) * 1988-09-28 1989-10-10 Hydranautics Corporation Interfacially synthesized reverse osmosis membrane containing an amine salt and processes for preparing the same
JP3399636B2 (ja) 1994-05-16 2003-04-21 日東電工株式会社 逆浸透膜モジュ−ルによる海水淡水化での海水の前処理方法
JPH0810595A (ja) * 1994-06-29 1996-01-16 Nitto Denko Corp 複合逆浸透膜
US6245234B1 (en) * 1999-06-03 2001-06-12 Saehan Industries Incorporation Composite polyamide reverse osmosis membrane and method of producing the same
JP2003088730A (ja) * 2001-09-20 2003-03-25 Nitto Denko Corp 逆浸透膜エレメントの処理方法、および逆浸透膜モジュール
JP4868108B2 (ja) 2004-10-18 2012-02-01 栗田工業株式会社 透過膜の阻止率向上剤、阻止率向上方法、透過膜及び水処理方法
GB0509306D0 (en) * 2005-05-06 2005-06-15 Univ Surrey Secondary oil recovery
AU2007301269B2 (en) * 2006-09-25 2011-05-26 Toray Industries, Inc. Method for operating reverse osmosis membrane filtration plant, and reverse osmosis membrane filtration plant
JP2008086945A (ja) 2006-10-04 2008-04-17 Toray Ind Inc 選択的透過膜の性能回復方法
US8196754B2 (en) * 2007-01-17 2012-06-12 The Ohio States University Research Foundation Water permeable membranes and methods of making water permeable membranes
JP2009022886A (ja) * 2007-07-19 2009-02-05 Kurita Water Ind Ltd 透過膜の阻止率向上方法、阻止率向上透過膜、透過膜処理方法および装置
JP2009224643A (ja) 2008-03-18 2009-10-01 Nippon Telegr & Teleph Corp <Ntt> 電界効果トランジスタおよびその製造方法
US8147735B2 (en) * 2008-07-09 2012-04-03 Eltron Research & Development, Inc. Semipermeable polymers and method for producing same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811005A (ja) * 1981-07-10 1983-01-21 Toray Ind Inc 半透膜の処理法
JPH022827A (ja) * 1987-11-13 1990-01-08 Toray Ind Inc 架橋ポリアミド系逆浸透膜の処理方法
US4983291A (en) * 1989-12-14 1991-01-08 Allied-Signal Inc. Dry high flux semipermeable membranes
JPH05137978A (ja) * 1991-04-22 1993-06-01 Union Carbide Ind Gases Technol Corp 複合ガス分離膜の反応処理
JP2000504270A (ja) * 1996-02-02 2000-04-11 ザ ダウ ケミカル カンパニー ポリアミド膜のフラックス増大処理方法
JP2002095940A (ja) * 2000-09-21 2002-04-02 Nitto Denko Corp 複合逆浸透膜とその製造方法及びその使用方法
JP2008519673A (ja) * 2004-11-15 2008-06-12 東レ株式会社 複合半透膜、その製造方法、ならびにそれを用いたエレメント、流体分離装置、およびホウ素含有水の処理方法
JP2007289922A (ja) * 2006-03-29 2007-11-08 Kurita Water Ind Ltd ナノろ過膜又は逆浸透膜の阻止率向上剤、阻止率向上方法、ナノろ過膜又は逆浸透膜、水処理方法、及び、水処理装置
WO2007133362A1 (en) * 2006-05-12 2007-11-22 Dow Global Technologies Inc. Modified membrane
JP2009131815A (ja) * 2007-11-30 2009-06-18 Kurita Water Ind Ltd 透過膜の阻止率向上方法、阻止率向上透過膜、水処理方法および透過膜装置
JP2009172531A (ja) * 2008-01-25 2009-08-06 Kurita Water Ind Ltd 透過膜の阻止率向上方法、阻止率向上透過膜、透過膜処理方法および装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121209A1 (ja) * 2011-03-09 2012-09-13 栗田工業株式会社 透過膜の阻止率向上方法、阻止率向上処理剤及び透過膜
WO2012121208A1 (ja) * 2011-03-09 2012-09-13 栗田工業株式会社 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
US9498754B2 (en) 2011-03-09 2016-11-22 Kurita Water Industries Ltd. Method for improving rejection of reverse osmosis membrane, treatment agent for improving rejection, and reverse osmosis membrane
JP2013202585A (ja) * 2012-03-29 2013-10-07 Kurita Water Ind Ltd ホルムアルデヒド含有排水の処理法
WO2013153982A1 (ja) * 2012-04-09 2013-10-17 栗田工業株式会社 逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜
JP2015123430A (ja) * 2013-12-27 2015-07-06 東レ株式会社 造水方法
WO2016185789A1 (ja) * 2015-05-20 2016-11-24 栗田工業株式会社 逆浸透膜の洗浄剤、洗浄液、および洗浄方法
JP2016215125A (ja) * 2015-05-20 2016-12-22 栗田工業株式会社 ポリアミド系逆浸透膜の洗浄液、および洗浄方法
CN112999881A (zh) * 2021-03-17 2021-06-22 同济大学 一种再生利用水处理报废pvdf膜的方法
CN112999881B (zh) * 2021-03-17 2021-11-12 同济大学 一种再生利用水处理报废pvdf膜的方法
WO2023176048A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法
WO2023176049A1 (ja) * 2022-03-14 2023-09-21 日東電工株式会社 複合逆浸透膜及びその製造方法

Also Published As

Publication number Publication date
BR112012007129A2 (pt) 2016-07-12
CN102695555A (zh) 2012-09-26
US20120168370A1 (en) 2012-07-05
BR112012007129B1 (pt) 2019-07-02
JPWO2011040354A1 (ja) 2013-02-28
TW201129419A (en) 2011-09-01
CN102695555B (zh) 2015-11-25
TWI478763B (zh) 2015-04-01
DE112010003846T5 (de) 2012-12-06
JP5633517B2 (ja) 2014-12-03

Similar Documents

Publication Publication Date Title
JP5633517B2 (ja) 透過膜の阻止率向上方法及び透過膜
TWI607797B (zh) Reverse osmosis membrane blocking rate improvement method, blocking rate enhancer, and reverse osmosis membrane
TWI528998B (zh) The method of improving the rejection rate of the reverse osmosis membrane, the reducing treatment rate and the reverse osmosis membrane
TWI425976B (zh) 奈米過濾膜或逆浸透膜之阻止率提昇劑、阻止率提昇方法、奈米過濾膜或逆浸透膜、水處理方法及水處理裝置
JP5914973B2 (ja) 透過膜の阻止率向上方法及び阻止率向上処理剤
EP2119675A1 (en) Method for the treatment with reverse osmosis membrane
JP2008132421A (ja) 水処理装置および水処理方法
JP5772083B2 (ja) 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
JP2016128142A (ja) 半透膜の阻止率向上方法
JP2008161818A (ja) 純水の製造方法及び装置
WO2008059824A1 (fr) Appareil de traitement d&#39;eau et procédé de traitement d&#39;eau
JP5828294B2 (ja) 逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜
JP2014050783A (ja) 逆浸透膜の阻止率向上方法
JP2013169514A (ja) 逆浸透膜の阻止率向上方法
Wilf et al. EFFECT OF NEW PRETREATMENT METHODS AND IMPROVED MEMBRANE PERFORMANCE ON DESIGN OF RO SEAWATER SYSTEMS.
Jung et al. Supercritical Carbon Dioxide Fluid Cleaning of Extracellular Polymeric Substances of Seawater Reverse Osmosis Membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534226

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13496785

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010003846

Country of ref document: DE

Ref document number: 1120100038465

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820469

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012007129

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012007129

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120329