WO2012121208A1 - 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜 - Google Patents

逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜 Download PDF

Info

Publication number
WO2012121208A1
WO2012121208A1 PCT/JP2012/055549 JP2012055549W WO2012121208A1 WO 2012121208 A1 WO2012121208 A1 WO 2012121208A1 JP 2012055549 W JP2012055549 W JP 2012055549W WO 2012121208 A1 WO2012121208 A1 WO 2012121208A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
reverse osmosis
osmosis membrane
membrane
molecular weight
Prior art date
Application number
PCT/JP2012/055549
Other languages
English (en)
French (fr)
Inventor
孝博 川勝
青木 哲也
邦洋 早川
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011051530A external-priority patent/JP5772083B2/ja
Priority claimed from JP2012035277A external-priority patent/JP5929296B2/ja
Priority to KR1020187028366A priority Critical patent/KR101979178B1/ko
Priority to KR1020137023695A priority patent/KR101932782B1/ko
Priority to BR112013022550-5A priority patent/BR112013022550B1/pt
Priority to ES12755214T priority patent/ES2734078T3/es
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to AU2012226983A priority patent/AU2012226983B2/en
Priority to SG2013062294A priority patent/SG192806A1/en
Priority to PL12755214T priority patent/PL2684598T3/pl
Priority to CN201280012319.5A priority patent/CN103429324B/zh
Priority to EP12755214.9A priority patent/EP2684598B1/en
Priority to US13/985,666 priority patent/US9498754B2/en
Publication of WO2012121208A1 publication Critical patent/WO2012121208A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0097Storing or preservation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/106Repairing membrane apparatus or modules
    • B01D65/108Repairing membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0093Chemical modification
    • B01D67/00931Chemical modification by introduction of specific groups after membrane formation, e.g. by grafting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis

Definitions

  • the present invention relates to a method for improving the rejection (desalting rate) of a reverse osmosis membrane, and more particularly, to a method for repairing a deteriorated reverse osmosis (RO) membrane and effectively improving the rejection.
  • the present invention also relates to a reverse osmosis membrane that has been subjected to a treatment for improving the rejection rate by the method for improving the rejection rate of the reverse osmosis membrane, and a treatment for improving the rejection rate used in this method.
  • RO membranes are used in ultrapure water production plants, wastewater recovery plants, seawater desalination plants, and the like, and can remove most of organic substances and inorganic substances in water.
  • the blocking rate of permeable membranes such as RO membranes against separation targets such as inorganic electrolytes and water-soluble organic substances decreases due to the influence of oxidizing substances and reducing substances present in water, and deterioration of material polymers due to other causes.
  • the required treated water quality cannot be obtained. This deterioration may occur little by little during long-term use, or it may occur suddenly due to an accident. In some cases, the rejection rate of the permeable membrane as a product does not reach the required level.
  • raw water is treated with chlorine (such as sodium hypochlorite) in a pretreatment process in order to prevent biofouling due to slime on the membrane surface.
  • chlorine such as sodium hypochlorite
  • Chlorine has a strong oxidizing action, so when treated water with a high residual chlorine concentration is supplied to the permeable membrane, the permeable membrane deteriorates.
  • a reducing agent such as sodium bisulfite may be added to the water to be treated.
  • metals such as Cu and Co are contained in the water to be treated, the RO membrane deteriorates even when sodium bisulfite is added to the water to be treated in a large amount (Patent Document 1, Non-Patent Document 1).
  • the permeable membrane deteriorates, the blocking rate of the permeable membrane decreases.
  • Patent Document 2 A method for improving the blocking rate of a permeable membrane by attaching an anionic or cationic ionic polymer compound to the membrane surface (Patent Document 2).
  • This method is not sufficient in improving the rejection rate against the deteriorated film.
  • Patent Document 3 A method of improving the blocking rate of the nanofiltration membrane or RO membrane by attaching a compound having a polyalkylene glycol chain to the membrane surface.
  • This method also does not sufficiently improve the rejection rate of the deteriorated film without greatly reducing the permeation flux.
  • Patent Document 4 is intended for a film that has not been greatly degraded, with a NaCl rejection rate of 99.5% and a silica rejection rate of 98.0%. With this method, the rejection rate of a deteriorated permeable membrane can be sufficiently improved. Is not shown.
  • Non-patent Document 2 A method of improving the desalination rate by attaching tannic acid or the like to the deteriorated membrane.
  • Non-Patent Documents 3 and 4 show that in a polyamide film deteriorated by an oxidizing agent, the CN bond of the polyamide bond of the film material is broken, and the original sieving structure of the film is destroyed. Yes.
  • the conventional rejection rate improving method described above has the following problems a-c. a) Since a new substance is adhered to the surface of the permeable membrane, the permeation flux is lowered. For example, the permeation flux is increased when the deterioration rate of the deteriorated membrane is improved so that the solute concentration of the permeated water of the membrane subjected to the recovery treatment of the rejection rate becomes 1/2 of the solute concentration of the permeated water of the membrane before the recovery treatment. However, it may decrease by 20% or more compared to before the treatment.
  • the present invention solves the above-mentioned problems of the prior art, and a method for improving the rejection rate of a reverse osmosis membrane capable of effectively improving the rejection rate even for a significantly deteriorated membrane without greatly reducing the permeation flux, and It aims at providing the processing agent.
  • the present inventors repeatedly conducted investigation and analysis of a deteriorated film using an actual machine and obtained the following knowledge.
  • a reverse osmosis membrane for example, a polyamide membrane
  • an oxidizing agent so that the CN bond of polyamide is broken, and the original sieve structure of the membrane is destroyed.
  • the amide group disappears due to the amide bond breakage, but a part of the carboxyl group remains.
  • the present invention has been completed based on such knowledge.
  • the method for improving the rejection of a reverse osmosis membrane according to the present invention includes an aqueous solution containing a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 or more and less than 500, and a third organic compound having a molecular weight of 500 or more.
  • the step of passing water through a reverse osmosis membrane includes an aqueous solution containing a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 or more and less than 500, and a third organic compound having a molecular weight of 500 or more.
  • the organic compound having a molecular weight of less than 200 is preferably an amino acid or an amino acid derivative.
  • the organic compound having a molecular weight of 500 or more preferably has a cyclic structure.
  • the desalination rate of the reverse osmosis membrane before passing the aqueous solution is preferably 95% or less, particularly 90% or less.
  • the total concentration of the first organic compound and the second organic compound in the aqueous solution is preferably 1 to 500 mg / L, and the concentration of the third organic compound is preferably 1 to 500 mg / L.
  • the time for the water flow process is preferably 3 to 500 hours.
  • the reverse osmosis membrane of the present invention is subjected to a rejection improvement process by such a reverse osmosis membrane improvement method.
  • the reverse osmosis membrane blocking rate improver of the present invention contains a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 or more and less than 500, and a third organic compound having a molecular weight of 500 or more.
  • a reverse osmosis membrane deteriorated by an oxidizing agent or the like, a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 or more and less than 500, and a third organic compound having a molecular weight of 500 or more.
  • a normal amide bond of a reverse osmosis membrane for example, a polyamide membrane has a structure as shown in the normal membrane of FIG.
  • an oxidizing agent such as chlorine
  • the CN bond of the amide bond is broken, and finally the structure as shown in the deteriorated film in FIG. 1 is obtained.
  • the amino group may disappear due to the amide bond breakage, but a carboxyl group is formed in at least a part of the breakage portion.
  • the gap becomes larger and gaps of various sizes are formed.
  • each compound By permeating an aqueous solution containing a plurality of amino compounds having different molecular weights or skeletons (structures) through the deteriorated film, each compound becomes an obstacle when it passes through the film, and the time for staying at the deteriorated part in the film becomes longer. This increases the contact probability between the carboxyl group of the film and the amino group of the low molecular weight amino compound, and improves the repair efficiency of the film.
  • the third organic compound includes a functional group (cation group: 1 to quaternary amino group) that acts on the carboxyl group of the film, and a compound that acts on the compound having an amino group in the blocking rate improver (anion group: carboxyl).
  • a functional group that acts on the compound having an amino group in the blocking rate improver (anion group: carboxyl).
  • anion group: carboxyl a compound that acts on the compound having an amino group in the blocking rate improver
  • the minimum amount of organic compound contact per unit area of the membrane By setting the minimum amount of organic compound contact per unit area of the membrane to 2500 mg / m 2 or more, the large degradation portion of the film gradually becomes smaller while adsorbing the organic compound, and finally the hole is closed. To be repaired. Even when a deteriorated part exists inside the film, by setting the minimum organic compound contact amount per unit area of the film to 2500 mg / m 2 or more, the organic compound penetrates sufficiently into the film, and the deteriorated part is It will be repaired.
  • the method for improving the rejection of a reverse osmosis membrane according to the present invention includes an aqueous solution containing a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 or more and less than 500, and a third organic compound having a molecular weight of 500 or more.
  • a step of passing water through the permeable membrane may be referred to as a rejection-improved treated water.
  • examples of the first organic compound having a molecular weight of less than 200 and the second organic compound having a molecular weight of 200 or more and less than 500 include the following.
  • Aromatic amino compounds for example, those having a benzene skeleton and an amino group such as aniline (molecular weight 93), diaminobenzene (molecular weight 108)
  • Aromatic aminocarboxylic acid compounds for example, 3,5-diaminobenzoic acid (molecular weight 152), 3,4-diaminobenzoic acid (molecular weight 152), 2,4-diaminobenzoic acid (molecular weight 152), 2,5-diamino Those having a benzene skeleton such as benzoic acid (molecular weight 152), 2,4,6-triaminobenzoic acid (molecular weight 167), two or more amino groups, and a carboxyl group less than the number of amino groups.
  • Aliphatic amino compound For example, methylamine (molecular weight 31), ethylamine (molecular weight 45), octylamine (molecular weight 129), 1,9-diaminononane (in this specification, it may be abbreviated as “NMDA”) ( C 9 H 18 (NH 2 ) 2 ) (molecular weight 158) and other straight-chain hydrocarbon groups having about 1 to 20 carbon atoms and one or more amino groups, and 1-aminopentane (this specification In some cases, it may be abbreviated as “IAAM”.) (NH 2 (CH 2 ) 4 CH 3 ) (molecular weight 87), 2-methyl-1,8-octanediamine (abbreviated as “MODA” in this specification) A branched hydrocarbon group having about 1 to 20 carbon atoms such as (NH 2 CH 2 CH (CH 3 ) (CH 2 ) 6 NH 2 ) (molecular weight 158) and one or more amino groups Have Things.
  • Aliphatic amino alcohol 4-amino-2-methyl-1-butanol (may be abbreviated as “AMB” in this specification) (NH 2 (CH 2 ) 2 CH (CH 3 ) CH 2 OH) Those having an amino group and a hydroxyl group in a linear or branched hydrocarbon group having 1 to 20 carbon atoms, such as (molecular weight 103).
  • Heterocyclic amino compound A compound having a heterocyclic ring and an amino group such as tetrahydrofurfurylamine (may be abbreviated as “FAM” in this specification) (the following structural formula) (molecular weight 101).
  • FAM tetrahydrofurfurylamine
  • Amino acid compounds for example, basic amino acid compounds such as arginine (molecular weight 174) and lysine (molecular weight 146), amino acid compounds having an amide group such as asparagine (molecular weight 132) and glutamine (molecular weight 146), glycine (molecular weight 75) and phenylalanine Other amino acid compounds such as (molecular weight 165).
  • basic amino acid compounds such as arginine (molecular weight 174) and lysine (molecular weight 146)
  • amino acid compounds having an amide group such as asparagine (molecular weight 132) and glutamine (molecular weight 146)
  • glycine molethylalanine
  • Other amino acid compounds such as (molecular weight 165).
  • an amino acid or an amino acid compound is preferable.
  • basic amino acids such as arginine (molecular weight 174), lysine (molecular weight 146), or histidine (molecular weight 155) are preferable.
  • aspartame molecular weight 294 which is a methyl ester of a dipeptide of phenylalanine and aspartic acid is suitable as a peptide or a derivative thereof.
  • low molecular weight amino compounds may be used alone or in combination of two or more.
  • an aqueous solution containing two or more kinds of low molecular weight amino compounds having different molecular weights or skeletal structures is permeated through the permeable membrane, each compound becomes an obstacle when permeating the membrane, and the time for staying at the deteriorated portion in the membrane is long.
  • the contact probability between the carboxyl group of the film and the amino group of the low molecular weight amino compound is increased, and the effect of repairing the film is enhanced.
  • the concentration of the first organic compound in the rejection-improving treatment water is preferably 0.1 to 500 mg / L, particularly 0.5 to 100 mg / L, and the concentration of the second organic compound is 0.1 to 500 mg / L, particularly 0. 5 to 100 mg / L is preferred.
  • the third organic compound having a molecular weight of 500 or more those having a carboxyl group, an amino group or a hydroxyl group are suitable.
  • examples include tannins and peptides.
  • the tannin include tannin extracted from plants such as hydrolyzed pentaploid, gallic, condensed kebracho, and mimosa.
  • Examples of the peptide include polyglycine, polylysine, polytryptophan, polyalanine and the like having a molecular weight of 500 or more.
  • the concentration of the third organic compound in the water for improving the rejection rate is preferably about 0.1 to 500 mg / L, particularly about 0.5 to 100 mg / L.
  • the total concentration of the first, second, and third organic compounds in the rejection improvement treatment water is excessively high, the permeation flux may be greatly reduced, and the organic compounds may be multi-layered on the membrane surface. More organic compounds are adsorbed and do not reach the degradation site. If the total amount of the first, second and third organic compounds is excessively small, the membrane will not be repaired sufficiently, or the water flow rate for making the contact amount of organic compounds per unit area of the membrane more than 2500 mg / m 2 Processing time is long. Accordingly, the total concentration of the first and second organic compounds in the rejection improvement treatment water is 1 to 500 mg / L, particularly about 1 to 300 mg / L, and the concentration of the third organic compound is 1 to 500 mg / L. In particular, it is preferably about 1 to 300 mg / L.
  • the ratio C min / C max between the concentration C min of the lowest concentration of the first to third organic compounds in the treated water with improved rejection rate and the concentration C max of the highest concentration is 0.1 to 1.0. It is preferable that If this value is smaller than 0.1, the size of the hole that can be repaired may be biased.
  • the concentration of each organic substance may be all equal.
  • the treated water with improved rejection rate may contain, as a tracer, an inorganic electrolyte such as sodium chloride (NaCl), a neutral organic substance such as isopropyl alcohol or glucose, or a low molecular polymer such as polymaleic acid.
  • an inorganic electrolyte such as sodium chloride (NaCl)
  • NaCl sodium chloride
  • a neutral organic substance such as isopropyl alcohol or glucose
  • a low molecular polymer such as polymaleic acid
  • the inlet pressure of the device is preferably 0.1 to 1.0 MPa.
  • the inlet pressure of the device is preferably 0.1 to 2.0 MPa.
  • the inlet pressure of the device is preferably 0.1 to 7.0 MPa.
  • the minimum organic compound contact amount per membrane unit area calculated by the formula 2500 mg / m 2 or more, preferably 2500 ⁇ 1000000mg / m 2 particularly preferably rejection so that 3000 ⁇ 100000mg / m 2 It is preferable to pass the improved treated water through the reverse osmosis membrane.
  • the blocking rate of the reverse osmosis membrane is sufficiently improved.
  • the content rate of the first organic compound is C 1 (mg / L)
  • the content rate of the second organic compound is C 2 (mg / L)
  • the content rate of the third organic compound is C 3 (mg / L).
  • Minimum organic compound contact amount per unit area of membrane [(C min ) ⁇ treatment time (Hr) ⁇ permeation amount during treatment (m 3 / Hr) / membrane area (m 2 )] ⁇ 1000
  • the linear velocity of permeated water is related to pressure, water temperature, membrane shape, etc., but is preferably 0.1 to 5 m / d. The reason is that, as described above, if it is excessively high, there is a problem that the adsorption to a portion that has not deteriorated proceeds, and if it is excessively low, the contact efficiency to the deteriorated portion deteriorates.
  • the water temperature of the rejection rate improving treatment water in this rejection rate improvement treatment step is preferably room temperature, for example, about 10 to 35 ° C. If the water temperature is too low, the amount of permeated water is lowered and the contact efficiency is deteriorated. If the temperature of the water for improving the rejection rate is too high, the membrane material may be denatured.
  • the time for passing the treated water for improving the rejection rate is a time for sufficiently allowing each organic compound to permeate through the reverse osmosis membrane.
  • the reverse osmosis membrane device is not in steady operation, it is preferable to pass the treated water with improved rejection rate for about 3 to 100 hours, particularly for about 6 to 50 hours. If the water passage time is excessively short, the treatment is terminated without sufficient fixing of the organic compound, and the attached organic compound may be peeled off.
  • the rejection improvement process may be performed during the steady operation of the reverse osmosis membrane device, for example, by adding a rejection improvement agent to the water to be treated during the steady operation of the reverse osmosis membrane device.
  • the time for adding the blocking rate improving treatment agent to the water to be treated is preferably about 1 to 500 hours, but the blocking rate improving treatment agent may be constantly added to the water supplied to the reverse osmosis membrane device.
  • the blocking rate may be improved after the membrane cleaning.
  • acid cleaning can increase mineral acids such as hydrochloric acid, nitric acid, and sulfuric acid, and organic acids such as citric acid and oxalic acid.
  • mineral acids such as hydrochloric acid, nitric acid, and sulfuric acid
  • organic acids such as citric acid and oxalic acid.
  • alkali cleaning sodium hydroxide, potassium hydroxide, etc. can be raised.
  • the pH is about 2 for acid cleaning and about 12 for alkali cleaning.
  • RO membrane examples of the membrane structure of the reverse osmosis membrane (RO membrane) include polymer membranes such as asymmetric membranes and composite membranes.
  • examples of the RO membrane material include aromatic polyamides, aliphatic polyamides, polyamide materials such as composite materials thereof, and cellulose materials such as cellulose acetate.
  • the reverse osmosis membrane inhibition rate improving method of the present invention is particularly suitable for a membrane made of an aromatic polyamide material and having many carboxyl groups due to CN bond breakage due to deterioration. Can be applied to.
  • the desalination rate of the RO membrane before the rejection improvement process is 95% or less, particularly 90% or less, it is suitable for applying the method of the present invention.
  • the form of the reverse osmosis membrane module is not particularly limited, and examples thereof include a tubular membrane module, a planar membrane module, a spiral membrane module, and a hollow fiber membrane module.
  • the reverse osmosis membrane treated by the method of the present invention is a water treatment for recovery and reuse of wastewater containing high or low concentration TOC discharged in the electronic device manufacturing field, semiconductor manufacturing field, and other various industrial fields. Alternatively, it is effectively applied to the production of ultrapure water from industrial water and city water, and water treatment in other fields.
  • the organic substance-containing water is preferable. Examples of such organic substance-containing water include, but are not limited to, wastewater from electronic device manufacturing factories, transportation machinery manufacturing factories, organic synthesis factories, printing plate making / painting factories, or the primary treatment water thereof. .
  • This flat membrane test apparatus is provided with a flat membrane cell 2 at an intermediate position in the height direction of a cylindrical container 1 having a bottom and a lid, and the inside of the container is divided into a raw water chamber 1A and a permeated water chamber 1B.
  • water to be treated is supplied to the raw water chamber 1 ⁇ / b> A via the pipe 11 by the pump 4, and the stirrer 5 in the container 1 is rotated to stir the raw water chamber 1 ⁇ / b> A so that the permeated water is permeated.
  • the concentrated water is taken out from the raw water chamber 1A through the pipe 13.
  • the concentrated water outlet pipe 13 is provided with a pressure gauge 6 and an opening / closing valve 7.
  • Comparative Example 2 Water was passed under the same conditions as in Comparative Example 1 except that 1 mg / L of tannic acid (403030-50G manufactured by Sigma-Aldrich) was added to the water to be treated.
  • 1 mg / L of tannic acid 403030-50G manufactured by Sigma-Aldrich
  • Comparative Example 3 Water was passed under the same conditions as in Comparative Example 1 except that 1 mg / L of polyethylene glycol (molecular weight 4000, manufactured by Wako Pure Chemical Industries) was added to the water to be treated.
  • polyethylene glycol molecular weight 4000, manufactured by Wako Pure Chemical Industries
  • Comparative Example 4 Water was passed under the same conditions as in Comparative Example 1 except that 1 mg / L of polyoxyethylene (10) oleyl ether (molecular weight 708, manufactured by Wako Pure Chemical Industries) was added to the water to be treated.
  • polyoxyethylene (10) oleyl ether molecular weight 708, manufactured by Wako Pure Chemical Industries
  • Comparative Example 5 Water was passed under the same conditions as in Comparative Example 1 except that 1 mg / L of aspartame (Ajinomoto Co., Inc., food additive grade, molecular weight 294) was added to the water to be treated.
  • aspartame Ajinomoto Co., Inc., food additive grade, molecular weight 294.
  • Comparative Example 6 Water was passed under the same conditions as in Comparative Example 1 except that 1 mg / L of arginine (Ajinomoto Co., Inc., food additive grade, molecular weight 174) was added to the water to be treated.
  • Comparative Example 7 Water was passed under the same conditions as in Comparative Example 1 except that 2 mg / L of arginine and 1 mg / L of aspartame were added to the water to be treated.
  • Example 1 Comparison except that arginine 2 mg / L, aspartame 1 mg / L, and polyglycine (P8791-500MG made by Sigma-Aldrich, molecular weight 500-5000) 1 mg / L were added to the water to be treated and water was passed for 24 hours. Water was passed under the same conditions as in Example 1.
  • Example 2 Comparative example except that arginine 2 mg / L, aspartame 1 mg / L, and dietary tannic acid AL (manufactured by Fuji Chemical Co., Ltd., molecular weight 500 or more) 1 mg / L were added to the water to be treated, and water was passed for 24 hours. Water was passed under the same conditions as in 1.
  • Permeation flux [m 3 / (m 2 d)] permeated water amount [m 3 / d] / membrane area [m 2 ] ⁇ temperature conversion coefficient [ ⁇ ]
  • Desalination rate [%] (1 ⁇ permeated water conductivity [mS / m] / concentrated water conductivity [mS / m]) ⁇ 100
  • IPA removal rate [%] (1-permeated water TOC [mg / L] / concentrated water TOC [mg / L]) ⁇ 100
  • Table 1 shows the results. In this invention, it turns out that the desalination rate improvement efficiency and the improvement efficiency of an IPA removal rate are high, and the value equivalent to or more than an original membrane is obtained.
  • Comparative Example 9 Water was passed under the same conditions as in Comparative Example 8 except that 5 mg / L of PEG 4000 (polyethylene glycol having a molecular weight of 4000, manufactured by Wako Pure Chemical Industries, Ltd.) was added to the water to be treated.
  • PEG 4000 polyethylene glycol having a molecular weight of 4000, manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 3 The same conditions as in Comparative Example 8 were used except that 20 mg / L of arginine, 20 mg / L of aspartame, and 10 mg / L of dietary tannic acid AL (manufactured by Fuji Chemical Co., Ltd., molecular weight of 500 or more) were added to the water to be treated. Went water.
  • Table 2 shows the results. As shown in Table 2, according to the present invention, the decrease in the permeation flux can be stopped within 10%, and the desalination rate and the IPA removal rate can be greatly improved.
  • the sample is permeated while collecting water by adding a treatment for improving the rejection rate to the water to be treated and passing the water at a normal operating pressure.
  • the desalination rate can be recovered without reducing the amount of water.
  • the present invention can also be applied to a significantly deteriorated film having a desalination rate of 90% or less.
  • Example 4 to 14 and Comparative Example 10 below a 100 ppm sodium hypochlorite solution (pH 7.0) was added to an RO apparatus equipped with an ultra-low pressure RO membrane ESPA2-4040 (membrane area 7.9 m 2 ) manufactured by Hydronautics. ) At an inlet pressure of 0.75 MPa, a brine water amount of 1 m 3 / h, and a water temperature of 25 ° C. for 500 hours to deteriorate the RO membrane. The deteriorated RO membrane was subjected to a rejection improvement process, and the performance before and after the process was evaluated.
  • a solution containing 500 ppm of NaCl and 100 ppm of IPA (pH 7.0) was passed through the RO device at an inlet pressure of 0.75 MPa, a brine water volume of 1 m 3 / h, and a water temperature of 25 ° C., and a desalination rate (NaCl removal rate).
  • the measurement was performed by measuring the IPA (isopropyl alcohol) removal rate and the amount of permeated water (m 3 / Hr).
  • Example 4 Arginine (manufactured by Ajinomoto, molecular weight 174) as the first organic compound, aspartame (manufactured by Ajinomoto, molecular weight 294) as the second organic compound, and AL tannic acid (manufactured by Fuji Chemical Industry, molecular weight of 500 or more) as the third organic compound inlet pressure 0.2MPa to 10 mg / L including synthetic raw (pH 7.0), respectively, brine pressure 0.17 MPa, permeate flow 0.1m 3 /Hr(0.3m/d), brine water 1 m 3 / h, temperature 25 Permeation was carried out at 50 ° C. for a treatment time of 50 hours.
  • the contact amount of the organic compound per unit area of the membrane is [10 ⁇ 50 ⁇ 0.1 / 7.9] ⁇ 1000 ⁇ 6300 mg / m 2 .
  • the processing conditions are shown in Table 3, and the performance evaluation results are shown in Table 4.
  • Example 5 to 15 The rejection improvement process was performed in the same manner as in Example 4 except that the rejection improvement process conditions were as shown in Table 3. Table 4 shows the performance evaluation results.
  • the desalting rate (NaCl removal rate) and the IPA removal rate were calculated by the following formulas. In Table 4, the desalting rate is described as the NaCl removal rate. *
  • the removal performance can be recovered to the maximum by the rejection rate improving process.
  • the minimum organic compound contact amount per unit area is clarified, so that efficient operation according to the operating conditions (pressure, treatment time) becomes possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Transplantation (AREA)
  • Health & Medical Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】透過流束を大きく低下させることなく、また著しい劣化膜であっても阻止率を効果的に向上させることができる逆浸透膜の阻止率向上方法を提供する。 【解決手段】分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを逆浸透膜に通水する逆浸透膜の阻止率向上方法。第1の有機化合物としてはアミノ酸又はアミノ酸誘導体が好適である。第1の有機化合物と第2の有機化合物との合計の濃度、第3の有機化合物の濃度は、それぞれ1~500mg/Lが好適である。

Description

逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
 本発明は逆浸透膜の阻止率(脱塩率)向上方法に係り、特に劣化した逆浸透(RO)膜を修復して、その阻止率(rejection)を効果的に向上させる方法に関する。
 本発明はまた、この逆浸透膜の阻止率向上方法により阻止率向上処理がなされた逆浸透膜と、この方法に用いられる阻止率向上処理剤に関する。
 RO膜は、超純水製造プラント、排水回収プラント、海水淡水化プラントなどで使用されており、水中の有機物、無機物などの大部分を除去することができる。
 RO膜等の透過膜の無機電解質や水溶性有機物等の分離対象物に対する阻止率は、水中に存在する酸化性物質や還元性物質などの影響、その他の原因による素材高分子の劣化によって低下し、必要とされる処理水質が得られなくなる。この劣化は、長期間使用しているうちに少しずつ起こることもあり、また事故によって突発的に起こることもある。また、製品としての透過膜の阻止率自体が要求されるレベルに達していない場合もある。
 RO膜等の透過膜システムにおいては、膜面でのスライムによるバイオファウリングを防止するために、前処理工程において塩素(次亜塩素酸ソーダなど)による原水の処理が行われている。塩素は強力な酸化作用があるため、残留塩素濃度の高い被処理水を透過膜に供給すると、透過膜が劣化する。
 被処理水中の残留塩素を分解(decompose)するために、重亜硫酸ソーダなどの還元剤を被処理水に添加することがある。被処理水中にCu、Coなどの金属が含まれていると、重亜硫酸ソーダが該被処理水に多量に添加されても、RO膜が劣化する(特許文献1、非特許文献1)。透過膜が劣化すると、透過膜の阻止率が低下する。
 従来、RO膜等の逆浸透膜の阻止率向上方法としては、以下のようなものが提案されている。
i) アニオン又はカチオンのイオン性高分子化合物を膜表面に付着させることにより、透過膜の阻止率を向上させる方法(特許文献2)。
 本方法は、劣化膜に対する阻止率向上効果は十分ではない。
ii) ポリアルキレングリコール鎖を有する化合物を膜表面に付着させることにより、ナノ濾過膜やRO膜の阻止率を向上させる方法(特許文献3)。
 本方法も、透過流束を大きく低下させることなく劣化膜の阻止率を十分に向上させるものではない。
iii) 透過流束が増加した、アニオン荷電を有するナノ濾過膜やRO膜に対し、ノニオン系界面活性剤を用いた処理を行って、その透過流束を適正範囲まで低減させて、膜汚染や透過水質の悪化を防止する方法(特許文献4)。この方法では、透過流束が使用開始時の+20~-20%の範囲となるように、ノニオン性界面活性剤を膜面に接触、付着させる。
 著しく劣化した膜(脱塩率が95%以下にまで低下した膜)の阻止率を本方法によって向上させるには、相当量の界面活性剤を膜面に付着させる必要があり、透過流束が著しく低下すると考えられる。この特許文献4の実施例には、製造時の初期性能が、透過流束で1.20m/m・day、NaCl阻止率が99.7%、シリカ阻止率が99.5%の芳香族系ポリアミドRO膜を2年間使用して酸化劣化した膜を使用すると記載されている。特許文献4は、NaCl阻止率99.5%、シリカ阻止率98.0%と大きな劣化には至っていない膜を対象としており、この方法で、劣化した透過膜の阻止率を十分に向上させることは示されていない。
iv) タンニン酸などを劣化膜に付着させて脱塩率を改善させる方法(非特許文献2)。
 この方法による阻止率の向上効果は大きくない。例えば、劣化したRO膜であるES20(日東電工社製)、SUL-G20F(東レ社製)の脱塩率を本方法で改善しても、改善後の膜の透過水の溶質濃度を改善前の膜の透過水溶質濃度の1/2にすることはできない。
v) タンニン酸にポリビニルメチルエーテル(PVME)を添加してRO膜の阻止率を向上させる方法(非特許文献5)。本方法では、薬剤の使用濃度が10ppm以上と比較的高い。また、この方法によって膜を処理すると、膜の透過流束が20%程度低下する。そして、阻止率がほとんど向上しない場合もある。
 非特許文献3,4には、酸化剤によって劣化したポリアミド膜にあっては、膜素材のポリアミド結合のC-N結合が分断され、膜本来のふるい構造が崩壊していることが示されている。
 上述の従来の阻止率向上方法には次のa-cの問題点があった。
 a)透過膜表面に新たに物質を付着させるため、透過流束の低下が起こる。例えば、阻止率の回復処理をした膜の透過水の溶質濃度が回復処理前の膜の透過水の溶質濃度の1/2となるように劣化膜を阻止率向上処理した場合に、透過流束が処理前に対して20%以上も低下することがある。
 b)高濃度の薬剤を添加すると、膜の濃縮水のTOCが増加する。また、被処理水を膜に通水して採水しながら膜を修復することが容易でない。
 c)非常に大きな劣化を起こした膜に対しては、阻止率の回復が困難である。
特開平7-308671号公報 特開2006-110520号公報 特開2007-289922号公報 特開2008-86945号公報
Nagai et al. Desalination, Vol.96(1994),291-301 佐藤、田村、化学工学論文集、Vol.34(2008),493-498 植村ら,Bulletin of the Society of Sea Water Science,Japan,57,498-507(2003) 神山義康,表面,vol.31,No.5(1993),408-418 S.T.Mitrouli, A.J.Karabelas, N.P.Isaias, D.C. Sioutopoulos, and A.S. Al Rammah, Reverse Osmosis Membrane Treatment Improves Salt-Rejection Performance, IDA Journal I Second Quarter 2010, p22-34
 本発明は上記従来技術の問題点を解決し、透過流束を大きく低下させることなく、著しい劣化膜であっても阻止率を効果的に向上させることができる逆浸透膜の阻止率向上方法とその処理剤を提供することを目的とする。
 本発明はまた、このような逆浸透膜の阻止率向上方法により阻止率向上処理が施された逆浸透膜を提供することを目的とする。
 本発明者らは、上記課題を解決すべく、実機での劣化膜の調査解析を繰り返し行うなどして鋭意検討を重ね、次のような知見を得た。
1) 従来法のように、膜の劣化で膜にあいた穴を、新たな物質(例えば、ノニオン系界面活性剤やカチオン系界面活性剤などの化合物)を膜に付着させることにより塞ぐ方法では、膜の疎水化や、高分子物質の付着による膜の透過流束の低下が著しく、水量の確保が困難である。
2) 逆浸透膜、例えばポリアミド膜は、酸化剤による劣化で、ポリアミドのC-N結合が分断され、膜本来のふるい構造が崩壊する。膜の劣化箇所においては、アミド結合の分断でアミド基は消失してしまうものの、カルボキシル基が一部残存する。
3) この劣化膜のカルボキシル基にアミノ化合物を効率良く付着・結合させることにより、劣化膜を修復して阻止率を回復させることができる。カルボキシル基に結合させるアミノ化合物として、アミノ基を有する低分子量化合物を用いることにより、膜表面の疎水化や、高分子物質を付着させることによる透過流束の著しい低下を抑制することができる。
 本発明は、このような知見をもとに完成されたものである。
 本発明の逆浸透膜の阻止率向上方法は、分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む水溶液を逆浸透膜に通水する工程を有する。
 前記分子量200未満の有機化合物はアミノ酸又はアミノ酸誘導体が好ましい。
 前記分子量500以上の有機化合物は環状構造を有することが好ましい。
 前記逆浸透膜の前記水溶液を通水する前の脱塩率は95%以下、特に90%以下であることが好ましい。
 前記水溶液中における第1の有機化合物と第2の有機化合物との合計の濃度が1~500mg/Lであり、第3の有機化合物の濃度が1~500mg/Lであることが好ましい。
 前記通水工程の時間は3~500Hrが好ましい。
 本発明の逆浸透膜は、かかる逆浸透膜の阻止率向上方法により阻止率向上処理が施されている。
 本発明の逆浸透膜の阻止率向上剤は、分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む。
 本発明によれば、酸化剤等により劣化した逆浸透膜に、分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む水溶液を通水することにより、この逆浸透膜の透過流束を大きく低下させることなく、膜の劣化部分を修復し、阻止率を効果的に向上させることができる。
 特に、膜単位面積当りの最小有機化合物接触量が2500mg/m以上、好ましくは2500~1000000mg/mとなるように通水することにより、この逆浸透膜の透過流束を大きく低下させることなく、膜の劣化部分を修復し、阻止率を効果的に向上させることができる。
 以下に、本発明による劣化膜の修復のメカニズムを図1を参照して説明する。
 逆浸透膜、例えば、ポリアミド膜の正常なアミド結合は図1の正常膜に示すような構造をとっている。この膜が塩素などの酸化剤で劣化した場合、アミド結合のC-N結合が分断され、最終的には図1の劣化膜に示すような構造となる。
 図1の劣化膜に示されるように、アミド結合の分断で、アミノ基は消失することがあるが、この分断部分の少なくとも一部にカルボキシル基が形成される。
 劣化が進行すると、間隙が大きくなり、様々な大きさの間隙が形成される。間隙の大きさに応じて第1~第3の有機化合物を定着させることにより、劣化膜の種々のサイズの各穴が修復され、膜の阻止率が回復する。
 分子量や骨格(構造)の異なる複数のアミノ化合物を含む水溶液を劣化膜に透過させることにより、各々の化合物が膜を透過する際に互いに障害となり、膜内の劣化箇所に滞留する時間が長くなることにより、膜のカルボキシル基と低分子量アミノ化合物のアミノ基との接触確率が高くなり、膜の修復効率が向上する。
 分子量500以上の第3の有機化合物を含む水溶液を膜に透過させることにより、膜の大きな劣化箇所を塞ぐことができ、修復効率が高まる。この第3の有機化合物としては、膜のカルボキシル基と作用する官能基(カチオン基:1~4級アミノ基)、阻止率向上剤中のアミノ基を有する化合物と作用するもの(アニオン基:カルボキシル基、スルホン基)、ポリアミド膜と作用する官能基(ヒドロキシル基)を有するもの、又は環状構造を有するものであってもよい。
 膜単位面積当りの最小有機化合物接触量を2500mg/m以上とすることにより、膜の大きな劣化部位が、上記有機化合物を吸着しながら徐々に小さくなり、最終的には穴が塞がれる如くして修復される。劣化部位が膜の内部に存在する場合であっても、膜単位面積当りの最小有機化合物接触量を2500mg/m以上とすることにより、有機化合物が膜内部へ十分に浸透し、劣化部位が修復される。
本発明による阻止率向上処理のメカニズムを示す、化学構造式の説明図である。 実施例で用いた平膜試験装置を示す模式図である。
 以下に本発明の実施の形態を詳細に説明する。
[逆浸透膜の阻止率向上方法]
 本発明の逆浸透膜の阻止率向上方法は、分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む水溶液を透過膜に通水する工程を有する。以下、この有機化合物の水溶液を阻止率向上処理水ということがある。
 好ましくは膜単位面積当りの最小有機化合物接触量が2500mg/m以上、好ましくは2500~1000000mg/mとなるように阻止率向上処理水を通水する。
<阻止率向上処理剤>
 本発明において、分子量200未満の第1の有機化合物、分子量200以上500未満の第2の有機化合物としては、例えば、次のようなものが挙げられる。
 芳香族アミノ化合物:例えば、アニリン(分子量93)、ジアミノベンゼン(分子量108)などのベンゼン骨格とアミノ基を有するもの
 芳香族アミノカルボン酸化合物:例えば、3,5-ジアミノ安息香酸(分子量152)、3,4-ジアミノ安息香酸(分子量152)、2,4-ジアミノ安息香酸(分子量152)、2,5-ジアミノ安息香酸(分子量152)、2,4,6-トリアミノ安息香酸(分子量167)などのベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有するもの。
 脂肪族アミノ化合物:例えば、メチルアミン(分子量31)、エチルアミン(分子量45)、オクチルアミン(分子量129)、1,9-ジアミノノナン(本明細書中では「NMDA」と略記することがある。)(C18(NH)(分子量158)等の炭素数1~20程度の直鎖炭化水素基と1個又は複数のアミノ基を有するもの、及び、1-アミノペンタン(本明細書中では「IAAM」と略記することがある。)(NH(CHCH)(分子量87)、2-メチル-1,8-オクタンジアミン(本明細書中では「MODA」と略記することがある。)(NHCHCH(CH)(CHNH)(分子量158)等の炭素数1~20程度の分岐炭化水素基と1個又は複数のアミノ基を有するもの。
 脂肪族アミノアルコール:4-アミノ-2-メチル-1-ブタノール(本明細書中では「AMB」と略記することがある。)(NH(CHCH(CH)CHOH)(分子量103)等の直鎖又は分岐の炭素数1~20の炭化水素基にアミノ基と水酸基を有するもの。
 複素環アミノ化合物:テトラヒドロフルフリルアミン(本明細書中では「FAM」と略記することがある。)(下記構造式)(分子量101)などの複素環とアミノ基を有するもの。
Figure JPOXMLDOC01-appb-C000001
 アミノ酸化合物:例えば、アルギニン(分子量174)やリシン(分子量146)等の塩基性アミノ酸化合物、アスパラギン(分子量132)やグルタミン(分子量146)等のアミド基を有するアミノ酸化合物、グリシン(分子量75)やフェニルアラニン(分子量165)等のその他アミノ酸化合物。
 第1の有機化合物としては、アミノ酸又はアミノ酸化合物が好適であり、例えば、塩基性アミノ酸である、アルギニン(分子量174)、リシン(分子量146)、又はヒスチジン(分子量155)が好適である。第2の有機化合物としては、ペプチドあるいはその誘導体として、例えば、フェニルアラニンとアスパラギン酸のジペプチドのメチルエステルであるアスパルテーム(分子量294)が好適である。
 これらの低分子量アミノ化合物は、水に対する溶解性が高く、その水溶液は安定であり、膜のカルボキシル基と反応して逆浸透膜に結合し、不溶性の塩を形成して、膜の劣化により生じた穴を塞ぎ、これにより膜の阻止率を高める。
 これらの低分子量アミノ化合物は、1種を単独で用いても良く、2種以上を混合して用いても良い。分子量や骨格構造の異なる2種以上の低分子量アミノ化合物を含む水溶液を透過膜に透過させると、各々の化合物が膜を透過する際に互いに障害となり、膜内の劣化箇所に滞留する時間が長くなることにより、膜のカルボキシル基と低分子量アミノ化合物のアミノ基との接触確率が高くなり、膜の修復効果が高められる。
 阻止率向上処理水中の第1の有機化合物の濃度は0.1~500mg/L特に0.5~100mg/Lが好ましく、第2の有機化合物の濃度は0.1~500mg/L特に0.5~100mg/Lが好ましい。
 分子量500以上(好ましくは500~500,000特に好ましくは500~50,000)の第3の有機化合物としては、カルボキシル基、アミノ基、あるいはヒドロキシル基を有するものが好適である。例として、タンニンやペプチドを挙げることができる。タンニンとしては、加水分解型の五倍子、没食子、縮合型のケブラチョ、ミモザなどの植物から抽出されたタンニンを挙げることができる。ペプチドとしては、分子量500以上のポリグリシン、ポリリシン、ポリトリプトファン、ポリアラニンなどを挙げることができる。
 阻止率向上処理水中における第3の有機化合物の濃度は0.1~500mg/L特に0.5~100mg/L程度が好適である。
 阻止率向上処理水中における第1、第2及び第3の有機化合物の合計の濃度は、過度に高いと透過流束を大きく低下させることがあり、また、膜の表面に有機化合物が多層的に吸着され、劣化部位に到達しない有機化合物が多くなる。第1、第2及び第3の有機化合物の合計量が過度に少ないと膜の修復が不十分になったり、膜単位面積当りの有機化合物接触量を2500mg/m以上とするための通水処理時間が徒に長くなる。従って、阻止率向上処理水中の第1及び第2の有機化合物の合計の濃度が1~500mg/L、特に1~300mg/L程度であり、第3の有機化合物の濃度が1~500mg/L、特に1~300mg/L程度であることが好ましい。
 阻止率向上処理水中における第1~第3の有機化合物のうち最も濃度が低いものの濃度Cminと、最も濃度が高いものの濃度Cmaxとの比Cmin/Cmaxが0.1~1.0であることが好ましい。この値が0.1よりも小さいと、修復できる穴の大きさに偏りが生じるおそれがある。各有機物の濃度はすべて等しくてもよい。
 阻止率向上処理水には、トレーサーとして、食塩(NaCl)等の無機電解質やイソプロピルアルコールやグルコース等の中性有機物、ポリマレイン酸などの低分子ポリマーなどを添加してもよく、これにより、逆浸透膜の透過水への食塩やグルコースの透過の程度を分析して、膜の修復の程度を確認することができる。
 阻止率向上処理水を逆浸透膜装置に通水するときの給水圧力は、過度に高いと劣化していない箇所への吸着が進むという問題があり、過度に低いと劣化箇所への吸着も進まないことから、当該逆浸透膜装置の通常運転圧力の30~150%、特に50~130%とすることが好ましい。逆浸透膜装置の膜が超低圧膜の場合、装置の入口圧力は0.1~1.0MPaであることが好ましい。逆浸透膜装置の膜が低圧膜の場合、装置の入口圧力は0.1~2.0MPaであることが好ましい。逆浸透膜装置の膜が海水淡水化膜の場合、装置の入口圧力は0.1~7.0MPaであることが好ましい。
 本発明では、前記式で算出される膜単位面積当りの最小有機化合物接触量が2500mg/m以上、好ましくは2500~1000000mg/m特に好ましくは3000~100000mg/mとなるように阻止率向上処理水を逆浸透膜に通水すなわち透過させるのが好ましい。かかる最小有機化合物接触量とすることにより、逆浸透膜の阻止率が十分に向上する。第1の有機化合物の含有率をC(mg/L)、第2の有機化合物の含有率をC(mg/L)、第3の有機化合物の含有率をC(mg/L)、C~Cのうち最も濃度の低いものをCminとした場合、膜単位面積当りの最小有機化合物接触量は次式で算出される。
  膜単位面積当りの最小有機化合物接触量=[(Cmin)・処理時間(Hr)・処理時透過水量(m/Hr)/膜面積(m)]・1000
 本発明方法において、透過水の線速度は圧力、水温、膜の形状等に関わるが、0.1~5m/dであることが好ましい。理由は上述と同様、過度に高いと劣化していない個所への吸着が進むという問題があり、過度に低いと劣化個所への接触効率が悪化するためである。
 この阻止率向上処理工程における阻止率向上処理水の水温は、常温、例えば10~35℃程度が好ましい。水温が低すぎると透過水量が低下し、接触効率が悪化する。阻止率向上処理水の温度が高すぎると膜素材が変性するおそれがある。
 阻止率向上処理水を通水する時間としては、逆浸透膜中を各有機化合物が十分に透過する時間とすることが好ましい。逆浸透膜装置を定常運転していないときに阻止率向上処理水を通水する場合、3~100時間程度、特に6~50時間程度通水することが好ましい。通水時間が過度に短いと、有機化合物の定着性が十分得られないまま処理を終了させることになり、付着した有機化合物が剥離してしまうことがある。
 阻止率向上処理は、逆浸透膜装置の定常運転時に行われてもよく、例えば阻止率向上処理剤を逆浸透膜装置の定常運転時に被処理水に添加することにより行われてもよい。被処理水に阻止率向上処理剤を添加する時間は、1~500時間程度が好適であるが、阻止率向上処理剤を逆浸透膜装置への給水に常時添加してもよい。
 逆浸透膜装置を長時間運転することにより、膜汚染が生じて透過流束が低下している場合は、膜洗浄を行った後に阻止率向上処理を行ってもよい。
 膜洗浄の薬剤としては、酸洗浄では、塩酸、硝酸、硫酸などの鉱酸、クエン酸、シュウ酸といった有機酸を上げることができる。アルカリ洗浄では、水酸化ナトリウム、水酸化カリウムなどを上げることができる。一般的に、酸洗浄ではpH2付近とし、アルカリ洗浄ではpH12付近とする。
[逆浸透膜]
 逆浸透膜(RO膜)の膜構造としては、非対称膜、複合膜などの高分子膜などを挙げることができる。RO膜の素材としては、例えば、芳香族系ポリアミド、脂肪族系ポリアミド、これらの複合材などのポリアミド系素材、酢酸セルロースなどのセルロース系素材などを挙げることができる。これらの中で、芳香族系ポリアミド素材の透過膜であって、劣化することによりC-N結合の分断でカルボキシル基を多く有する膜に、本発明の逆浸透膜の阻止率向上方法を特に好適に適用することができる。
 阻止率向上処理前のRO膜の脱塩率が95%以下、特に90%以下である場合、本発明方法を適用するのに好適である。
 逆浸透膜モジュールの形式に特に制限はなく、例えば、管状膜モジュール、平面膜モジュール、スパイラル膜モジュール、中空糸膜モジュールなどを挙げることができる。
 本発明の方法で処理された逆浸透膜は、電子デバイス製造分野、半導体製造分野、その他の各種産業分野で排出される高濃度ないし低濃度TOC含有排水の回収・再利用のための水処理、あるいは工業用水や市水からの超純水製造、その他の分野の水処理に有効に適用される。逆浸透膜装置で処理される被処理水は特に限定されるものではないが、有機物含有水が好適であり、例えばTOC=0.01~100mg/L、好ましくは0.1~30mg/L程度の有機物含有水が好適である。このような有機物含有水としては電子デバイス製造工場排水、輸送機械製造工場排水、有機合成工場排水又は印刷製版・塗装工場排水など、あるいはそれらの一次処理水など挙げることができるが、これらに限定されない。
 以下に比較例及び実施例を挙げて本発明をより具体的に説明する。
 以下の比較例1~9,実施例1~3では図2に示す平膜試験装置を用いた。
 この平膜試験装置は、有底有蓋の円筒状容器1の高さ方向の中間位置に平膜セル2を設けて容器内を原水室1Aと透過水室1Bとに仕切り、この容器1をスターラー3上に設置し、ポンプ4で被処理水を配管11を介して原水室1Aに給水すると共に、容器1内の攪拌子5を回転させて原水室1A内を攪拌し、透過水を透過水室1Bより配管12を介して取り出すと共に、濃縮水を原水室1Aより配管13を介して取り出すものである。濃縮水取り出し配管13には圧力計6と開閉バルブ7が設けられている。
[比較例1]
 平膜セル2の膜として次の劣化膜を用いた。
 劣化膜:日東電工社製超低圧逆浸透膜ES20を、次亜塩素酸ナトリウム(遊離塩素1mg/L)を含む溶液に24時間浸漬して加速劣化させたもの。オリジナル膜(新品の劣化していないES20膜)の透過流束、脱塩率、IPA除去率はそれぞれ0.81m/(m・d)0.972、0.875である。
 この試験装置に以下の被処理水を以下の条件で2時間通水した。
 被処理水:日本国栃木県野木町の水道水を活性炭で脱塩素処理し、NaClを500mg/L、IPAを100mg/L添加したもの
 運転圧力:0.75MPa
   温度:24℃±2℃
[比較例2]
 被処理水にタンニン酸(シグマ・アルドリッチ社製403040-50G)を1mg/L添加したこと以外は比較例1と同一条件で通水を行った。
[比較例3]
 被処理水にポリエチレングリコール(分子量4000、和光純薬製)を1mg/L添加したこと以外は比較例1と同一条件で通水を行った。
[比較例4]
 被処理水にポリオキシエチレン(10)オレイルエーテル(分子量708、和光純薬製)を1mg/L添加したこと以外は比較例1と同一条件で通水を行った。
[比較例5]
 被処理水にアスパルテーム(味の素製、食品添加物グレード、分子量294)を1mg/L添加したこと以外は比較例1と同一条件で通水を行った。
[比較例6]
 被処理水にアルギニン(味の素製、食品添加物グレード、分子量174)を1mg/L添加したこと以外は比較例1と同一条件で通水を行った。
[比較例7]
 被処理水にアルギニンを2mg/L、及びアスパルテームを1mg/L添加したこと以外は比較例1と同一条件で通水を行った。
[実施例1]
 被処理水にアルギニンを2mg/L、アスパルテームを1mg/L、及びポリグリシン(シグマ・アルドリッチ社製P8791-500MG、分子量500~5000)を1mg/L添加し、24時間通水したこと以外は比較例1と同一条件で通水を行った。
[実施例2]
 被処理水にアルギニンを2mg/L、アスパルテームを1mg/L、及び食添タンニン酸AL(富士化学工業社製、分子量500以上)を1mg/L添加し、24時間通水したこと以外は比較例1と同一条件で通水を行った。
 なお、透過流束、脱塩率、IPA除去率は以下の式より算出した。 
  透過流束[m/(md)]=透過水量[m/d]/膜面積[m]×温度換算係数[-]
  脱塩率[%]=(1-透過水の導電率[mS/m]/濃縮水の導電率[mS/m])×100
  IPA除去率[%]=(1-透過水のTOC[mg/L]/濃縮水のTOC[mg/L])×100
 表1に結果を示す。本発明では、脱塩率向上効率及びIPA除去率の向上効率が高く、オリジナル膜と同等又はそれ以上の値が得られていることが分かる。
Figure JPOXMLDOC01-appb-T000002
[比較例8]
 下記の劣化膜を図2に示す平膜試験装置に装着し、下記の被処理水を下記条件で2時間通水した。
  劣化膜:排水回収に使用した8インチ日東電工社製低圧逆浸透膜NTR759HRをpH12のNaOH水溶液に15時間浸漬し、純水でリンスした後、2%クエン酸に2時間浸漬し、純水でリンスしたもの。
  被処理水:純水にNaClを500mg/L、IPAを100mg/L溶解させたもの。
  運転圧力:1.4MPa
  温度:24℃±2℃
[比較例9]
 上記被処理水にPEG4000(分子量4000のポリエチレングリコール、和光純薬製)を5mg/L添加したこと以外は比較例8と同一条件で通水を行った。
[実施例3]
 被処理水にアルギニンを20mg/L、アスパルテームを20mg/L、及び食添タンニン酸AL(富士化学工業社製、分子量500以上)を10mg/L添加したこと以外は比較例8と同一条件で通水を行った。
 表2に結果を示す。表2の通り、本発明によると、透過流束の低下を10%以内に止め、脱塩率及びIPA除去率を大きく向上させることができる。
Figure JPOXMLDOC01-appb-T000003
 以上の実施例及び比較例からも明らかな通り、本発明によれば、被処理水に阻止率向上処理剤を添加して通常の運転圧力で通水することによって、採水を行いながら、透過水量を低下させることなく、脱塩率を回復することができる。また、脱塩率90%以下の著しい劣化膜においても本発明は適用できる。
 以下に実施例4~14及び比較例10を説明する。
 以下の実施例4~14及び比較例10では、ハイドロノーティクス製超低圧RO膜ESPA2-4040(膜面積7.9m)を備えたRO装置に、次亜塩素酸ナトリウム100ppm溶液(pH7.0)を入口圧力0.75MPa、ブライン水量1m/h、水温25℃にて500時間通水して、RO膜を劣化させた。この劣化RO膜について阻止率向上処理を施し、処理前後の性能を評価した。性能評価は、RO装置にNaCl500ppm、及びIPA100ppmを含む溶液(pH7.0)を入口圧力0.75MPa、ブライン水量1m/h、水温25℃にて通水し、脱塩率(NaCl除去率)、IPA(イソプロピルアルコール)除去率及び透過水量(m/Hr)を測定することにより行った。
[実施例4]
 第1の有機化合物としてアルギニン(味の素製、分子量174)、第2の有機化合物としてアスパルテーム(味の素製、分子量294)、第3の有機化合物としてタンニン酸AL(富士化学工業製、分子量500以上)をそれぞれ10mg/L含む合成原水(pH7.0)を入口圧力0.2MPa、ブライン圧力0.17MPa、透過水量0.1m/Hr(0.3m/d)、ブライン水量1m/h、水温25℃、処理時間50時間にて透過させた。膜単位面積当りの有機化合物接触量は[10・50・0.1/7.9]×1000≒6300mg/mである。
 上記の処理条件を表3に示し、性能評価結果を表4に示す。
[実施例5~15]
 阻止率向上処理条件を表3の通りとした他は実施例4と同様にして阻止率向上処理を行った。性能評価結果を表4に示す。
 なお、脱塩率(NaCl除去率)、IPA除去率は次の計算式により算出した。表4では脱塩率はNaCl除去率と記載されている。 
 NaCl除去率[%]={1-透過水の導電率[mS/m]×2/(被処理水の導電率[mS/m]+濃縮水の導電率[mS/m])}×100
 IPA除去率[%]={1-透過水のTOC[mg/L]×2/(被処理水のTOC[mg/L]+濃縮水のTOC[mg/L])}×100
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4の通り、本発明によれば、阻止率向上処理により除去性能を最大限回復させることができる。単位面積当りの最小有機化合物接触量を2500mg/m以上を目標とすることで、処理期間が明確になるため、運転条件(圧力、処理時間)に応じた効率的な運用が可能になる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2011年3月9日付で出願された日本特許出願(特願2011-051530)及び2012年2月21日付で出願された日本特許出願(特願2012-035277)に基づいており、その全体が引用により援用される。

Claims (11)

  1.  分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む水溶液を逆浸透膜に通水する工程を有する逆浸透膜の阻止率向上方法。
  2.  請求項1において、前記第1の有機化合物及び第2の有機化合物がアミノ酸又はアミノ酸誘導体であることを特徴とする逆浸透膜の阻止率向上方法。
  3.  請求項1又は2において、前記第3の有機化合物がタンニン又はペプチドであることを特徴とする逆浸透膜の阻止率向上方法。
  4.  請求項1ないし3のいずれか1項において、前記逆浸透膜の前記水溶液を通水する前の脱塩率が90%以下であることを特徴とする逆浸透膜の阻止率向上方法。
  5.  請求項1ないし3のいずれか1項において、前記逆浸透膜の前記水溶液を通水する前の脱塩率が95%以下であることを特徴とする逆浸透膜の阻止率向上方法。
  6.  請求項1ないし5のいずれか1項において、前記第1の有機化合物と第2の有機化合物との合計の濃度が1~500mg/Lであり、第3の有機化合物の濃度が1~500mg/Lであることを特徴とする逆浸透膜の阻止率向上方法。
  7.  請求項1ないし6のいずれか1項において、下記式で定義される膜単位面積当りの最小有機化合物接触量を2500mg/m以上とすることを特徴とする逆浸透膜の阻止率向上方法。
      最小有機化合物接触量(mg/m)=[最小有機化合物濃度(mg/L)・処理時間(hr)・処理時透過水量(m/hr)/膜面積(m)]・1000
     ここで、最小有機化合物濃度は、前記水溶液中における第1~第3の有機物のうち最も濃度が低いものの濃度である。
  8.  請求項1ないし7のいずれか1項に記載の逆浸透膜の阻止率向上方法により阻止率向上処理が施されたことを特徴とする逆浸透膜。
  9.  分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む逆浸透膜の阻止率向上剤。
  10.  請求項9において、前記第1の有機化合物及び第2の有機化合物がアミノ酸又はアミノ酸誘導体であることを特徴とする逆浸透膜の阻止率向上剤。
  11.  請求項9又は10において、前記第3の有機化合物がタンニン又はペプチドであることを特徴とする逆浸透膜の阻止率向上剤。
PCT/JP2012/055549 2011-03-09 2012-03-05 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜 WO2012121208A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US13/985,666 US9498754B2 (en) 2011-03-09 2012-03-05 Method for improving rejection of reverse osmosis membrane, treatment agent for improving rejection, and reverse osmosis membrane
EP12755214.9A EP2684598B1 (en) 2011-03-09 2012-03-05 Method for improving blocking rate of reverse osmosis membrane, and use of a treatment agent for improving blocking rate of a reverse osmosis membrane
KR1020137023695A KR101932782B1 (ko) 2011-03-09 2012-03-05 역침투막의 저지율 향상 방법, 저지율 향상 처리제 및 역침투막
BR112013022550-5A BR112013022550B1 (pt) 2011-03-09 2012-03-05 método para melhorar a rejeição de uma membrana de osmose reversa e uso de uma solução aquosa para melhorar a rejeição de uma membrana de osmose reversa
ES12755214T ES2734078T3 (es) 2011-03-09 2012-03-05 Método para mejorar la tasa de bloqueo de una membrana de ósmosis inversa, y uso de un agente de tratamiento para mejorar la tasa de bloqueo de una membrana de ósmosis inversa
KR1020187028366A KR101979178B1 (ko) 2011-03-09 2012-03-05 역침투막의 저지율 향상 방법, 저지율 향상 처리제 및 역침투막
AU2012226983A AU2012226983B2 (en) 2011-03-09 2012-03-05 Method for improving blocking rate of reverse osmosis membrane, treatment agent for improving blocking rate, and reverse osmosis membrane
SG2013062294A SG192806A1 (en) 2011-03-09 2012-03-05 Method for improving blocking rate of reverse osmosis membrane, treatment agent for improving blocking rate, and reverse osmosis membrane
PL12755214T PL2684598T3 (pl) 2011-03-09 2012-03-05 Sposób poprawiania współczynnika zatrzymania membrany do odwróconej osmozy oraz zastosowanie środka do obróbki do poprawiania współczynnika zatrzymania membrany do odwróconej osmozy
CN201280012319.5A CN103429324B (zh) 2011-03-09 2012-03-05 逆渗透膜的阻止率提高方法、阻止率提高处理剂及逆渗透膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-051530 2011-03-09
JP2011051530A JP5772083B2 (ja) 2011-03-09 2011-03-09 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
JP2012035277A JP5929296B2 (ja) 2012-02-21 2012-02-21 逆浸透膜の阻止率向上方法
JP2012-035277 2012-02-21

Publications (1)

Publication Number Publication Date
WO2012121208A1 true WO2012121208A1 (ja) 2012-09-13

Family

ID=46798169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055549 WO2012121208A1 (ja) 2011-03-09 2012-03-05 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜

Country Status (12)

Country Link
US (1) US9498754B2 (ja)
EP (1) EP2684598B1 (ja)
KR (2) KR101979178B1 (ja)
CN (1) CN103429324B (ja)
AU (1) AU2012226983B2 (ja)
BR (1) BR112013022550B1 (ja)
ES (1) ES2734078T3 (ja)
MY (1) MY164964A (ja)
PL (1) PL2684598T3 (ja)
SG (1) SG192806A1 (ja)
TW (1) TWI528998B (ja)
WO (1) WO2012121208A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091273A1 (en) 2016-11-16 2018-05-24 Basf Se New processes for treating water

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910696B1 (ja) 2014-10-06 2016-04-27 栗田工業株式会社 逆浸透膜の洗浄剤、洗浄液、および洗浄方法
KR101781679B1 (ko) * 2014-11-21 2017-09-26 한양대학교 산학협력단 수 처리 물질 및 그 제조 방법
KR101570304B1 (ko) * 2014-11-28 2015-11-19 한국기계연구원 하이브리드 형 액체 여과 구조체
SG11201705609TA (en) * 2015-01-09 2017-08-30 Toray Industries Method for improving blocking capability of semipermeable membrane, semipermeable membrane, and semipermeable-membrane desalination apparatus
JP6090362B2 (ja) * 2015-05-20 2017-03-08 栗田工業株式会社 ポリアミド系逆浸透膜の洗浄液、および洗浄方法
CN104874294B (zh) * 2015-05-30 2017-03-15 吴爱群 一种环保型反渗透膜阻垢剂及其制备方法和应用
CN113634133B (zh) * 2021-08-05 2023-11-07 宁波水艺膜科技发展有限公司 一种高产水量半透膜及其制备方法
CN114130224A (zh) * 2021-12-02 2022-03-04 天津工业大学 一种高通量聚酰胺复合纳滤膜及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022827A (ja) * 1987-11-13 1990-01-08 Toray Ind Inc 架橋ポリアミド系逆浸透膜の処理方法
JPH0268102A (ja) * 1988-08-23 1990-03-07 Filmtec Corp 水の軟化に有効なポリアミド膜の製造方法及び使用
JPH02115027A (ja) * 1988-10-25 1990-04-27 Toray Ind Inc 複合半透膜の製造方法
US4983291A (en) * 1989-12-14 1991-01-08 Allied-Signal Inc. Dry high flux semipermeable membranes
JPH07308671A (ja) 1994-05-16 1995-11-28 Nitto Denko Corp 逆浸透膜モジュ−ルによる海水淡水化での海水の前処理方法
JP2000504270A (ja) * 1996-02-02 2000-04-11 ザ ダウ ケミカル カンパニー ポリアミド膜のフラックス増大処理方法
JP2006110520A (ja) 2004-10-18 2006-04-27 Kurita Water Ind Ltd 透過膜の阻止率向上剤、阻止率向上方法、透過膜及び水処理方法
JP2007289922A (ja) 2006-03-29 2007-11-08 Kurita Water Ind Ltd ナノろ過膜又は逆浸透膜の阻止率向上剤、阻止率向上方法、ナノろ過膜又は逆浸透膜、水処理方法、及び、水処理装置
JP2008086945A (ja) 2006-10-04 2008-04-17 Toray Ind Inc 選択的透過膜の性能回復方法
JP2009172531A (ja) * 2008-01-25 2009-08-06 Kurita Water Ind Ltd 透過膜の阻止率向上方法、阻止率向上透過膜、透過膜処理方法および装置
WO2011040354A1 (ja) * 2009-09-29 2011-04-07 栗田工業株式会社 透過膜の阻止率向上方法及び透過膜

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3373056A (en) * 1964-08-28 1968-03-12 Aerojet General Co Modifying cellulose ester osmotic membranes
US3886066A (en) * 1972-11-06 1975-05-27 Du Pont Tannin treatment for non-porous semipermeable membranes
US3853755A (en) * 1972-11-06 1974-12-10 Du Pont Osmosis efficiency from tannin treatment of non-porous semipermeable membranes having hydrous heavy metal coatings
JPS59115704A (ja) * 1982-12-24 1984-07-04 Toray Ind Inc 半透膜の処理法
US4909943A (en) * 1987-07-20 1990-03-20 The Dow Chemical Company Rejection enhancing coatings for reverse osmosis membranes
US20050147579A1 (en) * 2002-04-12 2005-07-07 Biolocus Aps Antifouling composition comprising an enzyme in the absence of its substrate
EP1534635A1 (en) * 2002-09-04 2005-06-01 Biolab, Inc. Disinfection of reverse osmosis membrane
US7491334B2 (en) 2004-09-29 2009-02-17 North Pacific Research, Llc Method of treating reverse osmosis membranes for boron rejection enhancement
EP1930012B1 (en) * 2005-09-27 2018-05-23 Asahi Kasei Kabushiki Kaisha Cellooligosaccharide-containing composition
US20100025329A1 (en) * 2007-01-24 2010-02-04 Kurita Water Industries Ltd. Method for treatment with reverse osmosis membrane
US20090074926A1 (en) * 2007-09-17 2009-03-19 Purac Biochem B.V. Preservation of acidic beverages
JP2009136778A (ja) 2007-12-06 2009-06-25 Kurita Water Ind Ltd 透過膜の阻止率判定方法
JP2009165949A (ja) 2008-01-15 2009-07-30 Japan Organo Co Ltd 抗菌性分離膜、その製造方法、および抗菌性分離膜の製造装置
US8147735B2 (en) * 2008-07-09 2012-04-03 Eltron Research & Development, Inc. Semipermeable polymers and method for producing same
CN101811000B (zh) * 2009-02-25 2011-11-09 北京合创同盛科技有限公司 一种反渗透膜阻垢剂
UA106606C2 (uk) * 2009-03-16 2014-09-25 Родія Оперейшнс Стабілізована біоцидна композиція
US9216385B2 (en) * 2010-10-04 2015-12-22 Saudi Arabian Oil Company Application of rejection enhancing agents (REAs) that do not have cloud point limitations on desalination membranes

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH022827A (ja) * 1987-11-13 1990-01-08 Toray Ind Inc 架橋ポリアミド系逆浸透膜の処理方法
JPH0268102A (ja) * 1988-08-23 1990-03-07 Filmtec Corp 水の軟化に有効なポリアミド膜の製造方法及び使用
JPH02115027A (ja) * 1988-10-25 1990-04-27 Toray Ind Inc 複合半透膜の製造方法
US4983291A (en) * 1989-12-14 1991-01-08 Allied-Signal Inc. Dry high flux semipermeable membranes
JPH07308671A (ja) 1994-05-16 1995-11-28 Nitto Denko Corp 逆浸透膜モジュ−ルによる海水淡水化での海水の前処理方法
JP2000504270A (ja) * 1996-02-02 2000-04-11 ザ ダウ ケミカル カンパニー ポリアミド膜のフラックス増大処理方法
JP2006110520A (ja) 2004-10-18 2006-04-27 Kurita Water Ind Ltd 透過膜の阻止率向上剤、阻止率向上方法、透過膜及び水処理方法
JP2007289922A (ja) 2006-03-29 2007-11-08 Kurita Water Ind Ltd ナノろ過膜又は逆浸透膜の阻止率向上剤、阻止率向上方法、ナノろ過膜又は逆浸透膜、水処理方法、及び、水処理装置
JP2008086945A (ja) 2006-10-04 2008-04-17 Toray Ind Inc 選択的透過膜の性能回復方法
JP2009172531A (ja) * 2008-01-25 2009-08-06 Kurita Water Ind Ltd 透過膜の阻止率向上方法、阻止率向上透過膜、透過膜処理方法および装置
WO2011040354A1 (ja) * 2009-09-29 2011-04-07 栗田工業株式会社 透過膜の阻止率向上方法及び透過膜

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
NAGAI ET AL., DESALINATION, vol. 96, 1994, pages 291 - 301
S.T. MITROULI; A.J. KARABELAS; N.P. ISAIAS; D.C. SIOUTOPOULOS; A.S. AL RAMMAH: "Reverse Osmosis Membrane Treatment Improves Salt-Rejection Performance", IDA JOURNAL I SECOND QUARTER, 2010, pages 22 - 34
SATOH; TAMURA, KAGAKU KOGAKU RONBUNNSHU, vol. 34, 2008, pages 493 - 498
UEMURA ET AL., BULLETIN OF THE SOCIETY OF SEA WATER SCIENCE, vol. 57, 2003, pages 498 - 507
YOSHIYASU KAMIYAMA, HYOMEN (SURFACE, vol. 31, no. 5, 1993, pages 408 - 418

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018091273A1 (en) 2016-11-16 2018-05-24 Basf Se New processes for treating water

Also Published As

Publication number Publication date
KR20140066661A (ko) 2014-06-02
KR101932782B1 (ko) 2018-12-27
ES2734078T3 (es) 2019-12-04
EP2684598A1 (en) 2014-01-15
US20130324664A1 (en) 2013-12-05
BR112013022550A2 (pt) 2016-12-06
PL2684598T3 (pl) 2019-09-30
CN103429324B (zh) 2016-06-01
BR112013022550B1 (pt) 2020-10-20
MY164964A (en) 2018-02-28
TW201249528A (en) 2012-12-16
SG192806A1 (en) 2013-09-30
US9498754B2 (en) 2016-11-22
TWI528998B (zh) 2016-04-11
EP2684598A4 (en) 2014-08-27
AU2012226983A1 (en) 2013-09-05
CN103429324A (zh) 2013-12-04
KR101979178B1 (ko) 2019-05-15
AU2012226983B2 (en) 2017-02-09
EP2684598B1 (en) 2019-05-01
KR20180112097A (ko) 2018-10-11

Similar Documents

Publication Publication Date Title
WO2012121208A1 (ja) 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
JP5633517B2 (ja) 透過膜の阻止率向上方法及び透過膜
WO2012121209A1 (ja) 透過膜の阻止率向上方法、阻止率向上処理剤及び透過膜
JP6251953B2 (ja) 逆浸透膜の阻止率向上方法
US6709590B1 (en) Composite reverse osmosis membrane and method for producing the same
JP2003088730A (ja) 逆浸透膜エレメントの処理方法、および逆浸透膜モジュール
JP5772083B2 (ja) 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
AU2013247863B2 (en) Agent and method for improving blocking rate of reverse osmosis membrane, and reverse osmosis membrane
JP5929296B2 (ja) 逆浸透膜の阻止率向上方法
WO2018056242A1 (ja) 逆浸透膜の阻止率向上剤及び阻止率向上方法
JP2014050783A (ja) 逆浸透膜の阻止率向上方法
Jung et al. Supercritical Carbon Dioxide Fluid Cleaning of Extracellular Polymeric Substances of Seawater Reverse Osmosis Membranes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755214

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13985666

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2012226983

Country of ref document: AU

Date of ref document: 20120305

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137023695

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004960

Country of ref document: TH

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013022550

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013022550

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130903