WO2013153982A1 - 逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜 - Google Patents

逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜 Download PDF

Info

Publication number
WO2013153982A1
WO2013153982A1 PCT/JP2013/059902 JP2013059902W WO2013153982A1 WO 2013153982 A1 WO2013153982 A1 WO 2013153982A1 JP 2013059902 W JP2013059902 W JP 2013059902W WO 2013153982 A1 WO2013153982 A1 WO 2013153982A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
reverse osmosis
aqueous solution
organic compound
osmosis membrane
Prior art date
Application number
PCT/JP2013/059902
Other languages
English (en)
French (fr)
Inventor
孝博 川勝
邦洋 早川
賢二 木幡
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to SG11201404672UA priority Critical patent/SG11201404672UA/en
Priority to CN201380019042.3A priority patent/CN104245099A/zh
Priority to AU2013247863A priority patent/AU2013247863B2/en
Publication of WO2013153982A1 publication Critical patent/WO2013153982A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking

Definitions

  • the present invention is a reverse osmosis (RO) membrane, particularly an aromatic polyamide RO membrane, which has a reduced rejection rate (desalting rate) during its use process, without significantly reducing the amount of permeated water.
  • the present invention relates to a blocking rate improver that can provide a high blocking rate improving effect, and in particular, in view of the fact that the permeated water of the RO membrane is used as drinking water and domestic water, and that concentrated water is discharged into the environment.
  • the present invention relates to a RO membrane rejection rate improver that is safe even when leaked to the permeate side in the process of improving the rejection rate, and that does not give a high load to the environment even if discharged to the concentration side.
  • the present invention also relates to a RO membrane rejection rate improving method using this rejection rate improver, and an RO membrane that has been subjected to rejection rate improvement treatment with this rejection rate improver.
  • RO membrane systems in order to suppress biofouling, chlorine (sodium hypochlorite, etc.) and raw water (treated water of the RO membrane; sometimes referred to as “RO feed water”) in the pretreatment process
  • an oxidizing agent such as hydrogen peroxide
  • these oxidants have a strong oxidative decomposition action, if these oxidants are added and the raw water is supplied to the RO membrane with insufficient reduction treatment, the RO membrane will deteriorate. It has been known.
  • Patent Document 1 Non-Patent Document 1
  • Patent Document 2 A method of improving the RO membrane rejection by attaching an anionic or cationic ionic polymer compound to the membrane surface (Patent Document 2). This method has an effect of improving the rejection rate of electrolytes particularly for RO membranes with little deterioration and unused RO membranes. However, this method improves the rejection rate of non-electrolytes and reduces the rejection rate of RO membranes with high degradation. Less effective for improvement.
  • Patent Document 3 A method of improving the RO membrane rejection by attaching a compound having a polyalkylene glycol chain to the membrane surface. This method is effective for improving the rejection rate of non-electrolytes, but it may be less effective for improving the rejection rate of RO membranes that are highly deteriorated, and there is a problem of a decrease in permeation flux. Yes, the permeation flux may be reduced by 20% or more compared to an unused RO membrane.
  • Patent Document 4 A method of adsorbing a nonionic surfactant on the RO membrane (Patent Document 4).
  • Some nonionic surfactants include a polyalkylene glycol chain, and in this case, it is included in Patent Document 3, but due to the nature of the surfactant, the surfactant has a hydrophobic group. Adsorption to the RO membrane greatly reduces the permeation flux.
  • Non-patent Document 2 A method of improving the desalination rate by attaching tannic acid or the like to the RO membrane (Non-patent Document 2). Even if the desalination rate of ES20 (manufactured by Nitto Denko) and SUL-G20F (manufactured by Toray Industries, Inc.), which are deteriorated RO membranes, is improved by this method, the improvement in the rejection rate by this method is not significant. The solute concentration of the permeated water of the subsequent membrane cannot be reduced to 1 ⁇ 2 or less of the solute concentration of the permeated water of the membrane before the improvement.
  • Non-patent Document 3 A method of improving the RO membrane rejection by adding tannic acid and a polymer (polyvinyl methyl ether) in combination (Non-patent Document 3).
  • the effect is improved over the method using only tannic acid, but the permeation flux is reduced by about 20% on average, and the rejection rate is improved by a desalting rate of 90.degree.
  • the solute concentration of the permeated water cannot be reduced to 1 ⁇ 2 or less, for example, the desalination rate of the RO membrane lowered to 5% is 92.5%.
  • Non-Patent Documents 4 and 5 it is known that when the RO membrane is oxidatively deteriorated by a chlorine-based oxidant, a carboxyl group is generated (Non-Patent Documents 4 and 5). Even if it is not used, a carboxyl group is present, and it has been found that the carboxyl group increases even if the film deteriorates due to factors other than a chlorine-based oxidizing agent such as alkali or hydrogen peroxide.
  • the detection of the carboxyl group can be performed by the XPS method in which the surface modification is performed to increase the detection sensitivity of the carboxyl group.
  • Patent Documents 5 and 6 Based on the knowledge that a carboxyl group is present in the RO membrane and increases due to deterioration, the present inventors improve the RO membrane rejection rate by using a compound having an amino group and binding it to the carboxyl group. A method has been found (Patent Documents 5 and 6).
  • the basic technical idea of these Patent Documents 5 and 6 is that a compound having an amino group having a molecular weight of 1000 or less is adsorbed mainly on a portion where the deterioration is severe because there are many carboxyl groups. is there.
  • the present inventors have also found that adsorption of low molecular weight compounds to the RO membrane is indispensable for improving the RO membrane rejection rate (Patent Document 7). That is, the isopropyl alcohol (IPA) blocking rate of the aromatic polyamide RO membrane is 80 to 95%. Since the molecular weight of IPA is 60, the fractional molecular weight of the RO membrane relative to the non-electrolyte can be considered to be around 60. Considering that the decrease in the blocking rate of the RO membrane is due to the expansion of the gap in the dense layer of the RO membrane, it is desirable to fill the gap in the dense layer of the RO membrane with a material slightly larger than the molecular weight cut off. Conceivable.
  • the size of the gap is considered to vary, it may be more desirable to use a substance having a plurality of molecular weights. Ultimately, the use of a substance having a relatively higher molecular weight than these low molecules will promote the fixation of low molecules.
  • the RO membrane rejection rate improving method of Patent Document 7 includes a first organic compound having a molecular weight of less than 200, a second organic compound having a molecular weight of 200 or more and less than 500, and a third organic compound having a molecular weight of 500 or more.
  • An aqueous solution is passed through a reverse osmosis membrane, and the first and second organic compounds are preferably amino acids or amino acid derivatives, and the third organic compound is a functional group that acts on the carboxyl group of the membrane.
  • an agent that acts with a compound having an amino group in the rejection rate improver anion group: carboxyl group, sulfone group, aromatic hydroxyl group (phenolic hydroxyl group)
  • polyamide Those having a functional group (hydroxyl group) that acts on the membrane or those having a cyclic structure can be used.
  • the normal amide bond of an RO membrane for example, an aromatic polyamide RO membrane has a structure as shown in the normal membrane of FIG.
  • an oxidizing agent such as chlorine
  • the CN bond of the amide bond is broken, and finally the structure as shown in the deteriorated film in FIG. 1 is obtained.
  • the amino group may disappear due to the amide bond breakage, but a carboxyl group is formed in at least a part of the breakage portion.
  • first to third organic compounds A to C having different molecular weights depending on the size of the gap (the molecular weights are: organic compound A ⁇ organic compound B ⁇ organic compound
  • order C holes of various sizes (gap between dense layers) of the deteriorated film are repaired, and the rejection of the film is restored.
  • Patent Document 7 an aqueous solution containing a plurality of amino compounds (first and second organic compounds) having different molecular weights and skeletons (structures) is allowed to pass through a deteriorated film, so that each compound can pass through each other when passing through the film. Since it becomes an obstacle and the time for staying at the deteriorated portion in the film becomes long, the contact probability between the carboxyl group of the film and the amino group of the low molecular weight amino compound increases, and the repair efficiency of the film is improved. Further, by using a third organic compound having a molecular weight of 500 or more in combination, it is possible to block a greatly deteriorated portion of the film and further improve the repair efficiency.
  • Patent Document 7 can effectively improve the blocking rate of the RO membrane.
  • a plurality of organic compounds having different molecular weights are mixed and dissolved in an aqueous solution, aggregates are generated, and a chemical tank There are problems such as adhering to the surface, blocking the flow path of the membrane module, and reducing the effect as a drug.
  • some organic compounds have problems such as low solubility in water and difficulty in dissolving.
  • hydrolysis may occur and the chemical may be deteriorated.
  • problems of formation of precipitates due to a decrease in storage temperature and problems of microbial growth due to an increase in storage temperature.
  • the present invention has been made in view of such problems, and in the RO membrane rejection rate improver containing two or more organic compounds having different molecular weights, formation of aggregates, poor dissolution in water, hydrolysis It is an object of the present invention to provide a technique for preventing decomposition and effectively using a rejection rate improving agent for the RO membrane rejection rate improving process.
  • an organic compound having an aqueous solution having a pH of 7 or more when dissolved alone in water and an organic compound having a pH of less than 7 When mixed and dissolved in water at a high concentration, aggregates may be generated.
  • an organic compound having a pH of 7 or more is alkaline, and an organic compound having a pH of less than 7 is acidic.
  • An organic compound having an amino group can be said to be a weak alkaline substance.
  • the organic compound used in combination with this is weakly acidic or has a large molecular weight, an insoluble salt is formed when these are made into a high concentration aqueous solution, which becomes an aggregate.
  • Aspartame is a substance in which phenylalanine methyl ester and aspartic acid are amide-bonded, and its solubility in water is low, but its solubility in alkaline aqueous solutions increases. Therefore, when this product is mixed with an organic compound such as arginine, which has a pH of 7 or more when dissolved in water, a mixed powder is prepared, and an aqueous solution is prepared by using this mixed powder to make an aqueous solution. The solubility of can be increased. Further, aspartame has a property of hydrolyzing when stored for a long time under alkaline conditions, but it can also be prevented from being modified by hydrolysis by storing it in a powder state.
  • arginine is an organic compound, but the pH after dissolution may be adjusted by an inorganic compound such as carbonate or phosphate.
  • the RO membrane is diluted to the working concentration as quickly as possible. It is necessary to use it for the prevention rate improvement process. Therefore, the two powdered drugs once dissolved so that the concentration of each organic compound is 1 to 200 g / L are diluted to a concentration of 0.1 to 200 mg / L and used in the next step.
  • this aqueous solution having an organic compound concentration of 0.1 to 200 mg / L even if all organic compounds are present in the same aqueous solution, the concentration of the generated salt is less than the solubility, and aggregates are not generated. . Therefore, an aqueous solution in which all organic compounds are dissolved can be used for the RO membrane rejection rate improving treatment.
  • an aqueous solution of two powdery drugs dissolved in each organic compound concentration of 1 to 200 g / L can be injected into the line and diluted and mixed in the line. Also, after dissolving the two powdered drugs so that the concentration of each organic compound is 1 to 200 g / L, it is diluted so that the concentration of each organic compound after mixing is 0.1 to 200 mg / L. It is also possible to adopt a method of contacting the RO membrane separately.
  • the present invention has been achieved on the basis of such knowledge, and the gist thereof is as follows.
  • a reverse osmosis membrane rejection rate improver comprising two or more organic compounds having different molecular weights, wherein the two or more organic compounds include an organic compound having an amino group having a molecular weight of at least 60 and less than 500;
  • a reverse osmosis membrane blocking agent containing tannic acid wherein the organic compound having an amino group and the tannic acid are stored as two different powdered drugs.
  • a method for improving the inhibition rate of a reverse osmosis membrane comprising the step of preparing an aqueous solution having a concentration of each organic compound of 1 to 200 mg / L by mixing the obtained aqueous solution with the aqueous solution.
  • a method for improving the rejection rate of a reverse osmosis membrane comprising a step of injecting an aqueous solution obtained by dissolving in an aqueous solution into a line from different positions and diluting and mixing.
  • the following functions and effects are achieved, and in the RO membrane rejection rate improver containing two or more organic compounds having different molecular weights, formation of aggregates, poor dissolution in water, hydrolysis, etc.
  • the RO membrane blocking rate improving process can be performed efficiently.
  • An organic compound having an amino group and tannic acid, which are constituents of a blocking rate improver that may generate aggregates when mixed at a high concentration, are divided into two powders, which are dissolved in water.
  • each organic compound concentration is separately dissolved at a concentration of 1 to 200 g / L, and further diluted to a concentration at which each organic compound concentration is 0.1 to 200 mg / L.
  • generation of the aggregate can be suppressed. For this reason, the above-mentioned problem by the aggregate can be avoided.
  • An aqueous solution having a concentration of 1 to 200 g / L can be easily mixed with a substance that exhibits alkalinity or acidity when dissolved, as a constituent of a blocking rate improver that is difficult to dissolve at normal pH, such as an organic compound having an amino group. Can be prepared.
  • the RO membrane rejection rate improver of the present invention is a reverse osmosis membrane rejection rate improver containing two or more organic compounds having different molecular weights, and the molecular weight is at least 60 or more and 500 as the two or more organic compounds. It is characterized in that it is stored as two powdered drugs containing an organic compound having less than an amino group and tannic acid and containing different organic compounds.
  • Examples of the organic compound having an amino group having a molecular weight of 60 or more and less than 500 (hereinafter sometimes referred to as “low molecular weight amino compound”), which is a constituent of the blocking rate improver of the present invention, are as follows. Is mentioned.
  • Aromatic amino compounds for example, those having a benzene skeleton and an amino group such as aniline (molecular weight 93), diaminobenzene (molecular weight 108)
  • Aromatic aminocarboxylic acid compounds for example, 3,5-diaminobenzoic acid (molecular weight 152), 3,4-diaminobenzoic acid (molecular weight 152), 2,4-diaminobenzoic acid (molecular weight 152), 2,5-diamino Those having a benzene skeleton such as benzoic acid (molecular weight 152), 2,4,6-triaminobenzoic acid (molecular weight 167), two or more amino groups, and a carboxyl group less than the number of amino groups.
  • Aliphatic amino compounds for example, methylamine (molecular weight 31), ethylamine (molecular weight 45), octylamine (molecular weight 129), 1,9-diaminononane (may be abbreviated as “NMDA” in this specification) C 9 H 18 (NH 2 ) 2 ) (molecular weight 158) and other straight-chain hydrocarbon groups having about 1 to 20 carbon atoms and one or more amino groups, and 1-aminopentane (this specification In some cases, it may be abbreviated as “IAAM”.) (NH 2 (CH 2 ) 4 CH 3 ) (molecular weight 87), 2-methyl-1,8-octanediamine (abbreviated as “MODA” in this specification) A branched hydrocarbon group having about 1 to 20 carbon atoms such as (NH 2 CH 2 CH (CH 3 ) (CH 2 ) 6 NH 2 ) (molecular weight 158) and one or more amino groups Have Things.
  • Aliphatic amino alcohol 4-amino-2-methyl-1-butanol (may be abbreviated as “AMB” in this specification) (NH 2 (CH 2 ) 2 CH (CH 3 ) CH 2 OH) Those having an amino group and a hydroxyl group in a linear or branched hydrocarbon group having 1 to 20 carbon atoms, such as (molecular weight 103).
  • Heterocyclic amino compound A compound having a heterocyclic ring and an amino group such as tetrahydrofurfurylamine (may be abbreviated as “FAM” in this specification) (the following structural formula) (molecular weight 101).
  • FAM tetrahydrofurfurylamine
  • Amino acid compounds for example, basic amino acid compounds such as arginine (molecular weight 174) and lysine (molecular weight 146), amino acid compounds having an amide group such as asparagine (molecular weight 132) and glutamine (molecular weight 146), glycine (molecular weight 75) and phenylalanine Other amino acid compounds such as (molecular weight 165).
  • basic amino acid compounds such as arginine (molecular weight 174) and lysine (molecular weight 146)
  • amino acid compounds having an amide group such as asparagine (molecular weight 132) and glutamine (molecular weight 146)
  • glycine molethylalanine
  • Other amino acid compounds such as (molecular weight 165).
  • low molecular weight amino compounds may be used alone or in combination of two or more.
  • the first low molecular weight having a molecular weight of less than 200 is used. It is preferable to use an amino compound in combination with a second low molecular weight amino compound having a molecular weight of 200 or more and less than 500.
  • the first low molecular weight amino compound is preferably an amino acid or an amino acid compound, for example, a base
  • the preferred amino acids are arginine (molecular weight 174), lysine (molecular weight 146), histidine (molecular weight 155), and glycine (molecular weight 75) having a smaller molecular weight.
  • aspartame molecular weight 294 which is a methyl ester of a dipeptide of phenylalanine and aspartic acid is suitable as a peptide or a derivative thereof.
  • Amino acids are generally highly soluble in water, and their aqueous solutions are stable, react with the carboxyl groups of the membrane, bind to the RO membrane, form insoluble salts, and close holes created by membrane degradation. This increases the blocking rate of the membrane.
  • low molecular weight amino compounds may be used alone or in combination of two or more.
  • an aqueous solution containing two or more kinds of low molecular weight amino compounds having different molecular weights or skeletal structures is permeated through the RO membrane, each compound becomes an obstacle when permeating the membrane, and it takes a long time to stay at the degradation site in the membrane.
  • the contact probability between the carboxyl group of the film and the amino group of the low molecular weight amino compound is increased, and the effect of repairing the film is enhanced.
  • tannic acid having a molecular weight of 500 or more in combination with these low molecular weight amino compounds it is possible to block a large deteriorated portion of the film and improve the repair efficiency.
  • the low molecular weight amino compound and tannic acid are stored so as to be two powdered drugs different from each other.
  • These two powdered drugs are each an organic compound having an amino group when each powdered drug is used as an aqueous solution in which the concentration of each organic compound contained in the powdered drug is 1 to 200 g / L. It is preferable that the pH of the aqueous solution of one powdery drug containing 7 is 7 or more and the pH of the aqueous solution of the other powdery drug containing tannic acid is less than 7.
  • an organic compound that becomes alkaline with a pH of 7 or higher and an organic compound that becomes acidic with a pH lower than 7 are stored as separate powdered drugs, and each aqueous solution is prepared. The formation of aggregates due to the reaction of these can be prevented.
  • Aspartame has a relatively high solubility in an alkaline aqueous solution as described above, so when mixed in water, such as arginine, it is mixed with a low molecular weight amino compound that becomes an alkaline aqueous solution having a pH of 7 or higher to form a powdered drug. It is preferable to prepare an aqueous solution by dissolving the lysate in water.
  • inorganic compounds such as carbonates and phosphates may be used as pH adjusters to adjust the pH to a high solubility. For this reason, these pH adjusters May be mixed with a low molecular weight amino compound in advance to form a powdery medicine.
  • the content ratio of the two or more organic compounds in the powdered drug containing two or more types of organic compounds may be a suitable usage rate when used as a rejection rate improver. Further, it may be prepared as a content ratio in the powdery drug corresponding to the use ratio.
  • the RO membrane rejection rate improving method of the present invention is a method for performing the RO membrane rejection rate improvement treatment using the rejection rate improving agent of the present invention comprising the above-mentioned two powdered drugs.
  • the blocking rate of the deteriorated RO membrane is improved.
  • blocking rate improving treated water the aqueous solution of the blocking rate improver that passes through the RO membrane for the RO membrane blocking rate improving process.
  • the concentrations of the low molecular weight amino compound and tannic acid, which are constituents of the rejection rate improving agent in the rejection rate improving treated water are each preferably 1 to 200 mg / L, More preferably, it is 1 to 100 mg / L.
  • concentration of each component in the rejection improving treatment water is lower than the lower limit, a sufficient rejection improvement effect cannot be obtained, and when the concentration is higher than the upper limit, aggregates may be generated.
  • the above-mentioned diluted powder is used directly with the two powdery drugs that are the rejection rate improving agent of the present invention. It is not preferable to prepare treated water with improved concentration rejection, because a uniform aqueous solution may not be obtained. Therefore, first, a high-concentration aqueous solution having an organic compound concentration of 1 to 200 g / L is prepared using two powdered drugs, and these are used to adjust the concentration of each organic compound when passing through the RO membrane. It is preferable to dilute and mix so as to obtain an aqueous solution of 1 to 200 mg / L.
  • the organic compound concentration (this organic compound concentration is the concentration of each organic compound when the powdered drug A contains two or more organic compounds) is 1 to 200 g.
  • an organic compound concentration is prepared using powdered drug B (this organic compound concentration is the concentration of each organic compound when powdered drug B contains two or more organic compounds).
  • the ratio C min / C max between the concentration C min of the organic compound having the lowest concentration and the concentration C max of the organic compound having the highest concentration among the organic compounds in the treatment rate improving treated water is 0.1 to 1.0. It is preferable that If this value is smaller than 0.1, the size of the hole that can be repaired may be biased.
  • the concentration of each organic compound may be all equal.
  • an inorganic electrolyte such as sodium chloride (NaCl), a neutral organic substance such as isopropyl alcohol and glucose, a low molecular polymer such as polymaleic acid, and the like may be added as a tracer.
  • NaCl sodium chloride
  • a neutral organic substance such as isopropyl alcohol and glucose
  • a low molecular polymer such as polymaleic acid, and the like
  • the inlet pressure of the apparatus is preferably 0.1 to 1.0 MPa.
  • the inlet pressure of the apparatus is preferably 0.1 to 2.0 MPa.
  • the inlet pressure of the apparatus is preferably 0.1 to 7.0 MPa.
  • the minimum organic compound contact amount per unit membrane area calculated by the following formula is 2500 mg / m 2 or more, preferably 2500 to 1000000 mg / m 2 , particularly preferably 3000 to 100000 mg / m 2. It is preferable to pass the treated water with improved rejection rate through the RO membrane.
  • Minimum organic compound contact amount (mg / m 2 ) [minimum organic compound concentration (mg / L) ⁇ treatment time (hr) ⁇ permeated water amount during treatment (m 3 / hr) / membrane area (m 2 )] ⁇ 1000
  • the minimum organic compound concentration is the concentration of the organic compound having the lowest concentration among the organic compounds in the rejection improving treatment water.
  • the blocking rate of the RO membrane is sufficiently improved.
  • the concentration of the first low molecular weight amino compound in the blocking rate improvement treated water is C 1 (mg / L)
  • the concentration of the second low molecular weight amino compound in the blocking rate improving treatment water Is C 2 (mg / L)
  • the concentration of tannic acid rejection is improved in C 3 (mg / L)
  • C 1 -C 3 has the lowest concentration in C min.
  • the minimum organic compound contact amount is calculated by the following equation.
  • Minimum organic compound contact amount per unit area of membrane [(C min ) ⁇ treatment time (Hr) ⁇ permeation amount during treatment (m 3 / Hr) / membrane area (m 2 )] ⁇ 1000
  • the linear velocity of the RO membrane permeated water during the rejection improvement treatment is related to pressure, water temperature, membrane shape, etc., but is preferably 0.1 to 5 m / d. The reason is that, as described above, if it is excessively high, there is a problem that the adsorption to a portion that has not deteriorated proceeds. If it is excessively low, the contact efficiency to the deteriorated portion deteriorates.
  • the water temperature of the rejection rate improving treatment water during the rejection rate improvement treatment is preferably room temperature, for example, about 10 to 35 ° C. If the water temperature is too low, the amount of permeated water is lowered and the contact efficiency is deteriorated. If the temperature of the water for improving the rejection rate is too high, the membrane material may be denatured.
  • the time for passing the treated water for improving the rejection rate is a time for each organic compound to sufficiently permeate through the RO membrane.
  • the rejection rate improvement process may be performed during the steady operation of the RO membrane device, and may be performed, for example, by adding an aqueous solution prepared from the rejection rate improving treatment agent to the RO water supply during the steady operation of the RO membrane device.
  • the time for adding the aqueous solution of the rejection improving agent to the RO water supply is preferably about 1 to 500 hours, but the aqueous solution of the rejection improving agent may be constantly added to the RO water supply.
  • the blocking rate improvement treatment may be performed after the membrane cleaning.
  • Examples of the membrane cleaning agent used in this case include mineral acids such as hydrochloric acid, nitric acid and sulfuric acid, and organic acids such as citric acid and oxalic acid.
  • Examples of the alkali cleaning include sodium hydroxide and potassium hydroxide. In general, the pH is about 2 for acid cleaning and about 12 for alkali cleaning.
  • examples of the membrane structure of the RO membrane to be subjected to the rejection improvement processing include polymer membranes such as asymmetric membranes and composite membranes.
  • examples of the RO membrane material include aromatic polyamides, aliphatic polyamides, polyamide materials such as composite materials thereof, and cellulose materials such as cellulose acetate.
  • the RO membrane made of aromatic polyamide material which has many carboxyl groups due to degradation of CN bonds due to deterioration, is applied to the rejection rate improving agent and the rejection rate improving method of the present invention.
  • the method of the present invention can be particularly preferably applied, and particularly when the desalination rate of the RO membrane before the rejection rate improving treatment is 95% or less, particularly 90% or less, it is suitable for applying the method of the present invention.
  • the form of the RO membrane module is not particularly limited, and examples thereof include a tubular membrane module, a planar membrane module, a spiral membrane module, and a hollow fiber membrane module.
  • the water treatment method of the present invention uses an RO membrane that has been subjected to a rejection rate improvement treatment by the rejection rate improving agent or the rejection rate improvement method of the present invention, and is an electronic device manufacturing field, a semiconductor manufacturing field, and other various industrial fields. It is effectively applied to water treatment for recovery and reuse of wastewater containing high or low concentration TOC discharged from the factory, ultrapure water production from industrial water or city water, and water treatment in other fields.
  • Water to be treated to be treated by the RO membrane device according to the present invention is not particularly limited, but electrolyte-containing water is suitable, for example, electric conductivity of 2 to 10000 mS / m, preferably about 10 to 7000 mS / m.
  • the organic substance-containing water is preferable. Examples of such organic substance-containing water include, but are not limited to, wastewater from electronic device manufacturing factories, transportation machinery manufacturing factories, organic synthesis factories, printing plate making / painting factories, or the primary treatment water thereof. .
  • a flat membrane test apparatus shown in FIG. 3 was used as the performance evaluation apparatus.
  • This flat membrane test apparatus is provided with a flat membrane cell 2 at an intermediate position in the height direction of a cylindrical container 1 having a bottom and a lid, and the inside of the container is divided into a raw water chamber 1A and a permeated water chamber 1B, and the container 1 is divided into a stirrer.
  • water to be treated is supplied to the raw water chamber 1 ⁇ / b> A via the pipe 11 by the pump 4
  • the stirrer 5 in the container 1 is rotated to stir the raw water chamber 1 ⁇ / b> A so that the permeated water passes through the permeated water.
  • the concentrated water is taken out from the raw water chamber 1A through the pipe 13.
  • the concentrated water outlet pipe 13 is provided with a pressure gauge 6 and an opening / closing valve 7.
  • Permeation flux [m 3 / (m 2 d)] permeated water amount [m 3 / d] / membrane area [m 2 ] ⁇ temperature conversion coefficient [ ⁇ ]
  • Desalination rate [%] (1 ⁇ permeated water conductivity [mS / m] / concentrated water conductivity [mS / m]) ⁇
  • IPA removal rate [%] (1-permeated water TOC [mg / L] / concentrated water TOC [mg / L]) ⁇ 100
  • Rejection rate improvement test I The following deteriorated film was used as the film of the flat film cell 2 of the flat film test apparatus, and the test was performed under the following rejection rate improver, performance-treated water, and performance evaluation conditions.
  • Degraded membrane An ultra-low pressure reverse osmosis membrane ES20 manufactured by Nitto Denko Corporation was accelerated and deteriorated by immersing it in an aqueous solution containing 1% by weight of hydrogen peroxide and 1 mg / L of ferric chloride as iron.
  • the permeation flux, desalination rate, and IPA removal rate of this deteriorated membrane are 1.1 m 3 / (m 2 ⁇ d), 90%, and 72%, respectively.
  • the original membrane (new, undegraded ES20 membrane)
  • the permeation flux, desalting rate, and IPA removal rate are 0.8 m 3 / (m 2 ⁇ d), 98%, and 88%, respectively.
  • Constituent components of blocking rate improver Arginine (Ajinomoto Healthy Supply, molecular weight 174), Aspartame (Ajinomoto Healthy Supply, molecular weight 294), Tannic acid AL (hereinafter Tannic acid, Fuji Chemical Industry, molecular weight 500 or more), all Food additives Performance evaluation Treated water: NaCl 500 mg / L, IPA 100 mg / L dissolved in ultrapure water Performance evaluation conditions: Operating pressure 0.75 MPa, temperature 24 ° C. ⁇ 2 ° C.
  • Arginine and aspartame were mixed as a powder at a weight ratio of 1: 1, and dissolved in pure water so that each component was 10 g / L separately from tannic acid. Aspartame dissolved easily by coexisting with arginine. The pH of the aqueous solution containing aspartame and arginine was 9.0, and the pH of the aqueous solution containing tannic acid was 3.7. Thereafter, these two aqueous solutions were dropped into pure water and diluted and mixed so that the concentration of each component was 50 mg / L, and a clear aqueous solution was obtained.
  • the permeation flux, desalination rate, and IPA removal rate of the RO membrane after treatment were each 0.8 m 3 / (m 2 ⁇ d), 98.5%, was restored to 87%.
  • the permeation flux, desalination rate, and IPA removal rate of the original membrane are as described above.
  • Constituent components of the blocking rate improver glycine (manufactured by Wako Pure Chemicals, molecular weight 75), arginine (manufactured by Ajinomoto Healthy Supply, molecular weight 174), tannic acid AL (hereinafter tannic acid, manufactured by Fuji Chemical Industry, molecular weight 500 or more)
  • Performance evaluation Treated water NaCl 500 mg / L, IPA 100 mg / L dissolved in ultrapure water
  • Performance evaluation conditions Operating pressure 0.75 MPa, temperature 24 ° C. ⁇ 2 ° C.
  • Example 2 Glycine and arginine were mixed in a powder state at a weight ratio of 1: 1, and tannic acid was made into a powder state alone. Each powdery drug was stored at a temperature of ⁇ 5 ° C. for 1 month. Thereafter, the two powdered drugs were separately dissolved in pure water so that the concentration of each component was 10 g / L. The pH of the aqueous solution containing glycine and arginine was 9.6, and the pH of the aqueous tannic acid solution was 3.7. Using this glycine / arginine aqueous solution and tannic acid aqueous solution, the treatment for improving the rejection rate of the deteriorated film was performed by the following method.
  • the flow rate of each aqueous solution is adjusted to 1/5000 with respect to the flow rate of the water to be treated, that is, the concentration of each component after merging with the water to be treated is 2 mg / L.
  • a glycine / arginine aqueous solution and a tannic acid aqueous solution were separately injected into the flow path. After the start of injection, the performance of the deteriorated membrane changed. After 72 hours, the permeation flux, desalting rate, and IPA removal rate were 0.8 m 3 / (m 2 ⁇ d), 98.7%, and 89%, respectively. became.
  • Arginine and aspartame are mixed to form a powdery drug, while tannic acid is directly used as a powdered drug, and each is made into a high-concentration aqueous solution. It can be used effectively for the RO membrane rejection rate improving process.
  • Glycine and arginine are mixed to form a powdered drug, while tannic acid is stored as a powdered drug as it is, and then, when dissolved in water, it is uniform and stable without generating aggregates.
  • Aqueous solutions can be prepared, and by diluting and mixing them by line injection, they can be used effectively in the RO membrane rejection rate improving process without generating aggregates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 分子量の異なる2種以上の有機化合物を含むRO膜の阻止率向上剤における、凝集物の生成や水への溶解不良、加水分解などを防止して、阻止率向上剤をRO膜の阻止率向上処理に効果的に使用する。分子量の異なる2種以上の有機化合物として、少なくとも分子量が60以上500未満のアミノ基を有する有機化合物と、タンニン酸とを含む逆浸透膜の阻止率向上剤において、前記アミノ基を有する有機化合物と前記タンニン酸とが、互いに異なる2つの粉体状薬剤として保管されることを特徴とする逆浸透膜の阻止率向上剤。

Description

逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜
 本発明は、逆浸透(RO)膜、特に芳香族ポリアミド系RO膜であって、その使用過程において阻止率(脱塩率)が低下したRO膜に対して、透過水量を著しく低下させることなく、高い阻止率向上効果が得られる阻止率向上剤に係り、特に、RO膜の透過水が飲料水、生活水として使用されること、濃縮水が環境中に排出されることを鑑み、RO膜の阻止率向上過程において透過水側に漏出した場合でも安全であり、また、濃縮側に排出されても環境に高負荷を与えることのないRO膜の阻止率向上剤に関する。
 本発明はまた、この阻止率向上剤を用いたRO膜の阻止率向上方法と、この阻止率向上剤により阻止率向上処理がなされたRO膜に関する。
 現在、全世界的な水供給の不足を補うために、海水・かん水の淡水化、水回収が、RO膜システムを用いて行われている。RO膜システムにおいては、バイオファウリング抑制のため、前処理工程において、原水(RO膜の被処理水。以下「RO給水」と称す場合もある。)に塩素(次亜塩素酸ソーダなど)や過酸化水素などの酸化剤の添加が行われている。
 しかし、これらの酸化剤は強力な酸化分解作用があるため、これらの酸化剤が添加された後、還元処理が不十分な状態で原水がRO膜に供給されると、RO膜が劣化することが知られている。
 また、原水中の酸化剤を分解させるために、重亜硫酸ソーダなどの還元剤を原水に添加してRO膜に供給する場合も多いが、重亜硫酸ソーダが過剰に添加されている還元環境下では、原水中にCu、Coなどの金属が共存するとRO膜が劣化して阻止率が低下することも知られている(特許文献1、非特許文献1)。
 従来、RO膜の阻止率向上方法としては、以下のようなものが提案されているが、いずれもそれぞれ問題点があり、その改良が望まれている。
i) アニオン又はカチオンのイオン性高分子化合物を膜表面に付着させることにより、RO膜の阻止率を向上させる方法(特許文献2)。
 この方法は、劣化の少ないRO膜や未使用のRO膜に対して、特に電解質の阻止率を向上させる効果があるが、非電解質の阻止率の向上や、劣化の大きいRO膜の阻止率の向上に対しては効果が低い。
ii) ポリアルキレングリコール鎖を有する化合物を膜表面に付着させることにより、RO膜の阻止率を向上させる方法(特許文献3)。
 この方法は、非電解質の阻止率向上に対しても効果があるが、劣化の大きいRO膜の阻止率向上に対しては効果が低くなる場合があり、また、透過流束の低下の問題があり、未使用のRO膜と比較して透過流束を20%以上低下させることがある。
iii) RO膜に対し、ノニオン系界面活性剤を吸着させる方法(特許文献4)。
 ノニオン界面活性剤の中にはポリアルキレングリコール鎖を含むものがあり、この場合は特許文献3に含まれるが、界面活性剤の性質上、界面活性剤は疎水基を有しており、これをRO膜に吸着させることで透過流束を大きく低下させてしまう。
iv) タンニン酸などをRO膜に付着させて脱塩率を改善させる方法(非特許文献2)。
 この方法による阻止率向上効果も大きくはなく、例えば、劣化したRO膜であるES20(日東電工社製)、SUL-G20F(東レ社製)の脱塩率を本方法で改善しても、改善後の膜の透過水の溶質濃度を改善前の膜の透過水の溶質濃度の1/2以下にすることはできない。
v) タンニン酸と高分子(ポリビニルメチルエーテル)を併用添加してRO膜の阻止率を向上させる方法(非特許文献3)。
 この方法では、タンニン酸だけによる方法よりも効果は改善されていると考えられるが、透過流束が平均的に20%程度低下し、また、その阻止率向上効果も、脱塩率が90.5%に低下したRO膜の脱塩率を92.5%にするなど、透過水の溶質濃度を1/2以下にできない場合もある。
 なお、RO膜が塩素系酸化剤によって酸化劣化すると、カルボキシル基が生成することが知られており(非特許文献4,5)、本発明者らは、芳香族ポリアミド系RO膜の表面には、例え未使用であってもカルボキシル基が存在しており、アルカリや過酸化水素などの塩素系酸化剤以外の要因で膜が劣化しても、カルボキシル基が増加することを突き止めている。ここで、カルボキシル基の検出は、表面修飾を行ってカルボキシル基の検出感度を上げたXPS法で行うことができる。
vi) RO膜にカルボキシル基が存在し、劣化によってこれが増加するという知見に基づき、本発明者らは、アミノ基を有する化合物を用い、カルボキシル基と結合させることでRO膜の阻止率を向上させる方法を見出している(特許文献5,6)。これら特許文献5,6の基本的な技術思想は、劣化の激しい部分にはカルボキシル基が多く存在することから、その部分に重点的に分子量1000以下のアミノ基を有する化合物を吸着させるという点にある。
 本発明者らはまた、RO膜の阻止率向上に、RO膜への低分子化合物の吸着が不可欠であることを見出している(特許文献7)。
 即ち、芳香族ポリアミド系RO膜のイソプロピルアルコール(IPA)阻止率は80~95%である。IPAの分子量は60であることから、非電解質に対するRO膜の分画分子量は60前後と考えることができる。RO膜の阻止率の低下が、RO膜の緻密層の間隙が広がったことによると考えると、広がったRO膜の緻密層の間隙を、分画分子量よりも若干大きい物質で埋めることが望ましいと考えられる。また、間隙の大きさはまちまちであると考えられることから、複数の分子量を持った物質を使用することがより望ましいとも考えられる。最終的にそれら低分子よりも比較的大きい分子量を有する物質を使用することで、低分子の定着が進むと考えられる。
 この特許文献7のRO膜の阻止率向上方法は、分子量200未満の第1の有機化合物と、分子量200以上500未満の第2の有機化合物と、分子量500以上の第3の有機化合物とを含む水溶液を逆浸透膜に通水するものであり、第1、第2の有機化合物としては、アミノ酸又はアミノ酸誘導体が好ましく、また、第3の有機化合物としては、膜のカルボキシル基と作用する官能基(カチオン基:1~4級アミノ基)、阻止率向上剤中のアミノ基を有する化合物と作用するもの(アニオン基:カルボキシル基、スルホン基、芳香族のヒドロキシル基(フェノール性水酸基))、ポリアミド膜と作用する官能基(ヒドロキシル基)を有するもの、又は環状構造を有するものを用いることができる。
 以下に、特許文献7による劣化膜の修復のメカニズムを図1,2を参照して説明する。
 RO膜、例えば、芳香族ポリアミド系RO膜の正常なアミド結合は図1の正常膜に示すような構造をとっている。この膜が塩素などの酸化剤で劣化した場合、アミド結合のC-N結合が分断され、最終的には図1の劣化膜に示すような構造となる。
 図1の劣化膜に示されるように、アミド結合の分断で、アミノ基は消失することがあるが、この分断部分の少なくとも一部にカルボキシル基が形成される。
 劣化が進行すると、RO膜の緻密層の間隙が大きくなり、様々な大きさの間隙が形成される。このようなRO膜に対して、図2に示す如く、間隙の大きさに応じて分子量の異なる第1~第3の有機化合物A~C(分子量は、有機化合物A<有機化合物B<有機化合物Cの順)を定着させることにより、劣化膜の種々のサイズの各穴(緻密層の間隙)が修復され、膜の阻止率が回復する。
 特許文献7では、分子量や骨格(構造)の異なる複数のアミノ化合物(第1、第2の有機化合物)を含む水溶液を劣化膜に透過させることにより、各々の化合物が膜を透過する際に互いに障害となり、膜内の劣化箇所に滞留する時間が長くなることにより、膜のカルボキシル基と低分子量アミノ化合物のアミノ基との接触確率が高くなり、膜の修復効率が向上する。更に、分子量500以上の第3の有機化合物を併用することにより、膜の大きな劣化箇所を塞ぐことができ、修復効率がより一層高まる。
特開平7-308671号公報 特開2006-110520号公報 特開2007-289922号公報 特開2008-86945号公報 国際公開WO2011/040354A1パンフレット 特願2011-051525(特開2012-187468号公報) 特願2011-051530(特開2012-187469号公報)
Nagai et al. Desalination, Vol.96(1994),291-301 佐藤、田村、化学工学論文集、Vol.34(2008),493-498 S.T.Mitrouli, A.J.Karabelas, N.P.Isaias, D.C. Sioutopoulos, and A.S. Al Rammah, Reverse Osmosis Membrane Treatment Improves Salt-Rejection Performance, IDA Journal I Second Quarter 2010, p22-34 植村ら,Bulletin of the Society of Sea Water Science,Japan,57,498-507(2003) 神山義康,表面,vol.31,No.5(1993),408-418
 特許文献7の阻止率向上方法により、RO膜の阻止率を効果的に向上させることができるが、分子量の異なる複数の有機化合物を水溶液中に混合溶解させる際、凝集物が生成し、薬液タンクに付着したり、膜モジュールの流路阻害を起こしたり、薬剤としての効果を低下させるなどの問題があった。また、一部の有機化合物は、水に対する溶解度が低く、なかなか溶けないなどの問題もあった。また、アミド結合やエステル結合を有する有機化合物を水溶液の状態で保存すると加水分解が起こり、薬剤の劣化が起こる可能性もあった。更には、水溶液としての保管時において、保管温度の低下による沈殿の生成の問題、保管温度の上昇による微生物の繁殖の問題もあった。
 本発明は、このような問題に鑑みてなされたものであって、分子量の異なる2種以上の有機化合物を含むRO膜の阻止率向上剤における、凝集物の生成や水への溶解不良、加水分解などを防止して、阻止率向上剤をRO膜の阻止率向上処理に効果的に使用する技術を提供することを課題とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ね、次のような知見を得た。
1) 阻止率向上剤に使用される複数種の有機化合物のうち、例えば、単独で水に溶解させたときの水溶液のpHが7以上となる有機化合物と、pHが7未満となる有機化合物は、高濃度で水に混合溶解させると、凝集物を生成する場合がある。基本的にpHが7以上となる有機化合物はアルカリ性であり、7未満となる有機化合物は酸性である。アミノ基を有する有機化合物は弱アルカリ性物質と言える。一方で、これと併用する有機化合物が弱酸性であったり、分子量が大きかった場合、これらを高濃度水溶液とすると、不溶性の塩が生成し、これが凝集物となる。従って、阻止率向上剤に含まれる有機化合物が2種類以上の場合は、高濃度で溶解させても凝集が起こらないように溶解させる前の段階、即ち、粉体の段階で2つに分ける必要がある。例えば、アルギニンとタンニン酸をそれぞれ1重量%濃度となるように水に溶解させると、凝集物が生成してしまうため、アルギニンを含む粉体と、タンニン酸を含む粉体は分ける必要がある。
2) アスパルテームは、フェニルアラニンのメチルエステルとアスパラギン酸がアミド結合した物質であり、水に対する溶解性が低いが、アルカリ性水溶液に対しては溶解度が上昇する。従って、このものは、アルギニンなどの、水に溶解させるとpHが7以上となる有機化合物と混合して混合粉体とし、この混合粉体を用いて水溶液を調製することにより、水溶液にする場合の溶解性を上げることができる。また、アスパルテームはアルカリ性条件で長く保存すると加水分解する性質があるが、粉体の状態で保管することにより、加水分解による変性を抑制することもできる。ここで、アルギニンは有機化合物であるが、炭酸塩や燐酸塩などの無機化合物によって、溶解後のpHを調整しても構わない。
3) 2つに分けた粉体状の薬剤を用いて、RO膜の阻止率向上処理を行う場合に、実際に使用する濃度である0.1~200mg/Lに一気に水に溶解させることは、均一な水溶液を得る上で有効ではない。一方で、2つの有機化合物が高濃度の状態で接触すると、凝集物が生成する危険性もある。このため、これら2つの粉体状薬剤は、一旦、それぞれ1~200g/Lに溶解させ、その後希釈水溶液とすることが好ましい。また、上記のようにアミド結合やエステル結合を有する物質は、アルカリ性条件、もしくは酸性条件で加水分解する可能性があるため、水に溶解させた後は、できるだけ速く使用濃度に希釈してRO膜の阻止率向上処理に使用する必要がある。そこで、一旦各有機化合物濃度が1~200g/Lとなるように溶解させた2つの粉体状薬剤は、次の段階で、0.1~200mg/Lの濃度に希釈して使用する。この有機化合物濃度0.1~200mg/Lの水溶液であれば、全ての有機化合物が同じ水溶液中に存在していても、想定される生成塩の濃度が溶解度以下となり、凝集物を生成しなくなる。従って、全ての有機化合物が溶解した水溶液をRO膜の阻止率向上処理に使用することができる。また、別法として、各有機化合物濃度1~200g/Lに溶解させた2つの粉体状薬剤の水溶液を、ライン注入させて、ライン中で希釈混合することもできる。また、2つの粉体状薬剤を各有機化合物濃度が1~200g/Lとなるように溶解させた後、混合後の各有機化合物濃度が0.1~200mg/Lとなるように希釈して別々にRO膜に接触させる方法を採用することも可能である。
 本発明はこのような知見に基いて達成されたものであり、以下を要旨とする。
[1] 分子量の異なる2種以上の有機化合物を含む逆浸透膜の阻止率向上剤であって、該2種以上の有機化合物として、少なくとも分子量が60以上500未満のアミノ基を有する有機化合物と、タンニン酸とを含む逆浸透膜の阻止率向上剤において、前記アミノ基を有する有機化合物と前記タンニン酸とが、互いに異なる2つの粉体状薬剤として保管されることを特徴とする逆浸透膜の阻止率向上剤。
[2] [1]において、前記2つの粉体状薬剤を、それぞれ、各有機化合物の濃度が1~200g/Lの水溶液としたとき、前記アミノ基を有する有機化合物を含む一方の粉体状薬剤の水溶液のpHが7以上で、前記タンニン酸を含む他方の粉体状薬剤の水溶液のpHが7未満であることを特徴とする逆浸透膜の阻止率向上剤。
[3] [1]又は[2]に記載の阻止率向上剤の水溶液を用いて逆浸透膜を処理する逆浸透膜の阻止率向上方法であって、前記2つの粉体状薬剤のうちの少なくとも一方の粉体状薬剤を水に溶解させて有機化合物濃度(この有機化合物濃度は、該粉体状薬剤が2種以上の有機化合物を含む場合、各々の有機化合物濃度をさす)が1~200g/Lの水溶液を調製する工程と、該水溶液の有機化合物濃度(この有機化合物濃度は、該粉体状薬剤が2種以上の有機化合物を含む場合、各々の有機化合物濃度をさす)が0.1~200mg/Lとなるように該水溶液を希釈する工程とを含むことを特徴とする逆浸透膜の阻止率向上方法。
[4] [1]又は[2]に記載の阻止率向上剤の水溶液を用いて逆浸透膜を処理する逆浸透膜の阻止率向上方法であって、前記2つの粉体状薬剤をそれぞれ水に溶解させ、得られた水溶液を混合することにより、各有機化合物の濃度が1~200mg/Lの水溶液を調製する工程を含むことを特徴とする逆浸透膜の阻止率向上方法。
[5] [1]又は[2]に記載の阻止率向上剤の水溶液を用いて逆浸透膜を処理する逆浸透膜の阻止率向上方法であって、前記2つの粉体状薬剤をそれぞれ水に溶解させて得られた水溶液を、それぞれ別の位置からライン注入して希釈混合する工程を含むことを特徴とする逆浸透膜の阻止率向上方法。
[6] [1]又は[2]に記載の阻止率向上剤を用いて阻止率向上処理された逆浸透膜。
[7] [3]ないし[5]のいずれかに記載の阻止率向上方法により阻止率向上処理された逆浸透膜。
 本発明によれば、次のような作用効果が奏され、分子量の異なる2種以上の有機化合物を含むRO膜の阻止率向上剤における、凝集物の生成や水への溶解不良、加水分解などを防止して、阻止率向上剤をRO膜の阻止率向上処理に効果的に使用して、効率的なRO膜の阻止率向上処理を行うことができる。
i) 高濃度で混合すると凝集物を生成する可能性のある阻止率向上剤の構成成分であるアミノ基を有する有機化合物とタンニン酸とを2つの粉体に分け、これを水に溶解させて水溶液を調製する際には、まず、各有機化合物濃度が1~200g/Lとなる濃度に別々に溶解させ、さらにこれを各有機化合物濃度が0.1~200mg/Lとなる濃度に希釈混合することにより、凝集物の生成を抑制することができる。このため凝集物による前述の問題を回避することができる。
ii) アミノ基を有する有機化合物のような通常のpHでは溶解し難い阻止率向上剤の構成成分を、溶解させるとアルカリ性もしくは酸性を示す物質と混合して容易に濃度1~200g/Lの水溶液を調製することが可能となる。
iii) アミド結合やエステル結合を有し、水溶液中で加水分解を起こしやすい阻止率向上剤の構成成分を粉体状で保管することで、加水分解を抑制することができ、加水分解による薬剤効果の低下を防止することができる。
iv) 粉体として保管するため、水溶液として保管した場合の温度の低下に伴う沈殿の生成や温度の上昇に伴う微生物の繁殖等の問題を回避することができる。これは有機化合物が食品添加物である場合に特に有効となる。
正常膜と劣化膜を示す、化学構造式の説明図である。 特許文献7による阻止率向上処理のメカニズムを示す、化学構造式の説明図である。 実施例で用いた平膜試験装置を示す模式図である。
 以下に本発明の実施の形態を詳細に説明する。
[阻止率向上剤]
 本発明のRO膜の阻止率向上剤は、分子量の異なる2種以上の有機化合物を含む逆浸透膜の阻止率向上剤であって、該2種以上の有機化合物として、少なくとも分子量が60以上500未満のアミノ基を有する有機化合物と、タンニン酸とを含み、互いに異なる有機化合物を含む2つの粉体状薬剤として保管されることを特徴とするものである。
 本発明の阻止率向上剤の構成成分となる分子量が60以上500未満のアミノ基を有する有機化合物(以下「低分子量アミノ化合物」と称す場合がある。)としては、例えば、次のようなものが挙げられる。
 芳香族アミノ化合物:例えば、アニリン(分子量93)、ジアミノベンゼン(分子量108)などのベンゼン骨格とアミノ基を有するもの
 芳香族アミノカルボン酸化合物:例えば、3,5-ジアミノ安息香酸(分子量152)、3,4-ジアミノ安息香酸(分子量152)、2,4-ジアミノ安息香酸(分子量152)、2,5-ジアミノ安息香酸(分子量152)、2,4,6-トリアミノ安息香酸(分子量167)などのベンゼン骨格と2つ以上のアミノ基とアミノ基の数より少ないカルボキシル基を有するもの。
 脂肪族アミノ化合物:例えば、メチルアミン(分子量31)、エチルアミン(分子量45)、オクチルアミン(分子量129)、1,9-ジアミノノナン(本明細書中では「NMDA」と略記することがある。)(C18(NH)(分子量158)等の炭素数1~20程度の直鎖炭化水素基と1個又は複数のアミノ基を有するもの、及び、1-アミノペンタン(本明細書中では「IAAM」と略記することがある。)(NH(CHCH)(分子量87)、2-メチル-1,8-オクタンジアミン(本明細書中では「MODA」と略記することがある。)(NHCHCH(CH)(CHNH)(分子量158)等の炭素数1~20程度の分岐炭化水素基と1個又は複数のアミノ基を有するもの。
 脂肪族アミノアルコール:4-アミノ-2-メチル-1-ブタノール(本明細書中では「AMB」と略記することがある。)(NH(CHCH(CH)CHOH)(分子量103)等の直鎖又は分岐の炭素数1~20の炭化水素基にアミノ基と水酸基を有するもの。
 複素環アミノ化合物:テトラヒドロフルフリルアミン(本明細書中では「FAM」と略記することがある。)(下記構造式)(分子量101)などの複素環とアミノ基を有するもの。
Figure JPOXMLDOC01-appb-C000001
 アミノ酸化合物:例えば、アルギニン(分子量174)やリシン(分子量146)等の塩基性アミノ酸化合物、アスパラギン(分子量132)やグルタミン(分子量146)等のアミド基を有するアミノ酸化合物、グリシン(分子量75)やフェニルアラニン(分子量165)等のその他アミノ酸化合物。
 これらの低分子量アミノ化合物は1種のみを用いてもよく、2種以上を併用してもよいが、本発明においては、これらの低分子量アミノ化合物のうち、分子量200未満の第1の低分子量アミノ化合物と、分子量200以上500未満の第2の低分子量アミノ化合物とを併用することが好ましく、この場合、第1の低分子量アミノ化合物としては、アミノ酸又はアミノ酸化合物が好適であり、例えば、塩基性アミノ酸である、アルギニン(分子量174)、リシン(分子量146)、又はヒスチジン(分子量155)や分子量がより小さいグリシン(分子量75)が好適である。第2の低分子量アミノ化合物としては、ペプチドあるいはその誘導体として、例えば、フェニルアラニンとアスパラギン酸のジペプチドのメチルエステルであるアスパルテーム(分子量294)が好適である。
 アミノ酸は一般的に水に対する溶解性が高く、その水溶液は安定であり、膜のカルボキシル基と反応してRO膜に結合し、不溶性の塩を形成して、膜の劣化により生じた穴を塞ぎ、これにより膜の阻止率を高める。
 これらの低分子量アミノ化合物は、1種を単独で用いても良く、2種以上を混合して用いても良い。分子量や骨格構造の異なる2種以上の低分子量アミノ化合物を含む水溶液をRO膜に透過させると、各々の化合物が膜を透過する際に互いに障害となり、膜内の劣化箇所に滞留する時間が長くなることにより、膜のカルボキシル基と低分子量アミノ化合物のアミノ基との接触確率が高くなり、膜の修復効果が高められる。
 また、これらの低分子量アミノ化合物と共に、分子量500以上のタンニン酸を併用することにより、膜の大きな劣化箇所を塞ぐことができ、修復効率が高められる。
 本発明においては、上記の低分子量アミノ化合物とタンニン酸とが、それぞれが互いに異なる2つの粉体状薬剤となるように保管される。この2つの粉体状薬剤は、各粉体状薬剤を用いて、当該粉体状薬剤に含まれる各有機化合物の濃度が1~200g/Lとなる水溶液としたとき、アミノ基を有する有機化合物を含む一方の粉体状薬剤の水溶液のpHが7以上で、タンニン酸を含む他方の粉体状薬剤の水溶液のpHが7未満であるような組み合わせであることが好ましい。
 このように、水溶液としたときに、pH7以上のアルカリ性となる有機化合物と、pH7未満の酸性となる有機化合物とを別々の粉体状薬剤として保管し、各々水溶液を調製するようにすることにより、これらが反応することによる凝集物の生成を防止することができる。
 前述の如く、アスパルテームはアルカリ性水溶液に対する溶解度は比較的高いため、アルギニンのように水に溶解させるとpH7以上のアルカリ性水溶液となる低分子量アミノ化合物と混合して粉体状薬剤とし、この混合粉体を水に溶解させて水溶液を調製することが好ましい。なお、低分子量アミノ化合物を水に溶解させる際には、炭酸塩や燐酸塩等の無機化合物をpH調整剤として用い、溶解度の高いpHに調製してもよく、そのために、これらのpH調製剤を予め低分子量アミノ化合物と混合して粉体状薬剤としてもよい。
 本発明の阻止率向上剤において、2種以上の有機化合物を含む粉体状薬剤中の当該2種以上の有機化合物の含有割合は、阻止率向上剤としての使用時に好適な使用割合となるように、その使用割合に対応した粉体状薬剤中含有割合として調製すればよい。
[阻止率向上方法]
 本発明のRO膜の阻止率向上方法は、上述のような2つの粉体状薬剤からなる本発明の阻止率向上剤を用いてRO膜の阻止率向上処理を行うものであり、具体的にRO膜に本発明の阻止率向上剤の水溶液を通水することにより、劣化したRO膜の阻止率を向上させる。以下、RO膜の阻止率向上処理のためにRO膜に通水する阻止率向上剤の水溶液を「阻止率向上処理水」と称す。
 本発明の阻止率向上方法において、阻止率向上処理水中の阻止率向上剤の構成成分である前述の低分子量アミノ化合物及びタンニン酸の濃度は、各々、1~200mg/Lであることが好ましく、1~100mg/Lであることがより好ましい。阻止率向上処理水中の各成分の濃度が上記下限よりも低いと、十分な阻止率向上効果を得ることができず、上記上限よりも高いと凝集物が生成するおそれがある。
 前述の如く、本発明の阻止率向上剤を用いてRO膜の阻止率向上処理を行う際、本発明の阻止率向上剤である2つの粉体状薬剤を用いて、直接上述のような希薄濃度の阻止率向上処理水を調製することは、均一な水溶液を得ることができない場合があり、好ましくない。
 従って、2つの粉体状薬剤を用いて、まず、各有機化合物濃度が1~200g/Lの高濃度水溶液を調製し、これらを用いて、RO膜への通水時には各々の有機化合物濃度が1~200mg/Lの水溶液となるように、希釈混合することが好ましい。
 従って、例えば、粉体状薬剤Aと粉体状薬剤Bとからなる阻止率向上剤の場合、次の態様I、II又はIIIを採用して、水への溶解と混合希釈を行うことが好ましい。
I:粉体状薬剤Aを用いて、有機化合物濃度(この有機化合物濃度は、粉体状薬剤Aが2種以上の有機化合物を含む場合、各々の有機化合物濃度をさす。)が1~200g/Lの水溶液を調製し、一方、粉体状薬剤Bを用いて有機化合物濃度(この有機化合物濃度は、粉体状薬剤Bが2種以上の有機化合物を含む場合、各々の有機化合物濃度をさす。)が1~200g/Lの水溶液を調製し、これらの水溶液を希釈混合して、各有機化合物の濃度が0.1~200mg/Lの阻止率向上処理水とする。
II:粉体状薬剤Aを用いて有機化合物濃度(この有機化合物濃度は、粉体状薬剤Aが2種以上の有機化合物を含む場合、各々の有機化合物濃度をさす。)が1~200g/Lの水溶液を調製し、一方、粉体状薬剤Bを用いて有機化合物濃度(この有機化合物濃度は、粉体状薬剤Bが2種以上の有機化合物を含む場合、各々の有機化合物濃度をさす。)が1~200g/Lの水溶液を調製し、これらの水溶液をそれぞれ希釈し、希釈水溶液を混合して各有機化合物の濃度が0.1~200mg/Lの阻止率向上処理水とする。
III:粉体状薬剤Aを用いて有機化合物濃度(この有機化合物濃度は、粉体状薬剤Aが2種以上の有機化合物を含む場合、各々の有機化合物濃度をさす。)が1~200g/Lの水溶液を調製し、一方、粉体状薬剤Bを用いて有機化合物濃度(この有機化合物濃度は、粉体状薬剤Bが2種以上の有機化合物を含む場合、各々の有機化合物濃度をさす。)が1~200g/Lの水溶液を調製し、これらをそれぞれ別の位置から、RO給水の供給配管にライン注入し、各有機化合物の濃度が0.1~200mg/Lの阻止率向上処理水とする。
 なお、阻止率向上処理水中における有機化合物のうち最も濃度が低い有機化合物の濃度Cminと、最も濃度が高い有機化合物の濃度Cmaxとの比Cmin/Cmaxは0.1~1.0であることが好ましい。この値が0.1よりも小さいと、修復できる穴の大きさに偏りが生じるおそれがある。各有機化合物の濃度はすべて等しくてもよい。
 また、阻止率向上処理水には、トレーサーとして、食塩(NaCl)等の無機電解質やイソプロピルアルコールやグルコース等の中性有機物、ポリマレイン酸などの低分子ポリマーなどを添加してもよく、これにより、逆浸透膜の透過水への食塩やグルコースの透過の程度を分析して、膜の修復の程度を確認することができる。
 阻止率向上処理水をRO膜に通水するときの給水圧力は、過度に高いと劣化していない箇所への吸着が進むという問題があり、過度に低いと劣化箇所への吸着も進まないことから、当該RO膜の通常運転圧力の20~150%、特に50~130%とすることが好ましい。RO膜の膜が超低圧膜の場合、装置の入口圧力は0.1~1.0MPaであることが好ましい。RO膜の膜が低圧膜の場合、装置の入口圧力は0.1~2.0MPaであることが好ましい。RO膜の膜が海水淡水化膜の場合、装置の入口圧力は0.1~7.0MPaであることが好ましい。
 また、本発明では、下記式で算出される膜単位面積当りの最小有機化合物接触量が2500mg/m以上、好ましくは2500~1000000mg/m、特に好ましくは3000~100000mg/mとなるように阻止率向上処理水をRO膜に通水、すなわち透過させるのが好ましい。
  最小有機化合物接触量(mg/m)=[最小有機化合物濃度(mg/L)×処理時間(hr)×処理時透過水量(m/hr)/膜面積(m)]×1000
 ここで、最小有機化合物濃度は、阻止率向上処理水中における有機化合物のうちの最も濃度が低い有機化合物の濃度である。
 かかる最小有機化合物接触量とすることにより、RO膜の阻止率が十分に向上する。たとえば、2種類の前記低分子量アミノ化合物を用い、第1の低分子量アミノ化合物の阻止率向上処理水中濃度をC(mg/L)、第2の低分子量アミノ化合物の阻止率向上処理水中濃度をC(mg/L)、タンニン酸の阻止率向上処理水中濃度をC(mg/L)、C~Cのうち最も濃度の低いものをCminとした場合、膜単位面積当りの最小有機化合物接触量は次式で算出される。
  膜単位面積当りの最小有機化合物接触量=[(Cmin)×処理時間(Hr)×処理時透過水量(m/Hr)/膜面積(m)]×1000
 本発明方法において、阻止率向上処理時のRO膜透過水の線速度は圧力、水温、膜の形状等に関わるが、0.1~5m/dであることが好ましい。理由は上述と同様、過度に高いと劣化していない個所への吸着が進むという問題があり、過度に低いと劣化個所への接触効率が悪化するためである。
 また、阻止率向上処理時の阻止率向上処理水の水温は、常温、例えば10~35℃程度が好ましい。水温が低すぎると透過水量が低下し、接触効率が悪化する。阻止率向上処理水の温度が高すぎると膜素材が変性するおそれがある。
 阻止率向上処理水を通水する時間としては、RO膜中を各有機化合物が十分に透過する時間とすることが好ましい。RO膜装置を定常運転していないときに阻止率向上処理水を通水する場合、3~100時間程度、特に6~50時間程度通水することが好ましい。通水時間が過度に短いと、有機化合物の定着性が十分得られないまま処理を終了させることになり、付着した有機化合物が剥離してしまうことがある。
 阻止率向上処理は、RO膜装置の定常運転時に行われてもよく、例えば阻止率向上処理剤から調製した水溶液をRO膜装置の定常運転時にRO給水に添加することにより行われてもよい。RO給水に阻止率向上処理剤の水溶液を添加する時間は、1~500時間程度が好適であるが、阻止率向上処理剤の水溶液をRO給水に常時添加してもよい。
 RO膜装置を長時間運転することにより、膜汚染が生じて透過流束が低下している場合は、膜洗浄を行った後に阻止率向上処理を行ってもよい。
 この場合に用いる膜洗浄の薬剤としては、酸洗浄では、塩酸、硝酸、硫酸などの鉱酸、クエン酸、シュウ酸といった有機酸を挙げることができる。アルカリ洗浄では、水酸化ナトリウム、水酸化カリウムなどを挙げることができる。一般的に、酸洗浄ではpH2付近とし、アルカリ洗浄ではpH12付近とする。
[RO膜]
 本発明において阻止率向上処理の処理対象となるRO膜の膜構造としては、非対称膜、複合膜などの高分子膜などを挙げることができる。RO膜の素材としては、例えば、芳香族系ポリアミド、脂肪族系ポリアミド、これらの複合材などのポリアミド系素材、酢酸セルロースなどのセルロース系素材などを挙げることができる。これらの中で、芳香族系ポリアミド素材のRO膜であって、劣化することによりC-N結合の分断でカルボキシル基を多く有するRO膜に、本発明の阻止率向上剤及び阻止率向上方法を特に好適に適用することができ、特に阻止率向上処理前のRO膜の脱塩率が95%以下、特に90%以下である場合、本発明方法を適用するのに好適である。
 RO膜モジュールの形式に特に制限はなく、例えば、管状膜モジュール、平面膜モジュール、スパイラル膜モジュール、中空糸膜モジュールなどを挙げることができる。
[水処理方法]
 本発明の水処理方法は、本発明の阻止率向上剤又は阻止率向上方法により阻止率向上処理されたRO膜を用いるものであって、電子デバイス製造分野、半導体製造分野、その他の各種産業分野で排出される高濃度ないし低濃度TOC含有排水の回収・再利用のための水処理、あるいは工業用水や市水からの超純水製造、その他の分野の水処理に有効に適用される。
 本発明に係るRO膜装置で処理される被処理水は特に限定されるものではないが、電解質含有水が好適であり、例えば電気伝導度2~10000mS/m、好ましくは10~7000mS/m程度の有機物含有水が好適である。このような有機物含有水としては電子デバイス製造工場排水、輸送機械製造工場排水、有機合成工場排水又は印刷製版・塗装工場排水など、あるいはそれらの一次処理水など挙げることができるが、これらに限定されない。
 以下に比較例及び実施例を挙げて本発明をより具体的に説明する。
 以下において、性能評価装置としては、図3に示す平膜試験装置を用いた。
 この平膜試験装置は、有底有蓋の円筒状容器1の高さ方向の中間位置に平膜セル2を設けて容器内を原水室1Aと透過水室1Bとに仕切り、この容器1をスターラー3上に設置し、ポンプ4で被処理水を配管11を介して原水室1Aに給水すると共に、容器1内の攪拌子5を回転させて原水室1A内を攪拌し、透過水を透過水室1Bより配管12を介して取り出すと共に、濃縮水を原水室1Aより配管13を介して取り出すものである。濃縮水取り出し配管13には圧力計6と開閉バルブ7が設けられている。
 また、評価膜のRO透過流束、脱塩率(NaCl除去率)、IPA除去率はそれぞれ以下の式より算出した。 
  透過流束[m/(md)]=透過水量[m/d]/膜面積[m]×温度換算係数[-]
  脱塩率[%]=(1-透過水の導電率[mS/m]/濃縮水の導電率[mS/m])×100
  IPA除去率[%]=(1-透過水のTOC[mg/L]/濃縮水のTOC[mg/L])×100
[阻止率向上試験I]
 平膜試験装置の平膜セル2の膜として次の劣化膜を用い、以下の阻止率向上剤、性能評価被処理水、性能評価条件で試験を行った。
 劣化膜:日東電工社製超低圧逆浸透膜ES20を、過酸化水素を1重量%、塩化第二鉄を鉄分として1mg/L含む水溶液に24時間浸漬して加速劣化させたもの。この劣化膜の透過流束、脱塩率、IPA除去率はそれぞれ1.1m/(m・d)、90%、72%であり、オリジナル膜(新品の劣化していないES20膜)の透過流束、脱塩率、IPA除去率はそれぞれ0.8m/(m・d)、98%、88%である。
 阻止率向上剤の構成成分:アルギニン(味の素ヘルシーサプライ製、分子量174)、アスパルテーム(味の素ヘルシーサプライ製、分子量294)、タンニン酸AL(以下タンニン酸、富士化学工業製、分子量500以上)、いずれも食品添加物
 性能評価被処理水:NaCl500mg/L、IPA100mg/Lを超純水に溶解したもの
 性能評価条件:運転圧力0.75MPa、温度24℃±2℃
<比較例1>
 阻止率向上剤の構成3成分を、それぞれ10g/Lとなるように粉体から直接純水に溶解させたところ、不溶性の凝集物が生成し、阻止率向上処理に供することができなかった。
<実施例1>
 アルギニンとアスパルテームを1:1の重量割合で粉体のまま混合し、タンニン酸とは別に各成分が10g/Lとなるように純水に溶解させた。アスパルテームはアルギニンと共存することで容易に溶解した。アスパルテーム及びアルギニン含有水溶液のpHは9.0で、タンニン酸含有水溶液のpHは3.7であった。
 その後、各成分の濃度がそれぞれ50mg/Lとなるように、純水中にこれらの2つの水溶液を滴下して希釈混合したところ清澄な水溶液が得られた。
 得られた混合水溶液を劣化膜に5時間通水して阻止率向上処理を行ったところ、処理後のRO膜の透過流束、脱塩率、IPA除去率はそれぞれ0.8m/(m・d)、98.5%、87%に回復した。
[阻止率向上試験II]
 平膜試験装置の平膜セル2の膜として次の劣化膜を用い、以下の阻止率向上剤、性能評価被処理水、性能評価条件で試験を行った。
 劣化膜:日東電工社製超低圧逆浸透膜ES20を、過酸化水素を1重量%、塩化第二鉄を鉄分として1mg/L含む水溶液に24時間浸漬して加速劣化させたもの。この劣化膜の透過流束、脱塩率、IPA除去率はそれぞれ0.95m/(m・d)、95%、81%である。オリジナル膜(新品の劣化していないES20膜)の透過流束、脱塩率、IPA除去率は前述の通りである。
 阻止率向上剤の構成成分:グリシン(和光純薬製、分子量75)、アルギニン(味の素ヘルシーサプライ製、分子量174)、タンニン酸AL(以下タンニン酸、富士化学工業製、分子量500以上)
 性能評価被処理水:NaCl500mg/L、IPA100mg/Lを超純水に溶解したもの
 性能評価条件:運転圧力0.75MPa、温度24℃±2℃
<比較例2>
 グリシン、アルギニン、タンニン酸をそれぞれ30g/Lとなるように別々に純水に溶解させ、これらを混合して、それぞれの濃度が10g/Lになるようにしたところ、混合直後に凝集物が生成し、阻止率向上処理に供することができなかった。
<比較例3>
 グリシン、アルギニン、タンニン酸をそれぞれ30g/Lとなるように別々に溶解させ、各々-5℃で1ヶ月保管したところ、それぞれ凍結した。これらを常温に戻して融解させたところ、タンニン酸水溶液に沈殿が生成し、阻止率向上処理に供することができなかった。
<比較例4>
 グリシン、アルギニン、タンニン酸の等量を粉体の状態で混合した。得られた混合粉体を-5℃で1ヶ月保管したところ、粉末の状態に変化は見られなかったが、この混合粉体をそれぞれの濃度が10g/Lになるように純水に溶解させたところ、凝集物が生成し、阻止率向上処理に供することができなかった。
<実施例2>
 グリシンとアルギニンを1:1の重量割合で粉体の状態で混合し、タンニン酸は単独で粉体の状態とした。各粉体状薬剤を温度-5℃で1ヶ月保管した。その後、2つの粉体状薬剤を、各成分の濃度が10g/Lになるように別々に純水に溶解させた。グリシンとアルギニンを含む水溶液のpHは9.6で、タンニン酸水溶液のpHは3.7であった。このグリシン・アルギニン水溶液とタンニン酸水溶液を用いて、以下の方法で劣化膜の阻止率向上処理を行った。
 即ち、被処理水の流量に対して、それぞれの水溶液の流量が1/5000、即ち、被処理水と合流した後の各成分の濃度が2mg/Lとなるように調整して、被処理水の流路にグリシン・アルギニン水溶液とタンニン酸水溶液を別々にライン注入した。注入開始後、劣化膜の性能は変化し、72時間後には、透過流束、脱塩率、IPA除去率はそれぞれ0.8m/(m・d)、98.7%、89%となった。
[考察]
 以上の結果から次のことが分かる。
i) アルギニンとアスパルテームを混合して粉体状薬剤とし、一方、タンニン酸をそのまま粉体状薬剤とし、それぞれを高濃度水溶液した後、これらを希釈混合することにより、凝集物を生成させることなく、RO膜の阻止率向上処理に有効に用いることができる。
ii) グリシンとアルギニンを混合して粉体状薬剤とし、一方、タンニン酸をそのまま粉体状薬剤としてそれぞれ保管すると、その後、水に溶解させた時に凝集物を生成させることなく、均一かつ安定な水溶液を調製することができ、これらをライン注入により希釈混合することにより、凝集物を生成させることなく、RO膜の阻止率向上処理に有効に用いることができる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2012年4月9日付で出願された日本特許出願(特願2012-088478)に基づいており、その全体が引用により援用される。
 1 容器
 1A 原水室
 1B 透過水室
 2 平膜セル
 3 スターラー

Claims (12)

  1.  分子量の異なる2種以上の有機化合物を含む逆浸透膜の阻止率向上剤であって、該2種以上の有機化合物として、少なくとも分子量が60以上500未満のアミノ基を有する有機化合物と、タンニン酸とを含む逆浸透膜の阻止率向上剤において、前記アミノ基を有する有機化合物と前記タンニン酸とが、互いに異なる2つの粉体状薬剤として保管されることを特徴とする逆浸透膜の阻止率向上剤。
  2.  請求項1において、前記2つの粉体状薬剤を、それぞれ、各有機化合物の濃度が1~200g/Lの水溶液としたとき、前記アミノ基を有する有機化合物を含む一方の粉体状薬剤の水溶液のpHが7以上で、前記タンニン酸を含む他方の粉体状薬剤の水溶液のpHが7未満であることを特徴とする逆浸透膜の阻止率向上剤。
  3.  請求項1において、前記分子量が60以上500未満のアミノ基を有する有機化合物が、分子量200未満の第1のアミノ化合物と、分子量200以上500未満の第2のアミノ化合物とを含むことを特徴とする逆浸透膜の阻止率向上剤。
  4.  請求項3において、前記第1のアミノ化合物が塩基性アミノ酸であり、第2のアミノ化合物がペプチドあるいはその誘導体であることを特徴とする逆浸透膜の阻止率向上剤。
  5.  請求項1ないし4のいずれか1項に記載の阻止率向上剤の水溶液を用いて逆浸透膜を処理する逆浸透膜の阻止率向上方法であって、前記2つの粉体状薬剤のうちの少なくとも一方の粉体状薬剤を水に溶解させて有機化合物濃度(この有機化合物濃度は、該粉体状薬剤が2種以上の有機化合物を含む場合、各々の有機化合物濃度をさす)が1~200g/Lの水溶液を調製する工程と、該水溶液の有機化合物濃度(この有機化合物濃度は、該粉体状薬剤が2種以上の有機化合物を含む場合、各々の有機化合物濃度をさす)が0.1~200mg/Lとなるように該水溶液を希釈する工程とを含むことを特徴とする逆浸透膜の阻止率向上方法。
  6.  請求項1ないし4のいずれか1項に記載の阻止率向上剤の水溶液を用いて逆浸透膜を処理する逆浸透膜の阻止率向上方法であって、前記2つの粉体状薬剤をそれぞれ水に溶解させ、得られた水溶液を混合することにより、各有機化合物の濃度が1~200mg/Lの水溶液を調製する工程を含むことを特徴とする逆浸透膜の阻止率向上方法。
  7.  請求項1ないし4のいずれか1項に記載の阻止率向上剤の水溶液を用いて逆浸透膜を処理する逆浸透膜の阻止率向上方法であって、前記2つの粉体状薬剤をそれぞれ水に溶解させて得られた水溶液を、それぞれ別の位置からライン注入して希釈混合する工程を含むことを特徴とする逆浸透膜の阻止率向上方法。
  8.  請求項1ないし4のいずれか1項に記載の阻止率向上剤を用いて阻止率向上処理された逆浸透膜。
  9.  請求項5に記載の阻止率向上方法により阻止率向上処理された逆浸透膜。
  10.  請求項6に記載の阻止率向上方法により阻止率向上処理された逆浸透膜。
  11.  請求項7に記載の阻止率向上方法により阻止率向上処理された逆浸透膜。
  12.  請求項8に記載の阻止率向上方法により阻止率向上処理された逆浸透膜。
PCT/JP2013/059902 2012-04-09 2013-04-01 逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜 WO2013153982A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201404672UA SG11201404672UA (en) 2012-04-09 2013-04-01 Rejection improver of reverse osmosis membrane, method forimproving rejection, and reverse osmosis membrane
CN201380019042.3A CN104245099A (zh) 2012-04-09 2013-04-01 逆渗透膜的阻挡率提高剂、阻挡率提高方法及逆渗透膜
AU2013247863A AU2013247863B2 (en) 2012-04-09 2013-04-01 Agent and method for improving blocking rate of reverse osmosis membrane, and reverse osmosis membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012088478A JP5828294B2 (ja) 2012-04-09 2012-04-09 逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜
JP2012-088478 2012-04-09

Publications (1)

Publication Number Publication Date
WO2013153982A1 true WO2013153982A1 (ja) 2013-10-17

Family

ID=49327550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059902 WO2013153982A1 (ja) 2012-04-09 2013-04-01 逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜

Country Status (6)

Country Link
JP (1) JP5828294B2 (ja)
CN (1) CN104245099A (ja)
AU (1) AU2013247863B2 (ja)
SG (1) SG11201404672UA (ja)
TW (1) TWI555571B (ja)
WO (1) WO2013153982A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113413767A (zh) * 2021-05-13 2021-09-21 铜陵有色金属集团股份有限公司 旧膜修复方法
CN114259876A (zh) * 2021-12-28 2022-04-01 无锡凯欧膜分离设备有限公司 一种可自清洗的陶瓷膜过滤器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910696B1 (ja) * 2014-10-06 2016-04-27 栗田工業株式会社 逆浸透膜の洗浄剤、洗浄液、および洗浄方法
JP6823401B2 (ja) * 2016-08-23 2021-02-03 オルガノ株式会社 低分子有機物含有水の処理方法および逆浸透膜の改質方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149759A (ja) * 1999-11-30 2001-06-05 Toray Ind Inc 逆浸透分離装置、それを用いた造水方法
JP2006223963A (ja) * 2005-02-16 2006-08-31 Japan Organo Co Ltd 分離膜の改質方法および装置並びにその方法により改質された分離膜
WO2011040354A1 (ja) * 2009-09-29 2011-04-07 栗田工業株式会社 透過膜の阻止率向上方法及び透過膜
JP2012187468A (ja) * 2011-03-09 2012-10-04 Kurita Water Ind Ltd 透過膜の阻止率向上方法、阻止率向上処理剤及び透過膜

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3886066A (en) * 1972-11-06 1975-05-27 Du Pont Tannin treatment for non-porous semipermeable membranes
JPS59115704A (ja) * 1982-12-24 1984-07-04 Toray Ind Inc 半透膜の処理法
US7491334B2 (en) * 2004-09-29 2009-02-17 North Pacific Research, Llc Method of treating reverse osmosis membranes for boron rejection enhancement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149759A (ja) * 1999-11-30 2001-06-05 Toray Ind Inc 逆浸透分離装置、それを用いた造水方法
JP2006223963A (ja) * 2005-02-16 2006-08-31 Japan Organo Co Ltd 分離膜の改質方法および装置並びにその方法により改質された分離膜
WO2011040354A1 (ja) * 2009-09-29 2011-04-07 栗田工業株式会社 透過膜の阻止率向上方法及び透過膜
JP2012187468A (ja) * 2011-03-09 2012-10-04 Kurita Water Ind Ltd 透過膜の阻止率向上方法、阻止率向上処理剤及び透過膜

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113413767A (zh) * 2021-05-13 2021-09-21 铜陵有色金属集团股份有限公司 旧膜修复方法
CN113413767B (zh) * 2021-05-13 2022-03-22 铜陵有色金属集团股份有限公司 旧膜修复方法
CN114259876A (zh) * 2021-12-28 2022-04-01 无锡凯欧膜分离设备有限公司 一种可自清洗的陶瓷膜过滤器
CN114259876B (zh) * 2021-12-28 2023-10-03 无锡凯欧膜分离设备有限公司 一种可自清洗的陶瓷膜过滤器

Also Published As

Publication number Publication date
JP5828294B2 (ja) 2015-12-02
TWI555571B (zh) 2016-11-01
CN104245099A (zh) 2014-12-24
JP2013215678A (ja) 2013-10-24
AU2013247863A1 (en) 2014-08-21
TW201404459A (zh) 2014-02-01
SG11201404672UA (en) 2014-10-30
AU2013247863B2 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
TWI478763B (zh) Through the membrane to prevent the rate of lifting methods and through the membrane
KR101932782B1 (ko) 역침투막의 저지율 향상 방법, 저지율 향상 처리제 및 역침투막
JP5914973B2 (ja) 透過膜の阻止率向上方法及び阻止率向上処理剤
WO2013179775A1 (ja) 透過膜の洗浄剤及び洗浄方法
JP6090362B2 (ja) ポリアミド系逆浸透膜の洗浄液、および洗浄方法
JP5828294B2 (ja) 逆浸透膜の阻止率向上剤、阻止率向上方法、および逆浸透膜
JP6364751B2 (ja) 芳香族ポリアミド系逆浸透膜の洗浄剤及び洗浄方法
JP2008132421A (ja) 水処理装置および水処理方法
JP5772083B2 (ja) 逆浸透膜の阻止率向上方法、阻止率向上処理剤及び逆浸透膜
JP2010104919A (ja) 透過膜の阻止率向上方法、阻止率向上透過膜、透過膜処理方法および装置
JPWO2008059824A1 (ja) 水処理装置および水処理方法
JP2009172531A (ja) 透過膜の阻止率向上方法、阻止率向上透過膜、透過膜処理方法および装置
WO2018037683A1 (ja) 低分子有機物含有水の処理方法および処理システム
JP2018047406A (ja) 逆浸透膜の阻止率向上剤及び阻止率向上方法
JP5929296B2 (ja) 逆浸透膜の阻止率向上方法
JP2014050783A (ja) 逆浸透膜の阻止率向上方法
TW202019552A (zh) 水處理裝置、水處理方法、正滲透膜處理方法、正滲透膜處理系統及水處理系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13774996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013247863

Country of ref document: AU

Date of ref document: 20130401

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13774996

Country of ref document: EP

Kind code of ref document: A1