WO2011040337A1 - ポリエステル樹脂組成物、ポリエステル繊維、ポリエステル樹脂成形体及びポリエステル樹脂用結晶核剤の製造方法 - Google Patents

ポリエステル樹脂組成物、ポリエステル繊維、ポリエステル樹脂成形体及びポリエステル樹脂用結晶核剤の製造方法 Download PDF

Info

Publication number
WO2011040337A1
WO2011040337A1 PCT/JP2010/066574 JP2010066574W WO2011040337A1 WO 2011040337 A1 WO2011040337 A1 WO 2011040337A1 JP 2010066574 W JP2010066574 W JP 2010066574W WO 2011040337 A1 WO2011040337 A1 WO 2011040337A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
metal salt
mass
nucleating agent
crystal nucleating
Prior art date
Application number
PCT/JP2010/066574
Other languages
English (en)
French (fr)
Inventor
洋太 常泉
漆原 剛
川本 尚史
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009228982A external-priority patent/JP2011074295A/ja
Priority claimed from JP2009276790A external-priority patent/JP5563282B2/ja
Priority claimed from JP2010048235A external-priority patent/JP2011137127A/ja
Priority claimed from JP2010143382A external-priority patent/JP2011137278A/ja
Priority claimed from JP2010150136A external-priority patent/JP5781744B2/ja
Priority to EP10820454.6A priority Critical patent/EP2484725B1/en
Priority to BR112012007289A priority patent/BR112012007289A2/pt
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to US13/496,959 priority patent/US20120189793A1/en
Priority to CN201080044042.5A priority patent/CN102575089B/zh
Priority to KR1020127011015A priority patent/KR101729049B1/ko
Publication of WO2011040337A1 publication Critical patent/WO2011040337A1/ja
Priority to IL218868A priority patent/IL218868A/en
Priority to US14/016,883 priority patent/US20140001672A1/en
Priority to IL254925A priority patent/IL254925B/en
Priority to IL254924A priority patent/IL254924B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/435Sulfonamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/529Esters containing heterocyclic rings not representing cyclic esters of phosphoric or phosphorous acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/165Crystallizing granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • the present invention relates to a polyester resin composition comprising a metal salt of a specific sulfonamide compound and a phosphorus antioxidant, and more specifically, a polyester in which coloring is suppressed while containing a sulfonamide compound as a crystal nucleating agent
  • the present invention relates to a resin composition.
  • the present invention also relates to a polyester fiber, and more particularly, to a polyester fiber that has low shrinkage and excellent creep characteristics.
  • the present invention also relates to a polyester resin molded body and a method for producing the same, and more particularly to a polyester resin molded body excellent in transparency and crystallization and a method for producing the same.
  • the present invention also relates to a method for producing a crystal nucleating agent for a polyester resin, and more specifically, for a polyester resin capable of obtaining a crystal nucleating agent for a polyester resin that has a small particle size and is less likely to cause secondary aggregation during storage.
  • the present invention relates to a method for producing a crystal nucleating agent.
  • the present invention suppresses mold contamination and suppresses a decrease in productivity due to removal of mold dirt, and also improves the heat shrinkability of the plastic bottle, thereby suppressing deterioration in productivity due to molding defects.
  • it is possible to improve the production cycle, and further provide a method for producing a plastic bottle that is transparent in appearance and has a good appearance.
  • Polyester resins such as polyethylene terephthalate, polymethylene terephthalate, and polylactic acid are excellent in heat resistance, chemical resistance, mechanical properties, electrical properties, etc., and are excellent in cost / performance. Used industrially, and because of its good gas barrier properties, hygiene, and transparency, it is widely used in beverage bottles, cosmetic / pharmaceutical containers, detergent / shampoo containers, etc., and also used in electrophotographic toners. It has been.
  • Polyethylene naphthalate is also excellent in transparency, has excellent mechanical properties and ultraviolet barrier properties compared to polyethylene terephthalate, and has particularly low gas (oxygen, CO 2 , water vapor) permeability. It is used for film applications such as APS photographic film and materials for electronic parts.
  • Polybutylene terephthalate on the other hand, has excellent heat resistance, chemical resistance, electrical properties, dimensional stability, and moldability, and is used as a precision component for automotive electrical components, electrical / electronic components, and OA equipment. Yes.
  • the polyester resin is a crystalline resin
  • the range of molding conditions is extremely narrow and it is difficult to improve the processing cycle. limited.
  • the heat deformation temperature of the molded product obtained by molding the polyester resin is low, there is a problem that the use temperature is limited.
  • nucleating agent As a method for improving the crystallization speed of a polyester resin.
  • Metals such as sodium benzoate, aluminum p-tert-butylbenzoate, and aromatic phosphate metal salts Salts and compounds such as dibenzylidene sorbitol are used as nucleating agents.
  • the present inventors have added a polyester resin composition in which a metal salt of a sulfonamide compound as a crystal nucleating agent is added to a polyester resin as a powder. Has been proposed (see Patent Document 1).
  • the polyester resin is excellent in its excellent dimensional stability, weather resistance, mechanical properties, durability, electrical properties, chemical resistance, etc., and in particular, polyethylene terephthalate resin (hereinafter sometimes referred to as PET resin)
  • PET resin polyethylene terephthalate resin
  • Patent Document 2 discloses that in a special vehicle used at a construction site, PET fiber is formed as a non-woven fabric as a soundproof material (sound absorbing material) in an engine room in order to prevent engine noise and noise related to driving. A method of laminating them and using them as a mat for a soundproofing material has been proposed.
  • PET resin has a large thermal shrinkage.
  • PET resin films are used as labels for beverage bottles and food containers. This is due to the property that when the film is heated in the range above the glass transition temperature or near the melting point, the stress applied in the stretching direction of the film is released and the film shrinks.
  • a fiber layer is inserted into the tire structure of the vehicle to increase the cushioning property of the rubber component.
  • the stress applied to the tire is affected by the driving environment of the vehicle, it is not a constant amount, but the passage of time. At the same time, strain (creep) applied to the fibers increases, and the tire structure may be deformed or punctured.
  • Polyester resins such as polyethylene terephthalate, polymethylene terephthalate, and polylactic acid are excellent in transparency, heat resistance, chemical resistance, mechanical properties, electrical properties, gas barrier properties, cost / performance, and the main repetition.
  • Polyethylene terephthalate whose unit is ethylene terephthalate (hereinafter sometimes referred to as PET resin) is a bottle container for carbonated drinks, juice, mineral water, etc., cosmetics, pharmaceutical containers, detergent / shampoo containers, toner for electrophotography, food, Widely used in packaging materials such as pharmaceuticals.
  • PET resin Polyethylene terephthalate whose unit is ethylene terephthalate
  • PET resin is a bottle container for carbonated drinks, juice, mineral water, etc., cosmetics, pharmaceutical containers, detergent / shampoo containers, toner for electrophotography, food, Widely used in packaging materials such as pharmaceuticals.
  • a biaxially stretched blow bottle obtained by biaxial stretching has excellent heat resistance, transparency and gloss, and relatively good gas barrier properties.
  • biaxially stretched blow bottles made of PET resin have gas barrier properties for alcoholic beverages such as alcohol and beer, carbonated beverages such as cider and cola, beverage containers for juices such as fruit beverages, and containers for pharmaceuticals. It is still not sufficient, and there is a need to improve gas barrier properties from the viewpoint of content protection.
  • PET resin bottle containers beverages sterilized at high temperatures may be hot-filled, or may be sterilized at high temperatures after filling the beverage. If the heat resistance of the PET resin bottle containers is poor, during these heat treatments, Shrinkage and deformation of the bottle container may occur.
  • Patent Document 3 proposes a method of heat-treating the stretch-blow mold at a high temperature.
  • a resin is applied to the mold.
  • the PET resin bottle of the molded product is whitened and the product value is impaired.
  • Patent Documents 4 and 5 propose a method of improving the heat resistance by heat-treating the stopper portion of the preform or the molded bottle to promote crystallization, but this method is suitable for crystallization.
  • the processing time and temperature required greatly affect productivity.
  • the PET resin is a crystalline resin
  • the crystallization speed is extremely slow, so that the range of molding conditions is extremely narrow and it is difficult to improve the processing cycle.
  • the packaging material to be used is required to have a gas barrier property against permeation of oxygen and water vapor in order to suppress the oxidation and alteration of the contents and maintain the taste, freshness, efficacy and the like.
  • packaging materials include various properties such as transparency, heat resistance, and flexibility. Characteristics are required.
  • polyester resins such as polyethylene terephthalate are crystalline polymers
  • the range of molding conditions is extremely narrow, making it difficult to improve molding cycles, and the use of molding materials is still limited.
  • This defect is derived from the crystallinity of the polyester resin, and it is known that the addition of a crystal nucleating agent increases the crystallization temperature of the polyester resin and improves the molding cycle.
  • Patent Document 1 the present inventors have provided an invention for promoting crystallization of a polyester resin composition using a sulfonamide compound metal salt as a crystal nucleating agent for a polyester resin, which cannot be achieved with a conventional crystal nucleating agent. We realized a molding cycle that did not exist.
  • the sulfonamide compound metal salt added to the polyester resin contains particles exceeding 250 ⁇ m, it may remain unmelted during melt-kneading with the polyester resin.
  • a crystal nucleating agent is applied to a fiber material, for example, the fiber breaks when the fiber is stretched, or when it is applied to a film material, fish eyes appear on the film surface or the sheet is stretched uniformly. It may not be possible, or there may be holes in the film surface.
  • the crystal nucleating agent is used in the molding of a bottle container or a sheet, there is a problem that the crystallization accelerating action of the polyester resin is too strong, and a part or the whole of the molded product is whitened to deteriorate the appearance.
  • This problem is known to be improved by uniformly dispersing the crystal nucleating agent for polyester resin in the polyester resin.
  • the above problem can be solved by pulverizing until the volume average particle diameter is in the range of 0.5 to 50 ⁇ m and the mesh pass is 250 ⁇ m.
  • the pulverized product is hardened and adhered to the tank (adhered), or pulverized by heat generated during pulverization.
  • the product melted into a lump (fused) state and could hardly be recovered and could not be stably pulverized.
  • blocking occurs due to secondary aggregation of the pulverized product during transportation and warehouse storage.
  • a plastic bottle made of stretched blow or the like using polyester, polyolefin, polyamide or the like is known.
  • a method for producing a plastic bottle using polyester for example, as described in Patent Document 6, polyethylene terephthalate melted in a mold is ejected (extruded), and a preform (parison) is injected (extruded).
  • a predetermined plastic bottle by molding and molding the molded bottomed cylindrical preform by gas wiping, and to obtain a heat-resistant plastic bottle by further heat treatment. ing.
  • polyester resins mainly using antimony compounds and germanium compounds as polycondensation catalysts are used, but by-products such as acetaldehyde and cyclic low polymers are present in the resin during melt molding.
  • by-products such as the above-mentioned annular low-weight body can be a cause of mold contamination on the mold vent of the molding machine, the mold inner surface of the blow molding machine, the exhaust pipe of the mold, or the like. Mold stains cause surface roughness and whitening of the molded product, and thus it is necessary to remove the mold stains.
  • the productivity is remarkably lowered as the mold stains are removed.
  • a method for suppressing the generation of acetaldehyde for example, a method of performing the molding temperature at a low temperature is conceivable.
  • the molding temperature is lowered, the resulting molded product is whitened, resulting in a problem that the transparency is greatly reduced.
  • Patent Document 7 discloses that after polycondensation, it is brought into contact with hot water at 50 to 100 ° C. Discloses a method of deactivating a catalyst in a resin. However, even if this method can reduce the generation of by-products, there is a problem in that productivity is reduced because a resin drying step is required.
  • Patent Document 8 discloses that terephthalic acid or an ester-forming derivative thereof is 90 mol% or more of a dicarboxylic acid component, and ethylene glycol is a diol component.
  • a method of molding at 270 ° C. using a polyester resin polycondensed through an esterification reaction or a transesterification reaction of a dicarboxylic acid component and a diol component that are 90 mol% or more is disclosed.
  • polyethylene terephthalate is a crystalline resin, but its crystallization rate is extremely slow. Therefore, the range of molding conditions is narrow, and when the mold temperature is lowered, the thermal contraction of the molded product becomes remarkable, resulting in frequent molding defects. Therefore, there is a problem that productivity is worsened.
  • a method of adding a nucleating agent As a method for improving the crystallization speed of a resin composition, a method of adding a nucleating agent is generally known.
  • the nucleating agent include polymers, ores, metal salts of organic acids or inorganic acids, powdered glass. , Powder metals, etc., for example, olefins such as low density polyethylene, high density polyethylene and linear low density polyethylene, ores (clay) such as graphite, talc and kaolin, metal oxides such as zinc oxide, alumina and magnesium oxide Products, silica compounds such as silica, calcium silicate, magnesium silicate, metal carbonates such as magnesium carbonate, calcium carbonate, sodium carbonate, potassium carbonate, barium sulfate, calcium sulfate, sodium benzoate, aluminum p-tert-butylbenzoate, Aromatic phosphate metal salts, dibenzylidene sorbitol and sulfonamido Compounds, and the
  • JP2007-327028A JP 2007-230212 A Japanese Patent Publication No.59-6216 JP 55-79237 A JP 58-110221 A Japanese Patent Application Laid-Open No. 08-156077 Japanese Patent Publication No. 7-37515 JP 2006-22340 A
  • an object of the present invention is to provide a polyester resin composition that solves the above-mentioned problems of the prior art and that suppresses coloring while containing a sulfonamide compound as a crystal nucleating agent.
  • Another object of the present invention is to provide a polyester fiber that solves the above-mentioned conventional problems, has excellent creep characteristics, and has a low heat shrinkage rate.
  • Another object of the present invention is to provide a polyester resin molded body that can solve the above-mentioned conventional problems and can realize transparency and crystallinity in a high dimension, and a method for producing the same.
  • Another object of the present invention is to provide a polyester resin crystal that can solve the above-mentioned conventional problems, and that can provide a crystal nucleating agent for polyester resin that has a small particle size and is less likely to cause secondary aggregation during storage. It is to provide a method for producing a nucleating agent.
  • Another object of the present invention is to provide a method for producing a plastic bottle in which productivity is improved by suppressing mold contamination.
  • the present inventors added a mixture of a metal salt of a sulfonamide compound having a moisture content adjusted to a specific ratio and a phosphorus-based antioxidant to a polyester resin. As a result, the inventors have found that the above problems can be solved, and have completed the present invention.
  • the present inventors have found that the above-mentioned problems can be solved by blending a polyester resin crystal nucleating agent comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt with the polyester resin, thereby completing the present invention. It came to do.
  • the present inventors solved the above-mentioned problems by blending a polyester resin crystal nucleating agent comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt into a polyester resin and performing a specific annealing treatment after molding.
  • the present inventors have found that this can be done and have completed the present invention.
  • the present inventors can solve the above-mentioned problems by drying the crystal nucleating agent until the water content becomes a specific value or less and pulverizing using a pulverizer that does not use a pulverizing medium.
  • the headline and the present invention were completed.
  • the present inventors prepared a resin composition obtained by mixing a polyester resin with a masterbatch containing a crystal nucleating agent for a polyester resin made of a sulfonamide compound metal salt or a sulfonimide compound metal salt, and the resin composition
  • a resin composition obtained by mixing a polyester resin with a masterbatch containing a crystal nucleating agent for a polyester resin made of a sulfonamide compound metal salt or a sulfonimide compound metal salt
  • the polyester resin composition of the present invention has a phosphorus-based antioxidant (A) 0.01 to 30 parts by mass and a sulfonamide compound metal salt (B) 0.1 to 30 parts by mass with respect to 100 parts by mass of the polyester resin.
  • a polyester resin composition comprising parts, The amount of water contained in the metal salt (B) of the sulfonamide compound is in the range of 0.1% to 20% by mass ratio with respect to the metal salt of the sulfonamide compound, and 3% by mass ratio with respect to the polyester resin composition. % Or less.
  • the polyester fiber of the present invention comprises a polyester resin composition containing 0.001 to 1 part by mass of a crystal nucleating agent for polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt with respect to 100 parts by mass of the polyester resin. It is characterized by this.
  • the polyester resin molded article of the present invention is a polyester resin composition in which 0.001 to 1 part by mass of a crystal nucleating agent for a polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt is blended with 100 parts by mass of a polyester resin. After the molding, annealing is performed for 1 second to 2 minutes.
  • the polyester resin molded article of the present invention is a polyester comprising 0.001 to 1 part by mass of a crystal nucleating agent for polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt with respect to 100 parts by mass of the polyester resin.
  • a crystal nucleating agent for polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt with respect to 100 parts by mass of the polyester resin.
  • the method for producing a crystal nucleating agent for polyester resin according to the present invention is a method for producing a crystal nucleating agent for polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt, wherein the crystal nucleating agent for polyester resin is water-containing. After drying until the rate becomes 8% by mass or less, the mixture is pulverized by a pulverizer that does not use a pulverizing medium.
  • the method for producing a plastic bottle of the present invention is a method for producing a plastic bottle formed by molding a polyester resin composition containing a crystal nucleating agent for a polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt.
  • a masterbatch containing 0.1 to 90 parts by mass of the crystal nucleating agent for polyester resin with respect to 100 parts by mass of the polyester resin having a viscosity of 0.5 to 1.1 dL / g is prepared.
  • the resin composition containing 0.005 to 0.025 parts by mass of the crystal nucleating agent for polyester resin with respect to 100 parts by mass of polyester resin having an intrinsic viscosity of 0.5 to 1.1 dL / g,
  • the resin composition is stretch blow molded into a bottle shape at a mold temperature of 85 to 160 ° C.
  • a nucleating agent for a polyester resin composed of a sulfonamide compound metal salt or a sulfonimide compound metal salt is blended and molded, and then subjected to a specific annealing treatment to achieve transparency and crystallinity. It is possible to produce a polyester resin molded body that satisfies the above requirements.
  • a crystal nucleating agent for polyester resin comprising a sulfonamide compound or a sulfonimide compound, having a small particle diameter and hardly causing secondary aggregation during storage. Can do.
  • the present invention suppresses mold contamination, suppresses a decrease in productivity due to removal of mold stains, and a plastic bottle to be manufactured has good heat shrinkage, so that productivity due to poor molding can be reduced. Deterioration is suppressed and the production cycle can be improved. In addition, the appearance of the manufactured plastic bottle is transparent and good.
  • the polyester resin composition of the present invention comprises 0.01 to 30 parts by mass of the phosphorus-based antioxidant (A) and 0.1 to 30 parts by mass of the metal salt of the sulfonamide compound (B) with respect to 100 parts by mass of the polyester resin.
  • a polyester resin composition comprising: The amount of water contained in the metal salt (B) of the sulfonamide compound is in the range of 0.1% to 20% by mass ratio with respect to the metal salt of the sulfonamide compound, and 3% by mass ratio with respect to the polyester resin composition. % Or less.
  • the polyester resin composition of the present invention will be described in detail below.
  • the polyester resin used in the polyester resin composition of the present invention is a normal thermoplastic polyester resin and should not be particularly limited.
  • polyoxyalkylene terephthalate such as polyethylene terephthalate, polybutylene terephthalate, polycyclohexane dimethylene terephthalate, aromatic polyester such as polyalkylene naphthalate such as polyethylene naphthalate and polybutylene naphthalate; polyester component and other acid components and / Or glycol components (eg, acid components such as isophthalic acid, adipic acid, sebacic acid, glutaric acid, diphenylmethane dicarboxylic acid, dimer acid, glycol components such as hexamethylene glycol, bisphenol A, neopentyl glycol alkylene oxide adduct) Polyether ester resin copolymerized with polyhydroxybutyrate, polycaprolactone, polybutylene succinate, polyethylene succinate Degradable aliphatic polyesters such as polylactic acid resin,
  • polyester resins selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, and polylactic acid are preferably used.
  • polyethylene terephthalate is more preferable because the effect of the invention is remarkable.
  • the polyester resin may be a single resin or a blend of a plurality of resins (for example, a blend of polyethylene terephthalate and polybutylene terephthalate), or a copolymer thereof (for example, a copolymer of polybutylene terephthalate and polytetramethylene glycol).
  • a melting point of 200 ° C. to 300 ° C. are preferably used because they exhibit heat resistance.
  • Examples of the phosphorus antioxidant used in the present invention include triphenyl phosphite, trisnonylphenyl phosphite, tris (2,4-ditert-butylphenyl) phosphite, and tris (2,4-ditertiary).
  • Tributyl-5-methylphenyl) phosphite tris [2-tert-butyl-4- (3-tert-butyl-4-hydroxy-5-methylphenylthio) -5-methylphenyl] phosphite, tridecylphos Phyto, octyl diphenyl phosphite, di (decyl) monophenyl phosphite, di (tridecyl) pentaerythritol diphosphite, di (nonylphenyl) pentaerythritol diphosphite, bis (2,4-ditert-butylphenyl) penta Erythritol diphosphite, bis (2,6-ditert-butyl-4-methylphenol ) Pentaerythritol diphosphite, bis (2,4,6-tritert-butylphenyl) pentaerythritol diphosphite
  • the amount of the phosphorus antioxidant used is 0.01 to 30 parts by mass with respect to 100 parts by mass of the polyester resin. If it is 0.01 parts by mass or less, the polyester resin composition may not obtain a sufficient stabilizing effect, and if it exceeds 30 parts by mass, the shape stability as a masterbatch may be poor, or dispersion in the resin may occur. In some cases, the appearance of the molded product may be adversely affected.
  • Examples of the alkyl group having 1 to 8 carbon atoms represented by R 1 , R 2 , R 3 and R 4 in the general formula (1) include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tertiary Butyl, isobutyl, amyl, isoamyl, tertiary amyl, hexyl, cyclohexyl, heptyl, isoheptyl, tertiary heptyl, n-octyl, isooctyl, tertiary octyl, 2-ethylhexyl trifluoromethyl, etc., or in these groups
  • the hydrogen atom may be substituted with a halogen atom, a saturated alicyclic ring, an aromatic ring or the like.
  • Examples of the aryl group having 6 to 12 carbon atoms which may be substituted include a phenyl group and a naphthyl group.
  • Examples of the aralkyl group having 6 to 12 carbon atoms include a hydrogen atom of the above alkyl group as an aryl group. And those substituted with a group.
  • phosphorus antioxidant represented by the general formula (1) include the following compound No. 1-No. 5 is mentioned. However, the present invention is not limited by the following compounds.
  • the sulfonamide compound in the metal salt of the sulfonamide compound used in the present invention represents a compound having a sulfonamide skeleton, such as sulfonamide, methanesulfonamide, benzenesulfonamide, toluene-4-sulfonamide, 4-chlorobenzene.
  • 4-aminobenzenesulfonamide, N-phenyl-benzenesulfonamide, 1,2 -Benzisothiazol-3 (2H) -one-1,1-dioxide is preferred.
  • These metal salts of sulfonamide compounds are preferably used because they are excellent in the crystallization promoting effect of polyester resins, and in particular, 1,2-benzisothiazol-3 (2H) -one-1,1-dioxide metal Salts are preferred.
  • the amount of the metal salt of the sulfonamide compound added is 0.1 to 30 parts by mass with respect to 100 parts by mass of the polyester resin. If the amount is less than 0.1 parts by mass, it is necessary to add a large amount of the masterbatch because the action effect is low when the masterbatch is used, but a large amount of addition deteriorates the properties of the polyester resin in terms of physical properties. There is a case. Moreover, when more than 30 mass parts, dispersion
  • Examples of the metal salt of the sulfonamide compound include metals selected from lithium, potassium, sodium, magnesium, calcium, strontium, barium, titanium, manganese, iron, zinc, silicon, zirconium, yttrium, or barium.
  • potassium, lithium, sodium, and calcium are preferable because they are excellent in the crystallization promoting effect of the polyester resin, and sodium is particularly preferable.
  • the amount of water contained in the sulfonamide compound refers to the following measurement conditions (under nitrogen (200 ml / min), heating rate: 50 ° C./min, using a thermoanalyzer 2 manufactured by Rigaku Corporation. Sample: 5 mg), and the weight loss when the temperature was increased from room temperature and reached 150 ° C. was evaluated as the amount of water.
  • the amount of water is 0 by mass ratio to the sulfonamide compound.
  • the content is preferably in the range of 1 to 20%, particularly preferably 0.1 to 5%. If the water content is less than 0.1%, the sulfonamide compound is hygroscopic, and it is uneconomical to dry to that water content. If the water content exceeds 20%, coloring associated with hydrolysis of the polyester resin and foaming problems during molding processing may occur, and the appearance of the molded article of the polyester resin composition may be impaired.
  • the amount of water contained in the sulfonamide compound must be blended so that the mass ratio with the polyester resin composition does not exceed 3%. If the polyester resin composition is processed with a water content exceeding 3%, moldability deteriorates due to significant hydrolysis, a decrease in the viscosity of the polyester resin itself, and deposition of a low molecular weight material.
  • the sulfonamide compound according to the present invention can be adjusted to a desired particle size by using various pulverizing devices, but in the present invention, those having an average particle size of 100 ⁇ m or less are preferable. If it exceeds 100 ⁇ m, the appearance of the molded article of the polyester resin composition may be impaired.
  • the average particle diameter of the sulfonamide compound refers to the sulfonamide compound measured with a laser diffraction / scattering particle size distribution meter (Microtrack MT3000II; manufactured by Nikkiso Co., Ltd.). This represents a numerical value at which the volume average by the microtrack method is 50%.
  • the polyester resin composition of the present invention may further contain other usual additives as required.
  • the polyethylene resin composition of the present invention is mixed with other additives in a blending amount according to the purpose, and is melt-kneaded with a molding machine such as an extruder and granulated. And a molding method.
  • other additives include ultraviolet absorbers, hindered amine compounds, heavy metal deactivators, other crystal nucleating agents other than the crystal nucleating agent used in the present invention, flame retardants, metal soaps, hydrotalcite, fillers, Examples thereof include a lubricant, an antistatic agent, a pigment, a dye, a plasticizer, and the like.
  • a phosphorous antioxidant, a crystal nucleating agent, another crystal nucleating agent, or another phosphorous antioxidant used in the present invention is a polyester resin composition. In addition, it may be molded.
  • ultraviolet absorber examples include 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-octoxybenzophenone, and 5,5′-methylenebis (2-hydroxy-4-methoxybenzophenone).
  • 2-hydroxybenzophenones such as 2-; 2- (2-hydroxy-5-methylphenyl) benzotriazole, 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3, 5-di-tert-butylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3,5 -Dicumylphenyl) benzotriazole, 2,2'-methylenebis (4-tertiary Octyl-6-benzotriazolylphenol), polyethylene glycol ester of 2- (2-hydroxy-3-tert-butyl-5-carboxyphenyl) benzotriazole, 2- [2-hydroxy-3- (2-acryloyloxy) Ethyl) -5-methylphenyl] benzotriazole, 2- [2-hydroxy-3- (2-methacryloyloxyethyl) -5
  • hindered amine light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2, 6,6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1 , 2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2,2, 6,6-tetramethyl-4-piperidyl) .di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4 Piperidyl) -di (tridecyl) -1,2,3,
  • crystal nucleating agent examples include sodium benzoate, aluminum 4-tert-butylbenzoate, sodium adipate and disodium bicyclo [2.2.1] heptane-2,3-dicarboxylate.
  • Carboxylic acid metal salts sodium bis (4-tert-butylphenyl) phosphate, sodium-2,2′-methylenebis (4,6-ditert-butylphenyl) phosphate and lithium-2,2′-methylenebis (4,6 A phosphate ester metal salt such as ditertiarybutylphenyl) phosphate, a polyhydric alcohol derivative such as dibenzylidene sorbitol, bis (methylbenzylidene) sorbitol, bis (p-ethylbenzylidene) sorbitol, and bis (dimethylbenzylidene) sorbitol, N, N ′, N ′′ -Tris [2-methylcycl Hexyl] -1,2,3-propan
  • the flame retardant examples include aromatic phosphates such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-xylenyl phosphate, and resorcinol bis (diphenyl phosphate).
  • aromatic phosphates such as triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-xylenyl phosphate, and resorcinol bis (diphenyl phosphate).
  • Esters such as divinyl phenylphosphonate, diallyl phenylphosphonate and phenylphosphonic acid (1-butenyl), phenyl diphenylphosphinate, methyl diphenylphosphinate, 9,10-dihydro-9-oxa-10-phospha Phosphinic acid esters such as phenanthrene-10-oxide derivatives, phosphazene compounds such as bis (2-allylphenoxy) phosphazene and dicresyl phosphazene, melamine phosphate, melamine pyrophosphate, Melamine phosphate, melam polyphosphate, ammonium polyphosphate, phosphorus-containing vinylbenzyl compounds and phosphorus-based flame retardants such as red phosphorus, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, brominated bisphenol A type epoxy resin, bromine Phenol novolac epoxy resin, hexabromobenzene
  • phosphorus antioxidants include triphenyl phosphite, tris (2,4-ditertiarybutylphenyl) phosphite, tris (2,5-ditertiarybutylphenyl) phosphite, tris (nonylphenyl) ) Phosphite, tris (dinonylphenyl) phosphite, tris (mono, dimixed nonylphenyl) phosphite, diphenyl acid phosphite, 2,2'-methylenebis (4,6-ditert-butylphenyl) octyl phosphite , Diphenyldecyl phosphite, diphenyloctyl phosphite, phenyl diisodecyl phosphite, tributyl phosphite, tris (2-ethylhexyl) phosphite
  • polyester resin composition of the present invention is not particularly limited, but can be formed into known extrusion molding, injection molding, hollow molding, blow, film, sheet, etc., beverage containers, packaging materials, daily goods It can be used for toys.
  • the polyester fiber of the present invention comprises a polyester resin composition containing 0.001 to 1 part by mass of a crystal nucleating agent for polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt with respect to 100 parts by mass of the polyester resin. It is characterized by this.
  • the polyester fiber of the present invention is described in detail below.
  • the polyester resin crystal nucleating agent comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt according to the present invention represents a metal salt of a compound having a sulfonamide skeleton or a metal salt of a compound having a sulfonimide skeleton.
  • Examples of the compound having a sulfonamide skeleton or a sulfonimide skeleton include the same ones as described above.
  • benzenesulfonamide metal salt, toluene-4-sulfonamide metal salt, N-phenyl-benzenesulfonamide metal salt, N-phenyl-4-methyl-benzenesulfonamide metal salt, 1,2-benziso Thiazol-3 (2H) -one 1,1-dioxide metal salt is preferably used.
  • Examples of the metal in the metal salt of the sulfonamide compound or the sulfonimide compound include the same metals as those mentioned in the metal salt of the sulfonamide compound. Preferred metals are the same as above.
  • the polyester resin according to the present invention may be a normal thermoplastic polyester resin, and is not particularly limited, and examples thereof include the same as described above.
  • polyester resins selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate and polylactic acid are preferably used, and in particular, polyethylene terephthalate is excellent in transparency and molding processability, and is inexpensive. It is more preferable because it exists.
  • the polyester resin may be a single resin or a blend of a plurality of resins (for example, a blend of polyethylene terephthalate and polybutylene terephthalate), or a copolymer thereof (for example, a copolymer of polybutylene terephthalate and polytetramethylene glycol).
  • a melting point of 200 ° C. to 300 ° C. are preferably used because they exhibit heat resistance.
  • the added amount of the crystal nucleating agent for polyester resin comprising the sulfonamide compound metal salt or the sulfonimide compound metal salt is 0.001 to 1 part by mass, preferably 0.005 to 1 part per 100 parts by mass of the polyester resin. Part by mass. When the amount is less than 0.001 part by mass, the effect as a crystal nucleating agent is low. When the amount is more than 1 part by mass, dispersibility in the polyester resin is lowered, and the polyester fiber may not be sufficiently stretched.
  • the polyester fiber has a heat shrinkage (measured according to German Industrial Standard DIN 53866 T3) of 15% or less. If it exceeds 15%, it may be difficult to produce a material suitable for the intended use.
  • the polyester fiber is stretched and oriented.
  • the stretching method a known stretching method can be used, and the stretching can be performed without limitation of the stretching ratio as long as the fiber is not cut.
  • the polyester resin in which the crystal nucleating agent for a polyester resin composed of a sulfonamide compound metal salt or a sulfonimide compound metal salt is blended may further contain other usual additives as required.
  • a method for blending other additives there may be mentioned a method in which other additives are mixed with a polyester resin at a blending amount according to the purpose, and melt-kneaded and granulated by a molding machine such as an extruder.
  • Crystals for polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt may be blended with other additives together with a crystal nucleating agent for a polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt.
  • a nucleating agent for a polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt After adding a nucleating agent to a polyester resin to form a fiber, another additive may be added.
  • other additives include coloring inhibitors, optical brighteners, matting agents, phenolic antioxidants, phosphorus antioxidants, ultraviolet absorbers, hindered amine compounds, heavy metal deactivators, and the present invention.
  • crystal nucleating agent for the polyester resin in addition to the crystal nucleating agent for the polyester resin to be used, other crystal nucleating agents, flame retardants, metal soaps, hydrotalcites, fillers, lubricants, antistatic agents, pigments, colorants, plasticizers and the like can be mentioned.
  • phenolic antioxidant examples include 2,6-ditert-butyl-p-cresol, 2,6-diphenyl-4-octadecyloxyphenol, stearyl (3,5-ditert-butyl-4- Hydroxyphenyl) propionate, distearyl (3,5-ditert-butyl-4-hydroxybenzyl) phosphonate, tridecyl-3,5-ditert-butyl-4-hydroxybenzylthioacetate, thiodiethylenebis [(3,5 -Di-tert-butyl-4-hydroxyphenyl) propionate], 4,4'-thiobis (6-tert-butyl-m-cresol), 2-octylthio-4,6-di (3,5-di-tert-butyl) -4-hydroxyphenoxy) -s-triazine, 2,2'-methylenebis (4-methyl-6-tert-butylphenol), bis [3,3- (4-hydroxy-3-tert
  • the amount of the phosphorus-based antioxidant used is 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polyester resin.
  • Examples of the ultraviolet absorber include the same as those described above.
  • the amount of the ultraviolet absorber used is 0.001 to 5 parts by mass, more preferably 0.005 to 0.5 parts by mass, with respect to 100 parts by mass of the polyester resin.
  • hindered amine light stabilizer examples include the same ones as described above.
  • the amount of the hindered amine light stabilizer used is 0.001 to 5 parts by mass, and more preferably 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the polyester resin.
  • crystal nucleating agents examples include simple substances such as carbon black, graphite, zinc powder and aluminum powder; metal oxides such as zinc oxide, magnesium oxide, alumina, hematite and magnetite; talc, asbestos, kaolin and montmorillonite.
  • Clays such as clay and pyrophyllite, sulfates such as calcium sulfate and barium sulfate; inorganic phosphates such as calcium phosphate; metal salts of aromatic oxysulfonic acid, magnesium salts of organic phosphorus compounds, zinc of organic phosphorus compounds Organic phosphates such as salts; inorganic silicates such as calcium silicate salt and magnesium silicate salt; sodium monocarboxylate, lithium monocarboxylate, barium monocarboxylate, magnesium monocarboxylate, calcium monocarboxylate , Sodium stearate, Sodium tantalate, sodium benzoate, potassium benzoate, calcium benzoate, 4-tert-butylaluminum benzoate, sodium adipate and disodium bicyclo [2.2.1] heptane-2,3-dicarboxylate, Carboxylic acid metal salts such as sodium carbonate and magnesium carbonate; sodium bis (4-tert-butylphenyl) phosphate
  • the flame retardant examples include the same as those described above.
  • the flame retardant is used in an amount of 1 to 70 parts by weight, more preferably 10 to 30 parts by weight with respect to 100 parts by weight of the polyester resin.
  • the filler is not particularly limited as long as it is used to reinforce the polyester resin, such as mineral fibers such as wollastonite, zonotolite, attapulgite, glass fiber, milled fiber, metal coated glass fiber, etc. Glass fiber, carbon fiber, carbon milled fiber, carbon fiber such as metal coated carbon fiber, metal wire such as stainless steel wire, copper wire, aluminum wire, tungsten wire, alumina fiber, zirconia fiber, aluminum borate whisker , Fiber fillers such as whisker such as potassium titanate whisker, basic magnesium sulfate whisker, acicular titanium oxide, acicular calcium carbonate, plate filler such as talc, mica, glass flake, graphite flake, hydro Talcite, glass beads, Various fillers such as glass balloons, ceramic balloons, carbon beads, silica particles, titania particles, alumina particles, kaolin, clay, calcium carbonate, titanium oxide, cerium oxide, and zinc oxide can be mentioned. Also good.
  • the said filler can be suitably used in
  • the polyester fiber of the present invention can be treated with twisting, adhesive treatment, heat treatment, and alkali treatment by a conventional method, and the twisted yarn may be twisted with a fiber material other than the polyester fiber.
  • a fiber material other than the polyester fiber.
  • the other fiber material a material that is easily entangled with the polyester fiber and has few fiber breakage is preferably used.
  • the polyester fiber of the present invention includes a vehicle tire structure, a printing substrate, a wallpaper substrate, a wiping material, various filter materials, a compress material, a medical hygiene material such as a sanitary article, clothing, a clothing interlining, and a pillow cover. It can be used for applications such as cosmetic base materials, automotive interior materials, sound absorbing materials, packaging materials, and industrial materials such as civil engineering.
  • the polyester resin molded article of the present invention is a polyester resin composition in which 0.001 to 1 part by mass of a crystal nucleating agent for a polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt is blended with 100 parts by mass of a polyester resin. After the molding, annealing is performed for 1 second to 2 minutes.
  • the polyester resin molding of the present invention and the production method thereof will be described in detail below.
  • the polyester resin crystal nucleating agent comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt according to the present invention represents a metal salt of a compound having a sulfonamide skeleton or a sulfonimide skeleton.
  • Examples of the compound having a sulfonamide skeleton or a sulfonimide skeleton include the same compounds as those mentioned for the metal salt of the sulfonamide compound related to the polyester fiber.
  • Preferred compounds having a sulfonamide skeleton or a sulfonimide skeleton are the same as those for the polyester fiber.
  • Examples of the metal in the metal salt of the sulfonamide compound or the sulfonimide compound include the same metals as those mentioned in the metal salt of the sulfonamide compound. Preferred metals are the same as above.
  • a normal thermoplastic polyester resin is used as the polyester resin and is not particularly limited, and examples thereof include the same as described above.
  • polyethylene terephthalate is more preferable because it is excellent in transparency and inexpensive.
  • the polyester resin may be a single resin or a blend of a plurality of resins (for example, a blend of polyethylene terephthalate and polybutylene terephthalate), or a copolymer thereof (for example, a copolymer of polybutylene terephthalate and polytetramethylene glycol).
  • a melting point of 200 ° C. to 300 ° C. are preferably used because they exhibit heat resistance.
  • the amount of the polyester resin crystal nucleating agent added to 100 parts by mass of the polyester resin is 0.001 to 1 part by mass, preferably 0.005 to 0.1 part by mass, and more preferably 0.005 to 0.05 parts by mass.
  • the amount is less than 0.001 part by mass, the effect as a crystal nucleating agent is hardly obtained.
  • the amount is more than 1 part by mass, the dispersibility in the polyester resin is lowered, and the appearance of the polyester resin molded article is adversely affected. There is a case.
  • the polyester resin in which the crystal nucleating agent for a polyester resin composed of a sulfonamide compound metal salt or a sulfonimide compound metal salt is blended may further contain other usual additives as required.
  • a method for blending other additives there is a method in which other additives are mixed with a polyester resin in a blending amount according to the purpose, and melt-kneaded in a molding machine such as an extruder, and then granulated and molded.
  • Polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt, and other additives may be blended together with a crystal nucleating agent for a polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt. After molding the polyester resin containing the crystal nucleating agent, other additives may be added and molded using a molding machine.
  • additives examples include phenolic antioxidants, phosphorus antioxidants, ultraviolet absorbers, hindered amine compounds, heavy metal deactivators, other crystal nucleating agents other than the crystal nucleating agent used in the present invention, difficulty Examples include flame retardants, metal soaps, hydrotalcite, fillers, lubricants, antistatic agents, pigments, dyes, and plasticizers.
  • the amount of the phenolic antioxidant used is 0.001 to 10 parts by mass, and more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polyester resin.
  • the said phosphorus antioxidant can mention the same thing as the above.
  • the amount of the phosphorus-based antioxidant used is 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polyester resin.
  • Examples of the ultraviolet absorber include the same as those described above.
  • the amount of the ultraviolet absorber used is 0.001 to 5 parts by mass, more preferably 0.005 to 0.5 parts by mass, with respect to 100 parts by mass of the polyester resin.
  • hindered amine light stabilizer examples include the same ones as described above.
  • the amount of the hindered amine light stabilizer used is 0.001 to 5 parts by mass, and more preferably 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the polyester resin.
  • the amount of the other crystal nucleating agent used is such that the total amount with the crystal nucleating agent used in the present invention is 0.001 to 1 part by mass with respect to 100 parts by mass of the polyester resin.
  • the flame retardant examples include the same as those described above.
  • the flame retardant is used in an amount of 1 to 70 parts by weight, more preferably 10 to 30 parts by weight with respect to 100 parts by weight of the polyester resin.
  • the method of molding the polyester resin is not particularly limited, and known molding methods such as extrusion molding, injection molding, hollow molding, blow, film, and sheet can be used.
  • the temperature condition of the extruder is preferably such that the screw part temperature is within the melting point of the polyester resin plus 50 ° C. If the screw temperature is too low, a short circuit will occur and the molding will become unstable, and it will easily fall into an overload, and if the screw part temperature is too high, the resin will be thermally decomposed and the physical properties of the resulting molded product will be reduced. Since it may be colored, it is not preferable.
  • the polyester resin molded body is stretched by pre-molding the polyester resin and then stretching it by applying stress so as to be stretched in the stretching direction uniaxially, biaxially, etc. ) In the temperature range of 80 to 200 ° C.
  • the annealing treatment refers to heating the polyester resin molded body at a temperature not lower than the glass transition temperature of the polyester resin and not higher than the melting point within a range of 1 second to 2 minutes.
  • the crystallinity of the polyester resin molded article can be improved even in a short time of less than 1 second, it is preferably 1 second or more in order to make the annealing effect constant for quality control, and if it exceeds 2 minutes, the polyester resin is crystallized. May become too white and may lose transparency.
  • the heating temperature is lower than the glass transition temperature, the crystallinity of the polyester resin molded body is hardly improved, and when the temperature is higher than the melting point, the polyester resin melts and the appearance of the polyester resin molded body cannot be maintained.
  • a preferable temperature is in the range of 100 to 200 ° C., more preferably in the range of 110 to 190 ° C., and still more preferably in the range of 120 to 180 ° C.
  • the heating method is not particularly limited, and a method that can uniformly heat the entire polyester resin molded body is preferable, but a part or a plurality of parts may be heated.
  • the annealing treatment may be performed a plurality of times at different temperatures.
  • the above-mentioned polyester resin molded product represents a product molded by a known molding method such as extrusion molding, injection molding, hollow molding, blow, film, sheet, and the like, bottles, packaging materials, and beverage bottles.
  • a known molding method such as extrusion molding, injection molding, hollow molding, blow, film, sheet, and the like, bottles, packaging materials, and beverage bottles.
  • the polyester resin molding of the present invention has a gas permeability coefficient of carbon dioxide of 1.0 ⁇ 10 ⁇ 17 mol ⁇ m / m 2 ⁇ s ⁇ Pa to 5.3 ⁇ 10 ⁇ 17 mol ⁇ m / m 2 ⁇ s. -The thing within the range of Pa is preferable. If a polyester resin molded product having a gas permeability coefficient of carbon dioxide exceeding 5.3 ⁇ 10 ⁇ 17 mol ⁇ / m 2 ⁇ s ⁇ Pa is used as a packaging material, the contents may be oxidized or altered. , Taste, freshness, efficacy and the like may be rapidly impaired, which is not preferable.
  • a polyester resin molded article having a gas permeability coefficient of carbon dioxide gas of less than 1.0 ⁇ 10 ⁇ 17 mol ⁇ m / m 2 ⁇ s ⁇ Pa is preferable because it is difficult to produce under practical molding conditions. Absent.
  • the gas permeability coefficient of carbon dioxide can be measured according to JIS K7126-1.
  • the method for producing a crystal nucleating agent for polyester resin according to the present invention is a method for producing a crystal nucleating agent for polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt, wherein the crystal nucleating agent for polyester resin is water-containing. After drying until the rate becomes 8% by mass or less, the mixture is pulverized by a pulverizer that does not use a pulverizing medium.
  • the pulverization method of the present invention will be described in detail below.
  • the polyester resin crystal nucleating agent comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt according to the present invention represents a metal salt of a compound having a sulfonamide skeleton or a sulfonimide skeleton.
  • Examples of the compound having a sulfonamide skeleton or a sulfonimide skeleton include the same compounds as those mentioned for the metal salt of the sulfonamide compound related to the polyester fiber.
  • Preferred compounds having a sulfonamide skeleton or a sulfonimide skeleton are the same as those for the polyester fiber.
  • Examples of the metal in the metal salt of the sulfonamide compound or the sulfonimide compound include the same metals as those mentioned in the metal salt of the sulfonamide compound. Preferred metals are the same as above.
  • a known dryer can be used as a method for drying the water content of the crystal nucleating agent for polyester resin to 8% by mass or less.
  • the dryer used in the present invention include a spray dryer, a vacuum freeze dryer, a vacuum dryer, a stationary shelf dryer, a mobile shelf dryer, a fluidized bed dryer, a rotary dryer, a stirring dryer, and the like. Is mentioned.
  • the water content of the crystal nucleating agent for polyester resin is, using Rigaku Corporation Thermo Plus 2, under the condition of nitrogen (flow rate: 200 ml / min), sample: 5 mg, heating rate: 50 ° C./min.
  • the weight loss when the temperature reaches 150 ° C. from room temperature is the moisture content contained in the measurement sample, and the ratio between the moisture content and the weight of the measurement sample is evaluated as the moisture content.
  • the polyester resin What is necessary is just to dry the moisture content of the crystal nucleating agent for water to 8 mass% or less, Preferably drying of 5 mass% or less is preferable.
  • the pulverization time of the crystal nucleating agent for polyester resin by the pulverizer becomes long and the pulverization efficiency deteriorates, the pulverized products aggregate in the pulverization tank, or the pulverization tank There is a possibility that the pulverized product adheres to and hardens, or secondary agglomeration occurs after pulverization.
  • drying to less than 0.01% by mass is uneconomical, and it is sufficient that it is dried within the range of 0.01 to 8% by mass in the pulverization method of the present invention.
  • the polyester resin crystal nucleating agent is dried until the water content becomes 8% by mass or less, and then pulverized by a pulverizer without using a pulverizing medium.
  • the grinding medium refers to a solid material, for example, non-metal such as glass, meno, silicon nitride, zirconia, steatite, etc .; metal such as alumina, titania, etc .; tungsten carbide, chrome Examples thereof include those made of alloys such as steel and stainless steel.
  • the form is not limited, and examples thereof include beads and balls.
  • the pulverizer used in the present invention is not particularly limited as long as the pulverizing medium is not used, and pulverization using a roll type, a high-speed rotational impact type, an airflow type, or a shearing / grinding type pulverization method. These may be a combination of these pulverization methods, or may be a combination of pulverization devices, and a system incorporating a classification mechanism can also be employed.
  • Examples of the roll type pulverizer include a roll rotating mill in which pulverization is performed between rotating rolls, a roller rolling mill in which a roller rolls in a table or a container, and the like.
  • Examples of the above high-speed rotational impact type pulverizer include those that collide a sample with a high-speed rotating rotor and achieve miniaturization by the impact force.
  • a fixed or swing type impactor is attached to the rotor.
  • Hammer mill type hammer type, pin mill type rotating disk type with a pin and impact head attached to a rotating disk, axial flow type that pulverizes while the sample is conveyed in the shaft direction, and refinement of particles in a narrow annular part An annular type etc. are mentioned.
  • the airflow crusher (jet mill) is a type that uses the kinetic energy of a high-speed gas-fluid to accelerate and collide the sample and crush it.
  • those which are mainly pulverized mainly by making particles by friction between particles are mainly pulverized mainly by making particles by friction between particles.
  • shearing / grinding type pulverizer examples include a grinding type pulverizer using a shear friction force under a compressive force.
  • a kinetic force is exerted on the medium by a container-driven mill that drives an internal pulverizing medium and a stirring mechanism inside the container when the container rotates or vibrates.
  • a medium stirring mill that gives Examples of the container-driven mill include a rolling ball mill such as a ball mill, a vibration mill, a centrifugal mill, a planetary mill, a high swing mill, and the like. Examples include a tank type, a distribution pipe type, and an annular type.
  • the polyester resin crystal nucleating agent has a volume average particle diameter of preferably 0.5 to 50 ⁇ m, more preferably 1 ⁇ m to 30 ⁇ m by a pulverizer not using the pulverizing medium, And it grind
  • the volume average particle size is less than 0.5 ⁇ m, energy consumption required for pulverization increases, which is uneconomical. If it exceeds 50 ⁇ m, the pulverized product is not dispersed in the polyester resin when molded into the polyester resin. In some cases, the appearance of the molded product may be impaired. If the 250 ⁇ m mesh path is less than 90% by mass, coarse particles may remain unmelted in the resin during melt kneading with the polyester resin, which may adversely affect the appearance and physical properties of the molded product.
  • the recovery rate of the pulverized product of the polyester resin crystal nucleating agent is preferably 90% or more, more preferably 95% or more. If it is less than 90%, it may accumulate in the pulverizing tank of the pulverizer and hinder pulverization.
  • the pulverized product of the polyester resin crystal nucleating agent is preferably further dried to a moisture content of 1% by mass or less.
  • a water content exceeding 1% by mass is blended with a polyester resin and molded, bubbles may be generated to impair the appearance of the molded product.
  • a known drying method can be used in the same manner as described above.
  • agglomerated material When the pulverized products are agglomerated by weak interparticle attraction, it is preferable to use the agglomerated material after crushing.
  • a known crushing treatment device can be used, and examples thereof include a jet mill and a Henschel mixer.
  • polyester resin according to the present invention a normal thermoplastic polyester resin is used and is not particularly limited, and examples thereof include the same as described above.
  • one or more polyester resins selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate and polylactic acid are preferably used, and in particular, polyethylene terephthalate is more preferable because it is excellent in transparency and inexpensive. .
  • the polyester resin may be a single resin or a blend of a plurality of resins (for example, a blend of polyethylene terephthalate and polybutylene terephthalate), or a copolymer thereof (for example, a copolymer of polybutylene terephthalate and polytetramethylene glycol).
  • a melting point of 200 ° C. to 300 ° C. are preferably used because they exhibit heat resistance.
  • the amount of the polyester resin crystal nucleating agent added to 100 parts by mass of the polyester resin is 0.001 to 1 part by mass, and more preferably 0.005 to 0.5 part by mass. When the amount is less than 0.001 part by mass, the effect as a crystal nucleating agent is low. When the amount is more than 1 part by mass, the dispersibility in the polyester resin is lowered, which may adversely affect the appearance and physical properties of the molded product. .
  • the polyester resin containing the polyester resin crystal nucleating agent may further contain other usual additives as required.
  • a method for blending other additives there is a method in which other additives are mixed with a polyester resin in a blending amount according to the purpose, and melt-kneaded in a molding machine such as an extruder, and then granulated and molded.
  • Other additives may be blended together with the crystal nucleating agent for the polyester resin, and after molding the polyester resin blended with the crystal nucleating agent for the polyester resin, other additives are added to the molding process. You may shape
  • additives examples include phenolic antioxidants, phosphorus antioxidants, ultraviolet absorbers, hindered amine compounds, heavy metal deactivators, other crystal nucleating agents other than the crystal nucleating agent used in the present invention, difficulty Examples include flame retardants, metal soaps, hydrotalcite, fillers, lubricants, antistatic agents, pigments, dyes, and plasticizers.
  • the amount of the phenolic antioxidant used is 0.001 to 10 parts by mass, and more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polyester resin.
  • the amount of the phosphorus-based antioxidant used is 0.001 to 10 parts by mass, more preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polyester resin.
  • Examples of the ultraviolet absorber include the same as those described above.
  • the amount of the ultraviolet absorber used is 0.001 to 5 parts by mass, more preferably 0.005 to 0.5 parts by mass, with respect to 100 parts by mass of the polyester resin.
  • hindered amine light stabilizer examples include the same ones as described above.
  • the amount of the hindered amine light stabilizer used is 0.001 to 5 parts by mass, and more preferably 0.005 to 0.5 parts by mass with respect to 100 parts by mass of the polyester resin.
  • the amount of the other crystal nucleating agent used is such that the total amount with the crystal nucleating agent used in the present invention is 0.001 to 1 part by mass with respect to 100 parts by mass of the polyester resin.
  • the flame retardant examples include the same as those described above.
  • the flame retardant is used in an amount of 1 to 70 parts by weight, more preferably 10 to 30 parts by weight with respect to 100 parts by weight of the polyester resin.
  • the molding method of the polyester resin composition of the present invention is not particularly limited, and known molding methods such as extrusion molding, injection molding, hollow molding, blow, film, and sheet can be used.
  • the temperature condition of the extruder is preferably such that the screw part temperature is within the melting point of the resin plus 50 ° C. If the screw temperature is too low, a short circuit will occur and the molding will become unstable or easily overloaded, and if the molding temperature is too high, the resin will be thermally decomposed and the physical properties of the resulting molded product will be reduced or colored. It is not preferable because it may cause
  • the molded product may be annealed.
  • the annealing treatment is a heat treatment of the molded product within a range of 1 second to 2 minutes at a temperature not lower than the glass transition temperature of the polyester resin and not higher than the melting point.
  • the crystallinity of the molded product can be improved in a short time of less than 1 second, 1 second or more is preferable in order to keep the annealing effect constant for quality control, and the crystallization of the molded product proceeds after 2 minutes. Too much whitening and transparency may be impaired.
  • a more preferable temperature is in the range of glass transition temperature to glass transition temperature + 150 ° C., and particularly preferably in the range of glass transition temperature + 50 ° C. to glass transition temperature + 120 ° C.
  • the heating method is not particularly limited, and a method that can uniformly heat the entire molded product is preferable, but a part or a plurality of parts may be heated. Moreover, as long as the temperature does not impair the appearance of the molded product, the annealing treatment may be performed a plurality of times at different temperatures.
  • polyester resin composition of the present invention include bottles, packaging materials, beverage bottles, food containers, cosmetics, medical containers, food packaging materials, wrapping materials, sheets and films, and protective sheets for electrical appliances. It can be used for packaging materials for transportation, protective films for electronic materials, daily goods, toys and the like.
  • the method for producing a plastic bottle of the present invention is a method for producing a plastic bottle formed by molding a polyester resin composition containing a crystal nucleating agent for a polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt.
  • a masterbatch containing 0.1 to 90 parts by mass of the crystal nucleating agent for polyester resin with respect to 100 parts by mass of the polyester resin having a viscosity of 0.5 to 1.1 dL / g is prepared.
  • the resin composition containing 0.005 to 0.025 parts by mass of the crystal nucleating agent for polyester resin with respect to 100 parts by mass of polyester resin having an intrinsic viscosity of 0.5 to 1.1 dL / g,
  • the resin composition is stretch blow molded into a bottle shape at a mold temperature of 85 to 160 ° C.
  • the polyester resin used for this invention there is no restriction
  • polyethylene terephthalate and polybutylene terephthalate are preferably used because of good transparency.
  • the polyester resin may be a single or a blend of a plurality of resins (for example, a blend of polyethylene terephthalate and polybutylene terephthalate), or a polyester resin made of a copolymer thereof.
  • polyester resins include those obtained by a transesterification reaction between dimethyl terephthalate and ethylene glycol or a polycondensation reaction of a product obtained by esterification reaction between terephthalic acid and ethylene glycol.
  • the polycondensation reaction is usually carried out at a temperature of 265 to 300 ° C., preferably 270 to 290 ° C. under a reduced pressure of 1 hectopascal.
  • this process may be a batch type or a continuous type.
  • transesterification catalyst is not particularly limited.
  • manganese compounds, calcium compounds, magnesium compounds, titanium compounds, zinc compounds, cobalt compounds, sodium compounds, potassium compounds, and cerium compounds that are widely used as transesterification catalysts for polyethylene terephthalate. And lithium compounds.
  • polyester resin when the polyester resin is produced by the above esterification reaction, it is optional to add a catalyst compound separately from the raw material since the raw material dicarboxylic acid itself has a catalytic action.
  • the polycondensation catalyst used is not particularly limited, and examples thereof include an antimony compound, a germanium compound, a titanium compound, a tin compound, an aluminum compound, and the like, and one or more kinds of catalysts are used. Can do.
  • antimony compound examples include antimony trioxide, antimony pentoxide, antimony acetate, antimony glycoxide, and the like.
  • germanium compound examples include germanium dioxide and germanium tetrachloride.
  • titanium compound examples include tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, tetracyclohexyl titanate, tetraphenyl titanate, tetrabenzyl titanate, and oxalic acid.
  • Narubutsu polyhydric alcohols having at least two hydroxyl groups and orthoester or condensed orthoester of titanium, such as the reaction product consisting of 2-hydroxycarboxylic acids and bases.
  • tin compound examples include dibutyltin oxide, methylphenyltin oxide, tetraethyltin oxide, hexaethylditin oxide, triethyltin hydroxide, monobutylhydroxytin oxide, triisobutyltin acetate, diphenyltin dilaurate, monobutyltin trichloride, Examples thereof include dibutyltin sulfide, dibutylhydroxytin oxide, methylstannic acid, and ethylstannic acid.
  • Examples of the aluminum compound include aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, aluminum stearate, aluminum benzoate, aluminum trichloroacetate, aluminum lactate, Carboxylic acid salts such as aluminum citrate, aluminum tartrate and aluminum salicylate, inorganic acid salts such as aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, aluminum nitrate, aluminum sulfate, aluminum carbonate, aluminum phosphate and aluminum phosphonate It is done.
  • an acid component and / or a glycol component can be contained as a copolymer component within a range not losing characteristics.
  • the acid component include isophthalic acid, adipic acid, sebacic acid, glutaric acid, diphenylmethane dicarboxylic acid, dimer acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, and the like.
  • the stabilizer can be supplied before the polycondensation reaction.
  • Stabilizers include carbomethoxymethanephosphonic acid, carboethoxymethanephosphonic acid, carbopropoxymethanephosphonic acid, carbobutoxymethanephosphonic acid, carbomethoxy-phosphono-phenylacetic acid, dimethyl esters of carbobutoxy-phosphono-phenylacetic acid, diethyl Examples thereof include phosphorus compounds such as esters, dipropyl esters, and dibutyl esters.
  • the polyester resin used in the present invention is particularly preferably polyethylene terephthalate having an intrinsic viscosity in the range of 0.5 to 1.1 dL / g, particularly 0.8 to 1.0 dL / g. If it is less than 0.5 dL / g, there is a problem that the physical properties of the molded product are deteriorated, whitening, and heat resistance is insufficient. If it exceeds 1.1 dL / g, a molding process at a high temperature is required, or a preform is formed. Is not preferable because it cannot be stretch blow molded.
  • polyester resins used in the present invention polyethylene terephthalate having a glass transition point of 50 to 90 ° C. and a melting point of 200 to 280 ° C. is excellent in terms of heat resistance, pressure resistance and heat pressure resistance. Is preferred.
  • the polyester resin crystal nucleating agent comprising a sulfonamide compound metal salt or a sulfonimide compound represents a metal salt of a compound having a sulfonamide skeleton or a sulfonimide skeleton.
  • the compound having a sulfonamide skeleton or a sulfonimide skeleton include the same compounds as those mentioned for the metal salt of the sulfonamide compound related to the polyester fiber.
  • Preferred compounds having a sulfonamide skeleton or a sulfonimide skeleton are the same as those for the polyester fiber.
  • A is a halogen atom, an alkyl group having 1 to 8 carbon atoms which may have a substituent, an alkoxy group having 1 to 8 carbon atoms which may have a substituent, or 1 to 5 represents an alkylthio group, a nitro group, or a cyano group, and when there are a plurality, A may be different from each other, m represents an integer of 0 to 4, X represents a metal atom, and n represents an integer of 1 to 4. Where n represents an integer corresponding to the valence of the metal atom represented by X) It is preferable that it is a compound represented by these, and a hydrate may be included.
  • alkyl group having 1 to 8 carbon atoms which may have a substituent represented by A in the general formula (2) include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, tertiary Butyl, isobutyl, amyl, isoamyl, tert-amyl, hexyl, cyclohexyl, heptyl, isoheptyl, tert-heptyl, n-octyl, isooctyl, tert-octyl, 2-ethylhexyl trifluoromethyl, etc., among these groups
  • the hydrogen atom may be substituted with a halogen atom.
  • alkoxy group having 1 to 8 carbon atoms which may have a substituent represented by A in the general formula (2) include methoxy, ethoxy, propoxy, butoxy, secondary butoxy, tertiary butoxy, trioxy Fluoromethyloxy and the like can be mentioned, and a hydrogen atom in these groups may be substituted with a halogen atom.
  • Examples of A in the general formula (2) include alkylthio groups such as methylthio, ethylthio, propylthio, isopropylthio, and tert-butylthio, nitro groups, and cyano groups, in addition to the above alkyl groups and alkoxy groups.
  • Examples of the metal salt of the sulfonamide compound or sulfonimide compound include metals selected from lithium, potassium, sodium, magnesium, calcium, strontium, barium, titanium, manganese, iron, zinc, silicon, zirconium, yttrium, or barium.
  • potassium, lithium, sodium, and calcium are preferable because they are excellent in the crystallization promoting effect of the polyester resin, and sodium is particularly preferable.
  • Preferred examples of the compound represented by the general formula (2) include the following compound No. 6-No. However, the present invention is not limited to these compounds.
  • the crystal nucleating agent for polyester resin is 0.005 to 0.025 parts by mass, more preferably 0.015 to 0.020 parts by mass with respect to 100 parts by mass of the polyester resin. Partly formulated. If the amount is less than 0.005 parts by mass, the effect of addition is insufficient. If the amount is more than 0.025 parts by mass, the plastic bottle may be excessively crystallized and become cloudy, which may impair the appearance of the plastic bottle.
  • the crystal nucleating agent for polyester resin is first blended by preparing a masterbatch with a polyester resin and then mixing the masterbatch with the polyester resin.
  • the masterbatch contains 0.1 to 90 parts by weight, preferably 0.1 to 50 parts by weight, more preferably 0.1 to 5 parts by weight of the above-mentioned crystal nucleating agent for polyester resin with respect to 100 parts by weight of the polyester resin. It is made. If the amount is less than 0.1 parts by mass, the effect obtained by blending as a masterbatch is insufficient. If the amount is more than 90 parts by mass, the shape as a masterbatch is unstable and becomes powder by impact such as transportation. Cheap.
  • the method for producing the master batch is not particularly limited, and can be performed by a conventionally known method.
  • the blended components may be mixed using a Henschel mixer, mill roll, Banbury mixer, super mixer, etc., and kneaded using a single screw or twin screw extruder. This mixing and kneading is usually performed at a temperature not lower than the softening point temperature of the resin and about 300 ° C.
  • polyester resin composition may be added to the polyester resin composition as necessary within a range in which the characteristics of the main component polyester resin are not practically changed.
  • antioxidants antioxidants
  • light stabilizers composed of HALS, UV absorbers, etc .
  • hydrocarbons fatty acids, fats
  • Lubricants such as aliphatic alcohols, aliphatic ester compounds, aliphatic amide compounds, aliphatic carboxylic acid metal salts or other metal soaps; heavy metal deactivators; antifogging agents; cationic surfactants, anions
  • Antistatic agent comprising a surfactant, nonionic surfactant, amphoteric surfactant, etc .
  • halogen compound phosphate ester compound; phosphate amide compound; melamine compound; fluororesin or metal oxide
  • Flame retardants such as poly) melamine phosphate and (poly) phosphate piperazine
  • fillers such as glass fiber and calcium carbonate; anti-blocking agents; antifogging agents; slip agents; pigments; Lucite, fumed silic
  • antioxidant examples include the same as those described above.
  • Examples of the phosphorus antioxidant include triphenyl phosphite, tris (2,4-ditertiarybutylphenyl) phosphite, tris (2,5-ditertiarybutylphenyl) phosphite, and tris (nonylphenyl).
  • Phosphite tris (dinonylphenyl) phosphite, tris (mono, dimixed nonylphenyl) phosphite, diphenyl acid phosphite, 2,2'-methylenebis (4,6-ditert-butylphenyl) octyl phosphite , Diphenyldecyl phosphite, diphenyloctyl phosphite, di (nonylphenyl) pentaerythritol diphosphite, phenyl diisodecyl phosphite, tributyl phosphite, tris (2-ethylhexyl) phosphite, tridecyl phosphite, trilauryl phosphat , Dibutyl acid phosphite, dilauryl acid phosphite, trilauryl trithiopho
  • sulfur-based antioxidant examples include dialkylthiodipropionates such as dilauryl, dimyristyl, myristylstearyl, and distearyl esters of thiodipropionic acid, and polyols such as pentaerythritol tetra ( ⁇ -dodecylmercaptopropionate).
  • dialkylthiodipropionates such as dilauryl, dimyristyl, myristylstearyl, and distearyl esters of thiodipropionic acid
  • polyols such as pentaerythritol tetra ( ⁇ -dodecylmercaptopropionate).
  • HALS examples include 1,2,2,6,6-pentamethyl-4-piperidyl stearate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, and bis (1-octoxy).
  • -2,2,6,6-tetramethyl-4-piperidyl) sebacate 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate, 2,2,6,6-tetramethyl-piperidyl methacrylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) Bis (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2-butyl- -(3,5-ditert-butyl-4-hydroxybenzyl) malonate
  • Examples of the ultraviolet absorber include the same as those described above.
  • Examples of the aliphatic amide compound used as the lubricant include monofatty acid amides such as lauric acid amide, stearic acid amide, oleic acid amide, erucic acid amide, ricinoleic acid amide, and 12-hydroxystearic acid amide; N, N '-Ethylenebislauric acid amide, N, N'-methylenebisstearic acid amide, N, N'-ethylenebisstearic acid amide, N, N'-ethylenebisoleic acid amide, N, N'-ethylenebisbehenic acid Amide, N, N′-ethylenebis-12-hydroxystearic acid amide, N, N′-butylene bisstearic acid amide, N, N′-hexamethylene bisstearic acid amide, N, N′-hexamethylene bisoleic acid N, N′-, such as amide, N, N′-xylylene bis-stearic acid amide Fatty acid amides; alkylo
  • Examples of the flame retardant include phosphorus such as triphenyl phosphate, phenol / resorcinol / phosphorus oxychloride condensate, phenol / bisphenol A / phosphorus oxychloride condensate, 2,6-xylenol / resorcinol / phosphorus oxychloride condensate, etc.
  • phosphorus such as triphenyl phosphate, phenol / resorcinol / phosphorus oxychloride condensate, phenol / bisphenol A / phosphorus oxychloride condensate, 2,6-xylenol / resorcinol / phosphorus oxychloride condensate, etc.
  • Acid esters such as aniline / phosphorus oxychloride condensate, phenol / xylylenediamine / phosphorus oxychloride condensate; phosphazenes; halogen flame retardants such as decabromodiphenyl ether and tetrabromobispheno A; melamine phosphate; Phosphate of nitrogen-containing organic compounds such as piperazine phosphate, melamine pyrophosphate, piperazine pyrophosphate, melamine polyphosphate, piperazine polyphosphate; red phosphorus and surface-treated or microencapsulated red phosphorus; antimony oxide, zinc borate Flame retardant aids such as Tetrafluoroethylene, anti-drip agents such as silicone resins. Relative to the polyester to 100 parts by mass, preferably 1 to 30 parts by weight, more preferably 5 to 20 parts by weight is used.
  • a solvent that dissolves in the glycol component is preferably one that does not adversely affect the polycondensation reaction of polyethylene terephthalate, and ethylene glycol is particularly preferable.
  • the blow molding method is not particularly limited, and examples thereof include a direct blow method in which blow molding is performed after forming a preform by extrusion molding, and an injection blow molding method in which blow molding is performed after molding a preform (parison) by injection molding. It is done.
  • Examples of the latter injection blow molding method include a hot parison method (one-stage method) in which blow molding is continuously performed after preform molding, and a cold parison method in which the preform is cooled and taken out and then heated again to perform blow molding. Any of the two-stage methods can be employed.
  • the preform can be composed of two or more layers of polyester resin, and an inner layer and an outer layer composed of two or more layers of polyester resin. Further, an intermediate layer can be inserted, and the intermediate layer can be a barrier layer or an oxygen absorbing layer.
  • barrier layer examples include those that suppress the permeation of oxygen from the outside to the plastic bottle and prevent the contents from being altered, and are particularly suitable for plastic bottles for beverages containing carbon dioxide gas.
  • the oxygen absorbing layer absorbs oxygen and prevents permeation of oxygen in the plastic bottle, and an oxidizable organic substance or a transition metal catalyst, or a resin having a high gas barrier property that does not substantially oxidize is used.
  • the preform can be produced by a known injection molding machine or extrusion molding machine, and the polyester resin crystal nucleating agent is added in an amount of 0.1 to 100 parts by mass with respect to 100 parts by mass of the polyester resin.
  • a polyester resin prepared by blending 90 parts by mass of a masterbatch with a polyester resin so that the polyester resin crystal nucleating agent component is 0.005 to 0.025 parts by mass with respect to 100 parts by mass of the polyester resin.
  • a preform is produced using the composition.
  • the inner and outer layers are made of polyester resin, and one or more layers between the inner and outer layers.
  • a multilayer preform can be manufactured by inserting an oxygen absorbing layer.
  • the preform when the preform is formed by stretch blow, the preform is heated and stretched at a temperature equal to or higher than the glass transition point.
  • the heating temperature of the preform can be employed in the range of 85 ° C to 135 ° C, more preferably 90 to 130 ° C. If it is less than 85 ° C., the preform cannot be softened sufficiently and stretch blow molding cannot be performed. If the temperature exceeds 135 ° C. or the heating time is too long, crystallization of the preform proceeds excessively, Uniform stretching may not be possible, or the transparency of the plastic bottle may be reduced.
  • a preform heated at a predetermined temperature is stretched by stretch blow molding.
  • the mold temperature is 85 to 160 ° C., more preferably 90 to 145 ° C. If it is less than 85 ° C., the heat shrinkage of the molded product may be remarkably unstable, and if it exceeds 160 ° C., thermal decomposition of the resin may increase, and foreign matter may easily adhere to the mold.
  • the plastic bottle obtained is heated to 180 to 245 ° C., more preferably 200 to 235 ° C., and the mold temperature is heated to a temperature of 100 to 230 ° C., more preferably 110 to 200 ° C. Reshape the bottle. If the mold temperature is less than 100 ° C, sufficient heat resistance cannot be obtained, and if it is 230 ° C or more, the shape of the molded product may not be maintained.
  • the draw ratio in blow molding is not particularly limited, but it is desirable that the longitudinal draw ratio ⁇ the transverse draw ratio is 3 to 14 times, preferably 4 to 12 times. If it is 14 times or more, whitening of the plastic bottle may occur due to overstretching. If it is less than 3 times, it is necessary to reduce the thickness of the preform, but if it is reduced, it becomes difficult to form a uniform thickness. .
  • the plastic bottle manufactured by the manufacturing method of the present invention is used in an aseptic filling system.
  • the bottle of the plastic bottle by high temperature filling is crystallized by crystallizing the bottle neck portion of the plastic bottle.
  • the deformation of the part can be prevented.
  • Insufficient mouth crystallization causes problems such as deformation when capping a plastic bottle, leakage of the contents after cooling the plastic bottle filled with contents, and loosening of the cap. There is a case.
  • the mouth portion As a method for crystallizing the mouth portion, it can be crystallized by heating the mouth portion of a preform or a plastic bottle before blow molding or after blow molding.
  • the temperature for heat crystallization is preferably 160 to 200 ° C., more preferably 160 to 180 ° C.
  • the density of the plastic bottle when manufacturing as a heat resistant plastic bottle, it is necessary to set the density of the plastic bottle to an appropriate value. If the density is too high, the degree of crystallinity of the plastic bottle will be excessively high, which may hinder blow molding.If the density is too low, the plastic bottle will be heated and deformed. May leak.
  • the density is appropriately selected depending on the polyester resin.
  • plastic bottles produced by the production method of the present invention include ordinary bottles, carbonate bottles, hot filling bottles, hot compatible bottles, heat and pressure resistant bottles, etc.
  • dairy products tea, soft drinks, carbonated drinks, barley wine, wine, shochu, sake containers, etc.
  • soy sauce cooking oil, salad dressing, condiment storage containers such as spices, shampoo, rinse detergent containers, cosmetics Examples include containers.
  • the plastic bottle manufactured by the manufacturing method of the present invention can be used for a small bottle having a capacity of several ml to a large bottle having a capacity exceeding 5L.
  • the thickness of the plastic is not particularly limited as long as it can protect the contents, and is usually preferably in the range of 0.1 mm to 1 mm at the thinnest part.
  • the outer surface of the plastic bottle is coated with a film such as polyethylene / polypropylene or a laminate film with ceramic / silica bonded together, or the bottle inside is deposited with metal oxide, amorphous carbon, etc. Can be used.
  • an aseptic filling system for the plastic bottle produced by the production method of the present invention, it can be adopted in a known manner. Specifically, a system comprising a combination of a container sterilization section and an aseptic filling section can be mentioned.
  • the container sterilization section the plastic bottle is cleaned with warm water or a chlorinated chemical including hydrogen peroxide, peracetic acid, hypochlorous acid, ozone, etc., and then sterilized into a plastic bottle.
  • the plastic bottle is sterilized by a method such as injecting a solvent or immersing it in a medicine, then the plastic bottle mouth is turned down, the sterilizing solvent or medicine is discharged, and the residue is removed with air or the like. .
  • a sterilized container is filled with sterilized contents and capped.
  • the method for sterilizing the contents include a method of filtering bacteria by ultrafiltration and a method of instant sterilization by high-temperature and short-time sterilization.
  • the upper limit temperature when filling the contents is 40 ° C, more preferably 30 to 40 ° C. However, when a cooling step is added after filling, an upper limit temperature of 50 to 60 ° C. can be adopted.
  • Examples 1-1 to 1-6, Comparative Examples 1-1 to 1-3 Hereinafter, the present invention will be described in detail by specifically illustrating production examples, examples and comparative examples, but the present invention is not limited by these examples and the like. Moreover, the average particle diameter and water content of the sodium sulfonate metal salt were measured by the following methods.
  • the average particle diameter is measured by a laser diffraction / scattering method (microtrack method) using a laser diffraction / scattering particle size distribution meter (Microtrack MT3000II; manufactured by Nikkiso Co., Ltd.). Volume distribution) was measured, and in the obtained particle size distribution histogram, the particles having a smaller particle diameter were integrated, and the numerical value at which the integrated value was 50% was taken as the average particle diameter.
  • the moisture content was room temperature under the conditions of a nitrogen atmosphere (flow rate: 200 ml / min), a measurement sample: 5 mg, and a heating rate: 50 ° C./min using Rigaku Corporation Thermoplus 2 / (TG-DTA series). The weight loss when the temperature reached 150 ° C. was determined as the amount of water.
  • seat of 60 mm x 60 mm x 1mm is shape
  • N-1 1,2-benzisothiazol-3 (2H) -one-1,1-dioxide sodium salt
  • P-1 2,2-methylenebis (4,6-di-t-butylphenyl) octylphos
  • Phyto P-2 Bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite
  • P-3 Bis (2,6-di-t-butyl-4-ethylphenyl) pentaerythritol diphosphite
  • P -4 Tris (2,4-di-t-butylphenyl) phosphite
  • A-1 Tetrakis [methylene-3- (3,5-di-t-butyl-4'-hydroxyphenyl) propionate] methane
  • A- 2 2,4,8,10-tetra-tert-butyl-6- [3- (3-methyl-4-hydroxy-5-tert-butylphenyl) propyl
  • the coloration of the polyethylene terephthalate resin could be suppressed by using a metal salt of a sulfonamide compound and a phosphorus antioxidant together.
  • a metal salt of a sulfonamide compound and a phosphorus antioxidant together.
  • coloring was particularly suppressed.
  • phosphorus antioxidant bis (2,6-di-t-butyl-4-ethylphenyl) pentaerythritol phosphite was added and mixed well, and a conical twin screw extruder (equipment: stock) Labo plast mill manufactured by Toyo Seiki Seisakusho, cylinder temperature: T1 (250 ° C.), T2 to T4 (290 ° C., screw speed: 50 rpm) was granulated to prepare master batch pellets. Before mixing, the polyethylene terephthalate resin was dried under reduced pressure at 160 ° C. for 5 hours.
  • the 1,2-benzisothiazol-3 (2H) -one-1,1-dioxide sodium salt of the sulfonamide compound metal salt is dried under reduced pressure at 130 ° C. for 4 hours, and the water content is changed to the metal salt of the sulfonamide compound. 0.1 wt%.
  • Comparative Examples 2-1 and 2-3 in Table 2 when the water content in the metal salt of the sulfonamide compound exceeds 3% by weight with respect to the polyester resin composition, (Comparative Example 2-1: 9.3%) Comparative Example 2-3: 6.5%), there was a problem that the viscosity of the polyester resin was lowered, the resin was colored, and the shape stability of the granulated pellet was lowered. Further, from Comparative Example 2-4, even if the water content in the metal salt of the sulfonamide compound is 3% or less by mass ratio with respect to the polyester resin composition, it exceeds 20% by mass ratio with respect to the metal salt of sulfonamide compound. There are problems such as coloring the polyester resin and lowering the viscosity.
  • the pellet shape was not stable when the addition amount of the phosphorus-based antioxidant exceeded 30 parts by mass with respect to 100 parts by mass of the polyester resin. Further, from Comparative Example 2-5, since the water content as the polyester resin composition was sufficiently small, pellets could be produced without any problem. However, the addition amount of the sulfonamide compound metal salt was 0.05 phr, The concentration was low for use as a master batch, and the addition effect as a master batch was hardly obtained.
  • the amount of water contained in the metal salt (B) of the sulfonamide compound is within the range of 0.1% to 20% by mass ratio to the metal salt of the sulfonamide compound.
  • the polyester resin composition of the present invention having a mass ratio of 3% or less with respect to the polyester resin composition was excellent in processability and could be granulated without problems.
  • Heat shrinkage The heat shrinkage rate was evaluated according to German Industrial Standard DIN 53866 T3. The test piece was allowed to stand in a thermostatic chamber at 180 ° C. for 15 minutes while maintaining a state where the test piece was pulled at a tension of 5 mN / tex. Thereafter, the fiber length was measured by returning to room temperature while maintaining the tension, and the shrinkage ratio relative to the length when the untreated fiber was pulled at a tension of 5 mN / tex was determined as the heat shrinkage ratio.
  • the residual elongation was measured as a creep property by the following method.
  • the test piece is set in the clamp with a tension of 2 mN / tex in advance, pulled at a speed of 50 mm / min until the elongation rate of the test piece reaches 7%, and maintained for 1 hour. It returned to the position, and the elongation rate of the test piece when the test piece was pulled again at a speed of 50 mm / min until there was no sagging of the test piece was defined as the residual elongation rate.
  • the fibers are bundled and filled in a measurement sample holder, and X-ray diffraction (Cu-K ⁇ ray, 40 kV / 40 mA, step width: 0.1 °, scan speed: 5 seconds / step, scan range: 5 to 60 °, transmission ) In the continuous step scanning mode. Crystallinity was evaluated by the crystallinity Xc.
  • the area of the X-ray spectrum of the amorphous PET resin is calculated in advance, and the total area of the X-ray spectrum of the measurement sample is obtained by subtracting the area of the X-ray spectrum of the amorphous PET resin from the area of the X-ray spectrum of the measurement sample.
  • the crystallinity of the measurement sample was evaluated using the ratio of the above as the crystallinity Xc.
  • Examples 3-1 to 3-3 To 100 parts by mass of polyethylene terephthalate resin (TR-8550 manufactured by Teijin Chemicals Ltd.) previously dried at 180 ° C., 0.3 part by mass of the crystal nucleating agent for polyester resin shown in Table 5 below is blended and mixed well. Then, melt-kneading with a twin screw extruder (PTW16 manufactured by HAAKE; cylinder temperature: 285 ° C.) and drawing with a winding device (SAHM manufactured by Germany) under the conditions described in Table 3 below to prepare fibers at room temperature Cooled to. About the cooled fiber, the fiber was extended
  • a twin screw extruder PTW16 manufactured by HAAKE; cylinder temperature: 285 ° C.
  • Example 3-1 A fiber was obtained in the same manner as in Example 3-1, except that a polyester resin crystal nucleating agent comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt was not blended. It was.
  • the polyester fiber of the present invention is blended with a crystal nucleating agent for polyester resin comprising a sulfonamide compound metal salt or a sulfonimide compound metal salt. It was confirmed that a small polyester fiber can be obtained.
  • Example 4-1 to 4-7 and Comparative Examples 4-1 to 4-4 For Examples 4-1 to 4-7 and Comparative Examples 4-1 to 4-4, the crystallinity and transparency of the polyester resin molded bodies were evaluated by the following methods.
  • Transparency evaluation method Transparency was measured with Haze Guard II (manufactured by Toyo Seiki Seisakusho Co., Ltd.) by measuring the haze of the PET resin molded product. When the haze was 4 or less, it was evaluated as ⁇ , and when the haze exceeded 4, it was evaluated as x. .
  • Examples 4-1 to 4-7 A polyester terephthalate resin (TR-8550 manufactured by Teijin Chemicals Co., Ltd.) 100 parts by mass is mixed with 0.02 parts by mass of a crystal nucleating agent for polyester resin described in Table 6 below, and mixed well. : Granulated at Nippon Steel Works TEX28V, cylinder temperature: 270 ° C., screw speed: 200 rpm) to obtain pellets. About the obtained pellet, a 90 mm ⁇ 90 mm ⁇ 2 mm sheet was molded by an injection molding machine (Toshiba Corporation injection molding machine EC100) (molding conditions: injection temperature 280 ° C., injection time 15 seconds, mold temperature 15 ° C., mold The mold cooling time was 20 seconds).
  • TR-8550 manufactured by Teijin Chemicals Co., Ltd.
  • Comparative Examples 4-1 to 4-4 In Comparative Example 4-1, a sheet was prepared in the same manner as in Example 4-1, except that the annealing treatment was not performed, and the transparency and crystallinity were evaluated.
  • Comparative Example 4-2 a sheet was prepared in the same manner as in Example 4-1 except that the crystal nucleating agent for polyester resin was changed to the formulation shown in Table 6 below in Example 4-1. The transparency and crystallinity were evaluated.
  • Comparative Example 4-3 a sheet was prepared in the same manner as in Example 4-3 except that the crystal nucleating agent for polyester resin was changed to the formulation shown in Table 6 below in Example 4-3. The transparency and crystallinity were evaluated.
  • Comparative Example 4-4 a sheet was prepared with the same composition as in Example 4-1, and the transparency and crystallinity were evaluated by changing the annealing time to 130 seconds. These results are shown in Table 6 below.
  • Examples 4-8 to 4-10 100 parts by mass of polyethylene terephthalate resin (TR-8550 manufactured by Teijin Chemicals Ltd.) is mixed with 0.3 part by mass of the crystal nucleating agent for polyester resin described in Table 7 below and mixed well. : Nippon Steel Works, Ltd. TEX28V, cylinder temperature: 270 ° C., screw speed: 200 rpm) to obtain pellets.
  • the obtained pellets and the above polyethylene terephthalate resin (TR-8550 manufactured by Teijin Chemicals Ltd.) were mixed and adjusted so as to have the addition amount shown in Table 7 below, and a twin screw extruder (equipment: stock)
  • the pellets were obtained by granulation with TEX28V manufactured by Nippon Steel Works, cylinder temperature: 270 ° C., screw speed: 200 rpm.
  • a sheet of 100 mm ⁇ 100 mm ⁇ 2 mm was molded by an injection molding machine (EC100 manufactured by Toshiba Corporation) (molding conditions: injection temperature 280 ° C., injection time 15 seconds, mold temperature 15 ° C., mold) The cooling temperature was 20 seconds).
  • the biaxial stretching apparatus was stable at the set temperature with a biaxial stretching apparatus (EX-10B manufactured by Toyo Seiki Seisakusho Co., Ltd.) under the conditions of a set temperature: 100 ° C. and a stretching speed: 2500 mm / min After confirming that it was in the state, the sheet was set and allowed to stand for 5 minutes, and then stretched three times in length and width simultaneously. The obtained stretched sheet was annealed under the conditions described in Table 7 below, and the gas permeability and gas permeability coefficient were evaluated. These results are shown in Table 7 below.
  • Comparative Examples 4-5 to 4-10 a sheet was prepared in the same manner as in Example 4-8 except that the polyester resin crystal nucleating agent was not blended, and the sheet was stretched simultaneously three times in the vertical and horizontal directions. The obtained stretched sheet was evaluated for gas permeability and gas permeability coefficient without annealing.
  • Comparative Example 4-6 a sheet was prepared in the same manner as in Example 4-8 except that the polyester resin crystal nucleating agent was not blended, and the sheet was stretched simultaneously three times in the vertical and horizontal directions. The obtained stretched sheet was annealed as described in Table 7 below, and then evaluated for gas permeability and gas permeability coefficient.
  • Comparative Example 4-7 a pellet was obtained by the same method as in Example 4-8 so that the concentration of the crystal nucleating agent was as shown in Table 7 below, and a sheet was prepared. Stretched. The obtained stretched sheet was annealed as described in Table 7 below, and then evaluated for gas permeability and gas permeability coefficient.
  • Comparative Example 4-8 a sheet was prepared in the same manner as in Example 4-9, and the sheet was stretched three times in the vertical and horizontal directions. The obtained stretched sheet was evaluated for gas permeability and gas permeability coefficient without annealing.
  • Comparative Example 4-9 a sheet was prepared in the same manner as in Example 4-9, and stretched 3 times in the vertical and horizontal directions.
  • the obtained stretched sheet was subjected to an annealing treatment at a temperature of 90 ° C. for 120 seconds as described in Table 7 below, and then the gas permeability and gas permeability coefficient were evaluated.
  • Comparative Example 4-10 a pellet was obtained in the same manner as in Example 4-8 so that the concentration of the crystal nucleating agent was as shown in Table 7 below, but a sheet was prepared, but the sheet could not be stretched. Therefore, the gas permeability and gas permeability coefficient were not evaluated.
  • Comparative Examples 4-5 and 4-6 since the crystal nucleating agent for polyester resin was not blended, after pelletizing, polyethylene terephthalate resin (TR-8550 manufactured by Teijin Chemicals Ltd.) was further mixed. I didn't do that.
  • the results of Comparative Examples 4-5 to 4-10 are shown in Table 7 below.
  • Example 5-1 to 5-8 Comparative Examples 5-1 to 5-8
  • the pulverizers and pulverization conditions in Examples and Comparative Examples are as shown in Table 8 below.
  • the pulverization methods of Examples 5-1 to 5-8 for each crystal resin nucleating agent are shown in Table 9 below, and the pulverization methods of Comparative Examples 5-1 to 5-8 are shown in Table 10 below.
  • These pulverization results are shown in Table 11 below.
  • the water content, the particle size of the obtained pulverized product, the mesh pass of 250 ⁇ m and the recovery rate were evaluated according to the following.
  • the water content was calculated based on the following equation by measuring the water content of the crystal nucleating agent for a polyester resin before pulverization using Thermoplus 2 / (TG-DTA series) manufactured by Rigaku Corporation. The weight loss when the temperature reached 150 ° C. from room temperature under the conditions of nitrogen atmosphere (flow rate: 200 ml / min), measurement sample: 5 mg, and heating rate: 50 ° C./min was defined as the amount of water contained in the measurement sample. .
  • Moisture content (%) (water content) / (measurement sample weight) ⁇ 100
  • the particle diameter is measured with a laser diffraction / scattering particle size distribution meter (Microtrack particle size distribution measuring device MT3300; manufactured by Nikkiso Co., Ltd.) for a pulverized product of a crystal nucleating agent for polyester resin.
  • the particle size distribution (volume distribution) was measured under a dry method, and the 50% average particle size (50% D) and 90% particle size (90% D) were determined from the obtained particle size distribution.
  • the 50% average particle diameter represents a volume weighted average obtained on the assumption that the sphere has a diameter corresponding to the measured particle diameter
  • the 90% particle diameter represents the particle diameter in the particle size distribution histogram. Accumulation was performed from the smallest particle size, and the initial particle diameter was 90%.
  • the 250 ⁇ m mesh pass represents the proportion of the pulverized product that has passed through the 250 ⁇ m mesh pass.
  • a mesh pass of 90% by mass or more was obtained with respect to the input amount of the sample, it was evaluated as ⁇ , and when it was not obtained, it was evaluated as x.
  • the pulverized product was fixed in the pulverizing tank during pulverization, it was evaluated as x.
  • the load resistance was examined to determine the possibility of blocking due to secondary agglomeration when the pulverized polyester nucleating agent filled in the bag was transported in a loaded state.
  • an aluminum bag is filled with a pulverized product of a crystal nucleating agent for polyester resin, sealed so as not to contain air, and a load of 50 g / cm 2 is applied to the bag in a constant temperature oven at 50 ° C. And left to stand.
  • blocking occurred after one month it was evaluated as x, and when it was not blocked, it was evaluated as ⁇ .
  • the recovery rate represents the ratio of the pulverized product recovered with respect to the raw material. When the recovery rate was 90% or more, it was represented by ⁇ , and when the recovery rate was less than 90%, it was represented by ⁇ .
  • the pulverization method of the present invention has a water content of 8% by mass or less and is pulverized by a pulverizer that does not use a pulverization medium. Thus, it was confirmed that the powder could be pulverized stably.
  • Example 3 The pulverized product obtained in Example 5-2 was dried with a vacuum dryer (120 ° C. ⁇ 5 hours), and the water content was 0.3%, and a polyethylene terephthalate resin (TR-manufactured by Teijin Chemicals Ltd.) 8550) 0.3 parts by mass with respect to 100 parts by mass, mix well, and manufactured with a twin screw extruder (equipment: TEX28V manufactured by Nippon Steel Co., Ltd., cylinder temperature: 270 ° C., screw speed: 200 rpm). When it was granulated, pellets could be obtained without problems.
  • a twin screw extruder equipment: TEX28V manufactured by Nippon Steel Co., Ltd., cylinder temperature: 270 ° C., screw speed: 200 rpm.
  • Example 5-2 when the pulverized product obtained in Example 5-2 was granulated with a twin screw extruder in the same manner as described above without drying under reduced pressure, the strand was foamed. It was difficult to obtain pellets because it was cut off. As mentioned above, when adding to a polyester resin composition, it confirmed that it was preferable to dry and use a pulverized product until a moisture content became 1 mass% or less.
  • a master batch having a concentration of 0.3% and polyethylene terephthalate (inherent viscosity: 0.8 dL / g) were mixed so as to contain 0.010 parts by mass of 6 to obtain a resin composition 1.
  • the intrinsic viscosity was measured by preliminarily pulverizing the polyester resin composition of the measurement sample, drying the pulverized product at 140 ° C. for 15 minutes, weighing 0.20 g, and measuring 1,1,2,2-tetrachloroethane / phenol (weight) 20 ml of a mixed solvent with a ratio of 1/1) was added and stirred at 120 ° C. for 15 minutes for complete dissolution. After dissolution, the solution was cooled to room temperature and filtered through a glass filter.
  • a comparative resin composition 1 was prepared without blending a crystal nucleating agent for polyester resin with respect to polyethylene terephthalate (inherent viscosity: 0.8 dL / g).
  • Mold stain The mold after being molded continuously for 6 hours was wiped off with a white cotton cloth cloth. When the stain was confirmed, it was evaluated as x. When the stain was not confirmed, it was evaluated as ⁇ . .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 結晶核剤としてスルホンアミド化合物を含有しながらも着色が抑制されたポリエステル樹脂組成物を提供する。 ポリエステル樹脂100質量部に対し、リン系酸化防止剤(A)0.01~30質量部及びスルホンアミド化合物の金属塩(B)0.1~30質量部を含むポリエステル樹脂組成物であって、 スルホンアミド化合物の金属塩(B)に含まれる水分量が、スルホンアミド化合物の金属塩に対する質量比で0.1%~20%の範囲内であり、かつ、ポリエステル樹脂組成物に対する質量比で3%以下であることを特徴とするポリエステル樹脂組成物である。

Description

ポリエステル樹脂組成物、ポリエステル繊維、ポリエステル樹脂成形体及びポリエステル樹脂用結晶核剤の製造方法
 本発明は、特定のスルホンアミド化合物の金属塩及びリン系酸化防止剤を含有してなるポリエステル樹脂組成物に関し、詳しくは、結晶核剤としてスルホンアミド化合物を含有しながらも着色が抑制されたポリエステル樹脂組成物に関する。
 また、本発明は、ポリエステル繊維に関し、詳しくは、収縮が少なく、クリープ特性に優れたポリステル繊維に関する。
 また、本発明は、ポリエステル樹脂成形体及びその製造方法に関し、詳しくは、透明性と結晶化に優れたポリエステル樹脂成形体とその製造方法に関する。
 また、本発明は、ポリエステル樹脂用結晶核剤の製造方法に関し、詳しくは、粒子径が小さく、かつ、保管時の二次凝集を生じにくいポリエステル樹脂用結晶核剤を得ることができるポリエステル樹脂用結晶核剤の製造方法に関する。
 また、本発明は、金型汚染を抑制し、金型汚れの除去に伴う生産性の低下を抑えることにより、また、プラスチックボトルの耐熱収縮性を向上させ、成形不良による生産性の悪化を抑えることにより、生産サイクルの改善を可能にし、更に、製造されるプラスチックボトルの外観も透明で良好なプラスチックボトルの製造方法を提供するものである。
 ポリエチレンテレフタレート、ポリメチレンテレフタレート、ポリ乳酸等のポリエステル樹脂は、耐熱性、耐薬品性、力学的特性、電気的特性等に優れており、コスト/性能において優れていることから、繊維やフィルムとして広く工業的に使用され、更に、ガスバリア性、衛生性、透明性が良いことから、飲料用ボトル、化粧品・医薬品容器、洗剤・シャンプー容器等に広く用いられ、更には、電子写真用トナーにも用いられている。
 また、ポリエチレンナフタレートも透明性に優れており、ポリエチレンテレフタレートに比べ力学的特性、紫外線バリア性に優れ、特にガス(酸素、CO、水蒸気)透過性が低いことから、食品包装・医薬品包装、APS写真フィルム、電子部品用素材等のフィルム用途として利用されている。一方、ポリブチレンテレフタレートは、耐熱性、耐薬品性、電気特性、寸法安定性、成形性にすぐれた特徴があり、自動車の電装部品や電気・電子部品、OA機器用の精密部品として利用されている。
 しかし、ポリエステル樹脂は結晶性樹脂であるにも関わらず、一般に結晶化速度が極めて遅いため、成形条件の幅が極めて狭く、かつ加工サイクルの向上が困難であるため、成形材料としての利用は未だ限られている。また、ポリエステル樹脂を成形して得られた成形品の熱変形温度が低いため、使用温度が制限される問題があった。
 ポリエステル樹脂の結晶化速度を向上させる方法として、核剤を添加することが一般的に知られており、安息香酸ナトリウム、p-第三ブチル安息香酸アルミニウム、芳香族リン酸エステル金属塩などの金属塩や、ジベンジリデンソルビトール等の化合物が核剤として使用されている。
 また、結晶化速度に優れたポリエステル樹脂組成物を提供することを目的として、本発明者等によって、ポリエステル樹脂に対し、結晶核剤としてスルホンアミド化合物の金属塩を粉末で添加したポリエステル樹脂組成物が提案されている(特許文献1参照)。
 しかしながら、ポリエステル樹脂に対して、結晶核剤としてのスルホンアミド化合物の金属塩を粉末で添加して成形加工した場合、ポリエステル樹脂中における結晶核剤の分散性が乏しく、成形加工して得られる成形品の一部が白濁する問題があった。また、ポリエステル樹脂にスルホンアミド化合物の金属塩を高濃度配合したマスターバッチを作製すると、ポリエステル樹脂が淡黄色に変色し、成形品の外観を損ねる問題があった。
 一方、ポリエステル樹脂は、その優れた寸法安定性、耐候性、力学的特性、耐久性、電気的特性、耐薬品性等に優れ、特にポリエチレンテレフタレート樹脂(以下PET樹脂と記す場合がある)は、その高い強度と良好な染色性、生産が容易であるため、合成繊維としての検討が進んでおり、衣料用、車両内装材、緩衝材等様々な分野に展開されてきた。例えば、特許文献2には、工事現場で使用される特殊車両において、エンジン音や駆動に係る騒音・振動を防止するため、エンジンルーム内に防音材(吸音材)としてPET繊維を不織布として形成し、それを積層させてマット状として防音材に利用される方法が提案されている。
 一般にPET樹脂は熱収縮が大きいことが知られている。この性質を利用して、例えば、飲料用ボトルや食品容器のラベルとして、PET樹脂のフィルムが用いられている。これは、ガラス転移温度以上又は融点近くの範囲で加熱されると、フィルムの延伸方向にかけられた応力が解除されてフィルムが収縮する性質によるものである。
 しかしながら、PET樹脂を繊維として用いた場合はこの熱収縮の性質が問題になる。例えば、特許文献2に記載されている防音材の場合、エンジンルームが高温環境になるため、PET繊維が熱収縮して防音材としての効果が損なわれる場合があった。
 また車両のタイヤ構造に繊維層を挿入して、ゴム成分のクッション性を高める効果が知られているが、タイヤにかかる応力は車両の走行環境に影響されるため一定量ではなく、時間の経過とともに繊維にかかる歪み(クリープ)が増大して、タイヤ構造が変形したり、パンクしてしまったりする場合があった。
 また、ポリエチレンテレフタレート、ポリメチレンテレフタレート、ポリ乳酸等のポリエステル樹脂は、透明性、耐熱性、耐薬品性、力学的特性、電気的特性、ガスバリヤー性、コスト/性能において優れており、特に主たる繰り返し単位がエチレンテレフタレートであるポリエチレンテレフタレート(以下、PET樹脂と記す場合がある)は、炭酸飲料、ジュース、ミネラルウォーター等のボトル容器、化粧品、医薬品容器、洗剤・シャンプー容器、電子写真用トナー、食品、医薬品等の包装材料等に、広く採用されている。二軸延伸により得られた二軸延伸ブローボトルは、耐熱性、透明性、光沢に優れ、ガスバリヤー性が比較的良好である。しかし、PET樹脂製の二軸延伸ブローボトルは、酒やビールなどのアルコール類、サイダーやコーラなどの炭酸飲料、果実飲料等のジュース類の飲料容器、医薬品などの容器としては、ガスバリヤー性が未だ十分でなく、内容物の保護の観点からガスバリヤー性を改善することが求められている。
 PET樹脂製ボトル容器においては、高温で殺菌した飲料を熱充填したり、飲料を充填後高温で殺菌する場合があり、PET樹脂製ボトル容器の耐熱性が乏しいと、これらの熱処理時に、PET樹脂製ボトル容器の収縮、変形が起こる場合がある。
 PET樹脂製ボトル容器の耐熱性を向上させる方法としては、延伸したボトル容器を熱固定させる方法や、ボトル口栓部を熱処理して結晶化度を高める方法が提案されている。例えば、特許文献3では、延伸ブロー金型の温度を高温にして熱処理する方法が提案されているが、この方法により同一金型で多数のPET樹脂製ボトルを成形し続けると、金型に樹脂が付着して次第に汚れ、成形品のPET樹脂製ボトルを白色化させて、商品価値を損なう問題がある。
 また、特許文献4、5では、プリフォーム又は成形されたボトルの口栓部を熱処理して結晶化を進めて、耐熱性を向上させる方法が提案されているが、この方法は、結晶化に要する処理時間・温度が生産性に大きく影響する。特にPET樹脂は、結晶性樹脂でありながら、結晶化速度が極めて遅いため、成形条件の幅が極めて狭く、かつ加工サイクルの向上が困難であった。
 また、包装材料においては、内容物の酸化や変質を抑制して、味、鮮度、効能等を維持するために、使用する包装材料には酸素や水蒸気の透過に対するガスバリヤー性が要求される。特に、食品用途においては、内容物の視認性確保や種々雑多な物の包装性確保のために、包装材料には、上記ガスバリヤー性に加えて、透明性、耐熱性、柔軟性等の諸特性が要求されている。
 また、有機EL、有機薄膜太陽電池、有機トランジスタ、フレキシブル液晶等の新規分野においても、高いガスバリヤー性、透明性、耐熱性、柔軟性等の諸特性を有するシートの開発が求められている。
 結晶化速度に優れたポリエステル樹脂組成物を提供することを目的として、本発明者等は、ポリエステル樹脂に対し、結晶核剤としてスルホンアミド化合物の金属塩を添加したポリエステル樹脂組成物を提案している(特許文献1参照)。
 しかしながら、ポリエステル樹脂に対して、特許文献1に記載の結晶核剤として提案されているスルホンアミド化合物の金属塩を添加して成形加工すると、成形サイクルは短縮されるものの、得られるポリエステル樹脂成形体の結晶化が不十分な場合があった。
 また、結晶化を進行させるために、成形品に熱処理(アニール処理)を実施すると、結晶性が改善されるものの、成形品が白化して透明性が失われ、商品価値を損なうことがあるという問題があった。
 また、ポリエチレンテレフタレート等のポリエステル樹脂は、結晶性高分子であるにも関わらず、成形条件の幅が極めて狭く、成形サイクルの向上が困難で、成形材料の利用は未だ限られている。
 この欠点はポリエステル樹脂の結晶性に由来するものであり、結晶核剤の添加によって、ポリエステル樹脂の結晶化温度が上昇し、成形サイクルが改善されることが知られている。
 本発明者等は、特許文献1において、スルホンアミド化合物金属塩をポリエステル樹脂用結晶核剤として、ポリエステル樹脂組成物の結晶化を促進させる発明を提供しており、従来の結晶核剤では到達できなかった成形サイクルを実現している。
 しかし、ポリエステル樹脂に添加するスルホンアミド化合物金属塩が250μmを超える粒子を含む場合、ポリエステル樹脂との溶融混練の際に融け残ってしまう場合がある。そのような結晶核剤を、例えば繊維材料に適用した場合、繊維の延伸時に繊維が破断してしまったり、フィルム材料に適用した場合は、フィルム表面にフィッシュアイが現れたり、シートを均一に延伸できなかったり、フィルム表面に穴が開いてしまったりする場合がある。また、ボトル容器やシートの成形において当該結晶核剤を利用した場合、ポリエステル樹脂の結晶化促進作用が強すぎて、成形品の一部又は全体が白色化して、外観を損ねる問題があった。
 この問題は、ポリエステル樹脂中に前記ポリエステル樹脂用結晶核剤を均一に分散させることによって改善されることがわかっている。均一に分散させるためには、例えば、体積平均粒子径が、0.5~50μmの範囲内で、且つ、250μmのメッシュパスになるまで粉砕することによって、上記問題を解決することができる。
 しかしながら、体積平均粒子径が0.5~50μmになるまで上記結晶核剤の粉砕を長時間行った場合、粉砕品が固まって槽内に付着したり(固着)、粉砕時に発生する熱によって粉砕品が溶融して塊状(融着)状態となってしまって、殆ど回収することができず、安定した粉砕ができない問題があった。また、輸送や倉庫保管時に粉砕品が二次凝集してブロッキングが発生する問題があった。
 ポリエステル樹脂は、特にボトル容器の需要は飲料市場の成長とともに益々拡大していく傾向にある。飲料用途のボトル容器では、飲料がもつおいしさや風味を維持することが重要であって、内容物への温度の影響を極力排除するために短時間で殺菌・冷却して、常温において殺菌済みの容器に充填する、いわゆるアセプティック(無菌)充填システムが採用されている。
 アセプティック充填に使用されるボトル容器には、ポリエステル、ポリオレフィン、ポリアミド等を用い、延伸ブロー等で成形したプラスチックボトルが知られている。ポリエステルを用いたプラスチックボトルの製造方法としては、例えば、特許文献6に記載されているように、金型に溶融したポリエチレンテレフタレートを噴出(押出)して、プリフォーム(パリソン)を射出(押出)成形し、成形された有底筒状のプリフォームをガス拭き込みによるブロー成形によって、所定のプラスチックボトルを得る方法や、さらに熱処理(ヒートセット)を加えて耐熱用途のプラスチックボトルを得る方法が知られている。
 ポリエチレンテレフタレートによる飲食用途プラスチックボトルとしては、主としてアンチモン化合物やゲルマニウム化合物を重縮合触媒としたポリエステル樹脂が用いられているが、溶融成形時において樹脂中にアセトアルデヒドや環状低量体などの副生成物が生じる問題がある。
 アセトアルデヒドは、ボトルにしたときに充填された内容物の風味を悪化させるため、飲料充填用に用いられるプラスチックボトルには、アセトアルデヒドの発生をできるかぎり抑制することが求められる。
 また、上記環状低量体などの副生成物は、成形機の金型のベント口、あるいはブロー成形機の金型内面や金型の排気管などにおいて金型汚れとなる原因にあげられる。金型汚れは、成形品の表面荒れや白化の原因となるため金型汚れを除去する必要があるが、金型汚れの除去に伴って生産性が著しく低下する問題がある。
 上記アセトアルデヒドの発生を抑制させる方法として、例えば成形温度を低温で行う方法が考えられる。しかし、成形温度の低温化によって、得られる成形品は白化し、透明性が大幅に低下する問題が生じてしまう。
 また、金型汚れの原因となる上記環状低量体などの副生成物の発生を低減化させる方法として、例えば、特許文献7には、重縮合後に50-100℃の温熱水と接触させることにより樹脂中の触媒を失活させる方法が開示されている。しかし、この方法は副生成物の発生を低減化し得るとしても、樹脂の乾燥工程を必要とし生産性が低下する問題がある。
 また、金型汚染を抑制し、透明性に優れた成形体を得る方法として、特許文献8には、テレフタル酸又はそのエステル形成誘導体がジカルボン酸成分の90モル%以上、エチレングリコールがジオール成分の90モル%以上であるジカルボン酸成分とジオール成分のエステル化反応又はエステル交換反応を経て重縮合させたポリエステル樹脂を用いて、270℃で成形する方法が開示されている。
 しかしながら、ポリエステル樹脂の中でもポリエチレンテレフタレートは結晶性樹脂でありながら結晶化速度が極めて遅いため、成形条件の幅が狭く、金型温度を下げると成形品の熱収縮が著しくなり、成形不良が多発して生産性がより悪化する問題がある。
 樹脂組成物の結晶化速度を向上させる方法としては、核剤を添加する方法が一般的に知られており、かかる核剤としては、ポリマー、鉱石、有機酸又は無機酸の金属塩、粉末ガラス、粉末金属等が挙げられ、例えば、低密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン等のオレフィン、グラファイト、タルク、カオリン等の鉱石(粘土)、酸化亜鉛、アルミナ、酸化マグネシウム等の金属酸化物、シリカ、珪酸カルシウム、珪酸マグネシウム等のシリカ化合物、炭酸マグネシウム、炭酸カルシウム、炭酸ナトリウム、炭酸カリウム等の炭酸金属塩、硫酸バリウム、硫酸カルシウム、安息香酸ナトリウム、p-第三ブチル安息香酸アルミニウム、芳香族リン酸エステル金属塩、ジベンジリデンソルビトール及びスルホンアミド化合物等が挙げられる。また、例えば、特許文献1には、ポリエチレンテレフタレートにスルホンアミド化合物を添加したポリエステル樹脂組成物が提案されている。
 しかしながら、結晶核剤としてスルホンアミド化合物を使用する場合、ポリエチレンテレフタレートに粉末で添加すると、プリフォームを成形する際に、結晶加速度は改善されるものの、表面の一部が白化してブロー不可能な状態になり、プラスチックボトルを得ることができない問題があった。
特開2007-327028 特開2007-230312号公報 特公昭59-6216号公報 特開昭55-79237号公報 特開昭58-110221号公報 特開平08-156077号公報 特公平7-37515号公報 特開2006-22340号公報
 そこで本発明の目的は、上記の従来技術の問題を解決し、結晶核剤としてスルホンアミド化合物を含有しながらも着色が抑制されたポリエステル樹脂組成物を提供することにある。
 また、本発明の他の目的は、上記従来問題を解決し、優れたクリープ特性を有し、熱収縮率が小さいポリエステル繊維を提供することにある。
 さらに、本発明の他の目的は、上記従来の問題を解決し、透明性及び結晶性を高い次元で実現できるポリエステル樹脂成形体、およびその製造方法を提供することにある。
 さらにまた、本発明の他の目的は、上記従来の問題を解決し、粒子径が小さく、かつ、保管時の二次凝集を生じにくいポリエステル樹脂用結晶核剤を得ることができるポリエステル樹脂用結晶核剤の製造方法を提供することにある。
 また、本発明の他の目的は、金型汚染を抑制して生産性が改善されるプラスチックボトルの製造方法を提供することにある。
 本発明者等は、上記課題を解決すべく鋭意検討を重ねた結果、水分量を特定の割合に調整したスルホンアミド化合物の金属塩とリン系酸化防止剤を混合したものをポリエステル樹脂に添加することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 また、本発明者等は、ポリエスエル樹脂に対し、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤を配合することによって、上記課題を解決できることを見出し、本発明を完成するに至った。
 さらに、本発明者等は、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤をポリエスエル樹脂に配合し、成形後、特定のアニール処理を行うことによって、上記課題を解決できることを見出し、本発明を完成するに至った。
 さらにまた、本発明者等は、上記結晶核剤を含水率が特定値以下になるまで乾燥し、且つ、粉砕媒体を用いない粉砕機を利用して粉砕することにより、上記課題を解決できることを見出し、本発明を完成するに至った。
 また、本発明者等は、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤を含むマスターバッチとポリエステル樹脂を混合してなる樹脂組成物を作製し、該樹脂組成物をボトル形状に成形する際に、金型温度を特定の温度に設定することによって、上記目的を達成することを見出し、本発明を完成するに至った。
 すなわち、本発明のポリエステル樹脂組成物は、ポリエステル樹脂100質量部に対し、リン系酸化防止剤(A)0.01~30質量部及びスルホンアミド化合物の金属塩(B)0.1~30質量部を含むポリエステル樹脂組成物であって、
スルホンアミド化合物の金属塩(B)に含まれる水分量が、スルホンアミド化合物の金属塩に対する質量比で0.1%~20%の範囲内であり、かつ、ポリエステル樹脂組成物に対する質量比で3%以下であることを特徴とするものである。
 本発明のポリエステル繊維は、ポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤0.001~1質量部を含有するポリエステル樹脂組成物からなることを特徴とするものである。
 本発明のポリエステル樹脂成形体は、ポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤0.001~1質量部を配合したポリエステル樹脂組成物を成形後、1秒~2分間アニール処理してなることを特徴とするものである。
 また、本発明のポリエステル樹脂成形体は、ポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤0.001~1質量部を含んでなるポリエステル樹脂成形体を延伸したものであって、顕微ラマンにおける1730cm-1近傍の極大ピークの半値幅が、18cm-1以下であることを特徴とするものである。
 本発明のポリエステル樹脂用結晶核剤の製造方法は、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤の製造方法であって、前記ポリエステル樹脂用結晶核剤を、含水率が8質量%以下になるまで乾燥後、粉砕媒体を用いない粉砕機で粉砕することを特徴とするものである。
 本発明のプラスチックボトルの製造方法は、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤を含むポリエステル樹脂組成物を成形してなるプラスチックボトルの製造方法であって、固有粘度0.5-1.1dL/gのポリエステル樹脂100質量部に対し、前記ポリエステル樹脂用結晶核剤0.1~90質量部を含むマスターバッチを作製し、次いで、該マスターバッチをポリエステル樹脂に混合して、固有粘度0.5-1.1dL/gのポリエステル樹脂100質量部に対し、前記ポリエステル樹脂用結晶核剤が0.005~0.025質量部含まれる樹脂組成物を作製し、該樹脂組成物を85~160℃の金型温度でボトル形状に延伸ブロー成形することを特徴とするものである。
 本発明により、結晶核剤としてスルホンアミド化合物を含有しながらも着色が抑制されたポリエステル樹脂組成物を提供することができる。
 また、本発明により、優れたクリープ特性を有し、熱収縮率が少ないポリエステル繊維を得ることができる。
 また、本発明により、結晶核剤として、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用核剤を配合して成形後、特定のアニール処理を行うことにより、透明性と結晶性の要望を満たすポリエステル樹脂成形体を製造することができる。
 また、本発明により、スルホンアミド化合物又はスルホンイミド化合物からなるポリエステル樹脂用結晶核剤であって、粒子径が小さく、かつ、保管時の二次凝集を生じにくいポリエステル樹脂用結晶核剤を得ることができる。
 また、本発明は、金型汚染を抑制し、金型汚れの除去に伴う生産性の低下を抑え、また、製造されるプラスチックボトルが良好な耐熱収縮性を有するため、成形不良による生産性の悪化を抑え、生産サイクルの改善を可能にするものである。また、製造されるプラスチックボトルの外観も透明であり良好である。
 本発明のポリエステル樹脂組成物は、ポリエステル樹脂100質量部に対し、リン系酸化防止剤(A)0.01~30質量部及びスルホンアミド化合物の金属塩(B)0.1~30質量部を含むポリエステル樹脂組成物であって、
スルホンアミド化合物の金属塩(B)に含まれる水分量が、スルホンアミド化合物の金属塩に対する質量比で0.1%~20%の範囲内であり、かつ、ポリエステル樹脂組成物に対する質量比で3%以下であることを特徴とするものである。
 本発明のポリエステル樹脂組成物について、以下に詳述する。
 本発明のポリエステル樹脂組成物に用いられるポリエステル樹脂とは、通常の熱可塑性ポリエステル樹脂が用いられ、特に制限されるべきものではない。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート等の芳香族ポリエステル;ポリエステルの構成成分と他の酸成分及び/又はグリコール成分(例えばイソフタル酸、アジピン酸、セバシン酸、グルタール酸、ジフェニルメタンジカルボン酸、ダイマー酸のような酸成分、ヘキサメチレングリコール、ビスフェノールA、ネオペンチルグリコールアルキレンオキシド付加体のようなグリコール成分)を共重合したポリエーテルエステル樹脂;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸樹脂、ポリリンゴ酸、ポリグリコール酸、ポリジオキサノン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル;芳香族ポリエステル/ポリエーテルブロック共重合体、芳香族ポリエステル/ポリラクトンブロック共重合体、ポリアリレートなどの広義のポリエステル樹脂も使用される。なかでも、ポリエチレンテレフタレート、ポリエチレンナフタレート、及びポリ乳酸からなる群から選択される一種以上のポリエステル樹脂が好ましく使用され、特に、ポリエチレンテレフタレートは、発明の効果が顕著であるので、より好ましい。
 また、上記ポリエステル樹脂は、単独、又は複数樹脂のブレンド(例えば、ポリエチレンテレフタレートとポリブチレンテレフタレートのブレンドなど)、もしくはそれらの共重合体(例えば、ポリブチレンテレフタレートとポリテトラメチレングリコールとの共重合体など)であってもよいが、特に、融点が200℃~300℃のものが耐熱性を有する特性を示すため、好ましく使用される。
 本発明に用いられる上記リン系酸化防止剤とは、例えば、トリフェニルホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ第三ブチルフェニル)ホスファイト、トリス(2,4-ジ第三ブチル-5-メチルフェニル)ホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、トリス(2-〔(2,4,8,10-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられるが、下記一般式(1)、
Figure JPOXMLDOC01-appb-I000003
(式中、R、R、R及びRは、各々独立して、水素原子、分岐を有してもよい炭素原子数1~8のアルキル基、置換されていてもよい炭素原子数6~12のアリール基または炭素原子数6~12のアラルキル基を表す)で表されるリン系酸化防止剤は、ポリエステル樹脂の着色防止において特に優れるので好ましい。
 上記リン系酸化防止剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.01~30質量部である。0.01質量部以下では、ポリエステル樹脂組成物が充分な安定化効果を得られない場合があり、30質量部を超えると、マスターバッチとしての形状安定性が乏しくなったり、樹脂中への分散が低下したりして、成形品の外観に悪影響を与える場合がある。
 上記一般式(1)におけるR、R、R及びRで表される炭素原子数1~8のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチル、イソブチル、アミル、イソアミル、第三アミル、へキシル、シクロヘキシル、ヘプチル、イソヘプチル、第三ヘプチル、n-オクチル、イソオクチル、第三オクチル、2-エチルヘキシルトリフルオロメチル等、または、これらの基中の水素原子がハロゲン原子、飽和脂環、芳香族環等で置換されていてもよい。また、上記置換されてもよい炭素原子数6~12のアリール基としては、フェニル基、ナフチル基等が挙げられ、炭素原子数6~12のアラルキル基としては、上記アルキル基の水素原子をアリール基で置換したものが挙げられる。
 上記一般式(1)で表されるリン系酸化防止剤の好ましい具体例としては、以下の化合物No.1~No.5が挙げられる。ただし、本発明は以下の化合物により何ら制限を受けるものではない。
Figure JPOXMLDOC01-appb-I000004
 本発明に用いられるスルホンアミド化合物の金属塩におけるスルホンアミド化合物とは、スルホンアミド骨格を有する化合物を表し、例えば、スルホンアミド、メタンスルホンアミド、ベンゼンスルホンアミド、トルエン-4-スルホンアミド、4-クロロベンゼンスルホンアミド、4-アミノベンゼンスルホンアミド、N-ブチル-4-メチル-ベンゼンスルホンアミド、N-フェニルベンゼンスルホンアミド、N-フェニル-4-メチル-ベンゼンスルホンアミド、4-アミノ-N-ピリジン-2-イルベンゼンスルホンアミド、4-アミノ-N-(5-メチル-チアゾール-2-イル)-ベンゼンスルホンアミド、4-アミノ-N-チアゾール-2-イル-ベンゼンスルホンアミド、4-アミノ-N-(5-メチル-イソキサゾール-3-イル)-ベンゼンスルホンアミド、4-アミノ-N-(2,6-ジメトキシ-ピリミジン-4-イル)-ベンゼンスルホンアミド、1,2-ベンズイソチアゾール-3(2H)-オン-1,1-ジオキシド、4-アミノ-6-クロロ-ベンゼン-1,3-ジスルホン酸ジアミド、6-エトキシ-ベンゾチアゾール-2-スルホン酸アミド、5-ジメチルアミノ-ナフタレン-1-スルホン酸アミド、4-ナトリウムオキシ-ベンゼンスルホンアミド、N-(4-ベンゼンスルホンアミド-フェニル)-ベンゼンスルホンアミド等が挙げられ、本発明においては、4-アミノベンゼンスルホンアミド、N-フェニル-ベンゼンスルホンアミド、1,2-ベンズイソチアゾール-3(2H)-オン-1,1-ジオキシド等が好ましい。これらのスルホンアミド化合物の金属塩は、ポリエステル樹脂の結晶化促進効果に優れているので、好ましく用いられ、特に、1,2-ベンズイソチアゾール-3(2H)-オン-1,1-ジオキシド金属塩が好ましい。
 上記スルホンアミド化合物の金属塩の添加量は、前記ポリエステル樹脂100質量部に対して、0.1~30質量部である。0.1質量部より少ないと、マスターバッチとした場合に、作用効果が低いためにマスターバッチを多量に添加する必要があるが、多量の添加は、ポリエステル樹脂の物性面での特性を低下させる場合がある。また、30質量部より多いと、樹脂中への分散が低下したりして、ポリエステル樹脂組成物の成形品の外観に悪影響を与える場合がある。
 上記スルホンアミド化合物の金属塩としては、リチウム、カリウム、ナトリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタニウム、マンガン、鉄、亜鉛、珪素、ジルコニウム、イットリウム又はバリウムから選択される金属が挙げられ、それらの中でも、カリウム、リチウム、ナトリウム、カルシウムは、ポリエステル樹脂の結晶化促進効果に優れているので好ましく、ナトリウムが、特に好ましい。
 上記スルホンアミド化合物に含まれる水分量とは、熱分析装置、例えば株式会社リガク製サーモプラス2を用いて、下記の測定条件(窒素下(200ml/min)、昇温速度:50℃/min、試料:5mg)で、室温から昇温して、150℃に到達したときの重量減少を水分量として評価したものであり、本発明においては、水分量は、スルホンアミド化合物との質量比が0.1~20%の範囲内であるものが好ましく、特に好ましくは0.1~5%である。
 0.1%よりも少ない水分量は、スルホンアミド化合物は吸湿性があるため、その水分量まで乾燥させるのは不経済である。20%を超える水分量は、ポリエステル樹脂の加水分解に伴う着色や、成形加工時の発泡問題を起こす可能性があり、ポリエステル樹脂組成物の成形品の外観を損なう場合がある。
 また、上記スルホンアミド化合物に含まれる水分量は、ポリエステル樹脂組成物との質量比が3%を超えないように配合しなければならない。3%を超える水分量でポリエステル樹脂組成物を加工すると、著しい加水分解と、ポリエステル樹脂自身の粘度の低下、低分子量体のデポジット化により成形性が悪化する。
 本発明に係るスルホンアミド化合物は、種々の粉砕機器の利用によって、所望の粒子径に調整可能であるが、本発明においては、平均粒子径が100μm以下であるものが好ましい。100μmを超えると、ポリエステル樹脂組成物の成形品の外観を損なう場合がある。なお、本発明においてスルホンアミド化合物の平均粒子径とは、スルホンアミド化合物についてレーザー回折・散乱式粒度分布計(マイクロトラックMT3000II;日機装株式会社製)で測定したものをいい、レーザー回折・散乱法(マイクロトラック法)による体積平均が50%となる数値を表す。
 本発明のポリエステル樹脂組成物には、必要に応じてさらに通常の他の添加剤を配合することができる。他の添加剤の配合方法としては、本発明のポリエチレン樹脂組成物に他の添加剤を、目的に応じた配合量で混合して、押出機などの成形加工機で溶融混錬して造粒、成形する方法が挙げられる。他の添加剤としては、例えば、紫外線吸収剤、ヒンダードアミン化合物、重金属不活性化剤、本発明に用いる結晶核剤以外のその他の結晶核剤、難燃剤、金属石鹸、ハイドロタルサイト、充填剤、滑剤、帯電防止剤、顔料、染料、可塑剤等が挙げられ、本発明に用いるリン系酸化防止剤、結晶核剤、その他の結晶核剤、又はその他のリン系酸化防止剤をポリエステル樹脂組成物に追加して成形加工してもよい。
 上記紫外線吸収剤としては、例えば、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等の2-ヒドロキシベンゾフェノン類;2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-第三オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3-第三ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジクミルフェニル)ベンゾトリアゾール、2,2’-メチレンビス(4-第三オクチル-6-ベンゾトリアゾリルフェノール)、2-(2-ヒドロキシ-3-第三ブチル-5-カルボキシフェニル)ベンゾトリアゾールのポリエチレングリコールエステル、2-〔2-ヒドロキシ-3-(2-アクリロイルオキシエチル)-5-メチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-第三ブチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-第三オクチルフェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-(2-メタクリロイルオキシエチル)-5-第三ブチルフェニル〕-5-クロロベンゾトリアゾール、2-〔2-ヒドロキシ-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-第三ブチル-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-第三アミル-5-(2-メタクリロイルオキシエチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-3-第三ブチル-5-(3-メタクリロイルオキシプロピル)フェニル〕-5-クロロベンゾトリアゾール、2-〔2-ヒドロキシ-4-(2-メタクリロイルオキシメチル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-4-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)フェニル〕ベンゾトリアゾール、2-〔2-ヒドロキシ-4-(3-メタクリロイルオキシプロピル)フェニル〕ベンゾトリアゾール等の2-(2-ヒドロキシフェニル)ベンゾトリアゾール類;2-(2-ヒドロキシ-4-メトキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン、2-(2-ヒドロキシ-4-ヘキシロキシフェニル)-4,6-ジフェニル-1,3,5-トリアジン、2-(2-ヒドロキシ-4-オクトキシフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-〔2-ヒドロキシ-4-(3-C12~13混合アルコキシ-2-ヒドロキシプロポキシ)フェニル〕-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-〔2-ヒドロキシ-4-(2-アクリロイルオキシエトキシ)フェニル〕-4,6-ビス(4-メチルフェニル)-1,3,5-トリアジン、2-(2,4-ジヒドロキシ-3-アリルフェニル)-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4,6-トリス(2-ヒドロキシ-3-メチル-4-ヘキシロキシフェニル)-1,3,5-トリアジン等の2-(2-ヒドロキシフェニル)-4,6-ジアリール-1,3,5-トリアジン類;フェニルサリシレート、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、オクチル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、ドデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、テトラデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、ヘキサデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、オクタデシル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート、ベヘニル(3,5-ジ第三ブチル-4-ヒドロキシ)ベンゾエート等のベンゾエート類;2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等の置換オキザニリド類;エチル-α-シアノ-β,β-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート等のシアノアクリレート類;各種の金属塩、又は金属キレート、特にニッケル、クロムの塩、又はキレート類等が挙げられる。
 上記紫外線吸収剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、ビス{4-(1-オクチルオキシ-2,2,6,6-テトラメチル)ピペリジル}デカンジオナート、ビス{4-(2,2,6,6-テトラメチル-1-ウンデシルオキシ)ピペリジル)カーボナート、チバ・スペシャルティ・ケミカルズ社製TINUVIN NOR 371等が挙げられる。
 上記ヒンダードアミン系光安定剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記その他の結晶核剤としては、例えば、安息香酸ナトリウム、4-第三ブチル安息香酸アルミニウム塩、アジピン酸ナトリウム及び2ナトリウムビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシレート等のカルボン酸金属塩、ナトリウムビス(4-第三ブチルフェニル)ホスフェート、ナトリウム-2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)ホスフェート及びリチウム-2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)ホスフェート等のリン酸エステル金属塩、ジベンジリデンソルビトール、ビス(メチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、及びビス(ジメチルベンジリデン)ソルビトール等の多価アルコール誘導体、N,N’,N”-トリス[2-メチルシクロヘキシル]―1,2,3-プロパントリカルボキサミド、N,N’,N”-トリシクロヘキシルー1,3,5-ベンゼントリカルボキミド、N,N’-ジシクロヘキシル-ナフタレンジカルボキサミド、1,3,5-トリ(ジメチルイソプロポイルアミノ)ベンゼン等のアミド化合物等が挙げられる。
 上記その他の結晶核剤の使用量は、本発明で用いられる結晶核剤との合計量が、前記ポリエステル樹脂100質量部に対して、0.1~30質量部となるように用いられる。
 上記難燃剤としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-キシレニルホスフェート及びレゾルシノールビス(ジフェニルホスフェート)等の芳香族リン酸エステル、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリル及びフェニルホスホン酸(1-ブテニル)等のホスホン酸エステル、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド誘導体等のホスフィン酸エステル、ビス(2-アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラム、ポリリン酸アンモニウム、リン含有ビニルベンジル化合物及び赤リン等のリン系難燃剤、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ヘキサブロモベンゼン、ペンタブロモトルエン、エチレンビス(ペンタブロモフェニル)、エチレンビステトラブロモフタルイミド、1,2-ジブロモ-4-(1,2-ジブロモエチル)シクロヘキサン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、ビス(トリブロモフェノキシ)エタン、臭素化ポリフェニレンエーテル、臭素化ポリスチレン及び2,4,6-トリス(トリブロモフェノキシ)-1,3,5-トリアジン、トリブロモフェニルマレイミド、トリブロモフェニルアクリレート、トリブロモフェニルメタクリレート、テトラブロモビスフェノールA型ジメタクリレート、ペンタブロモベンジルアクリレート、及び、臭素化スチレン等の臭素系難燃剤等が挙げられる。
 上記難燃剤の使用量は、前記ポリエステル樹脂100質量部に対して、1~70質量部、より好ましくは、10~30質量部である。
 上記その他のリン系酸化防止剤としては、トリフェニルホスファイト、トリス(2,4-ジ第三ブチルフェニル)ホスファイト、トリス(2,5-ジ第三ブチルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(モノ、ジ混合ノニルフェニル)ホスファイト、ジフェニルアシッドホスファイト、2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)オクチルホスファイト、ジフェニルデシルホスファイト、ジフェニルオクチルホスファイト、フェニルジイソデシルホスファイト、トリブチルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、ジブチルアシッドホスファイト、ジラウリルアシッドホスファイト、トリラウリルトリチオホスファイト、ビス(ネオペンチルグリコール)・1,4-シクロヘキサンジメチルジホスファイト、テトラ(C12-15混合アルキル)-4,4’-イソプロピリデンジフェニルホスファイト、ビス[2,2’-メチレンビス(4,6-ジアミルフェニル)]・イソプロピリデンジフェニルホスファイト、テトラトリデシル・4,4’-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)・1,1,3-トリス(2-メチル-5-第三ブチル-4-ヒドロキシフェニル)ブタン・トリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、トリス(2-〔(2,4,7,9-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2-ブチル-2-エチルプロパンジオール・2,4,6-トリ第三ブチルフェノールモノホスファイト等が挙げられる。
 上記その他のリン系酸化防止剤の使用量は、本発明で使用されるリン系酸化防止剤との合計量が、前記ポリエステル樹脂100質量部に対して、0.01~30質量部となるように用いられる。
 本発明のポリエステル樹脂組成物の用途は特に限定されないが、公知の押出成形、射出成形、中空成形、ブロー、フィルム、シート等に成形することができ、飲料用容器、包装用資材、日用雑貨、玩具などに用いることができる。
 本発明のポリエステル繊維は、ポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤0.001~1質量部を含有するポリエステル樹脂組成物からなることを特徴とするものである。
 本発明のポリエステル繊維について、以下に詳述する。
 本発明に係るスルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤とは、スルホンアミド骨格を有する化合物の金属塩又はスルホンイミド骨格を有する化合物の金属塩を表す。スルホンアミド骨格またはスルホンイミド骨格を有する化合物としては、上記したものと同様のものが挙げられる。
 本発明においては、ベンゼンスルホンアミド金属塩、トルエン-4-スルホンアミド金属塩、N-フェニル-ベンゼンスルホンアミド金属塩、N-フェニル-4-メチル-ベンゼンスルホンアミド金属塩、1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシド金属塩が好ましく用いられる。
 上記スルホンアミド化合物又はスルホンイミド化合物の金属塩における金属としては、上記スルホンアミド化合物の金属塩で挙げた金属と同様のものを挙げることができる。好ましい金属も上記と同様である。
 本発明に係るポリエステル樹脂とは、通常の熱可塑性ポリエステル樹脂を用いることができ、特に制限されるものではなく、例として上記と同様のものを挙げることができる。
 なかでも、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート及びポリ乳酸からなる群から選択される一種以上のポリエステル樹脂が好ましく使用され、特に、ポリエチレンテレフタレートは、透明性、成形加工性に優れ、安価であるためより好ましい。
 また、上記ポリエステル樹脂は、単独、又は複数樹脂のブレンド(例えば、ポリエチレンテレフタレートとポリブチレンテレフタレートのブレンドなど)、もしくはそれらの共重合体(例えば、ポリブチレンテレフタレートとポリテトラメチレングリコールとの共重合体など)であってもよいが、特に、融点が200℃~300℃のものが耐熱性を有する特性を示すため、好ましく使用される。
 ポリエステル樹脂100質量部に対する、前記スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤の添加量は、0.001~1質量部であり、好ましくは、0.005~1質量部である。0.001質量部より少ないと、結晶核剤としての作用効果が低く、1質量部より多いと、ポリエステル樹脂中への分散性が低下し、ポリエステル繊維を十分に延伸できない場合がある。
 本発明においては、前記ポリエステル繊維の熱収縮率(ドイツ工業規格DIN 53866 T3に依拠して測定)が15%以下の物が好ましい。15%を超える場合、使用目的に合った材料を製造するのが困難になる場合がある。
 本発明においては、前記ポリエステル繊維を延伸配向させたものが好ましい。延伸方法は、公知の延伸方法を用いることができ、繊維が切れない範囲において延伸比率の制限なく延伸させることができる。
 スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤を配合したポリエステル樹脂には、必要に応じてさらに通常の他の添加剤を配合することができる。他の添加剤の配合方法としては、ポリエステル樹脂に他の添加剤を目的に応じた配合量で混合して、押出機などの成形加工機で溶融混錬して造粒する方法が挙げられ、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤と一緒に他の添加剤を配合してもよく、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤をポリエステル樹脂に配合して繊維にした後、他の添加剤を添加したものでもよい。
 他の添加剤としては、例えば、着色防止剤、蛍光増白剤、艶消し剤、フェノール系酸化防止剤、リン系酸化防止剤、紫外線吸収剤、ヒンダードアミン化合物、重金属不活性化剤、本発明に用いるポリエステル樹脂用結晶核剤以外のその他の結晶核剤、難燃剤、金属石鹸、ハイドロタルサイト、充填剤、滑剤、帯電防止剤、顔料、着色剤、可塑剤などがあげられる。
 上記フェノール系酸化防止剤としては、例えば、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、トリデシル-3,5-ジ第三ブチル-4-ヒドロキシベンジルチオアセテート、チオジエチレンビス[(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート]、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2-オクチルチオ-4,6-ジ(3,5-ジ第三ブチル-4-ヒドロキシフェノキシ)-s-トリアジン、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、ビス[3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド]グリコールエステル、4,4’-ブチリデンビス(2,6-ジ第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-3-メチルフェノール)、2,2’-エチリデンビス(4,6-ジ第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、ビス[2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル]テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス[(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート、テトラキス[メチレン-3-(3’,5’-ジ第三ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、2-第三ブチル-4-メチル-6-(2-アクロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、3,9-ビス[2-(3-第三ブチル-4-ヒドロキシ-5-メチルヒドロシンナモイルオキシ)-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、トリエチレングリコールビス[β-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]等が挙げられる。
 上記フェノール系酸化防止剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~10質量部、より好ましくは0.01~5質量部である。
 上記リン系酸化防止剤としては、上記と同様のものを挙げることができる。
 上記リン系酸化防止剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~10質量部、より好ましくは0.01~5質量部である。
 上記紫外線吸収剤としては、上記と同様のものを挙げることができる。
 上記紫外線吸収剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記ヒンダードアミン系光安定剤としては、上記と同様のものを挙げることができる。
 上記ヒンダードアミン系光安定剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記その他の結晶核剤としては、例えば、カーボンブラック、グラファイト、亜鉛粉末、アルミニウム粉末等の単体物;酸化亜鉛、酸化マグネシウム、アルミナ、ヘマタイト、マグネタイト等の金属酸化物;タルク、アスベスト、カオリン、モンモリロナイト、クレー、ピロフィライト等の粘土・鉱石類、硫酸カルシウム、硫酸バリウム等の硫酸塩;リン酸カルシウム等の無機リン酸塩;芳香族オキシスルホン酸の金属塩、有機リン化合物のマグネシウム塩、有機リン化合物の亜鉛塩等の有機リン酸塩;珪酸カルシウム塩、珪酸マグネシウム塩等の無機珪酸塩;モノカルボン酸ナトリウム塩、モノカルボン酸リチウム塩、モノカルボン酸バリウム塩、モノカルボン酸マグネシウム塩、モノカルボン酸カルシウム塩、ステアリン酸ナトリウム、モンタン酸ナトリウム、安息香酸ナトリウム、安息香酸カリウム、安息香酸カルシウム、4-第三ブチル安息香酸アルミニウム塩、アジピン酸ナトリウム及び2ナトリウムビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシレート、炭酸ナトリウム、炭酸マグネシウム等のカルボン酸金属塩;ナトリウムビス(4-第三ブチルフェニル)ホスフェート、ナトリウム-2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)ホスフェート及びリチウム-2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)ホスフェート等のリン酸エステル金属塩;ジベンジリデンソルビトール、ビス(メチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、及びビス(ジメチルベンジリデン)ソルビトール等の多価アルコール誘導体;N,N’,N”-トリス[2-メチルシクロヘキシル]―1,2,3-プロパントリカルボキサミド、N,N’,N”-トリシクロヘキシル-1,3,5-ベンゼントリカルボキミド、N,N’-ジシクロヘキシル-ナフタレンジカルボキサミド、1,3,5-トリス(2,2-ジメチルプロピオニルアミノ)ベンゼン等のアミド化合物;ポリカプロラクトン、ポリグリコール、ポリオレフィン、ナイロン6、ポリテトラフルオロエチレン粉末、高融点PET、ポリエステルオリゴマーのアルカリ金属塩等の高分子物質等が挙げられる。
 上記その他の結晶核剤の使用量は、本発明で用いられる結晶核剤との合計量が、前記ポリエステル樹脂100質量部に対して、0.001~1質量部となるように用いられる。
 上記難燃剤としては、上記と同様のものを挙げることができる。
 上記難燃剤の使用量は、前記ポリエステル樹脂100質量部に対して、1~70質量部、より好ましくは、10~30質量部である。
 上記充填剤としては、ポリエステル樹脂の強化に使用されるものであれば特に限定されるものではなく、ウォラストナイト、ゾノトライト、アタパルジャイトなどの鉱物繊維類、ガラス繊維、ミルドファイバー、金属コートガラス繊維などのガラス繊維類、炭素繊維、カーボンミルドファイバー、金属コート炭素繊維などの炭素繊維類、ステンレス鋼線、銅線、アルミ線、タングステン線などの金属線類、アルミナ繊維、ジルコニア繊維、ホウ酸アルミニウムウィスカー、チタン酸カリウムウィスカー、塩基性硫酸マグネシウムウィスカー、針状酸化チタン、針状炭酸カルシウムなどの各種ウィスカー類などの繊維充填剤や、タルク、マイカ、ガラスフレーク、グラファイトフレークなどの板状充填剤、ハイドロタルサイト、ガラスビーズ、ガラスバルーン、セラミックバルーン、カーボンビーズ、シリカ粒子、チタニア粒子、アルミナ粒子、カオリン、クレー、炭酸カルシウム、酸化チタン、酸化セリウム、酸化亜鉛などの各種充填剤が挙げられ、これら二種以上を併用してもよい。
 上記充填剤は、ポリエステル繊維の特性を損なわない範囲で適宜使用できる。
 本発明のポリエステル繊維は、常法により撚糸、接着剤処理、熱処理、アルカリ処理を処置することができ、上記撚糸は、ポリエステル繊維以外の他の繊維材料と撚糸してもよい。他の繊維材料としては、ポリエステル繊維と絡みやすく、繊維の折れが少ないものが好ましく用いられる。
 本発明のポリエステル繊維は、車両用タイヤ構造体、印刷用基材、壁紙用基材、ワイビング材、各種フィルター材、湿布材、生理用品等の医療衛生材、衣料、衣料用芯地、枕カバー、化粧用基材、自動車用内装材、吸音材、包装材、土木などの産業資材等の用途に利用することができる。
 本発明のポリエステル樹脂成形体は、ポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤0.001~1質量部を配合したポリエステル樹脂組成物を成形後、1秒~2分間アニール処理してなることを特徴とするものである。
 本発明のポリエステル樹脂成形体、および、その製造方法について、以下に詳述する。
 本発明に係るスルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤とは、スルホンアミド骨格又はスルホンイミド骨格を有する化合物の金属塩を表す。スルホンアミド骨格又はスルホンイミド骨格を有する化合物としては、上記ポリエステル繊維にかかるスルホンアミド化合物の金属塩で挙げたものと同様のものを挙げることができる。好ましいスルホンアミド骨格又はスルホンイミド骨格を有する化合物も上記ポリエステル繊維にかかるものと同様である。
 上記スルホンアミド化合物又はスルホンイミド化合物の金属塩における金属としては、上記スルホンアミド化合物の金属塩で挙げた金属と同様のものを挙げることができる。好ましい金属も上記と同様である。
 本発明において、ポリエステル樹脂は、通常の熱可塑性ポリエステル樹脂が用いられ、特に制限されるべきものではなく、例として上記と同様のものを挙げることができる。特にポリエチレンテレフタレートが、透明性に優れ、安価であるためより好ましい。
 また、上記ポリエステル樹脂は、単独、又は複数樹脂のブレンド(例えば、ポリエチレンテレフタレートとポリブチレンテレフタレートのブレンドなど)、もしくはそれらの共重合体(例えば、ポリブチレンテレフタレートとポリテトラメチレングリコールとの共重合体など)であってもよいが、特に、融点が200℃~300℃のものが耐熱性を有する特性を示すため、好ましく使用される。
 ポリエステル樹脂100質量部に対する、前記ポリエステル樹脂用結晶核剤の添加量は、0.001~1質量部であり、好ましくは、0.005~0.1質量部、より好ましくは、0.005~0.05質量部である。0.001質量部より少ないと、結晶核剤としての作用効果が殆ど得られず、1質量部より多いと、ポリエステル樹脂中への分散性が低下し、ポリエステル樹脂成形体の外観に悪影響を与える場合がある。
 スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤を配合したポリエステル樹脂には、必要に応じてさらに通常の他の添加剤を配合することができる。他の添加剤の配合方法としては、ポリエステル樹脂に他の添加剤を目的に応じた配合量で混合して、押出機などの成形加工機で溶融混錬して造粒、成形する方法が挙げられ、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤と一緒に他の添加剤を配合してもよく、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤を配合したポリエステル樹脂の成形後に、他の添加剤を添加して、成形加工機を用いて成形してもよい。
 他の添加剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、紫外線吸収剤、ヒンダードアミン化合物、重金属不活性化剤、本発明に用いる結晶核剤以外のその他の結晶核剤、難燃剤、金属石鹸、ハイドロタルサイト、充填剤、滑剤、帯電防止剤、顔料、染料、可塑剤などがあげられる。
 上記フェノール系酸化防止剤としては、上記と同様のものを挙げることができる。
 上記フェノール系酸化防止剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~10質量部、より好ましくは0.01~5質量部である。
 上記リン系酸化防止剤とは、上記と同様のものを挙げることができる。
 上記リン系酸化防止剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~10質量部、より好ましくは0.01~5質量部である。
 上記紫外線吸収剤としては、上記と同様のものを挙げることができる。
 上記紫外線吸収剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記ヒンダードアミン系光安定剤としては、上記と同様のものを挙げることができる。
 上記ヒンダードアミン系光安定剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記その他の結晶核剤としては、上記と同様のものを挙げることができる。
 上記その他の結晶核剤の使用量は、本発明で用いられる結晶核剤との合計量が、前記ポリエステル樹脂100質量部に対して、0.001~1質量部となるように用いられる。
 上記難燃剤としては、上記と同様のものを挙げることができる。
 上記難燃剤の使用量は、前記ポリエステル樹脂100質量部に対して、1~70質量部、より好ましくは、10~30質量部である。
 本発明においては、ポリエステル樹脂の成形方法は、特に限定されず、押出成形、射出成形、中空成形、ブロー、フィルム、シート等の公知の成形方法を利用することができるが、押出成形の場合、押出成形機の温度条件は、スクリュー部温度が前記ポリエステル樹脂の融点プラス50℃以内であることが好ましい。スクリュー温度が低すぎるとショートが発生して成形が不安定になったり、過負荷に陥りやすく、またスクリュー部温度が高すぎると樹脂が熱分解し、得られる成形品の物性が低下したり、着色したりする場合があるため、好ましくない。
 本発明において、ポリエステル樹脂成形体の延伸とは、ポリエステル樹脂を予備成形した後、一軸、二軸等にて延伸方向に伸長させるように応力を付与して延伸すること、又は筒型(ボトル容器)に延伸することを表し、通常、80~200℃の温度範囲で行われる。
 本発明において、上記アニール処理とは、ポリエステル樹脂成形体を、ポリエステル樹脂のガラス転移温度以上、融点以下の温度で、1秒から2分間の範囲内で加熱することである。1秒未満程度の短時間でもポリエステル樹脂成形体の結晶性を改善することができるが、品質管理上アニール効果を一定させるためには1秒以上が好ましく、2分を超えるとポリエステル樹脂の結晶化が進みすぎて白化し、透明性を損なう場合がある。
 加熱温度がガラス転移温度未満では、ポリエステル樹脂成形体の結晶性が殆ど改善されず、融点より高い温度ではポリエステル樹脂が融解してポリエステル樹脂成形体の外観を保てなくなる。好ましい温度は、100~200℃の範囲内であり、より好ましくは、110~190℃の範囲内であり、さらに好ましくは120~180℃の範囲内である。
 加熱方法は特に制限はなく、ポリエステル樹脂成形体の全体を均一に加熱できるものが好ましいが、一部分あるいは複数の部分を加熱するものであってもよい。
 また、ポリエステル樹脂成形体の外観を損ねない温度であれば、異なる温度で複数回アニール処理を行ってもよい。
 本発明において、上記ポリエステル樹脂成形体とは、押出成形、射出成形、中空成形、ブロー、フィルム、シート等の公知の成形方法で成形された物を表し、ボトル、包装材料の他、飲料用ボトル、食品用容器、化粧品、医療用容器、食品用包装材、ラッピング材、シート・フィルム、電化製品の保護シート、輸送法包装材、電子材料の保護膜、日用雑貨、玩具等に利用することができる。
 本発明のポリエステル樹脂成形体は、炭酸ガスのガス透過係数が、1.0×10-17mol・m/m・s・Pa~5.3×10-17mol・m/m・s・Paの範囲内であるものが好ましい。
 炭酸ガスのガス透過係数が、5.3×10-17mol・m/m・s・Paを超えるポリエステル樹脂成形体を包装材料等に用いた場合、内容物の酸化や変質が発生して、味、鮮度、効能等が急速に損なわれることがあるため好ましくない。一方、炭酸ガスのガス透過係数が、1.0×10-17mol・m/m・s・Pa未満のポリエステル樹脂成形体は、実用的な成形条件で製造することが困難であるため好ましくない。炭酸ガスのガス透過係数はJIS K7126-1に準拠して測定することができる。
 本発明のポリエステル樹脂用結晶核剤の製造方法は、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤の製造方法であって、前記ポリエステル樹脂用結晶核剤を、含水率が8質量%以下になるまで乾燥後、粉砕媒体を用いない粉砕機で粉砕することを特徴とするものである。
 本発明の粉砕方法について、以下に詳述する。
 本発明に係るスルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤とは、スルホンアミド骨格又はスルホンイミド骨格を有する化合物の金属塩を表す。スルホンアミド骨格又はスルホンイミド骨格を有する化合物としては、上記ポリエステル繊維にかかるスルホンアミド化合物の金属塩で挙げたものと同様のものを挙げることができる。好ましいスルホンアミド骨格又はスルホンイミド骨格を有する化合物も上記ポリエステル繊維にかかるものと同様である。
 上記スルホンアミド化合物又はスルホンイミド化合物の金属塩における金属としては、上記スルホンアミド化合物の金属塩で挙げた金属と同様のものを挙げることができる。好ましい金属も上記と同様である。
 本発明において、ポリエステル樹脂用結晶核剤の含水率を8質量%以下に乾燥させる方法としては、公知の乾燥機を使用することができる。本発明で使用される乾燥機としては、スプレードライヤー、真空凍結乾燥機、減圧乾燥機、静置棚乾燥機、移動式棚乾燥機、流動層乾燥機、回転式乾燥機、撹拌式乾燥機などが挙げられる。
 前記ポリエステル樹脂用結晶核剤の含水率とは、株式会社リガク製サーモプラス2を用いて、窒素下(流量:200ml/min)、試料:5mg、昇温速度:50℃/minの条件で、室温から150℃に到達したときの重量減少量を測定試料に含まれた水分量として、該水分量と測定試料の重量の比を含水率として評価したものであり、本発明においては、ポリエステル樹脂用結晶核剤の含水率を8質量%以下に乾燥すればよく、好ましくは5質量%以下の乾燥が好ましい。含水率が8質量%を超えていると、前記粉砕機によるポリエステル樹脂用結晶核剤の粉砕時間が長くなって粉砕効率が悪化したり、粉砕槽内において粉砕品同士が凝集したり、粉砕槽に粉砕品が付着して固まったり、あるいは粉砕後に二次凝集する恐れがある。また、0.01質量%未満までの乾燥は、不経済であり、本発明の粉砕方法においては0.01~8質量%の範囲内に乾燥されていればよい。
 本発明のポリエステル樹脂用結晶核剤の製造方法では、上記ポリエステル樹脂用結晶核剤を、含水率を8質量%以下になるまで乾燥させた後、粉砕媒体を用いない粉砕機で粉砕する。本発明において粉砕媒体とは、固体のものを指し、例えば、ガラス、メノー、窒化ケイ素、ジルコニア、ステアタイトなどのセラミック等の非金属製;アルミナ、チタニアの等の金属製;タングステンカーバイト、クローム鋼、ステンレススチール等の合金製のものが挙げられる。形態としては限定されず、例えば、ビーズ、ボール状のものが挙げられる。
 本発明において使用される粉砕機としては、上記粉砕媒体を用いないものであれば特に限定されず、ロール式、高速回転衝撃式、気流式、又はせん断・磨砕式の粉砕方式を利用する粉砕機が挙げられ、これら粉砕方式を組み合わせたものであってもよく、粉砕機器を連結したものであってもよく、また、分級機構を導入したシステムも採用することができる。
 上記ロール式粉砕機としては、回転するロールの間で粉砕が行われるロール回転型ミル、ローラーがテーブルや容器内で転動するローラー転動型ミル等が挙げられる。
 上記高速回転衝撃式粉砕機としては、高速回転するローターに試料を衝突させて、その衝撃力による微細化を達成するものが挙げられ、例えば、ローターに固定式あるいはスイング式の衝撃子を取り付けたハンマーミルタイプのハンマー型、回転する円盤にピンや衝撃ヘッドを取り付けたピンミルタイプの回転円盤型、試料がシャフト方向に搬送されながら粉砕する軸流型、狭い環状部での粒子の微細化を行うアニュラー型等が挙げられる。
 上記気流式粉砕機(ジェットミル)としては、高速気流体の持つ運動エネルギーを利用して、試料を加速して衝突させて破砕するものを表し、粒子を直接衝突板に衝突させる形式のものと、粒子同士の摩擦による微粒子化が主体的な粉砕を行うものが挙げられる。
 上記せん断・磨砕式粉砕機としては、圧縮力下でのせん断摩擦力を利用した磨砕型の粉砕機が挙げられる。
 なお、粉砕媒体を用いる媒体式粉砕機としては、容器が回転又は振動などの運動をすることにより、内部の粉砕媒体を駆動する容器駆動型ミルと、容器内部にある撹拌機構により媒体に運動力を与える媒体撹拌型ミルが挙げられる。上記容器駆動型ミルとしては、ボールミルなどの転動式ボールミル、振動ミル、遠心ミル、遊星ミル、ハイスイングミル等が挙げられ、上記媒体撹拌型ミルとしては、容器の形状により、塔型、撹拌槽型、流通管型、アニュラー型等が挙げられる。
 本発明においては、上記ポリエステル樹脂用結晶核剤は、前記粉砕媒体を用いない粉砕機により、体積平均粒子径が好ましくは0.5~50μm、より好ましくは1μm~30μmの範囲内であって、かつ、250μmのメッシュパスが好ましくは90質量%以上、より好ましくは95質量%以上になるまで粉砕される。
 体積平均粒子径が0.5μm未満では、粉砕に要するエネルギー消費が多くなって不経済であり、50μmより大きいと上記粉砕品をポリエステル樹脂に配合して成形した際、ポリエステル樹脂中に分散せずに凝集し、成形品の外観を損ねる場合がある。また、250μmのメッシュパスが90質量%未満では、ポリエステル樹脂との溶融混練時に樹脂中に、粗大粒子が融け残って成形品の外観や物性に悪影響する場合がある。
 また、本発明の粉砕方法においては、前記、ポリエステル樹脂用結晶核剤の粉砕品の回収率が90%以上であることが好ましく、より好ましくは95%以上である。90%未満では、前記粉砕機の粉砕槽内に堆積して粉砕に支障をきたす可能性がある。
 本発明においては、前記ポリエステル樹脂用結晶核剤の粉砕品は、さらに1質量%以下の含水率になるまで乾燥するのが好ましい。含水率が1質量%を超えるものをポリエステル樹脂に配合して成型した場合、気泡が発生して成形品の外観を損ねる場合がある。また、0.01質量%未満に乾燥させるのは、不経済である。乾燥方法は、上記と同様に公知の乾燥方法を用いることができる。
 粉砕品同士が弱い粒子間引力で凝集している場合には、当該凝集体を解砕処理して利用するのが好ましい。解砕する装置としては、公知の解砕処理装置を用いることができ、例えば、ジェットミル、ヘンシェルミキサー等が挙げられる。
 本発明に係るポリエステル樹脂とは、通常の熱可塑性ポリエステル樹脂が用いられ、特に制限されるべきものではなく、例として上記と同様のものを挙げることができる。
 なかでも、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート及びポリ乳酸からなる群から選択される一種以上のポリエステル樹脂が好ましく使用され、特に、ポリエチレンテレフタレートは、透明性に優れ、安価であるためより好ましい。
 また、上記ポリエステル樹脂は、単独、又は複数樹脂のブレンド(例えば、ポリエチレンテレフタレートとポリブチレンテレフタレートのブレンドなど)、もしくはそれらの共重合体(例えば、ポリブチレンテレフタレートとポリテトラメチレングリコールとの共重合体など)であってもよいが、特に、融点が200℃~300℃のものが耐熱性を有する特性を示すため、好ましく使用される。
 ポリエステル樹脂100質量部に対する、ポリエステル樹脂用結晶核剤の添加量は、0.001~1質量部であり、より好ましくは、0.005~0.5質量部である。0.001質量部より少ないと、結晶核剤としての作用効果が低く、1質量部より多いと、ポリエステル樹脂中への分散性が低下し、成形品の外観や物性に悪影響を与える場合がある。
 前記ポリエステル樹脂用結晶核剤を配合したポリエステル樹脂には、必要に応じてさらに通常の他の添加剤を配合することができる。他の添加剤の配合方法としては、ポリエステル樹脂に他の添加剤を目的に応じた配合量で混合して、押出機などの成形加工機で溶融混錬して造粒、成形する方法が挙げられ、前記ポリエステル樹脂用結晶核剤と一緒に他の添加剤を配合してもよく、前記ポリエステル樹脂用結晶核剤を配合したポリエステル樹脂の成形後に、他の添加剤を添加して、成形加工機を用いて成形してもよい。
 他の添加剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、紫外線吸収剤、ヒンダードアミン化合物、重金属不活性化剤、本発明に用いる結晶核剤以外のその他の結晶核剤、難燃剤、金属石鹸、ハイドロタルサイト、充填剤、滑剤、帯電防止剤、顔料、染料、可塑剤などがあげられる。
 上記フェノール系酸化防止剤としては、上記と同様のものを挙げることができる。
 上記フェノール系酸化防止剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~10質量部、より好ましくは0.01~5質量部である。
 上記リン系酸化防止剤としては、上記と同様のものを挙げることができる。
 上記リン系酸化防止剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~10質量部、より好ましくは0.01~5質量部である。
 上記紫外線吸収剤としては、上記と同様のものを挙げることができる。
 上記紫外線吸収剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記ヒンダードアミン系光安定剤としては、上記と同様のものを挙げることができる。
 上記ヒンダードアミン系光安定剤の使用量は、前記ポリエステル樹脂100質量部に対して、0.001~5質量部、より好ましくは0.005~0.5質量部である。
 上記その他の結晶核剤としては、上記と同様のものを挙げることができる。
 上記その他の結晶核剤の使用量は、本発明で用いられる結晶核剤との合計量が、前記ポリエステル樹脂100質量部に対して、0.001~1質量部となるように用いられる。
 上記難燃剤としては、上記と同様のものを挙げることができる。
 上記難燃剤の使用量は、前記ポリエステル樹脂100質量部に対して、1~70質量部、より好ましくは、10~30質量部である。
 本発明のポリエステル樹脂組成物の成形方法は、特に限定されず、押出成形、射出成形、中空成形、ブロー、フィルム、シート等の公知の成形方法を利用することができるが、押出成形の場合、押出成形機の温度条件は、スクリュー部温度が樹脂融点プラス50℃以内であることが好ましい。スクリュー温度が低すぎるとショートが発生して成形が不安定になったり、過負荷に陥りやすく、また成形温度が高すぎると樹脂が熱分解し、得られる成形品の物性が低下したり、着色したりする場合があるため、好ましくない。
 本発明のポリエステル樹脂組成物の成形後、成形品にアニール処理を加えても良い。アニール処理とは、ポリエステル樹脂のガラス転移温度以上、融点以下の温度で、1秒から2分間の範囲内の成形品の加熱処理のことである。1秒未満程度の短時間でも成形品の結晶性を改善することができるが、品質管理上アニール効果を一定させるためには1秒以上が好ましく、2分を超えると成形品の結晶化が進みすぎて白化し、透明性を損なう場合がある。
 上記アニール処理の加熱温度がガラス転移温度以下では、成形品の結晶性が殆ど改善されず、融点以上の温度では成形品が融解して外観を保てなくなる。より好ましい温度は、ガラス転移温度~ガラス転移温度+150℃の範囲内であり、特に、好ましくは、ガラス転移温度+50℃~ガラス転移温度+120℃の範囲内である。
 加熱方法は特に制限はなく、成形品の全体を均一に加熱できるものが好ましいが、一部分あるいは複数の部分を加熱するものであってもよい。また、成形品の外観を損ねない温度であれば、異なる温度で複数回アニール処理を行ってもよい。
 本発明のポリエステル樹脂組成物の用途としては、ボトル、包装材料の他、飲料用ボトル、食品用容器、化粧品、医療用容器、食品用包装材、ラッピング材、シート・フィルム、電化製品の保護シート、輸送用包装材、電子材料の保護膜、日用雑貨、玩具等に利用することができる。
 本発明のプラスチックボトルの製造方法は、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤を含むポリエステル樹脂組成物を成形してなるプラスチックボトルの製造方法であって、固有粘度0.5-1.1dL/gのポリエステル樹脂100質量部に対し、前記ポリエステル樹脂用結晶核剤0.1~90質量部を含むマスターバッチを作製し、次いで、該マスターバッチをポリエステル樹脂に混合して、固有粘度0.5-1.1dL/gのポリエステル樹脂100質量部に対し、前記ポリエステル樹脂用結晶核剤が0.005~0.025質量部含まれる樹脂組成物を作製し、該樹脂組成物を85~160℃の金型温度でボトル形状に延伸ブロー成形することを特徴とするものである。
 本発明に用いられるポリエステル樹脂は特に制限はなく、例として上記と同様のものを挙げることができる。これらの中でもポリエチレンテレフタレート及びポリブチレンテレフタレートが、透明性が良好なため、好ましく用いられる。
 また、本発明において、ポリエステル樹脂は、単独又は複数樹脂のブレンド(例えば、ポリエチレンテレフタレートとポリブチレンテレフタレートのブレンドなど)、もしくはそれらの共重合体からなるポリエステル樹脂であってもよい。
 より好ましいポリエステル樹脂として、テレフタル酸ジメチルとエチレングリコールをエステル交換反応させるか、又はテレフタル酸とエチレングリコールをエステル化反応させて得られる生成物を重縮合反応させて得られるものが挙げられる。該重縮合反応は、通常、1ヘクトパスカルの減圧下で265~300℃、好ましくは270~290℃の温度で行う。なお、この工程は、バッチ式でもよく、連続式であってもよい。
 ポリエステル樹脂を上記エステル交換反応にて製造する場合は、エステル交換反応触媒を必要とする。エステル交換反応触媒は特に限定されず、例えば、一般にポリエチレンテレフタレートのエステル交換反応触媒として広く用いられるマンガン化合物、カルシウム化合物、マグネシウム化合物、チタン化合物、亜鉛化合物、コバルト化合物、ナトリウム化合物、カリウム化合物、セリウム化合物、リチウム化合物等が挙げられる。
 またポリエステル樹脂を上記エステル化反応にて製造する場合は、原料であるジカルボン酸自身が触媒作用を有しているため、原料とは別に触媒化合物を添加するのは任意である。
 上記重縮合反応において、用いられる重縮合触媒は特に限定されないが、例えば、アンチモン化合物、ゲルマニウム化合物、チタン化合物、錫化合物、アルミニウム化合物等が挙げられ、一種類又は二種類以上の触媒を使用することができる。
 上記アンチモン化合物としては、例えば、三酸化アンチモン、五酸化アンチモン、酢酸アンチモン、アンチモングリコキサイド等があげられる。
 上記ゲルマニウム化合物としては、例えば、二酸化ゲルマニウム、四塩化ゲルマニウム等があげられる。
 上記チタン化合物としては、例えば、テトラ-n-プロピルチタネート、テトライソプロピルチタネート、テトラ-n-ブチルチタネート、テトライソブチルチタネート、テトラ-tert-ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェニルチタネート、テトラベンジルチタネート、蓚酸チタン酸リチウム、蓚酸チタン酸カリウム、蓚酸チタン酸アンモニウム、酸化チタン、チタンとケイ素やジルコニウムやアルカリ金属やアルカリ土類金属などとの複合酸化物、チタンのオルトエステルまたは縮合オルトエステル、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルと少なくとも2個のヒドロキシル基を有する多価アルコール、2-ヒドロキシカルボン酸および塩基からなる反応生成物などがあげられる。
 上記錫化合物としては、例えば、ジブチルスズオキサイド、メチルフェニルスズオキサイド、テトラエチルスズオキサイド、ヘキサエチルジスズオキサイド、トリエチルスズハイドロオキサイド、モノブチルヒドロキシスズオキサイド、トリイソブチルスズアセテート、ジフェニルスズジラウレート、モノブチルスズトリクロライド、ジブチルスズサルファイド、ジブチルヒドロキシスズオキサイド、メチルスタンノン酸、エチルスタンノン酸等があげられる。
 上記アルミニウム化合物としては、例えば、ギ酸アルミニウム、酢酸アルミニウム、塩基性酢酸アルミニウム、プロピオン酸アルミニウム、シュウ酸アルミニウム、アクリル酸アルミニウム、ラウリン酸アルミニウム、ステアリン酸アルミニウム、安息香酸アルミニウム、トリクロロ酢酸アルミニウム、乳酸アルミニウム、クエン酸アルミニウム、酒石酸アルミニウム、サリチル酸アルミニウム等のカルボン酸塩、塩化アルミニウム、水酸化アルミニウム、水酸化塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、炭酸アルミニウム、リン酸アルミニウム、ホスホン酸アルミニウムなどの無機酸塩があげられる。
 また、上記重縮合反応において、特性を失わない範囲で酸成分及び/又は、グリコール成分を共重合成分として含有させることができる。
 酸成分としては、例えば、イソフタル酸、アジピン酸、セバシン酸、グルタール酸、ジフェニルメタンジカルボン酸、ダイマー酸、2,6-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸などが挙げられ、グリコール成分としては、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ヘキサメチレングリコール、1,4-シクロヘキサンジメタノール、ビスフェノールA、ビスフェノールSのエチレンオキシド付加体、又は、ネオペンチルグリコールアルキレンオキシド付加体等が挙げられ、それらの中でも、酸成分としてイソフタル酸、グリコール成分としてジエチレングリコールを15mol%以下の条件で共重合することが好ましい。
 上記重縮合反応までに安定剤を供給することができる。安定剤としては、カルボメトキシメタンホスホン酸、カルボエトキシメタンホスホン酸、カルボプロポキシメタンホスホン酸、カルボブトキシメタンホスホン酸、カルボメトキシ-ホスホノ-フェニル酢酸、カルボブトキシ-ホスホノ-フェニル酢酸のジメチルエステル類、ジエチルエステル類、ジプロピルエステル類及びジブチルエステル類等のリン化合物があげられる。
 本発明において用いられるポリエステル樹脂は、固有粘度が、0.5-1.1dL/g、特に、0.8~1.0dL/gの範囲内のポリエチレンテレフタレートが特に好ましい。0.5dL/g未満であると、成形品の物性低下や白化、耐熱性が不足する問題があり、1.1dL/gを超えると、高い温度での成形加工が必要になったり、プリフォームを延伸ブロー成形することができない等の問題があるため、好ましくない。
 本発明において用いられるポリエステル樹脂の中で、ガラス転移点が50~90℃、融点が200~280℃の範囲にあるポリエチレンテレフタレートは、耐熱性、耐圧性、耐熱圧性の点で優れている点で好適である。
 本発明において、スルホンアミド化合物金属塩又はスルホンイミド化合物からなるポリエステル樹脂用結晶核剤とは、スルホンアミド骨格又はスルホンイミド骨格を有する化合物の金属塩を表す。スルホンアミド骨格又はスルホンイミド骨格を有する化合物としては、上記ポリエステル繊維にかかるスルホンアミド化合物の金属塩で挙げたものと同様のものを挙げることができる。好ましいスルホンアミド骨格又はスルホンイミド骨格を有する化合物も上記ポリエステル繊維にかかるものと同様である。
 特に、下記一般式(2)、
Figure JPOXMLDOC01-appb-I000005
(式中、Aはハロゲン原子、置換基を有してもよい炭素原子数1~8のアルキル基、置換基を有してもよい炭素原子数1~8のアルコキシ基、炭素原子数1~5のアルキルチオ基、ニトロ基又はシアノ基を表し、複数ある場合のAはそれぞれ異なっていてもよく、mは0~4の整数を表し、Xは金属原子を表し、nは1~4の整数を表すものであって、nは、Xで表される金属原子の価数に対応する整数を表す)
で表される化合物であることが好ましく、水和物を含むものであってもよい。
 上記、一般式(2)中のAで表される置換基を有してもよい炭素原子数1~8のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、第二ブチル、第三ブチル、イソブチル、アミル、イソアミル、第三アミル、へキシル、シクロヘキシル、ヘプチル、イソヘプチル、第三ヘプチル、n-オクチル、イソオクチル、第三オクチル、2-エチルヘキシルトリフルオロメチル等が挙げられ、これらの基中の水素原子がハロゲン原子で置換されていてもよい。
 上記一般式(2)中のAで表される置換基を有してもよい炭素原子数1~8のアルコキシ基としては、メトキシ、エトキシ、プロポキシ、ブトキシ、第二ブトキシ、第三ブトキシ、トリフルオロメチルオキシ等が挙げられ、これらの基中の水素原子がハロゲン原子で置換されていてもよい。
 上記一般式(2)中のAとして、上記アルキル基、アルコキシ基の他、メチルチオ、エチルチオ、プロピルチオ、イソプロピルチオ、第三ブチルチオ等のアルキルチオ基、ニトロ基、シアノ基等が挙げられる。
 上記スルホンアミド化合物又はスルホンイミド化合物の金属塩としては、リチウム、カリウム、ナトリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタニウム、マンガン、鉄、亜鉛、珪素、ジルコニウム、イットリウム又はバリウムから選択される金属が挙げられ、それらの中でも、カリウム、リチウム、ナトリウム、カルシウムは、ポリエステル樹脂の結晶化促進効果に優れているので好ましく、ナトリウムが、特に好ましい。
 前記一般式(2)で表される化合物の好ましい例としては、下記の化合物No.6~No.10が挙げられるが、本発明はこれらの化合物に限定されるものではない。
化合物No.6:1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシドナトリウム
化合物No.7:1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシドリチウム
化合物No.8:1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシドカリウム
化合物No.9:ビス(1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシド)カルシウム
化合物No.10:ビス(1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシド)バリウム
 本発明のプラスチックボトルの製造方法において、上記ポリエステル樹脂用結晶核剤は、ポリエステル樹脂100質量部に対して、0.005~0.025質量部、より好ましくは、0.015~0.020質量部配合される。0.005質量部より少ないと、添加効果が不充分であり、0.025質量部より多いと、プラスチックボトルが過剰に結晶化して白濁し、プラスチックボトルの外観を損なう場合がある。
 本発明において、上記ポリエステル樹脂用結晶核剤は、まず、ポリエステル樹脂とのマスターバッチが作製され、次いで、該マスターバッチをポリエステル樹脂に混合することにより配合される。該マスターバッチは、ポリエステル樹脂100質量部に対し、上記ポリエステル樹脂用結晶核剤を0.1~90質量部、好ましくは0.1~50質量部、更に好ましくは0.1~5質量部配合してなるものである。0.1質量部より少ないと、マスターバッチとして配合することよって得られる効果が不充分であり、90質量部より多いと、マスターバッチとしての形状が不安定で、輸送等の衝撃で粉になりやすい。該マスターバッチを作製する方法としては、特に制限されるものではなく、従来公知の方法によって行うことができる。例えば、配合成分のドライブレンドの後に、ヘンシェルミキサー、ミルロール、バンバリーミキサー、スーパーミキサー等を用いて混合し、単軸あるいは二軸押出機等を用いて混練してもよい。この混合混練は、通常、樹脂の軟化点温度以上~300℃程度の温度で行われる。
 また、主成分であるポリエステル樹脂の特性を実用的に変動させない範囲において、必要に応じて通常一般に用いられる他の添加剤をポリエステル樹脂組成物に加えても良い。
 上記他の添加剤としては、例えば、フェノール系、リン系、硫黄系等からなる抗酸化剤(酸化防止剤);HALS、紫外線吸収剤等からなる光安定剤;炭化水素系、脂肪酸系、脂肪族アルコール系、脂肪族エステル系、脂肪族アミド化合物、脂肪族カルボン酸金属塩又は、其の他の金属石けん系等の滑剤;重金属不活性化剤;防曇剤;カチオン系界面活性剤、アニオン系界面活性剤、ノニオン系界面活性剤、両性界面活性剤等からなる帯電防止剤;ハロゲン系化合物;リン酸エステル系化合物;リン酸アミド系化合物;メラミン系化合物;フッ素樹脂又は金属酸化物;(ポリ)リン酸メラミン、(ポリ)リン酸ピペラジン等の難燃剤;ガラス繊維、炭酸カルシウム等の充填剤;アンチブロッキング剤;防曇剤;スリップ剤;顔料;ハイドロタルサイト、ヒュームドシリカ、微粒子シリカ、けい石、珪藻土類、クレー、カオリン、珪藻土、シリカゲル、珪酸カルシウム、セリサイト、カオリナイト、フリント、長石粉、蛭石、アタパルジャイト、タルク、マイカ、ミネソタイト、パイロフィライト、シリカ等の珪酸系無機添加剤;ジベンジリデンソルビトール、ビス(p-メチルベンジリデン)ソルビトール、ビス(pーエチルベンジリデン)ソルビトール、2ナトリウムビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシレート等の結晶核剤が挙げられる。
 上記フェノール系抗酸化剤(酸化防止剤)としては、上記と同様のものを挙げることができる。
 上記リン系抗酸化剤としては、例えば、トリフェニルホスファイト、トリス(2,4-ジ第三ブチルフェニル)ホスファイト、トリス(2,5-ジ第三ブチルフェニル)ホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(モノ、ジ混合ノニルフェニル)ホスファイト、ジフェニルアシッドホスファイト、2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)オクチルホスファイト、ジフェニルデシルホスファイト、ジフェニルオクチルホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、フェニルジイソデシルホスファイト、トリブチルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、ジブチルアシッドホスファイト、ジラウリルアシッドホスファイト、トリラウリルトリチオホスファイト、ビス(ネオペンチルグリコール)・1,4-シクロヘキサンジメチルジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,5-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト、テトラ(C12-15混合アルキル)-4,4’-イソプロピリデンジフェニルホスファイト、ビス[2,2’-メチレンビス(4,6-ジアミルフェニル)]・イソプロピリデンジフェニルホスファイト、テトラトリデシル・4,4’-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)・1,1,3-トリス(2-メチル-5-第三ブチル-4-ヒドロキシフェニル)ブタン・トリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、トリス(2-〔(2,4,7,9-テトラキス第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、2-ブチル-2-エチルプロパンジオール・2,4,6-トリ第三ブチルフェノールモノホスファイト等が挙げられる。
 上記硫黄系抗酸化剤としては、例えば、チオジプロピオン酸のジラウリル、ジミリスチル、ミリスチルステアリル、ジステアリルエステル等のジアルキルチオジプロピオネート類及びペンタエリスリトールテトラ(β-ドデシルメルカプトプロピオネート)等のポリオールのβ-アルキルメルカプトプロピオン酸エステル類が挙げられる。
 上記HALSとしては、例えば、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、2,2,6,6-テトラメチル-ピペリジルメタクリレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ビス(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三-ブチル-4-ヒドロキシベンジル)マロネート、3,9-ビス〔1,1-ジメチル-2-{トリス(1,2,2,6,6-ペンタメチル-4-ピペリジルオキシカルボニルオキシ)ブチルカルボニルオキシ}エチル〕-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、1,5,8,12-テトラキス[2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル]-1,5,8,12-テトラアザドデカン、1,6,11-トリス[2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イルアミノ]ウンデカン、1-(2-ヒドロキシエチル)-1,2,2,6,6-ペンタメチル-4-ピペリジノール/コハク酸ジエチル重縮合物、1,6-ビス(1,2,2,6,6-ペンタメチル-4-ピペリジルアミノ)ヘキサン/ジブロモエタン重縮合物、ビス{4-(1-オクチルオキシ-2,2,6,6-テトラメチル)ピペリジル}デカンジオナート、ビス{4-(2,2,6,6-テトラメチル-1-ウンデシルオキシ)ピペリジル)カーボナート、Ciba社製商品名TINUVIN NOR 371等が挙げられる。
 上記紫外線吸収剤としては、上記と同様のものを挙げることができる。
 上記滑剤として用いられる脂肪族アミド化合物としては、例えば、ラウリン酸アミド、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド、リシノール酸アミド、12-ヒドロキシステアリン酸アミド等のモノ脂肪酸アミド類;N,N’-エチレンビスラウリン酸アミド、N,N’-メチレンビスステアリン酸アミド、N,N’-エチレンビスステアリン酸アミド、N,N’-エチレンビスオレイン酸アミド、N,N’-エチレンビスベヘン酸アミド、N,N’-エチレンビス-12-ヒドロキシステアリン酸アミド、N,N’-ブチレンビスステアリン酸アミド、N,N’-ヘキサメチレンビスステアリン酸アミド、N,N’-ヘキサメチレンビスオレイン酸アミド、N,N’-キシリレンビスステアリン酸アミド等のN,N’-ビス脂肪酸アミド類;ステアリン酸モノメチロールアミド、やし油脂肪酸モノエタノールアミド、ステアリン酸ジエタノールアミド等のアルキロールアミド類;N-オレイルステアリン酸アミド、N-オレイルオレイン酸アミド、N-ステアリルステアリン酸アミド、N-ステアリルオレイン酸アミド、N-オレイルパルミチン酸アミド、N-ステアリルエルカ酸アミド等のN-置換脂肪酸アミド類;N,N’-ジオレイルアジピン酸アミド、N,N’-ジステアリルアジピン酸アミド、N,N’-ジオレイルセバシン酸アミド、N,N’-ジステアリルセバシン酸アミド、N,N’-ジステアリルテレフタル酸アミド、N,N’-ジステアリルイソフタル酸アミド等のN,N’-置換ジカルボン酸アミド類が挙げられる。これらは、1種類又は2種類以上の混合物で用いてもよい。
 上記難燃剤としては、例えば、リン酸トリフェニル、フェノール・レゾルシノール・オキシ塩化リン縮合物、フェノール・ビスフェノールA・オキシ塩化リン縮合物、2,6-キシレノール・レゾルシノール・オキシ塩化リン縮合物等のリン酸エステル;アニリン・オキシ塩化リン縮合物、フェノール・キシリレンジアミン・オキシ塩化リン縮合物等のリン酸アミド;ホスファゼン;デカブロモジフェニルエーテル、テトラブロモビスフェノーA等のハロゲン系難燃剤;リン酸メラミン、リン酸ピペラジン、ピロリン酸メラミン、ピロリン酸ピペラジン、ポリリン酸メラミン、ポリリン酸ピペラジン等の含窒素有機化合物のリン酸塩;赤リン及び表面処理やマイクロカプセル化された赤リン;酸化アンチモン、ホウ酸亜鉛等の難燃助剤;ポリテトラフルオロエチレン、シリコン樹脂等のドリップ防止剤等が挙げられ、上記ポリエステル100質量部に対して、好ましくは1~30質量部、より好ましくは5~20質量部が用いられる。
 前記ポリエステル樹脂用結晶核剤を溶かす溶媒としては、前記グリコール成分に溶かせる溶媒が、ポリエチレンテレフタレートの重縮合反応に悪影響を及ぼさないものが好ましく、特に、エチレングリコールが好ましい。
 本発明におけるプラスチックボトルの成形は、各種ブロー成形法を用いることができる。ブロー成形法としては、特に限定されないが、押出成形でプリフォームを成形後にブロー成形を行うダイレクトブロー法や、射出成形でプリフォーム(パリソン)を成形後にブロー成形を行う射出ブロー成形法などが挙げられる。
 後者の射出ブロー成形法としては、プリフォーム成形後に連続してブロー成形を行うホットパリソン法(1ステージ法)や、いったんプリフォームを冷却し取り出してから再度加熱してブロー成形を行うコールドパリソン法(2ステージ法)のいずれの方法も採用できる。
 前記プリフォームは、単層のポリエステル樹脂の層で構成される場合の他に、二層以上のポリエステル樹脂の層で構成することができるほか、二層以上のポリエステル樹脂の層からなる内層および外層に、中間層を挿入することができ、中間層をバリヤー層や酸素吸収層とすることができる。
 前記バリヤー層とは、プラスチックボトルへの外部からの酸素の透過を抑制し、内容物の変質を防止するものがあげられ、特に炭酸ガス入り飲料用のプラスチックボトルに好適である。
 前記酸素吸収層は、酸素を吸収し、プラスチックボトル内で酸素の透過を防ぐものであり、酸化可能な有機物又は遷移金属触媒、又は実質的に酸化しないガスバリヤー性の高い樹脂が使用される。
 本発明の製造方法において、前記プリフォームは、公知の射出成形機や押出成形機によって製造することができ、あらかじめ、ポリエステル樹脂100質量部に対し、前記ポリエステル樹脂用結晶核剤を0.1~90質量部配合して作成したマスターバッチを、ポリエステル樹脂100質量部に対して、前記ポリエステル樹脂用結晶核剤成分が0.005~0.025質量部となるようにポリエステル樹脂と混合したポリエステル樹脂組成物を用いてプリフォームが製造される。
 プリフォームとして、中間層に酸素吸収層を備える多層プリフォームを製造する場合は、公知の共射出成形機等をもちいて、内外層をポリエステル樹脂とし、内外層の間に、一層又は二層以上の酸素吸収層を挿入して、多層プリフォームを製造することができる。
 本発明の製造方法においては、前記プリフォームを延伸ブローで成形する場合、プリフォームをガラス転移点以上の温度で加熱して延伸する。プリフォームの加熱温度は、85℃~135℃、より好ましくは、90~130℃の範囲内で採用することができる。85℃未満の場合、プリフォームの軟化が不十分で延伸ブロー成形することができず、135℃を超えたり加熱する時間が長すぎたりする場合、プリフォームの結晶化が過度に進行して、均一延伸ができなかったり、プラスチックボトルの透明性が低下したりする場合がある。
 上記延伸は、所定の温度で加熱したプリフォームを延伸ブロー成形によって延伸される。金型温度は、85~160℃、より好ましくは、90~145℃の範囲内の温度である。85℃未満では、成形品の熱収縮が著しく成形寸法が不安定になる場合があり、160℃を超えると、樹脂の熱分解が多くなり、金型に異物が付着しやすくなる場合がある。
 上記プラスチックボトルの耐熱性を向上したい場合は、上記プラスチックボトルを熱処理(ヒートセット)する方法があげられる。上記熱処理は、得られたプラスチックボトルを180~245℃、より好ましくは、200~235℃に加熱し、金型温度を100~230℃、より好ましくは、110~200℃の温度で加熱したプラスチックボトルを再成形する。金型温度が100℃未満では、充分な耐熱性が得られず、230℃以上では、成形品の形状を維持できない場合がある。
 また、ブロー成形における延伸倍率は、特に限定されないが、縦延伸倍率×横延伸倍率で3~14倍、好ましくは4~12倍であることが望ましい。14倍以上にすると、過延伸によるプラスチックボトルの白化が発生する場合があり、3倍未満では、プリフォームの厚みを薄くする必要があるが、薄くすると均一な厚みに成形するのが困難になる。
 本発明の製造方法で製造されるプラスチックボトルは、アセプティック充填システムに利用されるものであるが、その他にも、プラスチックボトルのボトルネックの部分を結晶化させることにより、高温充填によるプラスチックボトルの口部の変形を防止することができる。口部の結晶化が不十分な場合、プラスチックボトルのキャッピングの際に変形したり、内容物を充填したプラスチックボトルを冷却した後に内容物が漏れたり、キャップのしめ付けが緩む等の問題が生じる場合がある。
 口部を結晶化させる方法としては、ブロー成形の前に、またはブロー成形の後に、プリフォーム又はプラスチックボトルの口部を加熱することにより結晶させることができる。加熱結晶化させる温度としては、160~200℃が好ましく、160~180℃の範囲がより好ましい。
 また、耐熱用途のプラスチックボトルとして、製造する場合は、プラスチックボトルの密度を適切な値に設定する必要がある。密度が高すぎる場合は、プラスチックボトルの結晶化度が過度に高くなり、ブロー成形において支障をきたすおそれがあり、密度が低すぎる場合は、プラスチックボトルの加熱の際、熱変形が生じて内容物が漏れてしまうおそれがある。密度は、ポリエステル樹脂によって適宜選択される。
 本発明の製造方法で製造されたプラスチックボトルの具体的な使用例としては、通常のボトルの他、炭酸用ボトル、高温充填用ボトル、ホット対応ボトル、耐熱耐圧ボトル等が挙げられ、用途としては乳製品、お茶、清涼飲料、炭酸飲料、麦酒、ワイン、焼酎、日本酒などの飲料容器、醤油、食用油、サラダドレッシング、香辛料等の調味料の保存容器、シャンプー、リンス等の洗剤容器、化粧品用容器などが挙げられる。
 本発明の製造方法で製造されたプラスチックボトルは、容量が数ml程度の少量小瓶から5Lを超える容量の大瓶にも採用することができる。プラスチックの厚みは、内容物を保護し得るものであればよく、通常、最も薄い部位において0.1mm~1mmの範囲内が好ましい。
 また、プラスチックボトルの外側表面をポリエチレン・ポリプロピレンなどのフィルムや、セラミック・シリカ等を貼り合わせたラミネートフィルムをコーティングしたボトル容器や、ボトルの内側を金属酸化物、アモルファスカーボン等で蒸着したボトル容器に利用することができる。
 本発明の製造方法で製造されたプラスチックボトルに対して、アセプティック充填システムを採用する場合、公知の方式で採用することができる。具体的には、容器滅菌セクションと無菌充填セクションの組合せからなる方式が挙げられる。
 容器滅菌セクションでは、プラスチックボトルの内部を温水又は過酸化水素系、過酢酸系、次亜塩素酸系、オゾン系などを含む塩素系薬剤などでプラスチックボトルを洗浄し、次に、プラスチックボトルに滅菌溶剤を注入したり、薬剤に浸漬する方法等でプラスチックボトルを滅菌し、次いでプラスチックボトルの口部を下にして、滅菌溶剤又は薬剤を排出し、エアー等で残留物を除去する処理が行われる。
 無菌充填セクションでは、滅菌された容器に対して、内容物を無菌化したものを充填し、キャッピングする処理が行われる。内容物を無菌化する方法としては、例えば、限界ろ過法によって細菌をろ別する方法や、高温短時間殺菌法により瞬間殺菌して無菌化する方法が挙げられる。
 内容物を充填する際の上限温度としては40℃、より好ましくは30~40℃である。ただし、充填後に冷却工程が付加されている場合には、50~60℃の上限温度を採用することができる。
〔実施例1-1~1-6、比較例1-1~1-3〕
 以下、製造例、実施例及び比較例をもって具体的に例示して本発明を詳しく説明するが、本発明はこれらの実施例等によって制限を受けるものではない。また、スルホン酸ナトリウム金属塩の平均粒子径及び水分量は、以下の方法で測定した。
(平均粒子径)
 平均粒子径は、レーザー回折・散乱式粒度分布計(マイクロトラックMT3000II;日機装株式会社製)を用いて、レーザー回折・散乱法(マイクロトラック法)によって測定したものをいい、乾式下で粒度分布(体積分布)を測定し、得られた粒度分布のヒストグラムにおいて、粒子径の小さいものから積算していき、積算値が50%となる数値を平均粒子径とした。
(水分量)
 水分量は、株式会社リガク社製サーモプラス2/(TG-DTAシリーズ)を用いて、窒素雰囲気(流量:200ml/min)、測定試料:5mg、昇温速度:50℃/minの条件で室温から150℃に到達したときの重量減少量を水分量として求めた。
〔製造例1〕
 ポリエチレンテレフタレート樹脂(帝人化成株式会社製TR-8550)100質量部に対し、スルホンアミド化合物の金属塩:1,2-ベンズイソチアゾール-3(2H)-オン-1,1-ジオキシドナトリウム塩(平均粒子径:4.4μm、水分量0.1%)を0.3質量部、及び表1に記載の酸化防止剤を加えてよく混合し、二軸押出機(装置:株式会社日本製鋼所製TEX28V,シリンダ温度:270℃,スクリュー速度:200rpm)で造粒して、ペレットを得た。得られたペレットの黄色度について、下記の条件で測定した。
(黄色度)
 上記製造例1で得られた各々のペレットについて、株式会社東芝製射出成形機EC100で60mm×60mm×1mmのシートを成形(成形条件:射出温度270℃、射出時間20秒、金型温度25℃、金型での冷却時間30秒)し、分光測色計(スガ試験機(株)製;MSC-IS-2DH)を用いて、成形したシートの黄色度を測定した。これらの結果について、表1に示す。
〔参考例1〕
 上記製造例1において、1,2-ベンズイソチアゾール-3(2H)-オン-1,1-ジオキシドナトリウム塩及び酸化防止剤を配合しなかった以外には、上記製造例1と同様に実施して、ペレットを得た。得られたペレットについて、黄色度を求めた。この結果について、表1に示す。
Figure JPOXMLDOC01-appb-T000006
N-1:1,2-ベンズイソチアゾール-3(2H)-オン-1,1-ジオキシドナトリウム塩
P-1:2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト
P-2:ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイトP-3:ビス(2,6-ジ-t-ブチル-4-エチルフェニル)ペンタエリスリトールジホスファイト
P-4:トリス(2,4-ジ-t-ブチルフェニル)ホスファイト
A-1:テトラキス〔メチレン-3-(3,5-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン
A-2:2,4,8,10-テトラ-t-ブチル-6-[3-(3-メチル-4-ヒドロキシ-5-t-ブチルフェニル)プロピル]ジベンゾ[d,f][1,3,2]ジオキサホスフェピン
 表1の参考例1より、スルホンアミド化合物金属塩を添加しない場合、ポリエチレンテレフタレート樹脂の成形品はあまり着色しない。しかし、比較例1-1より、スルホンアミド化合物の金属塩を配合すると、ポリエチレンテレフタレート樹脂は着色した。比較例1-2及び1-3より、リン系酸化防止剤ではない、酸化防止剤を添加した場合は、ポリエチレンテレフタレート樹脂の着色を抑制する効果が乏しかった。
 それに対し、実施例1-1~1-6より、スルホンアミド化合物の金属塩とリン系酸化防止剤を併用することにより、ポリエチレンテレフタレート樹脂の着色は抑制できた。特に、実施例1-2及び1-3より、前記一般式(1)で表されるリン系酸化防止剤を用いた場合、特に着色を抑制した。
〔実施例2-1~2-3、比較例2-1~2-5〕
〔製造例2〕
 ポリエチレンテレフタレート樹脂(帝人化成株式会社製 TR-8550)100質量部に対し、1,2-ベンズイソチアゾール-3(2H)-オン-1,1-ジオキシドナトリウム塩を表2に記載の水分量に調整したものを加えた。なお、表2に記載の水分量は、スルホンアミド化合物の金属塩に対する質量比である。さらに、リン系酸化防止剤:ビス(2,6-ジ-t-ブチル-4-エチルフェニル)ペンタエリスリトールホスファイト0.1質量部を加えてよく混合し、コニカル二軸押出機(装置:株式会社東洋精機製作所製ラボプラストミル,シリンダ温度:T1(250℃)、T2~T4(290℃)、スクリュー速度:50rpm)で造粒して、マスターバッチペレットを作成した。
 尚、混合前に、ポリエチレンテレフタレート樹脂は160℃×5時間で減圧乾燥を行った。スルホンアミド化合物金属塩の1,2-ベンズイソチアゾール-3(2H)-オン-1,1-ジオキシドナトリウム塩は130℃×4時間の減圧乾燥を行い、水分量をスルホンアミド化合物の金属塩に対して0.1wt%とした。
(ペレット形状外観)
 上記製造例2で得られたペレットについて、ペレット形状の外観について確認した。ペレットの形状が均一に得られている場合は、○。形状が崩れていたり、部分的又は全体に結晶化したり、白濁している場合は×として評価した。
 これらの結果について表2に示す。
〔参考例2〕
 上記製造例2において、1,2-ベンズイソチアゾール-3(2H)-オン-1,1-ジオキシドナトリウム塩及び酸化防止剤を配合しなかった以外には、上記製造例2と同様に実施して、ペレットを得た。得られたペレットについて、ペレット形状について確認した。この結果について、表2に示す。
Figure JPOXMLDOC01-appb-T000007
 表2の比較例2-1及び2-3より、スルホンアミド化合物の金属塩に含まれる水分がポリエステル樹脂組成物に対する質量比で3%を超えると、(比較例2-1:9.3%、比較例2-3:6.5%)、ポリエステル樹脂の粘性が低下したり、樹脂が着色したり、造粒したペレットの形状安定性が低下する等の問題があった。
 また、比較例2-4より、スルホンアミド化合物の金属塩に含まれる水分がポリエステル樹脂組成物に対する質量比で3%以下であっても、スルホンアミド化合物の金属塩に対する質量比で20%を超えると、ポリエステル樹脂を着色させたり、粘性を低下させたりする等の問題があった。比較例2-2から明らかなように、リン系酸化防止剤の添加量がポリエステル樹脂100質量部に対して30質量部を超えると、ペレット形状が安定しなかった。
 また、比較例2-5より、ポリエステル樹脂組成物としての含水量は充分に少ないため、問題なくペレットを作成することができたが、スルホンアミド化合物金属塩の添加量0.05phrは、マスターバッチとして用いるには低濃度であり、マスターバッチとしての添加効果はほとんど得られなかった。
 それに対し、実施例2-1~2-3より、スルホンアミド化合物の金属塩(B)に含まれる水分量が、スルホンアミド化合物の金属塩に対する質量比で0.1%~20%の範囲内であり、かつ、ポリエステル樹脂組成物に対する質量比で3%以下である本発明のポリエステル樹脂組成物は、加工性がよく問題なく造粒することができた。
〔実施例3-1~3-3、比較例3-1〕
 ポリエステル繊維の熱収縮率及び、クリープ特性は下記の条件にて測定した。
(熱収縮率)
 熱収縮率は、ドイツ工業規格DIN 53866 T3に準じて評価した。
 試験片を5mN/texの張力で引張った状態を維持したまま、180℃の恒温室に15分間静置した。その後、張力を維持したまま室温に戻して繊維の長さを測定し、無処置の繊維を5mN/texの張力で引っ張った場合の長さに対する収縮率を熱収縮率として求めた。
(クリープ特性)
 ドイツ工業規格DIN 53835 T3に準じ、クリープ特性として伸び残率を、下記の方法にて測定した。
 試験片を予め2mN/texの張力でクランプに設置し、50mm/minの速度で試験片の伸び率が7%になるまで引っ張り、そのまま1時間維持した後、張力を開放してクランプを初期の位置まで戻し、再度、試験片を50mm/minの速度で、試験片のたるみがなくなるまでの引っ張った際の、試験片の伸び率を残留伸び率とした。
(結晶性の評価方法)
 繊維を束ねて測定試料用ホルダーに充填し、X線回折(Cu-Kα線、40kV/40mA、ステップ幅:0.1°、スキャンスピード:5秒/ステップ、走査範囲:5~60°、透過)の条件で、連続ステップ走査モードで測定した。
 結晶性は、結晶化度Xcにより評価した。結晶化度Xcとは、結晶性PETのX線強度Icry、及び、アモルファスなPET樹脂のX線強度Iam、において、Xc=Icry/(Icry+Iam)の関係にある。
 アモルファスなPET樹脂のX線スペクトルの面積を予め算出し、測定試料のX線スペクトルの面積からアモルファスなPET樹脂のX線スペクトルの面積を除いたものについて、測定試料のX線スペクトルの総面積との比を結晶化度Xcとして、測定試料の結晶性を評価した。
〔実施例3-1~3-3〕
 予め180℃で乾燥させたポリエチレンテレフタレート樹脂(帝人化成株式会社製TR-8550)100質量部に対し、下記表5に記載のポリエステル樹脂用結晶核剤を0.3質量部配合してよく混合し、二軸押出機(HAAKE社製PTW16;シリンダ温度:285℃)で溶融混練し、巻き取り装置(SAHM社製;ドイツ)で下記表3に記載の条件で延伸して繊維を作製し、室温に冷却した。
 冷却した繊維について、巻き取り装置で下記表4に記載の条件で繊維を延伸させた。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
〔比較例3-1〕
 上記実施例3-1において、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤を配合しなかった以外には、実施例3-1と同様に実施して繊維を得た。
 実施例3-1~3-3及び比較例3-1で得られた繊維について、熱収縮率、クリープ特性、結晶化度を求めた。これらの結果について、それぞれ表5に示す。
Figure JPOXMLDOC01-appb-T000010
1)コントロール:結晶核剤未配合
 表5より、本発明のポリエステル繊維は、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤を配合することにより、結晶性が良好で、優れたクリープ特性と熱収縮率が小さいポリエステル繊維を得られることが確認できた。
〔実施例4-1~4-7および比較例4-1~4-4〕
 実施例4-1~4-7および比較例4-1~4-4について、ポリエステル樹脂成形体の結晶性及び透明性は、以下の方法で評価した。
(結晶性の評価方法)
 結晶性は、顕微ラマン(日本分光株式会社製NRS-3100、励起レーザー:532nm)を用い、PET樹脂のカルボニル基が観測される1730cm-1付近のラマンスペクトルのピークの半値幅で評価を行った。カルボニル基を示すピークの半値幅が小さいほど、PETの結晶化が進んでいることを表す。
(透明性の評価方法)
 透明性は、ヘイズ・ガードII(株式会社東洋精機製作所製)で、PET樹脂成形体のHazeを測定し、Hazeが4以下の場合は○とし、Hazeが4を超えた場合は×として評価した。
〔実施例4-1~4-7〕
 ポリエチレンテレフタレート樹脂(帝人化成株式会社製TR-8550)100質量部に対し、下記表6に記載のポリエステル樹脂用結晶核剤0.02質量部を配合してよく混合し、二軸押出機(装置:株式会社日本製鋼所製TEX28V,シリンダ温度:270℃,スクリュー速度:200rpm)で造粒して、ペレットを得た。得られたペレットについて、射出成形機(株式会社東芝製射出成形機EC100)で90mm×90mm×2mmのシートを成形(成形条件:射出温度280℃、射出時間15秒、金型温度15℃、金型での冷却時間20秒)した。
 得られたシートについて、二軸延伸装置(株式会社東洋精機製作所製EX-10B)にて、設定温度:90℃、延伸速度:縦横ともに4000mm/minの条件で、二軸延伸装置が設定温度で安定状態であるのを確認し、シートを設置して3分間静置後、縦横に2.5倍に延伸した。得られた延伸シートに対し、下記表6に記載の条件でアニール処理を行い、透明性と結晶性について評価を行った。これらの結果について、それぞれ下記表6に示す。
〔比較例4-1~4-4〕
 比較例4-1は、アニール処理を行わなかった以外は上記実施例4-1と同様にしてシートを作成し、透明性および結晶性の評価を行った。比較例4-2は、上記実施例4-1において、ポリエステル樹脂用結晶核剤について下記表6に記載の配合に変更した以外は、上記実施例4-1と同様な方法でシートを作成し、透明性と結晶性について評価を行った。比較例4-3は、上記実施例4-3において、ポリエステル樹脂用結晶核剤について下記表6に記載の配合に変更した以外は、上記実施例4-3と同様な方法でシートを作成し、透明性と結晶性について評価を行った。比較例4-4は、上記実施例4-1と同様の配合でシートを作成し、アニール処理の時間を130秒に変更して透明性および結晶性の評価を行った。これらの結果について、それぞれ下記表6に示す。
Figure JPOXMLDOC01-appb-T000011
1)コントロール:ポリエステル樹脂用結晶核剤非配合
2)アニール処理行わず。
 上記比較例4-1より、ポリエステル樹脂用結晶核剤を配合しても、アニール処理を行わない場合、延伸シートの結晶性は満足できるものではなかった。また、比較例4-4より、アニール処理の時間が2分を超えた場合、延伸シートが白化してしまい透明性を損なうことが確認された。これらに対し、本発明のポリエステル樹脂成形体は、透明性や結晶性に優れることが確認できた。
〔実施例4-8~4-10および比較例4-5~4-10〕
(炭酸ガス透過度・炭酸ガス透過係数の評価方法)
 ガスバリヤー性に関する評価方法として、JIS K7126-1に準拠し、差圧式ガス・蒸気透過率測定装置(差圧式ガス透過装置:GTRテック株式会社製GTR-30XAD2,蒸気透過率測定装置:ヤナコテクニカルサイエンス株式会社製G2700T・F)を用いて、23℃、1atmの条件で試験片の炭酸ガス透過度及び炭酸ガス透過係数を測定した。試験片の厚みは、マイクロメーターにて測定した。
〔実施例4-8~4-10〕
 ポリエチレンテレフタレート樹脂(帝人化成株式会社製TR-8550)100質量部に対し、下記表7に記載のポリエステル樹脂用結晶核剤0.3質量部を配合してよく混合し、二軸押出機(装置:株式会社日本製鋼所製TEX28V、シリンダ温度:270℃、スクリュー速度:200rpm)で造粒して、ペレットを得た。次に、得られたペレットと上記ポリエチレンテレフタレート樹脂(帝人化成株式会社製TR-8550)を混合して、下記表7に記載の添加量となるように調整し、二軸押出機(装置:株式会社日本製鋼所製TEX28V、シリンダ温度:270℃、スクリュー速度:200rpm)で造粒してペレットを得た。得られたペレットについて、射出成形機(株式会社製東芝製EC100)で100mm×100mm×2mmのシートを成形(成形条件:射出温度280℃、射出時間15秒、金型温度15℃、金型での冷却温度20秒)した。
 得られたシートについて、二軸延伸装置(株式会社製東洋精機製作所製EX-10B)にて、設定温度:100℃、延伸速度:2500mm/minの条件で、二軸延伸装置が設定温度で安定状態であるのを確認し、シートを設置して5分間静置後、縦横に3倍に同時に延伸した。得られた延伸シートに対し、下記表7に記載の条件でアニール処理を行い、ガス透過度とガス透過係数について評価を行った。これらの結果について、下記表7に示す。
〔比較例4-5~4-10〕
 比較例4-5は、ポリエステル樹脂用結晶核剤を配合しなかった以外は上記実施例4-8と同様の方法でシートを作成し、縦横に3倍に同時に延伸した。得られた延伸シートについてアニール処理を行わないでガス透過度及びガス透過係数について評価を行った。比較例4-6は、ポリエステル樹脂用結晶核剤を配合しなかった以外は上記実施例4-8と同様の方法でシートを作成し、縦横に3倍に同時に延伸した。得られた延伸シートについて下記表7記載の通りにアニール処理を行った後にガス透過度及びガス透過係数について評価を行った。比較例4-7は、上記実施例4-8と同様の方法で結晶核剤の濃度が下記表7記載の通りになるようにしてペレットを得てシートを作成し、縦横に3倍に同時に延伸した。得られた延伸シートについて下記表7記載の通りにアニール処理を行った後にガス透過度及びガス透過係数について評価を行った。比較例4-8は、実施例4-9と同様にしてシートを作成し、縦横に3倍に同時に延伸した。得られた延伸シートについてアニール処理を行わないでガス透過度及びガス透過係数について評価を行った。比較例4-9は、実施例4-9と同様の方法でシートを作成し、縦横に3倍に同時に延伸した。得られた延伸シートについて下記表7記載の通りに温度90℃で120秒間のアニール処理を行なった後にガス透過度及びガス透過係数について評価を行った。比較例4-10は、実施例4-8と同様の方法で結晶核剤の濃度が下記表7記載の通りになるようにしてペレットを得てシートを作成したが、延伸することができなかったので、ガス透過度およびガス透過係数の評価は行わなかった。なお、上記比較例4-5および4-6についてはポリエステル樹脂用結晶核剤を配合していないので、ペレットを造粒した後にさらにポリエチレンテレフタレート樹脂(帝人化成株式会社製TR-8550)を混合するということは行わなかった。
 比較例4-5~4-10について、それぞれの結果を下記表7に示す。
Figure JPOXMLDOC01-appb-T000012
3)コントロール:ポリエステル樹脂用結晶核剤非配合
4)アニール処理行わず
5)シート延伸不能のため未評価
 上記比較例4-6より、結晶核剤を配合せずにアニール処理をした場合、延伸シートのガスバリヤー性は満足できるものではなかった。また、上記比較例4-7より、結晶核剤の配合量が0.001質量部より少ない場合は、結晶核剤の効果が殆ど得られなかった。また、比較例4-8より、結晶核剤を配合してもアニール処理を行わない場合、ガスバリヤー性は満足できるものではなかった。また、上記比較例4-9より、アニール温度を90℃で処理した場合は、アニール時間を2分と長時間実施しても、ガスバリヤー性は殆ど改善しなかった。また、比較例4-10より、結晶核剤の配合量が0.1質量部を超える場合は、シートが剛直して延伸することができなかった。
 これらに対し、上記実施例4-8~4-10の結果から、本発明のポリエステル樹脂成形体は、透明性及びガスバリヤー性に優れることが確認できた。
〔実施例5-1~5-8、比較例5-1~5-8〕
 実施例、比較例における粉砕機とその粉砕条件については、下記表8に記載の通りである。各ポリエステル樹脂用結晶核剤の実施例5-1~5-8の粉砕方法について、下記表9に示し、比較例5-1~5-8の粉砕方法については下記表10にそれぞれ示す。
 これらの粉砕結果について、下記表11に示す。尚、含水率、得られた粉砕品の粒子径、および250μmのメッシュパス及び回収率については、下記に従って評価した。
(含水率の評価方法)
 含水率は、粉砕前のポリステル樹脂用結晶核剤について株式会社リガク社製サーモプラス2/(TG-DTAシリーズ)を用いて水分量を測定し、下記式に基づいて算出した。窒素雰囲気(流量:200ml/min)、測定試料:5mg、昇温速度:50℃/minの条件で室温から150℃に到達したときの重量減少量を測定試料に含まれていた水分量とした。
 含水率(%)=(水分量)/(測定試料重量)×100
(粒子径の評価方法)
 粒子径は、ポリエステル樹脂用結晶核剤の粉砕品について、レーザー回折散乱式粒度分布計(マイクロトラック粒度分布測定装置MT3300;日機装(株)製)によって測定したものをいい、粉砕直後の粉砕品を、乾式下で粒度分布(体積分布)測定し、得られた粒度分布から50%平均粒子径(50%D)及び90%粒子径(90%D)を求めた。
 上記50%平均粒子径とは、測定した粒子径に対応する直径の球体であると仮定して得られた体積加重平均を表し、上記90%粒子径とは、粒度分布のヒストグラムにおいて粒子径の小さいものから積算していき、積算値が90%を超えた最初の粒子径とした。
(250μmのメッシュパス)
 250μmのメッシュパスとは、粉砕品について250μmのメッシュパスを通過した割合を表す。試料の投入量に対して、90質量%以上のメッシュパスが得られた場合は○とし、得られなかった場合は×として評価した。尚、粉砕時において粉砕槽内で粉砕品の固着があった場合は×として評価した。
(荷重耐性の評価方法)
 荷重耐性とは、袋に充填されたポリエステル樹脂用結晶核剤の粉砕品が、積載された状態で輸送された際に、二次凝集してブロッキングが発生する可能性を判断するために検討した。検討方法としては、アルミ製の袋にポリエステル樹脂用結晶核剤の粉砕品を充填し、空気を含まないように密封し、かかる袋を50℃恒温オーブン内にて50g/cmの荷重を加えて静置した。
 一ヶ月後にブロッキングが発生した場合は、×とし、ブロッキングしていなかった場合は○として評価した。
(回収率)
 回収率とは、原料に対して回収できた粉砕品の割合を表す。回収率が90%以上であった場合は○で表し、回収率が90%未満であった場合は×で表して評価した。
(粉砕機器と粉砕条件)
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 実施例5-1~5-8及び比較例5-1~5-8で得られた粉砕品について、粉砕品の粒子径、250μmメッシュパス、荷重耐性、及び回収率について評価した。これらの結果について、それぞれ下記表11に示す。
Figure JPOXMLDOC01-appb-T000016
 上記表11の比較例5-1~5-5より、粉砕媒体を用いて粉砕する媒体粉砕機を用いた場合、粉砕品は槽内で固着してしまい、殆ど回収することができず、250μmメッシュパスもごく僅かであった。また、比較例5-6~5-8より粉砕媒体を用いない粉砕機で粉砕した場合であっても、含水率が高い場合は、二次凝集しやすく、荷重試験においてブロッキングしているのが確認された。
 これらに対し、実施例5-1~5-8より本発明の粉砕方法は、含水率が8質量%以下でかつ粉砕媒体を用いない粉砕機で粉砕する方法により、所望の粒子径の範囲内で、安定して粉砕できることが確認できた。
〔参考例3〕
 上記実施例5-2で得られた粉砕品を減圧乾燥機で乾燥(120℃×5時間)し、含水率を0.3%としたものを、ポリエチレンテレフタレート樹脂(帝人化成株式会社製TR-8550)100質量部に対して、0.3質量部配合し、よく混合して、二軸押出機(装置:株式会社日本製鋼所製TEX28V,シリンダ温度:270℃,スクリュー速度:200rpm)で造粒したところ、問題なくペレットを得ることができた。
 次に、上記実施例5-2で得られた粉砕品を減圧で乾燥せずに、含水率2.1%のまま上記と同様に二軸押出機で造粒したところ、ストランドが発泡して途中で切れてしまい、ペレットを得るのが困難であった。以上より、ポリエステル樹脂組成物に添加する場合には、粉砕品は含水率が1質量%以下になるまで乾燥して用いるのが好ましいことを確認した。
〔実施例6-1~6-6および比較例6-1~6-7〕
〔製造例3〕
 ポリエチレンテレフタレート(固有粘度:0.8dL/g)100質量部に対し、化合物No.6を0.3質量部加えてよく混合し、二軸押出機(シリンダ温度:270℃,スクリュー速度:200rpm)で造粒して、0.3%濃度のマスターバッチを作成した。
 次に、ポリエチレンテレフタレート(固有粘度:0.8dL/g)100質量部に対して、化合物No.6を0.010質量部含有するように、0.3%濃度のマスターバッチ及びポリエチレンテレフタレート(固有粘度:0.8dL/g)を混合して、樹脂組成物1を得た。
 尚、固有粘度は、測定試料のポリエステル樹脂組成物を予め冷凍粉砕し、粉砕品を140℃で15分間乾燥後、0.20g計量し、1,1,2,2-テトラクロロエタン/フェノール(重量比:1/1)の混合溶媒を20ml加えて、120℃で15分間撹拌させて完全に溶解させ、溶解後、室温まで冷却し、グラスフィルターでろ過した溶液を25℃に温調されたウベローデ型粘度計を用いて比粘度を測定し、次式により求めた。
[η]=(-1+√(1+4K’・ηsp))/(2K’C)
 ηsp=(τ-τ0)・τ0
ここで、
[η]:固有粘度(dL/g)
ηsp:比粘度
K’:ハギンス恒数(=0.33)
C:濃度(g/dL)
τ:試料の落下時間(sec)
τ0:溶媒の落下時間(sec)
〔製造例4〕
 上記製造例3において、化合物No.6の添加量を0.3質量部から0.5質量部に変更した以外には、製造例3と同様にして0.5%濃度のマスターバッチを作成した。次に、ポリエチレンテレフタレート(固有粘度:0.8dL/g)100質量部に対して、化合物No.6を0.020質量部含有するように、0.5%濃度のマスターバッチ及びポリエチレンテレフタレート(固有粘度:0.8dL/g)を混合して、樹脂組成物2を得た。
〔製造例5〕 
 上記製造例3において、ポリエチレンテレフタレート(固有粘度:0.8dL/g)100質量部に対する化合物No.6の含有量を0.010質量部から0.025質量部に変更した以外は、製造例3と同様にして0.3%濃度のマスターバッチ及びポリエチレンテレフタレート(固有粘度:0.8dL/g)を混合して、樹脂組成物3を得た。
〔製造例6〕
 上記製造例3において、ポリエチレンテレフタレート(固有粘度:0.8dL/g)をポリエチレンテレフタレート(固有粘度:0.6dL/g)に変更した以外には同様に製造して、0.3%濃度のマスターバッチを製造した。次に、ポリエチレンテレフタレート(固有粘度:0.6dL/g)100質量部に対して、化合物No.6を0.025質量部含有するように、上記0.3%濃度のマスターバッチ及びポリエチレンテレフタレート(固有粘度:0.6dL/g)を混合して、樹脂組成物4を得た。
〔製造例7〕
 上記製造例3において、ポリエチレンテレフタレート(固有粘度:0.8dL/g)をポリエチレンテレフタレート(固有粘度:1.1dL/g)に変更した以外には同様に製造して、0.3%濃度のマスターバッチを製造した。次に、ポリエチレンテレフタレート(固有粘度:1.1dL/g)100質量部に対して、化合物No.6を0.025質量部含有するように、上記0.3%濃度のマスターバッチ及びポリエチレンテレフタレート(固有粘度:1.1dL/g)を混合して、樹脂組成物5を得た。
〔比較製造例1〕
 ポリエチレンテレフタレート(固有粘度:0.8dL/g)に対して、ポリエステル樹脂用結晶核剤を配合せずに、比較樹脂組成物1とした。
〔比較製造例2〕
 ポリエチレンテレフタレート(固有粘度:0.8dL/g)100質量部に対し、化合物No.6を0.020質量部、粉末で加えてよく混合して比較樹脂組成物2を得た。
〔比較製造例3〕
 上記製造例3において、ポリエチレンテレフタレート(固有粘度:0.8dL/g)100質量部に対する化合物No.6の含有量を0.010質量部から0.030質量部に変更した以外は、上記製造例3と同様にして、0.3%濃度のマスターバッチ及びポリエチレンテレフタレート(固有粘度:0.8dL/g)を混合して、比較樹脂組成物3を得た。
〔比較製造例4〕
 上記製造例3において、ポリエチレンテレフタレート(固有粘度:0.8dL/g)をポリエチレンテレフタレート(固有粘度:0.4dL/g)に変更した以外には同様にして0.3%濃度のマスターバッチを製造した。次に、ポリエチレンテレフタレート(固有粘度:0.4dL/g)100質量部に対して、化合物No.6を0.025質量部含有するように、0.3%濃度のマスターバッチ及びポリエチレンテレフタレート(固有粘度:0.4dL/g)を混合して、比較樹脂組成物4を得た。
〔比較製造例5〕
 上記製造例3において、ポリエチレンテレフタレート(固有粘度:0.8dL/g)をポリエチレンテレフタレート(固有粘度:1.5dL/g)に変更した以外には同様にして0.3%濃度のマスターバッチを製造した。次に、ポリエチレンテレフタレート(固有粘度:1.5dL/g)100質量部に対して、化合物No.6を0.025質量部含有するように、0.3%濃度のマスターバッチ及びポリエチレンテレフタレート(固有粘度:1.5dL/g)を混合して、比較樹脂組成物5を得た。
〔プラスチックボトルの製造〕
 上記製造例3~7、比較製造例1~5で得られた樹脂組成物について、それぞれ、160℃のギヤーオーブンで4時間乾燥後、射出成形機にて、射出温度280℃の成形温度で、プリフォーム(口外径25mm、重量23g)を成形した。次に、得られたプリフォームについて、下記表12又は表13に記載の金型温度で、二軸延伸ブロー成形し、容量500mlのプラスチックボトルを作製した。得られたプラスチックボトルについて、下記の評価を行った。
 (1)金型汚れ:6時間連続して成形した後の金型を白色の綿生地の布で拭き取り、汚れが確認できた場合は×とし、汚れが確認できなかった場合は○として評価した。
 (2)耐熱収縮:成形して得られたプラスチックボトルに対して、約75℃のシャワー温水リンスを約30秒間行った後、プラスチックボトルの収縮率が1%未満の場合を○、1%以上の収縮率であった場合を×として評価した。
 (3)外観:成形して得られたプラスチックボトルの色について観察した。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
※1 結晶核剤未配合で評価した。
※2 プリフォームが白化し、延伸ブロー成形ができずプラスチックボトルを作製できなかった。
 比較例6-1及び6-2より、結晶核剤未配合の場合、得られるプラスチックボトルの耐熱収縮は乏しかった。また、比較例6-3より、結晶核剤を直接ポリエステル樹脂に粉末で添加して成形した場合、プリフォームが白化し、延伸ブロー成形ができず、プラスチックボトルが得られなかった。
 また、比較例6-5及び6-6より、ポリエステル樹脂の固有粘度が0.5dL/g未満であると、プラスチックボトルが白化し、1.1dL/gを超えると、プリフォームを延伸ブロー成形することができず、プラスチックボトルを作製できなかった。
 また、比較例6-7より、金型温度が160℃を超えると、金型汚れが顕著になり連続生産が困難であった。
 これらに対して、実施例6-1~6-6より、本発明の製造方法で作製したプラスチックボトルは耐熱収縮が良好であり、金型汚れもなく外観も良好なプラスチックボトルを成形できることが確認できた。

Claims (33)

  1.  ポリエステル樹脂100質量部に対し、リン系酸化防止剤(A)0.01~30質量部及びスルホンアミド化合物の金属塩(B)0.1~30質量部を含むポリエステル樹脂組成物であって、
    スルホンアミド化合物の金属塩(B)に含まれる水分量が、スルホンアミド化合物の金属塩に対する質量比で0.1%~20%の範囲内であり、かつ、ポリエステル樹脂組成物に対する質量比で3%以下であることを特徴とするポリエステル樹脂組成物。
  2.  前記(B)スルホンアミド化合物の金属塩が、1,2-ベンズイソチアゾール-3(2H)-オン-1,1-ジオキシド金属塩である請求項1記載のポリエステル樹脂組成物。
  3.  前記リン系酸化防止剤が、下記一般式(1)、
    Figure JPOXMLDOC01-appb-I000001
    (式中、R、R、R及びRは、各々独立して、水素原子、分岐を有してもよい炭素原子数1~8のアルキル基、置換されていてもよい炭素原子数6~12のアリール基または炭素原子数6~12のアラルキル基を表す)で表される請求項1記載のポリエステル樹脂組成物。
  4.  前記(A)リン系酸化防止剤が、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、又は、ビス(2,6-ジ-t-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイトである請求項1記載のポリエステル樹脂組成物。
  5.  前記ポリエステル樹脂組成物が、フェノール系酸化防止剤を含まないことに特徴を有する請求項1記載のポリエステル樹脂組成物。
  6.  前記ポリエステル樹脂がポリエチレンテレフタレート樹脂である請求項1記載のポリエステル樹脂組成物。
  7.  請求項1記載のポリエステル樹脂組成物からなるマスターバッチ。
  8.  請求項1記載のポリエステル樹脂組成物を成形してなる樹脂成形品。
  9.  ポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤0.001~1質量部を含有するポリエステル樹脂組成物からなることを特徴とするポリエステル繊維。
  10.  前記ポリエステル樹脂用結晶核剤が、ベンゼンスルホンアミド金属塩、トルエン-4-スルホンアミド金属塩、N-フェニル-4-ベンゼンスルホンアミド金属塩、N-フェニル-4-メチル-ベンゼンスルホンアミド金属塩、および、1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシド金属塩からなる群から選択されるものである請求項9記載のポリエステル繊維。
  11.  前記ポリエステル樹脂がポリエチレンテレフタレートである請求項9記載のポリエステル繊維。
  12.  DIN 53866 T3に従って測定した熱収縮率が、15%以下である請求項9記載のポリエステル繊維。
  13.  延伸配向されたものである請求項9記載のポリエステル繊維。
  14.  ポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤0.001~1質量部を配合したポリエステル樹脂組成物を成形後、1秒~2分間アニール処理してなることを特徴とするポリエステル樹脂成形体。
  15.  前記ポリエステル樹脂がポリエチレンテレフタレートである請求項14記載のポリエステル樹脂成形体。
  16.  前記ポリエステル樹脂用結晶核剤が、ベンゼンスルホンアミド金属塩、トルエン-4-スルホンアミド金属塩、N-フェニル-ベンゼンスルホンアミド金属塩、N-フェニル-4-メチル-ベンゼンスルホンアミド金属塩、および、1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシド金属塩からなる群から選択されるものである請求項14記載のポリエステル樹脂成形体。
  17.  前記成形が、シート形状への延伸成形である請求項14記載のポリエステル樹脂成形体。
  18.  前記成形が、ボトル形状への延伸成形である請求項14記載のポリエステル樹脂成形体。
  19.  顕微ラマンにおける1730cm-1近傍の極大ピークの半値幅が、18cm-1以下である請求項14記載のポリエステル樹脂成形体。
  20.  炭酸ガス透過係数が、1.0×10-17~5.3×10-17mol・m/m・s・Paである請求項14記載のポリエステル樹脂成形体。
  21.  ポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤0.001~1質量部を配合したポリエステル樹脂組成物を250~300℃で成形した後、100℃~200℃の範囲内の温度で、1秒~2分間アニール処理することを特徴とするポリエステル樹脂成形体の製造方法。
  22.  スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩を、含水率が8質量%以下になるまで乾燥後、粉砕媒体を用いないで粉砕することを特徴とするスルホンアミド化合物金属塩又はスルホンイミド化合物金属塩の粉砕方法。
  23.  スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤の製造方法であって、前記ポリエステル樹脂用結晶核剤を、含水率が8質量%以下になるまで乾燥後、粉砕媒体を用いない粉砕機で粉砕することを特徴とするポリステル樹脂用結晶核剤の製造方法。
  24.  前記粉砕後のポリエステル樹脂用結晶核剤の体積平均粒子径が0.5~50μmの範囲内で、かつ、250μmメッシュパスが90質量%以上である請求項23記載のポリステル樹脂用結晶核剤の製造方法。
  25.  前記ポリエステル樹脂用結晶核剤が、ベンゼンスルホンアミド金属塩、トルエン-4-スルホンアミド金属塩、N-フェニル-ベンゼンスルホンアミド金属塩、N-フェニル-4-メチル-ベンゼンスルホンアミド金属塩、および、1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシド金属塩からなる群から選択されるものである請求項23記載のポリステル樹脂用結晶核剤の製造方法。
  26.  前記粉砕媒体を用いない粉砕機が、ロール式粉砕機、高速回転衝撃式粉砕機、気流式粉砕機、および、せん断・磨砕式粉砕機からなる群から選択されるものである請求項23記載のポリステル樹脂用結晶核剤の製造方法。
  27.  前記粉砕後のポリステル樹脂用結晶核剤の回収量が90%以上である請求項23記載のポリステル樹脂用結晶核剤の製造方法。
  28.  請求項23記載の製造方法で得られたポリエステル樹脂用結晶核剤。
  29.  さらに乾燥して、含水率が1質量%以下に調整された請求項28記載のポリエステル樹脂用結晶核剤。
  30.  スルホンアミド化合物金属塩又はスルホンイミド化合物金属塩からなるポリエステル樹脂用結晶核剤を含むポリエステル樹脂組成物を成形してなるプラスチックボトルの製造方法であって、固有粘度0.5-1.1dL/gのポリエステル樹脂100質量部に対し、前記ポリエステル樹脂用結晶核剤0.1~90質量部を含むマスターバッチを作製し、次いで、該マスターバッチをポリエステル樹脂に混合して、固有粘度0.5-1.1dL/gのポリエステル樹脂100質量部に対し、前記ポリエステル樹脂用結晶核剤が0.005~0.025質量部含まれる樹脂組成物を作製し、該樹脂組成物を85~160℃の金型温度でボトル形状に延伸ブロー成形することを特徴とするプラスチックボトルの製造方法。
  31.  前記ポリエステル樹脂が、ポリエチレンテレフタレートである請求項30記載のプラスチックボトルの製造方法。
  32.  前記ポリエステル樹脂用結晶核剤が、下記一般式(2)、
    Figure JPOXMLDOC01-appb-I000002
    (式中、Aはハロゲン原子、置換基を有してもよい炭素原子数1~8のアルキル基、置換基を有してもよい炭素原子数1~8のアルコキシ基、炭素原子数1~5のアルキルチオ基、ニトロ基又はシアノ基を表し、複数ある場合のAはそれぞれ異なっていてもよく、mは0~4の整数を表し、Xは金属原子を表し、nは1~4の整数を表すものであって、nは、Xで表される金属原子の価数に対応する整数を表す)で表される請求項30記載のプラスチックボトルの製造方法。
  33.  前記一般式(2)中のXがナトリウム、nが1である請求項30記載のプラスチックボトルの製造方法。
PCT/JP2010/066574 2009-09-30 2010-09-24 ポリエステル樹脂組成物、ポリエステル繊維、ポリエステル樹脂成形体及びポリエステル樹脂用結晶核剤の製造方法 WO2011040337A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
KR1020127011015A KR101729049B1 (ko) 2009-09-30 2010-09-24 폴리에스테르 수지 조성물, 폴리에스테르 섬유, 폴리에스테르 수지 성형체 및 폴리에스테르 수지용 결정핵제의 제조 방법
CN201080044042.5A CN102575089B (zh) 2009-09-30 2010-09-24 聚酯树脂组合物、聚酯纤维、聚酯树脂成型体和聚酯树脂用结晶成核剂的制造方法
US13/496,959 US20120189793A1 (en) 2009-09-30 2010-09-24 Polyester resin composition, polyester fiber, polyester resin molded article, and process for production of nucleating agent for polyester resin
EP10820454.6A EP2484725B1 (en) 2009-09-30 2010-09-24 Polyester resin composition, polyester fiber, polyester resin molded article, and process for production of nucleating agent for polyester resin
BR112012007289A BR112012007289A2 (pt) 2009-09-30 2010-09-24 composição de resina de poléster, fibra de poliéster, artigo moldado de resina de poliéster e processo para a produção do agente de nucleação para resina de poliéster
IL218868A IL218868A (en) 2009-09-30 2012-03-27 A method of making a granular resin into a polyester resin
US14/016,883 US20140001672A1 (en) 2009-09-30 2013-09-03 Polyester resin composition, polyester fiber, polyester resin molded article, and process for production of nucleating agent for polyester resin
IL254925A IL254925B (en) 2009-09-30 2017-10-08 Methods of producing plastic bottles using polyester resin preparations
IL254924A IL254924B (en) 2009-09-30 2017-10-08 Polyester resin product matrix and method for its production

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2009228982A JP2011074295A (ja) 2009-09-30 2009-09-30 ポリエステル樹脂組成物
JP2009-228982 2009-09-30
JP2009276790A JP5563282B2 (ja) 2009-12-04 2009-12-04 ポリエステル樹脂用結晶核剤の製造方法
JP2009-276788 2009-12-04
JP2009-276789 2009-12-04
JP2009-276790 2009-12-04
JP2009276789 2009-12-04
JP2009276788 2009-12-04
JP2010-048235 2010-03-04
JP2010048235A JP2011137127A (ja) 2009-12-04 2010-03-04 ポリエステル樹脂成形体及びその製造方法
JP2010-143382 2010-06-24
JP2010143382A JP2011137278A (ja) 2009-12-04 2010-06-24 ポリエステル繊維
JP2010-150136 2010-06-30
JP2010150136A JP5781744B2 (ja) 2010-06-30 2010-06-30 プラスチックボトルの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/016,883 Division US20140001672A1 (en) 2009-09-30 2013-09-03 Polyester resin composition, polyester fiber, polyester resin molded article, and process for production of nucleating agent for polyester resin

Publications (1)

Publication Number Publication Date
WO2011040337A1 true WO2011040337A1 (ja) 2011-04-07

Family

ID=45024308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066574 WO2011040337A1 (ja) 2009-09-30 2010-09-24 ポリエステル樹脂組成物、ポリエステル繊維、ポリエステル樹脂成形体及びポリエステル樹脂用結晶核剤の製造方法

Country Status (8)

Country Link
US (2) US20120189793A1 (ja)
EP (1) EP2484725B1 (ja)
KR (1) KR101729049B1 (ja)
CN (3) CN103483779B (ja)
BR (1) BR112012007289A2 (ja)
IL (3) IL218868A (ja)
TW (1) TWI499626B (ja)
WO (1) WO2011040337A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094436A1 (ja) 2011-12-20 2013-06-27 株式会社Adeka マスターバッチの製造方法
WO2014185484A1 (ja) 2013-05-17 2014-11-20 株式会社Adeka 成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法
WO2015080004A1 (ja) 2013-11-26 2015-06-04 株式会社Adeka マスターバッチの製造方法
WO2016159266A1 (ja) * 2015-04-03 2016-10-06 旭化成株式会社 単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター
CN113444344A (zh) * 2020-03-26 2021-09-28 上海紫丹食品包装印刷有限公司 一种耐高温高韧性全生物基降解塑料及其制备方法
CN114072266A (zh) * 2019-05-15 2022-02-18 安帕塞特公司 塑料用哑光涂饰

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013013543B1 (pt) * 2010-12-02 2020-02-11 Adeka Corporation Composição de resina de poliéster e corpo moldado da mesma
US9562143B2 (en) * 2011-03-08 2017-02-07 Basf Se Laser-transparent polyesters with carboxylic salts
US9447523B2 (en) 2011-12-22 2016-09-20 3M Innovative Properties Company Melt blown fiber forming process and method of making fibrous structures
US9550843B2 (en) * 2012-11-27 2017-01-24 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin
CN103012225B (zh) * 2012-12-10 2014-10-29 常州大学 一种合成含硫双酚化合物抗氧剂的方法
CN104558545B (zh) * 2013-10-15 2016-08-17 中国石油化工股份有限公司 一种催化剂体系及其在制备脂肪族聚酯反应中的应用
ES2534727B1 (es) * 2013-10-24 2016-02-05 Afinitica Technologies, S. L. Composición de cianoacrilato
US10214419B2 (en) 2013-11-18 2019-02-26 Nippon Soda Co., Ltd. Granules or powder of disulfonylamide salt and method for producing same
CN107075093A (zh) * 2014-10-23 2017-08-18 Sk化学株式会社 具有提高的结晶速度的聚对苯二甲酸亚环己基二亚甲酯树脂及用于制备其的方法
NL2015264B1 (en) * 2015-08-04 2017-02-21 Furanix Technologies Bv Masterbatch polyester composition.
TWI665245B (zh) * 2015-12-08 2019-07-11 日商生物工程股份有限公司 聚乳酸樹脂纖維、聚乳酸長纖維、聚乳酸短纖維及聚乳酸纖維
EP3476756B1 (en) 2016-06-28 2021-03-10 Toyo Seikan Co., Ltd. Polyester stretch blow-molded container and manufacturing method therefor
CN107057294A (zh) * 2016-12-28 2017-08-18 宁夏大学 一种高结晶速率的pet复合材料及其制备方法和应用
KR102040237B1 (ko) * 2018-06-28 2019-11-06 주식회사 휴비스 가스 베리어층을 포함하는 성형체, 이를 포함하는 포장용기 및 성형체의 제조방법
IT201800008225A1 (it) * 2018-08-29 2020-02-29 Etike' Ip Srl Una innovativa etichetta a base vetrosa, preferibilmente per contenitori in vetro quali bottiglie
TWI722791B (zh) 2020-02-06 2021-03-21 南亞塑膠工業股份有限公司 熱壓合用霧膜及其製造方法
TWI727664B (zh) * 2020-02-18 2021-05-11 南亞塑膠工業股份有限公司 低寡聚物易延伸改性聚酯膜及其製造方法
TWI725742B (zh) * 2020-02-19 2021-04-21 南亞塑膠工業股份有限公司 低收縮低寡聚物聚酯膜及其製造方法
CN112175360A (zh) * 2020-10-13 2021-01-05 广州九圆塑业有限公司 一种pet塑料瓶及其生产工艺
CN112708162A (zh) * 2020-12-18 2021-04-27 天津宝兴威科技股份有限公司 一种局部擦拭液晶写字板用pet薄膜的制备方法
CN112852044A (zh) * 2021-02-04 2021-05-28 泉州康博机电有限公司 一种油箱的吹塑配方及其制作工艺
CN113621221B (zh) * 2021-08-04 2022-10-25 东莞市盈坤电子科技有限公司 一种阻燃pet树脂及其制备方法
CN113681755A (zh) * 2021-09-29 2021-11-23 惠州莹光塑胶颜料有限公司 一种防雾pet母粒及其制备方法
CN114775164B (zh) * 2022-06-21 2022-09-09 山东华冠智能卡有限公司 一种可反复折叠的rfid电子标签底材及其制备方法
CN116945660B (zh) * 2023-08-14 2024-08-06 广东宝佳利新材料股份有限公司 一种用于新能源电池的阻燃聚酯薄膜及其制备工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613142A (en) * 1979-07-13 1981-02-09 Toray Ind Inc Molding method for thermoplastic polyester container
WO1990012007A1 (fr) * 1989-04-05 1990-10-18 Pierre Fabre Medicament Nouveaux sulfonamides derives d'acides benzocycliques ou benzoheterocycliques, leur preparation et leur application en therapeutique
JPH05272011A (ja) * 1992-03-24 1993-10-19 Asahi Chem Ind Co Ltd ポリウレタン弾性繊維の製造方法
JPH09124785A (ja) * 1995-11-02 1997-05-13 Mitsui Petrochem Ind Ltd ポリエステル樹脂組成物とその製造方法
JP2005105004A (ja) * 2003-09-26 2005-04-21 Asahi Denka Kogyo Kk 耐候性の改善されたポリエステル樹脂製容器
JP2006001568A (ja) * 2004-06-16 2006-01-05 Asahi Denka Kogyo Kk 耐候性の改善されたポリエステル樹脂製容器
WO2007045573A1 (en) * 2005-10-19 2007-04-26 F. Hoffmann-La Roche Ag Phenyl-acetamide nnrt inhibitors
JP2009091481A (ja) * 2007-10-10 2009-04-30 Mitsui Chemicals Inc 熱可塑性樹脂組成物およびその成形体
JP2009096833A (ja) * 2007-10-12 2009-05-07 Adeka Corp ポリエステル樹脂組成物
JP2009215510A (ja) * 2008-03-13 2009-09-24 Mitsubishi Plastics Inc ポリエステルフィルムの製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900701930A (ko) * 1988-05-26 1990-12-05 제라드 피. 루우니 열가소성 폴리에스테르/탄성체 조성물
JP2556246B2 (ja) * 1992-12-08 1996-11-20 東洋製罐株式会社 耐熱性ポリエステル容器及びその製法
CN1187837A (zh) * 1995-04-26 1998-07-15 联合讯号公司 聚酯模塑组合物
MY127653A (en) * 1996-05-16 2006-12-29 Toray Industries Biaxially stretched polyester film for forming container and method of producing the film
WO2001062471A1 (en) * 2000-02-25 2001-08-30 Tjandra Limanjaya Hot fill container
US7030181B2 (en) * 2001-04-11 2006-04-18 Eastman Chemical Company Films prepared from plasticized polyesters
US8354171B2 (en) * 2006-04-19 2013-01-15 Toray Industries, Inc. Biaxially oriented polyester film for molded part
JP5354858B2 (ja) * 2006-05-09 2013-11-27 株式会社Adeka スルホンアミド化合物の金属塩を含有するポリエステル樹脂組成物
JP5575396B2 (ja) * 2006-09-28 2014-08-20 株式会社Adeka ポリエステル樹脂組成物
US8313686B2 (en) * 2008-02-07 2012-11-20 Amcor Limited Flex ring base
EP2258774B1 (en) * 2008-03-21 2013-12-18 Adeka Corporation Polyester resin composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613142A (en) * 1979-07-13 1981-02-09 Toray Ind Inc Molding method for thermoplastic polyester container
WO1990012007A1 (fr) * 1989-04-05 1990-10-18 Pierre Fabre Medicament Nouveaux sulfonamides derives d'acides benzocycliques ou benzoheterocycliques, leur preparation et leur application en therapeutique
JPH05272011A (ja) * 1992-03-24 1993-10-19 Asahi Chem Ind Co Ltd ポリウレタン弾性繊維の製造方法
JPH09124785A (ja) * 1995-11-02 1997-05-13 Mitsui Petrochem Ind Ltd ポリエステル樹脂組成物とその製造方法
JP2005105004A (ja) * 2003-09-26 2005-04-21 Asahi Denka Kogyo Kk 耐候性の改善されたポリエステル樹脂製容器
JP2006001568A (ja) * 2004-06-16 2006-01-05 Asahi Denka Kogyo Kk 耐候性の改善されたポリエステル樹脂製容器
WO2007045573A1 (en) * 2005-10-19 2007-04-26 F. Hoffmann-La Roche Ag Phenyl-acetamide nnrt inhibitors
JP2009091481A (ja) * 2007-10-10 2009-04-30 Mitsui Chemicals Inc 熱可塑性樹脂組成物およびその成形体
JP2009096833A (ja) * 2007-10-12 2009-05-07 Adeka Corp ポリエステル樹脂組成物
JP2009215510A (ja) * 2008-03-13 2009-09-24 Mitsubishi Plastics Inc ポリエステルフィルムの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2484725A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013758B1 (ko) 2011-12-20 2019-08-23 가부시키가이샤 아데카 마스터 배치의 제조 방법
KR20140105496A (ko) 2011-12-20 2014-09-01 가부시키가이샤 아데카 마스터 배치의 제조 방법
CN104053708A (zh) * 2011-12-20 2014-09-17 株式会社Adeka 母料的制造方法
WO2013094436A1 (ja) 2011-12-20 2013-06-27 株式会社Adeka マスターバッチの製造方法
EP2796487A4 (en) * 2011-12-20 2015-08-19 Adeka Corp METHOD FOR PRODUCING MASTERBATCHES
US9527966B2 (en) 2011-12-20 2016-12-27 Adeka Corporation Method for producing masterbatches
JP2013129713A (ja) * 2011-12-20 2013-07-04 Adeka Corp マスターバッチの製造方法
KR20160011211A (ko) 2013-05-17 2016-01-29 가부시키가이샤 아데카 성형품, 이것을 사용한 절연 재료, 및 폴리에스테르 수지 조성물의 전기 절연성의 개선 방법
WO2014185484A1 (ja) 2013-05-17 2014-11-20 株式会社Adeka 成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法
JPWO2014185484A1 (ja) * 2013-05-17 2017-02-23 株式会社Adeka 成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法
US9890256B2 (en) 2013-11-26 2018-02-13 Adeka Corporation Process for producing masterbatch
WO2015080004A1 (ja) 2013-11-26 2015-06-04 株式会社Adeka マスターバッチの製造方法
KR20160090809A (ko) 2013-11-26 2016-08-01 가부시키가이샤 아데카 마스터배치의 제조 방법
JPWO2016159266A1 (ja) * 2015-04-03 2017-11-16 旭化成株式会社 単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター
GB2555721A (en) * 2015-04-03 2018-05-09 Asahi Chemical Ind Single-layer or multilayer nonwoven fabric of long polyester fibers, and filter comprising same for food
GB2555721B (en) * 2015-04-03 2021-03-03 Asahi Chemical Ind Single-layer or multilayer nonwoven fabric of long polyester fibers, and filter comprising same for food
WO2016159266A1 (ja) * 2015-04-03 2016-10-06 旭化成株式会社 単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター
CN114072266A (zh) * 2019-05-15 2022-02-18 安帕塞特公司 塑料用哑光涂饰
CN113444344A (zh) * 2020-03-26 2021-09-28 上海紫丹食品包装印刷有限公司 一种耐高温高韧性全生物基降解塑料及其制备方法
CN113444344B (zh) * 2020-03-26 2023-08-18 上海紫丹食品包装印刷有限公司 一种耐高温高韧性全生物基降解塑料及其制备方法

Also Published As

Publication number Publication date
IL254924A0 (en) 2017-12-31
BR112012007289A2 (pt) 2016-04-19
EP2484725A4 (en) 2013-03-13
CN103483779B (zh) 2016-08-17
IL218868A (en) 2017-10-31
EP2484725A1 (en) 2012-08-08
CN102575089B (zh) 2017-09-26
IL218868A0 (en) 2012-06-28
CN102575089A (zh) 2012-07-11
IL254925B (en) 2018-07-31
IL254925A0 (en) 2017-12-31
TW201125911A (en) 2011-08-01
CN103484970A (zh) 2014-01-01
US20140001672A1 (en) 2014-01-02
TWI499626B (zh) 2015-09-11
KR20120088734A (ko) 2012-08-08
EP2484725B1 (en) 2017-07-19
KR101729049B1 (ko) 2017-04-21
CN103483779A (zh) 2014-01-01
US20120189793A1 (en) 2012-07-26
IL254924B (en) 2018-07-31

Similar Documents

Publication Publication Date Title
WO2011040337A1 (ja) ポリエステル樹脂組成物、ポリエステル繊維、ポリエステル樹脂成形体及びポリエステル樹脂用結晶核剤の製造方法
JP5781744B2 (ja) プラスチックボトルの製造方法
EP2647668B1 (en) Polyester resin composition and molded body of same
CA2651325C (en) Titanium dioxide based colour concentrate for polyester materials
EP2796487B1 (en) Method for producing masterbatches
KR20150058217A (ko) 산소 제거 플라스틱 물질
JP5563282B2 (ja) ポリエステル樹脂用結晶核剤の製造方法
JP2011137127A (ja) ポリエステル樹脂成形体及びその製造方法
TWI460226B (zh) Manufacture of plastic bottles
JP2012116994A (ja) ポリエステル樹脂組成物及びその成形体
JP2007092020A (ja) ブロー成形用ポリプロピレン樹脂組成物、該組成物を用いたブロー成形品及びその製造方法
JP2017154286A (ja) プラスチックボトルの製造方法
JP2012116995A (ja) ポリエステル樹脂組成物及びその成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080044042.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 218868

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13496959

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1039/MUMNP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010820454

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010820454

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127011015

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012007289

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012007289

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120330