WO2016159266A1 - 単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター - Google Patents

単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター Download PDF

Info

Publication number
WO2016159266A1
WO2016159266A1 PCT/JP2016/060739 JP2016060739W WO2016159266A1 WO 2016159266 A1 WO2016159266 A1 WO 2016159266A1 JP 2016060739 W JP2016060739 W JP 2016060739W WO 2016159266 A1 WO2016159266 A1 WO 2016159266A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
layer
fiber nonwoven
polyester long
polyester
Prior art date
Application number
PCT/JP2016/060739
Other languages
English (en)
French (fr)
Inventor
山田 裕介
留美名 小尾
一史 加藤
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020177025786A priority Critical patent/KR101952528B1/ko
Priority to GB1716072.2A priority patent/GB2555721B/en
Priority to CN201680015024.1A priority patent/CN107429459B/zh
Priority to JP2017510207A priority patent/JP6657189B2/ja
Publication of WO2016159266A1 publication Critical patent/WO2016159266A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • B01D39/163Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin sintered or bonded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D77/00Packages formed by enclosing articles or materials in preformed containers, e.g. boxes, cartons, sacks or bags
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0407Additives and treatments of the filtering material comprising particulate additives, e.g. adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/12Special parameters characterising the filtering material
    • B01D2239/1241Particle diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Definitions

  • the present invention relates to a single-layer or multi-layer polyester long fiber nonwoven fabric excellent in transparency, dimensional stability, powder leakage, and component extractability, and a food filter for beverage extraction using the same.
  • a nonwoven fabric made of a resin such as polyethylene, polypropylene, polyester, or polyamide has been used as a packaging material.
  • a resin such as polyethylene, polypropylene, polyester, or polyamide
  • extracting components such as black tea, green tea, and oolong tea
  • a tea bag system is often used as a simple method.
  • Paper is generally used as a packaging material used for tea bags, but there are problems such as poor transparency and inability to see the contents of the packaging material and heat sealing.
  • Patent Document 1 discloses a non-woven fabric for tea bags with improved transparency, but there is no description regarding dimensional stability, and no particular attention is paid. Furthermore, the maximum pore diameter measured by the bubble point method (JIS-K-3832) is used for evaluation of powder leakage, but the pore diameter range suitable for measurement is on the nano to micrometer order, and the pressure is converted. Since the pore diameter is expressed, it is not an evaluation method suitable for the tea leaves actually used.
  • Patent Document 2 discloses a biodegradable monofilament made of poly-L lactic acid having a fineness of 15 to 35 dtex for tea bags.
  • Patent Document 3 is excellent in heat-sealability comprising a core-sheath type composite continuous fiber having a polyolefin polymer as a sheath component and a polyester polymer having a melting point higher than that of the sheath component as a core component.
  • non-woven fabrics are disclosed, the dimensional stability is low, and there is no description regarding transparency, which is not particularly noted.
  • the present invention is to provide a polyester long fiber nonwoven fabric excellent in transparency, dimensional stability, powder leakage, and component extractability, and a food filter using the same, in view of the problems of the prior art.
  • the present inventors have selected a polyester-based resin having a titanium element content in a specific range, and the structure, fine diameter, and basis weight of the fibers constituting the nonwoven fabric. Detailed investigation from the viewpoint of thermocompression area ratio, and found that a nonwoven fabric having good spinnability, excellent component extractability as a food filter, and good transparency and dimensional stability can be obtained. It was. Furthermore, the present invention has been completed by defining the pore size calculated by directly observing the nonwoven fabric as an evaluation of powder leakage.
  • the present invention is as follows.
  • the content of inorganic particles is 0 to 100 ppm, the 10% point hole diameter is less than 1000 ⁇ m, the difference between the 10% point hole diameter and the 2.3% point hole diameter is 500 or less, and the basis weight is 10 to 30 g.
  • Single-layer or multi-layer polyester continuous fiber nonwoven fabric that is / m 2 .
  • the single-layer or multi-layer polyester long fiber nonwoven fabric according to the above [1] which has a thermocompression bonding area ratio of 5 to 40% and an average apparent density of 0.1 to 0.5 g / cm 3 .
  • [3] The single-layer or multi-layer polyester long fiber nonwoven fabric according to the above [1] or [2], having an average fiber diameter of 13 to 40 ⁇ m.
  • [5] The single-layer or multi-layer polyester long fiber nonwoven fabric according to any one of [1] to [4], wherein at least one layer is composed of fibers having a crystallinity of 30 to 50%.
  • [6] The single-layer or multi-layer polyester long fiber nonwoven fabric according to any one of [1] to [5], wherein at least one layer is composed of fibers having a birefringence of 0.04 to 0.12.
  • [7] The single-layer or multi-layer polyester long fiber nonwoven fabric according to any one of [1] to [6], wherein the transparency is 60% or more.
  • [8] The single-layer or multi-layer polyester long fiber nonwoven fabric according to any one of the above [1] to [7], having a boiling water shrinkage of 2.0% or less.
  • [9] The single-layer or multi-layer polyester long fiber nonwoven fabric according to any one of [1] to [8], wherein the formation coefficient is 0.5 to 2.0.
  • polyester long fiber nonwoven fabric made of low melting point resin having a melting point difference of 30 ° C. to 150 ° C. with high melting point resin
  • polyester long fiber nonwoven fabric made of high melting point resin
  • Fiber orientation of the polyester long fiber nonwoven fabric The single-layer or multi-layer polyester long-fiber nonwoven fabric according to any one of [1] to [12], which has a structure with different properties in cross-sectional direction.
  • [15] The single-layer or multi-layer polyester long fiber nonwoven fabric according to any one of [1] to [14], wherein the inorganic particles are titanium oxide.
  • [16] The single-layer or multi-layer polyester long fiber nonwoven fabric according to [15], comprising a resin having a titanium element content of 0 to 0.1 ppm.
  • [17] The single-layer or multi-layer polyester long-fiber nonwoven fabric according to any one of the above [1] to [16], wherein the IV value of the resin after the nonwoven fabric is 0.6 or more.
  • a food filter comprising the single-layer or multi-layer polyester long fiber nonwoven fabric according to any one of [1] to [17].
  • the spinnability of the fibers constituting the single-layer or multi-layer polyester long-fiber nonwoven fabric according to the present invention is good, and the food filter manufactured using the nonwoven fabric composed of the fibers has excellent component extractability, transparency, and dimensions. The stability and resistance to dust leakage are also good.
  • Polyester resins constituting the polyester long fibers constituting the polyester long-fiber nonwoven fabric of the present embodiment include polyethylene terephthalate, polybutylene terephthalate and polytrimethylene terephthalate as thermoplastic polyesters as representative examples.
  • the acid component may be a polyester obtained by polymerization or copolymerization of isophthalic acid, phthalic acid, or the like.
  • the thermoplastic polyester is further a biodegradable resin, for example, poly ( ⁇ -hydroxy acid) such as polyglycolic acid or polylactic acid, or a copolymer having these as main repeating unit elements. Also good. These resins may be used alone or in combination of two or more.
  • the content rate of the inorganic particle normally used as a matting agent for a thermoplastic synthetic fiber nonwoven fabric is so preferable that it is low.
  • the inorganic particles used as the matting agent any of synthetic products and natural products can be used without particular limitation.
  • the inorganic particles include oxide ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide and iron oxide, nitride ceramics such as silicon nitride, titanium nitride and boron nitride, and silicon carbide.
  • the preferred particle diameter range of the inorganic particles of the polyester resin constituting the polyester long fiber of the present embodiment is 1.0 ⁇ m or less, preferably 0.8 ⁇ m or less, more preferably 0.7 ⁇ m or less.
  • the particle diameter exceeds 1.0 ⁇ m not only the transparency of the nonwoven fabric is lowered, but also the spinning stability is deteriorated, so that spinning defects such as yarn breakage also increase.
  • the preferred content of inorganic particles in the polyester resin constituting the polyester continuous fiber of this embodiment is 0 to 100 ppm, preferably 0 to 50 ppm, more preferably 0 to 0.1 ppm.
  • titanium particles such as titanium oxide whose reaction activity is deactivated are used because they are inexpensive and versatile. It is preferable.
  • the preferred content is 0 to 100 ppm, preferably 0 to 50 ppm, more preferably 0 to 0.1 ppm. It is.
  • a super bright resin that is colorless and transparent without addition of inorganic inert particles such as titanium dioxide used as a matting agent, and a resin that does not use a titanium compound as a catalyst is preferable. By not using a titanium compound as a catalyst, the decomposition reaction of the resin during melt extrusion can be suppressed, and spinning defects such as yarn breakage can be suppressed.
  • the leakage of inclusions when the polyester long fiber nonwoven fabric of this embodiment is used as a packaging material can be defined by the distribution of pore diameters.
  • the representative value of the hole diameter can be expressed by the hole diameter at the 10% area ratio when the area of each hole in the nonwoven fabric image is accumulated in order from the largest area to the smaller area, and needs to be 1000 ⁇ m or less.
  • a preferred range is 30 ⁇ m or more and 6000 ⁇ m or less, a more preferred range is 400 ⁇ m or less, a further preferred range is 300 ⁇ m or less, and most preferred is 250 ⁇ m or less. Beyond this range, the fabric becomes coarse and powder inclusions cannot be prevented from leaking. On the other hand, below this range, the fabric becomes finer and the filter becomes less transparent. Moreover, since the fluid resistance of the filter increases, the extraction time increases when used as a food filter, which is not practical.
  • the difference between 2.3% and 10% points when the large pore size distribution is integrated from the maximum pore size must be 0 ⁇ m or more and 500 ⁇ m or less.
  • a preferred range is 300 ⁇ m or less, a more preferred range is 200 ⁇ m or less, and a further preferred range is 150 ⁇ m or less.
  • a fabric having a large pore size distribution such as a nonwoven fabric
  • a nonwoven fabric having excellent powder leakage can be obtained by setting the frequency of holes having a large diameter within this range.
  • an optimum pore size distribution for packaging tea leaves can be defined.
  • the shape has a long diameter and a short diameter, such as an ellipse rather than a perfect circle.
  • the surface is not a smooth sphere, so even if the hole area is the same, even if the hole has a long diameter and a short diameter, the tea leaves get caught around the hole and are difficult to leak.
  • the shape of relatively large holes contained in the nonwoven fabric that has a great influence on leakage of tea leaves and the like.
  • the shape of this hole can be represented by a value obtained by dividing the average of the long diameters of the holes from 2.3% to 10% by the average of the diameters of 2.3% to 10%.
  • the value is preferably 1.3 or more.
  • the transparency of the resin is the same, trying to suppress leakage of the contents while maintaining transparency is in a trade-off relationship, and transparency is the fiber surface area contained within a certain area, that is, the fiber diameter.
  • One method of suppressing the leakage of contents while ensuring transparency from this relationship is to reduce the diameter of the large pores contained in the nonwoven fabric, and the other is to reduce the shape of the holes to prevent the contents from leaking. Is to do. By having these two methods together, it is possible to obtain a nonwoven fabric that satisfies both the transparency and the leakage control of the contents.
  • the shape of the polyester continuous fiber of this embodiment can be any fiber cross-sectional shape according to its purpose and application, such as a hollow cross-section, a core-sheath composite cross-section, a split-type composite cross-section, and a flat cross-section in addition to a normal round cross-section. You can choose. Since the polyester continuous fiber nonwoven fabric of this embodiment is used in the shape of a bag such as a tea bag, it is preferable that the adhesive strength is high by heat sealing using a bag making machine. In order to obtain heat-sealability with good adhesive strength, heat sealing is achieved by laminating fibers containing a low-melting-point resin having a melting point of 240 ° C. or lower on at least one surface of the polyester long-fiber nonwoven fabric to provide a difference in melting point. Only the low melting point resin component is softened or melted during processing to function as an adhesive, and a high heat seal strength can be effectively obtained.
  • the melting point of the low melting point resin is 30 to 150 ° C. lower than the melting point of the high melting point resin, preferably 30 to 100 ° C.
  • the low melting point resin for example, an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, phthalic acid, or naphthalene dicarboxylic acid and a diol such as ethylene glycol, diethylene glycol, 1,4-butanediol, or cyclohexanedimethanol are polymerized.
  • aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, phthalic acid, or naphthalene dicarboxylic acid and a diol
  • ethylene glycol, diethylene glycol, 1,4-butanediol, or cyclohexanedimethanol examples thereof include aliphatic polyester resins such as copolyester resins and polylactic acid.
  • a composite fiber structure having two components such as a sheath core structure and side-by-side
  • a composite fiber structure having a high melting point in the core and a low melting point in the sheath specifically, a core Is preferably a high melting point resin such as polyethylene terephthalate or polybutylene terephthalate, and the sheath is preferably a low melting point resin such as copolymer polyester or aliphatic polyester.
  • the method of laminating low-melting fibers is, for example, a curtain spray method in which the resin is melted and a semi-molten resin or its fibrous material is applied to the nonwoven fabric, and the molten resin is discharged from a nozzle and applied to the nonwoven fabric.
  • the low melting point resin is, for example, used by copolymerizing a second type of aromatic dicarboxylic acid such as isophthalic acid, phthalic acid or naphthalene dicarboxylic acid when terephthalic acid is the main aromatic dicarboxylic acid.
  • a second type of aromatic dicarboxylic acid such as isophthalic acid, phthalic acid or naphthalene dicarboxylic acid when terephthalic acid is the main aromatic dicarboxylic acid.
  • the amount of the second kind of aromatic dicarboxylic acid with respect to the wholly aromatic dicarboxylic acid is 0 to 25%, preferably 0 to 22%, more preferably 0 to 18%. If an amount exceeding this range is added, the crystallinity is lowered and molecular orientation due to stretching does not occur, so that the spinning stability and the mechanical strength and dimensional stability when formed into a nonwoven fabric are lowered.
  • the polyester long fiber nonwoven fabric of this embodiment can be ultrasonically melted or heat-sealed.
  • the seal strength is preferably 0.1 N / 30 mm or more, more preferably 0.2 N / 30 mm or more.
  • the heat sealing conditions can be appropriately selected.
  • the heat sealing temperature conditions are preferably 5 to 80 ° C. lower than the melting point of the resin on the sealing surface.
  • other commonly used additive components within a range that does not impair the desired effect, for example, impact modifiers such as various elastomers, crystal nucleating agents, anti-coloring agents, antioxidants, heat stabilizers, plasticizers, lubricants Additives such as weathering agents, antibacterial agents, colorants, pigments and dyes can be added.
  • the polyester long fiber nonwoven fabric of this embodiment can be efficiently produced by a spunbond method. That is, the polyester-based resin is heated and melted and discharged from a spinneret, and the obtained spun yarn is cooled using a known cooling device, and pulled and thinned by a suction device such as an air soccer. Subsequently, the yarn group discharged from the suction device is opened and then deposited on a conveyor to form a web. Next, the web formed on the conveyor is partially subjected to thermocompression bonding using a partial thermocompression bonding apparatus such as a heated embossing roll to obtain a long fiber spunbond nonwoven fabric.
  • a partial thermocompression bonding apparatus such as a heated embossing roll
  • a method of charging fibers with a corona facility as disclosed in JP-A-11-131355 Using a device that controls the airflow, such as a dispersion plate (see Fig. 1), adjusts the velocity distribution of the airflow in the ejecting part of the ejector, etc. to open the fibers, and then blows the web to scatter the web It becomes a more preferable manufacturing method by using the method of laminating
  • the non-woven fabric obtained by the spunbond method has high fabric strength and has physical properties such as no short fibers falling off due to breakage of the bonding part, and because of low cost and high productivity, It is used in a wide range of applications, mainly in hygiene, civil engineering, architecture, agriculture / horticulture, and living materials.
  • the fiber diameter of the polyester long fiber of the present embodiment is 13 to 40 ⁇ m, preferably 15 to 40 ⁇ m, more preferably 18 to 35 ⁇ m, and particularly preferably 21 to 30 ⁇ m. If the fiber diameter is 13 ⁇ m or more, the transparency can be designed sufficiently. Also, if the fiber diameter is 40 ⁇ m or less, the fiber is not able to sufficiently withstand the ejector's tension during spinning, and the fiber diameter is less than 40 ⁇ m. Excellent in rigidity, component extraction, transparency, and sealing properties, and suitable as a food filter.
  • the surface area per area of the polyester non-woven fabric of this embodiment (that is, the specific surface area m 2 / g of the long-fiber non-woven fabric ⁇ g / m 2 of basis weight) is 1.0 to 3.5 (m 2 / m 2 ), more preferably 1.2 to 3.0 (m 2 / m 2 ), particularly preferably 1.3 to 2.7 (m 2 / m 2 ). If the surface area per area is 3.5 (m 2 / m 2 ) or less, the transparency can be designed sufficiently. In addition, if the surface area per area is 1.0 or more, a sufficient number of fibers can be obtained when it is made into a non-woven fabric. Therefore, when used as a food filter, mechanical strength, rigidity, component extractability, and sealing properties are improved. Excellent and suitable as a food filter.
  • the layer structure of the polyester long fiber nonwoven fabric of the present embodiment is not particularly limited as long as it is a method that is thermally / chemically integrated to become a nonwoven fabric, but may be a laminated nonwoven fabric.
  • thermoplastic resin melts and adheres to the heat rolls and hot plate heaters of the bag making equipment, resulting in a decrease in product quality and a reduction in processing speed. You won't get.
  • it is the nonwoven fabric structure of this embodiment it will become possible to produce without reducing quality and a production speed, expressing favorable sealing strength by arrange
  • the structure of the layer responsible for sealing properties is a single fiber structure such as a spunbond method, a meltblown method, a sheath core structure, side-by-side, split split fiber, etc.
  • a composite fiber structure made of the above can be used, but a structure in which a low melting point resin responsible for sealing performance is arranged on the fiber surface is preferable.
  • the core is a composite fiber structure having a high melting point and a sheath having a low melting point.
  • the core is a high melting point resin such as polyethylene terephthalate or polybutylene terephthalate
  • the sheath is a copolyester or aliphatic polyester. It is a nonwoven fabric with a sheath-core structure composed of a low melting point resin.
  • the production method of the layer responsible for mechanical strength is not particularly limited, but the spunbond method is preferred from the viewpoint of productivity and the like.
  • the production method and physical properties of the layer responsible for mechanical strength are produced by the above-described method, thereby making the nonwoven fabric more excellent in dimensional stability and mechanical strength. be able to.
  • the pressure bonding method in the case of using a laminated nonwoven fabric as the polyester long fiber nonwoven fabric of this embodiment is not particularly limited as long as the fibers can be integrated and formed into a nonwoven fabric. It is preferable to make it into a nonwoven fabric. By thermocompression bonding after laminating each layer, the adhesive strength between the layers can be further strengthened, and the mechanical strength and the sealing performance can be expressed more effectively.
  • the seal strength can be set to a more suitable range.
  • the specific sealing strength is 1.5 N / 30 mm or more, preferably 2.0 N / 30 mm or more, more preferably 2.5 N / 30 mm or more.
  • the mechanical strength that is, the tensile strength, can be set to a more suitable range, and the range is 15 N / 30 mm or more, preferably 20 N / 30 mm or more, more preferably 23 N / 30 mm or more.
  • thermocompression bonding of the polyester long-fiber non-woven fabric of this embodiment is not particularly limited as long as it is a method of press-bonding the yarn of the non-woven fabric with heat, but between a pair of heating rolls composed of an embossing roll and a flat roll having an uneven surface structure. Can be suitably carried out by allowing the nonwoven fabric to pass through and forming a thermocompression bonding portion evenly dispersed throughout the nonwoven fabric.
  • thermocompression bonding is performed with an embossing roll, it is preferable that thermocompression bonding is performed at a thermocompression area ratio in the range of 5 to 40% with respect to the total area of the nonwoven fabric, more preferably 7 to 30%, and still more preferably. 7-20%.
  • thermocompression treatment temperature and pressure should be appropriately selected according to conditions such as the basis weight and speed of the web to be supplied, and are not generally determined, but are 10 to 90 ° C. lower than the melting point of the polyester resin. It is preferable that the temperature is lower by 20 to 60 ° C.
  • thermocompression bonding In addition to using an embossing roll in the thermocompression bonding step, an air-through method can be used in which hot air is passed through the web and the yarn is crimped by heat.
  • thermocompression bonding is performed by the air-through method, the surface of the fabric has no unevenness such as an embossed shape, so that the apparent transparency of the nonwoven fabric can be further increased.
  • the boiling water shrinkage of the polyester long fiber nonwoven fabric of this embodiment is preferably 2.0% or less, more preferably 1.6% or less, still more preferably 1.0%, and particularly preferably 0.5% or less.
  • the lower limit is preferably 0%, but in reality it is 0.2% or more.
  • the transparency of the polyester long fiber nonwoven fabric of the present embodiment is preferably 60% or more, more preferably 65% or more, and further preferably 70% or more. If the transparency is less than 60%, it is difficult to see the state of the contents through the non-woven fabric, and it becomes unclear.
  • the basis weight of the polyester continuous fiber nonwoven fabric of this embodiment is 10 to 30 g / m 2 , preferably 12 to 25 g / m 2 . If the basis weight is 10 g / m 2 or more, sufficient mechanical strength can be secured while maintaining transparency and component extractability. On the other hand, if the basis weight is 30 g / m 2 or less, transparency and component extractability can be obtained.
  • the thickness of the polyester continuous fiber nonwoven fabric of this embodiment is preferably 0.02 to 0.50 mm, more preferably 0.03 to 0.30 mm. When the basis weight and thickness are within this range, excellent transparency, mechanical strength, and component extractability can be obtained when used as a food filter.
  • the average apparent density of the polyester continuous fiber nonwoven fabric of this embodiment is preferably 0.10 to 0.50 g / cm 3 , more preferably 0.12 to 0.30 g / cm 3 .
  • the average apparent density is related to the rigidity, transparency, powder leakage, and component extractability of the nonwoven fabric, and if it is in the above range, the fiber gap is appropriate, so it is suitable as a food filter.
  • the average apparent density is 0.10 g / cm 3 or more, the mechanical strength can be sufficiently achieved while adjusting the fiber gap and appropriately suppressing the amount of powder leakage.
  • the average apparent density is 0.50 g / cm 3 or less, the fiber gap will not be made too small, the component extractability will be kept moderate, and the product quality will be sufficient.
  • the tensile strength in the MD direction of the polyester continuous fiber nonwoven fabric of this embodiment is preferably 5 to 40 N / 30 mm, more preferably 6 to 40 N / 30 mm, and further preferably 7 to 40 N / 30 mm.
  • the tensile strength is above this range, it is excellent in production stability at the time of bag making and in preventing tearing when used as a food filter.
  • the formation coefficient of the polyester long fiber nonwoven fabric of this embodiment is preferably 0.5 to 2.0, more preferably 0.5 to 1.5.
  • the formation coefficient is related to strength, rigidity, transparency, powder leakage and component extractability in order to indicate the uniformity of the nonwoven fabric. Since the uniformity of the nonwoven fabric is optimal within the above range, the strength, rigidity, transparency, suitability for processing into a bag shape and powder leakage are excellent as a food filter.
  • the spinning temperature for obtaining the polyester continuous fiber of the present embodiment is preferably a temperature that is 10 to 60 ° C. higher than the melting point of the polyester resin, and more preferably a temperature that is 10 to 30 ° C. higher.
  • the spinning temperature is within this range, there is no occurrence of single yarn breakage and the like, and a nonwoven fabric having an appropriate orientation crystallinity and excellent mechanical strength and dimensional stability can be obtained.
  • the intrinsic viscosity (IV value) of the resin after making the nonwoven fabric of the polyester long fiber nonwoven fabric of this embodiment is preferably 0.6 or more, more preferably 0.65 or more, and further preferably 0.7 or more.
  • the resin pellets are melt-extruded, the resin is decomposed by a heat load during melting or a shear load during kneading. If the IV value of the resin after melting, that is, the non-woven fabric is in this range or more, decomposition of the resin can be suitably suppressed, and the stretching and crystallization of the resin during spinning can be promoted.
  • a nonwoven fabric excellent in mechanical strength and dimensional stability can be obtained.
  • the spinning speed for obtaining the polyester continuous fiber of this embodiment is preferably 3000 to 6000 m / min, and more preferably 3500 to 5000 m / min.
  • the pulling speed when pulling the spun yarn is within the above range, a polyester nonwoven fabric with sufficient oriented crystallization and excellent mechanical properties and dimensional stability can be obtained, and spinning. There is little possibility that thread breakage will occur inside, which is preferable from the viewpoint of productivity of the nonwoven fabric.
  • the draft ratio for obtaining the polyester continuous fiber of this embodiment is preferably 400 to 2500, and more preferably 700 to 2200. If the draft ratio when pulling and spinning the spun yarn is within the above range, a non-woven fabric excellent in mechanical properties and dimensional stability can be obtained with sufficient orientation crystallization of the polyester long fiber, and spinning. It is also preferable from the viewpoint of the productivity of the nonwoven fabric because it is less likely that thread breakage or “rolling” will occur during thermocompression.
  • the birefringence ⁇ n of the polyester long fiber of this embodiment is 0.04 to 0.12, preferably 0.06 to 0.1. When the birefringence is within this range, a nonwoven fabric having an appropriate fiber orientation and excellent mechanical strength and dimensional stability can be obtained.
  • the method for evaluating crystallinity is not particularly limited, for example, it can be measured by DSC crystallinity measurement, Raman spectroscopy, or the like.
  • the crystallinity of the polyester continuous fiber of this embodiment is 30 to 50%, preferably 40 to 50%. When the crystallinity is within this range, a fiber excellent in mechanical strength and dimensional stability can be obtained.
  • the average value of the full width at half maximum of the peak width is 18 to 24 cm ⁇ 1 , preferably 19 to 24 cm ⁇ 1 , and more preferably 20 to 23 cm ⁇ 1 .
  • the polyester continuous fiber of the present embodiment can have different crystallinity in the radial direction of the fiber, for example, high crystallinity of the outer peripheral portion and low internal crystallinity.
  • high crystallinity of the outer peripheral portion By increasing the crystallinity of the outer peripheral portion, it is possible to obtain a fiber that is difficult to shrink and has excellent mechanical strength, and by reducing the internal crystallinity, sufficient crimping strength between fibers can be obtained during thermocompression bonding. As a result, a nonwoven fabric excellent in mechanical strength and dimensional stability can be obtained. This can be confirmed by evaluating the melting peak when measuring the crystallinity by DSC.
  • FIG. 2 shows the relationship between the boiling water shrinkage and transparency of the polyester long fiber nonwoven fabric in the examples of the present invention.
  • the fine diameter is increased, the transparency can be increased, but since the orientation crystallization is difficult to proceed, the boiling water shrinkage ratio is increased and the dimensional stability is decreased.
  • 3 and 4 show the relationship between the draft ratio and spinning temperature, and the orientational crystallinity indicated by the birefringence index ( ⁇ n) and crystallinity, respectively, of the polyester long fiber nonwoven fabric in the examples of the present invention.
  • the draft ratio is increased, the oriented crystallinity of the fiber is increased.
  • the lower the spinning temperature the higher the cooling efficiency and the higher the drawing efficiency and the more the oriented crystallization of the fibers can proceed.
  • FIG. 5 shows the relationship between the intrinsic viscosity (IV value) of the polyester long-fiber nonwoven fabric resin in the examples of the present invention, the birefringence ( ⁇ n), and the oriented crystallinity indicated by the crystallinity.
  • the inventors of the present application have increased the oriented crystallinity while maintaining a large fiber diameter by lowering the spinning temperature and increasing the draft ratio. Achieved both improvement of transparency and shrinkage of boiling water. That is, in the non-woven fabric, the improvement in transparency and the improvement in dimensional stability expressed by the boiling water shrinkage ratio are in a contradictory relationship, but the present inventors set the fiber fine diameter and the oriented crystallinity in the optimum range. As a result, both the improvement of transparency and the improvement of dimensional stability were achieved.
  • the optimum range of oriented crystals can also be achieved by optimizing the intrinsic viscosity (IV value) of the resin used.
  • the range of the IV value for achieving this object is 0.7 or more, preferably 0.85 or less, and more preferably 0.72 to 0.8. If there is an intrinsic viscosity in this range, single yarn breakage does not occur and stable productivity can be secured, and high orientation crystallinity is obtained when the molten resin is pulled and refined, thereby further increasing dimensional stability. Property and mechanical strength can be obtained.
  • the polyester long fiber nonwoven fabric of this embodiment is preferably excellent in hydrophilicity so as to sink quickly without being floated on the surface when placed in hot water.
  • hydrophilic agent surfactants used for foods, for example, aqueous solutions such as sorbitan fatty acid ester, polyglycerin fatty acid ester, sucrose fatty acid ester, ethyl alcohol solution, or a mixed solution of ethyl alcohol and water are preferable.
  • a known method such as a gravure roll method, a kiss roll method, a dipping method, or a spray method can be applied.
  • the polyester long fiber nonwoven fabric of this embodiment may be subjected to conventional post-processing, for example, deodorant, antibacterial agent, etc., as long as the desired effect of the present invention is not impaired, dyeing, water repellency You may give a process, a water-permeable process, etc. Since the polyester long fiber nonwoven fabric of this embodiment is excellent in transparency, its contents are clearly visible, so it is excellent in design, and because of its excellent dimensional stability, it is a filter for food such as green tea, tea, coffee, etc. As a very suitable characteristic. As a food filter, a flat bag may be used, but a three-dimensional shape is preferable because the contents look better and extraction is performed effectively. As the three-dimensional shape, a tetrahedral shape, a triangular pyramid three-dimensional shape and the like are preferable.
  • Three-dimensional food filters are packed and sold after filling with the extractables, but they can be quickly returned to the original three-dimensional shape when the purchased consumer removes them from the bag and uses them. Required. Since the long fiber nonwoven fabric of the present invention is stiff and has an appropriate rigidity, the above requirements can be sufficiently satisfied.
  • Titanium element content (ppm) The titanium element content in the polyester resin was determined using an ICP emission spectrometer manufactured by Thermo Fisher Scientific.
  • Crystallinity (%) ( ⁇ Hm ⁇ Hc) /126.4 ⁇ 100 * 126.4 J / g is the heat of fusion of complete crystals of polyethylene terephthalate.
  • IV value Intrinsic viscosity
  • Thickness The thickness at a load of 100 g / cm 2 was measured by the method specified in JIS L-1906.
  • thermocompression bonding area ratio (10) Thermocompression bonding area ratio (%) A 1 cm square test piece was sampled and photographs were taken with an electron microscope, the area of the thermocompression bonding part was measured from each of the photographs, and the average value was taken as the area of the thermocompression bonding part. Moreover, the pitch of the pattern of the thermocompression bonding part was measured in MD direction and CD direction, and the ratio of the thermocompression bonding area per unit area of the nonwoven fabric was calculated as the thermocompression bonding area ratio based on these values.
  • Boiling water shrinkage (%) In accordance with JIS L-1906, test pieces of 25 cm length ⁇ 25 cm width were sampled at 3 locations per 1 m width of the sample, immersed in boiling water for 3 minutes, and subjected to natural drying to determine shrinkage in MD and CD directions. Each average value was calculated, and the larger shrinkage rate in the MD direction or the CD direction was taken as the boiling water shrinkage rate of the nonwoven fabric.
  • a test piece with a formation coefficient of 20 cm x 30 cm was collected, and a transmission image obtained by photographing a range of 18 cm x 25 cm with a CCD camera using a Nomura Corporation Formation Tester (FMT-MIII) measuring device was 128 x 128 pixels. The intensity of light received by each pixel was measured, and the transmittance was calculated.
  • Heat seal strength (N / 30mm) Using an autograph AGS-5G manufactured by Shimadzu Corporation, the heat-sealed part of a 30 mm wide sample was peeled off and attached approximately 50 mm in the vertical direction, extended at a grip length of 50 mm, and a pulling speed of 100 mm / min. The load was defined as strength, the measurement was performed five times in the MD direction of the nonwoven fabric, and the average value was obtained.
  • the heat seal conditions were a seal temperature of 210 ° C., a seal time of 1 second, a pressure of 0.5 MPa, and a seal area of 7 mm ⁇ 25 mm.
  • Draft ratio spinning speed (m / min) / discharge linear velocity (m / min)
  • Discharge linear velocity (m / min) single-hole discharge rate (g / min) / ⁇ melt density (g / cm 3 ) ⁇ [nozzle diameter (cm) / 2] 2 ⁇ ⁇ * Polyester melt density: 1.20 g / cm 3
  • Pore diameter ( ⁇ m) ((4 ⁇ S) / ⁇ ) ⁇ 0.5
  • S means the hole area ( ⁇ m ⁇ 2)
  • ⁇ 0.5 means "0.5th power”.
  • Example 1 A polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 247 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Polyester continuous fibers having a fiber diameter of 20.5 ⁇ m were obtained by melt spinning at a spinning speed of 4500 m / min and a draft ratio of 2120.
  • the polyester continuous fiber nonwoven fabric was obtained by partial thermocompression bonding at a thermocompression bonding area ratio of 15%.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 2 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that spinning was performed so that the fine diameter of the polyester long fiber was 25.7 ⁇ m in Example 1.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 3 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that spinning was performed so that the fine diameter of the polyester long fiber was 30.0 ⁇ m in Example 1.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 4 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 3 except that a resin having an IV value of 0.8 and a titanium oxide content of 12 ppm was used in Example 3. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 5 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 3 except that a resin having an IV value of 0.8 and a titanium oxide content of 70 ppm was used in Example 3. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 6 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 3 except that a resin having an IV value of 0.72 and a titanium oxide content of 0 ppm was used in Example 3. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 7 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 3 except that a resin having an IV value of 0.77 and a titanium oxide content of 0 ppm was used in Example 3. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 8 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 3 except that spinning was performed so that the basis weight of the polyester long fiber nonwoven fabric was 20 g / m 2 in Example 3.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 9 A polyester long fiber non-woven fabric was prepared in the same manner as in Example 1 except that melt spinning was performed at a spinning speed of 3770 m / min and a draft ratio of 707 in Example 1, and the polyester long fiber was spun so that the fiber diameter was 34.9 ⁇ m. Obtained.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 10 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 2 except that spinning was performed so that the basis weight of the polyester long fiber nonwoven fabric was 20 g / m 2 in Example 2 and the entire surface was thermocompression bonded with a flat roll.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 11 A polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 246 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Polyester continuous fibers having a fiber diameter of 30.1 ⁇ m were obtained by melt spinning at a spinning speed of 4000 m / min and a draft ratio of 942.
  • this fiber is spread and dispersed to produce a web having a basis weight of 20 g / m 2 , and between the embossing roll and the flat roll
  • the polyester continuous fiber nonwoven fabric was obtained by partial thermocompression bonding at a thermocompression bonding area ratio of 5%.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 12 A polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 246 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Polyester long fibers having a fiber diameter of 30.0 ⁇ m were obtained by melt spinning at a spinning speed of 4000 m / min and a draft ratio of 942. Next, this fiber was spread and dispersed to prepare a web having a basis weight of 12 g / m 2 , and a polyester continuous fiber nonwoven fabric was obtained by partial thermocompression bonding between an embossing roll and a flat roll at a thermocompression area ratio of 15%. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 13 A polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 246 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Using a dispersing device (inclination angle 4 ° with respect to the filaments of the flat plate), a polyester long fiber with a spinning speed of 4000 m / min and a draft ratio of 942 to control the polyester air fibers with a diameter of 26.7 ⁇ m to control a flat air flow is opened. Finely dispersed to prepare a web having a basis weight of 18 g / m 2 .
  • a polyester resin having a titanium element content of 12 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 217 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. to have a spinning hole with a circular cross section.
  • a dispersion device (inclination angle 4 ° with respect to the filament of the flat plate) is used to control a flat air flow of polyester filaments having a diameter of 15 ⁇ m by melt spinning from the spinneret at a spinning speed of 4150 m / min and a draft ratio of 412. Then, it was spread and dispersed to produce a web having a basis weight of 3 g / m 2 .
  • a two-layer web was partially thermocompressed between an embossing roll and a flat roll at a thermocompression area ratio of 15% to obtain a polyester long fiber nonwoven fabric.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 14 A polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 246 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Using a dispersing device (inclination angle of 4 ° with respect to the filament of the flat plate), a polyester long fiber having a spinning speed of 4000 m / min and melt spinning at a draft ratio of 942 and controlling a polyester-like fiber with a diameter of 24.6 ⁇ m to control a flat air flow is opened. A finely dispersed web having a basis weight of 10 g / m 2 was produced.
  • a polyester resin having a titanium element content of 12 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 254 ° C. is used as a core, with a titanium element content of 12 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 217 ° C.
  • the polyester resin as a sheath is supplied to a conventional melt spinning apparatus and melted at 275 ° C. and melt-spun at a spinning speed of 4500 m / min and a draft ratio of 895 from a spinneret having a spinning hole with a circular cross section.
  • a polyester long fiber having a fine diameter of 20 ⁇ m was spread and dispersed using a dispersing device (inclination angle of 4 ° with respect to the filament of the flat plate) to control a flat air flow to prepare a web having a basis weight of 8 g / m 2 .
  • a two-layer web was partially thermocompressed between an embossing roll and a flat roll at a thermocompression area ratio of 15% to obtain a polyester long fiber nonwoven fabric.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 15 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that spinning was performed so that the basis weight of the polyester long fiber nonwoven fabric was 18 g / m 2 in Example 1.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 16 Except that the basis weight of the polyester filament non-woven fabric is spun such that the 18 g / m 2 in Example 2, to obtain a polyester long fiber nonwoven fabric in the same manner as in Example 1.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 17 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that spinning was performed so that the basis weight of the polyester long fiber nonwoven fabric was 18 g / m 2 in Example 3.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 18 In Example 1, the basis weight of the polyester long-fiber non-woven fabric was 18 g / m 2 to obtain a first-layer non-woven fabric. On top of that, spinning was performed using PET resin having an IV value of 0.65, a titanium content of 0 ppm, and a melting point of 217 ° C. under a spinning temperature of 260 ° C. and heated air of 500 Nm 3 / hr / m. A melt-blown nonwoven fabric was sprayed onto the above spunbonded nonwoven fabric at a basis weight of 5 g / m 2 to obtain a laminate of nonwoven fabrics. The physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 19 the basis weight of the polyester long fiber nonwoven fabric was 18 g / m 2 to obtain a first layer nonwoven fabric.
  • spinning was performed using PET resin having an IV value of 0.65, a titanium content of 0 ppm, and a melting point of 217 ° C. under a spinning temperature of 255 ° C. and heated air of 400 Nm 3 / hr / m, and the resulting fiber diameter was 15 ⁇ m.
  • a melt-blown nonwoven fabric was sprayed onto the above spunbond nonwoven fabric at a basis weight of 4 g / m 2 to obtain a laminate of nonwoven fabrics.
  • Table 1 The physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 20 the basis weight of the polyester long fiber nonwoven fabric was 18 g / m 2 to obtain a first layer nonwoven fabric.
  • spinning was performed using PET resin having an IV value of 0.65, a titanium content of 0 ppm, and a melting point of 217 ° C. under a spinning temperature of 265 ° C. and heated air of 1000 Nm 3 / hr / m.
  • a melt-blown nonwoven fabric was sprayed onto the above spunbond nonwoven fabric at a basis weight of 4 g / m 2 to obtain a laminate of nonwoven fabrics.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 21 A polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 247 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Polyester continuous fibers having a fiber diameter of 14 ⁇ m were obtained by melt spinning at a spinning speed of 4500 m / min and a draft ratio of 230. Next, this fiber was spread and dispersed using a dispersing device (an inclination angle of 4 ° with respect to the flat filament) to control a flat air flow to prepare a web having a basis weight of 7.5 g / m 2 .
  • a dispersing device an inclination angle of 4 ° with respect to the flat filament
  • a polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 254 ° C. is used as a core, with a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 217 ° C.
  • the polyester resin as a sheath is supplied to a conventional melt spinning apparatus and melted at 275 ° C. and melt-spun at a spinning speed of 4500 m / min and a draft ratio of 380 from a spinneret having a spinning hole with a circular cross section.
  • Example 22 A polyester resin with a titanium element content of 12 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 247 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Polyester continuous fibers having a fiber diameter of 20.1 ⁇ m were obtained by melt spinning at a spinning speed of 4500 m / min and a draft ratio of 590. Next, this fiber was spread and dispersed using a dispersing device (an inclination angle of 4 ° with respect to the flat filament) to control a flat air flow to prepare a web having a basis weight of 7.5 g / m 2 .
  • a dispersing device an inclination angle of 4 ° with respect to the flat filament
  • a polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 254 ° C. is used as a core, with a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 217 ° C.
  • the polyester resin as a sheath is supplied to a conventional melt spinning apparatus and melted at 275 ° C. and melt-spun at a spinning speed of 4500 m / min and a draft ratio of 380 from a spinneret having a spinning hole with a circular cross section.
  • Example 23 A polyester resin with a titanium element content of 12 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 247 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Polyester continuous fibers having a fiber diameter of 24.6 ⁇ m were obtained by melt spinning at a spinning speed of 4500 m / min and a draft ratio of 740. Next, this fiber was spread and dispersed using a dispersing device (an inclination angle of 4 ° with respect to the flat filament) to control a flat air flow to prepare a web having a basis weight of 7.5 g / m 2 .
  • a dispersing device an inclination angle of 4 ° with respect to the flat filament
  • a polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 254 ° C. is used as a core, with a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 217 ° C.
  • the polyester resin as a sheath is supplied to a conventional melt spinning apparatus and melted at 275 ° C. and melt-spun at a spinning speed of 4500 m / min and a draft ratio of 380 from a spinneret having a spinning hole with a circular cross section.
  • Example 24 A polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 247 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Polyester continuous fibers having a fiber diameter of 20.1 ⁇ m were obtained by melt spinning at a spinning speed of 4500 m / min and a draft ratio of 550. Next, the fiber was spread and dispersed using a dispersing device (an inclination angle of 4 ° with respect to the flat filament) to control a flat air flow, thereby producing a web having a basis weight of 10 g / m 2 .
  • a dispersing device an inclination angle of 4 ° with respect to the flat filament
  • a polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 254 ° C. is used as a core, with a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 217 ° C.
  • the polyester resin as a sheath is supplied to a conventional melt spinning apparatus and melted at 275 ° C. and melt-spun at a spinning speed of 4500 m / min and a draft ratio of 450 from a spinneret having a spinning hole with a circular cross section.
  • a polyester long fiber having a fine diameter of 16 ⁇ m was spread and dispersed using a dispersing device (inclination angle of 4 ° with respect to the filament of the flat plate) to control a flat air flow to prepare a web having a basis weight of 5 g / m 2 .
  • a two-layer web was partially thermocompressed between an embossing roll and a flat roll at a thermocompression area ratio of 15% to obtain a polyester long fiber nonwoven fabric.
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 25 A polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 247 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Polyester continuous fibers having a fiber diameter of 20.1 ⁇ m were obtained by melt spinning at a spinning speed of 4500 m / min and a draft ratio of 590. Next, this fiber was spread and dispersed using a dispersing device (an inclination angle of 4 ° with respect to the flat filament) to control a flat air flow to prepare a web having a basis weight of 7.5 g / m 2 .
  • a dispersing device an inclination angle of 4 ° with respect to the flat filament
  • a polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 254 ° C. is used as a core, with a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 217 ° C.
  • the polyester resin as a sheath is supplied to a conventional melt spinning apparatus and melted at 275 ° C. and melt-spun at a spinning speed of 4500 m / min and a draft ratio of 450 from a spinneret having a spinning hole with a circular cross section.
  • a polyester long fiber having a fine diameter of 16 ⁇ m was spread and dispersed using a dispersing device (an inclination angle of 4 ° with respect to the filament of the flat plate) using a flat plate-like air flow to produce a web having a basis weight of 7.5 g / m 2 .
  • a two-layer web was partially thermocompressed between an embossing roll and a flat roll at a thermocompression area ratio of 15% to obtain a polyester long fiber nonwoven fabric.
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 26 A polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 247 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Polyester continuous fibers having a fiber diameter of 24.6 ⁇ m were obtained by melt spinning at a spinning speed of 4500 m / min and a draft ratio of 740. Next, this fiber was spread and dispersed using a dispersing device (an inclination angle of 4 ° with respect to the flat filament) to control a flat air flow to prepare a web having a basis weight of 7.5 g / m 2 .
  • a dispersing device an inclination angle of 4 ° with respect to the flat filament
  • a polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 254 ° C. is used as a core, with a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 217 ° C.
  • the polyester resin as a sheath is supplied to a conventional melt spinning apparatus and melted at 275 ° C. and melt-spun at a spinning speed of 4500 m / min and a draft ratio of 450 from a spinneret having a spinning hole with a circular cross section.
  • a polyester long fiber having a fine diameter of 16 ⁇ m was spread and dispersed using a dispersing device (an inclination angle of 4 ° with respect to the filament of the flat plate) using a flat plate-like air flow to produce a web having a basis weight of 7.5 g / m 2 .
  • a two-layer web was partially thermocompressed between an embossing roll and a flat roll at a thermocompression area ratio of 15% to obtain a polyester long fiber nonwoven fabric.
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 27 A polyester resin with a titanium element content of 12 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 247 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Polyester continuous fibers having a fiber diameter of 20.1 ⁇ m were obtained by melt spinning at a spinning speed of 4500 m / min and a draft ratio of 590. Next, this fiber was spread and dispersed using a dispersing device (inclination angle of 0 ° with respect to the flat plate filament) for controlling a flat air flow to produce a web having a basis weight of 7.5 g / m 2 .
  • a dispersing device inclination angle of 0 ° with respect to the flat plate filament
  • a polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 254 ° C. is used as a core, with a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 217 ° C.
  • the polyester resin as a sheath is supplied to a conventional melt spinning apparatus and melted at 275 ° C. and melt-spun at a spinning speed of 4500 m / min and a draft ratio of 450 from a spinneret having a spinning hole with a circular cross section.
  • the polyester continuous fiber having a fine diameter of 16 ⁇ m was spread and dispersed using a disperser (inclination angle of 0 ° with respect to the flat filament) to control a flat air flow, and a web having a basis weight of 7.5 g / m 2 was produced.
  • a two-layer web was partially thermocompressed between an embossing roll and a flat roll at a thermocompression area ratio of 15% to obtain a polyester long fiber nonwoven fabric.
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 28 A polyester continuous fiber non-woven fabric was obtained in the same manner as in Example 22 except that the inclination angle of the flat plate filament of the dispersing device for controlling the flat air flow was 0 °.
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 29 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 21 except that the layer using the low melting point resin was changed from a sheath core structure to a side-by-side structure.
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 30 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 24 except that the layer using the low melting point resin was changed from a sheath core structure to a side-by-side structure.
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 31 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 22 except that the layer using the low melting point resin was changed from a sheath core structure to a side-by-side structure.
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 32 A polyester continuous fiber nonwoven fabric was obtained in the same manner as in Example 21, except that the basis weight of each layer was 6 g / m 2 .
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 33 A polyester continuous fiber nonwoven fabric was obtained in the same manner as in Example 22 except that the basis weight of each layer was 6 g / m 2 .
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 34 A polyester continuous fiber nonwoven fabric was obtained in the same manner as in Example 23 except that the basis weight of each layer was 6 g / m 2 .
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 35 A polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 247 ° C. is supplied to a conventional melt spinning apparatus and melted at 275 ° C. Polyester continuous fibers having a fiber diameter of 20.1 ⁇ m were obtained by melt spinning at a spinning speed of 4500 m / min and a draft ratio of 590. Next, this fiber was spread and dispersed using a dispersing device (an inclination angle of 4 ° with respect to the flat filament) to control a flat air flow, thereby producing a web having a basis weight of 12 g / m 2 .
  • a dispersing device an inclination angle of 4 ° with respect to the flat filament
  • a polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 254 ° C. is used as a core, with a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 217 ° C.
  • the polyester resin as a sheath is supplied to a conventional melt spinning apparatus and melted at 275 ° C. and melt-spun at a spinning speed of 4500 m / min and a draft ratio of 450 from a spinneret having a spinning hole with a circular cross section.
  • polyester filaments having a fine diameter of 16 ⁇ m were spread and dispersed using a dispersing device (inclination angle 4 ° with respect to the filament of the flat plate) using a flat plate-like air flow to produce a web having a basis weight of 6 g / m 2 .
  • a two-layer web was partially thermocompressed between an embossing roll and a flat roll at a thermocompression area ratio of 15% to obtain a polyester long fiber nonwoven fabric.
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 36 A polyester continuous fiber nonwoven fabric was obtained in the same manner as in Example 25 except that the basis weight of each layer was 9 g / m 2 .
  • the physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 37 A polyester continuous fiber nonwoven fabric was obtained in the same manner as in Example 21 except that the basis weight of each layer was 9 g / m 2 .
  • the physical properties of the obtained nonwoven fabric are shown in Table 1 below.
  • Example 38 A polyester resin having a titanium element content of 12 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 247 ° C. is supplied to a conventional melt spinning apparatus and melted at 305 ° C. Polyester filaments having a fiber diameter of 10 ⁇ m were obtained by melt spinning at a spinning speed of 4500 m / min and a draft ratio of 230. Next, this fiber was spread and dispersed using a dispersing device (an inclination angle of 4 ° with respect to the flat filament) to control a flat air flow to prepare a web having a basis weight of 7.5 g / m 2 .
  • a dispersing device an inclination angle of 4 ° with respect to the flat filament
  • a polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 254 ° C. is used as a core, with a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 217 ° C.
  • the polyester resin as a sheath is supplied to a conventional melt spinning apparatus and melted at 275 ° C. and melt-spun at a spinning speed of 4500 m / min and a draft ratio of 380 from a spinneret having a spinning hole with a circular cross section.
  • Example 39 A polyester continuous fiber nonwoven fabric was obtained in the same manner as in Example 32 except that the fiber diameter of each layer was 13 ⁇ m. The physical properties of the obtained nonwoven fabric are shown in Table 2 below.
  • Example 1 A polyester long fiber nonwoven fabric is obtained in the same manner as in Example 1 except that the titanium element content in the polyester resin is 3000 ppm and the basis weight of the polyester long fiber is 20.0 g / m 2. However, the transparency of the nonwoven fabric was low, and sufficient transparency as a food filter could not be obtained. The physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • Example 2 The polyester long fiber melt-spun at a draft ratio of 545 in Example 1 was 12.0 ⁇ m, and the polyester long fiber was spun so that the basis weight of the polyester long fiber was 20 g / m 2. Although a long fiber nonwoven fabric was obtained, the transparency of the nonwoven fabric was low, and sufficient transparency as a food filter could not be obtained. The physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • Example 3 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 1 except that a polyester resin having a titanium element content of 12 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 253 ° C. was used. The physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • Example 4 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 2 except that a polyester resin having a titanium element content of 12 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 253 ° C. was used.
  • the physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • Example 5 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 3 except that a polyester resin having a titanium element content of 12 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 253 ° C. was used.
  • the physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • Example 6 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 4 except that a polyester resin having a titanium element content of 12 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 253 ° C. was used.
  • the physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • Example 7 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 3 except that a polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.65, and a melting point of 253 ° C. was used. The physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • a polyester resin having a titanium element content of 0 ppm, an intrinsic viscosity (IV) of 0.8, and a melting point of 246 ° C. is supplied to a conventional melt spinning apparatus and melted at 295 ° C.
  • Polyester continuous fibers having a fiber diameter of 30.3 ⁇ m were obtained by melt spinning at a spinning speed of 4000 m / min and a draft ratio of 191.
  • Example 1 a polyester continuous fiber nonwoven fabric was obtained by partial thermocompression bonding with a thermocompression area ratio of 15%, but sufficient dimensional stability as a food filter could not be obtained.
  • the physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • Comparative Example 9 In Comparative Example 8, the polyester long fiber melt-spun at a draft ratio of 345 was spun so that the diameter of the polyester long fiber was 50.0 ⁇ m and the basis weight of the polyester long fiber was 20 g / m 2. A nonwoven fabric could not be obtained. The physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • Example 10 A polyester long fiber nonwoven fabric was obtained in the same manner as in Example 3 except that the web was prepared so that the basis weight of the polyester long fiber in Example 3 was 40 g / m 2. As a filter, sufficient transparency could not be obtained.
  • the physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • Example 11 A polyester continuous fiber nonwoven fabric was obtained in the same manner as in Example 21 except that the titanium content of the resin was 3000 ppm. The physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • Comparative Example 12 A polyester continuous fiber nonwoven fabric was obtained in the same manner as in Comparative Example 11 except that the IV value of the resin was 0.7. The physical properties of the obtained nonwoven fabric are shown in Table 3 below.
  • a polyester continuous fiber nonwoven fabric was obtained by partial thermocompression bonding. The physical properties of the obtained nonwoven fabric are shown in Table 3 below. In addition, when the obtained nonwoven fabric was heat-sealed, severe resin contamination occurred on the sealer.
  • Example 14 A polyester continuous fiber nonwoven fabric was obtained in the same manner as in Example 21 except that the basis weight of each layer was 10 g / m 2 . Table 3 shows the physical properties of the obtained nonwoven fabric.
  • Example 15 A polyester continuous fiber nonwoven fabric was obtained in the same manner as in Example 26 except that the basis weight of each layer was 4 g / m 2 . Table 3 shows the physical properties of the obtained nonwoven fabric.
  • the single-layer or multi-layer polyester long-fiber nonwoven fabric of the present invention is excellent in transparency, dimensional stability, powder leakage, and component extractability, it can be suitably used as a food filter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Packages (AREA)
  • Tea And Coffee (AREA)
  • Filtering Materials (AREA)

Abstract

 透明性、寸法安定性、粉漏れ性、及び成分抽出性に優れた単層又は複層ポリエステル長繊維不織布、及びそれを用いた食品用フィルターの提供。本発明に係る単層又は複層ポリエステル長繊維不織布は、無機系粒子の含有量が0~100ppmであり、10%点孔径が1000μm未満であり、10%点孔径と2.3%点孔径の差が500以下であり、かつ、目付が10~30g/m2である。

Description

単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター
 本発明は、透明性、寸法安定性、粉漏れ性、及び成分抽出性に優れた単層又は複層ポリエステル長繊維不織布、並びにこれを用いた飲料向け抽出用の食品用フィルターに関する。
 従来、包装材料として、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の樹脂からなる不織布が使用されている。しかしながら、一般的に不織布のフィルター性等の遮蔽機能を活用するために繊維を緻密にすることが要求され、内部を確認することができない。また、紅茶、緑茶、烏龍茶等の成分抽出を行う場合、簡便な方法としてティーバッグ方式が多く利用されている。ティーバッグ用途に使用されている包装材料には一般に紙が多く用いられているが、透明性が悪くて包装材料の中身が見えないこと、ヒートシール加工できない等の問題点がある。
 以下の特許文献1には、透明性を改良したティーバッグ用不織布が開示されているが、寸法安定性に関する記載は無く、特に留意されたものではない。更に、粉洩れに対する評価としてバブルポイント法(JIS-K-3832)により測定される最大孔径が用いられているが、測定に適した孔径範囲はナノからマイクロメートルオーダーであり、かつ、圧力を換算して孔径を表現しているため、実際に使用される茶葉に対して適した評価手法ではない。
 また、以下の特許文献2には、ポリL乳酸からなる繊度が15~35dtexのティーバッグ用生分解性モノフィラメントが開示されているが、繊度が大きいために透明性は高いが、モノフィラメントの沸水収縮率が20%以下であり、寸法安定性が低いという問題点がある。
 さらに、以下の特許文献3には、ポリオレフィン系重合体を鞘成分とし、前記鞘成分よりも融点の高いポリエステル系重合体を芯成分とする芯鞘型の複合長繊維からなるヒートシール性に優れた不織布が開示されているが、寸法安定性が低く、また、透明性に関する記載は無く、特に留意されたものではない。
特許第3939326号公報 特開2001-131826号公報 特開平11-43855号公報
 本発明は、前記従来技術の問題に鑑み、透明性、寸法安定性、粉漏れ性、及び成分抽出性に優れたポリエステル長繊維不織布、並びにこれを用いた食品用フィルターを提供することである。
 本発明者らは、上記の課題を解決すべく鋭意検討し実験を重ねた結果、特定範囲のチタン元素含有量を有するポリエステル系樹脂を選定し、不織布を構成する繊維の構造と繊径、目付、熱圧着面積率の観点から詳細な検討を行い、紡糸性が良好で食品用フィルターとして成分抽出性に優れ、且つ、透明性と寸法安定性の両方が良好である不織布が得られることを見出した。更に粉漏れ性の評価として不織布を直接観察することで算出される孔径を用いて定義することで、本発明を完成するに至ったものである。
 すなわち、本発明は以下の通りのものである。
 [1]無機系粒子の含有量が0~100ppmであり、10%点孔径が1000μm未満であり、10%点孔径と2.3%点孔径の差が500以下であり、かつ、目付が10~30g/m2である単層又は複層ポリエステル長繊維不織布。
 [2]熱圧着面積率が5~40%であり、且つ、平均見掛け密度が0.1~0.5g/cm3である、前記[1]に記載の単層又は複層ポリエステル長繊維不織布。
 [3]平均繊維径が13~40μmである、前記[1]又は[2]に記載の単層又は複層ポリエステル長繊維不織布。
 [4]少なくとも1層がラマンスペクトルにおいて観測される1740cm-1付近のC=O基によるピーク巾の半値全幅の平均値が18~24cm-1の繊維で構成される、前記[1]~[3]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [5]少なくとも1層が結晶化度が30~50%である繊維から構成される、前記[1]~[4]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [6]少なくとも1層が、複屈折率0.04~0.12の繊維で構成される、前記[1]~[5]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [7]透明性が60%以上である、前記[1]~[6]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [8]沸水収縮率が2.0%以下である、前記[1]~[7]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [9]地合係数が0.5~2.0である、前記[1]~[8]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [10]少なくとも1等が引張強度が5N/30mm以上である、前記[1]~[9]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [11]少なくとも1層が融点240℃以下の低融点繊維を含有する、前記[1]~[10]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [12]下記a層とb層を熱圧着により一体化された積層不織布からなる、前記[1]~[11]のいずれかに記載のポリエステル長繊維不織布。
   a層:高融点樹脂と融点差が30℃~150℃の低融点樹脂からなるポリエステル長繊維不織布
   b層:前記高融点樹脂からなるポリエステル長繊維不織布
 [13]前記ポリエステル長繊維不織布の繊維の配向性が断面方向に異なる構造をもつ、前記[1]~[12]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [14]少なくとも1層がイソフタル酸を0~25%含む樹脂からなる、前記[1]~[13]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [15]前記無機系粒子が酸化チタンである、前記[1]~[14]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [16]チタン元素含有量0~0.1ppmの樹脂からなる、前記[15]に記載の単層又は複層ポリエステル長繊維不織布。
 [17]不織布とした後の樹脂のIV値が0.6以上である、前記[1]~[16]のいずれかに記載の単層又は複層ポリエステル長繊維不織布。
 [18]前記[1]~[17]のいずれかに記載の単層又は複層ポリエステル長繊維不織布からなる食品用フィルター。
 本発明に係る単層又は複層ポリエステル長繊維不織布を構成する繊維の紡糸性は良好であり、該繊維からなる不織布を用いて製造した食品用フィルターは、成分抽出性に優れ、透明性、寸法安定性、更には耐粉漏れ性も良好である。
板状の分散板等のような気流を制御する装置の一例を示す概略図である。 沸水収縮率と透明性との関係を示すグラフである。 ドラフト比と配向結晶性との関係を示すグラフである。 紡糸温度と配向結晶性との関係を示すグラフである。 樹脂IV値と配向結晶性との関係を示すグラフである。
 以下、本発明の実施形態について詳細に説明する。
 本実施形態のポリエステル長繊維不織布を構成するポリエステル長繊維を構成するポリエステル系樹脂としては、熱可塑性ポリエステルとして、ポリエチレンテレフタレート、ポリブチレンテレフタレートやポリトリメチレンテレフタレートが代表例として挙げられるが、エステルを形成する酸成分としてイソフタル酸やフタル酸等が重合又は共重合されたポリエステルであってもよい。熱可塑性ポリエステルは、更には、生分解性を有する樹脂、例えば、ポリグリコール酸やポリ乳酸のようなポリ(α―ヒドロキシ酸)、又はこれらを主たる繰り返しの単位要素とする共重合体であってもよい。これらの樹脂は、単独で用いてもよく又は2種以上を組み合わせてもよい。
 本実施形態のポリエステル長繊維不織布は、透明性が高い(隠蔽性が低い) 程好ましいので、熱可塑性合成繊維不織布に通常艶消し剤として用いられる無機系粒子の含有率は低い程好ましい。
 艶消し剤として用いられる無機粒子としては、合成品及び天然産物のいずれでも、特に限定なく用いることができる。無機粒子としては、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛及び酸化鉄などの酸化物系セラミックス、窒化ケイ素、窒化チタン及び窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、水酸化マグネシウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、オーディナイト、モンモリロナイト、バイデライト、ノントロナイト、ボルコンスコアイト、サポナイト、ソーコナイト、スインホルダイト、バーミキュライト、バーチェリン、セリサイト、アメサイト、ケリアイト、フレイポナイト、ブリンドリアイト、ベントナイト、ゼオライト、黒雲母、金雲母、鉄雲母、イーストナイト、シデロフィライトテトラフェリ鉄雲母、鱗雲母、ポリリシオナイト、白雲母、セラドン石、鉄セラドン石、鉄アルミノセラドン石、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土及びケイ砂等の、セラミックス及びガラス繊維が挙げられる。これらの無機粒子は、1種を単独で又は2種以上を組み合わせて用いられる。樹脂への反応活性の観点から、用いる無機粒子は酸化チタン、ステアリン酸マグネシウム、ステアリン酸カルシウム等の不活性無機粒子が好ましい。
 本実施形態のポリエステル長繊維を構成するポリエステル系樹脂の無機系粒子の好適な粒子径の範囲は1.0μm以下であり、好ましくは0.8μm以下、より好ましくは0.7μm以下である。粒子径が1.0μmを超えると、不織布として透明性が低くなるだけではなく、紡糸の安定性も悪くなるため、糸切れなどの紡糸欠点も増加する。
 本実施形態のポリエステル長繊維を構成するポリエステル系樹脂に無機系粒子の好適な含有量は0~100ppmであり、好ましくは0~50ppmであり、より好ましくは0~0.1ppmである。繊維中の無機粒子の含有量を上記の範囲内とすることで、不織布の透明性を十分に確保することが可能となる。さらに、無機系粒子を触媒として用いた場合、上記の範囲内とすることで、溶融押出時の樹脂の分解反応が抑制され、糸切れなどの紡糸欠点を抑制することができる。
 本実施形態のポリエステル長繊維を構成するポリエステル系樹脂に艶消し剤として用いる無機系粒子としては、安価で汎用的であることから、反応活性を失活させた酸化チタンなどのチタン系粒子を用いることが好ましい。本実施形態のポリエステル長繊維を構成するポリエステル系樹脂に無機系粒子としてチタン元素を用いる場合、好適な含有量は0~100ppmであり、好ましくは0~50ppmであり、より好ましくは0~0.1ppmである。
 具体的には、艶消し剤として用いる二酸化チタン等の無機系不活性粒子の添加をしない無色透明であるスーパーブライト樹脂、更にはチタン化合物を触媒として用いていない樹脂であることが好ましい。チタン化合物を触媒として用いないことにより、溶融押出時の樹脂の分解反応が抑制され、糸切れなどの紡糸欠点を抑制することができる。
 本実施形態のポリエステル長繊維不織布を包装材とした際の内包物の漏れ性は孔径の分布により定義できる。
 孔径の代表値は、不織布画像中の各孔の面積について、最大面積から小さい面積に順に積算した際の面積率10%点での孔径で表現することができ、1000μm以下である必要がある。好ましい範囲は30μ以上6000μm以下、より好ましい範囲は400μm以下、更に好ましい範囲は300μm以下、最も好ましくは250μm以下である。この範囲以上では布帛の目が粗くなるため、内包物の粉漏れを抑止できなくなる。他方、この範囲以下では布帛の目が細かくなるため、フィルターの透明性が低くなる。また、フィルターの流体抵抗が上がる為、食品用フィルターとして用いた時に抽出時間が多くなり、実用的ではない。
 径の大きな孔径分布を最大孔径から積算した際の2.3%と10%点の差は0μm以上500μm以下である必要がある。好ましい範囲は300μm以下、より好ましい範囲は200μm以下、更に好ましい範囲は150μm以下である。不織布の様な孔径分布の大きい布帛の場合、径の大きな孔の頻度をこの範囲内とすることで、粉漏れ性の優れた不織布とすることができる。更に、前記10%孔径の範囲と併せることで、茶葉を包装するために最適な孔径分布を定義することができる。
 また、同じ孔面積の孔の場合、形状は真円より楕円の様に長い径と短い径が存在する方が好ましい。茶葉等の内容物を包装する場合、表面が滑らかな真球ではないので同じ孔面積であっても長い径と短い径が存在する孔の場合は孔周辺に茶葉がひっかかり、漏れにくくなる。特に、茶葉等の漏れに影響が大きいのは、該不織布に含まれる比較的大きな孔の形状である。この孔の形状は、2.3%孔径から10%孔径までの孔の長径の平均を、2.3%孔径から10%孔径までの孔径の平均で割った値で示すことができる。該値が、1.3以上であることが好ましい。一般的に樹脂の透明性が同一であれば、透明性を保ちながら内容物の漏れを抑制しようとすると、トレードオフの関係にあり、透明性は一定面積内に含まれる繊維表面積、すなわち繊維径が細く目付が大きいほど悪くなるが、内容物の漏れ性は小さくなる。この関係より透明性を確保しながら内容物の漏れ性を抑制する一つの方法は、不織布に含まれる大孔径を少なくすることであり、もう一つの方法は孔の形状を内容物の漏れにくい形にすることである。この二つの方法を併せ持つことで、より透明性と内容物の漏れ性抑制の両方を満たす不織布を得ることができる。
 本実施形態のポリエステル長繊維の形状は、通常の丸断面の他にも中空断面、芯鞘型複合断面、分割型複合断面、扁平断面等、その目的と用途に応じて任意の繊維断面形状を選択することができる。
 本実施形態のポリエステル長繊維不織布は、ティーバッグ等の袋形状にして用いるために、製袋機によるヒートシール加工で接着強度が高いことが好ましい。接着強度の良好なヒートシール性を得るためには、ポリエステル長繊維不織布の少なくとも一方の面に、融点240℃以下の低融点樹脂を含む繊維を積層して、融点差を設けることにより、ヒートシール加工時に低融点樹脂成分だけが軟化又は溶融して接着剤として機能し、高いヒートシール強度を効果的に得ることができる。
 前記低融点樹脂の融点は、高融点樹脂の融点よりも30~150℃低温であり、好ましくは30~100℃低温である。低融点樹脂としては、例えば、テレフタル酸、イソフタル酸、フタル酸、ナフタリンジカルボン酸等の芳香族ジカルボン酸と、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、シクロヘキサンジメタノール等のジオールとが重合された共重合ポリエステル系樹脂やポリ乳酸などの脂肪族ポリエステル系樹脂等が挙げられる。さらに、繊維構造として単成分の他に、鞘芯構造やサイドバイサイド等の2成分からなる複合繊維構造、例えば、芯が高融点で鞘が低融点の複合繊維構造であり、具体的には、芯がポリエチレンテレフタレートやポリブチレンテレフタレート等の高融点樹脂、鞘が共重合ポリエステルや脂肪族ポリエステル等の低融点樹脂が好ましい。低融点繊維を積層する方法は、例えば、前記樹脂を融解させて、半溶融状態の樹脂又はその繊維状物を不織布に塗布するカーテンスプレー方式、融解した樹脂をノズルより吐出させて不織布に塗布するコーティング方式、または、高融点繊維ウェブと低融点繊維ウェブを積層してから、熱ロール等で接合して積層不織布を得る方法等が挙げられる。
 低融点樹脂は、例えば、テレフタル酸を主たる芳香族ジカルボン酸を成分とした際に、イソフタル酸、フタル酸、ナフタリンジカルボン酸等の第2種の芳香族ジカルボン酸を共重合して用いられる。この際の全芳香族ジカルボン酸に対する第二種の芳香族ジカルボン酸の量は0~25%、好ましくは0~22%、より好ましくは0~18%である。この範囲を超えた量を添加すると、結晶性低くなり、更に延伸による分子配向が起こらなくなるため、紡糸安定性や不織布にした際の機械的強度や寸法安定性が低くなる。
 本実施形態のポリエステル長繊維不織布は、超音波溶断、又はヒートシールできることが好ましい。シール強度は、0.1N/30mm以上が好ましく、より好ましくは0.2N/30mm以上である。ヒートシール条件は適宜選択することができ、例えば、ヒートシールの温度条件は、シール面の樹脂の融点から5~80℃低温であることが好ましい。
 さらに、所望の効果を損なわない範囲で他の常用の各種添加成分、例えば、各種エラストマー類等の衝撃性改良剤、結晶核剤、着色防止剤、酸化防止剤、熱安定剤、可塑剤、滑剤、耐候剤、抗菌剤、着色剤、顔料、染料等の添加剤を添加することができる。
 本実施形態のポリエステル長繊維不織布は、スパンボンド法にて効率よく製造することができる。すなわち、前記のポリエステル系樹脂を加熱溶融して紡糸口金から吐出させ、得られた紡出糸条を公知の冷却装置を用いて冷却し、エアーサッカー等の吸引装置にて牽引細化する。引き続き、吸引装置から排出された糸条群を開繊させた後、コンベア上に堆積させてウェブとする。次いで、このコンベア上に形成されたウェブに加熱されたエンボスロール等の部分熱圧着装置を用いて部分的に熱圧着を施すことにより、長繊維スパンボンド不織布が得られる。
 スパンボンド法を用いる場合、特に限定されないが、ウェブの均一性を向上させるために、例えば、特開平11-131355に開示されているようなコロナ設備等により繊維を帯電させる方法や、平板状の分散板等のような気流を制御する装置(図1参照)を用いてエジェクターの噴出し部分の気流の速度分布を調整する等をして繊維を開繊させた後にウェブを吹き付け、ウェブの飛散を抑制しながら捕集面に積層する方法を用いることで更に好ましい製法となる。
 スパンボンド法で得られる不織布は、布強度が強く、かつ、ボンディング部の破損による短繊維の脱落がない等の物性上の特徴を有しており、また、低コストで生産性が高いため、衛生、土木、建築、農業・園芸、生活資材を中心に広範な用途で使用されている。
 本実施形態のポリエステル長繊維の繊維径は13~40μmであり、好ましくは15~40μmであり、より好ましくは18~35μm、特に好ましい範囲は21~30μmである。繊維径が13μm以上であれば、透明性を十分なものに設計できる。また、紡糸時においてエジェクターの張力に繊維が十分に耐えることができずに繊維の一部が切れる恐れが少ない繊維径が40μm以下であれば、不織布化し、食品用フィルターとして用いる際、機械的強度や剛性、成分抽出性、透明性、シール性に優れ、食品用フィルターとして適している。
 本実施形態のポリエステル長繊維不織布の面積当たりの表面積(すなわち、長繊維不織布の比表面積m2/g×目付g/m2)は1.0~3.5(m2/m2)であり、より好ましくは1.2~3.0(m2/m2)、特に好ましい範囲は1.3~2.7(m2/m2)である。面積当たりの表面積が3.5(m2/m2)以下であれば、透明性を十分なものに設計できる。また、面積当たりの表面積が1.0以上であれば、不織布化した際に、十分な繊維本数を得ることができるため、食品用フィルターとして用いる際、機械的強度や剛性、成分抽出性、シール性に優れ、食品用フィルターとして適している。
 本実施形態のポリエステル長繊維不織布の層構成は、熱的に/化学的に一体化され、不織布となる方法であれば特に限定されないが、積層不織布であることができる。この際、各層の担う役割を分けた層構成にすることが好ましい。例えば、第1層をヒートシール強力の高い層、他方を引張強度、剛性、寸法安定性など機械的強力に優れた層とすることで、製袋時に求められるシール特性に優れ、かつ機械的物性にも優れた不織布とすることができる。また不織布を袋状に製袋する工程において、機械的強力とシール特性を1層のみの構成で両立させた構成の不織布を用いると、熱接着加工により袋物を製造する工程において、高温にて加熱、圧着処理を施すため、製袋設備の熱ロールや熱板ヒーターに熱可塑性樹脂が溶融、付着し、製品品質の低下や加工速度の低下が起こり、これを改善しようとすると、所望のシール強力を得られなくなる。これに対し、本実施形態の不織布構成であれば、シール層を内面に配置することで、良好なシール強力を発現しつつ、品質、生産速度を落とすことなく生産をすることが可能となる。
 本実施形態のポリエステル長繊維不織布として積層不織布を用いる場合、シール性を担う層の構造は、スパンボンド法、メルトブロウン法などの単繊維構造や鞘芯構造やサイドバイサイド、分割割繊等の2成分からなる複合繊維構造を用いることができるが、シール性能を担う低融点樹脂が繊維表面に配置されている構造であるほうが好ましい。例えば、芯が高融点で鞘が低融点の複合繊維構造であり、具体的には、芯がポリエチレンテレフタレートやポリブチレンテレフタレート等の高融点樹脂、鞘が共重合ポリエステルや脂肪族ポリエステル等の前述した低融点樹脂で構成される鞘芯構造の不織布である。
 本実施形態のポリエステル長繊維不織布として積層不織布を用いる場合、機械的強力を担う層の製法は特に限定はされないが、生産性などの観点から、スパンボンド法であることが好ましい。
 特に、本実施形態のポリエステル長繊維不織布として積層不織布を用いる場合、機械的強力を担う層の製法、物性は前記方法で生産することで、より寸法安定性、機械的強力に優れた不織布とすることができる。
 本実施形態のポリエステル長繊維不織布として積層不織布を用いた場合の圧着方法は、繊維同士を一体化させ、不織布化可能であれば特に限定されないが、各層を積層させた後に熱ロールなどで熱圧着させて不織布化することが好ましい。各層を積層させた後に熱圧着することで、層間の接着強力をより強固にすることができ、機械的強力やシール性能をより効果的に発現可能とすることができる。
 本実施形態における積層不織布の層構成を前述の様な積層構成とすることで、シール強力は更に好適な範囲とすることができる。具体的なシール強力としては、1.5N/30mm以上であり、好ましくは2.0 N/30mm以上、より好ましくは2.5 N/30mm以上である。
 また、機械的強力、即ち引張強度も更に好適な範囲とすることができ、その範囲は15N/30mm以上であり、好ましくは20N/30mm以上、より好ましくは23N/30mm以上である。
 本実施形態のポリエステル長繊維不織布の熱圧着は、不織布の糸と糸を熱で圧着させる方法であれば特に限定されないが、凹凸の表面構造を有するエンボスロールとフラットロールからなる一対の加熱ロール間に不織布を通過させ、不織布全体に均等に分散された熱圧着部を形成させることにより好適に行うことができる。エンボスロールにより熱圧着を行う場合、不織布全面積に対して5~40%の範囲における熱圧着面積率での熱圧着が行われることが好ましく、より好ましくは7~30%であり、さらに好ましくは7~20%である。
 熱圧着面積率がこの範囲内であると良好な繊維相互間の熱圧着処理を行うことができ、得られる不織布の適度な機械的強度や剛性、透明性、成分抽出性、寸法安定性を図る上で好ましい。熱圧着処理温度及び圧力は、供給されるウェブの目付、速度等の条件によって適宜選択されるべきものであり、一概には定められないが、ポリエステル系樹脂の融点よりも10~90℃低い温度であることが好ましく、より好ましくは20~60℃低い温度である。
 前記熱圧着工程でエンボスロールを用いる以外に、熱風をウェブに通過させることで糸と糸を熱で圧着するエアスルー法を用いることができる。エアスルー法で熱圧着した場合、布帛表面にエンボス形状の様な部分的な凹凸が無くなるため、不織布の見た目の透明感をより高くすることができる。
 本実施形態のポリエステル長繊維不織布の沸水収縮率は、2.0%以下であることが好ましく、より好ましくは1.6%以下、更に好ましくは1.0%、特に好ましい範囲は0.5%以下である。沸水収縮率が2.0%以下であると熱成型加工等での収縮がほとんど無く、工程安定性に優れ、また、100℃近い高温環境下にさらされるような使用形態でも形態保持性に優れる。下限は0%が好ましいが、現実的には0.2%以上である。
 本実施形態のポリエステル長繊維不織布の透明性は、好ましくは60%以上であり、より好ましくは65%以上、さらに好ましくは70%以上である。透明性が60%未満では、不織布を通じて中身の状態が見えにくく、不鮮明になる。
 本実施形態のポリエステル長繊維不織布の目付は、10~30g/m2であり、好ましくは12~25g/m2である。目付が10g/m2以上であれば、透明性・成分抽出性を保ちながら機械的強度も充分確保できる。一方、目付が30g/m2以下であれば、透明性・成分抽出性を得ることができる。
 本実施形態のポリエステル長繊維不織布の厚みは、0.02~0.50mmが好ましく、より好ましくは0.03~0.30mmである。目付と厚みがこの範囲内にあると食品用フィルターとして使用する際に優れた透明性、機械的強度、成分抽出性が得られる。
 本実施形態のポリエステル長繊維不織布の平均見掛け密度は、0.10~0.50g/cm3が好ましく、より好ましくは0.12~0.30g/cm3である。平均見掛け密度は、不織布の剛性、透明性、粉漏れ性及び成分抽出性に関係し、上記の範囲であると繊維間隙が適度であるため、食品用フィルターとして適している。平均見掛け密度が0.10g/cm3以上であれば、繊維間隙を調整し粉漏れ量を適度に抑えながら、機械的強度も充分にできる。一方、平均見掛け密度が0.50g/cm3以下であれば繊維間隙を小さくしすぎず、成分抽出性を適度に保ち、製品品位を充分にできる。
 本実施形態のポリエステル長繊維不織布のMD方向の引張強度は5~40N/30mmであることが好ましく、6~40N/30mmであることがより好ましく、更に好ましくは7~40N/30mmである。引張強度がこの範囲以上であると製袋加工時の生産安定性や食品用フィルターとしての使用時に破れ防止等に優れる。
 本実施形態のポリエステル長繊維不織布の地合係数は、0.5~2.0が好ましく、より好ましくは0.5~1.5である。地合係数は、不織布の均一性を示すため、強度、剛性、透明性、粉漏れ性及び成分抽出性に関係する。上記の範囲であると不織布の均一性が最適であるため、食品用フィルターとしての強度、剛性、透明性、袋形状への加工適性及び粉漏れ性に優れる。
 本実施形態のポリエステル長繊維を得る際の紡糸温度は、ポリエステル系樹脂の融点よりも10~60℃高い温度であることが好ましく、より好ましくは10~30℃高い温度である。紡糸温度がこの範囲であると単糸切れ等の発生が無く、配向結晶性が適度で、機械的強度や寸法安定性に優れた不織布が得られる。
 本実施形態のポリエステル長繊維不織布の不織布とした後の樹脂の固有粘度(IV値)は、0.6以上であることが好ましく、より好ましくは0.65以上、更に好ましくは0.7以上である。樹脂ペレットを溶融押出しする際に、溶融時の熱負荷や混練時のせん断負荷などで樹脂が分解する。溶融した後、即ち不織布とした後の樹脂のIV値がこの範囲以上の場合であれば、樹脂の分解を好適に抑制でき、紡糸時の樹脂の延伸、結晶化を促進することができるため、機械的強度、寸法安定性に優れた不織布とすることができる。
 本実施形態のポリエステル長繊維を得る際の紡糸速度は、3000~6000m/minが好ましく、より好ましくは3500~5000m/minである。紡出糸条を牽引細化する際の牽引速度が上記の範囲内であると、ポリエステル長繊維の配向結晶化が十分で機械的特性や寸法安定性に優れた不織布が得られ、且つ、紡糸中に糸切れが発生する可能性が少なく、不織布の生産性の点からも好ましい。
 本実施形態のポリエステル長繊維を得る際のドラフト比は、400~2500が好ましく、より好ましくは700~2200である。紡出糸条を牽引細化する際のドラフト比が上記の範囲内であると、ポリエステル長繊維の配向結晶化が十分で機械的特性や寸法安定性に優れた不織布が得られ、且つ、紡糸中に糸切れや、熱圧着時の「ロール取られ」が発生する可能性が低いため、不織布の生産性の点からも好ましい。
 本実施形態のポリエステル長繊維の複屈折率Δnは、0.04~0.12であり、好ましくは0.06~0.1である。複屈折率がこの範囲であると、繊維の配向性が適度で、機械的強度や寸法安定性に優れた不織布が得られる。
 結晶性を評価する方法は特に限定されないが、例えば、DSCによる結晶化度測定や、ラマン分光測定法などで測定できる。
 本実施形態のポリエステル長繊維の結晶化度は、30~50%であり、好ましくは、40~50%である。結晶化度がこの範囲内であると、機械的強度や寸法安定性に優れた繊維が得られる。
 本実施形態のポリエステル長繊維の結晶性をラマン分光法により実施する場合、繊維断面のラマンスペクトルにおいて観測される1740cm-1付近のC=O基によるピーク巾の半値全幅の平均値で評価することができる。ピーク巾の半値全幅の平均値は、18~24cm-1であり、好ましくは、19~24cm-1であり、より好ましい範囲は20~23cm-1である。ピーク巾の半値全幅の平均値がこの範囲にあると、機械的強度や寸法安定性に優れた繊維が得られる。
 本実施形態のポリエステル長繊維は繊維の半径方向に異なった結晶性、例えば、外周部の結晶性を高く、内部の結晶性を低くすることができる。外周部の結晶性を高くすることで収縮しにくく機械的強度に優れた繊維とすることができ、かつ、内部の結晶性を低くすることで、熱圧着時に繊維同士の圧着強度を十分にえることができ、その結果機械的強度や寸法安定性に優れた不織布とすることができる。これはDSCによる結晶化度測定時に融解ピークを評価することで確認することができる。
 図2に、本発明の実施例におけるポリエステル長繊維不織布の沸水収縮率と透明性との関係を示す。繊径を大きくすると透明性を高くできるが、配向結晶化が進みにくいために沸水収縮率が大きくなり、寸法安定性が低くなる。
 図3と4に、本発明の実施例におけるポリエステル長繊維不織布の、それぞれ、ドラフト比及び紡糸温度と、複屈折率(Δn)及び結晶化度で示される配向結晶性との関係を示す。ドラフト比を大きくするほど、繊維の配向結晶性が増加する。また、太繊径の紡糸条件では、紡糸温度を低温化するほど、冷却性が高まることで延伸効率が上がり、繊維の配向結晶化を進行させることができる。
 図5に、本発明の実施例におけるポリエステル長繊維不織布の樹脂の固有粘度(IV値)と複屈折率(Δn)及び結晶化度で示される配向結晶性との関係を示す。樹脂のIV値を高くすることで、樹脂の配向結晶化が促進され、繊維の配向結晶化を進行させることができる。
 これらのデータから、本発明の所望の効果を奏するよう鋭意研究した結果、本願発明者らは、紡糸温度の低温化とドラフト比拡大により太繊径を維持しつつ、配向結晶性を高めることで、透明性と沸水収縮率の向上の両立を達成した。即ち、不織布において透明性の向上と沸水収縮率に表わされる寸法安定性の向上とは相反する関係にあるが、本発明者らは繊維の太繊径化と配向結晶性とを最適範囲とすることによって透明性の向上と寸法安定性の向上の両立を達成した。
 さらに、本発明では用いる樹脂の固有粘度(IV値)を最適化することでも配向結晶の最適範囲を達成することができる。本目的を達成するためのIV値の範囲は0.7以上であり、好ましくは0.85以下であり、さらに好ましくは0.72~0.8の範囲である。この範囲に固有粘度があれば、単糸切れなどが発生せず安定した生産性を確保でき、かつ、溶融した樹脂を牽引細化した際に高い配向結晶性をえることで、更に高い寸法安定性及び機械的強力を得ることができる。
 本実施形態のポリエステル長繊維不織布は、お湯の中に入れた際に、表面に浮くことなく、速やかに沈むように、親水性に優れていることが好ましい。親水剤としては、食品用として用いられる界面活性剤、例えば、ソルビタン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ショ糖脂肪酸エステルなどの水溶液、エチルアルコール溶液、又はエチルアルコールと、水の混合溶液等が好ましい。塗布する方法は、グラビアロール方式、キスロール方式、浸漬方式、スプレー方式などの公知の方法を適用することができる。
 本実施形態のポリエステル長繊維不織布には、本発明の所望の効果を損なわない範囲で、常用の後加工、例えば、消臭剤、抗菌剤等の付与をしてもよいし、染色、撥水加工、透水加工等を施してもよい。
 本実施形態のポリエステル長繊維不織布は、透明性に優れているために中身が鮮明に見えるので意匠性に優れ、かつ、寸法安定性に優れているために緑茶、紅茶、コーヒー等の食品用フィルターとして非常に適した特性を有している。食品用フィルターとしては、平袋でもよいが、立体形状であると、中身が一層良く見え、抽出が効果的に行われるので好ましい。立体形状としては、四面体形状、三角錐立体形状等が好ましい。
 立体形状の食品用フィルターは、被抽出物を充填し封入した後、袋詰めされて販売されるが、購入した消費者が袋から取り出して使用する時には、速やかに元の立体形状に戻ることが要求される。本発明の長繊維不織布は、コシがあり、適度な剛性を有しているため、上記のような要求を十分に満足することができる。
 以下、実施例により本発明を具体的に説明するが、本発明は、これらにより何ら限定されるものではない。尚、用いた測定方法、評価方法等は下記の通りであった。
(1)チタン元素含有量(ppm)
 サーモフィッシャーサイエンティフィック社製のICP発光分析装置を用い、ポリエステル樹脂中のチタン元素含有量を求めた。
(2)平均繊維径(μm)
 キーエンス社製のマイクロスコープ顕微鏡(VH-8000)を用い、繊維の直径を1000倍に拡大して測定し、各20本の平均値で求めた。
(3)複屈折率(Δn)
 OLYMPUS社製のBH2型偏光顕微鏡コンペンセーターを用いて、通常の干渉縞法によってレターデーションと繊維径より牽引直後の繊維の複屈折率を求めた。
(4)結晶化度(%)
 PerkinElmer社製の示差走査熱量計DSC6000を用い、昇温速度を10℃/minで、40℃から300℃に昇温して結晶化発熱量ΔHc、結晶融解熱量ΔHmを測定した。結晶化度(%)は下記式により求めた:
   結晶化度χc(%)=(ΔHm-ΔHc)/126.4×100
*126.4J/gはポリエチレンテレフタレートの完全結晶の融解熱量である。
(5)半値全幅(cm-1)
 Renishaw社製の顕微ラマン分光装置を用い、励起光532nm、励起光強度10%でスペクトルを測定した。スペクトルにおいて観察される1740cm-1付近のC=O基によるピーク巾の半値全幅を求めた。
(6)固有粘度(IV値)
 JIS K-7367-5に準拠して測定した。
(7)目付(g/m2
 JIS L-1906に準拠して測定した。
(8)厚み(mm)
 JIS L-1906に規定の方法で荷重100g/cm2の厚みを測定した。
(9)平均見掛け密度(g/cm3
 JIS L-1906に規定の方法で測定した目付と厚みから単位体積当たりの質量を求めた:
   平均見掛け密度(g/cm3)=(目付g/m2)/((厚みmm)×1000)
(10)熱圧着面積率(%)
 1cm角の試験片をサンプリングして電子顕微鏡で写真を撮影し、その各写真より熱圧着部の面積を測定し、その平均値を熱圧着部の面積とした。また、熱圧着部のパターンのピッチをMD方向及びCD方向において測定し、これらの値により、不織布の単位面積当たりに占める熱圧着面積の比率を熱圧着面積率として算出した。
(11)透明性(%)
 マクベス分光光度計(CE-7000A型:サカタインク製)で反射率(L値)を測定し、標準白板のL値(Lw0)と標準黒板のL値(Lb0)の差を求めて基準とし、試料を白板上に置いたL値(Lw)と同様に黒板状に置いたL値(Lb)から下記式に従って透明性を求めた:
   透明性(%)={(Lw-Lb)/(Lw0-Lb0)}×100
(12)沸水収縮率(%)
 JIS L-1906に準拠し、縦25cm×横25cmの試験片を試料の幅1m当たり3箇所採取し、沸騰水中に3分間浸漬し、自然乾燥後にMD方向及びCD方向の収縮率を求めた。それぞれの平均値を算出し、MD方向とCD方向のいずれか大きい方の収縮率をその不織布の沸水収縮率とした。
(13)引張強度(N/30mm)
 島津製作所社製オートグラフAGS-5G型を用いて、30mm幅の試料を把握長100mm、引張速度300mm/minで伸長し、得られる破断時の荷重を強度とし、不織布のMD方向について5回測定を行い、その平均値を求めた。
(14)地合係数
 20cm×30cmの試験片を採取し、野村商事製フォーメーションテスター(FMT-MIII)測定器を用い、CCDカメラにより18cm×25cmの範囲を撮影した透過像を128×128の画素に分解し、各々の画素の受ける光の強さを測定し、透過率を算出した。地合係数は、測定サンプルの各微小部位(5mm×5mm)の透過率の標準偏差(σ)を平均透過率(E)で除した値であり、微小単位目付のバラツキを表し、値が小さいほど均一性が高いことを示す。
   地合係数=σ/E×100
(15)ヒートシール強度(N/30mm)
 島津製作所社製オートグラフAGS-5G型を用いて30mm幅の試料のヒートシール部分を約50mm上下方向に剥離して取り付け、把握長50mm、引張速度100mm/minで伸長し、得られる破断時の荷重を強度とし、不織布のMD方向について5回測定を行い、その平均値を求めた。ヒートシール条件は、シール温度210℃、シール時間1秒、圧力0.5MPa、シール面積7mm×25mmであった。
(16)ドラフト比
 下記式からドラフト比を算出した:
   ドラフト比=紡速(m/min)/吐出線速度(m/min)
   吐出線速度(m/min)=単孔吐出量(g/min)/{溶融密度(g/cm3)×[紡口径(cm)/2]2×π}
*ポリエステルの溶融密度:1.20g/cm3を使用
(17)ポリエステル長繊維不織布の面積当たりの表面積
 長繊維不織布の比表面積m2/g×目付g/m2により求めた。
 長繊維不織布の比表面積(m2/g)は、島津製作所(株)の自動比表面積測定機ジェミニ2360で求めた。また、比表面積が、0.1m2/gを下回る場合は、下記の式により求めた。
   表面積(m2/m2)=4×目付(g/m2)/樹脂の密度(g/cm3)/繊維径(μm)
 繊維径が2種類以上のシートの場合、各繊維径の表面積を合計した。
(18)10%孔径
 1つのサンプルから2cm角の資料を10枚切り出し、SEM観察用のイオンスパッタリング装置で白金蒸着し、透過光にて100倍の倍率で1試料中10か所の不織布画像を撮影した。画像を画像解析ソフトにて不織布部分を黒色、孔部分を白色に二値化し、画像中のすべての孔の面積と最長径を数値化した。画像解析ソフトは、旭化成エンジニアリング製「A像くん(TM)」を用いた。1つのサンプル画像中の、すべての孔を、最大面積から小さい面積に順に並べて積算し、全孔面積の10%に到達した点の孔面積から、該面積と等しい面積の円の直径として、下記の式により孔径を求めた。
   孔径(μm) = ((4×S)/π)^0.5
    上記式で、Sは孔面積(μm^2)、「^0.5」は「0.5乗」を意味する。
(19)2.3%孔径
 上記10%孔径の代わりに、全孔面積の2.3%に到達した点の孔面積から孔径を求めた。
(20)長径/孔径
 1つのサンプル画像中の、すべての孔を、最大面積から小さい面積に順に並べて積算し、全孔面積の2.3%に達する孔から10%に達する孔の間に含まれるすべての孔の、長径の平均と孔径の平均を求め、下記の式により求めた。
   長径/孔径 = 長径の平均 / 孔径の平均
[実施例1]
 チタン元素含有量が0ppm、固有粘度(IV)が0.8、融点が247℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比2120にて溶融紡糸して繊径が20.5μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付12g/m2のウェブを作製し、エンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例2]
 実施例1においてポリエステル長繊維の繊径が25.7μmとなるように紡糸したこと以外は、実施例1と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例3]
 実施例1においてポリエステル長繊維の繊径が30.0μmとなるように紡糸したこと以外は、実施例1と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例4]
 実施例3においてIV値0.8、酸化チタン含有量が12ppmの樹脂を用いたこと以外は、実施例3と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例5]
 実施例3においてIV値0.8、酸化チタン含有量が70ppmの樹脂を用いたこと以外は、実施例3と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例6]
 実施例3においてIV値0.72、酸化チタン含有量が0ppmの樹脂を用いたこと以外は、実施例3と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例7]
 実施例3においてIV値0.77、酸化チタン含有量が0ppmの樹脂を用いたこと以外は、実施例3と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例8]
 実施例3においてポリエステル長繊維不織布の目付が20g/m2となるように紡糸したこと以外は、実施例3と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例9]
 実施例1において紡糸速度3770m/min、ドラフト比707にて溶融紡糸し、ポリエステル長繊維の繊径が34.9μmとなるように紡糸したこと以外は、実施例1と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例10]
 実施例2においてポリエステル長繊維不織布の目付が20g/m2となるように紡糸し、フラットロールにて全面熱圧着したこと以外は、実施例2と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例11]
 チタン元素含有量が0ppm、固有粘度(IV)が0.8、融点が246℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4000m/min、且つ、ドラフト比942にて溶融紡糸して繊径が30.1μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付20g/m2のウェブを作製し、エンボスロールとフラットロール間において熱圧着面積率5%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例12]
 チタン元素含有量が0ppm、固有粘度(IV)が0.8、融点が246℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4000m/min、且つ、ドラフト比942にて溶融紡糸して繊径が30.0μmのポリエステル長繊維を得た。次に、この繊維を開繊分散して目付12g/m2のウェブを作製し、エンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例13]
 チタン元素含有量が0ppm、固有粘度(IV)が0.8、融点が246℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4000m/min、且つ、ドラフト比942にて溶融紡糸して繊径が26.7μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付18g/m2のウェブを作製した。次に、チタン元素含有量が12ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4150m/min、且つ、ドラフト比412にて溶融紡糸して繊径が15μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付3g/m2のウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例14]
 チタン元素含有量が0ppm、固有粘度(IV)が0.8、融点が246℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4000m/min、且つ、ドラフト比942にて溶融紡糸して繊径が24.6μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付10g/m2のウェブを作製した。次に、チタン元素含有量が12ppm、固有粘度(IV)が0.65、融点が254℃であるポリエステル系樹脂を芯とし、チタン元素含有量が12ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を鞘として、常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比895にて溶融紡糸して繊径が20μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付8g/m2のウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例15]
 実施例1においてポリエステル長繊維不織布の目付が18g/m2となるように紡糸したこと以外は、実施例1と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例16]
 実施例2においてポリエステル長繊維不織布の目付が18g/m2となるように紡糸したこと以外は、実施例1と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例17]
 実施例3においてポリエステル長繊維不織布の目付が18g/m2となるように紡糸したこと以外は、実施例1と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例18]
 実施例1においてポリエステル長繊維不織布の目付が18 g/m2となるようにし、第一層目の不織布とした。その上に、IV値0.65、チタン含有量0ppm、融点217℃のPET樹脂を用いて、紡糸温度260℃、加熱空気500Nm/hr/mの条件下で紡糸し、得られた繊維径10μmのメルトブロウン不織布を上記のスパンボンド不織布上に目付5g/m2で吹き付け不織布の積層体を得た。得られた不織布の物性を以下の表1に示す。
[実施例19]
 実施例2においてポリエステル長繊維不織布の目付が18 g/m2となるようにし、第一層目の不織布とした。その上に、IV値0.65、チタン含有量0ppm、融点217℃のPET樹脂を用いて、紡糸温度255℃、加熱空気400Nm/hr/mの条件下で紡糸し、得られた繊維径15μmのメルトブロウン不織布を上記のスパンボンド不織布上に目付4g/m2で吹き付け不織布の積層体を得た。得られた不織布の物性を以下の表1に示す。
[実施例20]
 実施例3においてポリエステル長繊維不織布の目付が18 g/m2となるようにし、第一層目の不織布とした。その上に、IV値0.65、チタン含有量0ppm、融点217℃のPET樹脂を用いて、紡糸温度265℃、加熱空気1000Nm/hr/mの条件下で紡糸し、得られた繊維径7μmのメルトブロウン不織布を上記のスパンボンド不織布上に目付4g/m2で吹き付け不織布の積層体を得た。得られた不織布の物性を以下の表1に示す。
[実施例21]
 チタン元素含有量が0ppm、固有粘度(IV)が0.8、融点が247℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比230にて溶融紡糸して繊径が14μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。次に、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が254℃であるポリエステル系樹脂を芯とし、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を鞘として、常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比380にて溶融紡糸して繊径が14μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例22]
 チタン元素含有量が12ppm、固有粘度(IV)が0.8、融点が247℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比590にて溶融紡糸して繊径が20.1μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。次に、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が254℃であるポリエステル系樹脂を芯とし、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を鞘として、常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比380にて溶融紡糸して繊径が14μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例23]
 チタン元素含有量が12ppm、固有粘度(IV)が0.8、融点が247℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比740にて溶融紡糸して繊径が24.6μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。次に、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が254℃であるポリエステル系樹脂を芯とし、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を鞘として、常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比380にて溶融紡糸して繊径が14μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例24]
 チタン元素含有量が0ppm、固有粘度(IV)が0.8、融点が247℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比550にて溶融紡糸して繊径が20.1μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付10g/m2のウェブを作製した。次に、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が254℃であるポリエステル系樹脂を芯とし、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を鞘として、常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比450にて溶融紡糸して繊径が16μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付5g/m2のウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例25]
 チタン元素含有量が0ppm、固有粘度(IV)が0.8、融点が247℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比590にて溶融紡糸して繊径が20.1μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。次に、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が254℃であるポリエステル系樹脂を芯とし、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を鞘として、常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比450にて溶融紡糸して繊径が16μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例26]
 チタン元素含有量が0ppm、固有粘度(IV)が0.8、融点が247℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比740にて溶融紡糸して繊径が24.6μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。次に、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が254℃であるポリエステル系樹脂を芯とし、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を鞘として、常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比450にて溶融紡糸して繊径が16μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例27]
 チタン元素含有量が12ppm、固有粘度(IV)が0.8、融点が247℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比590にて溶融紡糸して繊径が20.1μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角0°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。次に、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が254℃であるポリエステル系樹脂を芯とし、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を鞘として、常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比450にて溶融紡糸して繊径が16μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角0°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例28]
 平板状の気流を制御する分散装置の平板のフィラメントに対する傾斜角を0°としたこと以外は実施例22と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例29]
 低融点樹脂を用いた層を鞘芯構造からサイドバイサイド構造としたこと以外は実施例21と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例30]
 低融点樹脂を用いた層を鞘芯構造からサイドバイサイド構造としたこと以外は実施例24と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例31]
 低融点樹脂を用いた層を鞘芯構造からサイドバイサイド構造としたこと以外は実施例22と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例32]
 各層の目付を6g/m2としたこと以外は実施例21と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例33]
 各層の目付を6g/m2としたこと以外は実施例22と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例34]
 各層の目付を6g/m2としたこと以外は実施例23と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例35]
 チタン元素含有量が0ppm、固有粘度(IV)が0.8、融点が247℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比590にて溶融紡糸して繊径が20.1μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付12g/m2のウェブを作製した。次に、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が254℃であるポリエステル系樹脂を芯とし、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を鞘として、常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比450にて溶融紡糸して繊径が16μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付6g/m2のウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例36]
 各層の目付を9g/m2としたこと以外は実施例25と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例37]
 各層の目付を9g/m2としたこと以外は実施例21と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表1に示す。
[実施例38]
 チタン元素含有量が12ppm、固有粘度(IV)が0.8、融点が247℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して305℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比230にて溶融紡糸して繊径が10μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。次に、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が254℃であるポリエステル系樹脂を芯とし、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を鞘として、常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/min、且つ、ドラフト比380にて溶融紡糸して繊径が14μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付7.5g/m2のウェブを作製した。2層のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[実施例39]
 各層の繊維径を13μmとしたこと以外は実施例32と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表2に示す。
[比較例1]
 実施例1においてポリエステル系樹脂のチタン元素含有量を3000ppmとし、ポリエステル長繊維の目付が20.0g/m2となるように紡糸したこと以外は、実施例1と同様にしてポリエステル長繊維不織布を得たが、不織布の透明性が低く、食品用フィルターとして十分な透明性を得ることができなかった。得られた不織布の物性を以下の表3に示す。
[比較例2]
 実施例1においてドラフト比545で溶融紡糸したポリエステル長繊維の繊径を12.0μmとし、ポリエステル長繊維の目付が20g/m2となるように紡糸したこと以外は、実施例1と同様にしてポリエステル長繊維不織布を得たが、不織布の透明性が低く、食品用フィルターとして十分な透明性を得ることができなかった。得られた不織布の物性を以下の表3に示す。
[比較例3]
 チタン元素含有量が12ppm、固有粘度(IV)が0.65、融点が253℃であるポリエステル系樹脂を用いたこと以外は実施例1と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表3に示す。
[比較例4]
 チタン元素含有量が12ppm、固有粘度(IV)が0.65、融点が253℃であるポリエステル系樹脂を用いたこと以外は実施例2と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表3に示す。
[比較例5]
 チタン元素含有量が12ppm、固有粘度(IV)が0.65、融点が253℃であるポリエステル系樹脂を用いたこと以外は実施例3と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表3に示す。
[比較例6]
 チタン元素含有量が12ppm、固有粘度(IV)が0.65、融点が253℃であるポリエステル系樹脂を用いたこと以外は実施例4と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表3に示す。
[比較例7]
 チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が253℃であるポリエステル系樹脂を用いたこと以外は実施例3と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表3に示す。
[比較例8]
 チタン元素含有量が0ppm、固有粘度(IV)が0.8、融点が246℃であるポリエステル系樹脂を常用の溶融紡糸装置に供給して295℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4000m/min、且つ、ドラフト比191にて溶融紡糸して繊径が30.3μmのポリエステル長繊維を得た。次に、この繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付20/m2のウェブを作製し、エンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得たが、食品用フィルターとして十分な寸法安定性を得ることができなかった。得られた不織布の物性を以下の表3に示す。
[比較例9]
 比較例8においてドラフト比345で溶融紡糸したポリエステル長繊維の繊径を50.0μmとし、ポリエステル長繊維の目付が20g/m2となるように紡糸したが、ロールでの収縮が大きく、ポリエステル長繊維不織布を得ることができなかった。得られた不織布の物性を以下の表3に示す。
[比較例10]
 実施例3においてポリエステル長繊維の目付が40g/m2となるようにウェブを作製したこと以外は、実施例3と同様にしてポリエステル長繊維不織布を得たが、不織布の透明性が低く、食品用フィルターとして十分な透明性を得ることができなかった。得られた不織布の物性を以下の表3に示す。
[比較例11]
 樹脂のチタン含有量を3000ppmとした以外は実施例21と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表3に示す。
[比較例12]
 樹脂のIV値を0.7とした以外は比較例11と同様にしてポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表3に示す。
[比較例13]
 チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が254℃であるポリエステル系樹脂を芯とし、チタン元素含有量が0ppm、固有粘度(IV)が0.65、融点が217℃であるポリエステル系樹脂を鞘として、常用の溶融紡糸装置に供給して275℃で溶融し、円形断面の紡糸孔を有する紡糸口金から紡糸速度4500m/minにて溶融紡糸して繊径が14μmのポリエステル長繊維を平板状の気流を制御する分散装置〔平板のフィラメントに対する傾斜角4°〕を用い、開繊分散して目付15g/m2のウェブをエンボスロールとフラットロール間において熱圧着面積率15%で部分熱圧着することによりポリエステル長繊維不織布を得た。得られた不織布の物性を以下の表3に示す。尚、得られた不織布のヒートシールした際に、シーラーに激しく樹脂汚れが発生した。
[比較例14]
 各層の目付を10g/m2としたこと以外は実施例21と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を表3に示す。
[比較例15]
 各層の目付を4g/m2としたこと以外は実施例26と同様の方法でポリエステル長繊維不織布を得た。得られた不織布の物性を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 本発明の単層又は複層ポリエステル長繊維不織布は透明性、寸法安定性、粉漏れ性、及び成分抽出性に優れるため、食品用フィルターとして好適に利用可能である。

Claims (18)

  1.  無機系粒子の含有量が0~100ppmであり、10%点孔径が1000μm未満であり、10%点孔径と2.3%点孔径の差が500以下であり、かつ、目付が10~30g/m2である単層又は複層ポリエステル長繊維不織布。
  2.  熱圧着面積率が5~40%であり、且つ、平均見掛け密度が0.1~0.5g/cm3である、請求項1に記載の単層又は複層ポリエステル長繊維不織布。
  3.  平均繊維径が13~40μmである、請求項1又は2に記載の単層又は複層ポリエステル長繊維不織布。
  4.  少なくとも1層がラマンスペクトルにおいて観測される1740cm-1付近のC=O基によるピーク巾の半値全幅の平均値が18~24cm-1の繊維で構成される、請求項1~3のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  5.  少なくとも1層が、結晶化度が30~50%である繊維から構成される、請求項1~4のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  6.  少なくとも1層が、複屈折率0.04~0.12の繊維で構成される、請求項1~5のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  7.  透明性が60%以上である、請求項1~6のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  8.  沸水収縮率が2.0%以下である、請求項1~7のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  9.  地合係数が0.5~2.0である、請求項1~8のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  10.  少なくとも1層の引張強度が5N/30mm以上である、請求項1~9のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  11.  少なくとも1層が融点240℃以下の低融点繊維を含有する、請求項1~10のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  12.  下記a層とb層を熱圧着により一体化された積層不織布からなる、請求項1~11のいずれか1項に記載のポリエステル長繊維不織布。
       a層:高融点樹脂と融点差が30℃~150℃の低融点樹脂からなるポリエステル長繊維不織布
       b層:前記高融点樹脂からなるポリエステル長繊維不織布
  13.  前記ポリエステル長繊維不織布の繊維の配向性が断面方向に異なる構造をもつ、請求項1~12のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  14.  少なくとも1層がイソフタル酸を0~25%含む樹脂からなる、請求項1~13のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  15.  前記無機系粒子が酸化チタンである、請求項1~14のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  16.  チタン元素含有量0~0.1ppmの樹脂からなる、請求項15に記載の単層又は複層ポリエステル長繊維不織布。
  17.  不織布とした後の樹脂のIV値が0.6以上である、請求項1~16のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布。
  18.  請求項1~17のいずれか1項に記載の単層又は複層ポリエステル長繊維不織布からなる食品用フィルター。
PCT/JP2016/060739 2015-04-03 2016-03-31 単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター WO2016159266A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177025786A KR101952528B1 (ko) 2015-04-03 2016-03-31 단층 또는 복층 폴리에스테르 장섬유 부직포 및 그것을 이용한 식품용 필터
GB1716072.2A GB2555721B (en) 2015-04-03 2016-03-31 Single-layer or multilayer nonwoven fabric of long polyester fibers, and filter comprising same for food
CN201680015024.1A CN107429459B (zh) 2015-04-03 2016-03-31 单层或多层聚酯长纤维无纺布以及使用其的食品用过滤器
JP2017510207A JP6657189B2 (ja) 2015-04-03 2016-03-31 単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-077130 2015-04-03
JP2015077130 2015-04-03

Publications (1)

Publication Number Publication Date
WO2016159266A1 true WO2016159266A1 (ja) 2016-10-06

Family

ID=57005941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060739 WO2016159266A1 (ja) 2015-04-03 2016-03-31 単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター

Country Status (6)

Country Link
JP (2) JP6657189B2 (ja)
KR (1) KR101952528B1 (ja)
CN (1) CN107429459B (ja)
GB (1) GB2555721B (ja)
TW (1) TWI624571B (ja)
WO (1) WO2016159266A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626324A4 (en) * 2017-05-20 2021-01-06 Ohki Co., Ltd. FILM FOR INFUSION, FILTER FOR INFUSION AND BAG FOR INFUSION
JP2022000545A (ja) * 2020-06-19 2022-01-04 大紀商事株式会社 抽出用シート材
US20220097342A1 (en) * 2019-03-22 2022-03-31 Asahi Kasei Kabushiki Kaisha Nonwoven Fabric for Sterilization Packaging Material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111729403B (zh) * 2019-03-25 2022-07-12 东丽纤维研究所(中国)有限公司 一种空气过滤材料及其用途
CN110079890A (zh) * 2019-04-26 2019-08-02 绍兴喜能纺织科技有限公司 一种双组分复合纤维及其制备方法
CN110589245A (zh) * 2019-10-14 2019-12-20 南昌蒸鼎科技开发有限公司 一种密闭式自加热容器
KR102497942B1 (ko) 2021-11-12 2023-02-09 주식회사 제이케이상사 친환경 생분해성 부직포 필터 제조 방법
CN114762783B (zh) * 2022-03-23 2024-04-02 杭州诗蓝过滤科技有限公司 一种多层复合液体过滤材料

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162236A (ja) * 1986-12-26 1988-07-05 旭化成株式会社 熱成型用積層体シ−トとその製造方法
JPS63162235A (ja) * 1986-12-26 1988-07-05 旭化成株式会社 成型性複合シ−ト
WO2004003277A1 (ja) * 2002-07-01 2004-01-08 Asahi Kasei Fibers Corporation 不織布及びティーバッグ
JP2007152216A (ja) * 2005-12-05 2007-06-21 Toray Ind Inc フィルター用不織布
WO2007086429A1 (ja) * 2006-01-25 2007-08-02 Asahi Kasei Fibers Corporation 熱接着性積層不織布
JP2007197028A (ja) * 2006-01-25 2007-08-09 Asahi Kasei Fibers Corp 袋体
JP2008054840A (ja) * 2006-08-30 2008-03-13 Asahi Kasei Fibers Corp 食品用フィルター材及びそれを用いた食品封入袋体の製法
JP2009074193A (ja) * 2007-09-19 2009-04-09 Kuraray Co Ltd 不織布及びその製造方法
JP2009262991A (ja) * 2008-04-30 2009-11-12 Shizuoka Prefecture ドリップ式ティーバッグ
WO2011040337A1 (ja) * 2009-09-30 2011-04-07 株式会社Adeka ポリエステル樹脂組成物、ポリエステル繊維、ポリエステル樹脂成形体及びポリエステル樹脂用結晶核剤の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143855A (ja) 1997-05-26 1999-02-16 Unitika Ltd 複合長繊維不織布からなる包材
JP2001131826A (ja) 1999-10-27 2001-05-15 Nippon Ester Co Ltd ティーバッグ用生分解性モノフィラメント
JP2001146671A (ja) * 1999-11-16 2001-05-29 Toyobo Co Ltd 長繊維不織布
JP4209629B2 (ja) * 2002-04-23 2009-01-14 日本バイリーン株式会社 あぶらとりシート
JP5064898B2 (ja) * 2007-06-11 2012-10-31 旭化成せんい株式会社 食品向けフィルター及びそれを用いた食品封入袋体
JP4866794B2 (ja) * 2007-06-14 2012-02-01 旭化成せんい株式会社 食品用フィルター及びそれを用いた食品封入袋体
TWI618279B (zh) * 2012-04-04 2018-03-11 Asahi Kasei Fibers Corp 分隔件材料
KR20150043423A (ko) * 2012-09-19 2015-04-22 아사히 가세이 가부시키가이샤 세퍼레이터 및 그의 제조 방법, 및 리튬 이온 이차 전지
WO2014097462A1 (ja) * 2012-12-20 2014-06-26 大紀商事株式会社 抽出用フィルターおよび抽出用バッグ
JP2015076416A (ja) * 2013-10-04 2015-04-20 旭化成せんい株式会社 不織布、及びそれを用いたセパレータ、並びに固体電解コンデンサ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162236A (ja) * 1986-12-26 1988-07-05 旭化成株式会社 熱成型用積層体シ−トとその製造方法
JPS63162235A (ja) * 1986-12-26 1988-07-05 旭化成株式会社 成型性複合シ−ト
WO2004003277A1 (ja) * 2002-07-01 2004-01-08 Asahi Kasei Fibers Corporation 不織布及びティーバッグ
JP2007152216A (ja) * 2005-12-05 2007-06-21 Toray Ind Inc フィルター用不織布
WO2007086429A1 (ja) * 2006-01-25 2007-08-02 Asahi Kasei Fibers Corporation 熱接着性積層不織布
JP2007197028A (ja) * 2006-01-25 2007-08-09 Asahi Kasei Fibers Corp 袋体
JP2008054840A (ja) * 2006-08-30 2008-03-13 Asahi Kasei Fibers Corp 食品用フィルター材及びそれを用いた食品封入袋体の製法
JP2009074193A (ja) * 2007-09-19 2009-04-09 Kuraray Co Ltd 不織布及びその製造方法
JP2009262991A (ja) * 2008-04-30 2009-11-12 Shizuoka Prefecture ドリップ式ティーバッグ
WO2011040337A1 (ja) * 2009-09-30 2011-04-07 株式会社Adeka ポリエステル樹脂組成物、ポリエステル繊維、ポリエステル樹脂成形体及びポリエステル樹脂用結晶核剤の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3626324A4 (en) * 2017-05-20 2021-01-06 Ohki Co., Ltd. FILM FOR INFUSION, FILTER FOR INFUSION AND BAG FOR INFUSION
US20220097342A1 (en) * 2019-03-22 2022-03-31 Asahi Kasei Kabushiki Kaisha Nonwoven Fabric for Sterilization Packaging Material
JP2022000545A (ja) * 2020-06-19 2022-01-04 大紀商事株式会社 抽出用シート材

Also Published As

Publication number Publication date
JP6657189B2 (ja) 2020-03-04
JP6898482B2 (ja) 2021-07-07
JPWO2016159266A1 (ja) 2017-11-16
GB2555721A (en) 2018-05-09
CN107429459B (zh) 2020-04-14
GB2555721B (en) 2021-03-03
CN107429459A (zh) 2017-12-01
KR20170117525A (ko) 2017-10-23
GB201716072D0 (en) 2017-11-15
JP2020073751A (ja) 2020-05-14
TWI624571B (zh) 2018-05-21
KR101952528B1 (ko) 2019-02-26
TW201643289A (zh) 2016-12-16

Similar Documents

Publication Publication Date Title
JP6898482B2 (ja) 単層又は複層ポリエステル長繊維不織布及びそれを用いた食品用フィルター
JP3939326B2 (ja) 不織布及びティーバッグ
US20200216979A1 (en) Multi-die melt blowing system for forming co-mingled structures and method thereof
JP6239337B2 (ja) ポリエステル長繊維不織布及びそれを用いた食品用フィルター
JP2011157118A (ja) 生分解性積層不織布からなる食品用フィルター
WO2007040104A1 (ja) フィルター用不織布
JP6551918B2 (ja) 抽出用シート材、抽出用フィルター及び抽出用バッグ
KR102036663B1 (ko) 우수한 공기 투과도와 개선된 보풀 및 박리강도를 갖는 에어 필터 지지체용 부직포의 제조방법
JP2015074842A (ja) 生分解性長繊維不織布及びそれを用いた食品用フィルター
JP5267809B2 (ja) フィルター基材およびそれを用いたフィルター
KR101242687B1 (ko) 폴리에스테르계 부직포 및 이의 제조 방법
CN107530607A (zh) 过滤器
KR20050062134A (ko) 공기필터 지지체용 폴리에스테르 스펀본드 부직포, 및 그제조방법
JP2018003238A (ja) ポリエステル長繊維不織布及びそれを用いた食品用フィルター
JP2017186069A (ja) 食品用フィルター
JP4140997B2 (ja) ポリエステル系長繊維不織布およびその製造方法
JP4140996B2 (ja) ポリエステル系長繊維不織布およびその製造方法
JP2006150222A (ja) 筒状フィルター及びその製造方法
JP5689626B2 (ja) 湿式短繊維不織布
JP5857645B2 (ja) 複合化シート及び該複合化シートを含む製品
JP5074271B2 (ja) 長繊維不織布
JPH10127185A (ja) 果実袋用不織布及びその不織布からなる果実袋
JP2008184725A (ja) 原着不織布
JP2005342207A (ja) コーヒー抽出用フィルター材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510207

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177025786

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201716072

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160331

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773146

Country of ref document: EP

Kind code of ref document: A1