WO2014185484A1 - 成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法 - Google Patents

成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法 Download PDF

Info

Publication number
WO2014185484A1
WO2014185484A1 PCT/JP2014/062930 JP2014062930W WO2014185484A1 WO 2014185484 A1 WO2014185484 A1 WO 2014185484A1 JP 2014062930 W JP2014062930 W JP 2014062930W WO 2014185484 A1 WO2014185484 A1 WO 2014185484A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
acid
resin composition
butyl
metal salt
Prior art date
Application number
PCT/JP2014/062930
Other languages
English (en)
French (fr)
Inventor
漆原 剛
真吾 山田
知幸 畑中
Original Assignee
株式会社Adeka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Adeka filed Critical 株式会社Adeka
Priority to CN201480027951.6A priority Critical patent/CN105229079A/zh
Priority to JP2015517128A priority patent/JPWO2014185484A1/ja
Priority to US14/891,593 priority patent/US20160115298A1/en
Priority to RU2015154176A priority patent/RU2663431C2/ru
Priority to BR112015028868A priority patent/BR112015028868A2/pt
Priority to KR1020157035803A priority patent/KR20160011211A/ko
Priority to EP14797511.4A priority patent/EP2998359B1/en
Publication of WO2014185484A1 publication Critical patent/WO2014185484A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/435Sulfonamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/42Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes polyesters; polyethers; polyacetals
    • H01B3/421Polyesters
    • H01B3/422Linear saturated polyesters derived from dicarboxylic acids and dihydroxy compounds
    • H01B3/423Linear aromatic polyesters

Definitions

  • the present invention relates to a molded article, an insulating material using the same, and a method for improving the electrical insulation of a polyester resin composition, and more specifically, fogging resistance and electrical insulation that can be suitably used for electric / electronic parts.
  • Polyester resins such as polybutylene terephthalate resin (hereinafter sometimes referred to as PBT resin) are mechanical strength, electrical properties, weather resistance, water resistance, chemical resistance, solvent resistance, dimensional stability, moldability Has excellent features and is used in various applications as an engineering plastic. On the other hand, as the field of use expands, it is required that the appearance of a molded product is good as well as improvement of physical properties such as mechanical strength.
  • the PBT resin has a problem that fogging occurs depending on the use environment and the appearance of the molded product is impaired. Fogging generally occurs from a plastic composition, and volatile compounds vaporized by high temperatures in the external environment are deposited in a cold environment. In particular, the occurrence of fogging in a transparent material is not preferable. .
  • Patent Document 1 proposes a resin composition in which a polycarbonate and a fine powder filler are blended with a PBT resin.
  • Patent Document 2 proposes a method of using a fine powder filler as a reinforcing material in a resin composition comprising a polyalkylene terephthalate resin, a polycarbonate resin, silicone oil, and an organic nucleating agent.
  • Patent Document 3 proposes blending a hindered phenol compound or a hydrazine skeleton compound.
  • Patent Document 4 proposes a method of preparing a specific ratio of a thermoplastic polyester other than the PBT resin and a vinyl-based thermoplastic resin in the PBT resin.
  • Patent Document 9 proposes a resin composition in which an inorganic filler or an epoxy resin is blended with a PBT resin.
  • Patent Documents 1 and 2 when the methods described in Patent Documents 1 and 2 are used, mixing the resin different from the PBT resin impairs the original resin physical properties, and the fogging prevention effect is not sufficient. Moreover, in patent document 3, coloring derived from the additive mix
  • an object of the present invention is to use a polyester resin composition containing a polybutylene terephthalate resin, can suppress fogging without deteriorating the properties of the polyester resin composition, and is excellent in electrical insulation, suitable as an insulating material.
  • Another object of the present invention is to provide a molded article, an insulating material using the molded article, and a method for improving electrical insulation of a polyester resin composition.
  • 0.001 to 1.0 part by mass of the sulfonamide compound metal salt or the sulfonimide compound metal salt is blended with 100 parts by mass of the polyester resin containing 50% by mass or more of polybutylene terephthalate.
  • the polyester resin composition obtained is formed.
  • the sulfonamide compound metal salt is preferably 1,2-benzisothiazol-3 (2H) -one 1,1-dioxide sodium salt.
  • the insulating material of the present invention is characterized by using the molded product of the present invention.
  • the insulating material of the present invention can be suitably used for electric / electronic parts.
  • a sulfonamide compound metal salt or a sulfonimide compound metal salt is added in an amount of 0.001-1 to 100 parts by mass of a polyester resin containing 50% by mass or more of polybutylene terephthalate. By adding 0.0 part by mass, the electrical insulation of the polyester resin composition is improved.
  • a molded article excellent in fogging resistance and electrical insulation which can be suitably used for electric / electronic components, an insulating material using the same, and a method for improving the electrical insulation of a polyester resin composition. It becomes possible to provide.
  • the molded product of the present invention is a polyester comprising 0.001 to 1.0 part by mass of a sulfonamide compound metal salt or a sulfonimide compound metal salt per 100 parts by mass of a polyester resin containing 50% by mass or more of polybutylene terephthalate.
  • a resin composition is formed. If the polyester resin composition according to the molded article of the present invention, it is possible to produce an injection-molded article that suppresses fogging without deteriorating the properties of the polyester resin composition and is excellent in electrical insulation. it can.
  • the polyester resin composition according to the molded product of the present invention will be described in detail below.
  • the sulfonamide compound metal salt or sulfonimide compound metal salt according to the molded article of the present invention means a metal salt of a compound having a sulfonamide skeleton or a sulfonimide skeleton.
  • Examples of the compound having a sulfonamide skeleton or a sulfonimide skeleton include sulfonamide, methanesulfonamide, benzenesulfonamide, toluene-4-sulfonamide, 4-chlorobenzenesulfonamide, 4-aminobenzenesulfonamide, N-butyl- 4-methyl-benzenesulfonamide, N-phenyl-benzenesulfonamide, N-phenyl-4-methyl-benzenesulfonamide, 4-amino-N-pyridin-2-ylbenzenesulfonamide, 4-amino-N- ( 5-methyl-thiazol-2-yl) -benzenesulfonamide, 4-amino-N-thiazol-2-yl-benzenesulfonamide, 4-amino-N- (5-methyl-isoxazol-3-yl) -benzene Sulfonamide
  • the metal of the sulfonamide compound metal salt or sulfonimide compound metal salt is selected from lithium, potassium, sodium, magnesium, calcium, strontium, barium, titanium, manganese, iron, zinc, silicon, zirconium, yttrium, or barium.
  • potassium, lithium, and sodium are preferable because they are excellent in the crystallization promoting effect of the polyester resin, and sodium is particularly preferable.
  • benzenesulfonamide metal salt toluene-4-sulfonamide metal salt, N-phenyl-benzenesulfonamide metal salt, N-phenyl-4-methyl-benzenesulfonamide metal salt, 1,2-benziso Thiazol-3 (2H) -one 1,1-dioxide metal salt is preferably used.
  • the polybutylene terephthalate used in the polyester resin composition can be produced by polymerizing terephthalic acid and 1,4-butanediol as main raw materials. At that time, another dicarboxylic acid or diol component can be copolymerized according to the purpose.
  • dicarboxylic acid components other than terephthalic acid include phthalic acid, isophthalic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 4,4′-diphenoxyethanedicarboxylic acid, 4,4 '-Diphenylsulfone dicarboxylic acid, aromatic dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid, alicyclic dicarboxylic acid such as 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid Examples thereof include aliphatic dicarboxylic acids such as acid, malonic acid, succinic acid, glutaric acid, adipic acid, and sebacic acid.
  • a polyfunctional carboxylic acid compound other than dicarboxylic acid can be added.
  • trimesic acid, trimellitic acid, etc. can be mentioned as a trifunctional carboxylic acid compound
  • pyromellitic acid etc. can be mentioned as a tetrafunctional carboxylic acid.
  • These polyfunctional carboxylic acid compounds are used in a very small amount as compared with terephthalic acid.
  • diol components other than 1,4-butanediol include, for example, ethylene glycol, diethylene glycol, polyethylene glycol, propylene glycol, 1,3-propanediol, polytetramethylene ether glycol, 1,5-pentanediol, 2,3- Aliphatic diols such as pentanediol, neopentyl glycol, hexamethylene glycol, 1,6-hexanediol, 1,8-octanediol, 1,2-cyclohexanediol, 1,4-cyclohexanediol, 1,1-cyclohexanedi Examples thereof include alicyclic diols such as methylol and 1,4-cyclohexanedimethylol, and aromatic diols such as xylylene glycol.
  • the main raw material terephthalic acid preferably accounts for 80 mol% or more of the total dicarboxylic acid component, more preferably 90 mol% or more.
  • the main raw material 1,4-butanediol is preferably 85 mol% or more, more preferably 90 mol% or more of the total diol component.
  • continuous polymerization does not cause a decrease in molecular weight, an increase in the amount of terminal carboxyl groups, and an increase in the amount of residual tetrahydrofuran with the passage of time from the reaction vessel after completion of the reaction. Obtainable.
  • the PBT resin in order to suppress hydrolysis, preferably has a terminal carboxyl group concentration of 30 mmol / kg or less, and more preferably 20 mmol / kg or less.
  • the terminal carboxyl group concentration can be determined by dissolving the PBT resin in an organic solvent and titrating with an alkaline solution.
  • the polymerization method for producing the PBT resin is not limited, it is preferable to continuously polymerize using a series continuous tank reactor.
  • the dicarboxylic acid component and the diol component are preferably heated in the presence of an esterification reaction catalyst at a temperature of 150 to 280 ° C., more preferably 180 to 265 ° C., preferably 6.8 to 133 kPa, more preferably 9 to 100 kPa.
  • the resulting esterification reaction product oligomer is transferred to a polycondensation reaction tank under stirring at a pressure of 2 to 5 hours, and in one or more polycondensation reaction tanks,
  • the polycondensation reaction can be carried out in the presence of a polycondensation reaction catalyst at 210 to 280 ° C., preferably 30 kPa or less, more preferably 20 kPa or less, with stirring for 2 to 5 hours.
  • the PBT resin obtained by the polycondensation reaction is transferred from the bottom of the polycondensation reaction tank to a polymer extraction die and extracted in the form of a strand, and while being cooled with water or after being cooled with water, it is cut with a pelletizer, etc. To granulate.
  • Examples of the esterification reaction catalyst include titanium compounds, tin compounds, magnesium compounds, calcium compounds, and the like. Among these, a titanium compound can be particularly preferably used.
  • Examples of the titanium compound used as the esterification catalyst include titanium alcoholates such as tetramethyl titanate, tetraisopropyl titanate, and tetrabutyl titanate, and titanium phenolates such as tetraphenyl titanate.
  • the amount of the titanium compound catalyst used is preferably 30 to 300 ppm (mass ratio) as titanium atoms, and 50 to 200 ppm (mass ratio) with respect to the theoretical yield of PBT resin. It is more preferable.
  • the esterification reaction catalyst added during the esterification reaction can be used as the polycondensation reaction catalyst without adding a new catalyst, or during the polycondensation reaction.
  • a catalyst which is the same as or different from the esterification reaction catalyst added during the esterification reaction may be further added.
  • the amount used is preferably 300 ppm (mass ratio) or less, and 150 ppm (mass ratio) or less as titanium atoms, based on the theoretical yield of PBT resin. Is more preferable.
  • the polycondensation reaction catalyst different from the esterification reaction catalyst include antimony compounds such as antimony trioxide and germanium compounds such as germanium dioxide and germanium tetroxide.
  • polyester resin composition is not limited to the case where it consists only of PBT resin, and may contain other thermoplastic resins depending on the purpose within the range not impairing the effects of the present invention.
  • Other thermoplastic resins include, for example, polyalkylene terephthalates such as polyethylene terephthalate and polycyclohexanedimethylene terephthalate, aromatic polyesters such as polyalkylene naphthalates such as polyethylene naphthalate and polybutylene naphthalate; Acid components and / or glycol components (such as isophthalic acid, adipic acid, sebacic acid, glutaric acid, diphenylmethane dicarboxylic acid, dimer acid, etc., hexamethylene glycol, bisphenol A, neopentyl glycol alkylene oxide adduct, etc.
  • Degradable aliphatic polyesters such as polylactic acid resin, polymalic acid, polyglycolic acid, polydioxanone, poly (2-oxetanone); aromatic polyester / polyether block copolymer, aromatic polyester / polylactone block copolymer, Broadly defined polyester resins such as polyarylate, polyphenylene sulfide, polyamide, polyimide, polyamideimide, polyether sulfone, polyether ether ketone, polycarbonate, polyurethane, fluororesin, homopolymers or copolymers of ⁇ -olefins such as ethylene and propylene Olefin resins such as cycloolefin, propylene- (meth) acrylic acid copolymer, ethylene-ethyl (meth) acrylic acid copolymer, ethylene-
  • the ratio is less than 50 parts by mass, preferably 10 parts by mass or less, with the total of the resin components being 100 parts by mass.
  • the following is more preferable.
  • the ratio of the polyester resin other than the PBT resin is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, with the total resin component being 100 parts by mass. .
  • the amount of the sulfonamide compound metal salt or sulfonimide compound metal salt added to 100 parts by mass of the polyester resin containing 50% by mass or more of the PBT resin is 0.001 to 1.0 part by mass, preferably 0.005. Is 0.5 parts by mass. If the amount is less than 0.001 part by mass, the effect as a crystal nucleating agent, the effect of suppressing fogging and electrical insulation may not be obtained. If the amount is more than 1.0 part by mass, the effect of addition amount becomes difficult to obtain. It is an economy.
  • the polyester resin composition may be blended with other components other than the above compounds as long as the effects of the present invention are not impaired.
  • the other components include additives usually used for aromatic polyester resins.
  • the other additives include, for example, phenolic antioxidants, phosphorus antioxidants, thioether antioxidants, ultraviolet absorbers, hindered amine compounds, flame retardants, nucleating agents, fillers, lubricants, antistatic agents. Silicate inorganic additives, modifiers, heavy metal deactivators, metal soaps, fluorescent agents, fungicides, antibacterial agents, mold release agents, processing aids, foaming agents, pigments, dyes, etc. .
  • phenol-based antioxidant examples include 2,6-ditert-butyl-4-ethylphenol, 2-tert-butyl-4,6-dimethylphenol, styrenated phenol, 2,2′methylenebis (4- Ethyl-6-tert-butylphenol), 2,2′-thiobis- (6-tert-butyl-4-methylphenol), 2,2′-thiodiethylenebis [3- (3,5-ditert-butyl- 4-hydroxyphenyl) propionate], 2-methyl-4,6-bis (octylsulfanylmethyl) phenol, 2,2′-isobutylidenebis (4,6-dimethylphenol), iso-octyl-3- (3 , 5-Ditert-butyl-4-hydroxyphenyl) propionate, N, N'-hexane-1,6-diylbis [3- (3,5-ditert-butyl-4-hydride) Xylphenyl) propionamide
  • Examples of the phosphorus antioxidant include triphenyl phosphite, diisooctyl phosphite, heptakis triphosphite, triisodecyl phosphite, diphenylisooctyl phosphite, diisooctylphenyl phosphite, diphenyltridecyl phosphite.
  • triisooctyl phosphite trilauryl phosphite, diphenyl phosphite, tris (dipropylene glycol) phosphite, diisodecyl pentaerythritol diphosphite, dioleyl hydrogen phosphite, trilauryl trithiophosphite, bis (tridecyl) Phosphite, tris (isodecyl) phosphite, tris (tridecyl) phosphite, diphenyldecylphosphite, dinonylphenylbis (nonylphenyl) Sphite, poly (dipropylene glycol) phenyl phosphite, tetraphenyldipropyl glycol diphosphite, trisnonylphenyl phosphite, tris (2,4-diterti
  • thioether-based antioxidant examples include tetrakis [methylene-3- (laurylthio) propionate] methane, bis (methyl-4- [3-n-alkyl (C12 / C14) thiopropionyloxy] 5-tert-butyl.
  • Phenyl) sulfide ditridecyl-3,3′-thiodipropionate, dilauryl-3,3′-thiodipropionate, dimyristyl-3,3′-thiodipropionate, distearyl-3,3′-thiodipro Pionate, lauryl / stearyl thiodipropionate, 4,4'-thiobis (6-tert-butyl-m-cresol), 2,2'-thiobis (6-tert-butyl-p-cresol), distearyl- Disulfide is mentioned.
  • the ultraviolet absorber examples include a benzotriazole compound, a triazine compound, a benzoate compound, a benzophenone compound, a cyanoacrylate compound, a salicylate compound, an oxanilide compound, other ultraviolet absorbers, and the like, which are compatible with a PBT resin. Those that are good are preferred.
  • benzotriazole compound examples include 2- (2-hydroxy-5-tert-octylphenyl) benzotriazole, 2- (2-hydroxy-3,5-ditert-butylphenyl) -5-chlorobenzotriazole, 2- (2′-hydroxy) -3′-tert-butyl-5′-methylphenyl) -5-chlorobenzotriazole, 2- (2-hydroxy-3-dodecyl-5-methylphenyl) benzotriazole, 2- (2-hydroxy-3-ditert-butyl-C7-9 mixed alkoxycarbonylethylphenyl) benzotriazole, 2- (2′-hydroxy-3 ′, 5′-dicumylphenyl) benzotriazole, 2,2′- Methylenebis (6- (2H-benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) Enol), 2- (2′-hydroxy-5′-tert-butylphenyl) benzotriazole,
  • triazine compound examples include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) -phenol, 2,4 -Bis (2,4-dimethylphenyl) -6- (2-hydroxy-4-isooctylphenyl) -1,3,5-triazine, 2- (4,6-diphenyl-1,3,5-triazine- 2-yl) -5- [2- (2-ethylhexanoyloxy) ethoxy] phenol, 1,6-hexadiamine and N, N′-bis (2,2,6,6-tetramethyl-4-piperidinyl) ) And 2,4-dichloro-6- (4-morpholinyl) -1,3,5-triazine, 2- (4,6-bis- (2,4-dimethylphenyl) -1,3,5 -Triazin-2-yl) -5-octyl
  • benzoate compound examples include resorcinol monobenzoate, 2,4-ditert-butylphenyl-3,5-ditert-butyl-4-hydroxybenzoate, 2,4-ditert-butylamylphenyl-3,5. -Di-tert-butyl-4-hydroxybenzoate, hexadecyl-3,5-di-tert-butyl-4-hydroxybenzoate and the like.
  • benzophenone compound examples include 2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4-methoxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, and 2-hydroxy-4-methoxybenzophenone.
  • Examples of the cyanoacrylate compound include 1,3-bis [(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] -2,2-bis- ⁇ [(2′-cyano-3 ′, 3′-diphenylacryloyl) oxy] methyl ⁇ -propane, ethyl-2-cyano-3,3-diphenyl acrylate, methyl-2-cyano-3-methyl-3- (p-methoxyphenyl) acrylate, (2-ethylhexyl) ) -2-cyano-3,3-diphenyl acrylate and the like.
  • salicylate compound examples include phenyl salicylate and 4-tert-butylphenyl salicylate.
  • oxanilide compound examples include 2-ethyl-2'-ethoxy oxanilide, 2-ethoxy-4'-dodecyl oxanilide and the like.
  • UV absorbers examples include N- (4-ethoxycarbonylphenyl) -N′-methyl-N′-phenylformamidine, N- (ethoxycarbonylphenyl) -N′-ethyl-N′-ethyl- N′-phenylformamidine, tetraethyl-2,2 ′-(1,4-phenylene-dimethylidene) -bismalonate, [(4-methoxy-phenyl) -methylene] -dimethyl ester, 4,4′-hexamethylenebis ( 1,1-dimethylsemicarbazide) and the like.
  • hindered amine light stabilizer examples include 2,2,6,6-tetramethyl-4-piperidyl stearate, 1,2,2,6,6-pentamethyl-4-piperidyl stearate, 2,2,6. , 6-tetramethyl-4-piperidylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1, 2,3,4-butanetetracarboxylate, tetrakis (1,2,2,6,6-pentamethyl-4-piperidyl) -1,2,3,4-butanetetracarboxylate, bis (2,2,6 , 6-Tetramethyl-4-piperidyl) .di (tridecyl) -1,2,3,4-butanetetracarboxylate, bis (1,2,2,6,6-pentamethyl-4- Peridyl) .di (tridecyl) -1
  • Examples of the flame retardant include triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, cresyl-2,6-xylenyl phosphate and resorcinol bis (diphenyl phosphate), (1-methylethylidene) ) Di-4,1-phenylenetetraphenyl diphosphate, 1,3-phenylenetetrakis (2,6-dimethylphenyl) phosphate, ADK STAB FP-500 (manufactured by ADEKA), ADK STAB FP-600 (manufactured by ADEKA), ADK STAB Aromatic phosphates such as FP-800 (manufactured by ADEKA), phosphonates such as divinyl phenylphosphonate, diallyl phenylphosphonate and phenylphosphonic acid (1-butenyl), Phosphates such as pheny
  • nucleating agent examples include sodium benzoate, 4-tert-butyl benzoic acid aluminum salt, sodium adipate and disodium bicyclo [2.2.1] heptane-2,3-dicarboxylate.
  • Acid metal salt sodium bis (4-tert-butylphenyl) phosphate, sodium-2,2′-methylenebis (4,6-ditert-butylphenyl) phosphate and lithium-2,2′-methylenebis (4,6- Phosphoric acid ester metal salts such as di-tert-butylphenyl) phosphate, polyhydric alcohol derivatives such as dibenzylidene sorbitol, bis (methylbenzylidene) sorbitol, bis (p-ethylbenzylidene) sorbitol, and bis (dimethylbenzylidene) sorbitol, N , N ′, N ′′ -Tris [2-methyl Chlohexyl] -1,2,3-propan
  • the filler described above may impart rigidity such as mechanical strength to the molded product, or may be a molded product with less anisotropy or warpage, or may adjust fluidity during melt processing of the polyester resin composition.
  • talc mica, calcium carbonate, calcium oxide, calcium hydroxide, magnesium carbonate, magnesium hydroxide, magnesium oxide, magnesium sulfate, aluminum hydroxide, barium sulfate, glass powder, glass fiber, clay, dolomite , Mica, silica, alumina, potassium titanate whisker, wollastonite, fibrous magnesium oxysulfate, etc., and average particle diameter (spherical or flat) or average fiber diameter (needle or fibrous) ) Is preferably 5 ⁇ m or less.
  • a fibrous filler is preferably used, and glass fiber is particularly preferable.
  • a filler in the form of a plate-like material is preferable, and in particular, mica, glass flakes and the like are preferably used.
  • the granular filler is preferably used for adjusting the fluidity during the production of the molded product.
  • those previously treated with a surface treatment agent can be used for the purpose of improving the affinity and adhesiveness at the interface with the polyester resin.
  • the surface treatment agent include a surface treatment agent containing one or more of an aminosilane compound and an epoxy resin.
  • aminosilane compound examples include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, and ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane.
  • Examples of the epoxy resin contained in the surface treatment agent include novolac type epoxy resins and bisphenol type epoxy resins, and novolac type epoxy resins are preferably used.
  • Examples of the novolak type epoxy resin include polyfunctional type epoxy resins such as a phenol novolak type epoxy resin and a cresol novolak type epoxy resin.
  • the surface treatment agent may contain components such as a urethane resin, an acrylic resin, an antistatic agent, a lubricant, and a water repellent as long as the properties are not impaired.
  • a urethane resin an acrylic resin
  • an antistatic agent an antistatic agent
  • a lubricant an antistatic agent
  • a water repellent a water repellent
  • epoxy resins other than novolac type and bisphenol type, coupling agents and the like can be mentioned.
  • the above-mentioned lubricant is added for the purpose of imparting lubricity to the surface of the molded body and enhancing the effect of preventing scratches.
  • the lubricant include unsaturated fatty acid amides such as oleic acid amide and erucic acid amide; saturated fatty acid amides such as behenic acid amide and stearic acid amide. These may be used alone or in combination of two or more.
  • the above-mentioned antistatic agent is added for the purpose of reducing the chargeability of the molded product and preventing dust adhesion due to charging.
  • the antistatic agent include cationic, anionic and nonionic.
  • Preferred examples include polyoxyethylene alkylamines, polyoxyethylene alkylamides or their fatty acid esters, glycerin fatty acid esters, and the like.
  • Examples of the modifier include dimethyl phthalate, diethyl phthalate, dimethoxyethyl phthalate, dibutyl phthalate, butyl hexyl phthalate, diheptyl phthalate, dioctyl phthalate, di-2-ethylhexyl phthalate, diisononyl phthalate, diisodecyl.
  • Phthalate esters such as phthalate, dilauryl phthalate, dicyclohexyl phthalate, dioctyl terephthalate, triphenyl phosphate, biphenylyl diphenyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, trixylenyl phosphate, tri (isopropylphenyl) phosphate, triethyl phosphate , Tributyl phosphate, trioctyl phosphate, tri (butoxye B) Phosphate esters such as phosphate, octyl diphenyl phosphate, glycolic acid esters such as triacetin, tributyrin, butyl phthalyl butyl glycolate, methyl phthalyl ethyl glycolate, ethyl phthalyl ethyl glycolate, pentaerythritol tetraacetate, etc.
  • plasticizers include the following.
  • adipate plasticizers such as dioctyl adipate, diisononyl adipate, diisodecyl adipate, di (butyl diglycol) adipate
  • polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3- Propylene glycol, 1,3-butanediol, 1,4-butanediol, 1,5-hexanediol, 1,6-hexanediol, neopentyl glycol, etc.
  • dibasic acids such as oxalic acid, malonic acid, succinic acid , Glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, etc., if necessary, monohydric alcohol, mono
  • silicate inorganic additive examples include hydrotalcite, fumed silica, fine particle silica, silica, diatomaceous earth, clay, kaolin, diatomaceous earth, silica gel, calcium silicate, sericite, kaolinite, flint, feldspar powder, Examples include meteorite, attapulgite, talc, mica, minnesotite, pyrophyllite, and silica.
  • the mold release agent is preferably one that improves the mold releasability of the molded product from the mold and enables the molded product to be released even with a mold having a cavity with a reverse taper surface.
  • a polyethylene wax And low molecular weight polypropylene refers to low molecular weight polyethylene having a molecular weight of about 500 to 10,000.
  • the molded product of the present invention is suitable for electric / electronic parts because of its excellent fogging resistance and electrical insulation, but other than that, for example, food containers, cosmetic / clothing containers, daily goods, It can also be used for toys.
  • the molded product of the present invention can be easily molded by conventional equipment and ordinary methods.
  • a method in which a polyester resin, a sulfonamide compound metal salt or a sulfonimide compound metal salt, and various additive components are mixed and then kneaded and extruded by a single or twin screw extruder to prepare pellets and molded.
  • examples thereof include a method in which pellets having different additive components are prepared in advance and mixed with pellets prepared from a polyester resin and a sulfonamide compound metal salt or a sulfonimide compound metal salt, followed by injection molding.
  • the molded product of the present invention can be molded into a molded product having a target composition by these methods.
  • a part of the polyester resin may be finely powdered and mixed with the pellets prepared from the polyester resin and the sulfonamide compound metal salt or the sulfonimide compound metal salt.
  • the polyester resin composition in which the polyester resin and the sulfonamide compound metal salt or the sulfonimide compound metal salt are mixed is previously dried at a temperature of 100 to 150 ° C. until the water content in the resin composition becomes 0.02% or less. It is preferable to keep it.
  • the water content in the resin composition is 0.02% or more, a gas derived from hydrolysis of the polyester resin is generated during processing of the polyester resin composition, and troubles such as resin burning and mold contamination occur. There is a case.
  • the resin temperature is preferably controlled within the range of the melting point of the polyester resin to 300 ° C. If the melting point is lower than the melting point, melt kneading may not be possible. If the melting point is higher than 300 ° C., the polyester resin may be significantly deteriorated by heat, and desired physical properties may not be obtained when formed into a molded product.
  • the resin temperature is preferably controlled to 240 to 280 ° C.
  • the insulating material of the present invention is obtained by using the molded product of the present invention.
  • the molded product of the present invention can be used, for example, in food containers, cosmetic / clothing containers, daily goods, toys, etc., but the molded product of the present invention is resistant to fogging and electrical insulation. Because of its excellent properties, it is particularly suitable for insulating materials that require electrical insulation, and can be suitably used for electrical and electronic components.
  • Examples of the electrical / electronic parts that can achieve the effects of the present invention are: electrical parts such as light parts, distributors, harness connectors, ignition coils, current-carrying parts for airbags, coating materials for electric wires and cables, transformers, Examples thereof include electronic / electrical parts such as coil bobbins, coil cases, plugs, and terminal blocks, precision parts for OA equipment such as keyboards and telephones for office automation equipment, casings for electrical / electronic devices, protective films for capacitor dielectrics, and the like.
  • a method for improving the electrical insulation of the polyester resin composition of the present invention will be described.
  • a sulfonamide compound metal salt or a sulfonimide compound metal salt is added in an amount of 0.001-1 to 100 parts by mass of a polyester resin containing 50% by mass or more of polybutylene terephthalate. By adding 0.0 part by mass, the electrical insulation of the polyester resin composition is improved.
  • the polyester resin that can improve the electrical insulation is the same as the polyester resin that can be used for the molded product of the present invention
  • the sulfonamide compound metal salt or the sulfonimide compound metal salt to be blended with the polyester resin include the same ones that can be used for the molded article of the present invention.
  • other additives that can be blended with the molded article of the present invention may be blended.
  • Examples 1 to 5 and Comparative Examples 1 to 4> In 100 parts by mass of polybutylene terephthalate resin (trade name: DURANEX 2002, manufactured by Wintech Polymer Co., Ltd.), after adding and mixing the additives shown in Table 1 below, drying at 130 ° C. for 3 hours in the resin composition Was confirmed to be less than 0.02%, and the mixture was melt-kneaded at a cylinder temperature of 260 ° C. and a screw speed of 200 rpm with a twin-screw extruder (TEX30 ⁇ ; manufactured by Nippon Steel Co., Ltd.). Obtained. The resin temperature during melt kneading was 265 ° C. The obtained pellets were dried in a vacuum oven at 130 ° C. for 3 hours, and then evaluated as follows.
  • polybutylene terephthalate resin trade name: DURANEX 2002, manufactured by Wintech Polymer Co., Ltd.
  • Crystallization temperature Tc [° C] According to JIS K7121-1987, the obtained pellets were heated to 280 ° C. at a rate of 30 ° C. to 10 ° C./min in a nitrogen atmosphere with a differential scanning calorimeter (Diamond; manufactured by Perkin Elmer). The crystallization temperature Tc [° C.] was determined from the DSC curve obtained by holding the sample for 5 minutes and then cooling to 0 ° C. at ⁇ 10 ° C./min. These results are shown in Table 1 below.
  • Pressurization method Short-time method
  • Ambient medium Silicone oil (23 ° C)
  • Boosting speed 3 kV / s
  • Test electrode ⁇ 25 cylinder / ⁇ 25 cylinder
  • Test environment room temperature 23 ° C., humidity 50 ⁇ 5% RH
  • Comparative Examples 7 to 9 in Table 2 when molded with PET resin, it was confirmed that the molded product containing the crystal nucleating agent had a remarkable decrease in arc property. Further, in comparison with Example 6, Comparative Example 5 and Comparative Example 6, when a crystal nucleating agent different from the sulfonamide compound metal salt or the sulfonimide compound metal salt is used, the arc resistance of the PBT resin may be reduced. confirmed. Furthermore, from Example 6, Comparative Example 5 and Comparative Example 6 in Table 2, according to the method for improving the electrical insulation of the polyester resin composition of the present invention, the electrical insulation without affecting the arc resistance. It was confirmed that it can be improved significantly.
  • the molded product of the present invention was excellent in fogging resistance and electrical insulation, and was useful for insulating material applications. Moreover, it has confirmed that the electrical insulation improvement method of the polyester resin composition of this invention can provide the outstanding electrical insulation with respect to the molded article of PBT resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Organic Insulating Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

 電気・電子部品に好適に用いることができる、耐フォギング性および電気絶縁性に優れた成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法を提供する。 ポリブチレンテレフタレート50質量%以上を含むポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩またはスルホンイミド化合物金属塩が0.001~1.0質量部配合されてなるポリエステル樹脂組成物が成形されてなる成型品である。

Description

成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法
 本発明は、成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法に関し、詳しくは、電気・電子部品に好適に用いることができる、耐フォギング性および電気絶縁性に優れた、ポリブチレンテレフタレート樹脂を主成分とするポリエステル樹脂とスルホンアミド化合物金属塩またはスルホンイミド化合物金属塩を含有するポリエステル樹脂組成物を用いて成形された成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法に関する。
 ポリブチレンテレフタレート樹脂(以下、PBT樹脂と記載する場合がある)等のポリエステル樹脂は、力学的強度、電気的特性、耐候性、耐水性、耐薬品製、耐溶剤性、寸法安定性、成形性に優れた特長があり、エンジニアリングプラスチックとして種々の用途に利用されている。一方、利用分野が拡大するにつれ、力学的強度等の物性の向上とともに、成形品外観が良好であることが要求されている。
 しかしながら、PBT樹脂は、使用環境によってはフォギングが生じ、成形品の外観を損ねる問題がある。フォギングは、一般には可塑性組成物から生じ、外部環境の高温化により気化された揮発性化合物が、冷たい環境下で析出されるものであり、特に、透明材料におけるフォギングの発生は、好ましいものではない。
 フォギングを抑制するための対策として、例えば、特許文献1では、PBT樹脂にポリカーボネートおよび微粉末フィラーを配合する樹脂組成物が提案されている。また特許文献2では、ポリアルキレンテレフタレート系樹脂とポリカーボネート樹脂、シリコーンオイル、有機核剤からなる樹脂組成物に微粉末フィラーを強化材として用いる方法が提案されている。また、特許文献3ではヒンダードフェノール系化合物またはヒドラジン骨格化合物を配合することが提案されている。また、特許文献4では、PBT樹脂にPBT樹脂以外の熱可塑性ポリエステルおよびビニル系熱可塑性樹脂を特定の割合で調製する方法が提案されている。
 本発明者等は、ポリエチレンテレフタレート等のポリエステル樹脂の結晶化速度を改善する目的で、特許文献5~8において、スルホンアミド化合物金属塩またはスルホンイミド化合物金属塩をポリエステル樹脂の結晶核剤として配合することを提案している。
 また、PBT樹脂は、優れた電気絶縁性を有しているため、電気・電子部品等の絶縁材料に利用されている。しかしながら、PBT樹脂は温度上昇を伴うような環境下に曝すと、経時的に電気絶縁性の低下を起こすことが指摘されている。さらに、アーク放電等の高温かつ高エネルギーを受けると絶縁劣化の現象が生じ易いことも指摘されている。PBT樹脂の電気絶縁性の低下が著しく進行すると、周囲の導体との間にアーク放電が発生しやすくなり、火災の原因になることが危惧されている。現在、電気絶縁性の低下を抑制するための対策として、例えば、特許文献9では、無機充填剤やエポキシ樹脂をPBT樹脂に配合した樹脂組成物が提案されている。
特開平11-101905号公報 特開平11-241006号公報 特開2012-057152号公報 特開2011-133523号公報 国際公開WO2007/129527号 国際公開WO2008/038465号 国際公開WO2009/116499号 国際公開WO2011/040337号 特開平9-87495号公報
 しかしながら、特許文献1および2記載の手法を用いた場合、PBT樹脂とは異なる樹脂を混合することによって、本来の樹脂物性を損なうものであり、フォギングの防止効果は十分なものではなかった。また、特許文献3では、得られるPBT樹脂組成物に配合した添加剤由来の着色がみられ、また、フォギング防止効果は満足できるものではなかった。さらに、特許文献4に記載の方法は、PBT樹脂とは異なる樹脂を配合したことによって、PBT樹脂本来の物性を損なう場合があった。さらにまた、特許文献5~8においては、PBT射出成形品のフォギングを抑制する効果については何ら記載がなかった。また、電気絶縁性の低下対策として、特許文献9記載の手法を用いた場合、無機充填剤の配合によって成形品表面が荒れて外観を損ねる場合があり、アーク放電の影響を強く受けてしまう等の問題があった。
 そこで、本発明の目的は、ポリブチレンテレフタレート樹脂を含むポリエステル樹脂組成物を用い、当該ポリエステル樹脂組成物の特性を低下させることなくフォギングを抑制できるとともに、絶縁材料として好適な、電気絶縁性に優れた成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法を提供することにある。
 すなわち、本発明の成型品は、ポリブチレンテレフタレート50質量%以上を含むポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩またはスルホンイミド化合物金属塩が0.001~1.0質量部配合されてなるポリエステル樹脂組成物が成形されてなることを特徴とするものである。
 本発明の成形品においては、前記スルホンアミド化合物金属塩は、1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシドナトリウム塩であることが好ましい。
 本発明の絶縁材料は、本発明の成形品が用いられてなることを特徴とするものである。
 本発明の絶縁材料は、電気・電子部品に好適に使用することができる。
 本発明のポリエステル樹脂組成物の電気絶縁性の改善方法は、ポリブチレンテレフタレート50質量%以上を含むポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩またはスルホンイミド化合物金属塩を0.001~1.0質量部配合することにより、ポリエステル樹脂組成物の電気絶縁性を向上させることを特徴とするものである。
 本発明によれば、電気・電子部品に好適に用いることができる、耐フォギングおよび電気絶縁性に優れた成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法を提供することが可能となる。
 本発明の成型品は、ポリブチレンテレフタレート50質量%以上を含むポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩またはスルホンイミド化合物金属塩が0.001~1.0質量部配合されてなるポリエステル樹脂組成物が成形されてなるものである。本発明の成型品に係るポリエステル樹脂組成物であれば、当該ポリエステル樹脂組成物の特性を低下させることなくフォギングを抑制し、かつ、電気絶縁性に優れた射出製成型品を製造することができる。
 まず、本発明の成型品に係るポリエステル樹脂組成物について、以下に詳述する。
 本発明の成型品に係るスルホンアミド化合物金属塩またはスルホンイミド化合物金属塩とは、スルホンアミド骨格またはスルホンイミド骨格を有する化合物の金属塩を意味する。スルホンアミド骨格またはスルホンイミド骨格を有する化合物としては、例えば、スルホンアミド、メタンスルホンアミド、ベンゼンスルホンアミド、トルエン-4-スルホンアミド、4-クロロベンゼンスルホンアミド、4-アミノベンゼンスルホンアミド、N-ブチル-4-メチル-ベンゼンスルホンアミド、N-フェニル-ベンゼンスルホンアミド、N-フェニル-4-メチル-ベンゼンスルホンアミド、4-アミノ-N-ピリジン-2-イルベンゼンスルホンアミド、4-アミノ-N-(5-メチル-チアゾール-2-イル)-ベンゼンスルホンアミド、4-アミノ-N-チアゾール-2-イル-ベンゼンスルホンアミド、4-アミノ-N-(5-メチル-イソキサゾール-3-イル)-ベンゼンスルホンアミド、4-アミノ-N-(2,6-ジメトキシ-ピリミジン-4-イル)-ベンゼンスルホンアミド、1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシド、4-アミノ-6-クロロ-ベンゼン-1,3-ジスルホン酸ジアミド、6-エトキシ-ベンゾチアゾール-2-スルホン酸アミド、5-ジメチルアミノ-ナフタレン-1-スルホン酸アミド、4-ナトリウムオキシ-ベンゼンスルホンアミド、N-(4-ベンゼンスルホニルアミノ-フェニル)-ベンゼンスルホンアミド等を挙げることができる。
 上記スルホンアミド化合物金属塩またはスルホンイミド化合物金属塩の金属としては、リチウム、カリウム、ナトリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタニウム、マンガン、鉄、亜鉛、珪素、ジルコニウム、イットリウムまたはバリウムから選択される金属を挙げることができ、それらの中でも、カリウム、リチウム、ナトリウムは、ポリエステル樹脂の結晶化促進効果に優れているので好ましく、ナトリウムが、特に好ましい。
 本発明においては、ベンゼンスルホンアミド金属塩、トルエン-4-スルホンアミド金属塩、N-フェニル-ベンゼンスルホンアミド金属塩、N-フェニル-4-メチル-ベンゼンスルホンアミド金属塩、1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシド金属塩が好ましく用いられる。
 上記ポリエステル樹脂組成物で使用されるポリブチレンテレフタレートは、主原料としてテレフタル酸および1,4-ブタンジオールを重合することにより製造することができる。その際、他のジカルボン酸またはジオール成分を目的に応じ共重合することができる。
 テレフタル酸以外のジカルボン酸成分としては、例えば、フタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェノキシエタンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸等の脂肪族ジカルボン酸等を挙げることができる。
 また、PBT樹脂に分岐度を付与する目的で、ジカルボン酸以外の多官能性カルボン酸化合物を添加することができる。例えば、三官能性カルボン酸化合物として、トリメシン酸、トリメリット酸等を挙げることができ、四官能性カルボン酸として、ピロメリット酸等を挙げることができる。これら多官能性カルボン酸化合物は、テレフタル酸に比べて、極めて少量で使用される。
 1,4-ブタンジオール以外のジオール成分としては、例えば、エチレングリコール、ジエチレングリコール、ポリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、ポリテトラメチレンエーテルグリコール、1,5-ペンタンジオール、2,3-ペンタンジオール、ネオペンチルグリコール、ヘキサメチレングリコール、1,6-ヘキサンジオール、1,8-オクタンジオール等の脂肪族ジオール、1,2-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,1-シクロヘキサンジメチロール、1,4-シクロヘキサンジメチロール等の脂環式ジオール、キシリレングリコール等の芳香族ジオール等を挙げることができる。
 主原料のテレフタル酸は、全ジカルボン酸成分の80モル%以上を占めることが好ましく、90モル%以上を占めることがより好ましい。主原料の1,4-ブタンジオールは、全ジオール成分の85モル%以上が好ましく、90モル%以上がより好ましい。
 PBT樹脂の製造方法は、テレフタル酸ジメチル等と、1,4-ブタンジオールとのエステル交換反応を経る方法と、テレフタル酸と1,4-ブタンジオールとの直接エステル化反応を経る方法がある。テレフタル酸と1、4-ブタンジオールを出発原料とする直接エステル化反応によれば、エステル交換反応を経る方法に比べて、降温結晶化温度が高いPBT樹脂を容易に得ることができる。また、連続重合することにより、反応終了後の反応槽からの抜き出しの時間的経過に伴う分子量低下、末端カルボキシル基量の増加、残存テトラヒドロフラン量の増加が発生することがなく、高品質の樹脂を得ることができる。
 上記ポリエステル樹脂組成物において、加水分解を抑制するため、PBT樹脂は末端カルボキシル基濃度が30mmol/kg以下であることが好ましく、20mmol/kg以下であることがより好ましい。末端カルボキシル基濃度は、PBT樹脂を有機溶媒に溶解し、アルカリ性溶液を使用して滴定することにより求めることができる。
 PBT樹脂を製造する重合法を限定するものではないが、直列連続槽型反応器を用いて連続的に重合することが好ましい。例えば、ジカルボン酸成分とジオール成分を、エステル化反応触媒の存在下に、好ましくは150~280℃、より好ましくは180~265℃の温度、好ましくは6.8~133kPa、より好ましくは9~100kPaの圧力で、攪拌下に2~5時間でエステル化反応させ、得られたエステル化反応生成物であるオリゴマーを重縮合反応槽に移送し、1基または複数基の重縮合反応槽内で、重縮合反応触媒の存在下に、210~280℃、好ましくは30kPa以下、より好ましくは20kPa以下の減圧下で、攪拌下に2~5時間で重縮合反応させることができる。重縮合反応により得られたPBT樹脂は、重縮合反応槽の底部からポリマー抜き出しダイに移送されてストランド状に抜き出され、水冷されながらまたは水冷されたのちに、ペレタイザーで切断されてペレット状等の粒状体する。
 上記エステル化反応触媒としては、例えば、チタン化合物、錫化合物、マグネシウム化合物、カルシウム化合物等を挙げることができる。これらの中で、チタン化合物を特に好適に用いることができる。エステル化触媒として用いるチタン化合物としては、例えば、テトラメチルチタネート、テトライソプロピルチタネート、テトラブチルチタネート等のチタンアルコラート、テトラフェニルチタネート等のチタンフェノラート等を挙げることができる。チタン化合物触媒の使用量は、例えば、テトラブチルチタネートの場合、PBT樹脂の理論収量に対して、チタン原子として30~300ppm(質量比)を用いることが好ましく、50~200ppm(質量比)を用いることがより好ましい。
 本発明に用いる重縮合反応触媒としては、新たな触媒の添加を行うことなく、エステル化反応時に添加したエステル化反応触媒を引き続いて重縮合反応触媒として用いることができ、あるいは、重縮合反応時に、エステル化反応時に添加したエステル化反応触媒と同じまたは異なる触媒をさらに添加することもできる。例えば、テトラブチルチタネートをさらに添加する場合、その使用量は、PBT樹脂の理論収量に対して、チタン原子として、300ppm(質量比)以下であることが好ましく、150ppm(質量比)以下であることがより好ましい。エステル化反応触媒と異なる重縮合反応触媒としては、例えば、三酸化二アンチモン等のアンチモン化合物、二酸化ゲルマニウム、四酸化ゲルマニウム等のゲルマニウム化合物等を挙げることができる。
 上記ポリエステル樹脂組成物においては、PBT樹脂のみからなる場合に限定されず、本発明の効果を阻害しない範囲で、目的に応じて他の熱可塑性樹脂を含有してもよい。他の熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート等の芳香族ポリエステル;ポリエステルの構成成分と他の酸成分および/またはグリコール成分(例えばイソフタル酸、アジピン酸、セバシン酸、グルタール酸、ジフェニルメタンジカルボン酸、ダイマー酸のような酸成分、ヘキサメチレングリコール、ビスフェノールA、ネオペンチルグリコールアルキレンオキシド付加体のようなグリコール成分)を共重合したポリエーテルエステル樹脂;ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸樹脂、ポリリンゴ酸、ポリグリコール酸、ポリジオキサノン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル;芳香族ポリエステル/ポリエーテルブロック共重合体、芳香族ポリエステル/ポリラクトンブロック共重合体、ポリアリレート等の広義のポリエステル樹脂、ポリフェニレンサルファイド、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルエーテルケトン、ポリカーボネート、ポリウレタン、フッ素樹脂、エチレン、プロピレン等のα-オレフィンの単独または共重合体、シクロオレフィン、プロピレン-(メタ)アクリル酸共重合体、エチレン-エチル(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸グリシジル共重合体等のオレフィン系樹脂、ビニル系単量体、塩素含有ビニル単量体、ビニルケトン類の単独または共重合体、あるいは他の共重合可能なモノマーとの共重合体であって、ポリ塩化ビニル、エチレン-酢酸ビニル共重合体等のビニル系樹脂、熱可塑性エラストマー等を挙げることができる。
 上記ポリエステル樹脂組成物において他の熱可塑性樹脂を含有する場合、その割合は、樹脂成分の合計を100質量部として、50質量部未満であり、20質量部以下であるのが好ましく、10質量部以下であるのがより好ましい。特に、PBT樹脂以外のポリエステル樹脂を含有する場合、樹脂成分の合計を100質量部として、PBT樹脂以外のポリエステル樹脂の割合が、10質量部以下であるのが好ましく、5質量部以下がより好ましい。
 PBT樹脂50質量%以上を含むポリエステル樹脂100質量部に対する、前記スルホンアミド化合物金属塩またはスルホンイミド化合物金属塩の添加量は、0.001~1.0質量部であり、好ましくは、0.005~0.5質量部である。0.001質量部より少ないと結晶核剤としての作用効果、フォギングの抑制効果および電気絶縁性が得られない場合があり、1.0質量部より多いと添加量効果が得られにくくなり、不経済である。
 上記ポリエステル樹脂組成物には、本発明の効果を損なわない範囲において、上記化合物以外のその他の成分を配合してもよい。その他の成分としては、芳香族ポリエステル樹脂に対して通常用いられている添加剤を挙げることができる。
 上記他の添加剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、チオエーテル系酸化防止剤、紫外線吸収剤、ヒンダードアミン化合物、難燃剤、造核剤、充填剤、滑剤、帯電防止剤、珪酸系無機添加剤、改質剤、重金属不活性化剤、金属石けん、蛍光剤、防かび剤、抗菌剤、離型剤、加工助剤、発泡剤、顔料、染料等を挙げることができる。
 上記フェノール系酸化防止剤としては、例えば、2,6-ジ第三ブチル-4-エチルフェノール、2-第三ブチル-4,6-ジメチルフェノール、スチレン化フェノール、2,2’メチレンビス(4-エチル-6-第三ブチルフェノール)、2,2’-チオビス-(6-第三ブチル-4-メチルフェノール)、2,2’-チオジエチレンビス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート]、2-メチル-4,6-ビス(オクチルスルファニルメチル)フェノール、2,2’-イソブチリデンビス(4,6-ジメチルフェノール)、イソ-オクチル-3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオンアミド、2,2’-オキサミド-ビス[エチル-3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート]、2-エチルヘキシル-3-(3’,5’-ジ第三ブチル-4’-ヒドロキシフェニル)プロピオネート、2,2’-エチレンビス(4,6-ジ第三ブチルフェノール)、3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシ-ベンゼンプロパン酸およびC13-15アルキルのエステル、2,5-ジ第三アミルヒドロキノン、ヒンダードフェノールの重合物(アデカパルマロマール社製商品名AO.OH998)、2,2’-メチレンビス[6-(1-メチルシクロヘキシル)-p-クレゾール]、2-第三ブチル-6-(3-第三ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-[1-(2-ヒドロキシ-3,5-ジ第三ペンチルフェニル)エチル]-4,6-ジ第三ペンチルフェニルアクリレート、6-[3-(3-第三ブチル-4-ヒドロキシ-5-メチル)プロポキシ]-2,4,8,10-テトラ-第三ブチルベンズ[d,f][1,3,2]-ジオキホスフォビン、ヘキサメチレンビス[3-(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、ビス[モノエチル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネートカルシウム塩、5,7-ビス(1,1-ジメチルエチル)-3-ヒドロキシ-2(3H)-ベンゾフラノン、とo-キシレンとの反応生成物、2,6-ジ第三ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、DL-a-トコフェノール(ビタミンE)、2,6-ビス(α-メチルベンジル)-4-メチルフェノール、ビス[3,3-ビス-(4’-ヒドロキシ-3’-第三ブチル-フェニル)ブタン酸]グリコールエステル、2,6-ジ第三ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート、ジステアリル(3,5-ジ第三ブチル-4-ヒドロキシベンジル)ホスホネート、トリデシル-3,5-ジ第三ブチル-4-ヒドロキシベンジルチオアセテート、チオジエチレンビス[(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオネート]、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2-オクチルチオ-4,6-ジ(3,5-ジ第三ブチル-4-ヒドロキシフェノキシ)-s-トリアジン、2,2’-メチレンビス(4-メチル-6-第三ブチルフェノール)、ビス[3,3-ビス(4-ヒドロキシ-3-第三ブチルフェニル)ブチリックアシッド]グリコールエステル、4,4’-ブチリデンビス(2,6-ジ第三ブチルフェノール)、4,4’-ブチリデンビス(6-第三ブチル-3-メチルフェノール)、2,2’-エチリデンビス(4,6-ジ第三ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタン、ビス[2-第三ブチル-4-メチル-6-(2-ヒドロキシ-3-第三ブチル-5-メチルベンジル)フェニル]テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-第三ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ第三ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス[(3,5-ジ第三ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート、テトラキス[メチレン-3-(3’,5’-ジ第三ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、2-第三ブチル-4-メチル-6-(2-アクロイルオキシ-3-第三ブチル-5-メチルベンジル)フェノール、3,9-ビス[2-(3-第三ブチル-4-ヒドロキシ-5-メチルヒドロシンナモイルオキシ)-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、トリエチレングリコールビス[β-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]等を挙げることができる。
 上記リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジイソオクチルホスファイト、ヘプタキストリホスファイト、トリイソデシルホスファイト、ジフェニルイソオクチルホスファイト、ジイソオクチルフェニルホスファイト、ジフェニルトリデシルホスファイト、トリイソオクチルホスファイト、トリラウリルホスファイト、ジフェニルホスファイト、トリス(ジプロピレングリコール)ホスファイト、ジイソデシルペンタエリスリトールジホスファイト、ジオレイルヒドロゲンホスファイト、トリラウリルトリチオホスファイト、ビス(トリデシル)ホスファイト、トリス(イソデシル)ホスファイト、トリス(トリデシル)ホスファイト、ジフェニルデシルホスファイト、ジノニルフェニルビス(ノニルフェニル)ホスファイト、ポリ(ジプロピレングリコール)フェニルホスファイト、テトラフェニルジプロピルグリコールジホスファイト、トリスノニルフェニルホスファイト、トリス(2,4-ジ第三ブチルフェニル)ホスファイト、トリス(2,4-ジ第三ブチル-5-メチルフェニル)ホスファイト、トリス〔2-第三ブチル-4-(3-第三ブチル-4-ヒドロキシ-5-メチルフェニルチオ)-5-メチルフェニル〕ホスファイト、トリデシルホスファイト、オクチルジフェニルホスファイト、ジ(デシル)モノフェニルホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールとステアリン酸カルシウム塩との混合物、アルキル(C10)ビスフェノールAホスファイト、ジ(トリデシル)ペンタエリスリトールジホスファイト、ジ(ノニルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6-ジ第三ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4,6-トリ-第三ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジクミルフェニル)ペンタエリスリトールジホスファイト、テトラフェニル-テトラ(トリデシル)ペンタエリスリトールテトラホスファイト、ビス(2,4-ジ第三ブチル-6-メチルフェニル)エチルホスファイト、テトラ(トリデシル)イソプロピリデンジフェノールジホスファイト、テトラ(トリデシル)-4,4’-n-ブチリデンビス(2-第三ブチル-5-メチルフェノール)ジホスファイト、ヘキサ(トリデシル)-1,1,3-トリス(2-メチル-4-ヒドロキシ-5-第三ブチルフェニル)ブタントリホスファイト、テトラキス(2,4-ジ第三ブチルフェニル)ビフェニレンジホスホナイト、9,10-ジハイドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、(1-メチル-1―プロパニル-3-イリデン)トリス(2-1,1-ジメチルエチル)-5-メチル-4,1-フェニレン)ヘキサトリデシルホスファイト、2,2’-メチレンビス(4,6-第三ブチルフェニル)-2-エチルヘキシルホスファイト、2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)-オクタデシルホスファイト、2,2’-エチリデンビス(4,6-ジ第三ブチルフェニル)フルオロホスファイト、4,4’-ブチリデンビス(3-メチル-6-第三ブチルフェニルジトリデシル)ホスファイト、トリス(2-〔(2,4,8,10-テトラキス-第三ブチルジベンゾ〔d,f〕〔1,3,2〕ジオキサホスフェピン-6-イル)オキシ〕エチル)アミン、3,9-ビス(4-ノニルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスフェススピロ[5,5]ウンデカン、2,4,6-トリ-第三ブチルフェニル-2-ブチル-2エチル-1,3-プロパンジオールホスファイト、ポリ4,4’-イソプロピリデンジフェノールC12-15アルコールホスファイト、2-エチル-2-ブチルプロピレングリコールと2,4,6-トリ第三ブチルフェノールのホスファイト等が挙げられる。
 上記チオエーテル系酸化防止剤としては、例えば、テトラキス[メチレン-3-(ラウリルチオ)プロピオネート]メタン、ビス(メチル-4-[3-n-アルキル(C12/C14)チオプロピオニルオキシ]5-第三ブチルフェニル)スルファイド、ジトリデシル-3,3’-チオジプロピオネート、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3‘-チオジプロピオネート、ラウリル/ステアリルチオジプロピオネート、4,4’-チオビス(6-第三ブチル-m-クレゾール)、2,2’-チオビス(6-第三ブチル-p-クレゾール)、ジステアリル-ジサルファイドが挙げられる。
 上記紫外線吸収剤としては、例えば、ベンゾトリアゾール化合物、トリアジン化合物、ベンゾエート化合物、ベンゾフェノン化合物、シアノアクリレート化合物、サリシレート化合物、オキザニリド化合物、その他の紫外線吸収剤等が挙げられるが、PBT樹脂との相溶性が良好であるものが好ましい。
 上記ベンゾトリアゾール化合物としては、例えば、2-(2-ヒドロキシ-5-第三オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ第三ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ)-3’-第三ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2-ヒドロキシ-3-ドデシル-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-ジ第三ブチル-C7~9混合アルコキシカルボニルエチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジクミルフェニル)ベンゾトリアゾール、2,2’-メチレンビス(6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール)、2-(2’-ヒドロキシ-5’-第三ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-第二ブチル-5-第三ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ第三ブチルフェニル)ベンゾトリアゾール、3-(2H-ベンゾトリアゾイル)-5-第三ブチル-4-ヒドロキシ-ベンゼンプロパン酸オクチルエステル、2-[2-ヒドロキシ-3-(3,4,5,6-テトラヒドロフタルイミド-メチル)-5-メチルフェニル]ベンゾトリアゾール、2-(2-ヒドロキシ-3-第三ブチル-5-カルボキシフェニル)ベンゾトリアゾールのポリエチレングリコールエステル等のベンゾトリアゾール化合物等が挙げられる。
 上記トリアジン化合物としては、例えば、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)-フェノール、2,4-ビス(2,4-ジメチルフェニル)-6-(2-ヒドロキシ-4-イソオクチルフェニル)-1,3,5-トリアジン、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[2-(2-エチルヘキサノイルオキシ)エトキシ]フェノール、1,6-ヘキサジアミンとN,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジニル)と2,4-ジクロロ-6-(4-モルホリニル)-1,3,5-トリアジンの重合物、2-(4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル)-5-オクチルオキシ)-フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[2-ヒドロキシ-3-ドデシルオキシプロピル]オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンおよび2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンの重縮合物等が挙げられる。
 上記ベンゾエート化合物としては、例えば、レゾルシノールモノベンゾエート、2,4-ジ第三ブチルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、2,4-ジ第三ブチルアミルフェニル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジ第三ブチル-4-ヒドロキシベンゾエート等が挙げられる。
 上記ベンゾフェノン化合物としては、例えば、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、4-ベンゾイルオキシ-2-ヒドロキシベンゾフェノン、メチレン[ビス(ヒドロキシメトキシフェニレン)]ビス(フェニル)ケトン、1,4-ビス(4-ビス(4-ベンゾイル-3-ヒドロキシフェノキシ)-ブタン、ポリ-4-(2-アクリルオキシエトキシ)-2-ヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸トリハイドレート、ジイソジウム-2,2’-ジヒドロキシ-4,4’-ジメトキシ-5,5’-ジスルホン酸ベンゾフェノン2-ヒドロキシ-4-第三ブチル-4’-(2-メタクロイルオキシエトキシエトキシ)ベンゾフェノン、5,5’-メチレンビス(2-ヒドロキシ-4-メトキシベンゾフェノン)等を挙げることができる。
 上記シアノアクリレート化合物としては、例えば、1,3-ビス[(2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ]-2,2-ビス-{[(2’-シアノ-3’、3’-ジフェニルアクリロイル)オキシ]メチル}-プロパン、エチル-2-シアノ-3,3-ジフェニルアクリレート、メチル-2-シアノ-3-メチル-3-(p-メトキシフェニル)アクリレート、(2-エチルヘキシル)-2-シアノ-3,3-ジフェニルアクリレート等を挙げることができる。
 上記サリシレート化合物としては、例えば、フェニルサリシレート、4-第三ブチルフェニルサリシレート等を挙げることができる。
 上記オキザニリド化合物としては、例えば、2-エチル-2’-エトキシオキザニリド、2-エトキシ-4’-ドデシルオキザニリド等を挙げることができる。
 その他の紫外線吸収剤としては、例えば、N-(4-エトキシカルボニルフェニル)-N’-メチル-N’-フェニルホルムアミジン、N-(エトキシカルボニルフェニル)-N’-エチル-N’-エチル-N’-フェニルホルムアミジン、テトラエチル-2,2’-(1,4-フェニレン-ジメチリデン)-ビスマロネート、[(4-メトキシ-フェニル)-メチレン]-ジメチルエステル、4,4’-ヘキサメチレンビス(1,1-ジメチルセミカルバジド)等を挙げることができる。
 ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジルステアレート、1,2,2,6,6-ペンタメチル-4-ピペリジルステアレート、2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)・ジ(トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、ビス(1,2,2,4,4-ペンタメチル-4-ピペリジル)-2-ブチル-2-(3,5-ジ第三ブチル-4-ヒドロキシベンジル)マロネート、1-(2-ヒドロキシエチル)-2,2,6,6-テトラメチル-4-ピペリジノ-ル/コハク酸ジエチル重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-モルホリノ-s-トリアジン重縮合物、1,6-ビス(2,2,6,6-テトラメチル-4-ピペリジルアミノ)ヘキサン/2,4-ジクロロ-6-第三オクチルアミノ-s-トリアジン重縮合物、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8,12-テトラアザドデカン、1,5,8,12-テトラキス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕-1,5,8-12-テトラアザドデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、1,6,11-トリス〔2,4-ビス(N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ)-s-トリアジン-6-イル〕アミノウンデカン、ビス{4-(1-オクチルオキシ-2,2,6,6-テトラメチル)ピペリジル}デカンジオナート、ビス{4-(2,2,6,6-テトラメチル-1-ウンデシルオキシ)ピペリジル)カーボナート等を挙げることができる。
 上記難燃剤としては、例えば、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、クレジル-2,6-キシレニルホスフェートおよびレゾルシノールビス(ジフェニルホスフェート)、(1-メチルエチリデン)ジ-4,1-フェニレンテトラフェニルジホスフェート、1,3-フェニレンテトラキス(2,6-ジメチルフェニル)ホスフェート、アデカスタブFP-500(ADEKA社製)、アデカスタブFP-600(ADEKA社製)、アデカスタブFP-800(ADEKA社製)等の芳香族リン酸エステル、フェニルホスホン酸ジビニル、フェニルホスホン酸ジアリルおよびフェニルホスホン酸(1-ブテニル)等のホスホン酸エステル、ジフェニルホスフィン酸フェニル、ジフェニルホスフィン酸メチル、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド誘導体等のホスフィン酸エステル、ビス(2-アリルフェノキシ)ホスファゼン、ジクレジルホスファゼン等のホスファゼン化合物、リン酸メラミン、ピロリン酸メラミン、ポリリン酸メラミン、ポリリン酸メラム、ポリリン酸アンモニウム、リン酸ピペラジン、ピロリン酸ピペラジン、ポリリン酸ピペラジン、リン含有ビニルベンジル化合物および赤リン等のリン系難燃剤、水酸化マグネシウム、水酸化アルミニウム等の金属水酸化物、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ヘキサブロモベンゼン、ペンタブロモトルエン、エチレンビス(ペンタブロモフェニル)、エチレンビステトラブロモフタルイミド、1,2-ジブロモ-4-(1,2-ジブロモエチル)シクロヘキサン、テトラブロモシクロオクタン、ヘキサブロモシクロドデカン、ビス(トリブロモフェノキシ)エタン、臭素化ポリフェニレンエーテル、臭素化ポリスチレンおよび2,4,6-トリス(トリブロモフェノキシ)-1,3,5-トリアジン、トリブロモフェニルマレイミド、トリブロモフェニルアクリレート、トリブロモフェニルメタクリレート、テトラブロモビスフェノールA型ジメタクリレート、ペンタブロモベンジルアクリレート、および、臭素化スチレン等の臭素系難燃剤等を挙げることができる。これら難燃剤は、フッ素樹脂等のドリップ防止剤や多価アルコール、ハイドロタルサイト等の難燃助剤と併用することが好ましい。
 上記、造核剤としては、例えば、安息香酸ナトリウム、4-第三ブチル安息香酸アルミニウム塩、アジピン酸ナトリウムおよび2ナトリウムビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシレート等のカルボン酸金属塩、ナトリウムビス(4-第三ブチルフェニル)ホスフェート、ナトリウム-2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)ホスフェートおよびリチウム-2,2’-メチレンビス(4,6-ジ第三ブチルフェニル)ホスフェート等のリン酸エステル金属塩、ジベンジリデンソルビトール、ビス(メチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、およびビス(ジメチルベンジリデン)ソルビトール等の多価アルコール誘導体、N,N’,N”-トリス[2-メチルシクロヘキシル]―1,2,3-プロパントリカルボキサミド(RIKACLEARPC1)、N,N’,N”-トリシクロヘキシルー1,3,5-ベンゼントリカルボキミド、N,N’-ジシクロヘキシル-ナフタレンジカルボキサミド、1,3,5-トリ(ジメチルイソプロポイルアミノ)ベンゼン等のアミド化合物等を挙げることができる。
 上記充填剤は、成形品に対して、力学的強度等の剛性を付与したり、異方性や反りが少ない成形品にしたり、ポリエステル樹脂組成物の溶融加工時に、流動性を調節するものが挙げられ、例えば、例えば、タルク、マイカ、炭酸カルシウム、酸化カルシウム、水酸化カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、硫酸マグネシウム、水酸化アルミニウム、硫酸バリウム、ガラス粉末、ガラス繊維、クレー、ドロマイト、マイカ、シリカ、アルミナ、チタン酸カリウムウィスカー、ワラステナイト、繊維状マグネシウムオキシサルフェート等を挙げることができ、平均粒径(球状ないし平板状のもの)または平均繊維径(針状ないし繊維状のもの)が5μm以下であるものが好ましい。
 成形品に力学的強度等の剛性を付与するためには、繊維状形状の充填剤が好ましく使用され、特に、ガラス繊維が好ましい。また、異方性や反りが少ない成形品とするためには、板状物の形状の充填剤が好ましく、特に、マイカ、ガラスフレーク等が好ましく使用される。また、粒状の充填剤は、成形品製造時の流動性の調整に好ましく用いられる。
 上記充填剤は、ポリエステル樹脂との界面での親和性、接着性を改良する目的で、予め表面処理剤で処理してあるものも用いることができる。表面処理剤としては、例えば、アミノシラン化合物、エポキシ樹脂の一種以上を含む表面処理剤を挙げることができる。
 上記アミノシラン化合物としては、例えば、γ-アミノプロピルトリエトキシシラン、γ―アミノプロピルトリメトキシシランおよびγ-(2-アミノエチル)アミノプロピルトリメトキシシラン等を挙げることができる。
 上記表面処理剤に含まれるエポキシ樹脂としては、例えば、ノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂が挙げられ、ノボラック型エポキシ樹脂が好ましく用いられる。ノボラック型エポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等の多官能型エポキシ樹脂等を挙げることができる。
 また表面処理剤には、上記アミノシラン化合物、エポキシ樹脂の他に、性質を阻害しない範囲で、ウレタン樹脂、アクリル樹脂、耐電防止剤、潤滑剤、および撥水剤等の成分を配合してもよい。さらに、他の表面処理剤として、ノボラック型およびビスフェノール型以外のエポキシ樹脂、カップリング剤等を挙げることができる。
 上記滑剤は、成形体表面に滑性を付与し傷つき防止効果を高める目的で加えられる。滑剤としては、例えば、オレイン酸アミド、エルカ酸アミド等の不飽和脂肪酸アミド;ベヘン酸アミド、ステアリン酸アミド等の飽和脂肪酸アミド等を挙げることができる。これらは1種を用いてもよく、2種以上を併用して用いてもよい。
 上記帯電防止剤は、成形品の帯電性の低減化や、帯電による埃の付着防止の目的で加えられる。帯電防止剤としては、カチオン系、アニオン系、非イオン系等が挙げられる。好ましい例としては、ポリオキシエチレンアルキルアミンやポリオキシエチレンアルキルアミドないしそれらの脂肪酸エステル、グリセリンの脂肪酸エステル等を挙げることができる。
 上記改質剤(可塑剤も含む)としては、例えば、ジメチルフタレート、ジエチルフタレート、ジメトキシエチルフタレート、ジブチルフタレート、ブチルヘキシルフタレート、ジヘプチルフタレート、ジオクチルフタレート、ジ-2-エチルヘキシルフタレート、ジイソノニルフタレート、ジイソデシルフタレート、ジラウリルフタレート、ジシクロヘキシルフタレート、ジオクチルテレフタレート等のフタレートエステル類、トリフェニルホスフェート、ビフェニリルジフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリキシレニルホスフェート、トリ(イソプロピルフェニル)ホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリオクチルホスフェート、トリ(ブトキシエチル)ホスフェート、オクチルジフェニルホスフェート等のホスフェートエステル類、トリアセチン、トリブチリン、ブチルフタリルブチルグリコレート、メチルフタリルエチルグリコレート、エチルフタリルエチルグリコレート等のグリコール酸エステル類、ペンタエリスリトルテトラアセテート等を挙げることができる。
 上記可塑剤としては、その他にも下記のものが挙げることができる。例えば、ジオクチルアジペート、ジイソノニルアジペート、ジイソデシルアジペート、ジ(ブチルジグリコール)アジペート等のアジペート系可塑剤、多価アルコールとして、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ヘキサンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール等と、二塩基酸として、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバチン酸、フタル酸、イソフタル酸、テレフタル酸等とを用い、必要により一価アルコール、モノカルボン酸(酢酸、芳香族酸等)をストッパーに使用して製造された可塑剤、セバチン酸系可塑剤、ステアリン酸系可塑剤、アセチルクエン酸トリブチル等のクエン酸系可塑剤、トリメリット酸系可塑剤、ピロメリット酸系可塑剤、ビフェニレンポリカルボン酸系可塑剤、多価アルコールの芳香族酸エステル系可塑剤(トリメチロールプロパントリベンゾエート等)等を挙げることができる。
 上記珪酸系無機添加剤としては、例えば、ハイドロタルサイト、フュームドシリカ、微粒子シリカ、けい石、珪藻土類、クレー、カオリン、珪藻土、シリカゲル、珪酸カルシウム、セリサイト、カオリナイト、フリント、長石粉、蛭石、アタパルジャイト、タルク、マイカ、ミネソタイト、パイロフィライト、シリカ等を挙げることができる。
 上記離型剤は、成形品の金型からの離型性を向上し、逆テーパ面のキャビティを有する金型でも成形品を離型することを可能にするものが好ましく、例えば、ポリエチレン系ワックスや低分子量ポリプロピレン等を挙げることができる。ここでポリエチレン系ワックスとは、分子量が500~10000程度の低分子量ポリエチレンを表す。
 本発明の成形品は、耐フォギングおよび電気絶縁性に優れているため、電気・電子部品に好適であるが、それ以外にも、例えば、食品用容器、化粧品・衣料用容器、日用雑貨、玩具等にも用いることができる。
 本発明の成形品は、従来の設備と通常の方法により容易に成形することができる。例えば、ポリエステル樹脂とスルホンアミド化合物金属塩またはスルホンイミド化合物金属塩、並びに各種添加剤成分を混合した後、1軸または2軸の押出機により練込押出してペレットを調製してこれを成形する方法、あらかじめ添加剤成分が異なるペレットを調製し、ポリエステル樹脂とスルホンアミド化合物金属塩またはスルホンイミド化合物金属塩を調製したペレットと混合して射出成形する方法等を挙げることができる。
 本発明の成形品は、これらの方法により目的組成の成形品を成形することができる。また、ポリエステル樹脂の一部を細かい粉体として、ポリエステル樹脂とスルホンアミド化合物金属塩またはスルホンイミド化合物金属塩を調製したペレットと混合して成形するものであってもよい。
 ポリエステル樹脂とスルホンアミド化合物金属塩またはスルホンイミド化合物金属塩を混合したポリエステル樹脂組成物は、予め100~150℃の温度で樹脂組成物中の含水率が、0.02%以下になるまで乾燥させておくことが好ましい。樹脂組成物中の含水率が0.02%以上である場合、ポリエステル樹脂組成物の加工時に、ポリエステル樹脂の加水分解由来のガスが生成して、樹脂焼けや金型汚染等のトラブルが発生する場合がある。
 押出機を用いて本発明のポリエステル樹脂組成物を溶融混練する場合は、樹脂温度が、ポリエステル樹脂の融点~300℃の範囲内にコントロールすることが好ましい。融点より低いと溶融混練できない場合があり、300℃より高いとポリエステル樹脂の熱劣化が著しくなり、成形品にしたときに所望の物性が得られない場合がある。本発明のポリエステル樹脂組成物を用いて射出成形を行う場合は、樹脂温度を240~280℃にコントロールすることが好ましい。
 次に、本発明の絶縁材料について、詳細に説明する。
 本発明の絶縁材料は、本発明の成型品が用いられてなるものである。上述のとおり、本発明の成型品としては、例えば、食品用容器、化粧品・衣料用容器、日用雑貨、玩具等にも用いることができるが、本発明の成型品は、耐フォギングおよび電気絶縁性に優れているため、特に、電気絶縁性を要求される絶縁材料に好適であり、電気・電子部品に好適に用いることができる。
 本発明の効果が顕著に得られる電気・電子部品としては、例えば、ライト部品、ディストリビューター、ハーネスコネクタ、イグニッションコイル、エアバッグ用通電部品等の電装品、電線・ケーブル類の被覆材、トランス、コイルボビン、コイルケース、プラグ、端子台等の電子・電機部品、OA機器のキーボードや電話機等のOA機器用精密部品、電気・電子装置の筺体、コンデンサー誘電体の保護フィルム等を挙げることができる。
 次に、本発明のポリエステル樹脂組成物の電気絶縁性の改善方法について説明する。本発明のポリエステル樹脂組成物の電気絶縁性の改善方法は、ポリブチレンテレフタレート50質量%以上を含むポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩またはスルホンイミド化合物金属塩を0.001~1.0質量部配合することにより、ポリエステル樹脂組成物の電気絶縁性を向上させるものである。
 本発明のポリエステル樹脂組成物の電気絶縁性の改善方法において、電気絶縁性を改善させることができるポリエステル樹脂としては、上記本発明の成型品に用いることができるポリエステル樹脂と同様であり、また、ポリエステル樹脂に配合するスルホンアミド化合物金属塩またはスルホンイミド化合物金属塩についても、上記本発明の成型品に用いることができるものと同様のものを挙げることができる。さらに、本発明のポリエステル樹脂組成物の電気絶縁性の改善方法においては、上記本発明の成型品に配合することができる他の添加剤を配合してもよい。
 以下、実施例を挙げて、本発明を更に具体的に説明するが、本発明は以下の実施例等によって何ら制限されるものではない。
<実施例1~5および比較例1~4>
 ポリブチレンテレフタレート樹脂(ウィンテックポリマー株式会社製商品名:ジュラネックス2002)100質量部に対し、下記表1に記載の添加剤を添加・混合後、3時間130℃で乾燥し、樹脂組成物中の含水率が0.02%未満であることを確認して、二軸押出機(TEX30α;株式会社日本製鋼所製)により、260℃のシリンダ温度および200rpmのスクリュー速度で溶融混練してペレットを得た。溶融混練時の樹脂温度は265℃であった。得られたペレットを130℃の真空オーブンで3時間乾燥後、下記に示す評価を実施した。
〔耐フォギング性〕
 上記ペレットについて、ISO6452に準拠して150℃で24時間加熱する条件で、フォギング試験を行ったガラス板の曇り具合を目視し、ガラス板に曇りが認められなかった場合について、耐フォギング性ありとして○をつけ、ガラス板に曇りがあった場合は、耐フォギング性なしとして×をつけて評価した。これらの結果について下記表1に示す。
〔荷重たわみ温度(HDT)〕
 上記ペレットの乾燥後、ただちに射出成形機(EC100;株式会社東芝製)を用いて、金型温度50℃、射出温度260℃の条件で射出成形し、寸法80×10×4mmの試験片を作製し、ISO75(荷重0.45MPa)に準拠して、荷重たわみ温度(HDT)を測定した。これらの結果について下記表1に示す。
〔結晶化温度Tc[℃]〕
 JIS K7121-1987に準拠し、得られたペレットを示差走査熱量測定機(ダイアモンド;パーキンエルマー社製)にて、窒素雰囲気下、30℃から10℃/minの速度で280℃まで昇温し、5分間保持後、-10℃/minで0℃まで冷却して得られたDSC曲線から、結晶化温度Tc[℃]を求めた。これらの結果について下記表1にそれぞれ示す。
〔曲げ弾性率[MPa]〕
 上記ペレットの乾燥後、ただちに射出成形機(EC100;株式会社東芝製)を用いて、金型温度50℃、射出温度260℃の条件で射出成形し、寸法80×10×4mmの試験片を作製し、曲げ弾性率[MPa]をISO178に準拠して測定した。これらの結果について下記表1にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000001
*1 (化合物No.1):1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシドナトリウム塩
*2 (NA-11):株式会社ADEKA製商品名アデカスタブNA-11
*3 (タルク):林化成株式会社製ミクロンホワイト#5000S
<実施例6および比較例5~9>
 ポリブチレンテレフタレート樹脂(ウィンテックポリマー株式会社製商品名:ジュラネックス2002)100質量部、またはポリエチレンテレフタレート樹脂(ユニチカ株式会社製商品名MA-2103)100質量部に対し、下記表2に記載の添加剤を添加・混合後、3時間130℃で乾燥し、樹脂組成物中の含水率が0.02%未満であることを確認して、二軸押出機(TEX30α;株式会社日本製鋼所製)により、260℃のシリンダ温度および200rpmのスクリュー速度で溶融混練してペレットを得た。溶融混練時の樹脂温度は265℃であった。得られたペレットを130℃の真空オーブンで3時間乾燥後、下記に示す評価を実施した。
〔絶縁耐力試験〕
 上記ペレットの乾燥後、ただちに射出成形機(NEX80;日精樹脂工業株式会社製)を用いて、金型温度50℃、射出温度260℃の条件で、縦100mm×横100mm×厚み2mmの試験片を射出成形し、ヤマヨ試験器(有)製絶縁破壊試験装置 YST-243-100RHOを用いて、IEC 60243-1規格に準拠(交流、50Hz)し、下記の試験条件に従って、絶縁破壊電圧および絶縁破壊強さを求めた。これらの結果について表2にそれぞれ示す。
 昇圧方式;短時間法
 周囲媒質;シリコーン油(23℃)
 昇圧速度;3kV/s
 試験電極;φ25 円柱/φ25 円柱
 試験環境;室温23℃、湿度50±5%RH
〔耐アーク性試験〕
 上記ペレットの乾燥後、ただちに射出成形機(NEX80;日精樹脂工業株式会社製)を用いて、金型温度50℃、射出温度260℃の条件で成形し、縦20mm×横20mm×厚み2mmに切り出したものを試験片とし、ASTM D 495の規格に準拠し、日立化成工業株式会社製 耐アーク性試験器 HAT-100を用いて耐アーク性(s)を評価した。これらの結果について表2にそれぞれ示す。
Figure JPOXMLDOC01-appb-T000002
 
 表1中の比較例2~4より、従来公知の結晶核剤を配合した場合、比較例1の結晶核剤未配合の場合よりも、物性は改善されるがその効果は未だ十分なものではなかった。また、耐フォギング性に問題あることが確認できた。
 これらに対して、表1中の実施例1~5より、本願発明の成形品の剛性や耐熱性が大幅に改善され、特に、耐フォギング性に優れることが確認できた。
 また、表2中の比較例7~9より、PET樹脂で成形した場合、結晶核剤を配合した成形品は、アーク性の著しい低下が確認された。また、実施例6、比較例5および比較例6の対比より、スルホンアミド化合物金属塩またはスルホンイミド化合物金属塩とは異なる結晶核剤を用いた場合、PBT樹脂の耐アーク性が低下することが確認された。さらに、表2中の実施例6、比較例5および比較例6より、本発明のポリエステル樹脂組成物の電気絶縁性の改善方法によれば、耐アーク性に殆ど影響を与えずに電気絶縁性を大幅に改善できることが確認できた。
 以上より、本発明の成型品は、耐フォギング性および電気絶縁性に優れ、絶縁材料用途に有益であることが確認できた。また、本発明のポリエステル樹脂組成物の電気絶縁性の改善方法は、PBT樹脂の成形品に対して、優れた電気絶縁性を付与することができることが確認できた。
 

Claims (5)

  1.  ポリブチレンテレフタレート50質量%以上を含むポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩またはスルホンイミド化合物金属塩が0.001~1.0質量部配合されてなるポリエステル樹脂組成物が成形されてなることを特徴とする成形品。
  2.  前記スルホンアミド化合物金属塩が、1,2-ベンズイソチアゾール-3(2H)-オン1,1-ジオキシドナトリウム塩である請求項1記載の成形品。
  3.  請求項1記載の成形品が用いられてなることを特徴とする絶縁材料。
  4.  電気・電子部品用である請求項3記載の絶縁材料。
  5.  ポリブチレンテレフタレート50質量%以上を含むポリエステル樹脂100質量部に対し、スルホンアミド化合物金属塩またはスルホンイミド化合物金属塩を0.001~1.0質量部配合することにより、ポリエステル樹脂組成物の電気絶縁性を向上させることを特徴とするポリエステル樹脂組成物の電気絶縁性の改善方法。
     
PCT/JP2014/062930 2013-05-17 2014-05-15 成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法 WO2014185484A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201480027951.6A CN105229079A (zh) 2013-05-17 2014-05-15 成型品、使用其的绝缘材料和聚酯树脂组合物的电绝缘性的改善方法
JP2015517128A JPWO2014185484A1 (ja) 2013-05-17 2014-05-15 成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法
US14/891,593 US20160115298A1 (en) 2013-05-17 2014-05-15 Molded article, insulating material comprising same, and method for improving electrical-insulating property of polyester resin composition
RU2015154176A RU2663431C2 (ru) 2013-05-17 2014-05-15 Формованное изделие, изоляционный материал с его использованием и способ улучшения электроизоляционных свойств композиции полиэфирной смолы
BR112015028868A BR112015028868A2 (pt) 2013-05-17 2014-05-15 artigo moldado, material isolante compreendendo o mesmo e método para melhorar as propriedades de isolamento elétrico de uma composição de resina de poliéster
KR1020157035803A KR20160011211A (ko) 2013-05-17 2014-05-15 성형품, 이것을 사용한 절연 재료, 및 폴리에스테르 수지 조성물의 전기 절연성의 개선 방법
EP14797511.4A EP2998359B1 (en) 2013-05-17 2014-05-15 Method for improving the electrical-insulating property and the fogging resistance of a polyester resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013105418 2013-05-17
JP2013-105418 2013-05-17

Publications (1)

Publication Number Publication Date
WO2014185484A1 true WO2014185484A1 (ja) 2014-11-20

Family

ID=51898459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/062930 WO2014185484A1 (ja) 2013-05-17 2014-05-15 成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法

Country Status (9)

Country Link
US (1) US20160115298A1 (ja)
EP (1) EP2998359B1 (ja)
JP (1) JPWO2014185484A1 (ja)
KR (1) KR20160011211A (ja)
CN (1) CN105229079A (ja)
BR (1) BR112015028868A2 (ja)
RU (1) RU2663431C2 (ja)
TW (1) TWI635113B (ja)
WO (1) WO2014185484A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687277C1 (ru) * 2018-06-21 2019-05-13 Закрытое акционерное общество "СуперОкс" (ЗАО "СуперОкс") Провод из высокотемпературного сверхпроводника с электрической изоляцией, монолитная обмотка и способ ее изготовления

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI702242B (zh) * 2016-03-11 2020-08-21 日商大和製罐股份有限公司 聚酯樹酯組成物
RU2717519C1 (ru) * 2019-12-20 2020-03-23 Общество с ограниченной ответственностью "ВетАнна" (ООО "ВетАнна") Полимерная композиция для низа обуви
CN118326558B (zh) * 2024-04-15 2024-10-18 江苏华亚化纤有限公司 一种高强度复合纤维的制备工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987495A (ja) 1995-09-26 1997-03-31 Kuraray Co Ltd 成形材料及び電気部品
JPH11101905A (ja) 1997-07-29 1999-04-13 Polyplastics Co ポリブチレンテレフタレート樹脂製光反射体及びその製造方法
JPH11241006A (ja) 1998-02-26 1999-09-07 Mitsubishi Eng Plast Corp 光反射体
WO2007129527A1 (ja) 2006-05-09 2007-11-15 Adeka Corporation ポリエステル樹脂組成物
WO2008038465A1 (fr) 2006-09-28 2008-04-03 Adeka Corporation Composition de résine de polyester
WO2009116499A1 (ja) 2008-03-21 2009-09-24 株式会社Adeka ポリエステル樹脂組成物
WO2011040337A1 (ja) 2009-09-30 2011-04-07 株式会社Adeka ポリエステル樹脂組成物、ポリエステル繊維、ポリエステル樹脂成形体及びポリエステル樹脂用結晶核剤の製造方法
JP2011133523A (ja) 2009-12-22 2011-07-07 Mitsubishi Engineering Plastics Corp 樹脂製光反射体用基体
JP2012057152A (ja) 2010-08-10 2012-03-22 Mitsubishi Engineering Plastics Corp 樹脂製光反射体用基体
WO2012073904A1 (ja) * 2010-12-02 2012-06-07 株式会社Adeka ポリエステル樹脂組成物及びその成形体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101434739B (zh) * 2008-12-08 2011-12-14 苏州贤聚新材料科技有限公司 一种导电高分子树脂以及皮芯复合结构可染色抗静电纤维
RU2434029C1 (ru) * 2010-06-07 2011-11-20 Сергей Дмитриевич Веретенников Композиционный полимерный материал

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987495A (ja) 1995-09-26 1997-03-31 Kuraray Co Ltd 成形材料及び電気部品
JPH11101905A (ja) 1997-07-29 1999-04-13 Polyplastics Co ポリブチレンテレフタレート樹脂製光反射体及びその製造方法
JPH11241006A (ja) 1998-02-26 1999-09-07 Mitsubishi Eng Plast Corp 光反射体
WO2007129527A1 (ja) 2006-05-09 2007-11-15 Adeka Corporation ポリエステル樹脂組成物
WO2008038465A1 (fr) 2006-09-28 2008-04-03 Adeka Corporation Composition de résine de polyester
WO2009116499A1 (ja) 2008-03-21 2009-09-24 株式会社Adeka ポリエステル樹脂組成物
WO2011040337A1 (ja) 2009-09-30 2011-04-07 株式会社Adeka ポリエステル樹脂組成物、ポリエステル繊維、ポリエステル樹脂成形体及びポリエステル樹脂用結晶核剤の製造方法
JP2011133523A (ja) 2009-12-22 2011-07-07 Mitsubishi Engineering Plastics Corp 樹脂製光反射体用基体
JP2012057152A (ja) 2010-08-10 2012-03-22 Mitsubishi Engineering Plastics Corp 樹脂製光反射体用基体
WO2012073904A1 (ja) * 2010-12-02 2012-06-07 株式会社Adeka ポリエステル樹脂組成物及びその成形体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687277C1 (ru) * 2018-06-21 2019-05-13 Закрытое акционерное общество "СуперОкс" (ЗАО "СуперОкс") Провод из высокотемпературного сверхпроводника с электрической изоляцией, монолитная обмотка и способ ее изготовления

Also Published As

Publication number Publication date
JPWO2014185484A1 (ja) 2017-02-23
EP2998359A4 (en) 2016-12-28
BR112015028868A2 (pt) 2017-07-25
EP2998359B1 (en) 2019-08-21
TWI635113B (zh) 2018-09-11
TW201504275A (zh) 2015-02-01
EP2998359A1 (en) 2016-03-23
RU2015154176A (ru) 2017-06-22
KR20160011211A (ko) 2016-01-29
RU2015154176A3 (ja) 2018-03-27
RU2663431C2 (ru) 2018-08-06
CN105229079A (zh) 2016-01-06
US20160115298A1 (en) 2016-04-28

Similar Documents

Publication Publication Date Title
TWI794247B (zh) 組合物及難燃性樹脂組合物
TW201702301A (zh) 樹脂添加劑組成物及防靜電性熱可塑性樹脂組成物
TW200819487A (en) Polyester resin composition
KR20140105496A (ko) 마스터 배치의 제조 방법
WO2019093204A1 (ja) 組成物及び難燃性樹脂組成物
JP7158389B2 (ja) 組成物及び難燃性樹脂組成物
JP6177672B2 (ja) マスターバッチの製造方法
JPWO2019009340A1 (ja) 難燃剤組成物及びそれを含有する難燃性樹脂組成物
WO2014185484A1 (ja) 成形品、これを用いた絶縁材料、およびポリエステル樹脂組成物の電気絶縁性の改善方法
JP7109455B2 (ja) 組成物及び難燃性樹脂組成物
WO2018216558A1 (ja) 難燃剤組成物及びそれを含有する難燃性樹脂組成物
JP4721823B2 (ja) 難燃性樹脂組成物及びそれからなる成形体
KR102240713B1 (ko) 폴리에스테르 수지 조성물 및 이를 이용한 성형품
WO2022215660A1 (ja) 機械物性付与剤組成物、樹脂組成物および成形品
WO2024122297A1 (ja) 難燃剤組成物、難燃性樹脂組成物および成形品
WO2023199865A1 (ja) 難燃剤組成物、難燃性樹脂組成物および成形品
TW202313824A (zh) 熱塑性樹脂組合物、製造造形體之方法及造形體
CN115175965A (zh) 阻燃剂组合物、阻燃性合成树脂组合物和成型体
CN113966359A (zh) 添加剂组合物
WO2019117049A1 (ja) 組成物及び難燃性樹脂組成物
WO2019065614A1 (ja) 組成物、組成物を用いた難燃剤及び難燃性樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480027951.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797511

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015517128

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14891593

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014797511

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015028868

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2015154176

Country of ref document: RU

Kind code of ref document: A

Ref document number: 20157035803

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015028868

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151117